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Part I

Typical Complex Analysis in a Nutshell
1 Solving Typical Problems of Complex Analysis

1.1 Computation of Integrals and Series, Typical Analysis of Func-
tions

1.1.1 Typical computation of integrals

Алгоритм вычисления вычетами типичного интеграла

Вычисляем через теорему о вычетах, но сперва могут помочь пара хороших
соображений.

1) Может, он делится на два простейших

Например, если в знаменателе произведение двух функций, то это повод его разделить
на два

2) Если есть тригонометрия, переходим к экспонентам, а далее понятно, в
какую сторону замыкать контур

Тут тоже может возникнуть необходимость разделить интеграл на несколько. Причем
один из интегралов может оказаться равен 0, ибо вычет может быть в противоположной
плоскости.

Иногда интеграл от логарифма берется рассмотрением интеграла от квадрата
логарифма, потому что в сумме интегралов по контурам будет сумма интегралов,
которая и даст искомый плюс что-то.

Например, так получается для
+∞
∫
0

lnx
(x+α)2dx, α > 0.

Теоремы о вычислении интегралов по замкнутому контуру

Теорема Коши о вычетах

Теорема

Пусть D - область в C̄ с кусочно-гладкой границей Γ, а функция f(z) регулярна в
области D за исключением конечного числа изолированных особых точек ak ∈ D(k =
1,2, . . . , n) (к их числу относится и точка z = ∞, если ∞ ∈ D), кроме того, функция f(z)
непрерывна вплоть до границы Γ области D. Тогда

∫
Γ+

f(z)dz = 2πi
n

∑
k=1

res
z=ak

f(z),

Γ+- положительно ориентированная относительно области D кривая Γ.
Очень важно отслеживать, замыкаем мы контур по часовой стрелке или против

часовой стрелки. Если против, то нужно добавить знак минус перед интегралом. Легко
на простых примерах убедиться, что именно на знак минус и отличались бы выражения,
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1.1.1 Typical computation of integrals

если бы мы просто брали интеграл через вычеты в точках по одну и по
противоположную сторону от разреза.

Теорема о полной сумме вычетов

Пусть функция f(z) регулярна во всей плоскости C за исключением конечного числа
изолированных особых точек a1, . . . , an. Тогда

n

∑
k=1

res
z=ak

f(z) + resz=∞ f(z) = 0.

О лемме Жордана (!! важная лемма)

Интегралы, сводящиеся к гамма-функции

Гамма-функция Эйлера

Γ(z) ∶=
+∞

∫
0

tz−1e−tdt Re z > 0

tz−1 ≡ e(z−1) ln t. Γ(z) равномерно сходится по z на любом компакте в {z ∶ Re z > 0}.

Функция Γ(z) регулярна в полуплоскости {z ∶ Re z > 0} и может быть аналитически
продолжена на всю плоскость C с выколотыми точками zn = −n (n ∈ Z, n ⩾ 0).

В точках zn = −n (n ∈ Z+,0) гамма-функция имеет полюсы первого порядка,

res
z=−n

Γ(z) = (−1)
n

n!
(n ∈ Z, n ⩾ 0).

∀ z ∈ C Γ(z + 1) = zΓ(z).

Γ(z)Γ(−z) = − π

z sinπz
, Γ(z)Γ(1 − z) = π

sinπz
, Γ(1 + z)Γ(1 − z) = πz

sinπz

Γ(1
2
+ z) ⋅ Γ(1

2
− z) = π

cosπz
.
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1.1.2 Typical summation of series

Бета-функция Эйлера B(z,w)

B(z,w) ∶=
1

∫
0

τ z−1(1 − τ)w−1dτ
∀z,w ∈ C,

Re z > 0,Rew > 0

B(z,w) = Γ(z)Γ(w)
Γ(z +w)

,

с ней аналитически продолжаем B(z,w) на всю C2 для z и w.

1.1.2 Typical summation of series

1.1.3 Typical decomposition into series

Типичные ряды (!!!)

Ряды Тейлора

ez =
∞
∑
n=0

zn

n!
, ∣z∣ < +∞

sin z =
∞
∑
n=0

(−1)nz2n+1
(2n + 1)!

, ∣z∣ < +∞

cos z =
∞
∑
n=0

(−1)nz2n
(2n)!

, ∣z∣ < +∞

sh z =
∞
∑
n=0

z2n+1

(2n + 1)!
, ∣z∣ < +∞

ch z =
∞
∑
n=0

z2n

(2n)!
, ∣z∣ < +∞

1

1 − z
=
∞
∑
n=0

zn, ∣z∣ < 1

z

ez − 1
=
∞
∑
n=0

Bn

n!
zn,

где Bn - числа Бернулли,

B0 = 1, B1 = −
1

2
,

C0
n+1B0 +C1

n+1B1 + . . . +Cn
n+1Bn = 0,

Ck
n+1 - биномиальные коэффициенты (k = 0,1, . . . , n). Ряд (12) сходится в круге B2π(0) =
{z ∶ ∣z∣ < 2π}.

Типичные способы разложения в ряд Лорана

● представить требуемую функцию как операцией над функцией, разложение которой
в ряд известно.

Например, производной или с помощью суммы функций, в частности суммы дробей.
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1.1.4 Properties of complex functions, branches, special points, residues

Далее подставляем ряды с учетом радиуса сходимости и преобразуем получившееся
выражение. Важно, что может быть, что есть несколько областей, где разные разложения!

● если требуется разложить не в нуле, то вводим новую переменную, дальше тако же
разложение.

Может, функция - производная уже разложенной функции в ряд?

Определение радиуса сходимости степенных рядов

Для ряда
∞
∑
n=0

cn(z − a)n

R = 1

limn→∞
n
√
∣cn∣

(ф. Коши-Адамара),

Если существует конечный или бесконечный limn→∞ ∣ cncn+1 ∣, то

R = lim
n→∞
∣ cn
cn+1
∣ .

(еще потренируюсь!)

Теорема Абеля: если степенной ряд
∞
∑
n=0

cn(z − a)n сходится в точке z1 ≠ a, то он

абсолютно сходится в круге K0 = {z ∶ ∣z − a∣ < ∣z1 − a∣}, а в любом замкнутом круге
K1 = {z ∶ ∣z − a∣ ⩽ ρ}, ρ < ∣z1 − a∣, этот ряд сходится равномерно.

1.1.4 Properties of complex functions, branches, special points,
residues

Дифференцируемость комплексных функций

∂u

∂x
= ∂v
∂y
,

∂u

∂y
= −∂v

∂x
усл Коши-Римана

Complex logarifm

Пусть функция f ∶ G → C регулярна в области G и f(z) ≠ 0 ∀z ∈ G. Тогда получаем
многозначные функции на G:

Ln f(z) = ln ∣f(z)∣ + iArg f(z);

{(f(z))a} = eaLn f(z), a ∈ C.

log z = ln r + iθ = ln ∣z∣ + iArg z = ln
√
x2 + y2 + iatan2(y, x)

For example, log(−3i) = ln 3 − πi/2, and log(−3) = ln 3 + πi

log((−1)i) = log(−i) = ln(1) − πi
2
= −πi

2

log(−1) + log(i) = (ln(1) + πi) + (ln(1) + πi
2
) = 3πi

2
≠ −πi

2
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1.1.4 Properties of complex functions, branches, special points, residues

(!?!)

1) Arg z = {φ0 + 2πk∣k ∈ Z}, z = x + iy и φ0 - любое решение системы

cosφ0 =
x

∣z∣
, sinφ0 =

y

∣z∣
;

2) Ln z = ln ∣z∣ + iArg z;

Ln f(z), где f(z) - голоморфная в области D функция и f(z) ≠ 0 для z ∈ D, допускает
выделение регулярных ветвей в D ⇒ когда для любой замкнутой кусочногладкой
кривой γ в D

∆γ arg f(z) = 0

Complex root

{ n
√
z} = n

√
ze(i/n)Arg z;

{za} = eaLn z, a ∈ C ⇒

h (z0) = e
1
n
(ln∣f(z0)∣+iarg f(z0)+2πki) = n

√
∣f (z0)∣ ⋅ e

i
n
arg f(z0) ⋅ e 2πki

n , k = 0,±1,±2, . . .

e
2πh̵i
n , k = 0,±1,±2, . . . - только n различных значений.

Значение ветви h(z) в точке z по ее значению в z0 дается из

e
1
n
Ln f(z) = e

1
n
(Ln f(z0)+ln ∣f(z)∣

∣(z0)∣
+i∆γ arg f(z)) ∶

h(z) = h (z0) ⋅ n

¿
ÁÁÀ ∣f(z)∣
∣f (z0)∣

⋅ e i
n
∆γ arg f(z)

γ - кривая из z0 в z и лежащей в области D.

Производная ветви корня h(z) = e 1
n
Ln f(z):

h′(z) = e 1
n
Ln f(z) ⋅ ( 1

n
Ln f(z))

′
= h(z) ⋅ f

′(z)
nf(z)

Пусть дано комплексное число z = ∣z∣(cosφ + i sinφ). Тогда для любого натурального
числа n все корни n

√
z есть элементы множества

{∣z∣ 1n (cos φ + 2πk
n

+ i sin φ + 2πk
n

) , k = 0,1, . . . , n − 1}

Поиск особых точек

часто у нас есть функция в виде дроби, тогда сперва ищем претенденты, приравнивая
знаменатель к 0.

дальше раскладываем в ряд тейлора в окрестности претендента на особую точку
в итоге числитель и знаменатель представляем в виде

f(z) = (z − a)
ng1(z)

(z − a)mf1(z)
побеждает знаменатель - это полюс степени m − n; побеждает числитель - это СОТ или
УОТ.
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1.1.4 Properties of complex functions, branches, special points, residues

Классификация и основные свйоства функций

мероморфные функции.

Т. Миттаг- Леффлера: Пусть {ak}∞k=1 - последовательность различных точек, не
имеющая ни одной предельной точки в C, a{Pk(z)}∞k=1 - последовательность полиномов
без свободных членов. Тогда существует мероморфная функция f(z), которая имеет
главнъе части Pk (1/ (z − ak)) в точках ak, k = 1,2, . . . , u не имеет других особых точек в C.

гармонические функции

Это такие, которые

∆u = ∂
2u

∂x2
+ ∂

2u

∂y2
= 0

Theorem 16.1. Пусть D - односвязная область. Тогда для всякой гармонической в D
функции и(z) найдется такая голоморфная в D функция f(z), что u(z) = Re f(z) для всеx
z ∈D.

Theorem 16.2. [Принцип экстремума.] Непостоянная гармоническая в области D
функция и(z) не может достигать локального максимума или минимума во внутренней
точке области.

Theorem 16.3. [Единственности.] Пусть и(z) - гармоническая в области D функция и
въполнено одно из условий:

(i) u(z) = 0 в некоторой окрестности Or (z0) ⊂D;
(ii) область D ограничена, а функция и(z) непрерьвно продолжается в замыкание D̄

области D и (z) = 0 при z ∈ ∂D.
Тогда u(z) ≡ 0 в области D.

Theorem 16.4. [Конформная инвариантность.] Пусть и(z)-гармоническая в области G
функция, а f(z) является голоморфной в области D и принимает значения из G, m.e.
f(D) ⊂ G. Тогда v(z) = u(f(z)) является гармонической в области D функиией.

Theorem 16.5. [О среднем.] Пусть и(z)-гармоническая в круге Or (z0)u непрерывная в
замыкании Or (z0) функция. Тогда

u (z0) =
1

2π

2π

∫
0

u (z0 + reiθ)dθ =
1

2π ∫
T

u (z0 + rζ) ∣dζ ∣

где T - положителъно ориентированная единичная окружность.

Theorem 16.6. [Формула Пуассона.] Пусть и(z) - гармоническая в единичном круге D
и непрерьвная в его замыкании D функиия. Тогда для всех a ∈ D выполняется равенство

u(a) = 1

2π

2π

∫
0

1 − ∣a∣2

∣eiθ − a∣2
u (eiθ)dθ = 1

2π ∫
T

1 − ∣a∣2
∣κ − a∣2

u(κ)∣dκ∣.
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1.1.4 Properties of complex functions, branches, special points, residues

О вычетах

Основные методы вычисления вычетов

Для вычета 1го порядка прото подставляем точку в числитель, а знаменатель исчезает:

res
z=a
f(z) = h(a).

Для вычета 2го порядка,
res
z=a
f(z) = h′(a)

● Вбить в вольфрам
(тут приведу код!!!)

Полюс n-го порядка: Res f (z0) =
1

(n − 1)!
lim
z→z0

dn−1

dzn−1
(f(z) (z − z0)n) .

В частности, если

f(z) = h(z)
(z − a)n

h(z) - функция, регулярная в точке, и h(a) ≠ 0, то

res
z=a
f(z) = 1

(n − 1)!
h(n−1)(a),

т. е. вычет функции f(z) в точке a равен коэффициенту при (z − a)n−1 ряда Тейлора
h(z) =

∞
∑
n=0

cn(z − a)n.

Res f(∞) = 1

2πi ∮L−
f(z)dz ≡ −c−1

L−- произвольный замкнутый контур по часовой стрелке, принадлежащий множеству ∣z∣ >
r (где функция f(z) аналитична); f(z) ≡

∞
∑

k=−∞
ckzk - ряд Лорана функции во внешности

окружности ∣z∣ = r.
Этот способ эффективен, если вычетов в нужных точках более трех.

Вычеты через коэффициент ряда Лорана:
Если функция f(z) регулярна в проколотой окрестности точки a (т.е. z ∶ 0 < ∣z−a∣ < ρ),

то она представляется в этом кольце рядом Лорана

f(z) =
∞
∑
n=−∞

cn(z − a)n,

f1(z) =
∞
∑
n=1

c−n
(z−a)n - главная часть ряда Лорана. Тогда

res
z=a
f(z) = c−1,

т. е. вычет функции f(z) в точке a равен коэффициенту ряда Лорана (4) при 1
z−a .
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1.1.4 Properties of complex functions, branches, special points, residues

Это работает, когда имеется произведение функций, разложение каждой из которых в
ряд Лорана известно.

Когда СУТ, тогда он используется (????) (?? насколько он эффективен???)

3.2. Если f(z) =
∞
∑

n=−∞
cnzn - ряд Лорана функции f(z), регулярной в окрестности точки

z = ∞ (в области ∣z∣ > ρ), то
res
z=∞

f(z) = −c1,

т. е. вычет в точке z = ∞ равен коэффициенту этого ряда при 1
z , взятому со знаком минус.

Формулы для вычета в бесконечно удаленной точке:
Если функция f(z) регулярна в точке z = ∞, то

resz=∞ f(z) = lim
z→∞
[z(f(∞) − f(z))]

Пусть z = ∞ - нуль порядка k функции f(z), тогда

f(z) ∼ A
zk

при z →∞, A ≠ 0.

Если в асимптотической формуле (14) k = 1, то

f(z) ∼ A
z

и тогда resz=∞ f(z) = −A,

a если k ⩾ 2, то res
z=∞

f(z) = 0.

5 Если функция f(z) представлена в виде f(z) = φ (1z), где функция φ(ζ) регулярна в
точке ζ = 0, то

resz=∞ f(z) = −φ′(0).

Основные теоремы и свойства вычетов

Опр. вычета. Пусть a ∈ C - изолированная особая точка однозначного характера
функции f(z). Тогда функция f(z) регулярна в кольце 0 < ∣z−a∣ < ρ. Если γR = {z ∶ ∣z−a∣ =
R}, 0 < R < ρ - положительно ориентированная окружность, то вычетом функции f(z) в
точке a называется число

res
z=a
f(z) ∶= 1

2πi ∮∣z−a∣=R
f(z)dz,

где обход контура совершается в положительном направлении (против часовой стрелки).

Опр. вычета в ∞. Пусть функция f(z) регулярна в области ∣z∣ > ρ (точка z =
∞ является либо изолированной особой точкой однозначного характера, либо точкой
регулярности функции f(z)). Тогда вычетом функции f(z) в бесконечности называется
число, определяемое формулой

res f(z) = 1

2πi ∮γR
f(z)dz, 0 < ρ < R,

γR = {z ∶ ∣z∣ = R} - окружность радиуса R, ориентированная по часовой стрелке (при обходе
γR область ∣z∣ > R остается слева).
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1.1.5 Complex equations and inequations

У регулярной функции f(z) в точке a ≠ ∞ всегда res
z=a

f(z) = 0, а у регулярной функции
f(z) в точке z = ∞ вычет не обязан быть равен нулю (например, res

z=∞
1/z = −1 по теореме

о вычетах).

Теорема о вычетах. Если функция f(z) регулярна в C, за исключением конечного
числа изолированных особых точек z1, z2, . . . , zn, то сумма всех вычетов функции f(z),
включая и вычет в точке z = ∞, равна нулю, т. е.

n

∑
k=1

resz=zk f(z) + resz=∞ f(z) = 0, ⇔ res
z=∞

f(z) = −
n

∑
k=1

resz=zk f(z).

О принципе аргумента и теореме Руше (!??!?)

Теорема Руше. Пусть функции f(z) и φ(z) являются аналитическими в замкнутой
области D, причем на границе C этой области ∣f(z)∣C > ∣φ(z)∣C . Тогда полное число нулей
(с учетом их кратности) в D функции F (z) = f(z) + φ(z) равно полному числу нулей (с
учетом их кратности) функции f(z).

Применения к интегралам: (!!!)

1.1.5 Complex equations and inequations

Решение простейших комплексных уравнений

В простейшем случае подставляем что-то в духе 1 ≡ ei⋅2πn, n ∈ Z, и дальше ответ.
Может помочь формула Муавра:

zn = rn(cosφ + i sinφ)n = rn(cosnφ + i sinnφ) ∀n ∈ Z.

Решение комплексных неравенств

1.1.6 Typical Analysis of Complex Functions

Анализ и поиск особых точек (!?)

1.1.7 Basic Numerical Methods (????)

(потом напишу, пока просто вбиваю в вольфрам иногда)

1.2 Other Typical Problems

1.2.1 On Approximate Computations in Complex Analysis (?!??!?)

(пока не готов написать, какие там есть методы)

О методе перевала (!?!??)

Стационарную точку фазы t0 называют невырожденной, если

S′′ (t0) ≠ 0

Метод стационарной фазы: пусть фаза S(t) имеет единственную невырожденную
стационарную точку t0 ∈ (a, b), тогда

15



1.2.2 Properties of Complex Functions

S′′ (t0) > 0⇒

F (λ) =
b

∫
a

f(t)eiλS(t)dt = eiλS(t0)+iπ/4f (t0)
√

2π

λS′′ (t0)
+O (1

λ
) λ→∞

S′′ (t0) < 0⇒

F (λ) =
b

∫
a

f(t)eiλS(t)dt = eiλS(t0)−iπ/4f (t0)
√

2π

−λS′′ (t0)
+O (1

λ
) λ→∞

1.2.2 Properties of Complex Functions

Definitions

In complex analysis, an entire function (целая), also called an integral function, is a complex-
valued function that is holomorphic on the whole complex plane.

K целым функциям относятся полиномы, экспонента, синус, косинус и другие.
Следующие две теоремы касаются целых функций.

Изолированная особая точка a ∈ C функции f называется:
(i) устранимой особой точкой, если существует конечный предел

lim
z→a

f(z) = A

(ii) полюсом, если f(z) → ∞ при z → a;
(iii) существенно особой точкой, если f(z) не имеет ни конечного, ни бесконечного

предела при z → a.

1.2.3 Expansions into Dirichlet Series and Infinite Products

О разложении в ряды простейших дробей

Правильная система контуров

Пусть Γn(n ∈ N)-замкнутый кусочно-гладкий положительно ориентированный контур;
Gn - область, ограниченная кривой Γn (∂Gn = Γn). Тогда систему контуров {Γn} называют
правильной, если выполняются условия:

a) Gn ⊂ Gn+1, n ∈ N; 0 ∈ G1;
б) если dn =minz∈Γn ∣z∣, то dn →∞ при n→∞;
в) если ln - длина контура Γn, то существует число A > 0 такое, что для всех n ∈ N

справедливо неравенство
ln ⩽ Adn.

(? зачем нужна?)

Теорема Коши о разложении мероморфной функции

Пусть для мероморфной функции f(z) существует правильная система контуров {Γn}
такая, что выполняются условия:

а) εn =maxz∈Γn ∣f(z)∣ → 0 при n→∞;
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1.2.3 Expansions into Dirichlet Series and Infinite Products

б) полюсы функции f(z) пронумерованы так, что для любого n ∈ N область Gn

содержит ровно n первых по порядку полюсов функции f(z), а на контурах Γn полюсов
нет.

Тогда функция f(z) представима в виде ряда простейших (элементарных) дробей, т.
е.

f(z) =
∞
∑
k=1

fk(z),

fk(z) =
mk

∑
p=1

e
(k)
−p

(z−zk)p -главная часть ряда Лорана функции f(z) в окрестности ее полюса zk

кратности mk.
Ряд (2) в любом круге BR(0) = {z ∶ ∣z∣ < R} с выброшенными из него полюсами функции

f(z) сходится равномерно.

Алгоритм типичного разложения в ряды простейших дробей

О разложении в бесконечные произведения (!?!!)

(интересно, тут укажу эти методы, но не актуально пока что.)

Вид бесконечного произведения для типичной функции (?)

Рассмотрим бесконечное произведение

∞
∏
k=1
(1 + fk(z)) ,

fk(z) - функции, регулярные в области G (см. §8), предполагая, что ни один из
множителей в (4) не обращается в нуль в области G.

Теорема. Пусть целая функция f(z) такова, что мероморфная функция F (z) = f ′(z)
f(z)

удовлетворяет условиям теоремы Коши и при этом все полюсы zk функции f(z) являются
простыми. Тогда

f(z) = f(0)eBz
∞
∏
k=1
(1 − z

zk
) ez/zk , B = f

′(0)
f(0)

.

Это бесконечное произведение равномерно сходится в каждой ограниченной части
плоскости.

Типичные бесконечные произведения

sh z = z
∞
∏
n=1
(1 + z2

n2π2
) ;

cos z =
∞
∏
n=1
(1 − z2

(n − (1/2))2π2
)

th z = z
∞
∏
n=1

[1 + (z/πn)2]

[1 + ( z
π(n−(1/2)))

2
]
;
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1.2.4 Laplace Transform

Алгоритм типичного разложения в бесконечные произведения

1.2.4 Laplace Transform

(очень важно, отработаю скоро!!)

Оригинал и его изображение

Оригинал - это комплекснозначная функцию f(t) действительного переменного,
удовлетворяющая следующим условиям: 1) f(t) = 0 при t < 0; 2) на каждом отрезке
полуоси t ⩾ 0 функция f(t) непрерывна, кроме, быть может, конечного числа точек
разрыва первого рода; 3) существуют такие действительные числа M > 0 и α, что для
всех t ⩾ 0 выполняется неравенство

∣f(t)∣ ⩽Meαt.

Изображением оригинала f(t) - это комплекснозначная функция

F (p) =
+∞

∫
0

e−ptf(t)dt

комплексного переменного p. Интеграл (1) называют преобразованием Лапласа функции
f(t). Функция F (p) регулярна в полуплоскости Rep > α и

lim
Rep→+∞

F (p) = 0.

Связь между оригиналом f(t) и его изображением F (p) записывают так:

f(t) ≓ F (p), или F (p) ≓ f(t).

Оригинал Изображение Оригинал Изображение
1 1

p shwt w
p2−w2

tn n!
pn+1 chwt p

p2−w2

eat 1
p−a t sinwt 2wp

(p2+w2)2

tneat n!
(p−a)n+1 t coswt p2−w2

(p2+w2)2

sinwt w
p2+w2 eat sinwt w

(p−a)2+w2

coswt p
p2+w2 eat coswt p−a

(p−a)2+w2

Свойства преобразования Лапласа

Линейность.
Если f(t) ≓ F (p), g(t) ≓ G(p), то

af(t) + bg(t) ≓ aF (p) + bG(p),

a, b-любые комплексные числа.
Подобие
Если f(t) ≓ F (p) и β > 0, то

f(βt) ≓ 1

β
F ( p

β
) .
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1.2.4 Laplace Transform

Дифференцирование оригинала. Если f(t), f ′(t), . . . , f (n)(t)-оригиналы и f(t) ≓ F (p),
то

f (n)(t) ≓pnF (p) − pn−1f(0) − pn−2f ′(0) − . . .−
− pf (n−2)(0) − f (n−1)(0),

f (k)(0) = lim
t→+0

f (k)(t), k = 0,1, . . . , n − 1.

где (???)
А если f (k)(0) = 0 при k = 0,1, . . . , n − 1, то

f (n)(t) ≓ pnF (p),

т.е. дифференцированию оригинала соответствует умножение на p его изображения.
Дифференцирование изображения. Если F (p) ≓ f(t), то

F (n)(p) ≓ (−t)nf(t).

Интегрирование оригинала. Если f(t) ≓ F (p), то
t

∫
0

f(τ)dτ ≓ F (p)
p

.

Интегрирование изображения. Если f(t) ≓ F (p) и 1
t f(t) - оригинал, то

1

t
f(t) ≓

∞

∫
p

F (ζ)dζ,

(p,∞) - горизонтальный луч, принадлежащий полуплоскости Rep > α, от точки p до точки
Rep = +∞.

Запаздывание оригинала. Если f(t) ≓ F (p) и f(t) = 0 при t < τ , τ > 0, то

f(t − τ) ≓ e−pτF (p).

Смещение изображения. Если f(t) ≓ F (p), то для любого комплексного числа a

f(t)eat ≓ F (p − a)

Формула обращения преобразования Лапласа

Теорема 1. Пусть F (p) ≓ f(t), где функция f(t) непрерывна при t ⩾ 0. Тогда

f(t) ≓ 1

2πi

b+i∞

∫
b−i∞

F (p)eptdp

b ⩾ α.

Теорема разложения

Теорема 2. Пусть функция F (p) регулярна в точке p = ∞ и F (∞) = 0, T. e.

F (p) =
∞
∑
n=1

cn
pn

при ∣p∣ > R.

Тогда оригиналом функции F (p) является функция

f(t) =
∞
∑
n=1

cn+1
n!

tn
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1.2.5 Typical Conformal Mappings

Поиск образов

Алгоритм поиска образа (!??!?)

(на это есть задачи.)

Диффуры через преобразования Лапласа (?!?!?!)

Рассмотрим задачу Коши для линейного диффура n-го порядка с постоянными
коэффициентами

Lx = x(n)(t) + a1x(n−1)(t) + . . . + an−1x′(t) + anx(t) = f(t).

x(0) = x0, x′(0) = x1, . . . x(n−1)(0) = xn−1,

x0, x1, . . . , xn−1 - заданные постоянные.
Предполагая, что f(t) - оригинал, будем искать такое решение x(t), что x(t) = 0 при

t < 0. Пусть x(t) ≓ X(p), f(t) ≓ F (p). По правилу дифференцирования оригинала
и свойству линейности, переходя к изображениям в уравнении с учетом условий (13)
получаем

pnX(p) − pn−1x0 − . . . − pxn−2 − xn−1+
+a1 (pn−1X(p) − pn−2x0 − . . . − pxn−3 − xn−2) + . . .+

+an−1 (pX(p) − x0) + anX(p) = F (p),
или

A(p)X(p) −B(p) = F (p),

где
A(p) = pn + a1pn−1 + . . . + an−1p + an

- характеристический многочлен уравнения Lx = 0,

B(p) = x0 (pn−1 + a1pn−2 + . . . + an−1)+
+x1 (pn−2 + a1pn−3 + . . . + an−2)+
+ . . . + xn−2 (p + a1) + xn−1.

Отсюда X(p) = (B(p) + F (p))/A(p). Для нахождения искомого решения x(t) задачи
(12)-(13) нужно восстановить по изображению X(p) его оригинал x(t). Это можно сделать
с помощью формулы обращения. При практическом применении операционного метода
вместо формулы обращения обычно используются таблицы оригиналов и их изображений.

В частности, если f(t) - квазимногочлен (линейная комбинация функций вида treλt),
то X(p) - рациональная функция.

Для нахождения оригинала эту функцию часто бывает удобно представить в виде
суммы элементарных дробей.

1.2.5 Typical Conformal Mappings

Типичные первые преобразования областей, подобного кругу (!!!)

Об аналогичных задачах

Типичные первые преобразования бесконечных и полубесконечных
прямоугольников

(вроде тут экспонентой действуем.)
(?? или мб дробно линейным, с ними ещё не разобрался.)
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1.2.5 Typical Conformal Mappings

Об аналогичных задачах

Типичные ходы по поиску отображения на верхнюю полуплоскость (!!!)

Отобразить в полуплоскость с двумя разрезами, дальше все легко

Дальше дробно линейным и сдвигом переводим к одному разрезу, дальше корнем
уменьшаем до полуплоскости.

Типичные первые преобразования области, собранной из двух окружностей
(!!!!)

Способы определить, что происходит с областью или прямой при отображении
(!?!?!?!?!?!?!?)

(вот тут совсем все плохо, я совсем криво это делаю.)

О том, что делать, если отображение не ищется (!?!?!!???!)

(самый типичный раздел, который важно проработать!!!)

Удостоверься, что ты правильную вообще плоскость отображаешь

Это очень важно. Каким бы ты ни был умным, всегда есть вероятность просто решать
более сложную задачу, неправильно списав условие. Особенно это может быть, если
область задается каким-то неравенство.

Поиск отображений на круг

(тут задачу решил, там по шагам идем, напишу потом, по каким.)

Простейшие отображения

О случаях применения

1. Степенная функция.

Пусть t ∈ R. Рассмотрим на области G = C/[0,+∞) функцию

w = ∣z∣teitarg z, где arg z ∈ (0,2π)

Эта функция регулярна на G. Причем при t ≠ 0 функция (1) однолистна на области D ⊂ G,
если D не содержит двух различных точек z1, z2, таких, что z2 = z1 ⋅ e2πik/t, k ∈ Z.

В частности, при t > 0 функция (1) осуществляет конформное отображение угловой
области G0,φ0 = {z ∶ ∣z∣ > 0,0 < arg z < φ0}, φ0 ⩽ 2π, ∣t∣φ0 ⩽ 2π, на угловую область G0,tφ0(
рис. 28.1).
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1.2.5 Typical Conformal Mappings

Например, функция w = z2 конформно отображает
1) верхнюю полуплоскость {z ∶ Im z > 0} на плоскость с разрезом C/[0,+∞) (рис. 28.2);

2) полукруг {z ∶ ∣z∣ < 1, Im z > 0} на круг с разрезом {w ∶ ∣w∣ < 1}/[0,1)( рис. 28.3)

3) полуплоскость {z ∶ Im z > a > 0} на внешность параболы {w = u + iv ∶ v2 > 4a2 (u + a2)}
(рис. 28.4).

Отображения ez и ln(z)
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1.2.5 Typical Conformal Mappings

О случаях применения

О деталях

Основные свойства Экспоненциальная функция

Функция w = ez осуществляет конформное отображение в областиD ⊂ C тогда и только
тогда, когда D не содержит двух различных точек z1, z2, таких, что z2 = z1 + 2πki, k ∈ Z.

Например, функция w = ez конформно отображает
1) полосу {z ∶ 0 < Im z < π} на верхнюю полуплоскость {w ∶ Imw > 0} (рис. 28.5);
2) полуполосу {z ∶ Re z < 0,0 < Im z < π} на полукруг {w ∶ ∣w∣ < 1, Imw > 0} (рис. 28.6);
3) полуполосу {z ∶ Re z > 0,0 < Im z < π} на область {w ∶ ∣w∣ > 1, Imw > 0} (рис. 28.7).

Отображение z2 и
√
z
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1.2.5 Typical Conformal Mappings

Основные свойства отображений логарифмической функцией

Многозначная функция w = Ln z распадается на регулярные ветви во всякой
односвязной области G ⊂ C, не содержащей точек 0 и ∞. Каждая регулярная ветвь
f(z) ∈ Ln z в такой области G является однолистной функцией (так как обратная к ней
функция ez является однозначной), поэтому эта ветвь f(z) осуществляет конформное
отображение области G на область f(G), которое является обратным к отображению
области f(G) на область G функцией w = ez. Например, регулярная ветвь f(z) функции
Ln z конформно отображает

1) плоскость C с разрезом по лучу [0,+∞) на полосу 0 < Imw < 2π (если f(−1) = πi)
(рис. 28.8);

2) область {z ∶ Im z > 0, ∣z∣ > 1} на полуполосу {w ∶ 0 < Imw < π,Rew > 0} (если
f(2 + i0) = ln 2) (рис. 28.9).

О случаях применения

О деталях

Отображение функцией Жуковского и обратной к ней

Примеры
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1.2.5 Typical Conformal Mappings

О случаях применения

Основные свойства Функция Жуковского

w = 1
2
(z + 1

z
) осуществляет конформное отображение области D ⊂ C тогда и только

тогда, когда точки ±1 не принадлежат области D и для любой точки z ∈D точка 1
z ∉D.

Например, функция Жуковского конформно отображает
1) верхнюю полуплоскость {z ∶ Im z > 0} на плоскость C с разрезами по лучам (−∞,−1]

и [1,+∞), т. е. на C/((−∞,−1] ∪ [1,+∞)) (рис. 28.10);
2) нижнюю полуплоскость {z ∶ Im z < 0} на C/((−∞,−1] ∪ [1,+∞));
3) единичный круг {z ∶ ∣z∣ < 1} на плоскость C с разрезом по отрезку [−1,1], т. е. на

C/[−1,1] (рис. 28.11);
4) внешность единичного круга (т. е. {z ∶ ∣z∣ > 1}) на C/[−1,1] (рис. 28.12);
5) область {z ∶ Im z > 0, ∣z∣ > 1} на верхнюю полуплоскость {w ∶ Imw > 0}( рис. 28.13)
6) полукруг {z ∶ ∣z∣ < 1, Im z < 0} на верхнюю полуплоскость {w ∶ Imw > 0}( рис. 28.14)
7) область {z ∶ ∣z∣ > ρ > 1} (и круг {z ∶ ∣z∣ < 1/ρ}) на внешность эллипса

{w = u + iv ∶ u
2

a2ρ
+ v

2

b2ρ
> 1}

aρ = 1
2 (ρ +

1
ρ) , bρ = 1

2 ∣ρ −
1
ρ ∣

О деталях

Отображение дробно-линейной функцией

Примеры
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Typical Constructions of Complex Analysis

О случаях применения

О деталях

Отображение тригонометрическими и гиперболическими функциями (??)

Примеры

О случаях применения

2 Typical Constructions of Complex Analysis

2.1 General Basic Properties of Complex Numbers, Functions, Sets

(пропишу скоро, хочу уже это четко написать, чтобы не тормозить!!!)

2.1.1 Algebra of Complex Numbers: Essence

(мб допишу разное, см. алгеру и алгебру Клиффорда, пока не до этого)

Об алгебраических свойствах

If a = b + ic, then
∣a∣2 = b2 − c2, a2 = b2 − c2.

Для любых комплексных z, z1, z2 имеют место следующие свойства модуля:
1) ∣z∣ ⩾ 0, причём ∣z∣ = 0 только при z = 0;
2) ∣z1 + z2∣ ⩽ ∣z1∣ + ∣z2∣ (неравенство треугольника);
3) ∣z1 ⋅ z2∣ = ∣z1∣ ⋅ ∣z2∣;
4) ∣ z1z2 ∣ =

∣z1∣
∣z2∣

5) для пары комплексных чисел z1 и z2 модуль их разности ∣z1 − z2∣ равен расстоянию
между соответствующими точками комплексной плоскости;
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2.1.2 Properties of Complex Equations (?!?!)

6) модуль числа z связан с вещественной и мнимой частями этого числа
соотношениями:

−∣z∣ ⩽ Re(z) ⩽ ∣z∣; −∣z∣ ⩽ Im(z) ⩽ ∣z∣; ∣z∣ ⩽ ∣Re(z)∣ + ∣ Im(z)∣.

tgφ = y
x
; cosφ = x

∣z∣
; sinφ = y

∣z∣
в частности:

arg z2 = 2arg z + 2πm,m ∈ Z,
arg zn = narg z + 2πm,m ∈ Z.

1) аргумент обратного числа отличается знаком от аргумента исходного:

Arg (1
z
) = −Arg(z)

2) аргумент произведения равен сумме аргументов сомножителей:

Arg (z1z2) = Arg (z1) +Arg (z2)

3) аргумент частного от деления равен разности аргументов делимого и делителя:

Arg
z1
z2
= Arg (z1) −Arg (z2)

1

a + bi
= a − bi
(a + bi)(a − bi)

= a − bi
a2 + b2

= a

a2 + b2
− b

a2 + b2
i

Делим так:
a + bi
c + di

= (a + bi)(c − di)
(c + di)(c − di)

= ac + bd
c2 + d2

+ bc − ad
c2 + d2

i.

∣eiπ∣ = ∣πie∣ = ∣iπe∣ = 1

2.1.2 Properties of Complex Equations (?!?!)

(потом допишу, отдельное направление)

2.1.3 Theorems on Complex Integration

теоремы о равенстве 0 интегралов в C

типа их много, я не уверен, что они пригодятся, так что эта глава для них.

Лемма Гурса.
треугольник в C и функцию,

∫
∂∆

f(z)dz = 0

∣I (∆n)∣ =
RRRRRRRRRRRRR
∫
b∆n

f(z)dz
RRRRRRRRRRRRR
=
RRRRRRRRRRRRR
∫
∂∆n

(f(z) − f (z∗) − (z − z∗) f ′ (z∗))dz
RRRRRRRRRRRRR
⩽ ε ∫

∂∆n

∣z − z∗∣ ∣dz∣

Усиление леммы Гурса
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2.1.4 Geometrical Relations

2.1.4 Geometrical Relations

Основные соотношения

∣z − z1∣ = ∣z − z2∣ задает геометрическое место точек, равноудалённых от двух данных -
срединный перпендикуляр (??? додумаю потом, почему???)
∣z − z1∣ + ∣z − z2∣ = const > > ∣z1 − z2∣ задает эллипс (??? додумаю потом, почему???)
∣z − z1∣ − ∣z − z2∣ = const < > ∣z1 − z2∣ задает правую ветвь гиперболы при const>0. (???

додумаю потом, почему???)
Уравнение окружности, проходящей через три данные точки z1, z2, z3, не лежащие на

одной прямой:
RRRRRRRRRRRRRRRRRRR

∣z∣2 z z̄ 1

∣z1∣2 z1 z̄1 1

∣z2∣2 z2 z̄2 1

∣z3∣2 z3 z̄3 1

RRRRRRRRRRRRRRRRRRR

= 0.

(??? почему???)

2.1.5 Theorems about sequences, series of functions, sets

Локально равномерная сходимость

(впишу суть п. 12 Горяйнова Половинкина)

Theorem Вейеритрасса для рядов. Пусть ряд
∞
∑
n=1

fn(z), составленный из голоморфных

в области D функций fn сходится локалвно равномерно в D. Тогда его сумма f(z) =
∞
∑
n=1

fn(z) является голоморфной в D функцией и ряд можно почленно дифференцировать,

m. е. f ′(z) =
∞
∑
n=1

f ′n(z)

Theorem Гурвица. Пусть функции fn, n = 1,2, . . ., голоморфны и не обращаются в
нуль в области D. Допустим также, что fn(z) → f(z) локалъно равномерно в D. Тогда
либо f(z) ≡ 0, либо f(z) ≠ 0 при z ∈D.

Theorem Арцела - Асколи 12.3. Пусть K - компактное в C множество и F ⊂ C(K) − ce
- мейство, которое равномерно ограничено и равностепенно непрерывно на K. Тогда из
любой последовательности {fn} ⊂ F можно выделить подпоследовательность, которая
равномерно сходится на K.

Опр. 12.3. Семейство F ⊂ H(D) называется локально равномерно ограниченным в D,
если для всякой точки z0 ∈ D найдутся окрестность Or (z0) ⊂ D и число M > 0 такие, что
∣f(z)∣ ⩽M при всех z ∈ Or (z0) и f ∈ F .

Theorem 12.4. Пусть F ⊂ H(D) - локалъно равномерно ограниченное в D семейство.
Тогда семейство производных F ′ = {f ′ ∶ f ∈ F} также является локально равномерно
ограниченным в D семейством.

2.1.6 Properties of Conformal Mappings

Theorem 13.1. Пусть z1, z2, z3, z4 - четыре различные точки в CuL ∈ M. Тогда

(L (z1) , L (z2) , L (z3) , L (z4)) = (z1, z2, z3, z4)
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Part II

Fundamentals of Complex Analysis
3 Basic Topics

3.1 Basics of Complex Functions, Integration

3.1.1 Complex Numbers

Возникновение комплексного анализа первоначально было связано с решением
алгебраических уравнений. В дальнейшем выяснилось, что анализ над полем
комплексных чисел обладает рядом преимуществ и является основой многих методов
исследований в различных областях математики.

1.1. Алгебра комплексных чисел.

С точки зрения разрешимости алгебраического уравнения x2 + 1 = 0 появляется
необходимость расширения поля вещественных чисел. Пусть i - новое число (мнимая
единица), которое удовлетворяет условию i2 = i ⋅ i = −1. Если производить операции
сложения и умножения над вещественными числами и мнимой единицей, то мы
естественным образом приходим к записи комплексных чисел z = x + iy, где x, y ∈ R. В
этой записи x называют вещественной частью комплексного числа z и обозначают
x = Re z, а y - мнимой частью с обозначением y = Im z. Если x = 0, то комплексное число z
называют чисто мнимым, а в случае y = 0 говорят, что z вещественно. Нуль является
единственным комплексным числом, которое одновременно и вещественное и чисто
мнимое. Под равенством двух комплексных чисел понимается одновременное равенство
вещественных и мнимых частей.

Арифметические операции сложения и умножения не выводят за рамки комплексных
чисел, если предполагать, что для них выполняются те же арифметические законы, как
и для вещественных чисел, а также выполняется правило i2 = −1. Действительно,
(α + iβ) + (γ + iδ) = (α + γ) + i(β + δ), (α + iβ)(γ + iδ) = (αγ − βδ) + i(αδ + βγ).
Менее очевидно, что в рамках комплексных чисел возможно деление. Пусть γ + iδ ≠ 0,

т. е. γ2 + δ2 ≠ 0. Тогда частное (α + iβ)/(γ + iδ) = x + iy должно определяться из равенства
α + iβ = (γ + iδ)(x + iy). С учетом условия равенства комплексных чисел x и y должны
являться решением системы двух линейных уравнений

{ γx − δy = α
δx + γy = β

Поскольку γ2 + δ2 ≠ 0, то эта система имеет единственное решение

x = αγ + βδ
γ2 + δ2

, y = βγ − αδ
γ2 + δ2

В частности, обратное к числу α + iβ ≠ 0 определяется равенством

1

α + iβ
= α − iβ
α2 + β2

= α

α2 + β2
− i β

α2 + β2
.

Можно также получить явный вид квадратного корня из комплексного числа α + iβ.
Действительно, нам нужно найти число x + iy, которое удовлетворяет равенству
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3.1.1 Complex Numbers

(x + iy)2 = α + iβ

Снова равенство комплексных чисел приводит к системе двух вещественных уравнений

{
x2 − y2 = α

2xy = β
Ее решение также должно удовлетворять системе уравнений

⎧⎪⎪⎨⎪⎪⎩

x2 − y2 = α

(x2 + y2)2 = α2 + β2

из которой следуют равенства

x2 = 1

2
(
√
α2 + β2 + α) , y2 = 1

2
(
√
α2 + β2 − α) .

Таким образом, возможны лишь по два значения для x и для y:

x = ±

¿
ÁÁÀ
√
α2 + β2 + α

2
, y = ±

¿
ÁÁÀ
√
α2 + β2 − α

2
.

Выбор знаков можно осуществить с учетом равенства 2xy = β. Если β = 0, то
решениями системы (1.1) являются

x = ±
√
α, y = 0

при α ⩾ 0 и

x = 0, y = ±
√
−α

при α < 0. В случае β ≠ 0 значения x и y должны быть одного знака при β > 0 и
иметь разные знаки при β < 0. Следовательно, для любого комплексного числа α + iβ ≠ 0
существует ровно два квадратных корня:

√
α + iβ = ±

⎛
⎜
⎝

¿
ÁÁÀ
√
α2 + β2 + α

2
+ i β
∣β∣

¿
ÁÁÀ
√
α2 + β2 − α

2

⎞
⎟
⎠

если β ≠ 0, а при β = 0 этими корнями являются ±
√
α, если α > 0, и ±i

√
−α, если α < 0.

Оба эти корня, как и в случае извлечения квадратного корня из положительного числа,
отличаются друг от друга только знаком.

Отметим также, что введенное выше равенство комплексных чисел можно
подкрепить следующими рассуждениями. Пусть α+ iβ = γ + iδ, т. е. мы имеем две записи
одного комплексного числа. Тогда α − γ = i(δ − β) и после возведения в квадрат обеих
частей равенства приходим к равенству вещественных чисел (α − γ)2 = −(δ − β)2, которое
возможно лишь в случае α = γ и β = δ одновременно. Совокупность всех комплексных
чисел обозначают символом C. Из проведенных выше рассуждений следует, что C
является числовым полем. Под комплексным сопряжением понимается операция,
которая каждому комплексному числу a = α + iβ ставит в соответствие сопряженное
число ā = α − iβ. Комплексное сопряжение является инволюцией, что выражается
равенством ā = a. Вещественная и мнимая части комплексного числа a алгебраически
выражаются через a и ā:

30



3.1.1 Complex Numbers

Rea = 1

2
(a + ā), Ima = 1

2i
(a − ā)

Фундаментальным свойством сопряжения является то, что

a + b = ā + b̄, ab = āb̄
Эти равенства легко проверяются непосредственным сравнением левых и правых

частей. Далее, поскольку частное z = a/b определяется как решение уравнения a = bz, то
в силу предыдущих свойств ā = b̄z̄, откуда получаем

(a
b
) = ā

b̄

Заметим теперь, что для любого комплексного числа a = α + iβ произведение aā =
α2+β2 всегда принимает неотрицательное значение и равняется нулю лишь в случае a = 0.
Неотрицательный корень

√
aā называется модулем комплексного числа a и обозначается

∣a∣. Отметим основные свойства модуля. Непосредственно из определения следует, что
aā = ∣a∣2 и ∣ā∣ = ∣a∣. Для произведения двух комплексных чисел a и b получаем

∣ab∣2 = abab = abāb̄ = aābb̄ = ∣a∣2∣b∣2

т. е. ∣ab∣ = ∣a∣∣b∣. Если b ≠ 0, то для частного a/b будет выполняться равенство b(a/b) = a.
Используя свойство модуля для произведения чисел, получаем ∣b∣∣a/b∣ = ∣a∣, откуда следует
равенство

∣a
b
∣ = ∣a∣
∣b∣
.

В отличие от вещественных чисел комплексные числа не связаны отношением порядка.
Поэтому все неравенства записываются только для вещественных чисел. Из определения
модуля сразу же следуют неравенства

−∣a∣ ⩽ Rea ⩽ ∣a∣, −∣a∣ ⩽ Ima ⩽ ∣a∣.
Равенство Re a = ∣a∣ имеет место в том и только том случае, если a вещественно и

неотрицательно. Далее, для любых двух комплексных чисел a и b имеем
∣a + b∣2 = (a + b)(a + b) = ∣a∣2 + ∣b∣2 + 2Re{ab̄} ⩽ ∣a2∣ + ∣b∣2 + 2∣a∣∣b∣ = (∣a∣ + ∣b∣)2.
Отсюда следует неравенство треугольника для комплексных чисел

∣a + b∣ ⩽ ∣a∣ + ∣b∣
Заметим, что в этом неравенстве знак равенства достигается лишь в случае, если ab̄ ⩾ 0.

Применяя неравенство треугольника, получаем

∣a∣ = ∣(a − b) + b∣ ⩽ ∣a − b∣ + ∣b∣
откуда следует, что ∣a∣ − ∣b∣ ⩽ ∣a − b∣. Аналогично получаем

∣b∣ = ∣(b − a) + a∣ ⩽ ∣b − a∣ + ∣a∣
и ∣b∣ − ∣a∣ ⩽ ∣a − b∣. Полученные неравенства приводят к следующему

∣∣a∣ − ∣b∣∣ ⩽ ∣a − b∣
1.2. Геометрическое представление комплексных чисел. На координатной плоскости

комплексное число a = α + iβ можно интерпретировать либо как точку с координатами
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3.1.1 Complex Numbers

(α,β), либо как вектор, выходящий из начала координат в эту точку. Саму плоскость при
этом будем называть комплексной плоскостью.

Сложение комплексных чисел вполне согласуется с векторным сложением. Кроме
того, простое геометрическое содержание получают в рамках векторной интерпретации
комплексных чисел модуль ∣a∣ (длина вектора), неравенство треугольника ∣a+ b∣ ⩽ ∣a∣ + ∣b∣ и
тождество параллелограмма

∣a + b∣2 + ∣a − b∣2 = 2 (∣a∣2 + ∣b∣2)
Комплексное число a и его комплексное сопряжение ā представляют на комплексной

плоскости точки, симметричные относительно вещественной оси. Точка, симметричная к
a относительно мнимой оси, выражается в комплексной записи как −ā.

Для геометрической интерпретации произведения комплексных чисел введем в
комплексной плоскости полярные координаты. Если (r,φ) - полярные координаты точки
(α,β), которую мы ассоциируем с комплексным числом a = α + iβ, то

α = r cosφ, β = r sinφ.
Это приводит нас к тригонометрической форме записи комплексного числа a:

a = r(cosφ + i sinφ)
При этом r = ∣a∣, а полярный угол φ (угол, который образует вектор a с

положительным направлением вещественной оси) называется аргументом комплексного
числа a ≠ 0. Нулю аргумент не приписывается. В остальных случаях аргумент
определяется неоднозначно. Действительно, замена φ на φ + 2kπ, k ∈ Z, в
тригонометрической форме записи дает то же самое комплексное число. В связи с этим
условимся через arg a обозначать некоторое выделенное значение аргумента, например
из промежутка (−π,π], а множество всех значений аргумента обозначать

Arg{a} = {arg a + 2kπ ∶ k ∈ Z}
Рассмотрим теперь два комплексных числа a1 = r1 (cosφ1 + i sinφ1) и

a2 = r2 (cosφ2 + i sinφ2). Их произведение записывается в виде

a1a2 = r1r2 [(cosφ1 cosφ2 − sinφ1 sinφ2) + i (sinφ1 cosφ2 + sinφ2 cosφ1)] .
Используя теоремы косинусов и синусов суммы углов, получаем

a1a2 = r1r2 (cos (φ1 + φ2) + i sin (φ1 + φ2))
То, что модули перемножаются при умножении комплексных чисел, мы видели из

алгебраического определения модуля. Полученное выше равенство дает также правило
сложения аргументов:

Arg {a1a2} = Arg {a1} +Arg {a2}
или в другой записи

arg (a1a2) = arg a1 + arg a2 (mod2π).
Другими словами, при произведении комплексных чисел их аргументы склаДываются.
Пусть теперь a = r(cosφ + i sinφ) ≠ 0. Тогда

1

a
= 1

r

1

cosφ + i sinφ
= 1

r
(cosφ − i sinφ) = 1

r
(cos(−φ) + i sin(−φ)).
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Отсюда и из доказанного свойства аргумента для произведения получаем

Arg{a
b
} = Arg{a} −Arg{b}

т. е. при делении комплексных чисел аргументы вычитаются.
Тригонометрическая форма записи комплексного числа позволяет дать полный анализ

решений биномиального уравнения

zn = a

a ≠ 0, n ∈ N. Пусть a = r(cosφ+i sinφ). Решение z будем искать в виде z = ρ(cos θ+i sin θ).
Из правила умножения комплексных чисел сразу же получаем

zn = ρn(cosnθ + i sinnθ)

В случае ρ = 1 это равенство принимает вид

(cos θ + i sin θ)n = cosnθ + i sinnθ

и носит имя Муавра. Таким образом, уравнение zn = a эквивалентно системе

ρn = r, nθ = φ + 2kπ, k ∈ Z,

из которой следует, что все решения уравнения zn = a можно представить формулой

z = n
√
r (cos(φ

n
+ 2kπ

n
) + sin(φ

n
+ 2kπ

n
))

k = 0,1, . . . , n − 1. Это-все корни n-ой степени из числа a ≠ 0. Они расположены на
окружности с центром в начале координат и радиуса n

√
r. В случае a = 1 получаем корни

n-ой степени из единицы: 1, ωn, ω2
n, . . . , ω

n−1
n , где

ωn = cos
2π

n
+ i sin 2π

n

1.3. Последовательности и ряды. Расширенная комплексная плоскость. Аналогично
вещественному случаю в комплексном анализе вводятся понятия окрестности и предела
числовой последовательности на основе модуля комплексного числа. Для a ∈ C и r > 0 под
окрестностью точки a радиуса r будем понимать множество

Or(a) = {z ∈ C ∶ ∣z − a∣ < r}

Очевидно, что в плоскости C, которую можно отождествить с R2, окрестность Or(a)
представляет собой открытый круг с центром в точке a и радиусом r. Через Or(a) будем
обозначать замкнутый круг, т. е.

Or(a) = {z ∈ C ∶ ∣z − a∣ ⩽ r}

а через Ȯr(a) = {z ∈ C ∶ 0 < ∣z − a∣ < r} - проколотую окрестность точки a.
Пусть an = αn + iβn, n = 1,2, . . ., - последовательность комплексных чисел. Будем

говорить, что комплексное число a = α + iβ является пределом последовательности {an},
если для любого ε > 0 существует номер N(ε) такой, что ∣an − a∣ < ε при всех n ⩾ N(ε).
Другими словами, при n ⩾ N(ε) точки an будут попадать в ε-окрестность Oε(a) точки
a. В случае существования предела a последовательности {an} эту последовательность
называют сходящейся и пишут
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lim
n→∞

an = a

Заметим, что в силу неравенств

∣αn − α∣ ⩽ ∣an − a∣ , ∣βn − β∣ ⩽ ∣an − a∣ , ∣an − a∣ ⩽ ∣αn − α∣ + ∣βn − β∣

условие limn→∞ an = a эквивалентно следующим двум:

lim
n→∞

αn = α, lim
n→∞

βn = β

Таким образом, последовательность {an} комплексных чисел an = αn + iβn сходится в
том и только том случае, если сходятся последовательности вещественных частей {αn} и
мнимых частей {βn} одновременно. Кроме того, применение критерия Коши для
последовательностей вещественных и мнимых частей приводит к следующему
результату. Последовательность {an} комплексных чисел является сходящейся в том и
только том случае, если она фундаменталвна, т. е. для любого ε > 0 существует номер
N(ε) такой, что ∣an − am∣ < ε при всех n,m ⩾ N(ε). Аналогично переносятся все свойства
сходящихся последовательностей из вещественного анализа на комплексные
последовательности.

Среди расходящихся последовательностей {an} в комплексном анализе выделяют те,
для которых ∣an∣ → +∞ при n→∞. Более точно, будем говорить, что последовательность
{an} стремится к бесконечности и писать an → ∞ (или limn→∞ an = ∞), если для любого
R > 0 найдется номер N(R) такой, что ∣an∣ > R при всех n ⩾ N(R). В связи с этим, а
также по другим причинам, комплексная плоскость C пополняется бесконечно
удаленной точкой z = ∞. Под окрестностью бесконечно удаленной точки понимается
внешность круга с центром в начале координат, т. е. множество точек z ∈ C, для
которых ∣z∣ > R, где R > 0. Пополненная (или расширенная) комплексная плоскость
обозначается через C. В расширенной комплексной плоскости C принцип
Больцано-Вейерштрасса уточняется следующим образом. Из любой последовательности
{an} ⊂ C можно выделить сходящуюся (в собственном или расширенном смысле)
подпоследовательность. Действительно, если последовательность {an} ограничена, то к
ней (как к последовательности точек в R2) можно применить классический принцип
Больцано-Вейерштрасса. (Либо применить его к последовательностям вещественных и
мнимых частей.) В случае неограниченной последовательности {an} можно выделить
подпоследовательность ank

, удовлетворяющую условию ∣ank
∣ > k, k = 1,2, . . .

Наглядное представление топологических свойств расширенной комплексной
плоскости дает стереографическая проекция. Рассмотрим сферу S, которая в
трехмерном пространстве задается уравнением x21 + x22 + x23 = 1. С каждой точкой
(x1, x2, x3) на сфере S, исключая точку (0,0,1), можно ассоциировать комплексное число
z ∈ C по формуле

z = x1 + ix2
1 − x3

Это равенство определяет взаимно-однозначное соответствие между S/{(0,0,1)} и C.
Действительно, используя очевидное соотношение

∣z∣2 = x21 + x22
(1 − x3)2

= 1 + x3
1 − x3

легко находится обратное отображение
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3.1.1 Complex Numbers

x3 =
∣z∣2 − 1
∣z∣2 + 1

, x1 =
z + z̄
1 + ∣z∣2

, x2 =
1

i

z − z̄
1 + ∣z∣2

.

Заметим также, что при ∣z∣ → ∞ соответствующая точка на сфере S стремится к
точке (0,0,1). Продолжая отображение соответствием (0,0,1) ↦ ∞, приходим к
взаимно-однозначному соответствию S и C. Это отображение называется
стереографической проекцией и обладает рядом замечательных свойств.

Рис. 1. Сфера Римана
Как и в вещественном анализе под числовым рядом понимается формальная сумма

∞
∑
n=1

an. С рядом ассоциируется последовательность его частичных сумм Sn = a1+. . .+an, n =

1,2, . . . Говорят, ряд
∞
∑
n=1

an сходится, если сходится последовательность его частичных сумм.

При этом S = limn→∞ Sn называется суммой ряда и пишут S =
∞
∑
n=1

an.

Пусть an = αn + iβn, n = 1,2, . . . Тогда частичные суммы ряда
∞
∑
n=1

an будут иметь вид

Sn =
n

∑
k=1

αk + i
n

∑
k=1

βk

Следовательно, ряд
∞
∑
n=1

an сходится в том и только том случае, если сходятся два

вещественных ряда
∞
∑
n=1

αn и
∞
∑
n=1

βn. Критерий Коши, примененный к последовательности

частичных сумм, показывает, что ряд
∞
∑
n=1

an сходится в том и только том случае, если для

любого ε > 0 найдется такой номер N(ε), что

∣
n+m
∑
k=n

ak∣ < ε

при всех n ⩾ N(ε) и натуральных m. Из критерия Коши и неравенства треугольника
сразу же следует, что абсолютная сходимость ряда влечет его сходимость. Как и в
вещественном случае из критерия Коши следует также необходимое условие сходимости
ряда: an → 0 при n→∞.

Сфреа Римана подробно

(потом изучу, пока не до неё. Так и не понял, почему только 1 бесконечность в
комплексных числах, а не бесконечность бесконечностей как в вещественных)
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3.1.2 Complex Numbers: Other Basic Statements about Their Origin

Общие вопросы о комплексной плоскости

Если у нас бесконечности эквивалентны, то почему интеграл от -∞ до +∞
не равен интегралу с противоположными пределами? Казалось бы, можно
его сдеформировать так и всё?

(???? не знаю, не понимаю это, спрошу кого-то когда-то)

3.1.3 Complex Differentiability

Теория функций комплексного переменного расширяет исчисление на комплексную
область. При этом и дифференцирование и интегрирование приобретают некоторое
новое значение. Их область применения существенно сужается и естественным образом
возникает класс голоморфных или аналитических функций.

Под функцией комплексного переменного w = f(z) будем понимать отображение
множества D ⊂ C в комплексной z-плоскости в множество f(D) = G ⊂ C комплексной
w-плоскости. Если представить z = x + iy,w = u + iv, то задание функции f эквивалентно
определению двух вещественных функций u(x, y) и v(x, y) вещественных переменных x
и y, т. е. w = f(z) = u(x, y) + iv(x, y). Другими словами, функции u(x, y) и v(x, y) дают
запись отображения f в вещественных терминах. Как правило, мы будем рассматривать
случай, когда функция f определена на открытом множестве.

Опр.

2.1. Будем говорить, что функция f(z) имеет предел A при z → a и писать

lim
z→a

f(z) = A

если для каждого ε > 0 найдется такое δ > 0, что ∣f(z) −A∣ < ε при всех z ∈ Ȯδ(a), т. е.
при 0 < ∣z − a∣ < δ.

Формулировка определения легко видоизменяется в случаях, когда a = ∞ или A = ∞
(или оба вместе). Например, при a = ∞ нужно фразу при всех z ∈ Ȯδ(a) заменить на
фразу при ∣z∣ > δ. Хорошо известные из вещественного анализа результаты, касающиеся
пределов суммы, произведения и частного, остаются верными и в комплексном случае,
поскольку при их доказательстве используются лишь свойства модуля. Заметим также,
что условие (2.1) эквивалентно следующему

lim
z→a

f(z) = Ā

Из (2.1) и (2.2) сразу же следуют соотношения

lim
z→a

Re f(z) = ReA, lim
z→a

Im f(z) = ImA

Обратно, если выполнены последние два соотношения, то выполняются (2.1) и (2.2).
Функция f(z) называется непрерьвной в точке a, если

lim
z→a

f(z) = f(a)

Термин непрерывная функция будем употреблять в случае, когда f непрерывна во всех
точках, где она определена. Из свойств предела следует, что сумма и произведение двух
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3.1.3 Complex Differentiability

непрерывных функций являются непрерывными функциями. Частное двух непрерывных
функций f и g также непрерывно в некоторой окрестности точки a, если в этой точке не
обращается в нуль знаменатель. Кроме того, из неравенств

∣Re f(z) −Re f (z0)∣
∣Im f(z) − Im f (z0)∣
∣∣f(z)∣ − ∣f (z0) ∣∣

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⩽ ∣f(z) − f (z0)∣

следует, что если f непрерывна, то таковыми являются Re f, Im f и ∣f ∣.
Производная функции определяется как предел отношения приращений независимой

и зависимой переменных, т. е. по форме комплексное дифференцирование вполне
аналогично вещественному:

f ′(a) = lim
z→a

f(z) − f(a)
z − a

Это определение производной и идентичность арифметических законов для
комплексных и вещественных чисел показывают, что обычные правила
дифференцирования суммы, произведения и частного выполняются и в комплексном
случае. Однако, в отличие от понятия непрерывности, которое просто сводится к
непрерывности вещественной и мнимой частей, условие дифференцируемости влечет
совершенно неожиданные свойства функции.

Theorem

2.1. Для дифферениируемости функиии f(z) = u(x, y) + iv(x, y) в точке z = x + iy
в комплексном смысле необходимо и достаточно, чтобы она была дифференцируема в
вещественном смысле (т.е. дифференцируемы функции (x, y) и v(x, y)) и выполнялись
равенства

∂u

∂x
= ∂v
∂y
,

∂u

∂y
= −∂v

∂x
.

Proof.

Вещественная дифференцируемость функции f в точке z = x + iy означает
представление приращений функций u(x, y) и v(x, y) в виде

u(x + ξ, y + η) − u(x, y) = u′x ⋅ ξ + u′y ⋅ η + o(∣ζ ∣),
v(x + ξ, y + η) − v(x, y) = v′x ⋅ ξ + v′y ⋅ η + o(∣ζ ∣)

где частные производные вычислены в точке (x, y) и ζ = ξ + iη. С другой стороны,
комплексная дифференцируемость функции f в точке z эквивалентна представлению ее
приращения в виде

f(z + ζ) − f(z) = f ′(z)ζ + ζσ(ζ)

где σ(ζ) → 0 при ζ → 0. Пусть f ′(z) = α + iβ. Тогда, отделяя в последнем равенстве
вещественную и мнимую части, получаем

u(x + ξ, y + η) − u(x, y) = α ⋅ ξ − β ⋅ η + o(∣ζ ∣),
v(x + ξ, y + η) − v(x, y) = β ⋅ ξ + α ⋅ η + o(∣ζ ∣).

Другими словами, du = αdx − βdy, dv = βdx + αdy. В силу единственности
дифференциала получаем равенства
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u′x = α, u′y = −β, v′x = β, v′y = α

из которых следуют соотношения (2.3). Таким образом, из комплексной
дифференцируемости следует вещественная дифференцируемость и выполнение
соотношений (2.3). При этом

f ′(z) = ∂u
∂x
+ i∂v
∂x
= ∂v
∂y
− i∂u
∂y

Обратно, допустим, что f дифференцируема в вещественном смысле и выполняются
соотношения (2.3). Тогда, умножая приращение функции v на i и складывая его с
приращением функции u, получаем приращение функции f из которого следует ее
комплексная дифференцируемость.

Опр.

2.2. Функцию f , определенную на открытом множестве D ⊂ C будем называть
голоморфной (аналитической, регулярной) в D, если она дифференцируема в
комплексном смысле в каждой точке D. Будем говорить, что f голоморфна на
произвольном множестве E ⊂ C, если она голоморфна на некотором открытом множестве
D, содержащем E.

Соотношения (2.3), которым удовлетворяют вещественная и мнимая части
голоморфной функции, называются условиями (или системой уравнений) Коши-Римана.
С учетом равенств (2.3) можно записать четыре различных выражения для f ′(z) в
терминах частных производных. В ходе доказательства теоремы были получены
следующие два

f ′(z) = ∂f
∂x
= ∂u
∂x
+ i∂v
∂x
= ∂v
∂y
− i∂u
∂y
= −i∂f

∂y
.

Сами условия Коши-Римана можно записать одним комплексным равенством

∂f

∂x
= −i∂f

∂y

Если воспользоваться инвариантностью формы первого дифференциала и формальной
заменой dx и dy на dz и dz̄, то очевидные преобразования

df = ∂f
∂x
dx + ∂f

∂y
dy

= 1

2

∂f

∂x
(dz + dz̄) + 1

2i

∂f

∂y
(dz − dz̄)

= 1

2
(∂f
∂x
− i∂f
∂y
)dz + 1

2
(∂f
∂x
+ i∂f
∂y
)dz̄

естественным образом приводят к дифференциальным операторам

∂f

∂z
= 1

2
(∂f
∂x
− i∂f
∂y
) , ∂f

∂z̄
= 1

2
(∂f
∂x
+ i∂f
∂y
)

В этих терминах условия Коши-Римана принимают вид

∂f

∂z̄
= 0
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Система уравнений Коши-Римана (2.3) обладает рядом интересных свойств. В
частности, если предположить, что функции u(x, y) и v(x, y) являются дважды
непрерывно дифференцируемыми, то из (2.3) получаем

∂2u

∂x2
= ∂2v

∂x∂y
,

∂2u

∂y2
= − ∂2v

∂x∂y

Отсюда и из равенства смешанных производных следует, что функция u(x, y)
удовлетворяет уравнению

△u = ∂
2u

∂x2
+ ∂

2u

∂y2
= 0

Дифференциальный оператор

△ = ∂2

∂x2
+ ∂2

∂y2

называется оператором Лапласа, а дифференциальное уравнение △u = 0 уравнением
Лапласа. Аналогично предыдущему получаем, что функция v(x, y) также удовлетворяет
уравнению Лапласа.

Опр.

2.3. Функция u(x, y) действительных переменных x, y, принимающая вещественные
значения и дважды непрерывно дифференцируемая, называется гармонической в области
определения (на открытом множестве D), если △u = 0 всюду в D. Две гармонические
функции u(x, y) и v(x, y), связанные соотношениями Коши-Римана (2.3), называются
сопряженными гармоническими функциями.

Как уже отмечалось выше, правила дифференцирования суммы, произведения и
частного голоморфных функций совпадают с аналогичными правилами
дифференцирования из вещественного анализа. Допустим теперь, что w = f(z) -
голоморфная в окрестности Or (z0) функция, которая принимает значения в окрестности
Oϱ (w0) и f (z0) = w0. Пусть также функция ζ = g(w) голоморфна в окрестности Oϱ (w0).
Тогда композиция ζ = h(z) = g(f(z)) является голоморфной в Or (z0) функцией и имеет
место равенство

h′ (z0) = g′ (w0) f ′ (z0) = g′ (f (z0)) f ′ (z0) .

Действительно, пусть ∆z = z − z0 и ∆w = f(z) − f (z0). В силу комплексной
дифференцируемости функций f и g имеем

∆w = f ′ (z0)∆z + o(∣∆z∣), g(w) − g (w0) = g′ (w0) ⋅∆w +∆w ⋅ η(∆w),

где η(∆w) → 0 при ∆w → 0. Но тогда

h(z) − h (z0)
z − z0

= g(f(z)) − g (f (z0))
z − z0

= g′ (w0)
∆w

∆z
+ ∆w

∆z
η(∆w) → g′ (w0) f ′ (z0)

при ∆z → 0.
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Опр.

2.4. Множество E ⊂ C называется связным, если не существует двух открытых
множеств G1 и G2, удовлетворяющих условиям:

(i) E ⊂ G1 ∪G2;
(ii) E ∩G1 ∩G2 = ∅;
(iii) G1 ∩E ≠ ∅, G2 ∩E ≠ ∅.
Интуитивно связность означает, что множество E состоит из одного куска. В случае,

когда E является открытым множеством, условие (ii) можно сформулировать в виде G1 ∩
G2 = ∅, поскольку в этом случае множества G1 и G2, удовлетворяющие условиям (i)−(iii)
можно заменить на E ∩G1 и E ∩G2.

Theorem

2.2. Отрезок прямой - связное множество. При этом допускается, чтобы один из кониов
отрезка был бесконечно удаленной точкой, а сам отрезок был открытым, замкнутым или
полуоткрытым.

Proof.

Допустим противное, т. е. найдутся два открытых множества G1 и G2, для которых
выполнены условия (i) − (iii), где E - наш отрезок. Тогда на E найдутся две конечные
точки a ∈ G1 и b ∈ G2. Очевидно, что условия (i) − (iii) также выполняются при замене
E на отрезок E1 = [a, b]. Разобьем E1 пополам и выберем ту его часть E2, которая
представляет собой отрезок с концами в разных множествах G1 и G2. Продолжая этот
процесс, получим последовательность замкнутых вложенных отрезков E1 ⊃ E2 ⊃ . . .,
длины которых стремятся к нулю. По теореме Кантора, существует единственная точка ξ,
принадлежащая всем отрезкам последовательности {En}. Из условий (i), (ii) следует, что
ξ принадлежит одному из множеств G1 или G2. Пусть это для определенности будет G1.
В силу открытости G1 и стремления длин En к нулю следует, что En ⊂ G1 при достаточно
больших номерах n. Однако это противоречит условиям выбора En.

Опр.

2.5. Непустое открытое связное множество называется областъю.
Следующий результат дает характеристическое свойство области. Tеорема 2.3.

Henyстое открытое множество D ⊂ C является связным в том и только том случае, если
любие две его точки можно соединить ломаной, расположенной в D. При этом ломаную
можно выбрать так, чтобъ ее звенъя были параллельны координатным осям.

Proof.

Пусть D связно и a ∈ D. Обозначим через G1 множество точек в D, которые можно
соединить с а ломаной, расположенной в D и имеющей звенья, параллельные
координатным осям. Через G2 обозначим те точки из D, которые не удовлетворяют
этому условию. Если некоторую точку b ∈D можно соединить с a указанной ломаной, то
и точки круговой окрестности Or(b) ⊂ D также можно соединить такой ломаной. Это
означает, что G1 - открытое множество. Аналогично убеждаемся, что G2 - открытое
множество. В силу того, что D связно, одно из открытых множеств G1 или G2 должно
быть пусто. Поскольку точка a содержится в D с некоторой окрестностью, то G1 ≠ ∅.
Следовательно, G2 = ∅ и все точки из D можно соединить с a ломаной со звеньями,
параллельными координатным осям.
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3.1.3 Complex Differentiability

Обратно, пусть D - открытое множество и любые две точки этого множества можно
соединить ломаной, расположенной в D. Тогда связность D легко устанавливается
рассуждениями от противного. Действительно, допустим, что G1 и G2 - открытые
множества, удовлетворяющие условиям: G1 ∪ G2 = D, G1 ∩ G2 = ∅ и G1 ≠ ∅,G2 ≠ ∅.
Выберем две точки a ∈ G1 и b ∈ G2. По условию их можно соединить в D ломаной. На
этой ломаной найдется отрезок E, концы которого расположены в разных множествах
G1 и G2. Но тогда для E и G1,G2 будут выполнены условия (i) − (iii), что противоречит
связности отрезка.

Опр.

2.6. ОбластьD ⊂ C называется односвязной, если ее дополнение C/D является связным
множеством в C.

Заметим, что в этом определении дополнение рассматривается в расширенной
комплексной плоскости C. В связи с этим

Определением полоса является односвязной областью.

Theorem

2.4. Пусть f -голоморфная в области D ⊂ C фнкция и f ′(z) = 0 для всех z ∈ D. Тогда
f(z) ≡ const D.

Proof.

Если f(z) = u(x, y) + iv(x, y), то из условия теоремы следует, что u′x ≡ 0, u′y ≡ 0, v′x ≡ 0 и
v′y ≡ 0 в D. Допустим, что отрезок E = {z = x + iy0 ∶ x1 ⩽ x ⩽ x2} содержится в D.
Поскольку u′x (x, y0) = 0 при x ∈ [x1, x2], то по теореме из вещественного анализа
u (x, y0) ≡ const на [x1, x2]. Другими словами, функция u(x, y) является постоянной на
горизонтальных отрезках, расположенных в D. Условие u′y ≡ 0 дает постоянство
функции u(x, y) на вертикальных отрезках. Аналогичным свойством обладает функция
v(x, y). Следовательно, функция f(z) является постоянной на горизонтальных и
вертикальных отрезках, расположенных в области D.

Пусть теперь z1 и z2 - произвольные точки области D. По предыдущей теореме их
можно соединить в D ломаной со звеньями, параллельными координатным осям. В силу
доказанного свойства функции f получаем f (z1) = f (z2).

Theorem

2.5. [Об обратной функции]. Пусть в области D функция w = f(z) голоморфна и
имеет непрерывную производную. Допустим, что точке z0 ∈ D при отображении f
соответствует точка w0 = f (z0)uf ′ (z0) ≠ 0. Тогда найдутся такие окрестность U точки z0
(открытое множество, содержащее z0) и окрестность V точки w0, что f взаимно
однозначно отображает U на V и обратное отображение g = f−1 является голоморфной
функиией в V. При этом

g′ (w0) =
1

f ′ (z0)

Proof.
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Заметим прежде всего, что поскольку производная f ′(z) непрерывна, то ее модуль
∣f ′(z)∣ также будет непрерывной функцией. По условию ∣f ′ (z0)∣ > 0 и, следовательно,
найдется круговая окрестность Or (z0), в которой выполняется неравенство ∣f ′(z)∣ > 0.

Далее, выделяя в переменных z = x + iy и w = u + iv вещественные и мнимые части,
функцию w = f(z) можно представить как отображение f ∶ (x, y) ↦ (u, v), действующее
в R2. Используя условия Коши - Римана, якобиан этого отображения преобразуется
следующим образом

∣ u
′
x u′y
v′x v′y

∣ = u′x ⋅ v′y − u′y ⋅ v′x = (u′x)
2 + (v′x)

2 = ∣f ′(z)∣2 ,

откуда видно, что в Or (z0) выполнены условия теоремы об обратном отображении из
вещественного анализа. Согласно этой теоремы найдутся такие окрестности U точки z0
и V точки w0, что f взаимно однозначно отображает U на V и обратное отображение
g = f−1 является непрерывно дифференцируемым (в вещественном смысле). Для нас
сейчас важно то, что f ∶ U ↦ V является топологическим отображением, т. е. взаимно
однозначным и непрерывным в обе стороны. Поскольку V является открытым
множеством, то найдется ε > 0 такое, что Oε (w0) ⊂ V . Пусть теперь w ∈ Ȯε (w0) и
∆w = w −w0, ∆z = g(w) − g (w0) = z − z0. Тогда ∆z ≠ 0 и ∆z → 0 в том и только том случае,
когда ∆w → 0. Замечая, что ∆w = f(z) − f (z0), получаем

lim
∆w→0

g (w0 +∆w) − g (w0)
∆w

= lim
∆w→0

∆z

∆w
= lim

∆z→0

1

∆w/∆z
= 1

f ′ (z0)
.

Таким образом, функция g дифференцируема в комплексном смысле в точке w0.
Однако, для любой пары точек z ∈ U и w ∈ V , связанных равенством w = f(z),
выполнены все условия, что и для пары z0,w0. Следовательно, z = g(w) является
дифференцируемой в комплексном смысле на всем открытом множестве V и

g′(w) = 1

f ′(g(w))

Опр.

2.7. Голоморфную в области D функцию f называют однолистной в D, если f (z1) =
f (z2) лишь в случае z1 = z2 для любой пары точек z1, z2 из D

Другими словами, функция f однолистна в D, если она отображает D взаимно
однозначно.

Theorem

об обратной функции утверждает, что если f голоморфна и ее производная не
обращается в нуль, то она локально однолистна, т. е. в некоторой окрестности. Пример
функции w = z2 показывает, что функция может быть локально однолистной, но не быть
однолистной в области. В качестве области D можно рассмотреть кольцо
{z ∈ C ∶ 1 < ∣z∣ < 2}.

3.1.4 Power Series and Elementary Functions

Простейшим примером голоморфной функции является тождественно постоянная
функция с производной, тождественно равной нулю. Другим примером голоморфной
функции является f(z) ≡ z с производной f ′(z) ≡ 1. Поскольку сумма и произведение
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голоморфных функций также являются голоморфными функциями, то любой полином
P (z) = anzn + . . . + a0 представляет собой голоморфную в C функцию. Для расширения
класса голоморфных функций естественно перейти к бесконечным суммам, т. е. к рядам.

Пусть {fn} - последовательность функций, определенных на множестве E ⊂ C. Будем
говорить, что эта последовательность сходится в точке z0 ∈ E к функции f , если для
любого ε > 0 найдется такой номер N = N (ε, z0), что при всех n ⩾ N (ε, z0) выполняется
неравенство ∣f (z0) − fn (z0)∣ < ε. Последовательность fn сходится к функции f на
множестве E, если она сходится в каждой точке множества E. В случае, если для любого
ε > 0 номер N = N(ε) можно выбрать выбрать так, чтобы неравенство ∣f(z) − fn(z)∣ < ε
выполнялось для всех n ⩾ N(ε) и z ∈ E, то последовательность fn называется равномерно
сходящейся на множестве E. Важнейшим свойством равномерной сходимости является
то, что пределом равномерно сходящейся последовательности непрерывных функций
является непрерывная функция. Совершенно аналогично вещественному случаю
устанавливается критерий Коши для равномерной сходимости: Последовательность {fn}
сходится равномерно на E ⊂ C в том и только том случае, если для любого ε > 0 найдется
номер N(ε) такой, что ∣fn(z) − fm(z)∣ < ε для всех z ∈ E и n,m ⩾ N(ε)′.

Критерий Коши, примененный к частичным суммам функционального ряда
∞
∑
n=1

fn(z),

дает признак Вейерштрасса равномерной сходимости. Если числовой ряд
∞
∑
n=1

αn с

неотрицательными αn мажорирует на множестве E функциональный ряд
∞
∑
n=1

fn(z), т. е.

∣fn(z)∣ ⩽ αn для всех z ∈ E и всех n, за исключением, быть может, конечного числа, и
числовой ряд

∞
∑
n=1

αn сходится, то функциональный ряд
∞
∑
n=1

fn(z) сходится на E

равномерно.
Под степенным рядом понимается функциональный ряд вида

∞
∑
n=0

anz
n = a0 + a1z + a2z2 + . . .

где an, n = 0,1,2, . . ., - комплексные числа, называемые коэффициентами ряда, а z -
комплексная переменная. Можно рассмотреть более общий вид степенного ряда
∞
∑
n=0

an (z − z0)n, но его изучение сводится к (3.1) путем замены переменной ζ = z − z0.
Рассмотрим один простой, но важный, пример так называемого геометрического ряда

1 + z + z2 + . . . Его частичные суммы при z ≠ 1 можно записать в в виде

Sn(z) = 1 + z + . . . + zn =
1 − zn+1
1 − z

Заметим, что в случае ∣z∣ < 1 предел частичных сумм существует и

S(z) = lim
n→∞

Sn(z) =
1

1 − z
В случае ∣z∣ ⩾ 1 не выполняется необходимое условие сходимости ряда и геометрический

ряд расходится. Оказывается, что такая ситуация в определенном смысле типична для
степенных рядов.

Формула Kоши - Адамара

Для каждого степенного ряда (3.1) число

R = 1/ lim
n→∞

n
√
∣an∣, 0 ⩽ R ⩽ +∞
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называемое радиусом сходимости, удовлетворяет следующим условиям:
(i) В каждом круге ∣z∣ ⩽ r < R ряд (3.1) сходится абсолютно и равномерно;
(ii) Если ∣z∣ > R, то ряд (3.1) расходится;
(iii) Сумма ряда S(z) =

∞
∑
n=0

anzn является голоморфной в круге ∣z∣ < R функцией, а

ее производная S′(z) представляет собой сумму почленно продифференцированного ряда
(3.1), т. е. ряда

∞
∑
n=1

nanzn−1.

Proof. (i) Пусть R > 0 и 0 < r < R. Выберем ϱ из интервала (r,R), т. е. r < ϱ < R.
Поскольку

lim
n→∞

n
√
∣an∣ =

1

R
< 1

ϱ

то найдется такой номер N , что n
√
∣an∣ < 1/ϱ при всех n ⩾ N . Но тогда для n ⩾ N и z из

круга ∣z∣ ⩽ r будут выполняться неравенства

∣anzn∣ = ∣an∣ ⋅ ∣z∣n ⩽ (
r

ϱ
)
n

.

Это означает, что в круге ∣z∣ ⩽ r члены ряда (3.1) мажорируются геометрической
прогрессией (r/ϱ)n, n ⩾ N . Поскольку r/ϱ < 1, то ряд

∞
∑
n=0
(r/ϱ)n сходится и по признаку

Вейерштрасса степенной ряд (3.1) сходится абсолютно и равномерно в круге ∣z∣ ⩽ r. Таким
образом, утверждение (i) доказано.

Для доказательства (ii) заметим, что если ∣z∣ > R, то в силу определения верхнего
предела найдется подпоследовательность номеров nk, k = 1,2, . . ., такая, что ∣ank

znk ∣ > 1,
поскольку

1

∣z∣
< 1

R
= lim
n→∞

n
√
∣an∣

Это означает, что для ряда
∞
∑
n=0

anzn не выполняется необходимое условие сходимости и

утверждение ((i) доказано.

Приступая к доказательству (iii), заметим прежде всего, что ряд

∞
∑
n=1

nanz
n−1

полученный почленным дифференцированием ряда (3.1), имеет тот же радиус
сходимости, что и ряд

∞
∑
n=1

nanzn. Однако, поскольку limn→∞
n
√
n = 1, то

lim
n→∞

n
√
n ∣an∣ = lim

n→∞
n
√
∣an∣ =

1

R

и радиус сходимости этих рядов также равен R. Пусть g(z) =
∞
∑
n=1

nanzn−1. Для каждого

натурального n обозначим через Sn(z) = a0 + a1z + . . . + an−1zn−1 частичную сумму ряда
(3.1), а через Qn(z) =

∞
∑
k=n

akzk обозначим остаток этого ряда. Поскольку Sn представляет

собой полином, то является голоморфной функцией, а его производная S′n(z) является
частичной суммой продифференцированного ряда (3.1). Следовательно, S′n(z) → g(z) при
n→∞ для любого z из круга ∣z∣ < R.
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Фиксируем произвольно z0, ∣z0∣ < R, и пусть r удовлетворяет неравенству ∣z0∣ < r < R.
Для z ≠ z0 из круга ∣z∣ < r и натурального n имеет место равенство

S(z) − S (z0)
z − z0

− g (z0) = [
Sn(z) − Sn (z0)

z − z0
− S′n (z0)]

+ (S′n (z0) − g (z0)) +
Qn(z) −Qn (z0)

z − z0
.

Пусть ε > 0 фиксировано. Поскольку ∣z∣, ∣z0∣ < r, то

∣Qn(z) −Qn (z0)
z − z0

∣ = ∣
∞
∑
k=n

ak
zk − zk0
z − z0

∣ = ∣
∞
∑
k=n

ak (zk−1 + zk−2z0 + . . . + zk−10 )∣ ⩽
∞
∑
k=n

k ∣ak∣ rk−1.

Правая часть последнего неравенства представляет собой остаток сходящегося ряда.
Поэтому найдется такой номер N1, что

∣Qn(z) −Qn (z0)
z − z0

∣ < ε
3

при n ⩾ N1, ∣z∣ ⩽ r. Далее, найдется такой номер N2, что

∣S′n (z0) − g (z0)∣ <
ε

3

при n ⩾ N2. Пусть теперь n ⩾ max{N1,N2}. Из определения производной S′n (z0)
следует, что найдется такое δ > 0, что при 0 < ∣z − z0∣ < δ будет выполняться неравенство

∣Sn(z) − Sn (z0)
z − z0

− S′n (z0)∣ <
ε

3
.

Таким образом, если ∣z∣ < r и 0 < ∣z − z0∣ < δ, то

∣S(z) − S (z0)
z − z0

− g (z0)∣ < ε.

Это доказывает дифференцируемость функции S(z) и равенство S′(z) = g(z) для всех
z из круга ∣z∣ < R.

Замечание

3.2. Под теоремой Абеля (или первой теоремой Абеля) часто подразумевается
утверждение: Если ряд (3.1) сходится в точке z0, то он сходится абсолютно и равномерно
в любом круге ∣z∣ ⩽ r < ∣z0∣." Это утверждение очевидным образом следует из доказанного
выше.

Замечание

3.3. Применяя доказанную теорему к производной суммы степенного ряда, получаем
голоморфность S′(z) и разложение для ее производной

S′′(z) = 2a2 + 6a3z + . . .

Повторяя этот процесс, приходим к бесконечной дифференцируемости суммы
степенного ряда (3.1) в круге сходимости и равенствам
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S(n)(z) = n!an +
(n + 1)!

1!
an+1z +

(n + 2)!
2!

an+2z
2 + . . .

n = 1,2, . . .. В частности, имеют место формулы

an =
S(n)(0)
n!

, S(z) =
∞
∑
n=0

S(n)(0)
n!

zn.

Другими словами, S(z) имеет разложение в ряд Тейлора - Маклорена.

Экспонента.

Важнейшими свойствами функции ex в вещественном анализе являются
инвариантность относительно дифференцирования и условие ex∣x=0 = 1. Пусть функция

f определена как сумма степенного ряда f(z) =
∞
∑
n=0

anzn. Попробуем подобрать

коэффициенты an так, чтобы выполнялись условия: f ′(z) = f(z) и f(0) = 1. Второе
условие эквивалентно равенству a0 = 1. Замечая также, что в круге сходимости
степенного ряда выполняется равенство f ′(z) =

∞
∑
n=1

nanzn−1, приходим к соотношениям:

an−1 = nan, n = 1,2, . . .. Это вместе с условием a0 = 1 приводит к равенствам an = 1/n!,
n = 1,2, . . .. Таким образом, естественно показательную функцию определить как сумму
степенного ряда

ez =
∞
∑
n=0

zn

n!

Поскольку n
√
n! → ∞ при n → ∞, то ряд (3.3), как следует из теоремы 3.1 сходится во

всей комплексной плоскости. Следовательно, равенство (3.3) определяет ez как
голоморфную в C функцию. В случае, когда z = x вещественно, мы получаем ряд
Тейлора функции ex из вещественного анализа. Другими словами, определенная
равенством (3.3) функция ez является продолжением вещественной функции ex в
комплексную плоскость. Вещественность коэффициентов степенного ряда (3.3) приводит
к равенству ez = ez̄ Отметим еще одно важное свойство функции ez.

Theorem about sum of the argument of the exponent

Для любых z1, z2 ∈ C выполняется равенство

ez1+z2 = ez1ez2

Proof. Фиксируем произвольно a ∈ C и рассмотрим функцию g(z) = ezea−z. Поскольку

g′(z) = ezea−z − ezea−z = 0

для всех z ∈ C, то g(z) ≡ const. Заметим также, что g(0) = ea. Следовательно, ezea−z ≡
ea. Полагая в этом тождестве a = z1 + z2 и z = z1, приходим к теореме сложения.

Из теоремы сложения, в частности, следует тождество eze−z ≡ 1. Это означает, что ez ≠
0 ни при каком z ∈ C и e−z = 1/ez. Далее, применение теоремы сложения и представление
z = x + iy дает ez = exeiy. C другой стороны, eiy = e−iy и ∣eiy ∣2 = eiye−iy = 1. Следовательно,
∣ez ∣ = ex = eRe z.
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Тригонометрические функции.

Одним из преимуществ комплексного анализа является то, что в нем наиболее полно
раскрываются связи между элементарными функциями. Мы уже отметили, что степенной
ряд (3.3) является продолжением ряда Тейлора для ex в комплексную плоскость. В связи
с этим оправдано также введение тригонометрических функций посредством равенств

cos z = 1

2
(eiz + e−iz) , sin z = 1

2i
(eiz − e−iz)

При этом

cos z = 1 − z
2

2!
+ z

4

4!
− . . . , sin z = z − z

3

3!
+ z

5

5!
− . . .

Для вещественных z = x мы получаем ряды Тейлора соответствующих функций
вещественного переменного. Непосредственно из определения косинуса и синуса следует
формула Эйлера

eiz = cos z + i sin z

а также основное тригонометрическое тождество cos2 z + sin2 z = 1. Используя теорему
сложения для экспоненты, легко выводятся формулы

cos(a + b) = cosa cos b − sina sin b, sin(a + b) = sina cos b + sin b cosa.

Из разложения в степенной ряд (или непосредственно из определения) следуют
формулы для производных

(sin z)′ = cos z, (cos z)′ = − sin z.

Как и в вещественном анализе, через синус и косинус вводятся другие
тригонометрические функции: tg z, ctg z, . . .. Аналогично через экспоненту вводятся
гиперболические функции

ch z = 1

2
(ez + e−z) , sh z = 1

2
(ez − e−z) .

Периодичность.

Будем говорить, что функция f имеет период ζ ∈ C, если f(z + ζ) = f(z) для всех z ∈ C.
Условие на ζ быть периодом экспоненты выражается равенством ez+ζ = ez или eζ = 1.
Полагая ζ = ξ + iη, получаем условия ξ = 0 и cos η+ i sin η = 1, откуда находим η = 2kπ, k ∈ Z.
Таким образом, периоды функции ez определяются равенством ζ = i2kπ, k ∈ Z.

Логарифм.

В вещественном анализе функция ex является строго монотонно возрастающей и
принимает положительные значения. Поэтому lnx определяется однозначно для
положительных x и является монотонной функцией на положительной полуоси.
Естественно и в комплексном анализе под ln z понимать корень уравнения eζ = z.
Поскольку eζ ≠ 0 ни при каком ζ ∈ C, то логарифм нуля не определен. Пусть теперь
ζ = ξ + iη. Тогда равенство eζ = z эквивалентно системе

eξ = ∣z∣, eiη = z

∣z∣
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Первое уравнение имеет единственное решение ξ = ln ∣z∣, где понимается вещественный
логарифм от положительного числа ∣z∣. Второе уравнение выражает равенство двух
комплексных чисел с единичным модулем. Поскольку по формулам Эйлера eiη = cos η +
i sin η, то с учетом тригонометрической формы записи комплексного числа z имеем

η = arg z + 2kπ, k ∈ Z

где под arg z понимается некоторое значение из Arg{z} (например, значение из
промежутка (−π,π] или [0,2π)). Таким образом, для любого z ∈ C, z ≠ 0, уравнение eζ = z
имеет бесконечно много решений. Их совокупность можно представить формулой

Ln{z} = ln ∣z∣ + iArg{z}

Все значения Ln{z} имеют одну и ту же вещественную часть ln ∣z∣, а мнимые части
двух различных значений логарифма отличаются на 2kπ, k ∈ Z. Из свойств аргумента
комплексного числа и вещественного логарифма следует, что

Ln{z1z2} = Ln{z1} + Ln{z2}

для любых ненулевых комплексных чисел z1 и z2. Это равенство также
непосредственно следует из теоремы сложения. Действительно, пусть ζ1 ∈ Ln{z1},
ζ2 ∈ Ln{z2}. Тогда

eζ1+ζ2 = eζ1eζ2 = z1z2
т. е. (ζ1 + ζ2) ∈ Ln{z1z2}.
Допустим теперь, что в некоторой области D ⊂ C определена непрерывная функция

ζ = f(z), принимающая в каждой точке z ∈ D значение f(z) ∈ Ln{z}. Тогда ef(z) = z
и мы будем называть f непрерывной ветвъю (или просто ветвъю) логарифма в области
D. Будем писать f(z) = ln z, если ясно, о какой ветви идет речь. Рассмотрим случай
области D = C/R−,R− = {x ∈ R ∶ x ⩽ 0}. В этой области можно выделить ветвь arg z,
которая принимает значения из интервала (−π,π). Функция ζ = ln z = ln ∣z∣ + iarg z будет
непрерывной в D и обратной к функции z = eζ , определенной в полосе ∣ Im ζ ∣ < π. По
теореме об обратной функции выделенная ветвь ln z будет голоморфной функцией в D и

d

dz
ln z = 1

eζ
= 1

z

Замечая, что 1+z расположено в D = C/R−при ∣z∣ < 1, можно рассмотреть непрерывную
ветвь ln(1 + z) в единичном круге D = {z ∈ C ∶ ∣z∣ < 1}. Далее,

d

dz
ln(1 + z) = 1

1 + z
=
∞
∑
n=0
(−1)nzn

где степенной ряд сходится в единичном круге D. Ряд
∞
∑
n=1
(−1)n−1 znn также сходится в

D, а его сумма S(z) является голоморфной функцией в D и S′(z) =
∞
∑
n=0
(−1)nzn. Таким

образом

(ln(1 + z) − S(z))′ = 0

для всех z ∈ D и по теореме 2.4 имеем ln(1 + z) − S(z) ≡ const в D. Однако,

ln(1 + z)∣z=0 = 0 = S(0)
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и мы приходим к равенству

ln(1 + z) =
∞
∑
n=1
(−1)n−1 z

n

n

Комплексные степени.

Если a и b - комплексные числа и a ≠ 0, то под ab будем понимать значения из множества

{ab} = ebLn{a}

Для b = n,n ∈ Z, все значения nLn{a} отличаются друг от друга на 2kπi, k ∈ Z, и в силу
периодичности экспоненты {an} состоит из единственного комплексного числа. В случае
b = m/n где m и n взаимно простые натуральные числа, {am/n} = { n

√
am} имеет ровно n

различных значений. В области D = C/R− можно рассмотреть ветвь

zb = eb ln z

где в качестве ln z выбрана ветвь, описанная выше.

3.1.5 Complex Integration: General Basic Properties

There are some basic facts, which will later be generalized to the well-known theorems,
which we will discuss here.

4.1. Интеграл и его свойства.

Комплексное интегрирование является важным инструментом в изучении свойств
голоморфных функций. При этом, как и в вещественном анализе, возникает два
направления в интегрировании. Одно связано с понятием сумм Римана и играет роль
определенного интеграла. Второе связано с понятием первообразной и может
рассматриваться как операция, обратная дифференцированию.

Начнем этот параграф с краткого обзора понятия кривой. Как образно выразился
Феликс Клейн: Всякий знает, что такое кривая, пока не выучится математике настолько,
что вконец запутается в бесчисленных исключениях".

Уравнение кривой γ в плоскости удобно задать в параметрической форме x = x(t), y =
y(t), где параметр t пробегает некоторый промежуток α ⩽ t ⩽ β, a x(t) и y(t) являются
непрерывными функциями. B комплексной записи z(t) = x(t) + iy(t). Образ кривой как
точечное множество {z = z(t) ∶ α ⩽ t ⩽ β} является компактным и связным. Однако не
следует отождествлять кривую с этим множеством. Очень существенно, что ее точки
упорядочены возрастанием параметра t. Если возрастающая непрерывная функция t =
φ(τ) отображает промежуток α1 ⩽ τ ⩽ β1 на α ⩽ t ⩽ β, то z = z(φ(τ)) определяет тот же
порядок точек, что z = z(t). В связи с этим отображение z = z(t) называют путем или
параметризацией кривой γ, а под самой кривой понимают класс эквивалентных путей.
Два пути z = z(t), α1 ⩽ t ⩽ β1, и ζ = ζ(τ), α2 ⩽ τ ⩽ β2, считаются эквивалентными, если
существует непрерывная строго возрастающая функция τ = τ(t) ∶ [α1, β1] ↦ [α2, β2] такая,
что z(t) = ζ(τ(t)) для всех t ∈ [α1, β1]

Таким образом, чтобы определить кривую γ, достаточно выбрать путь
z = z(t), α ⩽ t ⩽ β, из класса эквивалентности. Точка z(α) называется началом кривой, а
точка z(β) - концом кривой. Это определение не зависит от выбора пути из класса
эквивалентности. Путь z = z(−t),−β ⩽ t ⩽ −α, имеет тот же образ, что и путь
z = z(t), α ⩽ t ⩽ β, но не является эквивалентным ему. Соответствующую кривую будем
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обозначать −γ (иногда используют обозначение γ−)и говорить, что эта кривая
получается из γ сменой ориентации. Будем также говорить, что γ и −γ являются
противоположно ориентированными кривыми. Кривая γ называется жордановой, если
ее параметризация z = z(t), α ⩽ t ⩽ β, удовлетворяет условию z (t1) ≠ z (t2) при t1 ≠ t2.
Кривая γ называется замкнутой, если z(α) = z(β). Замкнутая жорданова кривая:
z(α) = z(β), но z (t1) ≠ z (t2) при t1, t2 ∈ [α,β) и t1 ≠ t2. Замкнутую жорданову кривую
можно рассматривать как топологическое отображение окружности в плоскость и по
теореме ЖКордана она разбивает плоскость на две области. Кривую γ будем называть
гладкой, если найдется ее параметризация z = z(t) = x(t) + iy(t), α ⩽ t ⩽ β, которая
удовлетворяет условиям: x(t) и y(t) непрерывно дифференцируемы на [α,β] и
z′(t) = x′(t) + iy′(t) ≠ 0 при всех t ∈ [α,β]. Производные z′(α) и z′(β) в концевых точках
понимаются как односторонние. Заметим, что z′(t) является касательным вектором к
кривой γ в точке z(t). Направление вектора z′(t) согласовано с ориентацией кривой.
Если существует параметризация z = z(t), α ⩽ t ⩽ β, кривой γ и разбиение
α = t0 < t1 < . . . < tn = β отрезка [α,β] такие, что кривые γk, k = 1, . . . , n, с параметризацией
z = z(t), tk−1 ⩽ t ⩽ tk, являются гладкими, то γ называется кусочно-гладкой кривой и
писать γ = γ1 + . . . + γn. В основном, мы будем иметь дело с кусочно-гладкими кривыми.

Пусть γ ∶ z = z(t), α ⩽ t ⩽ β, - некоторая кривая в C. Под ее длиной понимается величина

Lenght(γ) = sup{
n

∑
k=1
∣z (tk) − z (tk−1)∣}

где супремум берется по всем разбиениям α = t0 < t1 < . . . < tn = β отрезка [α,β]. Этот
супремум не зависит от выбора параметризации и в случае, когда он конечен, кривая γ
называется спрямяяемой. Допустим теперь, что спрямляемая кривая γ расположена в
области D ⊂ C, в которой также определена непрерывная комплекснозначная функция f .
Для каждого разбиения α = t0 < t1 < . . . < tn = β рассмотрим два вида интегральных сумм

n

∑
k=1

f (z (τk)) (z (tk) − z (tk−1)) ,
n

∑
k=1

f (z (τk)) ∣z (tk) − z (tk−1)∣

где τk ∈ [tk−1, tk] , k = 1, . . . , n. Обозначая z(t) = x(t) + iy(t),∆xk = x (tk) - x (tk−1) ,∆yk =
y (tk)−y (tk−1) ,∆zk =∆xk+ i∆yk, k = 1, . . . , n, а также f(z) = u(x, y)+ iv(x, y), интегральные
суммы можно записать в виде

n

∑
k=1

f (z (τk))∆zk =
n

∑
k=1
(u (x (τk) , y (τk))∆xk − v (x (τk) , y (τk))∆yk)

+ i
n

∑
k=1
(u (x (τk) , y (τk))∆yk + v (x (τk) , y (τk))∆xk)

n

∑
k=1

f (z (τk)) ∣∆zk∣ =
n

∑
k=1

u (x (τk) , y (τk)) ∣∆zk∣ + i
n

∑
k=1

v (x (τk) , y (τk)) ∣∆zk∣

Из теории криволинейных интегралов первого и второго рода следует существование
пределов интегральных сумм при стремлении к нулю максимальной длины интервалов
разбиения [tk−1, tk]. При этом

n

∑
k=1

f (z (τk)) (z (tk) − z (tk−1)) → ∫
γ

udx − vdy + i∫
γ

udy + vdx

n

∑
k=1

f (z (τk)) ∣z (tk) − z (tk−1)∣ → ∫
γ

uds + i∫
γ

vds

Эти пределы мы будем обозначать соответственно
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∫
γ

f(z)dz и ∫
γ

f(z)∣dz∣

В случае, когда γ является кусочно-гладкой кривой, вычисление этих интегралов
можно свести к линейным интегралам по параметризующему промежутку

∫
γ

f(z)dz =
β

∫
α

f(z(t))z′(t)dt, ∫
γ

f(z)∣dz∣ =
β

∫
α

f(z(t)) ∣z′(t)∣dt.

Важнейшим свойством этих интегралов является то, что их значение не зависит от
выбора параметризации кривой γ. Действительно, если ζ = ζ(τ), α1 ⩽ τ ⩽ β1, -
эквивалентная параметризация кривой γ, т. е. ζ(τ) = z(t(τ)), где t = t(τ), α1 ⩽ τ ⩽ β1,
является непрерывно дифференцируемой функцией, то

β

∫
α

f(z(t))z′(t)dt =
β1

∫
α1

f(z(t(τ)))z′(t(τ))t′(τ)dτ =
β1

∫
α1

f(ζ(τ))ζ ′(τ)dτ

Отметим также некоторые свойства этих интегралов, которые непосредственно
следуют из свойств криволинейных интегралов.

Линейность. Если f и g - две непрерывные функции и a, b ∈ C, то

∫
γ

(af(z) + bg(z))dz = a∫
γ

f(z)dz + b∫
γ

g(z)dz.

Аддитивность. Если γ = γ1 + γ2, то

∫
γ

f(z)dz = ∫
γ1

f(z)dz + ∫
γ2

f(z)dz.

Заметим, что в равенствах, выражающих свойства линейности и аддитивности, можно
dz заменить на ∣dz∣. Однако,

∫
−γ

f(z)dz = −∫
γ

f(z)dz, ∫
−γ

f(z)∣dz∣ = ∫
γ

f(z)∣dz∣.

Применяя неравенство треугольника к интегральным суммам и переходя к пределу,
получаем также неравенство

RRRRRRRRRRRRR
∫
γ

f(z)dz
RRRRRRRRRRRRR
⩽ ∫
γ

∣f(z)∣∣dz∣

Следует обратить внимание на то, что в левой и правой частях неравенства (4.1) стоят
интегралы разные по структуре. Кроме того, поскольку

∫
γ

∣dz∣ = Length(γ)

то

RRRRRRRRRRRRR
∫
γ

f(z)dz
RRRRRRRRRRRRR
⩽ ∫
γ

∣f(z)∥dz∣ ⩽max
z∈γ
∣f(z)∣ ⋅ Length(γ).

Другой аспект интегрального исчисления связан с рассмотрением интегрирования как
операции, обратной дифференцированию. В связи с этим голоморфную в области D
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функцию F будем называть первообразной функции f , если F ′(z) = f(z) для всех z ∈ D.
Другими словами, существование первообразной в D для функции f означает, что f(z)dz
является полным дифференциалом в области D. Это условие оказывается эквивалентным
независимости интеграла от формы пути в области D, что можно также сформулировать
как равенство нулю интеграла по любой замкнутой кривой в области D.

Theorem

4.1. Пусть f -непрерывная в области D функция. Тогда имеют место следующие
утверждения:

(i) Если f(z)dz является полным дифференциалом в области D, то для любой
замкнутой кусочно-гладкой кривой γ ⊂D выполняется равенcm8o

∫
γ

f(z)dz = 0

(ii) Если равенство (4.2) выполняется для любой замкнутой ломаной γ, расположенной
в D, то f(z)dz является полным дифференциалом в областu D.

Proof.

(i) Допустим, что f(z)dz является полным дифференциалом в области D, т. е.
существует голоморфная в D функция F такая, что F ′(z) = f(z) для всех z ∈ D. Если
γ ∶ z = z(t), α ⩽ t ⩽ β, -кусочно-гладкая кривая в области D, то

∫
γ

f(z)dz =
β

∫
α

f(z(t))z′(t)dt =
β

∫
α

d

dt
F (z(t))dt = F (z(β)) − F (z(α)).

В частности, если γ - замкнутая кривая, то z(β) = z(α) и выполняется равенство (4.2)
(ii) Допустим теперь, что равенство (4.2) выполняется для любой замкнутой ломаной

γ, расположенной в D. Это означает, что интеграл ∫
λ

f(z)dz не зависит от вида ломаной

λ ⊂ D, а определяется лишь началом и концом этой ломаной. Фиксируем точку a ∈ D и
определим функцию

F (z) = ∫
λz

f(ζ)dζ

где λz - ломаная, соединяющая в области D точку a с точкой z (т. е. a - начало этой
ломаной, а z - ее конец). Из теоремы 2.3 и сделанных предположений следует корректность
определения функции F . Покажем, что она голоморфна в D и выполняется равенство
F ′(z) = f(z) для всех z ∈D.

Пусть z0 ∈D и ε > 0. Поскольку D - открытое множество и f - непрерывная функция,
то найдется такое δ > 0, что Oδ (z0) ⊂ D и ∣f(z) − f (z0)∣ < ε при z ∈ Oδ (z0). Тогда для
z ∈ Ȯδ (z0) в силу свойства аддитивности интеграла будем иметь

F (z) − F (z0) = ∫
[z0,z]

f(ζ)dζ

где [z0, z] - отрезок, соединяющий точки z0 и z. Далее, с учетом равенства

∫
[z0,z]

f (z0)dζ = (z − z0) f (z0)

получаем
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∣F (z) − F (z0)
z − z0

− f (z0)∣ =
1

∣z − z0∣

RRRRRRRRRRRRRR
∫
[z0,z]

(f(ζ) − f (z0))dζ
RRRRRRRRRRRRRR
⩽ ε

∣z − z0∣ ∫[z0,z]
∣dζ ∣ = ε.

Отсюда следует, что

lim
z→z0

F (z) − F (z0)
z − z0

= f (z0)

и теорема доказана.

Пример.
Рассмотрим важный пример, к которому в дальнейшем мы будем неоднократно

обращаться. Пусть f(z) = (z − a)n. Если n является целым и неотрицательным, то
функция F (z) = (z − a)n+1/(n + 1) будет первообразной для f(z) во всей комплексной
плоскости C. Поэтому

∫
γ

(z − a)ndz = 0

для любой замкнутой кривой γ ⊂ C, если n = 0,1,2, . . .. В случае n ≠ −1 целого
отрицательного функция f(z) = (z − a)n будет голоморфной в C/{a} и
F (z) = (z − a)n+1/(n + 1) будет ее первообразной в этой же области. Следовательно, и в
этом случае равенство (4.3) будет выполняться для любой замкнутой кривой γ, не
проходящей через точку a. Отдельно разберем случай n = −1. Допустим вначале, что
замкнутая кривая γ расположена в C/L, где L - луч, выходящий из точки a на
бесконечность. Поскольку в C/L можно выделить непрерывную ветвь arg(z − a) и,
следовательно, ветвь F (z) = ln(z − a), то dz/(z − a) является полным дифференциалом в
C/L. Таким образом, для такой кривой и n = −1 снова выполнено равенство (4.3).

Наконец, рассмотрим в качестве γ окружность с центром в точке a. Будем считать,
что окружность γ положительно ориентирована, т. е. при движении точки вдоль нее
круг, ограниченный γ, остается слева. В дальнейшем в случае таких простых областей,
как круг, треугольник, прямоугольник, под положительно ориентированной границей
будем понимать такой обход граничной кривой, когда ограниченная ею область остается
слева. Часто такое определение положительно ориентированной границы распространяют
вплоть до жордановых областей, хотя это не вполне строго. Положительной ориентации
окружности γ соответствует параметризация z = z(t) = a + reit,0 ⩽ t ⩽ 2π, где r - радиус
окружности γ. При этом z′(t) = ireit и

∫
γ

dz

z − a
= i

2π

∫
0

dt = 2πi.

4.2. Theoremа Коши для выпуклой области

Существует несколько вариантов теоремы Коши, которые отличаются больше в
топологическом плане, а не в аналитическом контексте. Поэтому естественно начать с
более простой топологической ситуации.

Лемма Гурса

Пусть f -голоморфная в области D функиия и треугольник ∆ содержится в D вместе
со своим замыканием. Тогда
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∫
∂∆

f(z)dz = 0

где ∂∆ - положительно ориентированная граница треугольника ∆.

Proof.

Введем для удобства обозначение I(∆) = ∫
∂∆

f(z)dz. Соединяя середины сторон

треугольника ∆, разобьем его на четыре конгруэнтных треугольника ∆(1), . . . ,∆(4).
Очевидно, что

I(∆) = I (∆(1)) + . . . + I (∆(4))

поскольку интегрирование вдоль каждой общей стороны двух смежных
треугольников проводится в обоих направлениях, а потому сокращается. Из последнего
равенства следует, что среди ∆(1), . . . ,∆(4) найдется треугольник, обозначим его ∆1, для
которого

∣I (∆1)∣ ⩾
1

4
∣I(∆)∣

Теперь разобьем ∆1 на четыре конгруэнтных треугольника ∆
(1)
1 , . . . ,∆

(4)
1 и выберем из

них ∆2 так, чтобы выполнялось неравенство

∣I (∆2)∣ ⩾
1

4
∣I (∆1)∣ ⩾

1

42
∣I(∆)∣

Продолжая этот процесс, получим последовательность вложенных треугольников ∆ ⊃
∆1 ⊃∆2 ⊃ . . ., удовлетворяющих условию

∣I (∆n)∣ ⩾
1

4n
∣I(∆)∣

Легко видеть, что центры треугольников ∆n, n = 1,2, . . ., образуют фундаментальную
последовательность, а ее предел z∗ принадлежит всем треугольникам ∆n

Для произвольного ε > 0 выберем δ > 0 так, чтобы окрестность Oδ (z∗) содержалась в
области D и при z ∈ Ȯδ (z∗) выполнялось неравенство

∣f(z) − f (z
∗)

z − z∗
− f ′ (z∗)∣ < ε

или, что эквивалентно,

∣f(z) − f (z∗) − (z − z∗) f ′ (z∗)∣ < ε ∣z − z∗∣

Пусть l - периметр треугольника ∆. Тогда периметр треугольника ∆n будет равен
l ⋅ 2−n, n = 1,2, . . ., и найдется такой номер N , что ∆n ⊂ Oδ (z∗) при n ⩾ N . Выберем теперь
n ⩾ N и, используя соотношения

∫
∂∆n

dz = 0, ∫
∂∆n

(z − z∗)dz = 0

которые являются следствием того, что dz и (z − z∗)dz представляют собой полные
дифференциалы в C, получаем

∣I (∆n)∣ = ∣ ∫
∂∆n

f(z)dz∣ = ∣ ∫
∂∆n

(f(z) − f (z∗) − (z − z∗) f ′ (z∗))dz∣ ⩽ ε ∫
∂∆n

∣z − z∗∣ ∣dz∣.
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Поскольку z∗ расположена внутри ∆n, то для z ∈ ∂∆n величина ∣z − z∗∣ не превышает
периметра треугольника ∆n, т. е. величины l ⋅ 2−n. Но тогда из способа построения
треугольников ∆n и полученного выше неравенства имеем

1

4n
∣I(∆)∣ ⩽ ∣I (∆n)∣ ⩽ ε ∫

∂∆n

∣z − z∗∣ ∣dz∣ ⩽ εl
2n ∫

∂∆n

∣dz∣ = εl
2

4n
.

Отсюда следует неравенство ∣I(∆)∣ ⩽ εl2, которое в силу произвольности ε > 0 влечет
равенство I(∆) = 0.

теорема доказана.

Усиление леммы Гурса

Пусть D-область в комплексной плоскости C и a ∈ D. Допустим также, что функиия
f голоморфна в D/{a} и непрерывна в D. Тогда для любого треуголвника ∆,
расположенного вместе со своим замыканием в D, имеет место равенство ∫∂∆ f(z)dz = 0.

Proof. В случае, когда точка a лежит вне треугольника ∆, утверждение следует из леммы
Гурса. Если a является вершиной треугольника ∆, то проведем следующие рассуждения.
Пусть z1, z2, z3 - вершины треугольника ∆ и a = z1. Тогда для λ ∈ (0,1) рассмотрим
разбиение ∆ на треугольники: ∆1 с вершинами z1, z′2, z′3, где

z′2 = (1 − λ)z1 + λz2, z′3 = (1 − λ)z1 + λz3,

∆2 с вершинами z2, z′2, z′3 и ∆3 с вершинами z2, z′3, z3.
(???? draw a picture!!!)
Поскольку

∫
∂∆

f(z)dz = ∫
∂∆1

f(z)dz + ∫
∂∆2

f(z)dz + ∫
∂∆3

f(z)dz

и по доказанному последние два интеграла равны нулю, то

∫
∂∆

f(z)dz = ∫
∂∆1

f(z)dz

Однако

RRRRRRRRRRRRR
∫
∂∆1

f(z)dz
RRRRRRRRRRRRR
⩽max

z∈∆
∣f(z)∣ ⋅ Length (∂∆1) = λ ⋅max

z∈∆
∣f(z)∣ ⋅ Length(∂∆) → 0

при λ→ 0.
В случае, когда точка a лежит на одной из сторон треугольника ∆ или внутри его,

доказательство утверждения сводится к предыдущему случаю посредством разбиения
исходного треугольника, соединяя a с вершинами z1, z2, z3. Теорема доказана.

Теорема о нуле интеграла от голоморфной функции

Пусть D-выпуклая область в комплексной плоскости C и a ∈ D. Допустим также, что
функция f голоморфна в D/{a} и непрерывна в D. Тогда f(z)dz - полный дифференциал

55



3.1.5 Complex Integration: General Basic Properties

в области D и для любой замкнутой кусочно-гладкой кривой γ, расположенной в области
D, выполняется равенcmвo

∫
γ

f(z)dz = 0.

Proof. Поскольку D является выпуклым множеством, то для любого z ∈ D отрезок [a, z]
содержится в D и мы можем определить функцию

F (z) = ∫
[a,z]

f(ζ)dζ

Покажем, что F является первообразной для f в области D. Действительно, если
z0 ∈ D, то найдется окрестность Or (z0) ⊂ D и для любого z ∈ Ȯr (z0) треугольник ∆ с
вершинами в точках a, z0, z будет расположен в D. По теореме 4.3

∫
∂∆

f(ζ)dζ = 0

С другой стороны, в силу свойства аддитивности интеграла

∫
∂∆

f(ζ)dζ = ∫
[a,z0]

f(ζ)dζ + ∫
[z0,z]

f(ζ)dζ + ∫
[z,a]

f(ζ)dζ = F (z0) − F (z) + ∫
[z0,z]

f(ζ)dζ

и, следовательно, как и при доказательстве теоремы 4.1 имеем равенство

F (z) − F (z0) = ∫
[z0,z]

f(ζ)dζ

Поэтому, повторяя соответствующие рассуждения из доказательства теоремы 4.1,
получаем дифференцируемость функции F и равенство F ′ (z0) = f (z0). теорема
доказана.

Замечание

4.1.
Доказанная теорема означает, что если f голоморфна в области D, то локально f(z)dz

является полным дифференциалом, поскольку любая точка z0 из D принадлежит области
вместе с некоторой окрестностью Or (z0), которая является выпуклой. По доказанной
теореме в этой окрестности можно определить первообразную F для f . С другой стороны,
пример функции f(z) = 1/(z − a), голоморфной в C/{a}, показывает, что не для всех
замкнутых кривых γ в этой области интеграл ∫

γ
dz/(z − a) равен нулю, т. е. в этом случае

нельзя определить первообразную сразу во всей области.

Замечание

4.2. При доказательстве теоремы использовалось лишь то, что область D выпукла,
функция f непрерывна в D и интеграл по границе любого треугольника ∆,
расположенного в D, равен нулю.
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3.1.6 Cauchy Integral

Как было показано в параграфе 3, сумма степенного ряда представляет собой
голоморфную функцию в круге сходимости ряда. Другой способ получения
голоморфных функций дает следующая конструкция.

Пусть γ - кусочно-гладкая кривая и φ - заданная на ней непрерывная функция. Тогда
выражение

F (z) = 1

2πi ∫
γ

φ(ζ)
ζ − z

dζ

называют интегралом Коши с плотностью φ.

Теорема о свойстве интеграла Коши.

Пусть γ - кусочно-гладкая кри вая и φ непрерьвная функция, определенная на γ. Тогда
для каждого n = 1,2, . . .∮

Fn(z;φ) = ∫
γ

φ(ζ)
(ζ − z)n

dζ

является голоморфной в C/γ, в виолняются равенства

F ′n(z;φ) = nFn+1(z;φ)

Proof. Докажем вначале непрерывность функции F1. Пусть z0 - произвольная точка из
C/γ и δ > 0 выбрано меньше половины расстояния от z0 до γ. Тогда для z ∈ Oδ (z0) будем
иметь

∣F1(z;φ) − F1 (z0;φ)∣ = ∣z − z0∣
RRRRRRRRRRRRR
∫
γ

φ(ζ)dζ
(ζ − z) (ζ − z0)

RRRRRRRRRRRRR
⩽ ∣z − z0∣

1

2δ2 ∫
γ

∣φ(ζ)∣∣dζ ∣.

Отсюда следует непрерывность F1 в точке z0.
Заметим теперь, что отношение приращений

F1(z;φ) − F1 (z0;φ)
z − z0

= ∫
γ

φ(ζ)dζ
(ζ − z) (ζ − z0)

= F1 (z;
φ(ζ)
ζ − z0

)

имеет ту же структуру, что и F1, но с плотностью φ(ζ)/ (ζ − z0). Следовательно, она
непрерывна в точке z0 и

lim
z→z0

F1(z;φ) − F1 (z0;φ)
z − z0

= lim
z→z0

F1 (z;
φ

ζ − z0
) = F1 (z0;

φ

ζ − z0
) = F2 (z0;φ) .

Таким образом, голоморфность функции F1(z;φ) и равенство F ′1(z;φ) = F2(z;φ)
доказаны

Воспользуемся теперь методом математической индукции и допустим, что
голоморфность функции Fn−1(z;φ) и равенство

F ′n−1(z;φ) = (n − 1)Fn(z;φ)

доказаны.
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Тогда из представления

Fn(z;φ) − Fn (z0;φ) = ∫
γ

( 1

(ζ − z)n
− 1

(ζ − z)n−1 (ζ − z0)
)φ(ζ)dζ

+ ∫
γ

φ(ζ)dζ
(ζ − z)n−1 (ζ − z0)

− ∫
γ

φ(ζ)dζ
(ζ − z0)n

= (z − z0)∫
γ

φ(ζ)dζ
(ζ − z)n (ζ − z0)

+ Fn−1 (z;
φ

ζ − z0
) − Fn−1 (z0;

φ

ζ − z0
)

следует непрерывность функции Fn(z;φ). Действительно, ограниченность интеграла,
который стоит множителем при (z − z0), устанавливается в окрестности точки z0 как и
при доказательстве непрерывности F1, а непрерывность Fn−1 имеем по предположению
индукции. Далее, из равенства

Fn(z;φ) − Fn (z0;φ)
z − z0

= Fn (z;
φ

ζ − z0
) +

Fn−1 (z; φ
ζ−z0) − Fn−1 (z0;

φ
ζ−z0)

z − z0
,

доказанной непрерывности Fn и предположений индукции получаем голоморфность
функции Fn(z;φ) и выполнение соотношения

F ′n (z0;φ) = Fn (z0;
φ

ζ − z0
) + (n − 1)Fn (z0;

φ

ζ − z0
) = nFn+1 (z0;φ)

теорема доказана.

Property of Cauchy integral

Интеграл Коши

F (z) = 1

2πi ∫
γ

φ(ζ)
ζ − z

dζ

представляет собой бесконечно дифференцируемую функцию в C/γ. При этом для всех
z ∈ C/γ и n = 1,2, . . .

F (n)(z) = n!

2πi ∫
γ

φ(ζ)
(ζ − z)n+1

dζ

Proof. Прежде всего заметим, что

F (z) = 1

2πi
F1(z;φ)

Поэтому функция F является голоморфной в C/γ и

F ′(z) = 1

2πi
F2(z;φ)

Функция F2(z;φ), а следовательно и F ′(z), также является голоморфной и

F ′′(z) = 2!

2πi
F3(z;φ)

По индукции получаем бесконечную дифференцируемость функции F и равенства
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F (n)(z) = n!

2πi
Fn+1(z;φ)

n = 1,2, . . ., которые эквивалентны F (n)(z) = n!
2πi ∫

γ

φ(ζ)
(ζ−z)n+1dζ.

Cauchy integral formula for a circle

Пусть f -голоморфная в области D функция и круг Or(a) вместе со своим замыканием
содержится в D. Тогда для всех z ∈ Or(a) выполняется равенство

f(z) = 1

2πi ∫
γr

f(ζ)
ζ − z

dζ

где γr - положительно ориентированная граница круга Or(a).

Proof. Пусть z ∈ Or(a) фиксировано и R > 0 такое, что r < R и OR(a) ⊂D. Тогда функция

g(ζ) = f(ζ) − f(z)
ζ − z

будет голоморфной в OR(a)/{z} и g(ζ) → f ′(z) при ζ → z. Следовательно, по теореме
Коши для выпуклой области 4.4 имеет место равенство

∫
γr

g(ζ)dζ = 0,

которое можно записать в виде

∫
γr

f(ζ)
ζ − z

dζ = f(z)∫
γr

dζ

ζ − z

В силу свойств интеграла Коши функция

φ(z) = ∫
γr

dζ

ζ − z

является голоморфной в круге Or(a) и

φ′(z) = ∫
γr

dζ

(ζ − z)2
= 0

поскольку dζ/(ζ − z)2 - полный дифференциал в C/{z}. Следовательно, φ(z) ≡ const в
круге Or(a). С другой стороны,

φ(a) = ∫
γr

dζ

ζ − a
= 2πi

как было показано ранее. Таким образом, φ(z) ≡ 2πi в Or(a) и теорема доказана.

(??? where is it used??)
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3.1.6 Cauchy Integral

Cauchy integral formula for a derivative

Голоморфная в области D функция f является бесконечно дифференцируемой в этой
области. При этом в круге Or(a), который содержится в области D вместе со своим
замыканием, имеют место равенства

f (n)(z) = n!

2πi ∫
γr

f(ζ)dζ
(ζ − z)n+1

, n = 1,2 . . .

где γr - положительно ориентированная граница круга Or(a).

Proof. Пусть a ∈ D и Or(a) содержится в области D вместе со своей положительно
ориентированной границей γr = ∂Or(a). Тогда интегральная формула Коши для
функции f в Or(a) принимает вид

f(z) = 1

2πi ∫
γr

f(ζ)
ζ − z

dζ

Это означает, что f(z) является интегралом Коши в круге Or(a) с плотностью φ(ζ) =
f(ζ). По следствию 5.1 функция f(z) является бесконечно дифференцируемой в Or(a), а
формула F (n)(z) = n!

2πi ∫
γ

φ(ζ)
(ζ−z)n+1dζ для производных принимает вид f (n)(z) = n!

2πi ∫
γr

f(ζ)dζ
(ζ−z)n+1 и

утверждение доказано.

Thus, не только сама голоморфная функция, но и ее производные, восстанавливаются
внутри круга лишь по граничным значениям функции.

Morera’s theorem

Пусть f -непрерывная в области D функция и такая, что для любого треуголвника ∆,
расположенного в D вместе со своим замыканием, выполняется равенство

∫
∂∆

f(z)dz = 0

Тогда f является голоморфной функцией в области D.
This statement в некотором смысле является обратным к теореме Коши.

Proof. Поскольку свойство голоморфности является локальным, то достаточно доказать,
что при сделанных предположениях функция f голоморфна в некоторой окрестности
каждой точки области D. Фиксируем произвольно a ∈ D и пусть Or(a) ⊂ D. Как и при
доказательстве теоремы 4.4 Коши для выпуклой области с использованием
предположения о равенстве нулю интеграла по границе любого треугольника,
расположенного в Or(a), получаем утверждение о том, что f(z)dz является полным
дифференциалом в Or(a). Следовательно, f является голоморфной в Or(a), поскольку
представляет собой производную от голоморфной функции.

Теорема доказана.

(???? applications???)
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3.1.6 Cauchy Integral

Theorem about average

Пусть f -голоморфная в области D функция uOr(a) ⊂D. Toгдa

f(a) = 1

2π

2π

∫
0

f (a + reiθ)dθ.

Proof. В силу теоремы 5.2 имеет место равенство

f(a) = 1

2πi ∫
γr

f(ζ)
ζ − a

dζ

где γr - положительно ориентированная граница круга Or(a). Выбирая для
окружности γr параметризацию ζ = a + reiθ,0 ⩽ θ ⩽ 2π, приходим к утверждению теоремы.

Голоморфная во всей комплексной плоскости C функция f называется целой. K целым
функциям относятся полиномы, экспонента, синус, косинус и другие. Следующие две
теоремы касаются целых функций.

Theorem about property of an entire function

Пусть f−-целая функция и для некоторых M > 0, r > 0u целого неотрицательного m
выполняется неравенство

∣f(z)∣ ⩽M ∣z∣m

for ∣z∣ ⩾ r. Тогда f является полиномом степени не выше, чем m.

Proof. This sounds obvious, since at long distances only the leading degree will be giving main
impact, and if it was faster then polynomial, then this inequality will not be satisfied.

Пусть R > r и γR - положительно ориентированная окружность ∣ζ ∣ = R. По
интегральной формуле Коши f (n)(z) = n!

2πi ∫
γr

f(ζ)dζ
(ζ−z)n+1 для производных имеем

∣f (n)(z)∣ = n!
2π

RRRRRRRRRRRRR
∫
hR

f(ζ)
(ζ − z)n+1

dζ

RRRRRRRRRRRRR
⩽ n!MRm+1(R − ∣z∣)−n−1,

где ∣z∣ < R и n - натуральное число. Из полученного неравенства следует, что f (m+1)(z) =
0. Действительно, если z фиксировано, то при R →∞ правая часть неравенства в случае
n =m + 1 стремится к нулю. Но тогда f (m)(z) ≡ cm, где cm ∈ C.

Далее, поскольку

d

dz
(f (m−1)(z) − cmz) = f (m)(z) − cm ≡ 0

то f (m−1)(z) − cmz ≡ cm−1, т. е. f (m−1)(z) = cmz + cm−1. Аналогично получаем

d

dz
(f (m−2)(z) − 1

2
cmz

2 − cm−1z) ≡ 0

т. е. f (m−2)(z) = 1
2cmz

2 + cm−1z + cm−2. Продолжая эти рассуждения, приходим к виду
функции

f(z) = 1

m!
cmz

m + 1

(m − 1)!
cm−1z

m−1 + . . . + c0

и теорема доказана.

61



3.1.7 Taylor Series and Uniqueness Theorem

Liouville’s theorem about entire bounded function

Целая ограниченная функция тождественно постоянна.

This is a particular case of theorem where there is a condition ∣f(z)∣ ⩽M ∣z∣m.

(??? applications??)

3.1.7 Taylor Series and Uniqueness Theorem

Наше опр. голоморфной (или аналитической) функции базировалось на свойстве
комплексной дифференцируемости. Имеется другой подход к определению аналитической
функции, основанный на представлении ее в виде суммы степенного ряда в окрестности
каждой точки области. Следующий результат показывает, что оба эти подхода приводят
к одному и тому же классу функций.

Theorem about decomposition into Taylor series

Пусть f -голоморфная в области D функция z0 - произвольная точка области D. Тогда
в любом круге Or(z0) ⊂ D функиия f представима в виде суммы сходящегося степенного
ряда

f(z) =
∞
∑
n=0

cn(z − z0)n

коэффициенты которого вычисляются по формулам

cn =
f (n) (z0)

n!

n = 1,2, . . .
This is the Тейлор ряд функции f в окрестности точки z0. Кроме того, если функция f

представима в виде this ряда в некотором круге Or(z0), то коэффициенты ряда однозначно
определяются формулами (6.2), как было показано в замечании к теореме 3.1. Другими
словами, представление голоморфной функции в виде суммы ряда по степеням (z − z0)
единственно.

Proof. Допустим вначале, что Or (z0) ⊂ D, и пусть γ = ∂Or (z0) - положительно
ориентированная граница круга Or (z0). Тогда f имеет представление в Or (z0)
интегральной формулой Коши

f(z) = 1

2πi ∫
γ

f(ζ)
ζ − z

dζ

Для фиксированного z ∈ Or (z0) ядро Коши 1/(ζ − z) разложим в ряд

1

ζ − z
= 1

(ζ − z0) (1 − z−z0
ζ−z0)

=
∞
∑
n=0

(z − z0)n

(ζ − z0)n+1

Поскольку для всех ζ ∈ γ выполняется неравенство

∣z − z0
ζ − z0

∣ = ∣z − z0∣
r
< 1

то полученный ряд сходится равномерно по ζ ∈ γ в силу признака Вейерштрасса.
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3.1.7 Taylor Series and Uniqueness Theorem

Следовательно, этот ряд можно почленно интегрировать на γ. Умножая его на
непрерывную функцию f(ζ)/(2πi) и выполняя почленное интегрирование, приходим к
равенству

f(z) =
∞
∑
n=0

⎛
⎜
⎝

1

2πi ∫
γ

f(ζ)
(ζ − z0)n+1

dζ
⎞
⎟
⎠
(z − z0)n

В силу интегральной формулы Коши для производных
1

2πi ∫
γ

f(ζ)
(ζ − z0)n+1

dζ = f
(n) (z0)
n!

n = 1,2, . . .
Остается заметить, что коэффициенты (6.2) ряда (6.1) не зависят ни от точки z, ни от

выбора окружности γ. Поэтому ряд (6.1) сходится и его сумма совпадает с функцией f в
любом круге Or (z0), который содержится в области D.

Нули голоморфной функции и теорема единственности.

Точка a ∈ C называется нулем функции f , если f(a) = 0.

Опр. Порядок (кратность) нуля a ∈ C функции f , голоморфной в этой точке - это
наименьший номер отличной от нуля производной f (n)(a). Другими словами, точка a
является нулем функции f порядка m, если f(a) = f ′(a) = . . . = f (m−1)(a) = 0, f (m)(a) ≠ 0.

Из формул для коэффициентов ряда Тейлора следует, что порядок нуля совпадает с
наименьшим номером отличного от нуля коэффициента тейлоровского разложения
функции в окрестности этой точки. При этом, если a - нуль бесконечного порядка, то
f(z) ≡ 0 в некоторой окрестности Or(a). С другой стороны, если a - нуль конечного
порядка m, то найдется окрестность Oδ(a), δ > 0, в которой нет нулей функции f ,
отличных от a. Действительно, в некоторой окрестности Or(a) функция f представима
рядом Тейлора

f(z) = (z − a)m
∞
∑
k=0

cm+k(z − a)k = (z − a)mφ(z)

где φ - голоморфная в Or(a) функция и φ(a) = cm ≠ 0. В силу непрерывности функции
φ найдется окрестность Oδ(a), в которой φ не обращается в нуль. В силу отсутствия
делителей нуля в поле комплексных чисел f(z) ≠ 0 в проколотой окрестности Ȯδ(a).

Заметим, что в вещественном анализе ситуация с нулями и представлением бесконечно
дифференцируемой функции ее рядом Тейлора кардинально отличается. Классическим
примером является функция

f(x) = { e
−1/x2 , если x ≠ 0
0, если x = 0

которая имеет в окрестности точки ряд Тейлора с нулевыми коэффициентами, но
обращается нуль лишь в самой точке x = 0.

Theorem of unity

Если две голоморфные в области D функции f и совпадают на множестве E, которое
имеет хотя бы одну предельную точку a, принадлежащую областиD, mо f(z) ≡ g(z) всюду
в D.
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3.1.8 Index. General Form of the Cauchy Theorem and Cauchy Integral Formula

Proof. (??? idea of the proof???)
Рассмотрим функцию h(z) = f(z) − g(z), которая является голоморфной в области D

и обращается в нуль на множестве E, а в силу непрерывности и в точке a. Нам нужно
доказать, что h(z) ≡ 0. Пусть Q - множество нулей функции h в области D. Внутренность
этого множества обозначим через G1.

Другими словами, ζ ∈ G1 в том и только том случае, если найдется окрестность Oϱ(ζ), в
которой h обращается в нуль. По самому определению G1 является открытым множеством
и G1 ⊂D.

Пусть G2 = D/G1 и покажем, что G2 также является открытым множеством, т. е.
каждая точка принадлежит G2 с некоторой окрестностью. Действительно, в противном
случае некоторая точка ζ из G2 была бы предельной точкой нулей функции h. Но
тогда, как показывают рассуждения, проведенные перед формулировкой теоремы, ζ не
может быть нулем конечной кратности и нашлась бы окрестность этой точки, в которой
h обращается в нуль. Но это означало бы, что ζ ∈ G1.

Итак, D = G1 ∪ G2, где G1 и G2 - открытые непересекающиеся множества. В силу
связности D одно из множеств G1 или G2 должно быть пустым. C другой стороны, точка
a является предельной точкой нулей функции h и, следовательно, принадлежит G1. В
результате, G2 = ∅ и G1 =D, что и доказывает теорему.

СЛЕДСтВие 6.1. Если f(z)�≡0 голоморфна в области D, то все ее нули изолированы и
конечного порядка.

Можно спокойно добавлять мнимые части при решениях уравнений и потом
класть их равным нулю (!!??!??!)

(докажу этот факт, проверю на примерах, пока верю, что так всегда можно.)

3.1.8 Index. General Form of the Cauchy Theorem and Cauchy In-
tegral Formula

7.1. Приращение аргумента вдоль кривой. Индекс.

Пусть γ ∶ z = z(t), α ⩽ t ⩽ β, - кусочно-гладкая кривая, не проходящая через начало
координат. Тогда определен интеграл

∫
γ

dz

z
=

β

∫
α

z′(t)
z(t)

dt

Выясним геометрический смысл его мнимой части. Пусть d = dist(γ,0) - pacстояние от
γ до начала координат. Поскольку z(t) является равномерно непрерывной функцией на
отрезке [α,β], то найдется такое δ > 0, что ∣z (t′) − z (t′′)∣ < d/2 при ∣t′ − t′′∣ < δ. Выполним
разбиение t0 = α < t1 < . . . < tn = β отрезка [α,β] так, чтобы (tk − tk−1) < δ для всех
k = 1, . . . , n. Это разбиение индуцирует разложение кривой γ в сумму дуг γ = γ1+. . .+γn, где
γk ∶ z = z(t), tk−1 ⩽ t ⩽ tk. Через ∆k обозначим круг Or (z (tk)) с центром в z (tk) и радиусом
r = d/2. Из условия на разбиение следует, что γk ⊂∆k, k = 1, . . . , n. Кроме того, расстояние
от точки z = 0 до каждого круга ∆k не меньше d/2. Это позволяет в каждом круге ∆k

определить непрерывную ветвь arg(k) z (в каждом свою) и, следовательно, регулярную
ветвь логарифма ln(k) z = ln ∣z∣ + iarg(k)z, которая будет первообразной функции 1/z в ∆k.
Используя свойство аддитивности интеграла, получаем
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3.1.8 Index. General Form of the Cauchy Theorem and Cauchy Integral Formula

∫
γ

dz

z
=

n

∑
k=1
∫
γk

dz

z
=

n

∑
k=1
(ln ∣z (tk)∣ − ln ∣z (tk−1)∣) + i

n

∑
k=1
(arg(k) z (tk) − arg(k) z (tk−1))

= ln ∣z(β)
z(α)

∣ + i
n

∑
k=1

arg
z (tk)
z (tk−1)

,

где в последней сумме под аргументом понимается главное значение из интервала
(−π,π). В действительности, разность (arg(k) z (tk) − arg(k) z (tk−1)) не зависит от выбора
ветви аргумента. Сумма

n

∑
k=1

arg
z (tk)
z (tk−1)

выражает приращение аргумента z(t) (в радианной мере), когда z(t) пробегает
кривую γ. Как и ранее, поворот вектора против движения часовой стрелки считается
положительным. В связи с этими рассуждениями введем следующее понятие.

Опр.

7.1. Пусть γ - кусочно-гладкая кривая, не проходящая через точку z = 0. Приращением
аргумента z вдоль кривой γ называется величина

∆γ arg z = Im∫
γ

dz

z

Заметим, что в этих терминах

∫
γ

dz

z
= ln ∣z(β)

z(α)
∣ + i∆γ arg z

В случае замкнутой кривой γ имеет место равенство

∫
γ

dz

z
= i∆γ arg z

a само приращение аргумента ∆γ arg z кратно 2π.
Допустим теперь, что кривая γ ∶ z = z(t), α ⩽ t ⩽ β, расположена в области D, в которой

определена голоморфная функция w = f(z). Если кроме того f(z) ≠ 0 на γ, то кривая
Γ = f(γ) ∶ w = f(z(t)), α ⩽ t ⩽ β, не будет проходить через точку w = 0. Поэтому определена
величина ∆Γ argw, которую будем называть приращением аргумента функции f вдоль
кривой γ и обозначать ∆γ arg f(z). Непосредственно из определения получаем

∆γ arg f(z) = Im∫
Γ

dw

w
= Im

β

∫
α

f ′(z(t))
f(z(t))

z′(t)dt = Im∫
γ

f ′(z)
f(z)

dz,

T. e.

∆γ arg f(z) = Im∫
γ

f ′(z)
f(z)

dz

Из (7.1) сразу же следует, что для любого комплексного числа c ≠ 0 имеет место
равенство

∆γ arg(cf(z)) =∆γ arg f(z)
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3.1.8 Index. General Form of the Cauchy Theorem and Cauchy Integral Formula

Логарифмическое свойство приращения аргумента функции вдоль кривой

Пусть γ - кусочно-гладкая кривая, расположенная в области D, в которой определены
голоморфные функции f1 u f2. Допустим также, что f1 и f2 не обращаются в нуль на γ.
Тогда

∆γ arg (f1(z)f2(z)) =∆γ arg f1(z) +∆γ arg f2(z)

Proof. Из формулы (7.1) и правила дифференцирования произведения следует, что

∆γ arg (f1(z)f2(z)) = Im∫
γ

(f1(z)f2(z))′

f1(z)f2(z)
dz

= Im∫
γ

f ′1(z)f2(z) + f1(z)f ′2(z)
f1(z)f2(z)

dz

=∆γ arg f1(z) +∆γ arg f2(z)
и лемма доказана.

Из (7.1) и свойств интеграла также следует, что

∆−γ arg f(z) = −∆γ arg f(z), ∆γ arg
1

f(z)
= −∆γ arg f(z).

Введем в рассмотрение еще одно важное понятие, которое характеризует соотношение
между замкнутой кривой и точкой вне этой кривой. Если γ - замкнутая кусочно-гладкая
кривая, не проходящая через точку a, то f(z) = z − a является голоморфной функцией,
которая не обращается в нуль на γ. Поэтому определена величина

∆γ arg(z − a) = Im∫
γ

dz

z − a

Поскольку кривая γ замкнута, то эта величина кратна 2π, а вещественная часть
интеграла в правой части последнего равенства равна нулю.

Index of a point

Опр. Пусть γ - замкнутая кусочно-гладкая кривая, не проходящая через точку a.
Тогда индексом точки a относительно кривой γ называется число

J(γ, a) = 1

2πi ∫
γ

dz

z − a

Из предыдущего следует, что величина

J(γ, a) = 1

2π
∆γ arg(z − a)

является целочисленной и выражает число оборотов вектора, соединяющего a с точкой
z, когда она обходит кривую γ. Иногда J(γ, a) называют также порядком кривой γ
относительно точки a. Непосредственно из определения индекса и свойств интеграла
следует равенство J(−γ, a) = −J(γ, a). Проведенные ранее вычисления показывают также,
что если γ - положительно ориентированная окружность с центром в точке a, то J(γ, a) =
1. Этим объясняется термин положительно ориентированная".
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Для замкнутой кривой γ дополнение C/γ является открытым множеством, а
максимальные связные подмножества в C/γ представляют собой области и называются
компонентами связности дополнения C/γ.

Theorem about index and connection components

Пусть γ - замкнутая кусочно-гладкая кривая. Тогда функция z ↦ J(γ, z) является
целочисленной и постоянной в каждой компоненте связности дополнения C/γ. Кроме
того, индекс обращается в нуль во внешней компоненте связности (содержащей бесконечно
удаленную точку).

Proof. Замечая, что J(γ, z) можно рассматривать как интеграл Коши с плотностью,
тождественно равной 1, получаем бесконечную дифференцируемость J(γ, z) и равенство

d

dz
J(γ, z) = 1

2πi ∫
γ

dζ

(ζ − z)2

Поскольку dζ/(ζ − z)2 является полным дифференциалом в C/{z}, то правая часть
последнего равенства обращается в нуль. Следовательно, J(γ, z) ≡ const в каждой
компоненте связности множества C/γ.

Равенство индекса нулю во внешней компоненте связности C/γ следует из его
постоянства в этой компоненте связности и того, что интеграл

∫
γ

dζ

ζ − z

стремится к нулю при z →∞.

7.2. Общая форма теоремы Коши.

Как было установлено в теореме 4.4, если функция f голоморфна в выпуклой области
D, то результат ее интегрирования по любой замкнутой кривой γ, расположенной в D,
равен нулю. Для произвольной области D в таком виде результат не имеет места, на
что указывает пример кольца 1 < ∣z − a∣ < 2 и голоморфной в этом кольце функции
f(z) = 1/(z − a). В связи с этим естественно возникает два вопроса: для какого класса
областей D остается верным заключение теоремы 4.4 и, если область D произвольна, то
для какого семейства замкнутых кривых интеграл от голоморфной в D функции равен
нулю? Прежде, чем сформулировать ответ на поставленные вопросы, докажем одно
вспомогательное утверждение и приведем некоторые определения.

Лемма 7.2. Пусть f -голоморфная в области D функиия. Тогда функция

g(ζ, z) = {
f(ζ)−f(z)

ζ−z , если ζ ≠ z,
f ′(z), если ζ = z

будет непрерьвной в D ×D, а для любой кривой γ, расположенной в D,

h(z) = ∫
γ

g(ζ, z)dζ

будет голоморфной в D функцией.

Proof.
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Докажем вначале непрерывность g(ζ, z) как функции двух переменных в D × D. В
точках (ζ0, z0) при ζ0 ≠ z0 непрерывность очевидна, поскольку это является следствием
непрерывности частного при не обращении в нуль знаменателя. Пусть теперь z0 ∈ D и
рассмотрим поведение функции g(ζ, z) в окрестности точки (z0, z0). Выберем r > 0 меньше
расстояния от z0 до границы ∂D области D. Тогда в замкнутом круге Or (z0) функция f
будет представима абсолютно и равномерно сходящимся рядом Тейлора

f(z) = c0 + c1 (z − z0) + c2 (z − z0)2 + . . .

Поэтому для ζ, z ∈ Or (z0) имеем

f(ζ) − f(z) = c1(ζ − z) +
∞
∑
n=2

cn [(ζ − z0)n − (z − z0)n]

= (ζ − z){f ′ (z0) +
∞
∑
n=2

cn [(ζ − z0)n−1 + (ζ − z0)n−2 (z − z0) + . . . + (z − z0)n−1]}

и далее

∣g(ζ, z) − g (z0, z0)∣ = ∣
f(ζ) − f(z)

ζ − z
− f ′ (z0)∣ ⩽

∞
∑
n=2
∣cn∣nrn−1

Замечая, что ряд в правой части последнего неравенства стремится к нулю при r → 0,
приходим к непрерывности функции g в точке (z0, z0).

Покажем теперь, что функция h является голоморфной в областиD. Снова фиксируем
z0 ∈ D и r > 0 так, чтобы Or (z0) ⊂ D. Для любого треугольника ∆, расположенного в
Or (z0) вместе со своим замыканием имеем

∫
∂∆

h(z)dz = ∫
∂∆

⎛
⎜
⎝
∫
γ

g(ζ, z)dζ
⎞
⎟
⎠
dz = ∫

γ

⎛
⎝∫
∂∆

g(ζ, z)dz
⎞
⎠
dζ

Замена порядка интегрирования обоснована непрерывностью функции g. Заметим
теперь, что g(ζ, z)dz является полным дифференциалом в Or (z0). Поэтому

∫
∂∆

g(ζ, z)dz = 0

для всех ζ ∈D. Но тогда и

∫
∂∆

h(z)dz = 0

Следовательно, по теореме Морера 5.4 функция h голоморфна в Or (z0), а поскольку z0
выбиралось произвольным в D, то получаем голоморфность функции h во всей области D.
Введем теперь некоторые понятия и определения. Пусть γ1, . . . , γn - замкнутые кусочно-
гладкие кривые и k1, . . . , kn - целые числа. Формальную сумму Γ = k1γ1 + . . . , knγn будем
называть ииклом. Будем говорить, что цикл Γ расположен в области D, если γj ⊂
D, j = 1, . . . , n. В случае, когда Γ расположен в D, a f - непрерывная в D функция,
под интегралом от функции f по циклу Γ будем понимать

∫
Γ

f(z)dz ∶=
n

∑
j=1
kj ∫

γj

f(z)dz.

Таким образом, если k - натуральное число, то (−k)γ = k(−γ).
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Определение интеграла по циклу позволяет ввести понятие индекса точки
относительно цикла. Если Γ = k1γ1 + . . . , knγn - цикл и a ∉ Γ (т. е. a не лежит ни на одной
из кривых γ1, . . . , γn), то

J(Γ, a) ∶=
n

∑
j=1
kjJ (γj, a)

Опр.

7.3. Пусть Γ - цикл, расположенный в области D. Будем говорить, что цикл Γ
гомологичен нулю относительно области D и писать

Γ ∼ 0 (modD)

если J(Γ, a) = 0 для всех точек a ∉D.

Общая форма теорема Коши

Пусть D-область в C и Γ - иикл, гомологичный нулю относительно области D. Тогда
для любой голоморфной в D функции f справедливы следующие утверждения:

(i) если z ∈D/Γ,mo

J(Γ, z)f(z) = 1

2πi ∫
Γ

f(ζ)
ζ − z

dζ

(ii) выполняется равенство

∫
Γ

f(ζ)dζ = 0

Proof. Пусть f - голоморфная в области D функция. Рассмотрим в D ×D функцию

g(ζ, z) = {
f(ζ)−f(z)

ζ−z , если ζ ≠ z
f ′(z), если ζ = z

Из леммы 7.2 следует, что g непрерывна на D ×D, а функция

h(z) = 1

2πi ∫
Γ

g(ζ, z)dζ

является голоморфной в области D. Рассмотрим теперь открытое множество

Q = {z ∈ C/Γ ∶ J(Γ, z) = 0}

и определим на нем функцию

h0(z) =
1

2πi ∫
Γ

f(ζ)
ζ − z

dζ

В силу свойств интеграла Коши функция h0 является голоморфной на Q. Кроме того,
из условия Γ ∼ 0(modD) следует, что C/D ⊂ Q и для z ∈ Q ∩D имеет место равенство

h(z) = 1

2πi ∫
Γ

f(ζ) − f(z)
ζ − z

dζ = 1

2πi ∫
Γ

f(ζ)
ζ − z

dζ = h0(z).

Следовательно, полагая
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F (z) = { h(z) при z ∈D
h0(z) при z ∈ C/D

получаем целую функцию. При этом

lim
z→∞

F (z) = lim
z→∞

h0(z) = 0

Отсюда, в частности, следует ограниченность функции F , и по теореме Лиувилля 5.7
получаем F (z) ≡ 0. Равенство h(z) = 0 эквивалентно утверждению (i) из формулировки
теоремы.

Утверждение (ii) следует из (i) применением к функции f1(z) = (z − a)f(z), где a -
произвольная точка из D/Γ. Действительно,

0 = J(Γ, a)f1(a) =
1

2πi ∫
Γ

f1(ζ)
ζ − a

dζ = 1

2πi ∫
Γ

f(ζ)dζ

и теорема доказана.

Theorem Коши для односвязной области

Пусть D−-дносвязная область и -замкнутая кусочно-гладкая кривая, расположенная в
D. Тогда для любой голоморфной в D функции f выполняется равенство

∫
γ

f(z)dz = 0

Proof. Заметим, что если точка a ∉D, то она принадлежит внешней компоненте связности
множества C/γ, поскольку C/D связно. Поэтому γ образует цикл, гомологичный нулю
относительно области D. Но тогда утверждение следствия следует из пункта (ii) теоремы
7.2.

Для другого следствия общей формы теоремы Коши нам потребуется одно
определение. Пусть γ - замкнутая кусочно-гладкая жорданова кривая. По теореме
ЖКордана она разбивает всю плоскость C на две области, одна из которых ограничена
и называется внутренней, а другая не ограничена и называется внешней. При этом γ
является общей границей этих областей. Как было показано выше, J(γ, z) = 0 для точек
z из внешней области. Можно показать (мы не будем этого делать, поскольку в каждом
конкретном случае это проверяется непосредственным вычислением или легко следует
из геометрического смысла индекса), что в случае, когда z лежит во внутренней
области, индекс J(γ, z) может равняться 1 или -1. Например, если γ - окружность с
центром в точке a и ее параметризация такова, что при возрастании параметра точка
движется по окружности, оставляя круг (область, ограниченную γ) слева, то J(γ, a) = 1.
Этим объясняется происхождение термина "положительно ориентированная граница". В
дальнейшем под положительной ориентацией замкнутой кусочно-гладкой жордановой
кривой γ мы будем понимать такую ее параметризацию, при которой J(γ, z) = 1 для
точек z из внутренней области.
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Опр. ограничивающего цикла

Будем говорить, что цикл Γ = γ0 − γ1 − . . . − γn, где γj - кусочно-гладкие замкнутые
жордановы кривые с положительной ориентацией, ограничивает область D, если Γ
является границей области D и

J(Γ, z) = { 1 при z ∈D,
0 при z ∈ C/D̄,

При этом Γ называется положительно ориентированной границей области D и также
обозначается ∂D.

Theorem Коши для многосвязной области

Пусть Г - цикл, ограничивающий область D, и f -голоморфная функция в области D′,
которая содержит замыкание D̄. Тогда

∫
Γ

f(z)dz = 0

Proof. По условию Γ ∼ 0 (modD′) и утверждение следует из пункта (ii) теоремы 7.2.

Интегралъная формула Коши для многосвязной области

В условиях предыдущего следствия для всех z ∈D выполняется равенство

f(z) = 1

2πi ∫
Γ

f(ζ)
ζ − z

dζ

а такжее дяя всех n = 1,2, . . . имеет место равенство для производных

f (n)(z) = n!

2πi ∫
Γ

f(ζ)dζ
(ζ − z)n+1

Proof. Равенство f(z) = 1
2πi ∫

Γ

f(ζ)
ζ−z dζ сразу же следует из пункта (i) теоремы 7.2, если

заметить, что по условию J(Γ, z) = 1. This formula показывает, что и в случае области D,
ограниченной циклом Γ, значения голоморфной функции f внутри области D
восстанавливаются по ее значениям на границе ∂D = Γ. При этом f является интегралом
Коши, в котором в качестве плотности выступают ее граничные значения. Таким
образом, формула f (n)(z) = n!

2πi ∫
Γ

f(ζ)dζ
(ζ−z)n+1 следует из теоремы 5.1 о свойствах интеграла

Коши.

3.1.9 Laurent Series. Isolated Singular Points

8.1. Ряды Лорана.

Рассмотрим вначале ряд вида b0 + b1z−1 + b2z−2+.... Простая замена переменной z = 1/ζ
приводит его к обычному степенному ряду

∞
∑
n=0

bnζn. Область сходимости этого ряда, как

следует из теоремы 3.1, является круг ∣ζ ∣ < R, где
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1/R = lim
n→∞

n
√
∣bn∣

Следовательно, областью сходимости исходного ряда является внешность круга ∣z∣ >
1/R, где его сумма представляет собой голоморфную функцию. Если скомбинировать
такой ряд с обычным степенным рядом, то получим более общую форму степенного ряда
∞
∑

n=−∞
cnzn, или

∞
∑

n=−∞
cn(z − z0)n, областью сходимости которого (если она не пуста) является

кольцо. Внутренний и внешний радиусы этого кольца можно получить, например, по
формуле Коши-Адамара (3.2).

Theorem

8.1. Любую функцию f , голоморфную в колъце K = {z ∶ r < ∣z - a ∣< R}, можно
представить как сумму сходящегося в K ряда

f(z) =
∞
∑
n=−∞

cn(z − a)n

коэффициенты которого определяются по формулам

cn =
1

2πi ∫
γϱ

f(ζ)
(ζ − a)n+1

dζ

n = 0,±1,±2, . . ., где γϱ - положительно ориентированная окружность ∣ζ - a ∣= ϱ, r < ϱ < R.
This series называется рядом Лорана функции f в кольце K. Совокупность членов

этого ряда с неотрицательными степенями (z−a)n, n = 0,1, . . ., называется его правилъной
частью, а совокупность членов с отрицательными степенями (z − a)n, n = −1,−2, . . . , -
главной частью.

Proof.

Заметим прежде всего, что интегралы в правой части (8.2) не зависят от значения
ϱ. Действительно, если ϱ′, ϱ′′ ∈ (r,R), то γϱ′ − γϱ′′ является циклом, гомологичным нулю
относительно кольца K. Поэтому применение теоремы Коши 7.2 к функции f(z)/(z−a)n+1
дает равенство

∫
γϱ′−γϱ′′

f(ζ)
(ζ − a)n+1

dζ = 0

откуда следует, что

∫
γϱ′

f(ζ)
(ζ − a)n+1

dζ = ∫
γϱ′′

f(ζ)
(ζ − a)n+1

dζ

Пусть теперь r < r′ < R′ < R. Тогда цикл γR′ − γr′ ограничивает кольцо
K ′ = {z ∶ r′ < ∣z − a∣ < R′}. В силу интегральной формулы Коши f (n)(z) = n!

2πi ∫
Γ

f(ζ)dζ
(ζ−z)n+1

имеем в кольце K ′ представление

f(z) = 1

2πi ∫
γR′

f(ζ)
ζ − z

dζ − 1

2πi ∫
γr′

f(ζ)
ζ − z

dζ = f1(z) + f2(z)

где

f1(z) =
1

2πi ∫
γR′

f(ζ)
ζ − z

dζ, f2(z) = −
1

2πi ∫
γr′

f(ζ)
ζ − z

dζ
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Функцию f1 можно рассматривать как интеграл Коши в круге ∣z−a∣ < R′ и потому она
является голоморфной в этом круге. В силу теоремы 6.1 функцию f1 можно представить
рядом Тейлора

f1(z) =
∞
∑
n=0

cn(z − a)n, cn =
f
(n)
1 (a)
n!

= 1

2πi ∫
γR′

f(ζ)
(ζ − a)n+1

dζ

т. е. коэффициенты cn, n = 0,1,2, . . ., вычисляются по формулам (8.2). Для получения
разложения функции f2 во внешности круга ∣z − a∣ > r′ представим ядро Коши в виде

− 1

ζ − z
= 1

(z − a) (1 − ζ−a
z−a)

=
∞
∑
n=1

(ζ − a)n−1
(z − a)n

Поскольку при ∣z − a∣ > r′ и ζ ∈ γr′ выполняется неравенство

∣ζ − a
z − a

∣ = r′

∣z − a∣
< 1

то полученный ряд сходится равномерно по ζ ∈ γr′ и его можно почленно интегрировать.
Умножая его на ограниченную функцию f(ζ)/(2πi) и интегрируя почленно, получаем

f2(z) =
∞
∑
n=1

bn
(z − a)n

где

bn =
1

2πi ∫
γr′

(ζ − a)n−1f(ζ)dζ = c−n.

Складывая теперь полученные разложения для f1 и f2, получаем разложение (8.1)
для функции f в кольце K ′. Поскольку r′ и R′ можно выбрать сколь угодно близко к
r и R, соответственно, и коэффициенты cn не зависят от этого выбора, то полученное
представление имеет место во всем кольце K.

Theorem Единственность ряда Лорана

Если функция f представима сходящимся в кольще K = {z ∶ r < ∣z −a∣ < R} рядом (8.1),
то его коэффициенты определяются по формулам (8.2).

Proof. Фиксируем ϱ ∈ (r,R). Ряд (8.1) сходится равномерно на окружности γϱ. Поэтому
его можно почленно интегрировать. Равномерная сходимость не нарушится, если его
умножить на ограниченную функцию. Умножая равенство (8.1) на (z − a)−m−1, где m -
произвольное целое, и переходя к почленному интегрированию, получаем

∞
∑
n=−∞

cn∫
γϱ

(z − a)n−m−1dz = ∫
γϱ

f(z)
(z − a)m+1

dz.

Однако в сумме левой части последнего равенства все слагаемые, кроме
соответствующего индексу n =m, обращаются в нуль. Поэтому

cm ⋅ 2πi = ∫
γϱ

f(z)
(z − a)m+1

dz

и теорема доказана.
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Смысл теоремы состоит в том, что всякий сходящийся ряд является рядом Лорана
своей суммы. Формулы для вычисления коэффициентов ряда Лорана на практике
применяются редко ввиду громоздкости соответствующих вычислений. На основании
доказанной теоремы для получения лорановского разложения можно использовать
любой корректный прием.

Приведем теперь некоторые замечания о ряде Лорана в окрестности бесконечно
удаленной точки. Если функция f голоморфна во внешности некоторого круга ∣z∣ > R, т.
е. в окрестности бесконечно удаленной точки, то в силу теоремы 8.1 ее можно
разложить в этой окрестности в ряд Лорана

f(z) =
∞
∑
n=−∞

cnz
n

коэффициенты которого вычисляются по формулам

cn =
1

2πi ∫
γϱ

f(ζ)
ζn+1

dζ

где γϱ - положительно ориентированная окружность ∣ζ ∣ = ϱ, ϱ > R. Однако при этом
несколько меняется терминология. Под главной частью ряда Лорана в окрестности
бесконечно удаленной точки понимается сумма

∞
∑
n=1

cnzn по положительным степеням z, а

под правильной частью понимается сумма
0

∑
n=−∞

cnzn по отрицательным степеням z и c0.
Это связано с тем, что zn → 0 при z → ∞ для отрицательных n и zn → ∞ при z → ∞ для
положительных n. В случае отсутствия главной части f(z) → c0 при z → ∞, а замена
z = 1/ζ приводит к тому, что функция g(ζ) = f(1/ζ) будет голоморфной в окрестности
точки ζ = 0.

8.2. Изолированные особые точки.

Точка a ∈ C называется изолированной особой точкой (однозначного характера) для
функции f , если найдется такое r > 0, что f является голоморфной в проколотой
окрестности Ȯr(a). В зависимости от поведения функции f(z) при приближении z к
особой точке a проводится следующая классификация.

Definitions of singular points

(??? write English versions)
Изолированная особая точка a ∈ C функции f называется:
(i) устранимой особой точкой, если существует конечный предел

lim
z→a

f(z) = A

(ii) полюсом, если f(z) → ∞ при z → a;
(iii) существенно особой точкой, если f(z) не имеет ни конечного, ни бесконечного

предела при z → a.

Theorem about a removable singularity

Изолированная особая точка а функиии f является устранимой в том и только том
случае, если f ограничена в некоторой окрестности Ȯr(a), r > 0
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3.1.9 Laurent Series. Isolated Singular Points

Proof. Если a является устранимой особой точкой, то ограниченность f(z) в некоторой
окрестности Ȯr(a) следует из существования предела lim f(z) при z → a

Допустим теперь, что ∣f(z)∣ ⩽M при всех z ∈ Ȯr(a) и некотором M > 0. В Ȯr(a), как в
кольцевой области, функция f представима в виде суммы ряда Лорана

f(z) =
∞
∑
n=−∞

cn(z − a)n,

коэффициенты которого вычисляются по формулам

cn =
1

2πi ∫
γϱ

f(ζ)
(ζ − a)n+1

dζ,

где γϱ - положительно ориентированная окружность ∣ζ − a∣ = ϱ, а ϱ можно выбрать
любым в интервале (0, r). Поскольку

∣cn∣ =
1

2π

RRRRRRRRRRRRR
∫
γϱ

f(ζ)
(ζ − a)n+1

dζ

RRRRRRRRRRRRR
⩽ M

2πϱn+1 ∫
γϱ

∣dζ ∣ = M
ϱn
,

то cn = 0 для всех отрицательных n. Таким образом, ряд Лорана функции f в Ȯr(a)
является, по существу, обычным степенным рядом, а его сумма g(z) представляет собой
голоморфную в Ȯr(a) функцию, которая совпадает с функцией f в проколотой
окрестности Ȯr(a).

Из доказательства теоремы видно, что доопределение (или переопределение) функции
f в устранимой особой точке a делает ее голоморфной в полной окрестности Or(a), чем и
объясняется ее название.

Полученные в ходе доказательства неравенства для коэффициентов ряда Лорана ∣cn∣ ⩽
M/ϱn , где

M =max
z∈γϱ
∣f(z)∣

иногда называют неравенствами Коши.

Property of a holomorphic function

Пусть f -голоморфная в области D функция и а является ее нулем порядка т. Тогда в
области D имеет место равенство

f(z) = (z − a)mg(z)

где g - голоморфная в D функция и g(a) ≠ 0.

Proof. Функция g(z) = f(z)/(z−a)m является голоморфной вD/{a}. Из вида ряда Тейлора
функции f в окрестности точки a следует, что a является устранимой особой точкой для
функции g. Таким образом, доопределяя функцию g в точке a соответствующим образом,
получаем голоморфную в D функцию. Условие g(a) = 0 означало бы, что f имеет в точке
a нуль более высокого порядка, чем m. Следовательно, g(a) ≠ 0.
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3.1.9 Laurent Series. Isolated Singular Points

При доказательстве теоремы 8.3 мы установили также, что изолированная особая
точка a является устранимой для функции f в том и только том случае, если разложение
f в ряд Лорана в проколотой окрестности Ȯr(a) не содержит главной части. Оказывается,
что главная часть лорановского разложения функции в окрестности изолированной особой
точки полностью определяет характер особенности.

Theorem about a pole

Изолированная особая точка a ∈ C функции f является полюсом (существенно
особой) в том и только том случае, если главная часть ряда Лорана функции f в
проколотой окрестности Ȯr( а содержит конечное (бесконечное) число членов с
ненулевыми коэффициентами.

Proof. Утверждение теоремы достаточно доказать только для полюса. Допустим, что
лорановское разложение функции f в Ȯr(a) имеет вид

f(z) = c−m(z − a)−m + c−m+1(z − a)−m+1 + . . .

и c−m ≠ 0, т. е. главная часть имеет конечное число членов с ненулевыми
коэффициентами. Тогда функция φ, определяемая как сумма степенного ряда

φ(z) =
∞
∑
k=0

ck−m(z − a)k,

будет голоморфной в полной окрестности Or(a). При этом φ(a) = c−m ≠ 0. Из равенства
f(z) = (z − a)−mφ(z) видно, что f(z) → ∞ при z → a. Таким образом, a является полюсом
для функции f .

Допустим теперь, что a-полюс функции f . Тогда f(z) ≠ 0 в некоторой проколотой
окрестности Ȯr(a) и, следовательно, в этой окрестности функция g(z) = 1/f(z) является
голоморфной и g(z) → 0 при z → a. Полагая g(a) = 0, получаем голоморфную в Or(a)
функцию. Пусть m - порядок нуля функции g в точке a. Тогда g(z) = (z − a)mφ(z) где φ
- голоморфная в Or(a) функция и φ(z) ≠ 0 при z ∈ Or(a). Функция 1/φ(z) также будет
голоморфной в Or(a), a ее разложение в ряд Тейлора в Or(a) будет иметь вид

1

φ(z)
=
∞
∑
k=0

ak(z − a)k

где a0 ≠ 0. Но тогда в Ȯr(a) функция f представима в виде

f(z) = 1

g(z)
= (z − a)−m 1

φ(z)
= (z − a)−m

∞
∑
k=0

ak(z − a)k

из которого видно, что главная часть ряда Лорана функции f в окрестности точки a
имеет конечное число ненулевых членов.

Опр.

8.3. Порядок (или кратность) полюса a функции f - порядок этой точки как нуля
функции 1/f .

Из доказательства теоремы видно, что порядок полюса совпадает с номером
старшего члена главной части лорановского разложения функции в окрестности полюса.
Следующий результат указывает на сложное поведение функции в окрестности
существенно особой точки.
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3.1.9 Laurent Series. Isolated Singular Points

Theorem Сохоцкого

Пусть f голоморфна в проколотой окрестности Ȯr( а) и а является существенно особой
точкой функции f . Тогда для любого A ∈ C найдется последовательность {zn} ⊂ Ȯr(a)
такая, что zn → a, f (zn) → A npu n→∞

Proof. В случае A = ∞ утверждение следует из теоремы 8.3, согласно которой f не может
быть ограниченной в окрестности Ȯϱ(a) ни для какого ϱ ∈ (0, r).

Пусть A ∈ C и допустим, что A не является предельной точкой никакой
последовательности {f (zn)}, для которой zn → a. Тогда найдутся такие ε > 0 и δ > 0, что
∣f(z) −A∣ ⩾ ε при z ∈ Ȯδ(a) Функция

g(z) = 1

f(z) −A

будет голоморфной в Ȯδ(a) и ∣g(z)∣ ⩽ 1/ε. По теореме 8.3 точка a должна быть
устранимой особой точкой для функции g. Доопределяя ее некоторым значением g(a) ∈ C,
получим голоморфную в полной окрестности Oδ(a) функцию. Если g(a) ≠ 0, то должно
выполняться предельное соотношение f(z) → 1/g(a) + A при z → a, что противоречит
предположениям теоремы. В случае g(a) = 0 должно выполняться условие f(z) → ∞ при
z → a, что также противоречит предположениям теоремы.

Great Picard’s Theorem

Допустим, что голоморфная функция f имеет существенно особую точку z = a. Тогда
в каждой окрестности этой точки функиия f принимает все комплексные значения, за
исключением быть может одного, бесконечное число раз.

This is a more strong statement then Sokhotsky’s theorem.
(??? I guess that proof is hard... I’ll see wiki for it later if needed)

Бесконечно удаленная точка.

В случае, когда f голоморфна во внешности некоторого круга, т. е. в области ∣z∣ > R,
бесконечно удаленную точку также рассматривают как изолированную особую точку.
Характер особенности (и порядок полюса, если f(z) → ∞ при z → ∞) определяется в
этом случае как соответствующий характер изолированной особой точки ζ = 0 функции
g(ζ) = f(1/ζ). Легко видеть, что результаты теорем 8.3 − 8.5 остаются в силе, если в
них положить a = ∞. Напомним при этом, что под главной частью ряда Лорана в
окрестности бесконечно удаленной точки понимается совокупность членов разложения
с положительными степенями zn.

Допустим теперь, что f - целая функция. Характер особой точки z = ∞ во многом
определяет вид функции f . Если z = ∞ является устранимой особой точкой, т. е.
существует конечный предел функции f(z) при z → ∞, то в силу теоремы 5.7 Лиувилля
f(z) ≡ const. Если z = ∞ является полюсом порядка m, то существует ненулевой конечный
предел отношения f(z)/zm при z → ∞. Но тогда по теореме 5.6 функция f является
полиномом степени m. Наконец, в случае, когда z = ∞ является существенно особой
точкой, по теореме 8.6 Пикара f(z) принимает все значения в C, за исключением, быть
может, одного. Напомним, что ez не обращается в нуль. Иногда теорему Пикара для
целых функций формулируют следующим образом: Если целая функция не принимает
хотя бы двух различных комплексных значений, то она тождественно постоянна.

77



3.1.10 Residues and Computation of Integrals

Целая функция, для которой бесконечно удаленная точка является существенно
особой, называется целой трансцендентной. Примерами целых трансцендентных
функций являются ez, sin z, cos z.

3.1.10 Residues and Computation of Integrals

Пусть a - изолированная особая точка функции f и Ȯr(a) - проколотая окрестность
точки a, в которой функция f является голоморфной. Из теоремы Коши для Ȯr(a)
следует, что интеграл

∫
γϱ

f(z)dz

где γϱ - положительно ориентированная окружность ∣z − a∣ = ϱ, не зависит от выбора
ϱ в интервале (0, r). В связи с этим, вычетом голоморфной функции f в изолированной
особой точке a называется комплексное число

res
z=a
f(z) = 1

2πi ∫
γϱ

f(z)dz

где γϱ - положительно ориентированная окружность ∣z−a∣ = ϱ с радиусом ϱ из интервала
(0, r), а f голоморфна в проколотой окрестности Ȯr(a). Иногда для обозначения вычета
используют более короткую запись res

a
f .

TеОремА 9.1. Вычет функции f в изолированной особой точке а равен коэффициенту
при (z − a)−1 лорановского разложения функции f в окрестности точки a.

Proof.

Поскольку ряд Лорана
∞
∑

n=−∞
cn(z − a)n функции f сходится равномерно на окружности

γϱ, то его можно почленно интегрировать. Замечая также, что ∫
γϱ

(z − a)ndz = 0 при n ≠ −1,
получаем

res f = 1

2πi ∫
γϱ

f(z)dz = 1

2πi

∞
∑
n=−∞

cn∫
γϱ

(z − a)ndz = c−1J (γϱ, a) = c−1.

теорема доказана.

Замечание

9.1. Из хода доказательства теоремы видно, что если γ-замкнутая кусочно-гладкая
кривая, расположенная в Ȯr(a), то

1

2πi ∫
γ

f(z)dz = J(γ, a)res
a
f

СЛЕДСтвие 9.1. В устранимой особой точке вычет равен нулю.
ПреДЛОЖение 9.1. Пусть a - полюс кратности m ⩾ 1 голоморфной в Ȯr(a) функциu

f . Тогдa

resz=a f(z) =
1

(m − 1)!
lim
z→a
[d
(m−1)

dzm−1
(z − a)mf(z)] .
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Proof.

Поскольку кратность полюса a равняется m, то разложение в ряд Лорана функции f
в окрестности Ȯr(a) будет иметь вид

f(z) = c−m(z − a)−m + . . . + c−1(z − a)−1 + c0 + c1(z − a) + . . . ,

где c−m ≠ 0. Функция g(z) = (z−a)mf(z) будет иметь в точке a устранимую особенность,
а c−1 будет коэффициентом ее ряда Тейлора при (z − a)m−1. Следовательно,

c−1 = resa f =
1

(m − 1)!
d(m−1)

dzm−1
g(z)∣

z=a

Следующий результат называют теоремой Коши о вычетах и он играет важную роль
в вычислении интегралов.

Theorem

9.2.
Пусть D - область, ограниченная ииклом γ (т. e. γ = ∂D - положстельно

ориентированная граница области D), и f -голоморфная на D̄ функция, исключая
конечное число особых точек a1, . . . , an, расположенных в D. Тогдa

1

2πi ∫
∂D

f(z)dz =
n

∑
k=1

resz=ak f(z)

Proof.

Пусть r > 0 таково, что Or (ak) ⊂D для всех k = 1, . . . , n, и Or (aj)∩Or (ak) = ∅ при j ≠ k.
Тогда цикл γ −

n

∑
k=1

λk, где λk = ∂Or (ak), будет гомологичным нулю относительно области

голоморфности функции f . Поэтому в силу теоремы Коши имеем

∫
∂D

f(z)dz −
n

∑
k=1
∫
λk

f(z)dz = 0,

откуда следует требуемое равенство, поскольку

1

2πi ∫
λk

f(z)dz = resz=ak f(z),

k = 1, . . . , n.
Вычет в бесконечно удаленной точке. Пусть функция f голоморфна во внешности

некоторого круга ∣z∣ > R. Тогда бесконечно удаленную точку мы причисляем к
изолированным особым точкам. Определим вычет в бесконечно удаленной точке
посредством равенства

res
z=∞

f(z) = 1

2πi ∫
−γϱ

f(z)dz

где γϱ - положительно ориентированная окружность ∣z∣ = ϱ, ϱ > R. Интегрируя

почленно лорановское разложение f(z) =
∞
∑

n=−∞
cnzn функции f в окрестности z = ∞ по

окружности −γϱ, получаем
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3.1.10 Residues and Computation of Integrals

res
z=∞

f(z) = −c−1

Это равенство часто используется для вычисления вычетов функций в бесконечно
удаленной точке. Отметим в связи с этим отличие бесконечно удаленной точки от
конечных изолированных особых точек. Коэффициент c−1 относится к правильной части
ряда Лорана разложения функции f в окрестности точки z = ∞. Поэтому даже в случае,
когда z = ∞ является устранимой особой точкой, вычет в ней может оказаться отличным
от нуля.

Theorem о вычете в бесконечности

Пусть функиия f является голоморфной во всей комплексной плоскости C, за
исключением конечного числа особых точек a1, . . . , an. Тогда

resz=∞ f(z) +
n

∑
k=1

zesresz=ak f(z) = 0.

Proof.

Поскольку особых точек конечное число, то найдется такое R > 0, что ∣ak∣ < R для
всех k = 1, . . . , n. Обозначим γR положительно ориентированную окружность ∣z∣ = R. По
предыдущей теореме

1

2πi ∫
γR

f(z)dz =
n

∑
k=1

resz=ak f(z).

Замечая, что

1

2πi ∫
γR

f(z)dz = − resz=∞ f(z)

получаем требуемое равенство.
Пусть D - область, которая получена удалением из комплексной плоскости C

конечного числа замкнутых попарно не пересекающихся жордановых областей
∆1, . . . ,∆n, ограниченных кусочно-гладкими кривыми γ1, . . . , γn, соответственно. Такую
область будем называть внешней областью с кусочно-гладкой границей. Положительно
ориентированной границей этой области будем считать отрицательно ориентированные
кривые γk (J (γk, a) = −1 для a ∈∆k), k = 1, . . . , n, и обозначать ∂D. В случае достаточно
простых кривых γk можно сказать, что при движении вдоль границы ∂D область D
остается слева.

Theorem

9.4. Пусть D - внешняя область с кусочно-гладкой границей ∂D u f -голоморфная на
D̄ функция, исключая конечное число особых точек a1,..., an, расположенных в D. Тогда

1

2πi ∫
∂D

f(z)dz = resz=∞ f(z) +
n

∑
k=1

zesz=ak f(z).

Proof.
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3.1.11 Residues: Examples

Пусть R > 0 такое, что граница ∂D и точки a1, . . . , an расположены внутри круга ∣z∣ < R.
Обозначим через ΓR положительно ориентированную окружность ∣z∣ = R и пусть DR = {z ∈
D ∶ ∣z∣ < R}. Тогда ΓR + ∂D будет положительно ориентированной границей области DR и
по теореме 9.2 получаем равенство

1

2πi ∫
ΓR+∂D

f(z)dz =
n

∑
k=1

zesz=ak f(z).

Замечая, что

1

2πi ∫
ΓR

f(z)dz = − resz=∞ f(z)

приходим к доказываемому утверждению.
Вычисление интегралов. Теория вычетов дает очень эффективный инструмент для

вычисления определенных интегралов. При этом следует иметь в виду, что
подынтегральная функция должна быть близка к голоморфной. На практике это, как
правило, выполняется в силу того, что интегрируются, в основном, элементарные
функции. Более существенным является то, что теория вычетов связана с
интегрированием по замкнутым кривым, в то время как в вещественном анализе
интегрирование ведется по отрезку, а в случае несобственных интегралов по всей
числовой прямой или некоторой ее части. Рассмотрим некоторые типичные примеры
преодоления этих трудностей.

3.1.11 Residues: Examples

I. ИНТЕГРИРОВАНИЕ ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЙ

Пусть R(x, y) - рациональная функция (т. е. отношение полиномов) двух переменных.
Рассмотрим интеграл

2π

∫
0

R(cos θ, sin θ)dθ

Идея применения техники вычетов к вычислению такого интеграла состоит в том,
чтобы представить его как линейный интеграл, полученный при интегрировании по
замкнутой кривой. Пусть T - положительно ориентированная единичная окружность и
T ∶ z = eiθ,0 ⩽ θ ⩽ 2π, - ее параметризация. Тогда на T будут выполняться следующие
соотношения

dz = izdθ, cos θ = 1

2
(z + 1

z
) , sin θ = 1

2i
(z − 1

z
)

и, следовательно,

∫
T

R(1
2
(z + 1

z
) , 1

2i
(z − 1

z
)) dz

iz
=

2π

∫
0

R(cos θ, sin θ)dθ.

Если рациональная функция

R1(z) =
1

z
R(1

2
(z + 1

z
) , 1

2i
(z − 1

z
))

от комплексной переменной z не имеет на T полюсов, то
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3.1.11 Residues: Examples

2π

∫
0

R(cos θ, sin θ)dθ = 1

i ∫
T

R1(z)dz = 2π ∑
∣a∣<1

resz=aR1(z),

где суммирование ведется по всем полюсам функции R1, которые расположены
внутри единичного круга. Такая запись суммы мотивирована тем, что вычет в точке
голоморфности функции R1 равен нулю.

II. НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ ОТ РАЦИОНАЛЬНЫХ ФУНКЦИЙ

Рассмотрим теперь интеграл вида

∞

∫
−∞

P (x)
Q(x)

dx

где P (x) и Q(x) - полиномы степени m и n, соответственно. Будем считать, что они не
имеют общих корней, т. е. дробь P /Q является несократимой. Для того, чтобы сходился
рассматриваемый интеграл, нужно, чтобы знаменатель Q не имел вещественных корней
и степень числителя P была меньше степени знаменателя Q, по крайней мере, на 2, т. е.
n −m ⩾ 2.

Лемма 9.1. Пусть P и Q - полиномы без общих корней степени m и, соответственно.
Допустим, что Q не имеет вещественных корней и n −m ⩾ 2. ∂a

∞

∫
−∞

P (x)
Q(x)

dx = 2πi ∑
Ima>0

resz=a
P (z)
Q(z)

где суммирование ведется по всем нулям полинома Q, расположенным в верхней
полуплоскости.

Proof.

Пусть a1, . . . , an - нули полинома Q. Поскольку дробь P /Q является несократимой (P
и Q не имеют общих нулей), то эти точки являются полюсами рациональной функции
P /Q. Выберем R > 0 так, чтобы для всех k = 1, . . . , n выполнялись неравенства ∣ak∣ < R.
Другими словами, все полюсы рациональной функции P /Q расположены в круге ∣z∣ < R.
Рассмотрим полуокружность ΓR ∶ z = Reiθ,0 ⩽ θ ⩽ π, и отрезок λR ∶ z = x,−R ⩽ x ⩽ R.
Поскольку ΓR +λR образует положительно ориентированную границу полукруга DR = {z ∶
∣z∣ < R, Im z > 0}, то по теореме 9.2

∫
ΓR+λR

P (z)
Q(z)

dz = 2πi ∑
k∶Imak>0

zesz=ak
P (z)
Q(z)

Заметим, что при увеличении R правая часть этого равенства не меняется, поскольку
вне круга ∣z∣ < R нулей полинома Q нет. С другой стороны,

∫
ΓR+λR

P (z)
Q(z)

dz = ∫
ΓR

P (z)
Q(z)

dz +
R

∫
−R

P (x)
Q(x)

dx, lim
R→∞

R

∫
−R

P (x)
Q(x)

dx =
∞

∫
−∞

P (x)
Q(x)

dx.

Далее, пусть P (z) = bmzm + . . . + b0,Q(z) = cnzn + . . . + c0, где bm ≠ 0, cn ≠ 0. Тогда для
z ∈ ΓR имеем

∣P (z)
Q(z)

∣ = 1

Rn−m
∣bm + bm−1/z + . . . + b0/zm∣
∣cn + cn−1/z + . . . + c0/zn∣
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откуда с учетом неравенства n −m ⩾ 2 следует, что

R ⋅max
z∈ΓR

∣P (z)
Q(z)

∣ → 0

при R →∞. Но тогда

RRRRRRRRRRRRR
∫
ΓR

P (z)
Q(z)

dz

RRRRRRRRRRRRR
⩽ ∫
ΓR

∣P (z)
Q(z)

∣ ⋅ ∣dz∣ ⩽ πR ⋅max
z∈ΓR

∣P (z)
Q(z)

∣ → 0

при R →∞. В результате приходим к равенству из формулировки леммы.

III. ВЫЧИСЛЕНИЕ ИНТЕГРАЛОВ С ИСПОЛЬЗОВАНИЕМ ЛЕММЫ
ЖОРДАHA

Интегралы вида

∞

∫
−∞

P (x)
Q(x)

sinxdx,

∞

∫
−∞

P (x)
Q(x)

cosxdx

абсолютно расходятся, если знаменатель имеет степень всего на единицу выше степени
числителя. С другой стороны, интеграл

∞

∫
−∞

sinx

x
dx

сходится условно. Для вычисления таких интегралов с помощью вычетов используется
лемма Жордана.

Лемма 9.2. [Жордана.] Пусть g - непрерывная на множестве {z ∶ Im z ⩾ 0, ∣z∣ ⩾ R0}
функция при некотором R0 > 0. Допустим также, что

max
z∈ΓR

∣g(z)∣ → 0

при R → ∞, где ΓR ∶ z = Reiθ,0 ⩽ θ ⩽ π, - полуокружность. Тогда для любого α > 0
выполняется соотношение

lim
R→∞∫

ΓR

g(z)eiαzdz = 0

Proof.

Для доказательства нашего утверждения достаточно показать, что интеграл

∫
ΓR

∣eiαz ∣ ∣dz∣ = R
π

∫
0

e−αR sin θdθ = 2R
π/2

∫
0

e−αR sin θdθ

ограничен равномерно по R > 0. Поскольку sin θ является вогнутой на промежутке
(0, π) функцией, то sin θ ⩾ 2θ/π при 0 ⩽ θ ⩽ π/2. Используя это неравенство, получаем

π/2

∫
0

e−αR sin θdθ ⩽
π/2

∫
0

e−α2Rθ/πdθ = π

2αR

αR

∫
0

e−tdt ⩽ π

2αR

∞

∫
0

e−tdt = π

2αR

Отсюда находим, что
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∫
ΓR

∣eiαz ∣ ∣dz∣ < π
α

Лемма Жордана применяется обычно к вычислению интегралов вида

I1 =
∞

∫
−∞

g(x) cosαxdx, I2 =
∞

∫
−∞

g(x) sinαxdx

где α > 0, а g(x) - рациональная функция, у которой степень знаменателя лишь на
единицу больше степени числителя. Для применения теории вычетов рассматривается

I = I1 + iI2 =
∞

∫
−∞

g(x)eiαxdx

и строится замкнутая кривая, состоящая из отрезка λR ∶ z = x,−R ⩽ x ⩽ R, и
полуокружности ΓR ∶ z = Reiθ,0 ⩽ θ ⩽ π. При достаточно больших значениях R имеем

∫
ΓR+λR

g(z)eiαzdz = 2πi ∑
Ima>0

resz=a [g(z)eiαz]

Однако, в силу леммы ЖКордана

∫
ΓR

g(z)eiαzdz → 0

при R →∞. Поэтому

∫
λR

g(z)eiαzdz → I

при R →∞ и, следовательно,

I = 2πi ∑
Ima>0

resz=a [g(z)eiαz]

При этом I1 = Re I и I2 = Im I.

IV. ДОЛЕВОЙ ВЫЧЕТ В ПРОСТОМ ПОЛЮСЕ

Пусть a - изолированная особая точка функции f , т. е. f голоморфна в Ȯr(a) при
некотором r > 0. Рассмотрим дугу окружности γϱ,α ∶ z = a+ϱeiθ, θ0 ⩽ θ ⩽ θ0 +α, где ϱ ∈ (0, r)
и α ∈ (0,2π]. Если α = 2π, то γϱ,α представляет собой полную окружность γϱ и

∫
γϱ

f(z)dz = i2π resz=a f(z)

В общем случае для интеграла вдоль γϱ,α при α < 2π выражения через вычет нет.
Однако, если а является простым полюсом (кратности 1), то можно вычислить предел
этого интеграла при ϱ→ 0.

Лемма 9.3. Пусть a - простой полюс функции fuγϱ,α ∶ z = a + ϱeiθ, θ0 ⩽ θ ⩽ θ0 + α- дуга
окружности, содержащаяся в угловом секторе раствора α, where 0 < α < 2π. Тогдa

lim
ϱ→0
∫
γϱ,α

f(z)dz = iαres
z=a
f(z).
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Proof.

Поскольку Является простым полюсом функции f , то в окрестности этой точки
разложение f в ряд Лорана имеет вид f(z) = c−1(z - a)−1 + c0 + c1(z − a) + . . . , c−1 ≠ 0.
Следовательно, в этой окрестности f(z) = c−1(z−a)−1+g(z), где g - голоморфная в полной
окрестности точки a. Но тогда

∫
γϱ,α

f(z)dz = c−1 ∫
γϱ,α

dz

z − a
+ ∫
γϱ,α

g(z)dz.

Поскольку g(z) ограничена в окрестности точки a, то

∫
γϱ,α

g(z)dz → 0

при ϱ→ 0. Замечая также, что

∫
γϱ,α

dz

z − a
= i

θ0+α

∫
θ0

dθ = iα

приходим к утверждению леммы.
Приведем два примера применения доказанных лемм.

Пример 1.

Доказать равенство

∞

∫
0

lnx

x2 − 1
dx = π

2

4

В комплексной плоскости C с разрезом вдоль луча L = {z = iy ∶ y ⩽ 0} можно выделить
регулярную ветвь логарифма

ln z = ln ∣z∣ + iarg z, −π/2 < arg z < 3π/2

и рассмотреть функцию f(z) = ln z/ (z2 − 1).

Рис. 2. К примеру 1
Эта функция имеет в C/L две изолированные особые точки z = ±1. Поскольку в

окрестности точки z = 1 выделенная ветвь логарифма имеет разложение

ln z = ln(1 + (z − 1)) =
∞
∑
n=1
(−1)n−1 (z − 1)

n

n

то для функции f(z) точка z = 1 является устранимой особой точкой. Точка z = −1
является простым полюсом с вычетом
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resz=−1 f(z) = lim
z→−1

ln z

z − 1
= −1

2
ln(−1) = −iπ

2
.

Для больших R > 2 и малых ε < 1/4 рассмотрим область D(R,ε), которая получается
из полукруга {z ∶ ∣z∣ < R, Im z > 0} удалением множеств {z ∶ ∣z∣ ⩽ ε, Im z > 0} и {z ∶ ∣z + 1∣ ⩽
ε, Im z > 0}. Положительно ориентированная граница области D(R,ε) состоит из дуг:

∂D(R,ε) = ΓR + λε1 − γε1 + λε2 − γε2 + λε3
где ΓR ∶ z = Reiθ,0 ⩽ θ ⩽ π;λε1 ∶ z = x,−R ⩽ x ⩽ −1 − ε;γε1 ∶ z = −1 + εeiθ, 0 ⩽ θ ⩽ π;λε2 ∶ z =

x,−1 + ε ⩽ x ⩽ −ε;γε2 ∶ z = εeiθ,0 ⩽ θ ⩽ π;λε3 ∶ z = x, ε ⩽ x ⩽ R
Поскольку f голоморфна на D(R,ε), то по теореме Коши

∫
∂D(R,ε)

f(z)dz = 0

или, что эквивалентно,

∫
ΓR

f(z)dz +
−1−ε

∫
−R

f(x)dx − ∫
γε1

f(z)dz +
−ε

∫
−1+ε

f(x)dx − ∫
γε2

f(z)dz +
R

∫
ε

f(x)dx = 0.

Заметим, что

RRRRRRRRRRRRR
∫
ΓR

f(z)dz
RRRRRRRRRRRRR
⩽ ∫
ΓR

∣f(z)∣ ⋅ ∣dz∣ ⩽
√
(lnR)2 + π2

R2 − 1
πR → 0

при R →∞. Поэтому, осуществляя предельный переход при R →∞, получаем

−1−ε

∫
−∞

ln ∣x∣ + iπ
x2 − 1

dx +
−ε

∫
−1+ε

ln ∣x∣ + iπ
x2 − 1

dx +
∞

∫
ε

lnx

x2 − 1
dx − ∫

γε1

f(z)dz − ∫
γε2

f(z)dz = 0.

Отделяя в левой части равенства вещественную часть и выполняя в первых двух
интегралах замену переменной, получаем

1−ε

∫
ε

lnx

x2 − 1
dx +

∞

∫
1+ε

lnx

x2 − 1
dx +

∞

∫
ε

lnx

x2 − 1
dx −Re

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫
γε1

f(z)dz + ∫
γε2

f(z)dz
⎫⎪⎪⎪⎬⎪⎪⎪⎭
= 0.

Далее,

RRRRRRRRRRRRRR
∫
γε2

f(z)dz
RRRRRRRRRRRRRR
⩽
√
(ln ε)2 + π2

1 − ε
πε→ 0

при ε→ 0, а в силу доказанной выше леммы

lim
ε→0
∫
γε1

f(z)dz = iπ resz=−1 f(z) =
π2

2

Таким образом

2

∞

∫
0

lnx

x2 − 1
dx − π

2

2
= 0,

∞

∫
0

lnx

x2 − 1
dx = π

2

4
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Пример 2.

Вычислить интеграл

I =
∞

∫
−∞

sinx

x
dx

Заметим вначале, что функция f(z) = eiz/z голоморфна в C/{0} и в точке z = 0 имеет
простой полюс с вычетом

resz=0
eiz

z
= lim
z→0

eiz = 1

Для R > 1 и 0 < ϱ < 1/2 рассмотрим кривые:
ΓR ∶ z = Reit,0 ⩽ t ⩽ π; γϱ ∶ z = ϱeit,0 ⩽ t ⩽ π; λϱR = [−R,−ϱ], LϱR = [ϱ,R].
Поскольку ΓR+λϱR−γϱ+L

ϱ
R является положительно ориентированной границей области

D(R,ϱ), в которой функция f(z) голоморфна, то по теореме Коши

∫
ΓR

f(z)dz + ∫
λϱR

f(z)dz − ∫
γϱ

f(z)dz + ∫
Lϱ
R

f(z)dz = 0.

В силу леммы Жордана

lim
R→∞∫

ΓR

f(z)dz = 0.

Поэтому при R →∞ получаем равенство

−ϱ

∫
−∞

eix

x
dx +

∞

∫
ϱ

eix

x
dx = ∫

γϱ

f(z)dz

Приравнивая мнимые части в этом равенстве, приходим к соотношению

−ϱ

∫
−∞

sinx

x
dx +

∞

∫
ϱ

sinx

x
dx = Im

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫
γϱ

f(z)dz
⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Наконец, осуществляя предельный переход при ϱ→ 0, получаем

∞

∫
−∞

sinx

x
dx = Im{iπ resz=0 f(z)} = π

3.1.12 Regular Branches of Logarithm and Roots

Условия существования регулярных ветвей.

Основной вопрос, который изучается в этом параграфе, заключается в выяснении
условий возможности выделения регулярной ветви ln f(z) и n

√
f(z) для голоморфной в

области D функции f . Очевидно, что нужно в качестве одного из условий потребовать
необращение в нуль функции f в области D. Другие условия связаны с топологической
структурой области D и ее образа f(D).
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Theorem

10.1. Пусть f -голоморфная в области D функиия uf(z) ≠ 0 при z ∈D. Тогда в области
D можно выделить регулярную ветвъ ln f(z) в том и только том случае, если для любой
замкнутой кусочно-гладкой кривой γ, расположенной в D, выполняется условие

J(f(γ),0) = 0, или, что эквивалентно, ∆γ arg f(z) = 0.

Proof.

Допустим вначале, что F (z) - регулярная ветвь ln f(z) в областиD, т. е. F голоморфна
в D и eF (z) ≡ f(z). Тогда F ′(z) = f ′(z)/f(z) и (f ′(z)/f(z))dz - полный дифференциал в
области D. Следовательно, для любой замкнутой кусочно-гладкой кривой γ в области D
будет выполняться равенство

0 = ∫
γ

f ′(z)
f(z)

dz = 2πiJ(f(γ),0).

Обратно, допустим теперь, что J(f(γ),0) = 0 для любой замкнутой кусочно-гладкой
кривой γ в D. Это эквивалентно тому, что (f ′(z)/f(z))dz является полным
дифференциалом в D. Поэтому существует первообразная F (z) для f ′(z)/f(z), которая
определяется с точностью до аддитивной константы. Фиксируем некоторую точку a ∈ D
и значение ln f(a) из Ln{f(a)}. Распорядимся аддитивной константой первообразной
так, чтобы выполнялось равенство F (a) = ln f(a). Заметим теперь, что

(f(z)e−F (z))′ = e−F (z) (f ′(z) − f(z)F ′(z)) = 0

для всех z ∈ D. Следовательно, f(z)e−F (z) ≡ const. При z = a имеем f(a)e− ln f(a) = 1.
Таким образом, f(z)e−F (z) ≡ 1 и eF (z) ≡ f(z). Другими словами, F (z) является регулярной
ветвью в области D функции ln f(z).

Следствие 10.1. Если f -голоморфная в области D функция, f(z) ≠ 0 при z ∈ D и
выполняется условие (10.1), то для любого c ∈ C в области D можно выделить регулярную
ветвь функции (f(z))c = ec ln f(z).

СледствиЕ 10.2. Если f - голоморфная в односвязной области D функция uf(z) ≠ 0
при z ∈D, то в D можсно выделить регулярные ветви функций ln f(z)u(f(z))c, c ∈ C.

Действительно, поскольку D - односвязная область, а f ′(z)/f(z) является
голоморфной в D функцией, то в силу теоремы Коши

∫
γ

f ′(z)
f(z)

dz = 0

для любой замкнутой кусочно-гладкой кривой γ, расположенной в D. Это означает
выполнение условия (10.1) и возможность выделения регулярных ветвей функций ln f(z)
и (f(z))c, c ∈ C.

Замечание

10.1. В условиях теоремы 10.1 регулярную ветвь ln f(z) в области D можно
представить формулой

ln f(z) = ln f(a) + ∫
γz

f ′(ζ)
f(ζ)

dζ
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где a - фиксированная точка области D, ln f(a) - некоторое значение из множества
Ln{f(a)} и γz - кусочно-гладкая кривая, соединяющая точку a с точкой z в области D.

Действительно, регулярная ветвь ln f(z) в области D выделяется как первообразная
функции f ′(z)/f(z). С другой стороны, при доказательстве теоремы 4.1 было показано,
что первообразная может быть получена интегрированием по кусочно-гладким кривым с
началом в некоторой фиксированной точке a ∈D и с концом в текущей точке z ∈D. Кроме
того, учитывая геометрический смысл интеграла от логарифмической производной

∫
γz

f ′(ζ)
f(ζ)

dζ = ln ∣f(z)
f(a)

∣ + i∆γz arg f(ζ)

формулу (10.2) можно переписать в виде

ln f(z) = ln ∣f(z)∣ + i [θ +∆γz arg f(ζ)]

где θ - некоторое фиксированное значение arg f(a), т. е. θ ∈ Arg{f(a)}.

Замечание

10.2. Если D - односвязная область и 0 ∉ D, то в области D можно определить ln z по
формуле

ln z = lna + ∫
γz

dζ

ζ
= ln ∣z∣ + i [θ +∆γz arg ζ]

где a ∈ D, lna ∈ Ln{a}, γz - кусочно-гладкая кривая, соединяющая точки a и z в D и
θ ∈ Arg{a}.

Замечание

10.3. Все регулярные ветви ln f(z) в области D отличаются друг от друга на
аддитивную постоянную 2kπi, k ∈ Z.

Proof.

Пусть F1(z) и F2(z) - две голоморфные в области D функции, удовлетворяющие
условию

eF1(z) ≡ eF2(z) ≡ f(z)

Тогда eF1(z)−F2(z) ≡ 1 и, следовательно,

F1(z) − F2(z) ≡ k(z) ⋅ 2πi

где k(z) ∈ Z для всех z ∈D. Однако, из этого равенства видно, что k(z) - непрерывная
функция, принимающая только целые значения. Это возможно, как следует из леммы
ниже, лишь в случае, когда k(z) тождественно постоянна, т. e. k(z) ≡ k.

Лемма 10.1. Пусть k(z) - непрерывная в области D функиия, которая принимает
значения из множества K ⊂ C, удовлетворяющего условию ∣w′ - w′′∣ ⩾ d > 0 для всех
w′,w′′ ∈K,w′ ≠ w′′. Тогда k(z) ≡ const.

Proof.
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Фиксируем a ∈ D и через G1 обозначим множество тех точек z ∈ D, для которых
k(z) = k(a). Пусть также G2 = D/G1. В силу непрерывности функции k(z) каждая точка
z0 из G1 входит в это множество с некоторой окрестностью. Действительно, для ε ∈ (0, d/2)
найдется δ > 0 такое, что ∣k(z) − k (z0)∣ < ε при z ∈ Oδ (z0). Поскольку k (z0) = k(a) и
ε < d/2, то также должно выполняться равенство k(z) = k(a) и, следовательно, Oδ (z0) ⊂ G1.
Таким образом, G1 - открытое множество. Аналогично устанавливается, что иG2 является
открытым множеством. Однако, G1 ∩G2 = ∅ и D ⊂ G1 ∪G2. В силу связности D одно из
множеств G1 или G2 должно быть пустым. По условию a ∈ G1. Следовательно, G2 = ∅ и
D = G1 т. е. k(z) ≡ k(a).

Theorem

10.2. Пусть f -голоморфная в области D функция f(z) ≠ 0 при z ∈ D. Тогда для
натурального числа n в области D можно выделить регулярную ветвъ n

√
f(z) в том и

толъко том случае, если для любой замкнутой кусочно-гладкой кривой γ, расположенной
в D, выполняется условие

J(f(γ),0) = k ⋅ n, или, что эквивалентно, ∆γ arg f(z) = k ⋅ n ⋅ 2π, (10.4)

гдe k ∈ Z.

Proof.

Допустим вначале, что g(z) - регулярная ветвь n
√
f(z) в области D, т. е. g голоморфна

в D и (g(z))n ≡ f(z). Тогда g(z) ≠ 0 в D и из равенства f ′(z) = n(g(z))n−1g′(z) следует

f ′(z)
f(z)

= ng
′(z)
g(z)

Если γ - замкнутая кусочно-гладкая кривая в области D, то Γ = f(γ) и Γ∗ = g(γ)
также будут замкнутыми кусочно-гладкими кривыми, которые не проходят через начало
координат. Из полученного выше равенства получаем

J(f(γ),0) = 1

2πi ∫
γ

f ′(z)
f(z)

dz = n 1

2πi ∫
γ

g′(z)
g(z)

dz = nJ (Γ∗,0) ,

т. е. выполняется условие (10.4), поскольку J (Γ∗,0) является целым числом.
Обратно, допустим, что условие (10.4) выполняется для любой замкнутой кусочно-

гладкой кривой γ, расположенной в области D. Фиксируем в области D точку a и
некоторое значение g(a) ∈ {(f(a))1/n}. Определим в области D функцию

g(z) = g(a) exp
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

n ∫
γz

f ′(ζ)
f(ζ)

dζ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
где γz - кусочно-гладкая кривая, соединяющая точки a и z в области D. Покажем,

что g(z) корректно определена, голоморфна в D и выполняется равенство (g(z))n = f(z)
для всех z ∈D. Для корректности определения g(z) нам нужно показать, что ее значение
не зависит от выбора кусочно-гладкой кривой γz, соединяющей точки a и z. Пусть γ∗z -
другая такая кривая. Тогда γ = γz − γ∗z будет замкнутой кусочно-гладкой кривой в D. По
условию теоремы
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1

2πi ∫
γ

f ′(ζ)
f(ζ)

dζ = J(f(γ),0) = k ⋅ n

где k ∈ Z. В силу периодичности экспоненты

exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

n ∫
γ

f ′(ζ)
f(ζ)

dζ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= e2kπi = 1

Используя свойство аддитивности интеграла, получаем

exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

n ∫
γz

f ′(ζ)
f(ζ)

dζ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋅ exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− 1
n ∫
γ∗z

f ′(ζ)
f(ζ)

dζ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= 1

откуда следует корректность определения функции g(z).
Для доказательства голоморфности функции g(z) выберем произвольно точку z0 ∈ D

и окрестность Or (z0) ⊂ D. Поскольку Or (z0) является односвязной областью, а функция
f ′(z)/f(z) голоморфна, то (f ′(z)/f(z))dz - полный дифференциал в Or (z0).
Первообразную h для f ′(z)/f(z) в Or (z0) можно определить равенством

h(z) = ∫
[z0,z]

f ′(ζ)
f(ζ)

dζ

Выбирая γz = γz0 + [z0, z], приходим к равенству

g(z) = g (z0) e
1
n
h(z)

откуда следует голоморфность функции g в Or (z0). Поскольку точка z0 выбиралась
произвольно, то g голоморфна в области D. Из представления g(z) в окрестности Or (z0)
следует также, что

g′(z) = 1

n
g(z)h′(z) = 1

n
g(z)f

′(z)
f(z)

.

Далее заметим, что функция f(z)(g(z))−n является голоморфной в областиD и в точке
z = a принимает значение 1. Поскольку

[f(z)(g(z))−n]′ = f ′(z)(g(z))−n − nf(z)(g(z))−n−1g′(z)

= (g(z))−n [f ′(z) − ng
′(z)
g(z)

f(z)] = 0

для всех z ∈D, то f(z)(g(z))−n ≡ 1 и (g(z))n ≡ f(z).

Замечание

10.4. В условиях теоремы 10.2 регулярную ветвь g(z) функции n
√
f(z) в области D

можно получить по формуле

g(z) = g(a) exp
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

n ∫
γz

f ′(ζ)
f(ζ)

dζ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
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где a ∈ D,g(a) ∈ {(f(a))1/n} и γz - кусочно-гладкая кривая, соединяющая в области D
точки a и z. Принимая во внимание геометрический смысл интеграла от логарифмической
производной функции f , представление регулярной ветви n

√
f(z) можно переписать в виде

g(z) = ∣f(z)∣1/n exp{ i
n
(θ +∆γz arg f(ζ))}

где θ ∈ Arg{f(a)}.

Замечание

10.5. Все регулярные ветви функции n
√
f(z) в области D отличаются друг от друга

множителем ei2kπ/n, k = 0,1, . . . , n − 1.

Proof.

Действительно, если g1(z) и g2(z) - две регулярные ветви функции n
√
f(z), то

(g1(z)
g2(z)

)
n

≡ 1

откуда получаем

g1(z) ≡ κ(z)g2(z)
где κ(z) ∈ {ei2kπ/n ∶ k = 0,1, . . . , n − 1}. Из леммы 10.1 следует, что κ(z) ≡ const, и

утверждение доказано.
Пример 1. Исследовать вопрос существования регулярных ветвей многозначной

функции 4
√
z3(z + 1) в области D = C/E, где E - компактное связное множество,

содержащее точки z = 0 и z = −1 (например, E = [−1,0]).
Нам нужно проверить выполнимость условий теоремы 10.2 для функции f(z) = z3(z +

1), n = 4, и области D = C/E. Поскольку точки z = 0 и z = −1 не принадлежат области D, то
f(z) ≠ 0 при z ∈ D. Далее, пусть γ - замкнутая кусочно-гладкая кривая, расположенная
в D. Рассматривая функцию f как произведение f(z) = f1(z)f2(z), где f1(z) = z3 и
f2(z) = z + 1, и применяя логарифмическое свойство индекса, получаем

J(f(γ),0) = J (f1(γ),0) + J (f2(γ),0)
Заметим теперь, что

J (f1(γ),0) =
1

2πi ∫
γ

f ′1(z)
f1(z)

dz = 3

2πi ∫
γ

dz

z
= 3J(γ,0), J (f2(γ),0) = J(γ,−1),

откуда находим выражение для J(f(γ),0):

J(f(γ),0) = 3J(γ,0) + J(γ,−1).
В силу связности множества E точки z = 0 и z = −1 принадлежат одной и той же

компоненте связности C/γ и по теореме 7.1 имеет место равенство

J(γ,0) = J(γ,−1) = k
где k ∈ Z. Таким образом,

J(f(γ),0) = 3k + k = 4k
т. е. условие (10.4) выполнено и в области C/E можно выделить регулярную ветвь

многозначной функции 4
√
z3(z + 1).
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Разложение в ряды регулярных ветвей логарифма и корня.

Рассмотрим теперь вопрос представления рядами Тейлора и Лорана регулярных ветвей
(когда они существуют) многозначных функций ln f(z) и (f(z))a, a ∈ C. Когда вводились
элементарные функции, было показано, что для регулярной ветви ln(1 + z), выделяемой
в единичном круге D условием ln(1 + z)∣z=0 = 0, имеет место представление

ln(1 + z) =
∞
∑
n=1

(−1)n−1
n

zn

Поскольку другие регулярные ветви отличаются лишь слагаемым 2kπi, то для них
тейлоровское разложение в D будет иметь вид

ln(k)(1 + z) = 2kπi +
∞
∑
n=1

(−1)n−1
n

zn

k = 0,±1,±2, . . .
Рассмотрим теперь функцию (1 + z)a, где a ∈ C. Ее регулярные ветви в единичном

круге D определяются через регулярные ветви логарифма

hk(z) = ea ln(k)(1+z).

Пусть h(z) - ветвь, которая соответствует значению k = 0, т. е. выделяется условием
h(0) = 1. Тогда все остальные ветви будут отличаться лишь множителем

hk(z) = eia2πkh(z)

k = 0,±1,±2, . . .. Найдем разложение в ряд Тейлора ветви h(z). Для вычисления
коэффициентов ряда Тейлора воспользуемся равенствами

h′(z) = a

1 + z
h(z), h′′(z) = a(a − 1)

(1 + z)2
h(z), . . . ,

h(n)(z) = a(a − 1) . . . (a − n + 1)
(1 + z)n

h(z), . . .

и условием h(0) = 1. Таким образом,

h(z) =
∞
∑
n=0

Cn
a z

n, где Cn
a =

a(a − 1) . . . (a − n + 1)
n!

(C0
a = 1) .

Далее, в области C/[−1,1] многозначная функция ln 1−z
1+z имеет регулярные ветви.

Действительно, функция f(z) = (1 − z)/(1 + z) в этой области в нуль не обращается.
Кроме того, для любой замкнутой кусочно-гладкой кривой γ ⊂ C/[−1,1] имеем

J(f(γ),0) = 1

2πi ∫
γ

f ′(z)
f(z)

dz = 1

2πi ∫
γ

2dz

z2 − 1

= 1

2πi ∫
γ

dz

z − 1
− 1

2πi ∫
γ

dz

z + 1
= J(γ,1) − J(γ,−1).

Поскольку точки z = 1 и z = −1 расположены в одной и той же компоненте связности
множества C/γ, то J(γ,−1) = J(γ,1) и условия теоремы 10.1 выполнены. Следовательно,
в C/[−1,1] выделяются ветви функции ln 1−z

1+z . Но тогда во внешности единичного круга
(как в кольцевой области) каждая ветвь должна иметь разложение в ряд Лорана.

Пусть g(z) - некоторая ветвь многозначной функции ln 1−z
1+z . Тогда
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g′(z) = 2

z2 − 1
= 2

∞
∑
n=1

1

z2n

и ряд в правой части этого равенства сходится во внешности единичного круга. Сумма
почленно проинтегрированного ряда

S(z) = −2
∞
∑
n=1

1

(2n − 1)z2n−1

представляет собой голоморфную во внешности единичного круга функцию. При этом
(g(z) − S(z))′ ≡ 0 и, следовательно, g(z) − S(z) ≡ const. Заметим теперь что (1 − z)/(1 +
z) → −1 при z → ∞, т. е. ветви функции ln 1−z

1+z имеют в бесконечно удаленной точке
устранимую особенность, а их пределы принадлежат множеству Ln{−1}, т. е. имеют вид
i(π + 2kπ), k ∈ Z. С другой стороны, S(z) → 0 при z → ∞. В результате приходим к
разложению в ряд Лорана ветвей ln 1−z

1+z :

ln(k)
1 − z
1 + z

= i(2k + 1)π −
∞
∑
n=1

2

2n − 1
z−(2n−1), k ∈ Z.

Для натурального n ⩾ 2 рассмотрим в C/[−1,0] многозначную функцию

n
√
zn−1(z + 1)

Как и в примере 1 устанавливается существование регулярных ветвей этой функции.
Найдем разложение в ряд Лорана ветви, которая принимает положительные значения при
z = x > 1. Замечая, что

n
√
zn−1(z + 1) = z (1 + 1

z
)
1/n

где в качестве (1 + 1
z
)1/n рассматривается регулярная ветвь во внешности единичного

круга, принимающая положительные значения при z = x > 1, и используя разложение
(1 + z)a в единичном круге, получаем

n
√
zn−1(z + 1) = z

∞
∑
m=0

Cm
1/n

1

zm
=
∞
∑
m=0

Cm
1/n

1

zm−1

Для других ветвей разложение имеет вид

( n
√
zn−1(z + 1))

(k)
= ei2kπ/n

∞
∑
m=0

Cm
1/nz

−(m−1), k = 0,1, . . . , n − 1

Пример 2.

Вычислить интеграл

I =
2

∫
0

dx
3
√
x2(2 − x)

Как и в примере 1 устанавливается существование регулярных ветвей многозначной
функции 3

√
z2(2 − z) в области C/[0,2]. Фиксируем R > 2 и определим ветвь по формуле

g(z) = ∣z2(2 − z)∣1/3 exp{ i
3
(π +∆γz arg ζ

2(2 − ζ))}
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где π - одно из значений arg (R2(2 −R)) = arg(−1) а γz - кусочно-гладкая кривая,
соединяющая R с точкой z внутри области C/[0,2]. Для малого ε > 0 рассмотрим
отрицательно ориентированные окружности Cε

1 и Cε
2 радиуса ε с центрами в точках z = 0

и z = 2, соответственно, отрезок λ+ε = [ε,2 − ε] и такой же отрезок λ−ε с противоположной
ориентацией. Тогда λ+ε + Cε

2 + λ−ε + Cε
1 можно рассматривать как положительно

ориентированную границу ∂Dε внешней области Dε.

Рис. 3. К примеру 2 Поскольку в Dε нет особых точек функции 1/g(z), то по теореме
о вычетах

∫
∂Dε

dz

g(z)
= 2πi res 1

g(z)

Для вычисления вычета в правой части равенства (10.8) заметим, что функция 1/g(z)
во внешности круга ∣z∣ > 2 совпадает с одной из ветвей многозначной функции

e−iπ/3
1

z
(1 − 2

z
)
−1/3

которые имеют следующее разложение в ряд Лорана

e−iπ/3
1

z
(1 − 2

z
)
−1/3

(k)
= e−iπ/31

z
e−i2kπ/3

∞
∑
m=0

Cm
−1/3
(−2)m
zm

= e−i(2k+1)π/3
∞
∑
m=0

Cm
−1/3
(−2)m
zm+1

,

k = 0,1,2. Поскольку Cm
−1/3(−2)m > 0 при всех m = 0,1,2, . . ., то сумма ряда

∞
∑
m=0

Cm
−1/3
(−2)m
zm+1

принимает положительное значение при z = R. С другой стороны, 1/g(R) имеет
аргумент −π/3. Следовательно, во внешности круга ∣z∣ > 2 имеет место разложение

1

g(z)
= e−iπ/3

∞
∑
m=0

Cm
−1/3
(−2)m
zm+1

Отсюда находим

resz=∞
1

g(z)
= −c−1 = −e−iπ/3

Для вычисления интеграла в левой части равенства (10.8) нужно выяснить, какие
значения принимает функция g на λ+ε - верхней стороне отрезка [ε,2 − ε] и на его нижней
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стороне λ−ε . Пусть γ+x - дуга, соединяющая точки R и x ∈ λ+ε , a γ−x - дуга, соединяющая R
и x ∈ λ−ε . Соответствующие значения функции g будем обозначать g(x + i0) и g(x − i0),
соответственно. Замечая, что

∆γ+x arg z
2(2 − z) = 2∆γ+x arg z +∆γ+x arg(z − 2) = π, ∆γ−x arg z

2(2 − z) = −π,

получаем

g(x + i0) = 3
√
x2(2 − x)ei2π/3, g(x − i0) = 3

√
x2(2 − x)

Следовательно,

∫
λ+ε

dz

g(z)
= e−i2π/3

2−ε

∫
ε

dx
3
√
x2(2 − x)

, ∫
λ−ε

dz

g(z)
= −

2−ε

∫
ε

dx
3
√
x2(2 − x)

Далее,

RRRRRRRRRRRRRR
∫
Cε

1

dz

g(z)

RRRRRRRRRRRRRR
⩽ ∫
Cε

1

∣dz∣
∣z2(2 − z)∣1/3

⩽ 2πε

ε2/3(2 − ε)1/3
→ 0,

RRRRRRRRRRRRRR
∫
Cε

2

dz

g(z)

RRRRRRRRRRRRRR
⩽ 2πε

(2 − ε)2/3ε1/3
→ 0

при ε→ 0. Таким образом

lim
ε→0
∫
∂Dε

dz

g(z)
= (e−i2π/3 − 1) I

и равенство (10.8) в пределе при ε→ 0 принимает вид

(e−i2π/3 − 1) I = −2πie−iπ/3.

В результате получаем

I = 2πie−iπ/3

1 − e−i2π/3
= 2πi

eiπ/3 − e−iπ/3
= π

sin π
3

= 2π√
3

3.1.13 Argument Principle and Mapping Properties of Holomorphic
Functions

Пусть функция f голоморфна в области D, за исключением изолированных особых
точек, которые являются ее полюсами. Если K - компактное подмножество области D,
то на K может быть лишь конечное число полюсов. B противном случае нашлась бы
предельная точка полюсов на K, что противоречило бы условию наличия лишь
изолированных особых точек. Как было показано ранее, каждый полюс имеет конечную
кратность. Пусть b1, . . . , bm - полюсы функции f , попадающие на K, а q1, . . . , qm - их
кратности. Тогда P = q1 + . . . + qm называется числом полюсов функции f на множестве
K с учетом иx кратности. Если f(z)�≡0, то ее нули также будут изолированными и иметь
конечную кратность. Следовательно, на K будет расположено лишь конечное их число.
Пусть a1, . . . , an - нули функции f , попадающие на K, а s1, . . . , sn - их кратности. Тогда
N = s1 + . . . + sn называется числом нулец функции f на множестве K с учетом их
кратности.
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Theorem

11.1. [Принцип аргумента.] ПустьD-область, ограниченная циклом γ, uf -голоморфная
на D̄ = D ∪ γ (m. е. в некоторой области, содержащей D̄,) функиия, за исключением
изолированных особых точек, которые являются ее полюсами. Допустим также, что нули
и полюсы функции f не попадают на γ. Тогда число N ее нулей и число P ее полюсов в
области D с учетом их кратности удовлетворяют соотношению

N − P = 1

2πi ∫
γ

f ′(z)
f(z)

dz = J(f(γ),0) = 1

2π
∆γ arg f(z).

Proof.

Поскольку замыкание D̄ области D является компактным множеством, то в D
содержится лишь конечное число нулей и полюсов функции f . Пусть a1, . . . , an - ее нули
с кратностями s1, . . . , sn, а b1, . . . , bm - ее полюсы с кратностями q1, . . . , qm, соответственно.
Тогда N = s1 + . . . + sn и P = q1 + . . . + qm. Рассмотрим функцию

g(z) =
n

∏
k=1
(z − ak)−sk

m

∏
k=1
(z − bk)qk f(z)

Очевидно, что изолированные особые точки a1, . . . , an, b1, . . . , bm функции g являются
устранимыми. Следовательно, функция g является голоморфной и не обращается в нуль
на D̄. Из равенства

f(z) = (z − a1)s1 ⋅ . . . ⋅ (z − an)sn (z − b1)−q1 ⋅ . . . ⋅ (z − bm)−qm g(z)

следует, что

f ′(z)
f(z)

=
n

∑
k=1

sk
z − ak

−
m

∑
k=1

qk
z − bk

+ g
′(z)
g(z)

.

Поскольку g(z) ≠ 0 на D̄, то функция g′(z)/g(z) является голоморфной на D̄ и по
теореме Коши

∫
γ

g′(z)
g(z)

dz = 0

Таким образом,

1

2πi ∫
γ

f ′(z)
f(z)

dz =
n

∑
k=1

skJ (γ, ak) −
m

∑
k=1

qkJ (γ, bk) = N − P

и
теорема доказана.
На практике принцип аргумента чаще всего применяется через следующий результат.
TеоремA 11.2. [Руш.] Пусть D-область, ограниченная ииклом γ, a f и φ-голоморфные

на D̄ =D ∪ γ функиии, удовлетворяющие условию ∣φ(z)∣ < ∣f(z)∣ при z ∈ γ. Тогда f и f +φ
иметт в D одинаковое число нулей учетом их кратности.

Proof.
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По условию теоремы f(z) ≠ 0 и f(z) + φ(z) ≠ 0 при z ∈ γ. Следовательно, функция

F (z) = f(z) + φ(z)
f(z)

является голоморфной на D̄, за исключением, быть может, конечного числа полюсов,
расположенных в D. Кроме того, F не обращается в нуль на γ. В действительности,
полюсами функции F могут быть лишь нули функции f . Пусть N1 - общее число нулей
функции f , а N2 - общее число нулей функции f +φ, в области D с учетом их кратности.
Если N -общее число нулей, а P - общее число полюсов, функции F в области D с учетом
их кратности, то N − P = N2 −N1 и по принципу аргумента

N2 −N1 = J(F (γ),0)

Однако, из равенства F (z) = 1 + φ(z)/f(z) и условия ∣φ(z)/f(z)∣ < 1 при z ∈ γ видно,
что F (γ) расположена в круге ∣w − 1∣ < 1. Следовательно, точка w = 0 расположена во
внешней компоненте связности множества C/F (γ) и J(F (γ),0) = 0. Это влечет равенство
N1 = N2.

Theorem

11.3. [Основная теорема алгебры.] Каждый многочлен n-той степени P (z) = zn +
cn−1zn−1 + . . . + c0 имеет в комплексной плоскости C ровно п нулей с учетом их кратности.

Proof.

Пусть f(z) = zn и φ(z) = cn−1zn−1 + . . . + c0. Тогда

∣φ(z)
f(z)

∣ = 1

∣z∣
∣cn−1 +

cn−2
z
+ . . . + c0

zn−1
∣ → 0

при z → ∞. Поэтому найдется такое R > 0, что ∣φ(z)/f(z)∣ < 1 при ∣z∣ ⩾ R.
Следовательно, на окружности ΓR ∶ z = Reiθ,0 ⩽ θ ⩽ 2π, для функций f и φ выполняются
условия теоремы Руше и функции f(z) = zn и f(z) + φ(z) = P (z) будут иметь в круге
∣z∣ < R одинаковое число нулей с учетом их кратности. Однако z = 0 является нулем
кратности n для f(z) = zn. Вне этого круга полином P в нуль не обращается, поскольку
∣φ(z)∣ < ∣f(z)∣ при ∣z∣ ⩾ R.

Следующий результат является усилением теоремы об обратном отображении.

Theorem

11.4. [O локальной структуре отображения.] Пусть f голоморфна в области D и
f (z0) = w0, z0 ∈D. Допустим также, что функция f(z) −w0 имеет в точке z0 нуль порядка
n, m. e. f ′ (z0) = . . . = f (n−1) (z0) = 0u f (n) (z0) ≠ 0. Тогда найдутся такие окрестности
Or (z0) ⊂ D,r > 0, u Oϱ (w0), ϱ > 0, что для любого w∗ ∈ Ȯϱ (w0) уравнение f(z) = w∗ имеет
в Or (z0) ровно п различных корней.

Proof.

Поскольку f (n) (z0) ≠ 0, то f(z)�≡ const. В силу изолированности нулей непостоянной
голоморфной функции найдется окрестность Or (z0), которая содержится в D вместе
со своим замыканием и такая, что функции f(z) − w0 и f ′(z) не обращаются в нуль в
Or (z0)/ {z0}. Пусть γ = ∂Or (z0) - положительно ориентированная граница круга Or (z0)
и Γ = f(γ) - ее образ при отображении посредством f . Замечая, что Γ не проходит через
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точку w0, выберем число ϱ > 0 меньше, чем расстояние от w0 до Γ. Фиксируем произвольно
w∗ из Ȯϱ (w0). Из условия выбора ϱ следует, что

∣w0 −w∗∣ < ∣f(z) −w0∣

для всех z ∈ γ. Но тогда по теореме Руше функции

f(z) −w0 и f(z) −w∗ = (f(z) −w0) + (w0 −w∗)

имеют в Or (z0) одинаковое число нулей с учетом их кратности. Однако, f(z) - w0

имеет в Or (z0) один нуль z = z0 порядка n. Поскольку f ′(z) ≠ 0 при z ∈ Ȯr (z0), то все нули
функции f(z) − w∗ в окрестности Or (z0) являются простыми. Таким образом, в Or (z0)
содержится ровно n точек z1, . . . , zn, которые являются решениями уравнения f(z) = w∗.

Напомним, что голоморфная в области D функция f называется однолистной в этой
области, если f (z1) ≠ f (z2) при z1 ≠ z2 для любой пары точек z1, z2 из D. Функция f
называется локально однолистной в D, если для каждой точки z0 ∈ D найдется
окрестность Or (z0), в которой f однолистна.

Замечание

11.1. Из теоремы о локальной структуре отображения следует, что необходимым
и достаточным условием локальной однолистности функции f в области D является
необращение в нуль производной, т. е. условие f ′(z) ≠ 0 в D. Достаточность этого
условия была доказана ранее, как следствие теоремы об обратном отображении.

Theorem

11.5. [Принцип открытости или сохранения области.] Непостоянная голоморфная
функиия f переводит открытые множества в открытые, а область - в область.

Proof.

Пусть f голоморфна в области D и f(D) = G. Если w0 ∈ G, то в D найдется такое z0,
что f (z0) = w0. Поскольку f(z)�≡ const, то найдется такое натуральное n, что f (n) (z0) ≠ 0.
Но тогда по теореме 11.4 найдутся окрестности Or (z0) и Oϱ (w0) такие, что Oϱ (w0) ⊂
f (Or (z0)) ⊂ G. Следовательно, G - открытое множество. Связность множества G следует
из того, что при непрерывных отображениях связные множества переходят в связные.

Theorem

11.6. [Принцип максимума модуяя.] Пусть f -непостоянная голоморфная в области D
функция. Тогда максимум модуля ∣f(z)∣ а также максимумы и минимумы вещественной
Re f(z) и мнимой Im f(z) частей функции f не могут достигаться во внутренних точках
области D.

Proof.

Допустим, что в точке z0 ∈ D достигается максимум модуля функции f , т. е. ∣f(z)∣ ⩽
∣f (z0)∣ для всех z ∈D. Тогда G = f(D) должна содержаться в круге ∣w∣ ⩽ ∣f (z0)∣. С другой
стороны, точка w0 = f (z0) лежит на границе этого круга, а по теореме 11.5G является
открытым множеством и, следовательно, найдется такое ϱ > 0, что Oϱ (w0) ⊂ G. Однако
в Oϱ (w0) найдется точка w1, для которой ∣w1∣ > ∣w0∣, а в области D найдется точка z1,
для которой f (z1) = w1, т. е. ∣f (z1)∣ > ∣f (z0)∣. Получили противоречие предположению
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о максимальности ∣f (z0)∣. Аналогично устанавливаются утверждения о максимуме и
минимуме вещественной и мнимой частей функции f .

Принцип максимума модуля имеет многочисленные приложения в анализе.
Например, решение задачи о том, в какой точке квадрата достигается максимум
произведения четырех расстояний от точки до вершин квадрата, существенно
упрощается с применением принципа максимума модуля голоморфной функции.
Следующая теорема также является следствием этого принципа.

Theorem

11.7. [Лемма Шварца.] Пусть голоморфная в единичном круге D = {z ∈ C ∶ ∣z∣ < 1}
функция f удовлетворяет условиям: f(0) = 0u∣f(z)∣ ⩽ 1 при z ∈ D. Тогда для всех z ∈ D
выполняется неравенство

∣f(z)∣ ⩽ ∣z∣

u, кроме того

∣f ′(0)∣ ⩽ 1

При этом знак равенства в (11.2) при ≠≠ 0 или в (11.3) достигается лишь в случае
f(z) = eiθz, гдe θ ∈ R.

Proof.

В силу сделанных в условии теоремы предположений функция φ(z) = f(z)/z
голоморфна в D/{0} и в точке z = 0 имеет устранимую особенность. Полагая
φ(0) = f ′(0), получаем голоморфную в D функцию φ. При этом для каждого r ∈ (0,1) в
силу принципа максимума модуля имеем

max
∣z∣⩽r
∣φ(z)∣ =max

∣z∣=r
∣φ(z)∣ = 1

r
max
∣z∣=r
∣f(z)∣ ⩽ 1

r
.

Таким образом, если z ∈ D фиксировано, то для r ∈ (∣z∣,1) будет выполняться
неравенство ∣φ(z)∣ ⩽ 1/r. Осуществляя в этом неравенстве предельный переход при r → 1,
получаем ∣φ(z)∣ ⩽ 1. Это эквивалентно неравенству ∣f(z)∣ ⩽ ∣z∣. Кроме того,
∣φ(0)∣ = ∣f ′(0)∣ ⩽ 1.

Допустим теперь, что для z0 ≠ 0 из D выполняется равенство ∣f (z0)∣ = ∣z0∣. Это означало
бы, что ∣φ (z0)∣ = 1. Но тогда в силу принципа максимума модуля φ(z) ≡ eiθ, θ ∈ R, или, что
эквивалентно, f(z) ≡ eiθz. В случае равенства в (11.3) выполнялось бы равенство ∣φ(0)∣ = 1
и мы снова приходим к виду функции f(z) ≡ eiθz.

Конформность

Рассмотрим голоморфную в области D функцию f . Допустим, что в точке z0 ∈ D не
обращается в нуль производная f ′ (z0) ≠ 0. Тогда, как следует из теоремы о локальной
структуре отображения, найдется окрестность Or (z0), в которой f однолистна. Пусть
γ ∶ z = z(t), α ⩽ t ⩽ β, - гладкий путь (т. е. z′(t) ≠ 0) в Or (z0), проходящий через точку
z0, т. е. z (t0) = z0 при некотором t0 ∈ (α,β). Его образ Γ ∶ w = f(z(t)), α ⩽ t ⩽ β, при
отображении w = f(z) также является гладким путем, проходящим через точку w0 = f (z0).
Действительно, w′(t) = f ′(z(t))z′(t) ≠ 0 при t ∈ (α,β). В частности,

w′ (t0) = f ′ (z0) z′ (t0)
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3.1.13 Argument Principle and Mapping Properties of Holomorphic Functions

Исследуем значение этого равенства.
Вначале заметим, что ∆w = w(t) − w (t0) - секущая для кривой Γ, проходящая через

точку w0, а ∆z = z(t) − z (t0) - соответствующая секущая для кривой γ, проходящая через
точку z0. При этом ∆w = f ′ (z0)∆z + o(∣∆z∣) и

lim
∆z→0

∣∆w∣
∣∆z∣

= ∣f ′ (z0)∣

Геометрически это означает, что ∣f ′ (z0)∣ является коэффициентом искажения длины в
точке z0 при отображении f . Причем он не зависит от направления пути, проходящего
через точку z0, т. е. все пути в точке z0 имеют один и тот же коэффициент искажения
длины. Образно это можно сформулировать как то, что бесконечно малая окружность
с центром в точке z0 переходит в бесконечно малую" окружность с центром в точке
w0 = f (z0). Таким образом, геометрический смысл модуля производной в точке - это
коэффициент искажения длин в этой точке. Ранее мы видели, что ∣f ′ (z0)∣2 является
якобианом отображения w = f(z), т. е. коэффициентом искажения площади.

Поскольку касательная к гладкой кривой является предельным положением секущей,
то arg z′ (t0) выражает угол, который образует касательная к кривой γ в точке z0 с
положительным направлением вещественной оси. Аналогичное значение имеет argw′ (t0)
в w-плоскости. При соответствующем выборе ветви аргумента из равенства (11.4)
получаем

argw′ (t0) = arg f ′ (z0) + arg z′ (t0)

Таким образом, геометрический смысл arg f ′ (z0) - это угол поворота направления
направления касательной к гладкой кривой γ в точке z0 при отображении посредством
f . Этот угол не зависит от выбора кривой γ, проходящей через точку z0. Поэтому, если
γ и γ∗ - две кривые, проходящие через точку z0 и пересекающиеся в этой точке под углом
α, то их образы Γ = f(γ) и Γ∗ = f (γ∗) будут пересекаться в точке w0 под тем же углом α.
Это свойство называют консерватизмом углов или конформностью отображения w = f(z)
в точке z0.

Theorem

11.8. Пусть w = f(z) определена в области D и непрерывно дифферениируема в
вещественном смысле. Тогда f является конформным в точке z0 ∈ D в том и только
том случае, если она дифферениируема в комплексном смысле в этой точке и f ′ (z0) ≠ 0.

Proof.

Условие непрерывной дифференцируемости в вещественном смысле отображения w =
f(z) означает, что координатные функции u(x, y) и v(x, y), где z = x+ iy,w = u+ iv, имеют
непрерывные частные производные. То, что из дифференцируемости f в комплексном
смысле и условия f ′ (z0) ≠ 0 следует конформность (консерватизм углов) в точке z0 было
показано выше. Допустим теперь, что отображение f конформно в точке z0. Если γ ∶ z =
z(t), α ⩽ t ⩽ β, - гладкий путь, проходящий через точку z0, т. е. z (t0) = z0, t0 ∈ (α,β), то
производную от функции w = f(z(t)) можно записать в виде

w′ (t0) =
∂f

∂x
(z0)x′ (t0) +

∂f

∂y
(z0) y′ (t0)

где
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∂f

∂x
= ∂u
∂x
+ i∂v
∂x
,

∂f

∂y
= ∂u
∂y
+ i∂v
∂y

Выражая x′(t) и y′(t) через z′(t) = x′(t)+iy′(t), равенство для w′ (t0) можно переписать
в виде

w′ (t0) =
1

2
(∂f
∂x
− i∂f
∂y
) z′ (t0) +

1

2
(∂f
∂x
+ i∂f
∂y
) z′ (t0).

Поскольку путь γ гладкий, то z′ (t0) ≠ 0 и из последнего равенства получаем

w′ (t0)
z′ (t0)

= 1

2
(∂f
∂x
− i∂f
∂y
) + 1

2
(∂f
∂x
+ i∂f
∂y
) z
′ (t0)
z′ (t0)

Конформность в точке z0 отображения w = f(z) означает, что arg {w′ (t0) /z′ (t0)} не
зависит от arg z′ (t0). С другой стороны, выражение z′ (t0)/z′ (t0) принимает все значения
eiθ,0 ⩽ θ ⩽ 2π, когда меняется направление касательной z′ (t0) к кривой γ в точке z0
(при повороте γ в точке z0). Поэтому из равенства (11.5) видно, что конформность
отображения w = f(z) в точке z0 возможна лишь в случае выполнения равенства

∂f

∂x
+ i∂f
∂y
= 0

которое эквивалентно условиям Коши-Римана. Кроме того, поскольку гладкие кривые
преобразуются при отображении w = f(z) в гладкие кривые, то выполняется условие
f ′ (z0) ≠ 0.

Замечание

11.2. Из равенства (11.5) также следует, что условие независимости коэффициента
искажения длины ∣w′ (t0) /z′ (t0)∣ от направления пути γ влечет одно из соотношений

∂f

∂x
+ i∂f
∂y
= 0 или

∂f

∂x
− i∂f
∂y
= 0.

Первое из них, как было отмечено выше, эквивалентно условиям Коши- Римана.
Второе соотношение выражает тот факт, что функция f(z) является дифференцируемой
в комплексном смысле в точке z0.

Конформность в расширенной комплексной плоскости.

При рассмотрении конформных отображений f областей в расширенной комплексной
плоскости C нужно распространить понятие конформности на случаи, когда область
определения или область значений (или обе) отображения f содержат бесконечно
удаленную точку.

Допустим вначале, что конечная точка a отображается посредством голоморфной
функции f в бесконечно удаленную точку, т. е. f(z) → ∞ при z → a. Это означает, что
z = a является полюсом для функции f . Функция g(z) = 1/f(z) будет иметь точку z = a в
качестве устранимой особой точки. Кроме того, полагая g(a) = 0, получаем голоморфную
в окрестности точки a функцию g. Конформность отображения g (а, следовательно, и f)
в точке a эквивалентна условию g′(a) ≠ 0. Это означает, что функция f должна иметь в
точке z = a простой полюс. Таким образом, функция f будет однолистной и конформной
в некоторой окрестности полюса a в том и только том случае, когда этот полюс nростой.
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Рассмотрим теперь случай, когда f голоморфна в окрестности бесконечно удаленной
точки. Обсуждать вопрос конформности f в точке z = ∞ имеет смысл лишь при условии
существования предела (конечного или бесконечного) функции f(z) при z →∞. Допустим
вначале, что этот предел конечный, т. е. f(z) → w0 при z →∞ и w0 ∈ C. Другими словами,
точка z = ∞ является устранимой особой точкой для функции f . Тогда функция g(ζ) =
f(1/ζ) также будет иметь в точке ζ = 0 устранимую особенность. Полагая g(0) = w0, мы
получаем голоморфную в окрестности точки ζ = 0 функцию g. Конформность функции
g в точке ζ = 0 эквивалентна условию g′(0) ≠ 0. Перепишем это условие на функцию f .
Поскольку

g′(0) = lim
ζ→0

g(ζ) −w0

ζ
= lim
z→∞

z (f(z) −w0) = − resz=∞ f(z)

то приходим к выводу: если z = ∞ является устранимой особой точкой для функции
f , то отображение w = f(z) будет однолистным и конформным некоторой окрестности
бесконечно удаленной точки в том и только том случае, если res

z=∞
f(z) ≠ 0.

Рассмотрим, наконец, случай f(z) → ∞ при z →∞, т, е. когда z = ∞ является полюсом
для функции f . В этом случае свойство конформности переносится на функцию g(ζ) =
1/f(1/ζ) в точке ζ = 0. Условие g′(0) ≠ 0 в терминах функции f принимает вид

g′(0) = lim
ζ→0

g(ζ)
ζ
= lim
z→∞

z

f(z)
≠ 0.

Это означает, что z = ∞ является простым полюсом для функции f .

3.1.14 Locally Uniform Convergence

(???? is it really useful???)

Определение и свойства локально равномерной сходимости.

Среди различных видов сходимости последовательностей функций в теории
аналитических функций исключительно важную роль играет так называемая локально
равномерная сходимость.

Опр.

12.1. Будем говорить, что последовательность определенных в области D функций
fn, n = 1,2, . . ., сходится локалвно равномерно вD к функции f , если для каждой точки z0 ∈
D найдется такая ее окрестность Or (z0) , r > 0, что Or (z0) ⊂D и fn(z) → f(z) равномерно
в Or (z0) при n→∞.

Замечание

12.1. Приведенное

Опр.

можно дать в другой эквивалентной формулировке. Последовательность {fn} сходится
локально равномерно в областиD к функции f в том и только том случае, если для любого
компактного подмножества K ⊂ D последовательность {fn} сходится равномерно на K к
функции f .
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Proof.

Действительно, если fn → f локально равномерно в D в смысле определения 12.1 и
K - компактное подмножество области D, то для любой точки z0 ∈ K найдется r0 > 0
такое, что Or0 (z0) ⊂ D и fn(z) → f(z) равномерно в Or0 (z0) при n → ∞. Поскольку
каждая точка множестваK обладает такой окрестностью, аK - компактное множество, то
можно выбрать конечное число окрестностей Or1 (z1) , . . . ,Orm (zm), которые покрываютK
и в каждой из которых сходимость последовательности {fn} равномерная. Пусть теперь
ε > 0. Для каждой окрестности Ork (zk) , k = 1, . . . ,m, существует номер Nk такой, что
∣f(z) − fn(z)∣ < ε при всех z ∈ Ork (zk) и n ⩾ Nk. Но тогда для n ⩾ max{N1, . . . ,Nm} и всех
z ∈ K будет выполняться неравенство ∣f(z) − fn(z)∣ < ε. Поскольку ε > 0 выбиралось
произвольно, то это и означает равномерную сходимость последовательности {fn} на
множестве K.

Обратно, если последовательность {fn} сходится равномерно на каждом компактном
подмножестве K ⊂D, то для любой точки z0 ∈D найдется (в силу того, что D - открытое
множество) окрестность Or (z0) ⊂ D. Замкнутый круг {z ∶ ∣z − z0∣ ⩽ r/2} является
компактным подмножеством области D и по предположению fn(z) → f(z) равномерно в
окрестности Or/2 (z0).

Theorem Вейеритрасса о последовательности голоморфных функций

Пусть {fn} - последовательность голоморфных в области D функиий fn(z) → f(z)
локально равномерно в D при n→∞. Тогда имеют место следующие утверждения:

(i) f является голоморфной в D функцией;
(ii) f ′n(z) → f ′(z) локально равномерно в D при n→∞.
Иногда утверждение (i) называют первой теоремой Вейерштрасса, a (ii) - второй

теоремой Вейерштрасса.

Proof. (i) Пусть z0 - произвольная точка области D. Выберем r > 0 так, чтобы замкнутый
круг Or (z0) содержался в области D. Поскольку этот круг является компактным
подмножеством области D, то fn(z) → f(z) равномерно на Or (z0), а предельная
функция f будет непрерывной. Далее, для любой замкнутой кусочно-гладкой кривой
γ ⊂ Or (z0) в силу равномерной сходимости последовательности {fn} на ней будем иметь

lim
n→∞∫

γ

fn(z)dz = ∫
γ

f(z)dz

Однако по теореме Коши интегралы в левой части равенства равны нулю. Это
означает, что для функции f в Or (z0) выполнены условия теоремы Mopepa 5.4 и,
следовательно, f голоморфна в Or (z0). Поскольку z0 была произвольной точкой области
D то голоморфность f в D доказана.

Для доказательства (ii) воспользуемся интегральной формулой Коши для производных
f (n)(z) = n!

2πi ∫
γr

f(ζ)dζ
(ζ−z)n+1 . Снова фиксируем z0 ∈ D и r > 0 такое, что Or (z0) ⊂ D. Если

γr = ∂Or (z0) - положительно ориентированная граница окрестности Or (z0), то для всех
z ∈ Or (z0) будут выполняться равенства

f ′(z) = 1

2πi ∫
γr

f(ζ)
(ζ − z)2

dζ, f ′n(z) =
1

2πi ∫
γr

fn(ζ)
(ζ − z)2

dζ

Но тогда для z ∈ Or/2 (z0) будем иметь
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∣f ′(z) − f ′n(z)∣ =
1

2π

RRRRRRRRRRRRR
∫
γr

f(ζ) − fn(ζ)
(ζ − z)2

dζ

RRRRRRRRRRRRR
⩽ 4

r
max
ζ∈γr
∣f(ζ) − fn(ζ)∣ .

Поскольку правая часть этого неравенства не зависит от z ∈ Or/2 (z0) и стремится к
нулю при n →∞, то f ′n(z) → f ′(z) равномерно в Or/2 (z0). Принимая во внимание то, что
z0 выбиралось произвольно из D, приходим к утверждению (ii).

Ранее мы доказали, что сумма степенного ряда представляет собой голоморфную в
круге сходимости функцию.

Theorem Вейерштрасса позволяет расширить этот результат следующим образом.

Theorem Вейеритрасса для рядов

Пусть ряд
∞
∑
n=1

fn(z), составленный из голоморфных в области D функций fn сходится

локалвно равномерно в D. Тогда его сумма f(z) =
∞
∑
n=1

fn(z) является голоморфной в D

функцией и ряд можно почленно дифференцировать, m. е. f ′(z) =
∞
∑
n=1

f ′n(z)

Theorem Гурвица

Пусть функции fn, n = 1,2, . . ., голоморфны и не обращаются в нуль в области D.
Допустим также, что fn(z) → f(z) локально равномерно в D. Тогда либо f(z) ≡ 0, либо
f(z) ≠ 0 при z ∈D.

(??? so what???)

Proof. Допустим, что f(z)�≡0 и f(a) = 0 в некоторой точке a ∈ D. Тогда в силу
изолированности нулей голоморфной функции найдется такое r > 0, что Or(a) ⊂ D и
f(z) ≠ 0 при z ∈ Ȯr(a). Можно считать, что f не обращается в нуль и на γ = ∂Or(a).
Поскольку γ является компактным множеством, то

min
z∈γ
∣f(z)∣ = δ > 0

В силу локально равномерной сходимости последовательности {fn} найдется номер N
такой, что

∣fn(z) − f(z)∣ < δ/2

при всех n ⩾ N и z ∈ γ. Но тогда по теореме Руше функция fn(z) = f(z)+ (fn(z) − f(z))
будет иметь в Or(a) столько же нулей с учетом их кратности, сколько и функция f(z).
Однако, это противоречит условиям теоремы, согласно которым fn не должна обращаться
в нуль в области D.

СледствиЕ 12.2. Пусть последователъность однолистных и голоморфных в области D
функиий fn, n = 1,2, . . ., сходится локалвно равномерно в Dκ функции f(z)�≡ const. Тогда
f также однолистна в области D.

Proof.
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Допустим, что f (z1) = f (z2) = w0 для некоторых z1, z2 ∈ D и z1 ≠ z2. Выберем r > 0
так, чтобы Or (z1) ⊂ D,Or (z2) ⊂ D и Or (z1)∩ Or (z2) = ∅. Поскольку каждая функция
fn однолистна в D, то fn(z) ≠ w0 хотя бы в одной из окрестностей Or (z1) или Or (z2).
Поэтому можно выбрать подпоследовательность {fnk

} и одну из окрестностей Or (z1) или
Or (z2) так, чтобы все функции подпоследовательности fnk

не принимали значения w0 в
выбранной окрестности, т. е. fnk

(z)−w0 ≠ 0. Но тогда по теореме Гурвица либо f(z) ≡ w0,
либо f(z) ≠ w0 в выбранной окрестности. Первое противоречит условию f(z)�≡ const., а
второе противоречит предположению f(z1) = f(z2) = w0.

12.2. Принцип компактности.

Пусть K - компактное множество в комплексной плоскости C. Через C(K) обозначим
совокупность всех непрерывных комплекснозначных функций, определенных на K. Как
известно из курса математического анализа, всякая непрерывная на компактном
множестве функция является и равномерно непрерывной на этом компактном
множестве. Кроме того предел равномерно сходящейся последовательности функций
представляет собой непрерывную функцию. Для семейств непрерывных функций
возникает еще одно понятие, связанное с непрерывностью.

Опр.

12.2. Пусть F - семейство комплекснозначных функций, определенных на множестве
E ⊂ C. Будем говорить, что это семейство является равностепенно непрерьвным на E,
если для любого ε > 0 найдется такое δ > 0, что ∣f (z′) − f (z′′)∣ < ε для любых z′, z′′ из E,
удовлетворяющих условию ∣z′ − z′′∣ < δ, и всех функций f из семейства F .

Очевидно, что каждая функция f из равностепенно непрерывного семейства F
является равномерно непрерывной на множестве E. Следующий результат составляет
принцип компактности в C(K). В литературе этот результат известен как т. Арцела -
Асколи.

Theorem Арцела - Асколи

12.3.
Пусть K - компактное в C множество и F ⊂ C(K) - семейство, которое равномерно

ограничено и равностепенно непрерывно на K. Тогда из любой последовательности {fn} ⊂
F можно выделить подпоследовательность, которая равномерно сходится на K.

Proof.

В доказательстве выделим три пункта.
● Выбор счетного плотного подмножества в K. Если K является конечным

множеством, то утверждение теоремы тривиально. Поэтому будем считать, что K
бесконечно, и построим счетное плотное в K подмножество. Для каждого k = 1,2, . . .
рассмотрим разбиение комплексной плоскости на квадраты путем проведения
параллельных координатным осям прямых с интервалом в 1/2k. Поскольку K является
ограниченным множеством, то лишь конечное число замкнутых квадратов разбиения
имеют не пустое пересечение с K. B каждом таком квадрате выберем по одной точке и
полученное конечное множество обозначим через Qk. Тогда Q = ∪∞k=1Qk будет счетным
множеством, плотным в K.
● Выделение подпоследовательности функций, сходящейся на счетном подмножестве.

Занумеруем точки множества Q = {q1, q2, . . .} и выделим, используя диагональный метод
Кантора, из {fn} подпоследовательность, сходящуюся в каждой точке множества Q.
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Применяя к ограниченной числовой последовательности {fn (q1)}∞n=1 принцип Больцано -
Вейерштрасса, выделим сходящуюся подпоследовательность {f1,n (q1)}∞n=1. Для
нумерации членов подпоследовательности мы используем двойные индексы (1, n) ∈ N.
Далее, из ограниченной числовой последовательности {f1,n (q2)} выделим сходящуюся
подпоследовательность {f2,n (q2)}. В силу того, что {f2,n} является
подпоследовательностью {f1,n}, то {f2,n (q1)} также является сходящейся
последовательностью. Продолжая процесс выбора подпоследовательностей, мы получим
счетное семейство подпоследовательностей исходной последовательности:

f1,1, f1,2, f1,3, . . .
f2,1, f2,2, f2,3, . . .
f3,1, f3,2, f3,3, . . .
. . . . . . . . . . . .

При этом каждая подпоследовательность {fm,n} сходится на множестве точек q1, . . . , qm
из Q и является подпоследовательностью предыдущей {fm−1,n}.

Таким образом, диагональная последовательность {fn,n} является
подпоследовательностью исходной последовательности {fn} и сходится в каждой точке
множества Q.
● Доказательство равномерной сходимости выделенной подпоследовательности. Для

упрощения обозначений будем писать gn = fn,n, n = 1,2, . . . Фиксируем произвольно ε > 0 и
выберем δ > 0 так, чтобы для всех z′, z′′ из K, для которых ∣z′ − z′′∣ < δ, выполнялось
неравенство ∣f (z′) − f (z′′)∣ < ε/3 при любой f из F . Это можно сделать в силу
равностепенной непрерывности семейства F на K

Из способа построения множества Qk следует, что для любого z ∈ K найдется такое
q ∈ Qk, что ∣z − q∣ <

√
2/2k. Фиксируем k0 так, чтобы выполнялось неравенство δ >

√
2/2k0 .

Далее, поскольку Qk0 является конечным множеством и последовательность {gn} сходится
в каждой точке этого множества, то можно выбрать номер N так, чтобы

∣gn(q) − gm(q)∣ <
ε

3

при всех q ∈ Qk0 и n,m ⩾ N . Но тогда для произвольного z ∈K, выбирая q ∈ Qk0 ∩Oδ(z),
получаем для n,m ⩾ N

∣gn(z) − gm(z)∣ ⩽ ∣gn(z) − gn(q)∣ + ∣gn(q) − gm(q)∣ + ∣gm(q) − gm(z)∣

< ε
3
+ ε
3
+ ε
3
= ε.

Это означает, что для последовательности {gn} выполняются условия критерия Коши
равномерной сходимости на K.

Пусть теперь D - произвольная область в комплексной плоскости C. Через H(D)
будем обозначать совокупность голоморфных в области D функций. Заметим, что H(D)
является линейным пространством.

Опр.

12.3. Семейство F ⊂ H(D) называется локально равномерно ограниченным в D, если
для всякой точки z0 ∈ D найдутся окрестность Or (z0) ⊂ D и число M > 0 такие, что
∣f(z)∣ ⩽M при всех z ∈ Or (z0) и f ∈ F .

Как и в случае определения локально равномерной сходимости приведенное выше опр.
можно переформулировать в терминах компактных множеств. Семейство F является
локально равномерно ограниченным в области D в том и только том случае, если на
любом компактном множестве K ⊂D семейство F является равномерно ограниченным.
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Theorem

12.4. Пусть F ⊂ H(D) - локально равномерно ограниченное в D семейство. Тогда
семейство производных F ′ = {f ′ ∶ f ∈ F} также является локально равномерно
ограниченным в D семейством.

Proof.

Пусть z0 - произвольная точка области D. По условию теоремы найдутся r > 0 и M > 0
такие, что Or (z0) ⊂ D и ∣f(z)∣ ⩽ M для всех z ∈ Or (z0) и f ∈ F . В силу интегральной
формулы Коши для производных имеет место равенство

f ′(z) = 1

2πi ∫
∂Or(z0)

f(ζ)
(ζ − z)2

dζ

для z ∈ Or (z0) и любой f ∈ F . Но тогда в круге Or/2 (z0) будет выполняться неравенство

∣f ′(z)∣ ⩽ 1

2π ∫
∂Or(z0)

∣f(ζ)∣
∣ζ − z∣2

∣dζ ∣ ⩽ 4M

r
,

т. е. семейство F ′ равномерно ограничено в Or/2 (z0). Поскольку z0 выбиралась
произвольным образом, то

теорема доказана.

Theorem

12.5. Пусть F ⊂ H(D) - локально равномерно ограниченное в D семейство. Тогда на
любом компактном множествеK ⊂D это семейство является равностепенно непрерывным.

Proof.

Пусть K - компактное подмножество в области D. Поскольку расстояние
d = dist(K,∂D) от множества K до границы области D положительно, то можно выбрать
r ∈ (0, d). Множество

Kr = {z ∶ dist(z,K) ⩽ r}

также будет компактным подмножеством области D, и по предыдущей теореме
найдется такое M > 0, что

∣f ′(z)∣ ⩽M при всех z ∈Kr и f ∈ F .

Пусть теперь ε > 0 фиксировано произвольным образом. Выберем δ < min{r, ε/M}.
Тогда для любых z′, z′′ из K, удовлетворяющих условию ∣z′ − z′′∣ < δ будем иметь [z′, z′′] ⊂
Kr и

∣f (z′) − f (z′′)∣ =
RRRRRRRRRRRRRR
∫

[z′,z′′]

f ′(z)dz
RRRRRRRRRRRRRR
⩽M ∣z′ − z′′∣ <Mδ ⩽ ε,

что и доказывает теорему.

108



3.1.15 Analytic Continuation

Theorem

12.6. Пусть F ⊂ H(D) - локально равномерно ограниченное в D семейство. Тогда
из всякой последовательности {fn} ⊂ F можно выделить подпоследовательность {fnk

},
сходящуюся локально равномерно в D.

Proof.

Пусть K1 ⊂ K2 ⊂ . . . - компактное исчерпание области D, т. е. Kj - компактные
подмножества области D и ∪∞j=1Kj =D. Такую последовательность компактных множеств
можно построить, например, следующим образом. Выберем R > 0 и натуральное N так,
чтобы множество

{z ∈D ∶ dist(z, ∂D) ⩾ 1/N, ∣z∣ ⩽ R}

было не пусто. Тогда в качестве компактного исчерпания можно взять
последовательность множеств

Kj = {z ∈D ∶ dist(z, ∂D) ⩾
1

N + j
, ∣z∣ ⩽ R + j} ,

j = 1,2, . . .
В силу предыдущей теоремы семейство F удовлетворяет на каждом компакте Kj

условиям теоремы 12.3, т. е. оно на каждом Kj равномерно ограничено и равностепенно
непрерывно. Применяя, как и при доказательстве теоремы Арцела - Асколи,
диагональный метод Кантора, получаем подпоследовательность fnk

, которая сходится
равномерно на каждом компакте Kj, j = 1,2, . . ..

Пусть теперь K - произвольное компактное подмножество области D. Из построения
последовательности {Kj} следует, что найдется такой номер j0, что K ⊂ Kj0 . Поэтому
выделенная подпоследовательность {fnk

} сходится равномерно на K. Это и означает, что
{fnk
} сходится локально равномерно в области D.

3.1.15 Analytic Continuation

Согласно теореме единственности голоморфная функция однозначно определяется ее
значениями в сколь угодно малой окрестности какой-либо одной точки. Во времена
Ньютона считалось, что все функции только такие, а трудности видели лишь в
вычислении значений там, где исходная формула ее не определяла, т. е. в
аналитическом продолжении. Основная логическая трудность, связанная с
аналитическим продолжением, состоит в его неоднозначности.

До этого момента мы под функцией понимали классическое понятие, когда каждой
точке области определения ставилось в соответствие только одно комплексное число. С
другой стороны, при изучении логарифма и корней мы сталкивались с трудностью их
определения, но преодолевали эту трудность выделением ветвей. В этом параграфе мы
рассмотрим другую концепцию, которая расширяет понятие функции и также направлена
на преодоление трудностей, связанных с многозначностью логарифма и корней.

Степенные ряды.

Вейерштрасс в построении теории аналитических функций систематически
использовал степенные ряды. Степенной ряд

∞
∑
n=0

cn (z − z0)n определяет голоморфную

функцию f в некотором круге OR0 (z0), радиус которого можно вычислить по
коэффициентам ряда посредством формулы (3.2) Коши-Адамара. Пусть z1 ∈ OR0 (z0) и

109



3.1.15 Analytic Continuation

∞
∑
n=0

bn (z − z1)n - разложение в ряд Тейлора этой же функции f . Радиус сходимости R1

этого ряда не меньше расстояния от z1 до границы круга OR0 (z0), но может оказаться
больше. Во втором случае сумма ряда

∞
∑
n=0

bn (z − z1)n представляет собой голоморфную

функцию f1 в OR1 (z1), которая совпадает с f на пересечении кругов OR0 (z0) ∩ OR1 (z1).
Таким образом мы получаем аналитическое продолжение функции f на
OR0 (z0) ∪ OR1 (z1). Идея Вейерштрасса заключалась в повторении такого процесса
продолжения функции и под аналитической функцией он понимал совокупность всех
продолжений начальной функции f . Степенные ряды из этой совокупности всех
продолжений рассматривались как различные формы одной и той же функции.

Theorem

3.1 дает радиус сходимости степенного ряда, но не дает никакой информации о его
сходимости в граничных точках круга сходимости. Можно было бы предположить, что
сходимость ряда в граничной точке как то связана с возможностью аналитического
продолжения его суммы через эту точку за пределы круга сходимости. Однако это не
так, в чем можно убедиться, рассмотрев следующие два примера.

Функция f(z) = 1/(1 − z) голоморфна в C/{1}, но в единичном круге представляет
собой сумму степенного ряда

∞
∑
n=0

zn, который расходится в каждой точке единичной

окружности. С другой стороны, сумма g(z) степенного ряда
∞
∑
n=1

zn/n2 не может быть

продолжена аналитически из единичного круга в область, содержащую точку z = 1,
поскольку

g′′(z) =
∞
∑
n=0

n + 1
n + 2

zn

стремится к ∞, когда z → 1 вдоль вещественного радиуса.

Опр.

14.1. Пусть S(z) - сумма степенного ряда

∞
∑
n=0

cnz
n

с положительным радиусом сходимости R. Будем говорить, что точка z0 на
окружности ∣z∣ = R является регулярной точкой степенного ряда (14.1), если S(z)
аналитически продолжается в некоторую окрестность этой точки. В противном случае
будем называть z0 особой точкой степенного ряда (14.1).

Следующий результат известен как

Theorem

Коши- Адамара.

Theorem

14.1. Пусть степенной ряд (14.1) имеет положителъный радиус сходимости R. Тогда
на окружности ∣z∣ = R имеется хотя бы одна особая mочкa.

110



3.1.15 Analytic Continuation

Proof.

Допустим противное, т. е. для каждой точки ζ ∈ γR, γR = ∂OR(0), найдется круг Uζ
с центром в точке ζ и радиусом Rζ > 0 такой, что сумма S(z) ряда (14.1) аналитически
продолжается в Uζ ∪ OR(0). Поскольку семейство кругов Uζ , ζ ∈ γR, образует открытое
покрытие компактного множества γR, то из него в силу леммы Гейне- Бореля можно
выделить конечное подпокрытие Uζ1 , . . . , Uζn . Но тогда S(z) аналитически продолжается
в область

D = OR(0)⋃(
n

⋃
k=1

Uζk) .

Это продолжение корректно определено, поскольку в случае Uζk ∩Uζl ≠ ∅ также имеем

Uζk ∩Uζl ∩OR(0) ≠ ∅
и в последнем пересечении трех кругов продолжения в Uζk и Uζl совпадают с S(z), а

по теореме единственности они совпадают и во всей области определения. В результате
мы получаем, что S(z) является голоморфной функцией в области D, которая содержит
круг большего радиуса, чем R. Но это противоречит тому, что R - радиус сходимости
степенного ряда (14.1) и

теорема доказана.

Опр.

14.2. Если ряд (14.1) имеет положительный радиус сходимости R и каждая точка
окружности ∣z∣ = R является особой, то эта окружность называется естественной гранищей
суммы ряда S(z).

Примерами степенных рядов, для которых граница круга сходимости является
естественной границей, могут служить ряды

∞
∑
n=0

zn!,
∞
∑
n=0

z2
n

.

В обоих примерах все точки единичной окружности являются особыми для их суммы.

Аналитическое продолжение вдоль пути.

Уточним вначале терминологию.

Опр.

14.3. Функционалъным элементом или, короче, элементом будем называть пару (f,U)
где U - некоторый круг, а f - голоморфная в U функция.

Два элемента (f,U) и (g, V ) являются непосредственным аналитическим
продолжением друг друга, если U ∩ V ≠ ∅ и f(z) = g(z) при z ∈ U ∩ V . Вместе f и g
определяют голоморфную функцию в объединении кругов U ∪ V . Поэтому также
говорят, что g является аналитическим продолжением функции f в круг V . В силу
теоремы единственности для аналитических функций такое продолжение единственно,
если оно существует.

Допустим теперь, что (f1, U1) , . . . , (fn, Un) - цепочка элементов, в которой (fk, Uk) и
(fk−1, Uk−1) являются непосредственным аналитическим продолжением друг друга при
всех k = 2, . . . , n В этом случае будем говорить, что (fn, Un) является аналитическим
продолжением элемента (f1, U1) вдоль цепочки элементов.
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Сразу же отметим одно важное обстоятельство. Если (fn, Un) является
аналитическим продолжением элемента (f1, U1) вдоль некоторой цепочки элементов и
U1 ∩ Un ≠ ∅, то вовсе не обязательно, чтобы (f1, U1) и (fn, Un) являлись
непосредственным аналитическим продолжением друг друга. Например, рассмотрим
круги Uk, k = 0,1,2, единичного радиуса с центрами в точках ak = ei2kπ/3, а в качестве
функций fk выберем регулярные ветви многозначной функции {

√
z} в этих кругах с

условиями fk (ak) = eikπ/3. Тогда, как легко убедиться, пары элементов (f0, U0) , (f1, U1) и
(f1, U1) , (f2, U2) являются непосредственными аналитическими продолжениями друг
друга, но f0(z) ≠ f2(z) в пересечении U0 ∩U2.

C другой стороны, если (f3, U3) является аналитическим продолжением элемента
(f1, U1) вдоль цепочки элементов (f1, U1) , (f2, U2) , (f3, U3) и

U1 ∩U2 ∩U3 ≠ ∅
то (f1, U1) , (f3, U3) должны быть непосредственным аналитическим продолжением

друг друга в силу теоремы единственности.
В этом параграфе нам не нужно требование гладкости кривых (или путей). Кроме

того, в качестве промежутка изменения параметра для удобства будем брать отрезок [0,1].

Опр.

14.4. Пусть γ - путь с параметризацией z = z(t),0 ⩽ t ⩽ 1. Если существует такое
разбиение 0 = t0 < t1 < . . . < tn = 1 и такая цепочка элементов (f1, U1) , . . . , (fn, Un),
что (fk, Uk) , (fk+1, Uk+1) являются непосредственным аналитическим продолжением друг
друга для всех k = 1, . . . , n − 1 и z(t) ∈ Uk при t ∈ [tk−1, tk] для всех k = 1, . . . , n, то будем
говорить, что (fn, Un) является аналитическим продолжением элемента (f1, U1) вдоль пути
γ.

Tеорема 14.2.

Пусть (f,U) - элемент и γ - путь с начальной точкой z0 ∈ U и конечной точкой z1.
Допустим, что (f1, U1) , . . . , (fn, Un) and (g1, V1), . . . , (gm, Vm) - две цепочки элементов,
осуществляющих аналитическое продолжение элемента (f,U) вдоль пути γ. Тогда
(fn, Un)u (gm, Vm) являются непосредственным аналитическим продолжением друг друга.

Proof.

Пусть γ ∶ z = z(t),0 ⩽ t ⩽ 1, и цепочке (f1, U1) , . . ., (fn, Un) соответствует разбиение
0 = t0 < t1 < . . . < tn = 1, а цепочке (g1, V1), . . . , (gm, Vm) соответствует разбиение 0 = s0 < s1 <
. . . < sm = 1. По условию f1(z) = f(z) = g1(z) в U = U1 = V1 и точка z(1) = z1 принадлежит
пересечению Un ∩ Vm.

теорема будет доказана, если показать, что в случае, когда отрезки [ti−1, ti] и [sj−1, sj]
имеют непустое пересечение, элементы (fi, Ui) и (gj, Vj) являются непосредственным
аналитическим продолжением друг друга.

Допустим противное и пусть пара индексов (i, j) имеет минимальную сумму i+j среди
тех, которые удовлетворяют условиям: [ti−1, ti]∩[sj−1, sj] ≠ ∅ и (fi, Ui) , (gj, Vj) не являются
прямым аналитическим продолжением друг друга. Пусть для определенности sj−1 ⩽ ti−1.
Тогда i ⩾ 2 (в противном случае ti−1 = sj−1 = 0) и sj ⩾ ti−1. Следовательно,

z (ti−1) ∈ Ui−1 ∩Ui ∩ Vj
Но тогда [sj−1, sj] ∩ [ti−2, ti−1] ≠ ∅ и в силу свойства минимальности суммы i + j

элементы (fi−1, Ui−1) , (gj, Vj) являются непосредственным аналитическим продолжением
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друг друга. C другой стороны, (fi−1, Ui−1) и (fi, Ui) являются непосредственным
аналитическим продолжением друг друга по определению аналитического продолжения
вдоль пути. Учитывая также, что

Ui−1 ∩Ui ∩ Vj ≠ ∅

приходим к заключению, что (fi, Ui) и (gj, Vj) являются непосредственным
аналитическим продолжением друг друга. Полученное противоречие доказывает
теорему.

Доказанная

Theorem

показывает, что аналитическое продолжение элемента (f,U) вдоль пути γ приводит
к единственной функции, голоморфной в окрестности концевой точки пути γ. Поэтому
будем обозначать fγ эту функцию.

Опр.

14.5. Пусть D - область и γ0 ∶ z = φ0(t), γ1 ∶ z = φ1(t),0 ⩽ t ⩽ 1, - Два пути в D с общими
концами φ0(0) = φ1(0) = z0, φ0(1) = φ1(1) = z1. Будем говорить, что γ0 и γ1 гомотопны в D,
если существует непрерывное отображение

Φ ∶ [0,1] × [0,1] →D

такое, что Φ(0, t) = φ0(t),Φ(1, t) = φ1(t) для всех t ∈ [0,1] и Φ(s,0) = z0, Φ(s,1) = z1 для
всех s ∈ [0,1]. В этом случае Φ называется гомотопией путей γ0 и γ1

Гомотопию можно рассматривать как непрерывную деформацию кривой γ0 в кривую
γ1 в области D. Гомотопия осуществляет эту деформацию посредством кривых γs ∶ z =
Φ(s, t),0 ⩽ t ⩽ 1.

Theorem

14.3. Любъе два пути с общими концевыми точками в односвязной области гомотопны.

Proof.

Пусть γ0 ∶ z = φ0(t), γ1 ∶ z = φ1(t),0 ⩽ t ⩽ 1, - два пути в D с общими концевыми точками
φ0(0) = φ1(0) = z0 и φ0(1) = φ1(1) = z1. Допустим вначале, что D - выпуклая область.
Тогда гомотопия Φ может быть определена равенством

Φ(s, t) = (1 − s)φ0(t) + sφ1(t)

В случае произвольной односвязной области D можно посредством конформного
отображения f , которое существует в силу теоремы 13.5 Римана, отобразить D на
единичный круг D. Образы f (γ0) и f (γ1) можно гомотопировать, поскольку D является
выпуклой областью. Затем гомотопию путей f (γ0) и f (γ1) перевести обратным
отображением f−1 в гомотопию γ0 и γ1.
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Theorem

14.4. Пусть D - область в C и γ0, γ1 - пути с общими концами z0uz1, гомотопные
в D. Допустим также, что элемент (f,U), U ⊂ D, z0 ∈ U , аналитически продолжается
вдоль каждого пути γs,0 ⩽ s ⩽ 1, которые определяет гомотопия. Тодда результаты
продолжения элемента (f,U) вдоль путей γ0 и γ1 совпадают, m. е. fγ0(z) = fγ1(z) в
некоторой окрестности точки z1.

Proof.

Пусть Φ ∶ [0,1] × [0,1] → D - гомотопия путей γ0 и γ1. Как и выше, через γs,0 ⩽ s ⩽ 1,
будем обозначать путь с параметризацией z = Φ(s, t),0 ⩽ t ⩽ 1. Покажем, что для каждого
s0 ∈ [0,1] найдется такое δ > 0, что при всех s ∈ [0,1], удовлетворяющих неравенству
∣s − s0∣ < δ, аналитические продолжения элемента (f,U) вдоль путей γs совпадают с
аналитическим продолжением вдоль γs0 т. е. fγs(z) = fγs0(z) в некоторой окрестности
точки z1.

Допустим, что (f1, U1) , . . . , (fn, Un) - цепочка элементов, осуществляющая
аналитическое продолжение (f,U) вдоль пути γs0 , т. е. U1 = U, f1(z) = f(z) при z ∈ U и
z1 ∈ Un. Пусть также 0 = t0 < t1 < . . . < tn = 1 - разбиение отрезка [0,1], при котором

Qk = {z = Φ (s0, t) ∶ tk−1 ⩽ t ⩽ tk}

содержится в круге Uk, k = 1, . . . , n. Поскольку Qk, k = 1, . . . , n, являются компактными
множествами, то

min
1⩽k⩽n

dist (Qk, ∂Uk) = ε > 0

В силу непрерывности функции Φ найдется такое δ > 0, что

∣Φ(s, t) −Φ (s0, t)∣ < ε

при всех t ∈ [0,1] и ∣s − s0∣ < δ. В частности, для всех k = 1, . . . , n и s, ∣s − s0∣ < δ, будет
выполняться условие Φ(s, t) ∈ Uk при t ∈ [tk−1, tk]. Это означает, что цепочка элементов
(f1, U1) , . . . , (fn, Un) осуществляет аналитическое продолжение (f,U) и вдоль пути γs, т.
е. fγs(z) = fγs0(z) при z ∈ Un и ∣s − s0∣ < δ.

Пусть теперь

G1 = {s ∈ [0,1] ∶ fγs(z) = fγ0(z) в некоторой окрестности точки z1} ,

a G2 = [0,1]/G1. По доказанному, если s1 ∈ G1, то найдется δ1 > 0 такое, что s ∈ G1

при ∣s − s1∣ < δ1. Аналогично, если s2 ∈ G2, то найдется δ2 > 0 такое, что s ∈ G2 при
∣s − s2∣ < δ2. В силу связности отрезка [0,1] одно из множеств G1 или G2 должно быть
пустым. Поскольку 0 ∈ G1, то G2 = ∅ и fγ1(z) = fγ0(z) в некоторой окрестности точки z1.

Будем говорить, что два элемента (f1, U1) и (f2, U2) эквивалентны, если один из другого
получается аналитическим продолжением (вдоль некоторого пути). Очевидно, что такое

Опр.

эквивалентности является рефлексивным, симметричным и транзитивным. Класс
эквивалентности F элементов будем называть полной аналитической функцией. Любой
элемент (f,U) из F определяет весь класс эквивалентности посредством аналитического
продолжения.
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Допустим теперь, что D - некоторая область и в ней определена голоморфная функция
f . Если круг U содержится в D, то продолжения элемента (f,U) вдоль любого пути γ
в D приводит к той же функции f . В этом случае можно сказать, что элемент (f,U)
выделяет в D ветвь полной аналитической функции F.

Tеорема 14.5. Пусть D - односвязная область (f,U) - элемент, который аналитически
продолжается вдоль любого пути в области D. Тогда существует единственная
голоморфная в D функция, которая совпадает с f в U .

Proof.

Пусть z0 - центр круга U и γz - путь в D с началом в точке z0 и концом в z ∈ D.
Через g(z) обозначим продолжение fγz(z) элемента (f,U) вдоль пути γz. Из предыдущей
теоремы следует, что g(z) не зависит от выбора пути γz. Таким образом, функция g
корректно определена, голоморфна в D и g(z) = f(z) при z ∈ U .

Замечание

14.1. Эта

Theorem

(а также предыдущая) называется теоремой о монодромии. Ее содержание можно
сформулировать также следуюжим образом. Полная аналитическая функция, которая
допускает аналитическое продолжение вдоль любого пути в односвязной области D,
определяет в D ветвь, выделяемую некоторым элементом.

Для полной аналитической функции возникает новый тип изолированных особых
точек по сравнению с теми, которые были изучены для однозначных функций, т. е.
ветвей. Точка a называется изолированной особой точкой полной аналитической
функции F, если существует проколотая окрестность Ȯr(a) и элемент (f,U), U ⊂ Ȯr(a),
этой функции, который продолжается вдоль любого пути в Ȯr(a). Пусть 0 < ϱ < r и γϱ -
окружность с центром в точке a. Допустим также, что z0 ∈ γϱ ∩ U . Тогда при
продолжении начального элемента вдоль пути γϱ после ее обхода можем в результате
получить тот же элемент. В этом случае точка a называется особой точкой однозначного
характера. Если обход γϱ приводит к элементу, отличному от исходного, то a называется
точкой ветвления. В первом случае можно показать, что в окрестности Ȯr(a) выделяется
ветвь функции F. Во втором случае возможны два варианта. Существует целое число
n ⩾ 2 такое, что n-кратный обход γϱ в одном направлении приводит к исходному
элементу. Тогда точка a называется точкой ветвления конечного порядка, а наименьшее
из чисел n, обладающих этим свойством, называется порядком ветвления. Если же
обходы в одном направлении приводят каждый раз к новым элементам, то a называется
точкой ветвления бесконечного порядка или логарифжмческой точкой ветвления.

Принцип симметрии Римана- Шварца.

Рассмотрим теперь специальный случай аналитического продолжения, когда области
D1 и D2 не пересекаются, а имеют общий участок границы. Предварительно установим
один результат, который иногда называют,

Theorem

о стирании разреза.
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Лемма 14.1. Пусть область D и прямая L такие, что D ∩ L = I ≠ ∅. Допустим также,
что функиия f непрерьвна в D и голоморфна на D/I. Тогда f является голоморфной и
во всей области D.

Proof.

Поскольку свойство голоморфности является локальным, то для доказательства
леммы достаточно установить голоморфность f в точках множества I, которое
представляет собой систему непересекающихся интервалов на прямой L. Пусть a -
произвольная точка множества I и Or(a) ⊂D. По предположению f непрерывна в Or(a).
Поэтому в силу теоремы Морера голоморфность f будет доказана, если установить
равенство нулю интегралов от функции f по границе каждого треугольника,
расположенного в Or(a). Заметим, что прямая L пересекает круг Or(a) по диаметру и
делит его на два полукруга U+и U−.

Пусть теперь ∆ - треугольник, который вместе с замыканием содержится в Or(a).
Если ∆ полностью содержится в U+или U−, то равенство

∫
∂∆

f(z)dz = 0

следует из теоремы Коши. Пусть ∆+ =∆ ∩U+и ∆− =∆ ∩U−. Тогда

∫
∂∆

f(z)dz = ∫
∂∆+

f(z)dz + ∫
∂∆−

f(z)dz.

Однако, интегралы в правой части равенства равны нулю по теореме Коши и лемма
доказана.

Следующий результат известен как принцип симметрии Римана-Шварца.

Theorem

14.6. Пусть D - область, симметричная относительно вещественной оси, uD+ = {z ∈
D ∶ Im z > 0},D− = {z ∈ D ∶ Im z < 0}, I = D ∩ R. Допустим, что f является непрерывной
на D+ ∪ I, голоморфной в D+и принимает вещественные значения на I. Тогда она имеет
аналитическое продолжение во всю область D, где удовлетворяет соотношению симметрии

f(z) = f(z̄)

Proof.

Определим в области D функцию F посредством равенств

F (z) =
⎧⎪⎪⎨⎪⎪⎩

f(z), если z ∈D+ ∪ I
f(z̄), если z ∈D−

теорема будет доказана, если мы установим голоморфность функции F в области D.
Голоморфность F в D+следует из ее определения и предположений теоремы. Пусть z0 ∈
D−и r > 0 такое, что Or (z0) ⊂ D−. Тогда в Or (z0) функция F определяется по нижней
формуле и

lim
z→z0

F (z) − F (z0)
z − z0

= lim
z→z0

f(z̄) − f (z0)
z − z0

= lim
z→z0
(f(z̄) − f (z0)

z̄ − z0
) = f ′ (z0)

Таким образом, F голоморфна в D/I.
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Покажем, что F непрерывна в D. Для этого остается проверить непрерывность в
точках на I. Пусть x0 ∈ I и ε > 0. В силу непрерывности f на D+ ∪ I найдется такое δ > 0,
что ∣f(z) − f (x0)∣ < ε при z ∈ Oδ (x0) ∩ [D+ ∪ I]. Но тогда для z ∈ Oδ (x0) ∩D−будем иметь
z̄ ∈ Oδ (x0) ∩D+и в силу вещественности значения f (x0) получаем

∣F (z) − f (x0)∣ = ∣f(z̄) − f (x0)∣ = ∣f(z̄) − f (x0)∣ < ε.

Поскольку x0 ∈ I и ε > 0 выбирались произвольно, то непрерывность F на I, а,
следовательно, и в D доказана. Утверждение о голоморфности F в области D следует из
леммы.

Доказанная

Theorem

имеет очевидные обобщения в связи с тем, что любые две окружности C1 и C2 в
расширенной комплексной плоскости C можно отобразить друг на друга с помощью
дробно-линейного преобразования. Область D можно выбирать симметричной
относительно окружности C1, a в качестве I тогда будет выступать пересечение C1 ∩D.
Если функция f голоморфна в части D+области D, которая расположена внутри круга,
ограниченного C1, непрерывна на D+ ∪ I и принимает значения f(z) ∈ C2, когда z ∈ I, то
ее можно продолжить аналитически во всю область D. При этом пары точек z1, z2,
симметричных относительно C1, будут переходить в пары точек f (z1) , f (z2)
симметричных относительно C2. Принцип симметрии Римана- Шварца часто
используется для построения конформных отображений.

Аналитическое продолжение по Половинкину (?)

(много тут вопросов, пока не особо разбирал.)
Известны различные способы аналитического продолжения заданных функций.

Простейший из них мы уже встречали при рассмотрении примеров по теореме
единственности в §10. Haпо мни м его.

Опр.

1. Пусть некоторая функция f задана на мн ожестве E, а функция g регулярна в
области G, содержащей мн ожеств о E, прич ем

f(z) = g(z), ∀z ∈ E.

Тогда функция g называется аналитическим продолжсением функици f с множества E
на область G.

Утверждение 1. Если множсество E содержат бесконечное число точек и имеет в
области G по крайней мере одну предельную точку, то аналитическое продолжение
функиии f ∶ E → C с множсества E на область G единственно, т. е. если суицествует
регулярная функиия g ∶ G→ C, удовлетворяючцая определению 1, то она единст венна.

Данное утверждение, очевидно, следует из теоремы единственн ости регулярн ой
функции (

Theorem

1§10).
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Так, например, в §10 мы рассмотрели аналитическое продолжение функций
ex, sinx, cosx с действительной оси на всю комплексную плоскость по формулам

ez ≜ ex ⋅ eiy, sin z ≜ e
iz − e−iz
2i

, cos z ≜ e
iz + e−iz

2
.

Основные сложности аналитических продолжений связаны с рассмотрением
многозначных функций, при мерами которых являются Ln z и { n

√
z}. Приведем ряд

определений.

Опр.

2. Пу сть выбраны точка a ∈ C и круг Br(a), r > 0, на котором задана регулярная
функция f . Тогда пару (Br(a), f) назовем элементом, а точку a назовем центром этого
элемента.

Опр.

3. Скажем, что элемент (Bρ(b), g) является непосредственным аналитически м
продолжением элемента (Br(a), f), если Br(a) ∩ Bρ(b) ≠ ∅ и f(z) = g(z),∀z ∈ Br(a)∩
∩Bρ(b).

Отметим, что при заданных элементе (Br(a), f) и круге Bρ(b) функция g на Bρ(b),
если существует, то единственна (в силу теоремы единственности - теоремы 1§ 10).

Опр.

4. Скажем, что два элемента (Br(a), f) и (Bρ(b), g) эвивалентн, если они имеют
общий центр a = b и один из этих элементов является непосредственным аналитическим
продолжением другого. То есть, если r < ρ, то f(z) = g(z) при всех z ∈ Br(a). Обозначаем
(Br(a), f) ∼ (Bρ(b), g)

Опр.

5. Скажем, что элемент (Bρ(b), g) является ан алитическим продолжением элемента
(Br(a), f) через конечную цепочку кругов (также говорят: через конечную цепочку
элементов), если существует конечный набор элементов
(Br1 (a1) , f1) , (Br2 (a2) , f2) , . . . , (Brn (an) , fn) таких, что для каждого номера k ∈ 2, n
элемент (Brk (ak) , fk) является непосредственным аналитическим продолжением
элемента (Brk−1 (ak−1) , fk−1), причем справедливы равенства (Br1 (a1) , f1) = (Br(a), f) и

(Brn (an) , fn) = (Bρ(b), g). При мер 1. Степенной ряд
+∞
∑
n=0

zn сходится в круге B1(0) и

расходится при ∣z∣ ⩾ 1. При этом по теореме Вейерштрасca (см. 9) сумма f1 данного ряда
является регулярной в круге B1(0) функцией, и, как показано в примере 1§9, она
совпадает в этом круге B1(0) с функцией f2(z) = 1

1−z , которая определена и регулярна в
C/{1}. Таким образом, при любом a ∈ C/[1,+∞) элемент (B∣a−1∣(a), f2) является
непосредственным аналитическим продолжением элемента (B1(0), f1) (так как не пусто
множество B1(0)⋂B∣a−1∣(a), в котором эти функции совпадают). При любом
действительном a > 1 множество B1(0)⋂B∣a−1∣(a) пусто, но элемент (B∣a−1∣(a), f2)
является аналитически м продолжением элемента (B1(0), f1) через цепочку кругов, так
как, введя, например, еще один элемент (B∣i−1∣(i), f2), мы убеждаемся, что последний
элемент является непосредственным аналитическим продолжением как элемента
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(B1(0), f1), так и элемента (B∣a−1∣(a), f2) Рис. 39 Пример 2. Рассмотрим пять элементов,
составленных из регулярных ветвей многозначной функции {

√
z}, вида

(B1(1), f0) , (B1(i), fπ/2) , (B1(−i), f−π/2) , (B1(−1), fπ) , (B1(−1), f−π), где fs(z) =
√
∣z∣e i

2
args z,

причем args z ∈ (s − π
2 , s +

π
2
) , s = 0, ±π/2,±π

Легко убедиться, что в данных пяти элементах каждая функция fs на
соответствующем ей круге является регулярной ветвью многозначной функции {

√
z},

причем fπ(z) = −f−π(z) при всех z ∈ B1(−1). В силу определения 3 элемент (B1(i), fπ/2)
(также, как и элемент (B1(−i), f−π/2)) является непосредственным аналитически м
продолжени ем элемента (B1(1), f0), так как на мн ожестве B1(1) ∩ B1(i) функции f0 и
fπ/2 равны (см. рис. 39).

Аналогично элемент (B1(−1), fπ) есть н епосредственное аналитич еское продолжение
элемента (B1(i), fπ/2), а элемент (B1(−1), f−π) есть непосредственное аналитическое
продолжение элемента (B1(−i), f−π/2). В итоге мы получили два различных элемента
(B1(−1), fπ) и (B1(−1), f−π), определенных в одном и том же круге, которые являются
аналитиче- ски ми продолжения ми одного элемента (B1(1), f0). Приведем еще один
способ аналитического продолжения - продолжение вдоль контура.

Опр.

6. Пусть (Br1(a), f) - начальный элемент, а γab - кусочно-гладкий контур с началом
в точке a и концом в точке b, заданный через параметр его длины s, т.е. z = z(s),
0 ⩽ s ⩽ l, z(0) = a, z(l) = b. Скажем, что элемент (Br2(b), g) является аналитическим
продолжением элемента (Br1(a), f) вдоль к онтура γab, если существует чи сло r > 0, r ⩽
min{r1, r2}, непрерывная функция φ ∶ [0, l] → C и семей ство элементов (Br(z(s)), fs) ,∀s ∈
[0, l] такие, что а) для всякого s0 ∈ [0, l] справедливо равенство fs0(z(s)) = φ(s) при
всех s ∈ [0, l]⋂(s0 − r, s0 + r). б) (Br(z(0)), f0) ∼ (Br1(a), f) и (Br(z(l)), fl) ∼ (Br2(b), g)
- эквивалентность элемент ов.

Сформулированное в определении 6 условие по существу означает, что при
выбранном значении s0 элемент (Br(z(s)), fs) является непосредственным ан алитич еск
и м продолжением элемента (Br (z (s0)) , fs0) лишь для близких к s0 значений s, т. е. при
∣s − s0∣ < r. Если же круг Br (z (s0)) имеет непустое пересечение с кругом Br (z (s1)) при
далеком от s0 значении s1, то может оказаться, что значения функций fs0 и fs1 различны
в точках пересечения указанных выше кругов. В разобранном нами ранее примере 2
начальный элемент (B1(1), f0), оч евидно, можно продолжить не только вдоль конечной
цепочки кругов, но и вдоль контура - верхней полуокружности z = z1(s) = eis, s ∈ [0, π], с
помощью семейства элементов (B1 (z1(s)) , fs), где для всех s ∈ [0, π] функция fs
определя ется так же, как и в при мере 2. В результате продолжения вдоль этого
контура опять получаем конечный элемент (B1(−1), fπ). Если же начальный элемент
(B1(1), f0) будем продолжать вдоль нижней полуокружности z = z2(s) = e−is, s ∈ [0, π] с
помощью семейства элементов (B1 (z2(s)) , f−s), то получится к онечный элемент
(B1(−1), f−π). В этом случае, так же как и при продолжении вдоль трехзвенных цепочек
кругов в примере 2, к он ечные элементы (B1(−1), fπ) и (B1(−1), f−π) различны.

Theorem

1. Понятия аналитических продолжений вдоль конечной цепочки кругов (по
определению 5) и вдоль контура (по определению 6) эквивалентны. T.е. для всякого
аналитического продолжения вдоль конечной цепочки кругов найдется контур такой,
что аналитическое продолжение вдоль этого контура приводит к тому же конечному
элементу, что и при продолжении вдоль заданной конечной цепочки кругов. С другой
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стороны, для всякого аналити ческого продолжения вдоль контура найдется конечная
цепочка кругов, такая, что аналитическое продолжение вдоль нее проводит к тому же
элементу, что и при продолжении вдоль заданного контура. Док а з а т ели с т в о. 1.
Допустим, что элемент (Bρ(b), g) является аналитическим продолжением элемента
(Br(a), f) через некоторую конечную цепочку кругов. Пусть при этом получены
элементы {(Brk (ak) , fk} (см.

Опр.

5). Тогда в порядке возрастания номера k последовательно соединяем центры
входящих в упорядоченную цепочку кругов отрезками и получаем ломаную γab. При
этом легко указать число r > 0 такое, что всякий круг радиуса r с центром в
произвольной точке, принадлежащей ломаной γab, содержится по крайней мере в одном
из кругов {Brk (ak)}

n
k=1. Отсюда, в соответствии с

Определением 6, можно в каждой точке z(s) ломаной на круге Br(z(s)) задать элемент
так, что элемент (Bρ(b), g) может быть получен в результате аналитического продолжения
элемента (Br(a), f) вдоль этой ломан ой γab. 2. Допустим, что элемент (Br2(b), g) получен
из элемента (Br1(a), f) аналитич еским продолж ени ем вдоль кусочно - гладкого контура
γab (по определению 6).

Пусть контур γab через параметр его длины s задается функцией z = z(s),0 ⩽ s ⩽
l, z(0) = a ⋅ z(l) = b. По определению 6 существует бесконечное семейство элементов
(Br(z(s)), fs) , s ∈ [0, l], с соответствующи ми св ойствами. Вы- берем в ней конечную
цепочку элементов (Br (z (sk)) , fsk)

n
k=1: где n = [2lr ] + 1, sk =

r
2k при k = 0, . . . , n − 1, a sn = l.

Тогда для каждого номера k справедливо н еравен ство ∣z(s) - −z (sk) ∣ ⩽ r
2 при любом

s ∈ (sk, sk+1]. Поэтому каждый элемент (Br (z (sk+1)) , fsk+1) является непосредственны м
ан алитич ески м продолжением элемента (Br (z (sk)) , fsk), откуда в совокупности следует,
что элемент (Br(b), fl) является аналитическим продолжением элемента (Br0(a), f0) через
конечную цепочку кругов {Br (z (sk))}nk=1.

О пределение 7. Полной аналитической функиией, п орожденн ой начальным
элементом (Br(a), f0) называет ся совокупн ость F всех элемент ов, получающихся ан
алитич ески м продолжением элемента (Br(a), f0) вдоль всех таких контуров,
начинающихся в точке a, вдоль которых аналитическое продолжение возможно.

Опр.

8. Аналитической функиией (без слова: полная) называет ся любое связное
подмножество элементов полн ой аналитической функции F , т. е. такое подмножество,
любые два элемента которого являются аналитически ми продолжениями друг друга
через н екоторый контур или некоторую конечную цепочку элементов из этого же подмн
ожества. Очевидно, что каждая аналитическая функция F не зависит от выбора
начального элемента (Br(a), f0). В качестве начального можно брать любой элемент из
совокупности F .

Множество G = ⋃αBrα (zα), являющееся объединением кругов всех элементов,
принадлежащих аналитической функции F , представляет собой область.

В самом деле, открытость множества G следует из того, что оно есть объединение
открытых множеств, связность следует из определения 8, т. е. из того, чтолюбые две
точки из G Можно соединить ломан ой, лежащей в объединении кругов, в узлах к от
орой находятся центры кругов элементов, входящих в цепочку, с помощью которой
осуществляется аналитическое продолжение элементов с центрами в указанных точках
друг в друга. Поэтому будем говорить, что аналитическая функиия задана (определена)
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на области G.
В случае, когда область определения аналитической функции односвязна, и меет место

следующее важн ое утверждение.

Theorem

2 (о монодромии). Пусть G-односвязная область и Br(a) ⊂ G. Если элемент (Br(a), f0)
аналити чески продолжаем по любому контуру γab, лежащему в односвязной области G,
то результат его продолжения в произвольную точку b ∈ G не зависит от контура γab, а
однозначно определяется его концом b.

Часто это формулируют и так: аналитическая функция, определенная на односвязной
области G, является однозначной регулярной функцией, определенной на G.

Для доказат ельства т еоремы 2 нам потребуют ся следующие опр. и лемма.

Опр.

9. Пусть кусочно-гладкие контуры γ и γ̃ заданы соответственно через параметр длины
s в виде z = z(s), s ∈ (0, l) и z = z̃(s), s ∈ (0, l). Расстоянием между кривысми γ и γ̃ назовем
величину

dist(γ, γ̃) =max{∣z(s) − z̃(s)∣∣s ∈ [0,min(l, l̃)]} + ∣l − l̃∣.

Лемма 1. Пусть эеемент (Br0(a), f0) может быть аналитически продолжен вдоль кусочно-
гладкого контура γab (с началом в точке a и концом в точке b). Тогда существует число
ε > 0 такое, что элемент (Br0(a), f0) может быть аналити чески продолжен вдоль любого
кусочно-гладкого контура γ̃ab (имеющего те же начало и конец) такого, что dist (γab, γ̃ab) < ε
(где dist cм. в определении 9). При этом в конечной точке b будут получены эквивалентные
между собой элементы.

Д о к а з а т е л ь с т в о. Пусть функция z = z(s), s ∈ (0, l), описывает к онтур γab
через параметр его длины, и z(0) = a, z(l) = b. Пусть число r > 0, непрерывная функция
φ(s). s ∈ (0, l) и элементы (Br(z(s)), fs) выбраны в соответствии с

Определением 6 при аналитическом продолжении элемента (Br0(a), f0) вдоль контура
γab.

Выберем число ε = r
4 и рассмотрим произвольный контур γ̃ab, задаваемый функци ей

z = z̃(s), s ∈ (0, l̃), где z̃(0) = a, z̃(l̃) = b, такой, что dist (γab, γ̃ab) < ε.
Для каждого числа s ∈ [0,min(l, l̃)] определим значение функции φ̃(s) и элемент

(Bε(z̃(s)), f̃s) из выражений φ̃(s) = fs(z̄(s)) и f̃s(z) = fs(z) при всех z ∈ Bε(z̄(s)), что
возможно в силу очевидного включения Bε(z̃(s)) ⊂ Br(z(s)).

В случае, когда l ⩾ l̃, из равенства z(l) = z̃(l̃) = b следует включение Bε(z̃(l̃)) ⊂
Br(z(l̃))⋂Br(z(l)), откуда следует, что fl̄(z) = fl(z) при всех z ∈ Bε(z̃(l̃)), т.е. конечные
элементы эквивалентны.

В случае, когда l < l̃, для каждого чи сла s ∈ (l, l̃], так как l̃ − l < ε, то имеем z̃(s) ∈
Bε(b). Поэтому определим значение функции φ̃(s) и элемент (Bε(z̃(s)), f̃s) из выражений
φ̃(s) = fl(z̃(s)) и f̃s(z) = fl(z) при всех z ∈ Bε(z̃(s)), что возможно в силу включения
Bε(z̃(s)) ⊂ Br(z(l)). В частности, отсюда следует, что и в этом случае (при l < l̃) конечные
элементы эквив алентны.

Покажем непрерывность функции φ̃(s) на отрезке [0, l̃]. Для каждого значения s0 ∈
[0,min(l, l̃)] в силу выбора контура γ̃ab справедливо включение z̃(s) ∈ Br (z (s0)) при
всех s ∈ ϵ[0,max(l, l̃)]⋂(s0 − ε, s0 + ε), откуда следует, что φ̃(s) = fs0(z̃(s)) при всех s ∈
[0,max(l, l̃)]⋂(s0 − ε, s0 + ε), т.е. функция φ̃(s) непрерывна в точке s0. Аналогично, в
случае, к огда l < l̃, из равенства φ̃(s) = fl(z̃(s)) при всех s ∈ (l−ε, l̃] следует непрерывность
функции φ̃(s) на интервале (l − ε, l̃]. Таки м образом, мы показали, что по определению

121



3.1.16 Analytic Continuation: Preparation for applications

6 существует аналитическое продолжение элемента (Br0(a), f0) вдоль контура γ̃ab причем
в конечной точке получен элемент, эквивалентный конечному элементу, получаемому при
аналитическом продолжении элемента (Br0(a), f0) вдоль контура γab. Докажем теперь
теорему 2.

Док а з а т лл ь с т в о. Пусть в односвязной области G даны два кусочно-гладких
контура γ0 и γ1 с помощью уравнений z = z0(t) и z = z1(t), где t ∈ [0,1], которые соединя
ют точки a

и b, т.е. z0(0) = z1(0) = a и z0(1) = z1(1) = b. Без ограничения общпости (так как в силу
лсммы 1 и тсорсмы В сйсрштрасса можно сгладить кривые в конечном числе точек, в
которых и меется излом) будем считать, что контуры γ0 и γ1 являются гладкими. В силу
односвязности областиG кривые γ0 и γ1 являются гомотопными, т. е. существует функция
z = z(t, α) ⊂ G при t ∈ [0,1], α ∈ [0,1] такая, что функции z(t, α) и z′t(t, α) непрерывны на
квадрате [0,1] × [0,1], а также справедливы равенства z(t,0) = z0(t) и z(t,1) = z1(t) при
всех t ∈ [0,1], а z(0, α) = a и z(1, α) = b при в сех α ∈ [0,1].

Таким образом, при каждом фиксированном значении параметра α ∈ [0,1] функция
z = z(t, α), t ∈ [0,1] опи сывает гладкую кривую γα, которая принадлежит области G и
соединяет точки a и b. В силу равномерной непрерывности функций z(t, α) и z′t(t, α)
на квадрате [0,1] × [0,1] длина l(α) контура γα есть непрерывная функция параметра
α ∈ [0,1], и при достаточн о близких знач ениях α1, α2 ∈ [0,1] paccтояние dist (γα1 , γα2)
между кривыми мало.

По лемме 1 для любого значения параметра α ∈ [0,1] существует чи сло δ(α) > 0
такое, что при любом значении α̃, взятом из инт ервала Iα ≜ [0,1]⋂(α − δ(α), α + δ(α)),
аналитич еское продолжение элемента (Br(a), f0) вдоль каждого контура γα̃ приводит к
эквивалентным элементам в конечной точке b.

По лемме Гейне-Бореля можно выбрать конечное число интервалов Iαj
, где

0 = α0 < α1 < . . . < αn, покрывающих отрезок [0,1] так, что эти интервалы удовлетворяют
соотношениям: Iαj

∩ Iαj+1
≠ ∅,∀j, и ⋃nj=0 Iαj

= [0,1]. Тогда аналитическое продолжение
элемента (Br(a), f0) вдоль каждого контура γα, где α ∈ Iα0 ⋃ Iα1 приводит к
эквивалентным элементам в концевой точке b. Аналогично это верно при всех
α ∈ Iα1 ⋃ Iα2 и так далее. В результате получаем, что аналитическое продолжение
элемента (Br(a), f0) вдоль каждого контура γα, где α ∈ [0,1], приводит к эквивалентным
элементам в точке b.

3.1.16 Analytic Continuation: Preparation for applications

(preparation for cond matter, where there is Matsubara summation and these things)

3.1.17 Meromorphic Functions

В конце параграфа 5 мы рассмотрели некоторые свойства целых функций, т. е. таких,
которые голоморфны во всей комплексной плоскости C.

Опр.

15.1. Функция f ∶ C → C называется мероморфной, если она голоморфна в C, за
исключением, быть может, изолированных особых точек, являющихся полюсами.

Заметим, что целые функции составляют подкласс класса мероморфных функций.
Другой важный подкласс мероморфных функций образуют рациональные функции.
Отметим некоторые важные свойства рациональных функций. Пусть
P (z) = amzm + . . . + a0, am ≠ 0, - полином степени m и Q(z) = bnzn + . . . + b0, bn ≠ 0, - полином
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степени n. Допустим также, что P (z) и Q(z) не имеют общих множителей, а
следовательно, общих нулей. Тогда наибольшее из чисел m и n будем называть
порядком рациональной функции P (z)/Q(z). Нули полинома P (z) являются нулями и
функции R(z) с теми же кратностями, а нули полинома Q(z) представляют собой
полюсы функции R(z) также с теми же кратностями. Кроме того, из представления

R(z) = z
m

zn
am + am−1/z + . . . + a0/zm
bn + bn−1/z + . . . + b0/zn

= zm−nR1(z)

где R1(z) → am/bn ≠ 0 при z → ∞, видно, что z = ∞ является нулём функции R
кратности n −m, если m < n. В случае m > n в точке z = ∞ функция R имеет полюс
кратности m−n. Случай m = n соответствует устранимой особой точке в z = ∞ и эта точка
не является нулём функции R. Таким образом, рациональная функция имеет одинаковое
число нулей и полюсов в C с учётом их кратности. Это число совпадает с порядком
рациональной функции.

Пусть теперь A - произвольное комплексное число. Тогда рациональная функция
R(z) − A имеет то же число полюсов в C (они просто совпадают), что и R(z).
Следовательно, порядки этих рациональных функций совпадают и функция R(z) − A
имеет в C ровно k нулей с учётом их кратности, где k - порядок рациональной функции
R(z). Другими словами, всякая рациональная функция R(z) порядка k имеет в C ровно
k нулей и k полюсов, а также каждое уравнение R(z) = A имеет в точности k корней.

Theorem Миттаг-Леффлера.

Возвращаясь к общему классу мероморфных функций, заметим, что в каждом круге
∣z∣ ⩽ R мероморфная функция может иметь лишь конечное число полюсов. В противном
случае нашлась бы предельная точка полюсов. Накапливаться полюсы мероморфной
функции могут лишь к бесконечно удалённой точке. Допустим теперь, что f и g -
две мероморфные функции, имеющие одни и те же полюсы с одинаковыми главными
частями разложений в ряды Лорана в окрестностях этих полюсов. Тогда разность f(z) −
g(z) будет целой функцией. Это наблюдение приводит к следующему выводу. Общий
вид мероморфной функции с заданными главными частями представляет собой сумму
произвольной целой функции и некоторой мероморфной функции с заданными главными
частями. Например, совокупность мероморфных функций, имеющих простые полюсы с
вычетом 1 в каждой точке z = n,n ∈ Z, описывается формулой

f(z) = π ctgπz + h(z)

где h - целая функция.
Заметим, что главная часть мероморфной функции в полюсе z = a, a ∈ C, имеет вид

P (1/(z − a)), где P (z) - полином с нулевым свободным членом, т. е. P (0) = 0. Вопрос
построения мероморфной функции с конечным числом полюсов a1, . . . , an, в которых
функция имела бы главные части

P1 (
1

z − a1
) , . . . , Pn (

1

z − an
)

легко решается. Сумма

n

∑
k=1

Pk (
1

z − ak
)

представляет собой мероморфную функцию с требуемыми свойствами. Суммируя ее
с произвольной целой функцией, получаем общий вид решения поставленной задачи.
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Сложнее обстоит дело в случае бесконечного числа полюсов. В рассмотренном выше
примере мероморфных функций с простыми полюсами в точках z = n,n ∈ Z, ряд из
главных частей

∞
∑
n=−∞

1

z − n
не сходится ни в одной точке комплексной плоскости. Это означает, что мы должны

преобразовать ряд из главных частей так, чтобы он стал сходящимся.
Ряд из мероморфных функций будем называть сходящимся локально равномерно, если

для любого компактного множества K,K ⊂ C, лишь конечное число членов ряда имеет
полюсы на K, а после их удаления остаток ряда сходится равномерно на K.

Следующий результат известен как

Theorem

Миттаг- Леффлера.
15.1. Пусть {ak}∞k=1 - последовательность различных точек, не имеющая ни одной

предельной точки в C, a{Pk(z)}∞k=1 - последовательность полиномов без свободных
членов. Тогда существует мероморфная функция f(z), которая имеет главнъе части
Pk (1/ (z − ak)) в точках ak, k = 1,2, . . . , u не имеет других особых точек в C.

Proof.

Занумеруем точки последовательности полюсов так, чтобы выполнялись неравенства

∣a1∣ ⩽ ∣a2∣ ⩽ ∣a3∣ ⩽ . . .

Допустим вначале, что a1 ≠ 0, и выберем положительные числа αk, k = 1,2, . . ., так,
чтобы сходился ряд

∞
∑
k=1

αk. Поскольку главная часть Pk (1/ (z − ak)) является голоморфной

функцией в круге O∣ak ∣(0), то ее ряд Тейлора

Pk (
1

z − ak
) =

∞
∑
n=0

c
(k)
n zn

сходится в O∣ak ∣(0) и сходится абсолютно и равномерно в круге ∣z∣ ⩽ ∣ak∣ /2. Пусть

Qk(z) =
nk

∑
n=0

c
(k)
n zn

его частичная сумма, где номер nk выбран так, что

max
∣z∣⩽ ∣ak ∣

2

∣Pk (
1

z − ak
) −Qk(z)∣ < αk.

Рассмотрим теперь ряд

∞
∑
k=1
[Pk (

1

z − ak
) −Qk(z)]

Фиксируем R > 0 и разобьем этот ряд на две части

∑
k∶∣ak ∣⩽2R

[Pk (
1

z − ak
) −Qk(z)] + ∑

k∶∣ak ∣>2R
[Pk (

1

z − ak
) −Qk(z)] .
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Заметим, что для всех номеров k, удовлетворяющих условию ∣ak∣ > 2R, функции
Pk (1/ (z − ak)) голоморфны в O2R(0) и

max
∣z∣⩽R
∣Pk (

1

z − ak
) −Qk(z)∣ < αk

поскольку R < ∣ak∣ /2. Следовательно, остаток ряда сходится равномерно и абсолютно
в круге ∣z∣ ⩽ R, а потому представляет собой голоморфную в OR(0) функцию. Конечная
сумма является рациональной функцией и в круге OR(0) имеет требуемые полюса с
заданными главными частями.

Поскольку R выбиралось произвольным образом, то ряд (15.1) сходится локально
равномерно. Его сумма имеет требуемое поведение в C, за исключением возможно лишь
в начале координат. Добавляя к этой сумме главную часть в z = 0, получаем требуемую
мероморфную функцию.

В качестве первого примера рассмотрим мероморфную функцию π2/ sin2 πz, которая
имеет двойные полюсы в точках z = n,n ∈ Z. Главной частью разложения в ряд Лорана
в окрестности точки z = n является 1/(z − n)2. Поскольку ряд

∞
∑

n=−∞
1/(z − n)2 сходится

локально равномерно, то

π2

sin2 πz
=

∞
∑
n=−∞

1

(z − n)2
+ g(z)

где g - целая функция. Покажем, что g(z) ≡ 0.
Прежде всего заметим, что функция π2/ sin2 πz и сумма ряда

∞
∑
n=−∞

1

(z − n)2

являются периодическими с периодом 1. Поэтому функция g(z) также должна иметь
тот же период. Если z = x + iy, то

∣ sinπz∣2 = ch2 πy − cos2 πx

и, следовательно, π2/ sin2 πz → 0 при ∣y∣ → ∞ равномерно по x ∈ [0,1]. Этим же
свойством обладает и сумма ряда. Действительно,

1

∣x + iy − n∣2
⩽ {

1
y2 при n = 0,0 ⩽ x ⩽ 1, ∣y∣ ⩾ 1,
1

y2+(n−1)2 при n ≠ 0,0 ⩽ x ⩽ 1, ∣y∣ ⩾ 1,
откуда видно, что

∞
∑
n=−∞

1

(z − n)2
→ 0 при ∣y∣ → ∞

равномерно по x ∈ [0,1]. В силу периодичности функции g получаем ее ограниченность
во всей комплексной плоскости. По теореме 5.7 Лиувилля g(z) ≡ const, но поскольку
g(z) → 0 при z →∞, то g(z) ≡ 0. В результате приходим к равенству

π2

sin2 πz
=

∞
∑
n=−∞

1

(z − n)2

Вернемся теперь к мероморфной функции с простыми полюсами и вычетами 1 в целых
точках. Ее главные части представляют собой функции

1

z − n
= − 1

n
− z

n2
− z

2

n3
− . . . (∣z∣ < n,n ≠ 0, n ∈ Z)

125



3.1.17 Meromorphic Functions

Добавление постоянного слагаемого 1/n приводит к локально равномерно сходящемуся
ряду и потому корректно определена мероморфная функция

f(z) = 1

z
+ ∑
n≠0
( 1

z − n
+ 1

n
) = 1

z
+ ∑
n≠0

z

n(z − n)
= 1

z
+
∞
∑
n=1

2z

z2 − n2
.

По теореме 12.1 Вейерштрасса этот ряд можно почленно дифференцировать, что
приводит к равенству

f ′(z) = − 1

z2
− ∑
n≠0

1

(z − n)2
= d

dz
(π ctgπz)

Следовательно,

f(z) − π ctgπz ≡ const

Однако слева стоит нечетная функция и константа должна равняться нулю. Таким
образом

π ctgπz = 1

z
+ ∑
n≠0
( 1

z − n
+ 1

n
) = 1

z
+ ∑
n≠0

z

n(z − n)
= 1

z
+
∞
∑
n=1

2z

z2 − n2

Для мероморфных функций имеет место аналог теоремы Пикара: Мероморфная
функция, отличная от постоянной, принимает все комплексные значения, за
исключением, быть может, двух". Заметим, что функция tg z является мероморфной и
не принимает значений ±i.

Бесконечные произведения.

Целые функции образуют подмножество в классе всех мероморфных функций. Если
целая функция g не обращается в нуль, то в C выделяется регулярная ветвь h(z) = ln g(z),
которая также является целой функцией. При этом g(z) = eh(z). Обратно, для любой целой
функции h равенство g(z) = eh(z) определяет целую функцию, которая не обращается в
нуль в C. Если теперь у двух целых функций g1 и g2 совпадают нули (с учетом их
кратностей), то отношение g2(z)/g1(z) будет целой функцией, не имеющей в C нулей.
Следовательно, g2(z) = g1(z)eh(z), где h - целая функция. Построение целой функции с
заданными нулями естественно осуществить в виде произведения.

Опр.

15.2. Пусть {an} - последовательность комплексных чисел. Будем говорить, что
произведение

∞
∏
n=1
(1 + an)

сходится, если существует предел последовательности частичных произведений
∏n
k=1 (1 + ak). Будем также говорить что произведение (15.2) сходится абсолютно, если

сходится ряд
∞
∑
n=1
∣an∣.

ПРеДЛОЖЕНИЕ 15.1. Если ряд
∞
∑
n=1
∣an∣ сходится, то произведение (15.2) сходится.

Кроме того, абсолютно сходящееся произведение сходится нулю в том и только том
случае, если хотя бы один из множителей (1 + an) равен нулю.

Proof.
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Допустим, что ряд
∞
∑
n=1
∣an∣ сходится, и пусть

Pn =
n

∏
k=1
(1 + ak)

● частичное произведение. Необходимое условие сходимости ряда влечет an → 0 при
n → ∞. Поэтому найдется такой номер N , что ∣an∣ < 1/2 при n ⩾ N . B единичном круге
∣z∣ < 1 определена голоморфная функция

ln(1 + z) =
∞
∑
n=1

(−1)n−1
n

zn

и для k ⩾ N определены значения ln (1 + ak). Далее, для n > N частичные произведения
можно представить в виде

Pn = PN
n

∏
k=N+1

(1 + ak) = PNeSn

где Sn =
n

∑
k=N+1

ln (1 + ak). Непосредственно из разложения ln(1 + z) в степенной ряд
видно, что

∣ ln(1 + z)∣ = ∣
∞
∑
n=1

(−1)n−1
n

zn∣ ⩽
∞
∑
n=1
∣z∣n = ∣z∣

1 − ∣z∣
⩽ 2∣z∣

при ∣z∣ < 1/2. Следовательно, при k ⩾ N выполняются неравенства

∣ln (1 + ak)∣ ⩽ 2 ∣ak∣
что влечет существование предела

S = lim
n→∞

Sn =
∞
∑

n=N+1
ln (1 + an) .

В силу непрерывности функции ez приходим к равенству

lim
n→∞

Pn = PNeS

из которого следует доказываемое утверждение.
ПРеДЛОЖение 15.2. Пусть {φn} - последовательность голоморфных в области D

функиий и числовая последовательность {αn} такие, что αn > 0,
∞
∑
n=1

αn < ∞u ∣φn(z) − 1∣ ⩽
αn∂Ω всех n = 1,2, . . . uz ∈D. Тогда имеют место следующие утверждения.

(i) Произведение ∏∞n=1φn(z) сходится равномерно в D к некоторой голоморфной
функции φ(z).

(ii) Eсли φn(z) ≠ 0 при всех z ∈D и n = 1,2, . . ., mо φ(z) ≠ 0 в Du

φ′(z)
φ(z)

=
∞
∑
n=1

φ′n(z)
φn(z)

Proof.

Для доказательства (i) заметим, что при каждом z ∈ D мы можем применить
предыдущее предложение, положив φn(z) = 1 + an(z), где ∣an(z)∣ ⩽ αn. Поскольку
последнее неравенство выполняется для всех z ∈D, то произведение

∞
∏
n=1

φn(z) =
∞
∏
n=1
(1 + an(z))
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сходится равномерно в D к некоторой функции φ(z). В силу теоремы Вейерштрасса
φ является голоморфной в D функцией.

Для доказательства (ii) фиксируем произвольно компактное подмножество K ⊂ D.
Пусть Pn(z) = ∏n

k=1φk(z) - частичное произведение. По теореме Вейерштрасса
P ′n(z) → φ′(z) равномерно на K, поскольку Pn(z) → φ(z) локально равномерно в D. По
предположению φn(z) ≠ 0 при n = 1,2, . . . и z ∈D. Это влечет φ(z) ≠ 0 при z ∈D. Но тогда

min
z∈K
∣φ(z)∣ > 0

и P ′n(z)/Pn(z) → φ′(z)/φ(z) равномерно на K. Замечая теперь, что

P ′n(z)
Pn(z)

=
n

∑
k=1

φ′k(z)
φk(z)

приходим к требуемому утверждению.
ПРеДЛожение 15.3. Пусть {an} - последовательность ненулевых комплексных чисел

такая, что ряд
∞
∑
n=1

1/ ∣an∣2 сходится. Тогда бесконечное произведение

∞
∏
n=1
(1 − z

an
) ez/an

сходится для всех z ∈ C и представляет собой целую функцию, которая обращается в
нуль только в точках an.

Proof.

Заметим вначале, что для ζ ∈ C, ∣ζ ∣ ⩽ 1, выполняется неравенство

∣(1 − ζ)eζ − 1∣ ⩽ ∣ζ ∣2

Действительно,

∣(1 − ζ)eζ − 1∣ = ∣ζ ∣2 ∣
∞
∑
n=1
( 1
n! −

1
(n+1)!) ζn−1∣ ⩽ ∣ζ ∣2

∞
∑
n=1
( 1
n! −

1
(n+1)!) = ∣ζ ∣2.

Фиксируем теперь произвольно R > 0. В силу того, что ряд
∞
∑
n=1

1/ ∣an∣2 сходится, an →∞
при n → ∞. Следовательно, найдется номер N такой, что R/ ∣an∣ < 1 при n ⩾ N . Но тогда
для всех z ∈ C, ∣z∣ ⩽ R, и n ⩾ N будут выполняться неравенства

∣(1 − z

an
) ez/an − 1∣ ⩽ R2

∣an∣2
.

Отсюда и из предложения 15.2 следует, что бесконечное произведение (15.3) сходится
и представляет собой голоморфную в круге ∣z∣ < R функцию. Поскольку R > 0 выбиралось
произвольным, то произведение (15.3) является целой функцией, которая обращается в
нуль только в точках an, n = 1,2, . . ..

В качестве приложения полученных результатов докажем равенство

sinπz

π
= z

∞
∏
n=1
(1 − z

2

n2
)

Proof.

Для удобства введем обозначения

f(z) = sinπz

π
, g(z) = z

∞
∏
n=1
(1 − z

2

n2
)
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Поскольку ряд
∞
∑
n=1

1/n2 сходится, то в силу предложения 15.2 произведение g(z)
является целой функцией и

g′(z)
g(z)

= 1

z
+
∞
∑
n=1

2z

z2 − n2

С другой стороны, f ′(z)/f(z) = π ctgπz и, учитывая представление для π ctgπz,
приходим к равенству

(f(z)
g(z)

)
′

= f(z)
g(z)

(f
′(z)
f(z)

− g
′(z)
g(z)

) = 0.

Таким образом, f(z) = cg(z), где c - некоторое число. Однако

lim
z→0

f(z)
z
= lim
z→0

g(z)
z
= 1

и равенство (15.4) доказано. 15.3. Гамма-функция. Рассмотрим задачу отыскания
мероморфной функции f , которая была бы продолжением факториала в комплексную
плоскость. Ее свойства выражаются равенствами

f(1) = 1, f(z + 1) = zf(z)

Из этих равенств сразу же следует, что zf(z) → 1 при z → 0, т. е. f должна иметь
простой полюс в точке z = 0 с вычетом 1. Применяя второе равенство в (15.5)n + 1 раз,
получаем

(z + n)f(z) = f(z + n + 1)
z(z + 1) ⋅ . . . ⋅ (z + n − 1)

откуда следует, что

(z + n)f(z) → (−1)n/n!

при z → −n. Таким образом, если мероморфная функция f удовлетворяет равенствам
(15.5), то она должна иметь простые полюсы в точках z = −n, n = 0,1,2, . . ., с вычетами
(−1)n/n !. С другой стороны, функция g(z) = 1/f(z) должна иметь простые нули в точках
z = −n,n = 0,1,2, . . . и удовлетворять функциональному уравнению

g(1) = 1, g(z) = zg(z + 1)

Поиск такой целой функции g с учетом предложения 15.3 естественно приводит к
равенству

g(z) = eh(z)z
∞
∏
n=1
(1 + z

n
) e−z/n

где h - целая функция, которую нужно выбрать с учетом равенств (15.6). В частности,
из (15.6) сразу же следует

lim
z→0

g(z)
z
= g(1) = 1

что влечет условие eh(0) = 1.
Чтобы выяснить условия на h, которые гарантировали бы выполнение второго

равенства в (15.6), введем в рассмотрение функции
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gn(z) = eh(z)z
n

∏
k=1
(1 + z

k
) e−z/k = 1

n!
exp{h(z) − z

n

∑
k=1

1

k
}

n

∏
k=0
(z + k)

n = 1,2, . . . Замечая, что

zgn(z + 1)
gn(z)

= (z + n + 1) exp{h(z + 1) − h(z) −
n

∑
k=1

1

k
}

= (1 + z + 1
n
) exp{h(z + 1) − h(z) + lnn −

n

∑
k=1

1

k
}

приходим к соотношению

1 = zg(z + 1)
g(z)

= lim
n→∞

zgn(z + 1)
gn(z)

= exp{h(z + 1) − h(z) − γ}

где

γ ∶= lim
n→∞
(
n

∑
k=1

1

k
− lnn) = 0,5772 . . .

● постоянная Эйлера. Таким образом, функция h должна удовлетворять условиям

exph(0) = 1, exp{h(z + 1) − h(z) − γ} = 1
Простейшей такой функцией является h(z) = γz.

Опр.

15.3. Мероморфная функция

Γ(z) = e−γz 1
z

∞
∏
n=1
(1 + z

n
)
−1
ez/n

называется гамма-функцией.
Из определения и проведенных выше рассуждений видно, что Γ(z) имеет простые

полюсы в точках z = −n,n = 0,1,2, . . ., с вычетами (−1)n/n ! и удовлетворяет
функциональному уравнению

Γ(1) = 1, Γ(z + 1) = zΓ(z)
В частности, Γ(n) = (n − 1 !) для натуральных n. Kроме того, при z = x вещественном

и положительном Γ(x) > 0.
Используя теперь равенства

Γ(z) = 1

g(z)
= lim
n→∞

1

gn(z)
где функции g и gn определяются формулами (15.7) и (15.8) с h(z) = γz, получим

дополнительно некоторые соотношения для гамма-функции и некоторые ее
представления, которые восходят к Эйлеру и Гауссу. Непосредственно из (15.7) с
h(z) = γz следует равенство

g(z)g(−z) = −z2
∞
∏
n=1
(1 − z

2

n2
) = −z sinπz

π

С другой стороны, в силу второго равенства в (15.6) имеем g(−z) = −zg(1 − z) и
следовательно
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g(1 − z)g(z) = sinπz

π

Это равенство в терминах гамма-функции известно как формула Эйлера и
записывается в виде

Γ(1 − z)Γ(z) = π

sinπz

Полагая в (15.9)z = 1/2, получаем Γ(1/2) =
√
π. Отсюда с использованием

функционального уравнения для гамма-функции выводятся более общие равенства

Γ(1
2
+ n) =

√
π
n−1
∏
k=0
(k + 1

2
)

n = 1,2, . . .
Далее, преобразуя функции gn из (15.8) с h(z) = γz к виду

gn(z) =
1

n!
exp{z (γ −

n

∑
k=1

1

k
)}

n

∏
k=0
(z + k)

= 1

n!nz
exp{z (γ + lnn −

n

∑
k=1

1

k
)}

n

∏
k=0
(z + k)

где nz = ez lnn, приходим к представлению Гаусса для гамма-функции

Γ(z) = lim
n→∞

n!nz

z(z + 1) ⋅ . . . ⋅ (z + n)
Если Re z = x > 0, то из представления (15.10) следует неравенство

∣Γ(z)∣ ⩽ Γ(x)

поскольку ∣nz ∣ = nx и ∣z + k∣ ⩾ x + k. В частности, из этого неравенства следует, что
ограничена в каждой полосе α ⩽ Re z ⩽ β,0 < α < β < ∞.

Для получения интегрального представления гамма-функции рассмотрим

F (z) =
∞

∫
0

tz−1e−tdt

где tz−1 = e(z−1) ln t, ln t ∈ R. Интеграл, определяющий функцию F (z), является
несобственным. Поэтому вначале исследуем его на сходимость. Пусть 0 < α < β < ∞ и

S(α,β) = {z ∈ C ∶ α < Re z < β}

Для z ∈ S(α,β) и t ∈ (0,∞) выполняется неравенство

∣tz−1e−t∣ = tRe z−1e−t ⩽Mα,β(t)

где

Mα,β(t) = {
tα−1 при 0 < t < 1,

tβ−1e−t при 1 ⩽ t < ∞.

Поскольку интеграл
∞
∫
0

Mα,β(t)dt сходится, то в силу критерия Коши интеграл в (15.11)

сходится абсолютно и равномерно в полосе S(α,β). При этом
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F (z) = lim
n→∞

Fn(z), Fn(z) =
n

∫
1/n

tz−1e−tdt

Далее, из непрерывности функции Φ(z, t) = tz−1e−t следует непрерывность Fn(z) в
полосе S(α,β). Кроме того, если ∆ - треугольник, расположенный в S(α,β), и ∂∆ -
его положительно ориентированная граница, то учитывая голоморфность функции tz−1 в
S(α,β), получаем

∫
∂∆

Fn(z)dz = ∫
∂∆

⎛
⎜
⎝

n

∫
1/n

tz−1e−tdt
⎞
⎟
⎠
dz =

n

∫
1/n

⎛
⎝∫
∂∆

tz−1dz
⎞
⎠
e−tdt = 0.

Следовательно, по теореме 5.4 Морера функции Fn, n = 1,2, . . ., голоморфны в полосе
S(α,β).

Покажем теперь, что Fn(z) → F (z) при n → ∞ равномерно в полосе S(α,β). Пусть
m,n - два натуральных числа и m < n. Тогда для z ∈ S(α,β) имеем

∣Fn(z) − Fm(z)∣ =
RRRRRRRRRRR

1/m

∫
1/n

tz−1e−tdt +
n

∫
m
tz−1e−tdt

RRRRRRRRRRR
⩽

1/m

∫
1/n

Mα,β(t)dt +
n

∫
m
Mα,β(t)dt.

Отсюда и из сходимости интеграла
∞
∫
0

Mα,β(t)dt следует равномерная сходимость

последовательности {Fn(z)} в полосе S(α,β). Но тогда по теореме 12.1 Вейерштрасса
функция F (z) является голоморфной в S(α,β) как локально равномерный предел
последовательности голоморфных функций. Поскольку в проведенных выше
рассуждениях α и β выбирались произвольно, то интеграл в (15.11) определяет
голоморфную в правой полуплоскости Re z > 0 функцию F (z)

Theorem

15.2. Для всех z из правой полуплоскости Re z > 0 имеет место равенство

Γ(z) =
∞

∫
0

tz−1e−tdt

Поскольку функция F (z) из (15.11) и гамма-функция голоморфны в правой
полуплоскости, то в силу теоремы 6.2 единственности достаточно доказать равенство
F (x) = Γ(x) при x > 1. Фиксируем x > 1 и заметим, что интегрирование по частям n + 1
раз приводит к равенству

n

∫
0

(1 − t
n
)
n

tx−1dt = nx
1

∫
0

(1 − s)nsx−1ds = n!nx

x(x + 1) ⋅ . . . ⋅ (x + n)
.

Отсюда и из представления (15.10) равенство F (x) = Γ(x) будет следовать, если
показать, что

lim
n→∞

n

∫
0

(1 − t
n
)
n

tx−1dt =
∞

∫
0

e−ttx−1dt

Пусть

φn(t) = {
(1 − t

n
)n при 0 ⩽ t ⩽ n

0 при t > n
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Поскольку функция φn(t)et является невозрастающей на [0,∞) (на это указывает знак
производной) и принимает значение 1 при t = 0, то 0 ⩽ φn(t) ⩽ e−t при t ⩾ 0. Следовательно,
φn(t)tx−1 ⩽ e−ttx−1 при всех t ⩾ 0 и n = 1,2, . . . Но тогда по теореме Лебега о мажорируемой
сходимости

lim
n→∞

∞

∫
0

φn(t)tx−1dt =
∞

∫
0

e−ttx−1dt

что эквивалентно (15.11), и
теорема доказана.

Замечание

15.1. Для α > 0 интеграл

∞

∫
0

e−x
α

dx

сходится. Выполняя в нем замену переменной x = t1/α, приходим к равенству

∞

∫
0

e−x
α

dx = 1

α
Γ( 1

α
)

В частности, при α = 2 получаем

∞

∫
0

e−x
2

dx =
√
π

2

Используя равенство (15.13), вычисляется интеграл Френеля

∞

∫
0

eit
2

dt =
∞

∫
0

cos t2dt + i
∞

∫
0

sin t2dt

который нам понадобится в дальнейшем. Рассмотрим замкнутый контур ΓR = LR +
γR − λR,R > 0, где

LR ∶ z(t) = t, 0 ⩽ t ⩽ R; λR ∶ z(t) = teiπ/4, 0 ⩽ t ⩽ R;
γR ∶ z(t) = Reit, 0 ⩽ t ⩽ π/4.

Поскольку f(z) = eiz2 является целой функцией, то

∫
ΓR

f(z)dz = 0

при всех R > 0. Заметим также, что
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RRRRRRRRRRRRR
∫
γR

f(z)dz
RRRRRRRRRRRRR
= R
RRRRRRRRRRRRR

π/4

∫
0

eiR
2ei2teitdt

RRRRRRRRRRRRR

⩽ R
π/4

∫
0

e−R
2 sin 2tdt ⩽ R

π/4

∫
0

e−R
24t/πdt

= π

4R

R2

∫
0

e−θdθ = π

4R
(1 − e−R2)

и, следовательно,

lim
R→∞∫

γR

f(z)dz = 0

Но тогда поскольку

0 = ∫
ΓR

f(z)dz = ∫
LR

f(z)dz − ∫
λR

f(z)dz + ∫
γR

f(z)dz,

то

lim
R→∞∫

LR

f(z)dz = lim
R→∞∫

λR

f(z)dz

Это эквивалентно равенству

∞

∫
0

eit
2

dt = eiπ/4
∞

∫
0

e−t
2

dt

из которого с учетом равенства (15.13) получаем

∞

∫
0

eit
2

dt =
√
π

2
eiπ/4

В частности,

∞

∫
0

cos t2dt =
∞

∫
0

sin t2dt =
√
2π

4

3.1.18 Harmonic Functions and the Dirichlet Problem

Напомним, что под гармонической в области D функцией понимается
вещественнозначная дважды непрерывно дифференцируемая функция
u(z) = u(x, y), z = x + iy, удовлетворяющая уравнению Лапласа

∆u = ∂
2u

∂x2
+ ∂

2u

∂y2
= 0

В силу линейности оператора Лапласа линейная комбинация двух гармонических
функций также является гармонической функцией. Ранее было показано, что если
f(z) = u(z) + iv(z) является голоморфной в области D функцией, то вещественная часть
u(z) = u(x, y) и мнимая часть v(z) = v(x, y) представляют собой гармонические в области
D функции.
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Theorem

16.1. Пусть D - односвязная область. Тогда для всякой гармонической в D функции
и(z) найдется такая голоморфная в D функция f(z), что u(z) = Re f(z) для всеx z ∈D.

Proof.

Определим в области D функцию g посредством равенства

g(z) = ∂u
∂x
(z) − i∂u

∂y
(z),

z = x + iy. Поскольку функция u(z) = u(x, y) является дважды непрерывно
дифференцируемой, то комплекснозначная функция g дифференцируема в вещественном
смысле. Кроме того, вещественная и мнимая части функции g(z) удовлетворяют
условиям Коши- Римана, что является следствием гармоничности функции u(z).
Следовательно, функция g(z) является дифференцируемой в комплексном смысле, т. е.
голоморфна в области D. В силу того, что D является односвязной областью, для
функции g(z) существует первообразная f(z) в этой области. Используя аддитивную
константу, первообразную f(z) = U(z) + iV (z) можно выбрать так, чтобы для некоторой
точки z0 ∈D выполнялось равенство U (z0) = u (z0). Из представления производной

f ′(z) = U ′x(z) − iU ′y(z)

и равенства f ′(z) = g(z) следует, что у функций U(z) и u(z) частные производные по
x и по y совпадают. Это вместе с равенством U (z0) = u (z0) влечет тождество U(z) ≡ u(z).
Таким образом,

u(z) = U(z) = Re f(z)

и теорема доказана.

СЛедСтвие 16.1. Всякая гармоническая в произволъной области D функция (z) = u(x, y)
является бесконечно дифференцируемой.

Proof.

Пусть z0 - произвольная точка области D. В силу того, что D - открытое множество,
найдется r > 0 такое, что Or (z0) ⊂ D. Поскольку круг Or (z0) представляет собой
односвязную область, то найдется голоморфная в Or (z0) функция f(z), для которой
Re f(z) = u(z) при z ∈ Or (z0). Таким образом, бесконечная дифференцируемость
функции u(z) = u(x, y) (по x и по y) следует из бесконечной дифференцируемости
голоморфной функции f(z).

В одномерном случае уравнение Лапласа сводится к равенству нулю второй
производной. Решениями этого уравнения являются функции вида u(x) = ax + b. Ряд
свойств гармонических функций аналогичен свойствам линейных функций.

Theorem

16.2. [Принцип экстремума.] Непостоянная гармоническая в области D функция и(z)
не может достигать локального максимума или минимума во внутренней точке области.

Proof.
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Допустим, что u (z0) является наибольшим (или наименьшим) значением функции
u(z) в некоторой окрестности Or (z0) ⊂ D. По предыдущей теореме найдется такая
голоморфная в Or (z0) функция f , для которой Re f(z) = u(z) при z ∈ Or (z0). Но тогда
по принципу экстремума для вещественной части голоморфной функции f(z) ≡ const в
Or (z0). Следовательно, и u(z) ≡ const в Or (z0). Чтобы распространить это на всю
область D, снова рассмотрим функцию

g(z) = ∂u
∂x
(z) − i∂u

∂y
(z)

которая определена и голоморфна во всей области D. Однако в Or (z0) имеет место
равенство g(z) = f ′(z) = 0. По теореме единственности для голоморфных функций g(z) ≡ 0
в D. Следовательно, у функции u(x, y) частные производные u′x, u′y тождественно равны
нулю во всей области D. Это значит, что u(z) ≡ const в D и

теорема доказана.
Из принципа экстремума сразу же следуют два варианта теоремы единственности

для гармонических функций. Заметим при этом, что поскольку разность двух
гармонических функций также является гармонической функцией, то условие
совпадения двух гармонических функций можно сформулировать в виде условий
равенства нулю гармонической функции.

Theorem

16.3. [Единственности.] Пусть и(z) - гармоническая в области D функция и въполнено
одно из условий:

(i) u(z) = 0 в некоторой окрестности Or (z0) ⊂D;
(ii) область D ограничена, а функция и(z) непрерьвно продолжается в замыкание D̄

области D и (z) = 0 при z ∈ ∂D.
Тогда u(z) ≡ 0 в области D.

Proof.

Допустим вначале, что выполнено условие (i). Это означает, что функция u(z)
достигает локального максимума (и минимума) в точке z0. Но в силу принципа
экстремума тогда гармоническая функция u(z) должна быть тождественно постоянной,
т. е. u(z) ≡ 0 в D.

Допустим теперь, что выполнено условие (ii). На ограниченном замкнутом множестве
D̄ непрерывная функция u(z) должна достигать своего максимума и минимума. Однако
в силу принципа экстремума максимум и минимум гармонической функции не может
достигаться во внутренних точках области, если u(z)�≡ const. Поскольку на границе ∂D
функция u(z) принимает только одно значение, равное нулю, то u(z) ≡ 0 в области D и

теорема доказана.

Замечание

16.1. Утверждение теоремы о том, что из условия (i) следует тождественное
обращение в нуль гармонической в области D функции, называют внутренней теоремой
единственности. Действительно, если две гармонические функции u1(z) и u2(z)
совпадают в некоторой окрестности Or (z0) ⊂ D, то их разность u(z) = u1(z) − u2(z)
должна быть тождественным нулем в области D, т. е. u1(z) ≡ u2(z) в D.
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Замечание

16.2. Утверждение теоремы о том, что из условия (ii) следует тождественное
обращение в нуль гармонической в области D функции, дает теорему единственности
решения задачи Дирихле. Под классической задачей Дирихле понимается задача
отыскания гармонической в области D и непрерывной в замыкании D̄ функции u(z) по
заданным граничным значениям.

Пример. В связи с различными обобщениями задачи Дирихле полезно рассмотреть
следующий пример гармонической в единичном круге D функции, которая непрерывно
продолжается во все точки единичной окружности T, за исключением одной ζ = 1. Пусть
L(z) = (1 + z)/(1 − z) - дробно-линейное преобразование единичного круга на правую
полуплоскость. Точка ζ = 1 переходит в бесконечно удаленную точку. Вещественная
часть

u(z) = ReL(z) = 1 − ∣z∣2
∣1 − z∣2

является гармонической в D функцией и принимает нулевые значения на T/ {1}.
Из отображающих свойств L(z) видно, что линиями уровня функции u(z) являются
окружности, которые касаются единичной окружности T в точке ζ = 1

Следующий результат с учетом теоремы Каратеодори позволяет редуцировать задачу
Дирихле с произвольной односвязной области D, ограниченной жордановой кривой, на
единичный круг.

Theorem

16.4. [Конформная инвариантность.] Пусть и(z)-гармоническая в области G функция,
а f(z) является голоморфной в области D и принимает значения из G, m.e. f(D) ⊂ G.
Тогда v(z) = u(f(z)) является гармонической в области D функиией.

Proof.

Если f(z) ≡ const, то и v(z) ≡ const, т. е. является гармонической функцией. Допустим
теперь, что f(z)�≡ const. Фиксируем произвольно точку z0 ∈ D и пусть w0 = f (z0). В
силу принципа открытости (или сохранения области) найдется ϱ > 0 такое, что Oϱ (w0) ⊂
f(D). Поскольку Oϱ (w0) является односвязной областью, то найдется голоморфная в ней
функция g(w), для которой Re g(w) = u(w) при всех w ∈ Oϱ (w0). В силу непрерывности f
найдется r > 0 такое, что Or (z0) ⊂D и f (Or (z0)) ⊂ Oϱ (w0). Но тогда в окрестности Or (z0)
будет выполняться равенство v(z) = Re g(f(z)). Таким образом, функция v(z) является
гармонической в окрестности Or (z0), поскольку в этой окрестности она представима как
вещественная часть голоморфной функции. Поскольку z0 выбиралось произвольно, то
v(z) гармонична в области D и

теорема доказана.
Доказанная т. чаще всего применяется в случае, когда f является конформным

отображением. Этим объясняется ее название. Гармонические функции обладают также
важным свойством среднего значения, которое используется при численном
моделировании.
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Theorem

16.5. [О среднем.] Пусть и(z)-гармоническая в круге Or (z0)u непрерывная в
замыкании Or (z0) функция. Тогда

u (z0) =
1

2π

2π

∫
0

u (z0 + reiθ)dθ =
1

2π ∫
T

u (z0 + rζ) ∣dζ ∣

где T - положителъно ориентированная единичная окружность.

Proof.

Вначале заметим, что в силу односвязности круга найдется такая голоморфная в
Or (z0) функция f(z), что Re f(z) = u(z) при всех z ∈ Or (z0). Для каждого ϱ ∈ (0, r)
применима интегральная формула Коши, согласно которой

f (z0) =
1

2πi ∫
γϱ

f(ζ)
ζ − z0

dζ

где γϱ - положительно ориентированная окружность ∣ζ − z0∣ = ϱ. Используя
параметризацию γϱ ∶ ζ = z0 + ϱeiθ,0 ⩽ θ ⩽ 2π, равенство выше можно переписать в виде

f (z0) =
1

2π

2π

∫
0

f (z0 + ϱeiθ)dθ

Отделяя в обеих частях этого равенства вещественную часть, получаем

u (z0) =
1

2π

2π

∫
0

u (z0 + ϱeiθ)dθ

В силу непрерывности функции u(z) в замкнутом круге ∣z − z0∣ ⩽ r в интеграле можно
осуществить предельный переход при ϱ↗ r, что приводит к утверждению теоремы.

Theorem

16.6. [Формула Пуассона.] Пусть и(z) - гармоническая в единичном круге D и
непрерьвная в его замыкании D функиия. Тогда для всех a ∈ D выполняется равенство

u(a) = 1

2π

2π

∫
0

1 − ∣a∣2

∣eiθ − a∣2
u (eiθ)dθ = 1

2π ∫
T

1 − ∣a∣2
∣κ − a∣2

u(κ)∣dκ∣.

Proof.

В случае a = 0 равенство (16.1) выражает теорему о среднем. Допустим теперь, что
a ≠ 0 и рассмотрим дробно-линейное преобразование

L(z) = z − a
1 − āz

которое конформно отображает единичный круг D на себя и L(a) = 0. Определим
функцию v(z) = u ○ L−1(z). В силу конформной инвариантности свойства гармоничности
функция v(z) также будет гармонической в D. Кроме того, она будет непрерывна в D и
v(0) = u(a). Поэтому, применяя теорему о среднем к функции v(z), получаем
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u(a) = v(0) = 1

2π ∫
T

u (L−1(ζ)) ∣dζ ∣

Выполним в интеграле замену переменной

κ = L−1(ζ), ζ = L(κ), dζ = L′(κ)dκ

и перепишем полученное равенство в виде

u(a) = 1

2π ∫
T

u(κ) ∣L′(κ)∣ ∣dκ∣ = 1

2π ∫
T

u(κ) 1 − ∣a∣2
∣1 − āκ∣2

∣dκ∣.

Поскольку при κ ∈ T имеет место равенство

∣1 − āκ∣ = ∣κ̄ − ā∣ = ∣κ − a∣

то полученное соотношение для u(a) эквивалентно (16.1).
Равенство (16.1) известно как формула Пуассона, которая восстанавливает

гармоническую в D и непрерывную в D функцию u(z) по ее значениям на границе T.
Таким образом, формула Пуассона дает конструктивное решение классической задачи
Дирихле для единичного круга D, если известно, что решение существует. Далее мы
покажем, что для любой непрерывной на T функции задача Дирихле разрешима. Мы
докажем разрешимость даже более общей задачи, когда на границе T задается не
обязательно непрерывная функция.

Интеграл Пуассона.

Пусть φ - интегрируемая (абсолютно по Риману или по Лебегу) на T
вещественнозначная функция. Тогда для z ∈ D определен интеграл

P (z;φ) = 1

2π

2π

∫
0

1 − ∣z∣2

∣eiθ − z∣2
φ (eiθ)dθ = 1

2π ∫
T

1 − ∣z∣2
∣κ − z∣2

φ(κ)∣dκ∣,

который называется интегралом Пуассона с плотностью φ. Выражение

(1 − ∣z∣2) /∣κ − z∣2

называют ядром Пуассона. Легко видеть, что для z ∈ D и κ ∈ T имеет место равенство

1 − ∣z∣2
∣κ − z∣2

= Re κ + z
κ − z

Выражение (κ+z)/(κ−z) называют ядром Шварца и для плотности φ определен также
интеграл Шварца

S(z;φ) = 1

2π ∫
T

κ + z
κ − z

φ(κ)∣dκ∣

Связь

ReS(z;φ) = P (z;φ)

между интегралами Пуассона и Шварца с одной и той же плотностью позволяет
использовать методы теории аналитических функций при изучении свойств интеграла
Пуассона.
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Theorem

16.7.
Пусть φ - интегрируемая на единичной окружности T вещественнозначная функция.

Тогда S(z;φ) является голоморфной в единичном круге D функцией. Кроме того, если ч
обращается в нуль на некоторой открытой дуге γ ⊂ T, то S(z;φ) аналитически
продолжается через γ во внешность единичного круга и на γ функция S(z;φ) принимает
чисто мнимые значения.

Proof.

Пусть z0 - произвольная точка единичного круга D. Выберем r > 0, меньшим половины
расстояния от z0 до T. Поскольку

S(z;φ) − S (z0;φ) =
z − z0
π ∫

T

κφ(κ)
(κ − z) (κ − z0)

∣dκ∣,

то для z ∈ Ȯr (z0) имеет место следующее

RRRRRRRRRRRR

S(z;φ) − S (z0;φ)
z − z0

− 1

π ∫
T

κφ(κ)
(κ − z0)2

RRRRRRRRRRRR
dκ∣ = ∣z − z0∣

π ∫
T

κφ(κ)
(κ − z) (κ − z0)2

∣dκ∣ ∣

⩽ ∣z − z0∣
4πr3 ∫

T

∣φ(κ)∣∣dκ∣.

Отсюда следует комплексная дифференцируемость функции S(z;φ) в точке z0.
Поскольку z0 выбиралось произвольно, то голоморфность S(z;φ) в D доказана.

Пусть теперь φ(κ) = 0 на открытой дуге γ ⊂ T. Для любого z0 ∈ γ расстояние от z0 до
T/γ будет положительным и поскольку в этом случае

S(z;φ) = 1

2π ∫
T/γ

κ + z
κ − z

φ(κ)∣dκ∣

то рассуждения, аналогичные проведенным в случае z0 ∈ D, приводят к непрерывности
и комплексной дифференцируемости функции S(z;φ) на дуге γ. Кроме того, поскольку

Re
κ + z
κ − z

= 1 − ∣z∣2
∣κ − z∣2

= 0

при z ∈ γ и κ ∈ T/γ, то ReS(z;φ) = 0 на γ. Аналитическое продолжение S(z;φ) через
дугу γ следует из принципа симметрии Римана- Шварца.

теорема доказана.
Следствие 16.2. Для любой интегрируемой плотности ч интеграл Пуассона P (z;φ)

является гармонической в единичном круге D функцией, а если плотность φ обращается
в нуль на некоторой открытой дуге γ ⊂ T, то P (z;φ) гармонически продолжается через
γ во внешность единичного круга и P (z;φ) = 0 npu z ∈ γ Отметим три важных свойства
интеграла Пуассона.
● Линейность. P (z;φ1 + φ2) = P (z;φ1) + P (z;φ2) , P (z;αφ) = αP (z;φ), где φ,φ1, φ2 -

плотности, а α - число.
● Монотонность. Если φ(κ) ⩾ 0 для всех κ ∈ T, то P (z;φ) ⩾ 0 для всех z ∈ D.
● P (z; 1) ≡ 1 и infκ∈Tφ(κ) ⩽ P (z;φ) ⩽ supκ∈Tφ(κ).

Proof.
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Линейность является следствием свойств интеграла.
Для доказательства монотонности заметим, что ядро Пуассона

1 − ∣z∣2
∣κ − z∣2

= Re κ + z
κ − z

представляет собой неотрицательную функцию на T при всех z ∈ D. Поэтому,
умножая ядро Пуассона на неотрицательную плотность φ(κ), получим в результате
интегрирования по T неотрицательную функцию от z в D.

Приступая к доказательству третьего свойства, заметим сразу же, что равенство
P (z; 1) ≡ 1 является следствием интегральной формулы Пуассона для гармонической
функции u(z) ≡ 1. Пусть теперь

α = inf
κ∈T

φ(κ), β = sup
κ∈T

φ(κ)

Тогда в силу свойств монотонности и линейности получаем

α ≡ P (z;α) ⩽ P (z;φ) ⩽ P (z;β) ≡ β

Theorem

16.8. Пусть - - функция, интегрируемая на T и непрерывная в точке κ0 ∈ T. Тоддa

lim
z→κ0

P (z;φ) = φ (κ0)

Proof.

Фиксируем произвольно ε > 0 и выберем дугу γ ⊂ T с центром в точке κ0 так, чтобы
для всех κ ∈ γ выполнялось неравенство

∣φ(κ) − φ (κ0)∣ < ε/2

Это можно сделать в силу непрерывности φ в точке κ0. Определим на T две плотности

φ1(κ) = {
φ(κ) − φ (κ0) при κ ∈ γ,

0 при κ ∈ T/γ
и

φ2(κ) = {
0 при κ ∈ γ,

φ(κ) − φ (κ0) при κ ∈ T/γ

Поскольку P (z;φ (κ0)) ≡ φ (κ0), то

P (z;φ) − φ (κ0) = P (z;φ1) + P (z;φ2)

Заметим теперь, что P (z;φ2) непрерывно продолжается на дугу γ и обращается на
ней в нуль. Следовательно, найдется такое δ > 0, что

∣P (z;φ2)∣ < ε/2 при ∣z −κ0∣ < δ.

Кроме того, из свойств интеграла Пуассона следует также, что

∣P (z;φ1)∣ ⩽ sup
κ∈γ
∣φ(κ) − φ (κ0)∣ ⩽

ε

2
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Таким образом, для любого z ∈ D, удовлетворяющего условию ∣z −κ0∣ < δ выполняется
неравенство

∣P (z;φ) − φ (κ0)∣ ⩽ ∣P (z;φ1)∣ + ∣P (z;φ2)∣ < ε

Доказанная

Theorem

показывает, что не только классическая задача Дирихле (отыскание гармонической
функции, которая на границе совпадала бы с заданной непрерывной функцией)
разрешима посредством конструкции интеграла Пуассона для единичного круга D, но и
более общая задача, когда заданная на T функция φ не является непрерывной. В
частности, можно рассмотреть случай кусочно-непрерывной граничной функции φ.

Задача Дирихле для кусочно-непрерывных граничных условий.

Пусть на единичной окружности T определена функция φ, которая непрерывна на T,
за исключением конечного числа точек κ1, . . . ,κm, в которых она терпит разрывы первого
рода.

Задача: найти ограниченную гармоническую в D функиию и(z), которая непрерывно
продолжается на D/K,K = {κ1, . . . ,κm}, и совпадает с на T/K

Решение этой задачи дает интеграл Пуассона с плотностью φ, т. е. u(z) = P (z;φ).
Докажем единственность решения поставленной задачи.

Допустим, что u1 и u2 - два решения. Тогда U(z) = u1(z) − u2(z) будет гармонической
в D и непрерывной на D/K функцией. При этом U(κ) = 0 при κ ∈ T/K. Нам нужно
показать, что U(z) ≡ 0 в D. Пусть

M = sup
z∈D
∣U(z)∣, d =min

i≠j
∣κi −κj ∣ , κk = eiθk , θk ∈ [0,2π), k = 1, . . . ,m.

Фиксируем произвольно ε,0 < ε < d/2, и определим дуги

γεk ∶ z(θ) = eiθ, θk −
ε

2
< θ < θk +

ε

2
, k = 1, . . . ,m.

Рассмотрим на T две плотности, определяемые равенствами

φ±ε (κ) = {
±M при κ ∈ Λε = ⋃mk=1 γεk,
0 при κ ∈ T/Λε.

Интегралы Пуассона с этими плотностями U±ε (z) = P (z;φ±ε )представляют собой
гармонические в D функции и удовлетворяют условиям U+ε (z) ⩾ 0, U−ε (z) ⩽ 0 при z ∈ D.

В силу принципа экстремума для гармонических функций U+ε (z) − U(z) ⩾ 0, U(z) −
U−ε (z) ⩾ 0 при z ∈ D. Действительно, если zn → κ ∈ T при n→∞, то

lim
n→∞
[U+ε (zn) −U (zn)] ⩾ 0

Для κ ∈ T/K это следует из того, что U (zn) → 0 при n → ∞, a U+ε (zn) ⩾ 0 при всех n.
В случае κ ∈K это следует из того, что U+ε (zn) →M при n→∞, a U (zn) ⩽M для всех n.
Следовательно, если

inf
z∈D
[U+ε (z) −U(z)] = α < 0

то можно выбрать подпоследовательность {zn} такую, что

142



3.1.19 Asymptotic Methods, Stationary Phase, Airy Function

lim
n→∞
[U+ε (zn) −U (zn)] = α

Из этой последовательности можно выбрать сходящуюся подпоследовательность {znj
}.

Ее предел z∗ не может принадлежать T, поскольку

lim
j→∞
[U+ε (znj

) −U (znj
)] = α < 0

Следовательно, z∗ ∈ D и в ней достигается минимум гармонической функции U+ε (z) −
U(z), что противоречит принципу экстремума. Таким образом, U+ε (z) ⩾ U(z) при всех
z ∈ D. Аналогично устанавливается, что U−ε (z) ⩽ U(z) при z ∈ D. C другой стороны, для
z ∈ D имеем

∣U±ε (z)∣ =
1

2π

RRRRRRRRRRRRRR

m

∑
k=1
∫
γε
k

1 − ∣z∣2
∣κ − z∣2

φ±ε (κ)∣dκ∣
RRRRRRRRRRRRRR
⩽ M
2π

1 + ∣z∣
1 − ∣z∣

m

∑
k=1
∫
γε
k

∣dκ∣ = M
2π

1 + ∣z∣
1 − ∣z∣

nε.

Но тогда и

∣U(z)∣ ⩽ εnM
2π

1 + ∣z∣
1 − ∣z∣

.

Поскольку ε выбиралось произвольно из промежутка (0, d/2), то в полученном
неравенстве можно осуществить предельный переход при ε → 0 и мы приходим к
равенству U(z) = 0.

Результаты, связанные с решением задачи Дирихле в единичном круге, можно
перенести с использованием теорем Римана и Каратеодори на области, ограниченные
жордановыми кривыми.
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Airy Function

Многие физические законы формулируются в терминах дифференциальных
уравнений. Однако часто решения возникающих очень естественно дифференциальных
уравнений не выражаются в элементарных функциях. Это побуждает к введению
специальных функций. Часто специальные функции вводятся как несобственные
интегралы, зависящие от параметра. Некоторые специальные функции
протабулированы, что позволяют делать современные компьютеры. С другой стороны,
исследование асимптотических свойств специальных функций требует развития
аналитических методов. В этом параграфе на примере функции Эйри будет рассмотрено
применение методов комплексного анализа для изучения асимптотических свойств
специальных функций.

Первоначально (1838 г.) функция Эйри возникла в его исследованиях задач оптики
(явление радуги) при решении дифференциального уравнения y′′ = xy. В 1928 г.
Джеффрис ввел сам термин "функция Эйри" и ее представление

Ai(x) = 1

π

∞

∫
0

cos(t
3

3
+ xt)dt

Замечая, что
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∞

∫
−∞

sin(t
3

3
+ xt)dt = 0

и, учитывая четность косинуса, функцию Эйри можно представить в комплексном
виде

Ai(s) = 1

2π

∞

∫
−∞

ei(t
3/3+st)dt

s ∈ R. Сходимость интеграла в (17.1) можно установить с использованием формулы
интегрирования по частям, но более полно раскрываются свойства функции Эйри с
выходом во всю комплексную плоскость и деформированием контура интегрирования.
Используя интегральную теорему Коши, представим функцию Эйри как интеграл от
функции

fs(z) = exp{i (z3/3 + sz)}

вдоль прямой Lδ ∶ z(t) = t + iδ,−∞ < t < ∞, где δ > 0 фиксировано.
Пусть R > 0 и

L1
R ∶ z(x) = x,−R ⩽ x ⩽ R; L2

R ∶ z(x) = x + iδ,−R ⩽ x ⩽ R
L3
R ∶ z(y) = −R + iy,0 ⩽ y ⩽ δ; L4

R ∶ z(y) = R + iy,0 ⩽ y ⩽ δ.
В силу интегральной теоремы Коши, примененной к прямоугольнику с положительно

ориентированной границей L1
R +L4

R −L2
R −L3

R, получаем равенство

∫
L1
R

fs(z)dz = ∫
L2
R

fs(z)dz + ∫
L3
R

fs(z)dz − ∫
L4
R

fs(z)dz.

Поскольку при 0 ⩽ y ⩽ δ выполняется неравенство

∣fs(±R + iy)∣ = exp{−sy +
1

3
y3 −R2y} ⩽ eδ∣s∣+δ3/3 ⋅ e−R2y

то

∫
L3
R

∣fs(z)∥dz∣ = ∫
L4
R

∣fs(z)∥dz∣ ⩽ eδ∣s∣+δ
3/3 ⋅

∞

∫
0

e−R
2ydy = 1

R2
eδ∣s∣+δ

3/3 → 0

при R →∞. Следовательно,

lim
R→∞∫

L1
R

fs(z)dz = lim
R→∞∫

L2
R

fs(z)dz = ∫
Lδ

fs(z)dz

Таким образом

Ai(s) = 1

2π ∫
Lδ

fs(z)dz

Если вместо вещественного s взять комплексное ζ, то для z = x + iδ на Lδ будет
выполняться неравенство

∣fζ(z)∣ = exp{δRe ζ +
δ3

3
− x Im ζ − δx2} ⩽ eδ∣ζ∣+δ3/3 ⋅ e∣ζ∣∣x∣−δx2 .
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Это означает, что на Lδ модуль ∣fζ(z)∣ очень быстро убывает при ∣x∣ → ∞. Поэтому
интеграл, определяющий Ai(ζ), быстро сходится и его можно дифференцировать по
параметру ζ. При этом

Ai′(ζ) = i

2π ∫
Lδ

zfζ(z)dz, Ai′′(ζ) = − 1

2π ∫
Lδ

z2fζ(z)dz

откуда следует

Ai′′(ζ) − ζAi(ζ) = − 1

2π ∫
Lδ

(z2 + ζ) fζ(z)dz

Замечая, что

d

dz
fζ(z) = i (z2 + ζ) fζ(z)

получаем

Ai′′(ζ) − ζAi(ζ) = i

2π ∫
Lδ

( d
dz
fζ(z))dz = 0

поскольку fζ(z) обращается в нуль при ∣z∣ → ∞ вдоль Lδ.
В результате мы получили, что функция Эйри удовлетворяет дифференциальному

уравнению

Ai′′(ζ) = ζAi(ζ)

Это во многом определяет важность функции Эйри в приложениях.

Метод Лапласа.

Прежде всего напомним некоторые термины: f(z) = o(g(z)) при z → ω, если f(z) =
α(z)g(z), где α(z) → 0 при z → ω; f(z) = O(g(z)) при z → ω, если f(z) = β(z)g(z), где
∣β(z)∣ ⩽K в некоторой окрестности точки ω.

Под интегралами Лапласа понимают интегралы вида

F (λ) =
b

∫
a

f(x)eλS(x)dx

где f(x), S(x) - действительные функции, которые называются амплитудной
функиией (или амплитудой) и фазовой функиией (или фазой), а λ - вещественный
параметр. Основной вопрос: асимптотика F (λ) при λ → ∞. Для упрощения
формулировок будем считать, что функции f(x) и S(x) бесконечно дифференцируемы,
хотя это не обязательно. Интеграл в (17.2) может быть несобственным как в связи с
неограниченностью подынтегрального выражения, так и в связи с тем, что либо a = −∞,
либо b = ∞, либо (a, b) = (−∞,∞).

Поскольку мы допускаем неограниченность промежутка интегрирования, то под
условием S S(x) достигает максимального значения на [a, b] в единственной точке
x0 ∈ (a, b) будем понимать выполнение неравенства

S (x0) > sup
∣x−x0∣⩾δ

S(x)
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для всех δ > 0. В основе метода Лапласа лежит наблюдение, что основной вклад в
асимптотику интеграла Лапласа дают лишь значения подынтегральной функции в малой
окрестности точки максимума фазовой функции.

Tеорема 17.1. Пусть S(x) достигает максимального значения на [a, b] в единственной
точке x0 ∈ (a, b) u S′′ (x0) < 0. Тогда если интеграл в (17.2) абсолютно сходится при
некотором λ = λ0, то он абсолютно сходится при вcex λ ⩾ λ0u

F (λ) = eλS(x0) ( K√
λ
+O (1

λ
))

npuλ∞, 2de

K = f (x0)
√

2π

−S′′ (x0)
.

Proof.

При λ > λ0 имеем

∣f(x)eλS(x)∣ = ∣f(x)∣eλ0S(x)e(λ−λ0)S(x) ⩽ e(λ−λ0)S(x0)∣f(x)∣eλ0S(x)

откуда следует сходимость интеграла в (17.2) при λ ⩾ λ0. Далее будем считать, что
λ >max{λ0,0}.

Из формулы Тейлора с учетом условия S′ (x0) = 0 следует равенство

S(x) − S (x0) =
1

2
S′′ (x0) (x − x0)2 + o ((x − x0)2) =

1

2
S′′ (x0) (x − x0)2 h(x)

где функция h также является бесконечно дифференцируемой и h (x0) = 1. В некоторой
окрестности точки x0 функция h(x) принимает положительные значения и потому в этой
окрестности определена функция

g(x) = (x − x0)
√
h(x)

Поскольку g (x0) = 0, g′ (x0) = 1, то существует окрестность точки x0, в которой g(x)
строго монотонно возрастает и, следовательно, найдется такое ε > 0, что на отрезке [−ε, ε]
определена функция φ(y), обратная к функции g(x), т. е. g(φ(y)) = y при y ∈ [−ε, ε].
Пусть x1 = φ(−ε), x2 = φ(ε). Заметим, что a < x1 < x2 < b, и представим F (λ) в виде

F (λ) = eλS(x0) (I1(λ) + I2(λ) + J(λ))

где

I1(λ) =
x1

∫
a

f(x)eλ[S(x)−S(x0)]dx, I2(λ) =
b

∫
x2

f(x)eλ[S(x)−S(x0)]dx

и

J(λ) =
x2

∫
x1

f(x)eλ[S(x)−S(x0)]dx

В силу сделанных предположений

sup{S(x) − S (x0) ∶ x ∈ (a, x1] ∪ [x2, b)} = −µ

где µ > 0. Поскольку при λ > λ0 выполняется неравенство
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λ [S(x) − S (x0)] = (λ − λ0) [S(x) − S (x0)] + λ0 [S(x) − S (x0)]
⩽ − (λ − λ0)µ − λ0S (x0) + λ0S(x),

To

∣I1(λ)∣ ⩽ e−λµeλ0(µ−S(x0))
x1

∫
a

∣f(x)∣eλ0S(x)dx

т. е. I1(λ) = O (e−µλ) при λ→∞. Аналогично получаем, что I2(λ) = O (e−µλ) при λ→∞.
Обозначим

1

2
S′′ (x0) = −σ, σ > 0

В этих обозначениях на промежутке [x1, x2] имеем

S(x) − S (x0) = −σ(g(x))2

Поскольку на [x1, x2] функция g(x) строго монотонно возрастает, то в интеграле J(λ)
можно выполнить замену переменной x = φ(y):

J(λ) =
ε

∫
−ε

f(φ(y))e−λσy2φ′(y)dy

= f (x0)
ε

∫
−ε

e−λσy
2

φ′(y)dy +
ε

∫
−ε
(f(φ(y)) − f (x0)) e−λσy

2

φ′(y)dy.

Из формулы Тейлора и условия φ(0) = x0 следует, что

f(φ(y)) − f (x0) = yf1(y), −ε ⩽ y ⩽ ε.
Аналогично с учетом равенства φ′(0) = 1 получаем

φ′(y) − 1 = yψ(y), −ε ⩽ y ⩽ ε.
Поэтому интеграл J(λ) можно записать в виде

J(λ) = f (x0)
ε

∫
−ε

e−λσy
2

dy +
ε

∫
−ε
[ψ(y) + φ′(y)f1(y)] e−λσy

2

ydy

Пусть

M = max
y∈[−ε,ε]

∣ψ(y) + φ′(y)f1(y)∣

Тогда

RRRRRRRRRRRR

ε

∫
−ε
[ψ(y) + φ′(y)f1(y)] e−λσy

2

ydy

RRRRRRRRRRRR
⩽M

ε

∫
−ε

e−λσy
2 ∣y∣dy

= 2M
ε

∫
0

e−λσy
2

ydy

= M
σλ

ε
√
σλ

∫
0

e−tdt

⩽ M
σ

1

λ
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т. е. второй интеграл в представлении J(λ) является O(1/λ). Первый интеграл в этом
представлении запишем в виде

ε

∫
−ε

e−λσy
2

dy =
∞

∫
−∞

e−λσy
2

dy − 2
∞

∫
ε

e−λσy
2

dy

Замечая, что

∞

∫
−∞

e−λσy
2

dy = 1√
λσ

∞

∫
−∞

e−u
2

du =
√

π

λσ
=
√

2π

−λS′′ (x0)
и

0 ⩽ 2
∞

∫
ε

e−λσy
2

dy =
∞

∫
ε2

e−λσt
dt√
t
⩽ 1

ε

∞

∫
ε2

e−λσtdt ⩽ 1

ελσ

∞

∫
0

e−udu = 1

ελσ
,

получаем

J(λ) = f (x0)
√

2π

−λS′′ (x0)
+O (1

λ
)

Example: Asymptotics of Gamma function

В качестве простого применения доказанной теоремы приведем асимптотику гамма-
функции Γ(λ) при λ→∞. Действительно, для λ > 0 имеем

Γ(λ + 1) =
∞

∫
0

tλe−tdt =
∞

∫
0

eλ(ln t−t/λ)dt

Выполним замену переменной t по формуле t = λx. Тогда ln t = lnλ + lnx, dt = λdx и

Γ(λ + 1) = λeλ lnλ
∞

∫
0

eλ(lnx−x)dx = λλ+1
∞

∫
0

eλS(x)dx

где S(x) = lnx − x. Из равенства S′(x) = 1/x − 1 видно, что S(x) имеет на (0,∞)
максимум в единственной точке x0 = 1. При этом S(1) = S′′(1) = −1. Но тогда в силу
теоремы 17.1

Γ(λ + 1) = λλ+1e−λ
⎛
⎝

√
2π

λ
+O (1

λ
)
⎞
⎠
=
√
2πλ(λ

e
)
λ

(1 +O ( 1√
λ
))

при λ→∞. Для целых λ это равенство известно как формула Стирлинга

n! = Γ(n + 1) =
√
2πn(n

e
)
n

(1 +O ( 1√
n
))

при n → ∞. Интересно, что уже при n = 2 главная часть асимптотики дает значение
1,919.. бл близкое к 2 !.
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Метод стационарной фазы.

Теперь рассмотрим асимптотику интегралов вида

F (λ) =
b

∫
a

f(x)eiλS(x)dx

при λ → ∞, где [a, b] - конечный промежуток, а функции f(x) и S(x) по-прежнему
будем считать бесконечно дифференцируемыми и называть соответственно амплитудой
и фазовой функциями. Оказывается, что в этом случае при определенных условиях
основной вклад в интеграл (17.3) при λ → ∞ дает также лишь окрестность некоторой
точки. Будем говорить, что x0 ∈ (a, b) является стационарной точкой фазовой функции,
если S′ (x0) = 0. Стационарная точка x0 будет называться невырожденной, если S′′ (x0) ≠
0. Найдем главный член асимптотики интеграла при наличии на (a, b) единственной
невырожденной стационарной точки.

Theorem

17.2. Пусть функции f(x) и S(x) бесконечно дифференцируемы на отрезке [a, b],
функция S(x) имеет единственную стационарную точку x0 ∈ (a, b) u S′′ (x0) > 0. Тогда

F (λ) =
b

∫
a

f(x)eiλS(x)dx = eiπ/4eiλS(x0)f (x0)
√

2π

λS′′ (x0)
+O (1

λ
)

for λ→∞

Proof.

Как и в случае метода Лапласа

S(x) − S (x0) =
1

2
S′′ (x0) (x − x0)2 h(x)

где h(x) является бесконечно дифференцируемой функцией на [a, b] и h (x0) = 1. Снова
рассмотрим функцию

g(x) = (x − x0)
√
h(x)

которая определена и является строго монотонно возрастающей в некоторой
окрестности точки x0. Пусть φ(y) = g−1(y) - обратная функция, которая определена на
промежутке [−ε, ε] при некотором ε > 0. Обозначим

x1 = φ(−ε), x2 = φ(ε), σ = 1

2
S′′ (x0)

Тогда

S(x) − S (x0) = σ ⋅ (g(x))2

при x ∈ [x1, x2] и интеграл F (λ) можно представить в виде

F (λ) = eiλS(x0)
x2

∫
x1

f(x)eiλσ(g(x))2dx + I1(λ) + I2(λ)

где
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I1(λ) =
x1

∫
a

f(x)eiλS(x)dx, I2(λ) =
b

∫
x2

f(x)eiλS(x)dx

Поскольку φ(0) = x0, φ′(0) = 1, то

f(φ(y)) − f (x0) = f ′ (x0) y + o(y) = yψ1(y)

где функция ψ1(y) определена и непрерывно дифференцируема на промежутке [−ε, ε].
Аналогично получаем представление

φ′(y) − 1 = yψ2(y)

Используя эти представления, выполним в первом интеграле из (17.4) замену
переменной x = φ(y) и проведем следующие преобразования

x2

∫
x1

f(x)eiλσ(g(x))2dx =
ε

∫
−ε

f(φ(y))φ′(y)eiλσy2dy

= f (x0)
ε

∫
−ε

φ′(y)eiλσy2dy +
ε

∫
−ε

yψ1(y)φ′(y)eiλσy
2

dy

= f (x0)
ε

∫
−ε

eiλσy
2

dy + ∫
−ε

y [f (x0)ψ2(y) + φ′(y)ψ1(y)] eiλσy
2

dy

Поскольку

ε

∫
−ε

eiλσy
2

dy = 2
ε

∫
0

eiλσy
2

dy

= 2
∞

∫
0

eiλσy
2

dy − 2
∞

∫
ε

eiλσy
2

dy

= 2√
λσ

∞

∫
0

eit
2

dt − 2
∞

∫
ε

eiλσy
2

dy

то, учитывая значение интеграла Френеля (15.14), получаем

ε

∫
−ε

eiλσy
2

dy = eiπ/4
√

π

λσ
− 2

∞

∫
ε

eiλσy
2

dy

Заметим также, что

RRRRRRRRRRRR
2

∞

∫
ε

eiλσy
2

dy

RRRRRRRRRRRR
=
RRRRRRRRRRRR

1

iλσ

∞

∫
ε

1

y

d

dy
(eiλσy2)dy

RRRRRRRRRRRR

= ∣e
iλσy2

iλσy
∣
y=∞

y=ε
+ 1

iλσ

∞

∫
ε

eiλσy
2 dy

y2
∣

⩽ 1

λσε
+ 1

λσ

∞

∫
ε

dy

y2
= 2

λσε
.

Следовательно,
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ε

∫
−ε

eiλσy
2

dy = eiπ/4
√

π

σλ
+O (1

λ
)

Далее, поскольку функция

Φ(y) = f (x0)ψ2(y) + φ′(y)ψ1(y)

является непрерывно дифференцируемой на [−ε, ε], то

ε

∫
−ε

yΦ(y)eiλσy2dy = 1

i2λσ

ε

∫
−ε

Φ(y) d
dy
(eiλσy2)dy

= 1

i2λσ

⎡⎢⎢⎢⎢⎣
Φ(y)eiλσy2 ∣

y=ε
y=−ε −

ε

∫
−ε

Φ′(y)eiλσy2dy
⎤⎥⎥⎥⎥⎦

= O (1
λ
)

Таким образом

x2

∫
x1

f(x)eiλσ(g(x))2dx = eiπ/4f (x0)
√

π

λσ
+O (1

λ
)

Изучим теперь асимптотику интегралов I1(λ) и I2(λ). Поскольку x0 - единственная
точка на [a, b], в которой S′(x) обращается в нуль, то

min{∣S′(x)∣ ∶ x ∈ [a, x1] ∪ [x2, b]} = µ > 0

Но тогда

I1(λ) =
x1

∫
a

f(x)eiλS(x)dx = 1

iλ

x1

∫
a

f(x)
S′(x)

d

dx
(eiλS(x))dx

= 1

iλ

⎡⎢⎢⎢⎢⎣

f(x)
S′(x)

eiλS(x)∣
x=x1

x=a
−

x1

∫
a

eiλS(x)
d

dx
( f(x)
S′(x)

)dx
⎤⎥⎥⎥⎥⎦
= O (1

λ
) .

Аналогично получаем, что I2(λ) =) ( 1λ).
В результате с учетом введенного обозначения σ = S′′ (x0) /2 из равенства (17.4) следует

F (λ) = eiπ/4f (x0) eiλS(x0)
√

2π

λS′′ (x0)
+O (1

λ
)

и
теорема доказана.

Замечание

17.1. Если в критической точке x0 выполняется неравенство S′′ (x0) < 0, то замена S(x)
на −S(x) в условиях теоремы приводит к соотношению

F (λ) = eiπ/4f (x0) e−iλS(x0)
√

2π

−λS′′ (x0)
+O (1

λ
) .

Следовательно, в случае S′′ (x0) < 0 имеет место асимптотическое равенство
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F (λ) = e−iπ/4f (x0) eiλS(x0)
√

2π

−λS′′ (x0)
+O (1

λ
)

при λ→∞.
Доказанная

Theorem

позволяет получить асимптотику функции Эйри Ai(s) при s → −∞. Выполняя в
интеграле

Ai(s) = 1

2π

∞

∫
−∞

ei(t
3/3+st)dt

замену переменной по формуле t = u1/2x,u = −s, получаем

Ai(s) = Ai(−u) = u
1/2

2π

∞

∫
−∞

eiu
3/2(x3/3−x)dx

Обозначим S(x) = x3/3 − x и λ = u3/2. Тогда

Ai(−u) = u
1/2

2π
F (λ)

где F (λ) принимает вид (17.3). Заметим, что в этом случае фазовая функция S(x) =
x3/3 − x имеет две стационарные точки x = ±1. При этом

S(1) = −2
3
, S′′(1) = 2, S(−1) = 2

3
, S′′(−1) = −2

Обе стационарные точки являются невырожденными. Для получения асимптотики
F (λ) при λ → ∞ разобьем промежуток интегрирования (−∞,∞) на интервалы
(−∞,−2), (−2,0), (0,2), (2,∞). Тогда для F (λ) получим представление

F (λ) =
−2

∫
−∞

eiλS(x)dx +
0

∫
−2

eiλS(x)dx +
2

∫
0

eiλS(x)dx +
∞

∫
2

eiλS(x)dx

= F1(λ) + F2(λ) + F3(λ) + F4(λ)
Асимптотические свойства интегралов F1(λ) и F4(λ) получаются с использованием

интегрирования по частям. Поскольку S′(x) = x2 − 1, то

F1(λ) =
−2

∫
−∞

eiλS(x)dx = 1

iλ

⎡⎢⎢⎢⎢⎣

eiλS(x)

x2 − 1
∣
−2

−∞
+ 2

−2

∫
−∞

xeiλS(x)

(x2 − 1)2
dx

⎤⎥⎥⎥⎥⎦
откуда следует, что F1(λ) = O(1/λ) при λ → ∞. Аналогично получаем F4(λ) = O(1/λ)

при λ→∞
Далее, из теоремы 17.2 следует, что

F3(λ) = eiπ/4e−i2λ/3
√
π

λ
+O (1

λ
)

Аналогично из замечания 17.1 получаем

F2(λ) = e−iπ/4ei2λ/3
√
π

λ
+O (1

λ
)
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и далее

F2(λ) + F3(λ) = 2
√
π

λ
cos(2λ

3
− π
4
) +O (1

λ
)

Таким образом,

Ai(s) = 1√
π∣s∣1/4

cos(2
3
∣s∣3/2 − π

4
) +O ( 1

∣s∣3/2
)

при s→ −∞.

17.3. Метод перевала.

(???? я думал, это то же, что и стац фаза??? нужно додумать!)
Для отыскания асимптотики функции

Ai(u) = 1

2π

∞

∫
−∞

ei(ux+x
3/3)dx

при u→∞ выполним замену переменной интегрирования по формуле x = t
√
u,u > 0. В

результате получаем представление

Ai(u) = u
1/2

2π

∞

∫
−∞

eiu
3/2(t+t3/3)dt

K этому интегралу мы не можем применить метод стационарной фазы, поскольку
функция t + t3/3 не имеет стационарных точек на вещественной оси. Поэтому
воспользуемся методом перевала (или методом седловой точки). Этот метод связан с
изучением асимптотики интегралов вида

F (λ) = ∫
γ

f(z)eλS(z)dz

где f и S являются голоморфными функциями в некоторой области D, а γ - кусочно-
гладкая кривая, расположенная в этой области. Основной вопрос состоит в поведении
F (λ) при λ→∞.

Под критической точкой снова будем понимать корень уравнения S′(z) = 0.
Критическую точку z0 будем называть невырожденной, если S′′ (z0) ≠ 0.

Идея метода заключается в том, чтобы с использованием интегральной теоремы Коши,
не изменив значения F (λ), деформировать контур γ к такому, который проходил бы через
критическую точку и выполнялись бы следующие условия:

(i) ImS(z) является постоянной на γ;
(ii) ReS(z) достигает максимума на γ в критической точке.
В случае реализации выбора такого контура γ можно надеяться применить метод

Лапласа для получения главного члена асимптотики F (λ) при λ→∞.
Рассмотрим локальное поведение функции S(z) в окрестности невырожденной

критической точки. Пусть z0 ∈ D такова, что S′ (z0) = 0 и S′′ (z0) ≠ 0. Тогда z0 будет для
функции S(z) − S (z0) нулем второго порядка и

S(z) − S (z0) = (z − z0)2 h(z)

где h - голоморфная в D функция и h (z0) = 1
2S
′′ (z0) ≠ 0. Условие h(z) ≠ 0 будет

сохраняться также в некоторой окрестности Or (z0) , r > 0. В силу следствия 10.2 (о
выделении регулярной ветви логарифма в односвязной области) в Or (z0) можно выделить
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регулярную ветвь ψ(z) корня
√
h(z). Определим в Or (z0) функцию g(z) = (z − z0)ψ(z) и

заметим, что

S(z) − S (z0) = (g(z))2

При этом g′ (z0) = ψ (z0) ≠ 0 и по теореме 11.4 о локальной структуре отображения
найдется окрестность Oϱ(0), в которой определена и однолистна обратная функция φ(ζ) =
g−1(ζ). Но тогда

S(φ(ζ)) − S (z0) = [g(φ(ζ))]2 = ζ2

при ∣ζ ∣ ⩽ ϱ. Пусть ζ = ξ + iη и

S(z) − S (z0) = U(z) + iV (z)

Из равенства (17.7) видно, что V (φ(ζ)) = Im ζ2 = 2ξη обращается в нуль в круге Oϱ(0)
на вещественном и мнимом диаметрах. При этом U(φ(ζ)) = ξ2 − η2 достигает в точке ζ = 0
минимум на вещественном диаметре и максимум на мнимом диаметре.

Таким образом, кривая γ∗ ∶ z(t) = φ(it),−ϱ ⩽ t ⩽ ϱ, проходит через точку z0 = z(0)
и удовлетворяет условиям (i), (ii). Заметим также, что z0 является седловойточкой для
функции U(z). При этом, выходя из точки z0 вдоль γ∗, мы имеем наискорейшее убывание
функции U(z). Последнее объясняется тем, что градиент ∇U = U ′x + iU ′y функции U
направлен вдоль кривой γ∗. Действительно,

z′(t) ⋅ ∇U = ∣z′(t)∣ ⋅ ∣∇U ∣(cos θ + i sin θ)

где θ - угол между z′(t) и ∇U . С другой стороны, с использованием условий Коши-
Римана и равенства V (z(t)) = 0 получаем

Im{z′(t)∇U} = Im{(x′(t) − iy′(t)) (U ′x + iU ′y)}

= U ′y ⋅ x′(t) −U ′x ⋅ y′(t)
= − [V ′x ⋅ x′(t) + V ′y ⋅ y′(t)]

= − d
dt
V (z(t)) = 0.

Следовательно, sin θ = 0, т. е. z′(t) и ∇U направлены вдоль одной прямой. В связи с
этим метод перевала называют также методом наискорейшего спуска или методом
седловой" точки.

Возвращаясь к асимптотике интеграла (17.6) заметим, что в случае, когда удается
кривую γ выбрать в соответствии с условиями (i), (ii), главный член асимптотики будет
определяться интегралом по по части γ в окрестности критической точки. Другими
словами, асимптотика F (λ) при λ→∞ будет определяться интегралом по γ∗. Далее,

∫
γ∗

f(z)eλS(z)dz = eλS(z0)∫
γ∗

f(z)eλ(S(z)−S(z0))dz

= eλS(z0)
ϱ

∫
−ϱ

f(z(t))eλU(z(t))z′(t)dt

= eλS(z0)
ϱ

∫
−ϱ

f̃(t)eλS̃(t)dt

где
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f̃(t) = f(z(t))z′(t), S̃(t) = U(z(t)) = S(z(t)) − S (z0) .

По теореме 17.1 получаем

∫
γ∗

f(z)eλS(z)dz = eλS(z0)
⎛
⎝
f̃(0)
¿
ÁÁÀ 2π

−λS̃′′(0)
+O (1

λ
)
⎞
⎠

Из определения S̃(t) и условия S′ (z0) = 0 следует, что

S̃′′(0) = (z′(0))2 S′′ (z0) = − ∣z′(0)∣2 ⋅ ∣S′′ (z0)∣

Но тогда

f̃(0)
¿
ÁÁÀ 2π

−λS̃′′(0)
= f (z0) eiϕ

√
2π

λ ∣S′′ (z0)∣

где ϕ = arg z′(0). В результате, если f (z0) ≠ 0, то

∫
γ∗

f(z)eλS(z)dz = eiϕf (z0) eλS(z0)
√

2π

λ ∣S′′ (z0)∣
(1 +O ( 1√

λ
))

при λ→∞.
Теперь мы можем завершить исследование асимптотики функции Эйри. В этом

специальном случае (17.5)λ = u3/2 и

S(z) = i(z + z
3

3
) = y (1

3
y2 − x2 − 1) + ix(1

3
x2 − y2 + 1)

Уравнение S′(z) = 0 имеет два корня z = ±i. Выберем в качестве критической точки
для дальнейших вычислений z0 = i, в которой S′′ (z0) = −2. Через эту точку проходит
две кривые γ̃ ∶ z(t) = it,−∞ < t < ∞, и γ ∶ z(x) = x+ i

√
1 + x2/3,−∞ < x < ∞, на которых

ImS(z) = 0. На γ̃ функция

ReS(z) = y (1
3
y2 − 1)

в точке z0 = i имеет локальный минимум, а на γ функция

ReS(z) = −2
3
(4x2 + 1)

√
1 + x

2

3

в точке z0 = i достигает абсолютного максимума. Замечая, что S (z0) = −2
3 и z′(0) = 1,

получаем

∫
γ

eλS(z)dz = e−2λ/3
√
π

λ
(1 +O ( 1√

λ
))

при λ→∞ Покажем теперь, что

∞

∫
−∞

eiλ(t+t
3/3)dt = ∫

γ

eλS(z)dz

Из параметризации кривой γ видно, что она представляет собой ветвь гиперболы с
асимптотами z = reiπ/6 и z = rei5π/6, r > 0. Для R > 1 через ΓR обозначим контур, который
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состоит из отрезка [−R,R] вещественной оси, части γR кривой γ, которая лежит внутри
круга ∣z∣ ⩽ R, и двух дуг C+Rи C−R окружности ∣z∣ = R, которые соединяют концы отрезка
[−R,R] с концами дуги γR. Параметризуем кривые C+Rи C−Rследующим образом:

C+R ∶ z(t) = Reit,0 ⩽ t ⩽ θ(R); C−R ∶ z(t) = −Re−it,0 ⩽ t ⩽ θ(R)

где

θ(R) = arccos
⎧⎪⎪⎨⎪⎪⎩

√
3

2

√
1 − 1

R2

⎫⎪⎪⎬⎪⎪⎭
Тогда ΓR = [−R,R]+C+R−γR−C−Rбудет положительно ориентированной границей области

DR. Поскольку S(z) является голоморфной функцией во всей комплексной плоскости, то
по интегральной теореме Коши имеет место равенство

∫
ΓR

eλS(z)dz = 0

которое можно переписать в эквивалентном виде

∫
[−R,R]

eλS(z)dz + ∫
C+R

eλS(z)dz = ∫
γR

eλS(z)dz + ∫
C−R

eλS(z)dz

Далее, поскольку

S (−Re−it) = S (Reit) = −(R sin t + 1

3
R3 sin 3t) + i(R cos t + 1

3
R3 cos 3t)

то при λ > 1 выполняются следующие неравенства

RRRRRRRRRRRRRR
∫
C−R

eλS(z)dz

RRRRRRRRRRRRRR
=
RRRRRRRRRRRRRR
∫
C+R

eλS(z)dz

RRRRRRRRRRRRRR
⩽ R

θ(R)

∫
0

e−
1
3
R3 sin 3tdt ⩽ 2R

π/6

∫
0

e−
1
3
R3 sin 3tdt

= 2R

3

π/2

∫
0

e−
1
3
R3 sin tdt ⩽ 2R

3

π/2

∫
0

e−
2R3

3π
τdτ ⩽ π

R2

∞

∫
0

e−sds = π

R2
,

и при R →∞ мы получаем равенство (17.9). Из (17.9) и (17.8) получаем

Ai(u) = u
1/2

2π

∞

∫
−∞

eu
1/3i(t+t3/3)dt = u

−1/4

2
√
π
e−

2
3
u3/2 (1 +O ( 1

u3/4
))

Метод стационарной фазы: Overview of applications

(I’ll collect some of them from physics here later. it can really be used!)

3.2 Basics of Conformal Mappings

(скопирую теорию из лекций потом)
(подробно важно каждый обсудить, тут много свойств. мб отдельный потом раздел

сделаю.)
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3.2.1 Elementary Conformal Mappings

Дробно-линейные преобразования.

Под дробно-линейным преобразованием понимается рациональная функция

L(z) = az + b
cz + d

где комплексные числа a, b, c, d называются коэффициентами преобразования L и
удовлетворяют условию

ad − bc ≠ 0

Условие (13.2) отвечает за невырожденность отображения L, поскольку оно
эквивалентно тому, что нуль числителя и нуль знаменателя не совпадают. Нас будет
интересовать L как отображение расширенной комплексной плоскости C на себя. В
связи с этим отметим, что представление (13.1) не однозначно, поскольку умножение
всех коэффициентов на одно и то же ненулевое число не изменяет самого отображения
w = L(z).

ПРеДЛожение 13.1. СовокупностьM всех дробно-линейных преобразований образует
группу относительно операции композиции.

Proof.

Пусть Lk(z) = (akz + bk) / (ckz + dk) , k = 1,2, - два дробно-линейных преобразования, т.
е. akdk − bkck ≠ 0. Тогда

L1 ○L2(z) = L1 (L2(z)) =
(a1a2 + b1c2) z + (a1b2 + b1d2)
(c1a2 + c2d1) z + (c1b2 + d1d2)

.

Чтобы убедиться в том, что L1 ○ L2 является дробно-линейным преобразованием,
нужно проверить выполнение условия (13.2) для этого отображения. Простые
вычисления показывают, что
(a1a2 + b1c2) (c1b2 + d1d2) − (a1b2 + b1d2) (c1a2 + c2d1) = (a1d1 − b1c1) (a2d2 − b2c2) ≠ 0,

поскольку условие (13.2) выполняется для L1 и L2.
Покажем теперь, что для каждого дробно-линейного преобразования L существует

обратное L−1 и L−1 ∈ M. Решая уравнение

w = az + b
cz + d

относительно z, находим

z = L−1(w) = dw − b
−cw + a

Условие (13.2) для L−1 эквивалентно этому же условию для L.
Отметим, что группа M (которую также называют группой мебиусовых

преобразований) не коммутативна. Существование обратного отображения доказывает,
что дробно-линейное преобразование L осуществляет взаимно однозначное соответствие
C на C. При этом L(∞) = a/c и L(−d/c) = ∞, если c ≠ 0, и L(∞) = ∞, если c = 0.

ПРеДложение 13.2. Каждое дробно-линейное преобразование осуществляет
конформное отображение C на себя.

Proof.
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Пусть L определяется равенством (13.1) с условием (13.2) на коэффициенты. Допустим
вначале, что c ≠ 0. Тогда для любого z ≠ ∞ и ≠ −d/c выполняется условие

L′(z) = ad − bc
(cz + d)2

≠ 0

которое означает конформность L в точке z. В точке z = −d/c функция L имеет
простой полюс и, как следует из предыдущего параграфа, является конформным в этой
точке. Бесконечно удаленная точка в рассматриваемом случае является устранимой
особой точкой и L(z) → a/c при z →∞. При этом

lim
z→∞

z (L(z) − a
c
) = lim

z→∞
z(bc − ad)
c(cz + d)

= bc − ad
c2

≠ 0,

т. е. L конформна в точке z = ∞.
Если c = 0, то в силу (13.2) коэффициенты a и d не должны обращаться в нуль. Поэтому

L′(z) = a/d ≠ 0, что означает конформность L в конечных точках. В бесконечно удаленной
точке L имеет простой полюс и также является конформным.

ПРедЛожение 13.3. Пусть z1, z2, z3 - три различные точки в C. Тогда существует
единственное T ∈ M, для которого T (z1) = 1, T (z2) = 0 u T (z3) = ∞.

Proof.

В случае конечных точек, т. е. когда z1, z2, z3 ∈ C, отображение T определяется
равенством

T (z) = z − z2
z − z3

/z1 − z2
z1 − z3

В случае, когда одна из точек z1, z2 или z3 является бесконечно удаленной, требуемое
отображение получается из приведенной выше формулы соответствующим предельным
переходом

T (z) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

z−z2
z−z3 , если z1 = ∞
z1−z3
z−z3 , если z2 = ∞
z−z2
z1−z2 , если z3 = ∞.

Остается доказать единственность отображения. Допустим, что S - дробно-линейное
преобразование с теми же свойствами. Тогда дробно-линейное преобразование L = S ○
T −1 оставляет неподвижными точки 1,0 и ∞. Из условия L(∞) = ∞ следует, что в
представлении (13.1) коэффициент c должен равняться нулю. Поэтому L должно иметь
вид L(z) = az + b. Используя теперь условия L(0) = 0 и L(1) = 1, приходим к заключению,
что L(z) ≡ z. Отсюда следует тождество S(z) ≡ T (z).

Опр.

13.1. Под ангармоническим отношением четырех различных точек z1, z2, z3, z4 в C̄
понимается образ точки z1 при отображении ее посредством дробно-линейного
преобразования T , которое удовлетворяет условиям T (z2) = 1, T (z3) = 0, T (z4) = ∞. При
этом используется обозначение

T (z1) = (z1, z2, z3, z4)

Заметим, что если все четыре точки z1, z2, z3, z4 конечны, то
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(z1, z2, z3, z4) =
z1 − z3
z1 − z4

/z2 − z3
z2 − z4

.

Важность ангармонического отношения обусловлена уже тем, что оно является
инвариантом при дробно-линейном преобразовании.

Theorem

13.1. Пусть z1, z2, z3, z4 - четыре различные точки в CuL ∈ M. Тогда

(L (z1) , L (z2) , L (z3) , L (z4)) = (z1, z2, z3, z4)

Proof.

Пусть T (z) = (z, z2, z3, z4), т. е. T ∈ M и T (z2) = 1, T (z3) = 0, T (z4) = ∞. Тогда S =
T ○ L−1 обладает свойством S (L (z2)) = 1, S (L (z3)) = 0 и S (L (z4)) = ∞. По определению
ангармонического отношения имеем
(L (z1) , L (z2) , L (z3) , L (z4)) = S (L (z1)) = T ○L−1 ○L (z1) = T (z1) = (z1, z2, z3, z4)
и
теорема доказана.

Замечание

13.1. Для любых различных трех точек z1, z2, z3 в z-плоскости и различных трех точек
w1,w2,w3 в w-плоскости существует единственное дробно-линейное преобразование L, для
которого

L (z1) = w1, L (z2) = w2, L (z3) = w3.

Это отображение можно найти, разрешив равенство

(w,w1,w2,w3) = (z, z1, z2, z3)

относительно w.

Круговое свойство

При стереографической проекции каждой окружности на сфере Римана в комплексной
плоскости C соответствует окружность или прямая. Поэтому под окружностью в C
в дальнейшем будем понимать окружность или прямую. Другими словами, прямая -
это окружность в C проходящая через бесконечно удаленную точку. Оказывается, что
семейство окружностей в C преобразуется посредством дробно-линейных преобразований
в себя.

ПРЕДЛОЖЕНИЕ 13.4. Прообразом вещественной оси при отображении L: C↦ C, L ∈
M, является окружность в C (т. е. окружность или прямая).

Proof.

Пусть L определяется равенством (13.1) с условием (13.2) на коэффициенты. Условие
z ∈ L−1(R) можно записать в виде равенства ImL(z) = 0 или

az + b
cz + d

− az + b̄
cz + d̄

= 0

Последнее равенство можно переписать в эквивалентном виде
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(ac̄ − āc)∣z∣2 + (ad̄ − b̄c)z + (bc̄ − ād)z̄ + (bd̄ − b̄d) = 0

Если ac̄ − āc = 0, то уравнение (13.3) принимает вид

Im{(ad̄ − b̄c)z} = Im{b̄d}

т. е. определяет в комплексной z-плоскости прямую.
Допустим теперь, что ac̄ − āc ≠ 0 Тогда уравнение (13.3) можно записать в виде

∣z∣2 − Āz −Az̄ +B = 0 или ∣z −A∣2 = ∣A∣2 −B

где

A = ād − bc̄
ac̄ − āc

, B = bd̄ − b̄d
ac̄ − āc

Замечая также, что

∣A∣2 −B = ∣ad − bc∣
2

∣ac̄ − āc∣2
> 0,

приходим к выводу о том, что уравнение (13.3) определяет окружность.
ПРеДЛоЖение 13.5. Различные четыре точки z1, z2, z3, z4 лежат на одной окружности

в C в том и толъко том случае, если

Im (z1, z2, z3, z4) = 0

Proof.

Пусть T - дробно-линейное преобразование, удовлетворяющее условиям
T (z2) = 1, T (z3) = 0, T (z4) = ∞, a C - окружность в C, проходящая через точки z2, z3, z4. В
силу предыдущего предложения прообразом вещественной оси при отображении T будет
окружность в C. Поскольку точки 1,0 и ∞ расположены на вещественной оси, то этим
прообразом будет окружность C. Но тогда точка z1 будет принадлежать окружности C в
том и только случае, если T (z1) ∈ R, т. е. T (z1) = (z1, z2, z3, z4) вещественно.

Theorem

13.2. При дробно-линейном преобразовании окружности в C переходят в окружности
в C.

Proof.

Пусть L - произвольное дробно-линейное преобразование и C - окружность в C.
Выберем на C три различные точки z1, z2, z3 и пусть C∗ - окружность в w-плоскости,
которая проходит через точки L (z1) , L (z2), L (z3). Для любого z ∈ C в силу
инвариантности ангармонического отношения относительно дробно-линейного
преобразования будет выполняться равенство

(L(z), L (z1) , L (z2) , L (z3)) = (z, z1, z2, z3) .

Из предыдущего предложения следует, что z ∈ C в том и только том случае, когда
правая часть последнего равенства вещественна. Аналогично, L(z) ∈ C∗ в том и только
том случае, когда левая часть этого же равенства вещественна. Таким образом, z ∈ C в
том и только том случае, когда L(z) ∈ C∗, т. е. L(C) = C∗
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Принцип симметрии.

Если дробно-линейное преобразование (13.1) определяется вещественными
коэффициентами, то оно переводит вещественную ось на себя, а пару точек z и z̄,
симметричных относительно вещественной оси, в пару точек, которые также будут
симметричны относительно вещественной оси. Поскольку дробно-линейные
преобразования обладают круговым свойством, то естественно ожидать, что пары точек,
симметричных относительно некоторой окружности в C будут переводиться
дробно-линейным преобразованием в пары точек, симметричных относительно образа
этой окружности.

ПРеДЛОЖение 13.6. Пусть z1, z2, z3 - три различные точки в C и C− окружность (или
прямая), проходящая через них. Тогда точки z и z∗ симметричны относительно C в том и
только том случае, если выполняется соотношение

(z∗, z1, z2, z3) = (z, z1, z2, z3)

Proof.

Пусть T - дробно-линейное преобразование, которое переводит точки z1, z2, z3 в 1,0
и ∞, соответственно. Тогда условие (13.4) эквивалентно тому, что T (z∗) = T (z), или
z∗ = T −1(T (z)). Поэтому утверждение будет доказано, если мы покажем, что равенство
(13.4) влечет симметрию точек z и z∗ относительно C. Выделим в доказательстве этого
два случая.

1). Пусть C является прямой, т. е. проходит через бесконечно удаленную точку. Тогда
отношение (z1 − z2) / (z1 − z3) вещественно и условие (13.4) принимает ВИД

z∗ − z2
z∗ − z3

= (z − z2
z − z3

).

Отсюда следуют равенства

arg
z∗ − z2
z∗ − z3

= −arg z − z2
z − z3

,
∣z∗ − z2∣
∣z∗ − z3∣

= ∣z − z2∣
∣z − z3∣

,

которые означают подобие треугольников с вершинами z∗, z2, z3 и z, z2, z3. Поскольку
эти треугольники имеют еще и общую сторону, то они равны. Отсюда следует
симметричность z∗ и z относительно прямой C, проходящей через точки z2 и z3.

2). Пусть теперь C - окружность с центром в точке a и радиуса R. Поскольку точки
z1, z2, z3 лежат на C, то ∣zk − a∣ = R для k = 1,2,3. Используя это и инвариантность
ангармонического отношения относительно дробно-линейных преобразований,
соотношение (13.4) приводится к следующему виду

(z∗, z1, z2, z3) = (z, z1, z2, z3) = (z̄, z1, z2, z3)

= ( R
2

z̄ − ā
,
R2

z1 − ā
,
R2

z2 − ā
,
R2

z3 − ā
)

= ( R
2

z̄ − ā
, z1 − a, z2 − a, z3 − a)

= ( R
2

z̄ − ā
+ a, z1, z2, z3)

Другими словами,

T (z∗) = T ( R
2

z̄ − ā
+ a)
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Поскольку T однолистно, то отсюда следует, что

z∗ = R2

z̄ − ā
+ a или z∗ − a = R2

z̄ − ā
.

Следовательно, для z и z∗ выполняются соотношения

arg (z∗ − a) = arg(z − a), ∣z∗ − a∣ ⋅ ∣z − a∣ = R2

Первое соотношение означает, что z и z∗ лежат на одном луче, выходящем из центра
a окружности C, а второе равенство показывает, что произведение расстояний от центра
a до точек z и z∗ равно квадрату радиуса окружности C. Таким образом, z и z∗ являются
симметричными относительно C.

Theorem

13.3. Пусть дробно-линейное преобразование L отображает окружность C в C в
окружность C′ в C, m. е. C′ = L(C). Тогда каждая пара точек z и z∗, симметричных
относительно C, переводится в пару точек L(z) и L (z∗), симметричных относительно C′.

Proof.

Пусть z1, z2, z3 - три различные точки на окружности C. Тогда L (z1) , L (z2) , L (z3)
расположены на C′. Допустим теперь, что z и z∗ - пара точек, симметричных относительно
C. В силу доказанного выше предложения это эквивалентно равенству

(z∗, z1, z2, z3) = (z, z1, z2, z3)

Однако, в силу инвариантности ангармонического отношения относительно дробно-
линейных преобразований, это равенство влечет следующее

(L (z∗) , L (z1) , L (z2) , L (z3)) = (L(z), L (z1) , L (z2) , L (z3))

которое эквивалентно условию симметричности точек L(z) и L (z∗) относительно
окружности C′.

Прежде чем мы приступим к изучению других элементарных конформных
отображений, сделаем некоторые общие замечания. Конформное отображение,
ассоциированное с голоморфной функцией, дает наглядное представление о ней, подобно
графику в случае функции вещественного переменного. Кроме того, во многие области
математики и ее приложения теория функций комплексного переменного входит через
конформное отображение. Одной из наиболее важных проблем, возникающих при этом,
является задача отыскания конформного отображения одной области на другую. Чтобы
иметь представление о разрешимости этого вопроса в рамках элементарных функций,
нужно хорошо знать их отображающие свойства. Последняя цель достигается, как
правило, выяснением того, как преобразуются те или иные семейства кривых. В
качестве исследуемых семейств кривых часто выбирают ортогональную сетку прямых,
параллельных координатным осям, или используются полярные координаты и изучаются
образы концентрических окружностей и лучей, выходящих из начала координат.
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Степенная функция.

Пусть α > 0. В области C/R+можно выделить регулярную ветвь логарифма и
регулярную ветвь многозначной функции zα = eα ln z. Выделение этих ветвей, по
существу, сводится к определению в C/R+ветви arg z. Будем считать, что ветвь arg z
выделена. Тогда для w = zα будут выполняться равенства

∣w∣ = ∣z∣α, argw = α ⋅ arg z

Отсюда сразу же следует, что дуги, расположенные на концентрических окружностях
с центром в начале координат, переводятся в дуги этого же семейства, а лучи, выходящие
из начала координат, взаимно однозначно отображаются на такие же лучи. При этом
луч, выходящий из начала координат под углом θ к положительному направлению
вещественной оси, переводится в луч, который в w-плоскости выходит под углом αθ.

Таким образом, если 0 < α < 1, то степенная функция однолистно отображает область
C/R+на угловой сектор раствора α ⋅ 2π. В случае α > 1 степенная функция не является
однолистной в C/R+. Однако она будет однолистной в любом угловом секторе раствора
2π/α. Из равенства

dw

dz
= d

dz
eα ln z = αw

z

следует, что степенная функция определяет конформное отображение во всех точках
области C/R+.

Экспоненциальная функция.

Рассмотрим отображающие свойства функции w = ez. Если z = x + iy, то w = exeiy,
откуда видно, что прямая z = x + iy0,−∞ < x < ∞, взаимно однозначно отображается на
луч w = exeiy0 ,−∞ < x < ∞, который выходит из начала координат и образует с
положительным направлением вещественной оси угол, равный y0. Прямые,
параллельные мнимой оси, отображаются на окружности с центром в начале координат.
При этом каждая точка окружности является бесконечно-кратной, поскольку функция
ez имеет период 2πi. Всякая другая прямая в z-плоскости переходит в логарифмическую
спираль в w-плоскости. Областью однолистности экспоненциальной функции является
всякая горизонтальная полоса, имеющая ширину, не превышающую 2π. В частности,
горизонтальная полоса {z ∶ y1 < Im z < y2} при y2 − y1 < 2π однолистно отображается на
сектор {w ∶ y1 < argw < y2}, который в случае y2 − y1 = π является полуплоскостью.
Поскольку

d

dz
ez = ez ≠ 0

то отображение, осуществляемое экспоненциальной функцией, конформно в каждой
точке.

Функция Жуковского.

Рациональная функция

w = 1

2
(z + 1

z
) = z

2 + 1
2z

называется функцией Жуковского. Ее название обусловлено тем, что эту функцию
ЖКуковский применил для аэродинамического расчета крыла самолета. Она имеет два
простых полюса в точках z = 0 и z = ∞. Поскольку

163



3.2.1 Elementary Conformal Mappings

dw

dz
= 1

2
(1 − 1

z2
)

то отображение, осуществляемое функцией ЖКуковского, конформно во всех точках
расширенной комплексной плоскости C, за исключением двух точек z = ±1. Конформность
в точках z = 0 и z = ∞ следует из того, что в этих точках функция имеет простые полюсы.

Выясним теперь, каким свойством должна обладать область D ⊂ C, чтобы функция
ЖКуковского была в ней однолистна. Пусть z1, z2 - произвольные две точки в C/{0}. Из
равенства

(z1 +
1

z1
) − (z2 +

1

z2
) = (z1 − z2) (1 −

1

z1z2
)

видно, что D является областью однолистности функции ЖКуковского в том и только
том случае, если она не содержит пары точек z1, z2, для которых z1z2 = 1. Простейшими
такими областями являются внутренность и внешность единичного круга, а также верхняя
и нижняя полуплоскости.

Для более полного представления о характере отображения, осуществляемого
функцией Жуковского, положим z = reiθ и w = u + iv. Другими словами, в z-плоскости
мы рассматриваем полярные координаты, а в w-плоскости декартовы. Тогда

u = 1

2
(r + 1

r
) cos θ, v = 1

2
(r − 1

r
) sin θ

Из этих равенств следует, что окружность ∣z∣ = r, r ≠ 1, переходит в эллипс с полуосями

a = 1

2
(r + 1

r
) , b = 1

2
∣r − 1

r
∣

и фокусами в точках w = ±1. Действительно,

u2

a2
+ v

2

b2
= 1

и c2 = a2−b2 = 1 (т. е. (−c,0), (c,0) - фокусы эллипса). При этом положительному обходу
точкой z окружности ∣z∣ = r при r > 1 соответствует положительный обход эллипса точкой
w, а в случае r < 1 обход эллипса осуществляется в противоположном направлении. Кроме
того, окружностям ∣z∣ = r и ∣z∣ = 1/r соответствует в w-плоскости один и тот же эллипс.
Единичная окружность ∣z∣ = 1 переходит в отрезок [−1,1], который обходится дважды. K
этому отрезку стягиваются эллипсы, которые являются образами окружностей ∣z∣ = r при
r → 1

Пусть теперь θ ∈ (0, π/2) фиксировано, а r меняется от 0 до +∞. Тогда для всех w,
соответствующих точкам этого луча, будет выполняться равенство

u2

cos2 θ
− v2

sin2 θ
= 1

т. е. точки w находятся на гиперболе с теми же фокусами w = ±1. Легко видеть,
что когда r меняется от 0 до ∞, точка w движется по правой ветви гиперболы снизу-
вверх. Если изменить знак θ, т. е. взять его из интервала (−π/2,0), то образом этого
луча будет та же ветвь гиперболы, но с противоположным обходом. Лучи, выходящие
из начала координат под углом θ ∈ (π/2, π) к положительному направлению вещественной
оси, отображаются на левые ветви гипербол, которые обходятся снизу-вверх. Смена знака
θ и в этом случае приводит лишь к смене направления обхода ветви гиперболы. Отметим
также, что v = ± tg θ ⋅ u - уравнения асимптот гиперболы.
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Образом луча, соответствующего θ = 0, является луч [1,∞), который обходится
дважды. Аналогично, образом луча, соответствующего значению θ = π, является луч
(−∞,−1], который также обходится дважды. Для лучей с направлением θ = ±π/2
образами является мнимая ось с противоположными обходами.

В силу конформности отображения, осуществляемого функцией ЖКуковского,
семейство эллипсов (образов окружностей) и семейство гипербол (образов лучей)
образуют ортогональную сетку в w-плоскости.

Из приведенных выше рассуждений видно, что функция Жуковского конформно
отображает внутренность, а также и внешность, единичного круга на C/[−1,1]. Верхняя
и нижняя полуплоскости конформно отображаются на плоскость с двумя разрезами по
лучам (−∞,−1] и [1,∞). Круговое свойство дробно-линейных преобразований позволяет
конформно отобразить любой круг (или полуплоскость) на область, ограниченную
окружностью в C̄. Оказывается, что дробно-линейными преобразованиями и
исчерпываются все конформные отображения одной круговой области на другую.

Theorem

13.4. Совокупность всех конформных (голоморфных и однолистных) отображений f
единичного круга D на себя описываются формулой

f(z) = eiθ z − a
1 − āz

дде a ∈ D, θ ∈ R.

Proof.

Выясним вначале вид дробно-линейного преобразования L, которое отображает D на
себя, т. е. L(D) = D. При этом отображении единичная окружность T должна перейти
в себя. Пусть a ∈ D - точка, которая переходит в начало координат L(a) = 0. В силу
принципа симметрии точка a∗ = 1/ā перейдет в бесконечно удаленную точку. Таким
образом, определились нули числителя и знаменателя дробно-линейного преобразования
L, a с ним и вид отображения

L(z) = A z − a
z − 1/ā

= κ z − a
1 − āz

Поскольку при z ∈ T

∣ z − a
1 − āz

∣ = ∣z − a
z̄ − ā

∣ = 1,

то ∣κ∣ = 1 или κ = eiθ, θ ∈ R. Кроме того, всякое отображение вида (13.5) осуществляет
конформное отображение D на себя, поскольку является дробно-линейным
преобразованием, которое переводит единичную окружность на себя, а точку a из D
переводит в начало координат.

Допустим теперь, что f ∶ D ↦ D - произвольное конформное отображение D на себя, и
пусть f(0) = a, a ∈ D. Рассмотрим дробно-линейное преобразование

L(z) = z − a
1 − āz

которое отображает D на себя и переводит точку a в начало координат. Тогда φ(z) =
L ○ f(z) также конформно отображает D на себя и φ(0) = 0. По лемме Шварца

∣φ(z)∣ ⩽ ∣z∣
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для всех z ∈ D. С другой стороны, φ−1 также удовлетворяет условиям леммы Шварца
и потому

∣φ−1(w)∣ ⩽ ∣w∣
для всех w ∈ D. Полагая в этом неравенстве w = φ(z), получаем

∣z∣ ⩽ ∣φ(z)∣
что вместе с предыдущим неравенством приводит к тождеству ∣φ(z)∣ ≡ ∣z∣.B силу леммы

Шварца тогда φ(z) ≡ κz, где ∣κ∣ = 1. Следовательно,

L ○ f(z) ≡ κz и f(z) = L−1(κz)
т. е. f является дробно-линейным преобразованием. Аналогично можно найти общий
вид конформного отображения верхней полуплоскости на единичный круг. Снова ими
будут лишь дробно-линейные преобразования. Пусть w = L(z) - дробно-линейное
преобразование, отображающее верхнюю полуплоскость Im z > 0 на единичный круг
∣w∣ < 1. Пусть A ∈ C, ImA > 0, - точка, которая переходит в начало координат, т. е.
L(A) = 0. Тогда, поскольку L(R) = T, то симметричная точка Ā должна перейти в
бесконечно удаленную точку. Следовательно, L должна иметь вид

L(z) = κ z −A
z − Ā

Поскольку ∣x − A∣ = ∣x − Ā∣ при x ∈ R, то условие соответствия вещественной оси и
единичной окружности приводит к равенству ∣κ∣ = 1. Таким образом, общий вид
конформного отображения верхней полуплоскости на единичный круг определяется
формулой

L(z) = eiθ z −A
z − Ā

где θ ∈ R и ImA > 0.
B геометрически ориентированной части теории аналитических функций проблема

конформного отображения играет доминирующую роль. Теоремы существования и
единственности позволяют определить аналитическую функцию с важными свойствами,
минуя ее аналитическую запись.

Riemann’s theorem

В 1851 г. Риман объявил о фундаментальной теореме, согласно которой каждую
односвязную область, отличную от всей плоскости, можно конформно отобразить на
единичный круг. Однако его доказательство оказалось не лишенным недостатков, на
которые обращал внимание Вейерштрасс. Около половины века понадобилось для
отыскания строгого доказательства этой теоремы. Одним из первых его получил Кебе.
Ниже мы приведем доказательство теоремы Римана, близкое к предложенному Кебе.

В силу теоремы Лиувилля не существует конформного отображения всей плоскости на
единичный круг.

Theorem Римана

Пусть D-односвязная область в комплексной плоскости C и D ≠ C. Допустим также,
что z0 - точка области D. Тогда существует единственная голоморфная и однолистная
в D функция f , которая отображает D на единичный круд D и удовлетворяет условиям
f (z0) = 0, f ′ (z0) > 0
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Proof.

Докажем вначале единственность. Допустим, что две функции f1 и f2 удовлетворяют
условиям теоремы. Тогда функция ζ = φ(w) = f2 ○ f−11 (w) будет конформно отображать
единичный круг D на себя и φ(0) = 0, φ′(0) > 0. Как следует из предыдущей теоремы, φ
должна определяться формулой

φ(w) = eiθ w − a
1 − āw

Однако, поскольку φ(0) = 0, то a = 0, а условие φ′(0) > 0 приводит к тождеству φ(w) ≡
w. Но тогда, подставляя w = f1(z) в равенство

f2 ○ f−11 (w) ≡ w

получаем f2(z) ≡ f1(z) и единственность отображения доказана.
Для доказательства существования отображающей функции f введем в рассмотрение

класс F однолистных в области D функций g, которые удовлетворяют условиям: g (z0) =
0, g′ (z0) > 0 и ∣g(z)∣ < 1 при z ∈ D, т, е. g(D) ⊂ D. Покажем вначале непустоту введенного
класса функций. По условиям теоремы D ≠ C. Поэтому найдется a ∈ C/D. В силу того,
что D является односвязной областью и z − a не обращается в нуль в D, можно в области
D выделить регулярные ветви функций ln(z − a) и

Q(z) =
√
z − a = e 1

2
ln(z−a).

Допустим, что для пары точек z1 и z2 из области D выполняется одно из равенств

Q (z1) = Q (z2) или Q (z1) = −Q (z2) .

Тогда после возведения в квадрат обеих частей равенства получаем z1 = z2. Это
означает, что Q однолистна в D и Q(D) не содержит пары точек, симметричных
относительно начала координат. В силу принципа открытости точка w0 = Q (z0)
принадлежит области Q(D) вместе с некоторой окрестностью Or (w0). Но тогда, в силу
отмеченного выше свойства области Q(D), симметричная окрестность Or (−w0) должна
иметь пустое пересечение с Q(D). Следовательно, ∣Q(z) +w0∣ > r для всех z ∈ D, а
функция

h(z) = r

w0 +Q(z)
является однолистной в области D и ∣h(z)∣ < 1 при z ∈ D. Выполняя дополнительно

дробно-линейное преобразование, получаем функцию

g(z) = h′ (z0)
∣h′ (z0)∣

h(z) − h (z0)
1 − h (z0)h(z)

,

которая принадлежит семейству F , т. е. g(D) ⊂ D, g (z0) = 0 и
g′ (z0) = ∣h′ (z0)∣ / (1 − ∣h (z0)∣2) > 0. Таким образом непустота класса F доказана.

Пусть теперь

α = sup{g′ (z0) ∶ g ∈ F} .

Мы пока не исключаем возможности того, что α = +∞. Из определения супремума
следует существование такой последовательности {fn} ⊂ F , что f ′n (z0) → α при n →
∞. Поскольку семейство F равномерно ограничено в области D, то в силу принципа
компактности из последовательности {fn} можно выделить подпоследовательность fnk

,
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которая сходится локально равномерно в области D. Из теоремы 12.1 Вейерштрасса
следует, что предельная функция f подпоследовательности fnk

является голоморфной
в D и

f ′ (z0) = lim
k→∞

f ′nk
(z0) = α.

Отсюда, в частности, следует конечность α. По следствию 12.2 из теоремы Гурвица
имеем также однолистность предельной функции f . Таким образом f принадлежит
семейству F и является решением поставленной выше экстремальной задачи.

Покажем теперь, что полученная функция f и является конформным отображением
области D на единичный круг D. Допустим противное, т. е. что f(D) ≠ D. Тогда найдется
точка w∗ ∈ D/f(D). В односвязной области D выделим регулярную ветвь

H(z) =

¿
ÁÁÀ f(z) −w∗

1 −w∗f(z)

фиксируя некоторое значениеH (z0) = ζ∗ ∈ {(−w∗)1/2}. Как и в случае с функциейQ(z),
легко проверяется однолистность функции H(z). Добиться условия нормировки можно с
помощью дополнительного дробно-линейного преобразования, переходя к функции

F (z) = H ′ (z0)
∣H ′ (z0)∣

H(z) − ζ∗

1 − ζ∗H(z)
Функция F принадлежит семейству F и

F ′ (z0) =
∣H ′ (z0)∣
1 − ∣ζ∗∣2

Дифференцируя равенство

(H(z))2 = f(z) −w∗

1 −w∗f(z)
и полагая z = z0, получаем

2ζ∗H ′ (z0) = α (1 − ∣w∗∣2)

Следовательно,

F ′ (z0) =
α (1 − ∣w∗∣2)

2 ∣ζ∗∣ (1 − ∣ζ∗∣2)
= 1 + ∣w∗∣

2 ∣ζ∗∣
α = 1 + ∣ζ∗∣2

2 ∣ζ∗∣
α

Поскольку ∣ζ∗∣ < 1, то 1 + ∣ζ∗∣2 > 2 ∣ζ∗∣, и мы получаем противоречие определению α.
Конформное отображение осуществляет взаимно однозначное соответствие областей,

т. е. открытых множеств. Вопрос о том, при каких условиях конформное отображение
можно продолжить на границу области, был решен Каратеодори. Сформулируем без
доказательства один из его результатов, который часто называют принцип соответствия
грании.
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Theorem

13.6. [Каратеодори.] Пусть области D и D∗ ограничены жордановыми кривыми γ
и γ∗. Тогда конформное отображение f области D на область D∗ можно продолжить
до гомеоморфного (взаимно однозначного непрерывного как прямого, так и обратного)
отображения замкнутых облаcm.

Заметим, что в силу теоремы Римана для любых двух односвязных областей, отличных
от всей комплексной плоскости, существует конформное отображение одной области на
другую.

3.2.2 Fractional Linear Mappings

Распрямление (!??!??!?)

(не усвоил, ну и пофиг пока что)

3.2.3 Zhukovsky Function Mappings

(тут теория, когда-то добавлю.)

Примеры отображений функцией Жуковского

(там куда какая прямая переходит. важные заготовки, чуть что - сэкономят час.)

3.2.4 Mappings by zn and Root
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Part III

Problems
4 Typical problems

4.1 Problems on Typical Properties of Functions

4.1.1 Problems about Complex Numbers

Кол-пр1.1. Упростите число (1 − i
√
3)2017.

(1 − i
√
3)2017 = 22017 (cos(−π

3
) + sin(−π

3
))

2017

= 22017 (cos(−2017π
3
) + sin(−2017π

3
)) =

= 22017 (cos(−π
3
) + sin(−π

3
)) = 22016(1 − i

√
3).

Ответ. 22016(1 − i
√
3).

Кол-пр1.2. Решите уравнение z8 − 1 = 0.

z8 − 1 = 0 ⇔ r8e8iφ = e0i ⇔ { r = 1,8φ = 0 + 2πk, k ∈ Z, ⇔ zk = e
πki
4 , k = 0,1, .,7.

Ответ: e
πki
4 , k = 0,1, . . . ,7.

Кол-пр1.3. Решите уравнение ez + 1 = 0.
+i(π + 2πk), k ∈ Z
Ответ. i(π + 2πk), k ∈ Z.

Web.? Чему равно ( 2+2i√
3+i)

120
.

( 2+2i√
3+i)

120
= (2+2i)

120

(
√
3+i)120 , далее воспользуемся формулой Муавра.

1. Для 2 + 2i имеем ∣z∣ =
√
22 + 22 = 2

√
2

⎧⎪⎪⎨⎪⎪⎩

cosφ = 2

2
√
2
=
√
2
2

sinφ = 2

2
√
2
=
√
2
2

⇒ φ = π
4

Таким образом 2 + 2i = 2
√
2 (cos π

4
+ i sin π

4
). Тогда по формуле Муавра

(2 + 2i)120 = (2
√
2)120 (cos 120π

4
+ i sin 120π

4
) = 2180(cos 30π + i sin 30π) = 2180.

2. Аналогично (
√
3+ i)120 = 2120 (cos π

6
+ i sin π

6
)120 = 2120 (cos 120π

6
+ i sin 120π

6
) = 2120(cos 20π+ i sin 20π) =

2120.
Таким образом ( 2+2i√

3+i)
120
= 2180

2120
= 260.

Ответ. 260.
(??? пара минут еще додумывания, пока отложил.)

Кол-пр1.4. Решите уравнение z3 + 5 + 10i = 0.
(???? полностью не понял пока что, пару строк в 1й части про это нужно улучшить!)

z3 = 5(−1 − 2i) = 5
√
5(cos(π + arctg 2) + i sin(π + arctg 2))

zk =
√
5(cos π + arctg 2 + 2πk

3
+ i sin π + arctg 2 + 2πk

3
) , k = 0,1,2.
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4.1.1 Problems about Complex Numbers

Ш-пр.2. Доказать равенство с модулями
Доказать, что для любых двух комплексных чисел z1 и z2 справедливо равенство

∣z1 + z2∣2 + ∣z1 − z2∣2 = 2 (∣z1∣2 + ∣z2∣2) .

Solution

Используя свойства комплексно сопряженных чисел, получаем:

lhs = (z1 + z2) (z1 + z2) + (z1 − z2) (z1 − z2) = (z1 + z2) (z1 + z2) + (z1 − z2) (z1 − z2) = 2z1z1 + 2z2z2 = 2 (∣z1∣2 + ∣z2∣2) .

Это равенство выражает тот факт, что сумма квадратов диагоналей параллелограмма равна сумме
квадратов его сторон. (!?!?? додумаю это, допишу в 1ю часть!)

Ш-пр.3. Подмножества C
Найти множество точек C, удовлетворяющих условию: 1) ∣z + 1∣ = ∣z − i∣
2) 2 < ∣z + 2i∣ < 3.

Solution

1) Уравнению ∣z + 1∣ = ∣z − i∣ удовлетворяют все точки, равноудаленные от точек z1 = −1 и z2 = i. Это
прямая y = −x (биссектриса второго и четвертого координатных углов).

2) Условию ∣z + 2i∣ < 3 удовлетворяют все точки, лежащие внутри круга радиуса 3 с центром в точке
z0 = −2i, а условию ∣z + 2i∣ > 2 - все точки, лежащие вне круга радиуса 2 с центром в точке z0. Искомое
множество точек - кольцо между окружностями радиусов 2 и 3 с общим (?)

Ш-пр.4.
Записать в тригонометрической и показательной форме комплексное число:
1) z1 = −1 − i;
2) z2 = − cos π5 + i sin

π
5

Solution

1) Применяя формулу (7), получаем tgφ = 1, откуда φ = 5π
4

, так как точка −1 − i лежит в третьей
четверти. Так как ∣z1∣ =

√
2, то z1 =

√
2 (cos 5π

4
+ i sin 5π

4
) =
√
2ei5π/4.

2) Так как точка z2 лежит во второй четверти, то, используя формулы приведения, получаем

− cos π
5
= cos 4π

5
, sin

π

5
= sin 4π

5
,

и поэтому

z2 = cos
4π

5
+ i sin 4π

5
= ei4π/5

Ш-пр.5. Вычислить (1−i
√
3)6

(1+i)4 .

Так как 1 − i
√
3 = 2e−iπ/3,1 + i =

√
2eiπ/4, то, применяя формулы (13) и (14), получаем:

(1 − i
√
3)6

(1 + i)4
= 26e−2πi

(
√
2)4eiπ

= −16.

Ш-пр.6. Найти все корни уравнения z6 = −8.
Используя формулы (16) и (17), где θ = π, ∣a∣ = ρ = 8, получаем:

zk =
√
2ei(π+2kπ)/6, k = 0,1,2,3,4,5,

где
z0 =
√
2eiπ/6 =

√
6
2
+
√
2
2
i, z1 =

√
2eiπ/2 =

√
2i

z2 =
√
2ei5π/6 = −

√
6
2
+
√
2
2
i, z3 = −z0 = −

√
6
2
−
√
2
2
i,

z4 = −z1 = −
√
2i, z5 = −z2 =

√
6
2
−
√
2
2
i.
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4.1.2 Problems about Typical Complex Geometry

Ш-1.
Вычислить:
1) (1 + 2i)(2 − i) + (1 − 2i)(2 + i);
2) 5

1+2i +
5

2−i
3) ( 1−i

1+i)
3
;

4) (1+2i)
2−(1−i)3

(3+2i)3−(2+i)2 .

Ш-2.
Записать в тригонометрической и показательной форме комплексное число z:
1) z = 1 + i121;
2) z = (−3 + 4i)3;
3) z = 1 + cos π

7
+ i sin π

7
;

4) z = (1+i)9

(1−i
√
3)6 .

Ш-3.
Найти все корни уравнения:
1) z̄ = z3 2) ∣z∣ − z = 1 + 2i
3) z + ∣z + 1∣ + i = 0 4) ∣z∣2 − 2iz + 2i = 0.

Ш-4.
Решить систему уравнений:

1) { ∣z − 2i∣ = z∣z − i∣ = ∣z − 1∣

2) { ∣z
2 − 2i∣ = 4,
∣z + 1 + i∣ = ∣z − 1 − i∣.

Ш-5.
Решить уравнение:
1) z2 = −i;
2) z6 = 64
3) z7 = −1;
4) z8 = 1 + i.

Ш-6.
Пусть z = z0-корень многочлена P (z) с действительными коэффициентами. Доказать, что P (z̄0) = 0,

т. е. z̄0-корень многочлена P (z).

4.1.2 Problems about Typical Complex Geometry
(интересно, но пока не актуально, еще раз переучивать нужно.)

Ш-7.
Пусть z1 и z2 - фиксированные точки C. Дать геометрическое описание множества всех точек z,

удовлетворяющих уравнению:
1) ∣z − z1∣ = ∣z − z2∣; 2) ∣z − 1∣ = ∣Re z∣;
3) ∣z − z1∣ + ∣z − z2∣ = 2a, где a > 1

2
∣z2 − z1∣; 4) ||z − z1∣ − ∣z − z2∣∣ = 2a, где a < 1

2
∣z2 − z1∣.

Ш-8.
Пусть ∆1 - треугольник с вершинами z1, z2, z3, а ∆2 - треугольник с вершинами w1,w2,w3. Доказать,

что треугольник ∆1 подобен треугольнику ∆2, если

z3 − z1
z2 − z1

= w3 −w1

w2 −w1
.
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4.1.2 Problems about Typical Complex Geometry

Web.? Записать в алгебраической форме элементы множества 4
√
−16

Для того, чтобы воспользоваться формулой для нахождения корней из комплексного числа, нужно
подкоренное выражение записать в тригонометрической форме.

−16 = 16(cosπ + i sinπ).

Тогда
4
√
−16 = {16

1
4 (cos π + 2πk

4
+ i sin π + 2πk

4
) ;k = 0,1,2,3}

При k = 0, z0 = 2 (cos π4 + i sin
π
4
) =
√
2 + i
√
2. При k = 1, z1 = 2 (cos 3π

4
+ i sin 3π

4
) = −

√
2 + i
√
2. При k = 2, z2 =

2 (cos 5π
4
+ i sin 5π

4
) = −

√
2 − i
√
2. При k = 3, z3 = 2 (cos 7π

4
+ i sin 7π

4
) =
√
2 − i
√
2.

Ответ. 4
√
−16 = {±

√
2 ± i
√
2}.

Ш-9.
Выяснить, какая линия на плоскости задается уравнением:
1) Re 1

z
= 1
a
(a > 0);

2) Re z−1
z+1 = 0;

3) Im z−1
z+1 = 0;

4) Re z−a
z+a = 0 (a > 0).

Ш-19.
Выяснить, какое множество точек z C удовлетворяет неравенству: 1) ∣z − i∣ + ∣z + i∣ < 4;
2) Re 1

z
< 1

2
3) ∣z − 2∣ − ∣z + 2∣ < 2; 4) ∣1 + z∣ < ∣1 − z∣;

5) 0 < arg i−z
z+i <

π
2
;

6) Re(z(1 − i)) <
√
2; 7) π

4
< arg(z + i) < π

2
; 8) ∣z∣ > 1 −Re z 9) Re z4 > Im z4

Ш-11.

Пусть A и C действительные, аB-комплексная постоянные и пусть AC < ∣B∣2. Доказать, что уравнение

A∣z∣2 + B̄z +Bz̄ +C = 0 (A > 0),

является уравнением окружности, а также найти центр этой окружности и ее радиус.

Ш-12. Уравнение окружности (???)
Доказать, что уравнение окружности, проходящей через три данные точки z1, z2, z3, не лежащие на

одной прямой, можно записать в виде

RRRRRRRRRRRRRRRRRR

∣z∣2 z z̄ 1

∣z1∣2 z1 z̄1 1

∣z2∣2 z2 z̄2 1

∣z3∣2 z3 z̄3 1

RRRRRRRRRRRRRRRRRR

= 0.

Solution

(на 3 курсе решал, сейчас забыл, мб нужно раскрыть этот определитель, свести к тому, что это сумма
какой-то геом формулы от исходных точек? с ходу не знаю, думать не актуально, мб потом придет в
голову решение.)

Ш-13. Уравнение окружности (???)

Доказать, что при любом положительном значении K, отличном от 1, уравнение ∣ z−z1
z−z2 ∣ = K является

уравнением окружности, а также найти центр этой окружности и ее радиус.

Solution

(? не уверен, не готов с ходу решать)
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4.1.2 Problems about Typical Complex Geometry

Ш-14.
Доказать, что четыре попарно различные точки z1, z2, z3, z4 лежат на одной окружности (или на одной

прямой) в том и только в том случае, когда величина z2−z1
z3−z1 ∶

z2−z4
z3−z4 действительна.

Ш-15.
Пусть a - произвольное комплексное число, удовлетворяющее условию Ima > 0. Доказать, что

величина ∣ z−a
z−ā ∣ в нижней полуплоскости больше единицы, в верхней полуплоскости меньше единицы,

а на действительной оси - равна единице.

Ш-16.

Пусть a - произвольное действительное число. Доказать, что если многочлен P (z) = zn+a1zn−1+. . .+an
имеет n действительных корней, то и многочлен Q(z) = P (z+ia)+P (z−ia) имеет n действительных корней.

Ш-17.
Найти на отрезке, соединяющем точки z1 и z2, точку, которая делит этот отрезок в отношении λ1 ∶ λ2,

где λ1 и λ2 - положительные числа.

Ш-18.
Доказать, что три попарно различные точки z1, z2, z3 лежат на одной прямой в том и только в том

случае, когда величина z3−z1
z2−z1 действительна.

Ш-19.
Доказать, что точка ζ лежит на отрезке, соединяющем точки z1 и z2, в том и только в том случае,

когда существует такое число α,0 ⩽ α ⩽ 1, что ζ = αz1 + (1 − α)z2.

Ш-29.
Пусть в точках z1, . . . , zn C помещены материальные точки с массами λ1, . . . , λn, соответственно.

Доказать, что центр тяжести такой системы материальных точек находится в точке ζ = λ1z1+...+λnzn
λ1+...+λn

.

Ш-21.
Пусть точки z1, z2, z3 лежат на окружности с центром в точке z = 0. Доказать, что треугольник с

вершинами в точках z1, z2, z3 является равносторонним в том и только в том случае, когда z1 + z2 + z3 = 0.

Ш-22.
Доказать, что точки z1, z2, z3, z4, лежащие на одной окружности, являются вершинами

прямоугольника в том и только в том случае, когда z1 + z3 = z2 + z4 (точки занумерованы в порядке
следования при обходе окружности).

Ш-23.
Даны три вершины z1, z2, z3 параллелограмма, занумерованные в порядке следования по его границе.

Найти четвертую вершину z4 параллелограмма.

Ш-24.
Доказать, что при любых z ∈ C справедливо равенство

∣
√
z2 − 1 + z∣ + ∣

√
z2 − 1 − z∣ = ∣z − 1∣ + ∣z + 1∣.

Ш-25.
Доказать, что для любых z1 ∈ C, z2 ∈ C справедливы равенства:
1) ∣z1z̄2 + 1∣2 + ∣z1 − z2∣2 = (∣z1∣2 + 1) (∣z2∣2 + 1);

2) ∣z1z̄2 − 1∣2 − ∣z1 − z2∣2 = (∣z1∣2 − 1) (∣z2∣2 − 1).
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4.1.3 Problems about Sequences and Series of Complex Numbers

Ш-26.
Доказать, что величина

A∣λ∣2 +Bλµ̄ + B̄λ̄µ +C ∣µ∣2

неотрицательна при любых λ ∈ C, µ ∈ C в том и только в том случае, когда выполнены условия

A ⩾ 0, C ⩾ 0, ∣B∣2 ⩽ AC.

Ш-27.
Доказать, что при любых zk ∈ C, ζk ∈ C(k = 1,2, . . . , n) имеет место неравенство

∣
n

∑
k=1

zkζk∣
2

⩽
n

∑
k=1
∣zk ∣2 ⋅

n

∑
k=1
∣ζk ∣2

(неравенство Коши-Буняковского-Шварца).

Ш-28.
Доказать, что при любых zk ∈ C(k = 1,2, . . . , n) имеет место неравенСтво

∣
n

∑
k=1

zk∣ ⩽

¿
ÁÁÀn

n

∑
k=1
∣zk ∣2

Ш-29.
Пусть 0 < s′ < s. Доказать, что для любых zk ∈ C(k = 1,2, . . . , n) справедливо неравенство

{ 1
n

n

∑
k=1
∣zk ∣s}

1/s

⩾ { 1
n

n

∑
k=1
∣zk ∣s

′
}
1/s′

Ш-39.
Пусть s > 0. Доказать, что для любых отличных от нуля zk ∈ C (k = 1,2, . . . , n) справедливо

неравенство

n
√
∣z1∣ ∣z2∣⋯ ∣zn∣ ⩽ {

1

n

n

∑
k=1
∣zk ∣s}

1/s

Ш-31.
Пусть z1, z2, . . . , zn - произвольные комплексные числа. Доказать, что:

1) (
n

∑
k=1
∣zk ∣)

p

⩽ np−1
n

∑
k=1
∣zk ∣p , p ⩾ 1;

2) (
n

∑
k=1
∣zk ∣)

p

⩽
n

∑
k=1
∣zk ∣p , 0 < p ⩽ 1.

Ш-32.

Пусть p > 1, q > 1, а 1
p
+ 1
q
= 1. Доказать, что для любых zk ∈ C, ζk ∈ C (k = 1,2, . . . , n) имеет место

неравенство

∣
n

∑
k=1

zkζk∣ ⩽ (
n

∑
k=1
∣zk ∣p)

1/p

(
n

∑
k=1
∣ζk ∣q)

1/q

(неравенство Гёлъдера).

4.1.3 Problems about Sequences and Series of Complex Numbers
(соберу тут их)

175



4.1.4 Problems about Properties of Complex Functions

4.1.4 Problems about Properties of Complex Functions

Кол-пр1.5. Решите уравнение ch z = 1
2 .

cos iz = 1

2
⇐⇒ iz = ±π

3
+ 2πn,n ∈ Z⇐⇒ z = i(±π

3
+ 2πk) , k ∈ Z.

Ответ: i (±π
3
+ 2πk) , k ∈ Z

Кол-пр1.6. Решите уравнение sh z = i
√
3

2 .
Справа число менее 1, так что

−i sin iz = i
√
3

2
⇐⇒ sin iz = −

√
3

2
⇐⇒ iz = (−1)k+1π

3
+ πk⇐⇒ z = i((−1)k π

3
+ πn) , n ∈ Z.

Ответ. i ((−1)k π
3
+ πn) , n ∈ Z.

Кол-пр1.7. Решите уравнение sin z = 3.
Справа число более 1, так что:

eiz − e−iz

2i
= 3.

Удобно сделать замену переменных eiz = t. Тогда уравнение примет вид t−t−1
2i
= 3⇐⇒ t2−6it−1 = 0⇐⇒

t = i(3 ± 2
√
2). Так как 3 ± 2

√
2 > 0, то

eiz = i(3 ± 2
√
2) ⇐⇒ eixe−y = (3 ± 2

√
2)ei

π
2 ⇐⇒

⇔ { e
−y = 3 ± 2

√
2,

x − π
2
= 2πk, k ∈ Z ⇔ zk = (

π

2
+ 2πk) − i ln(3 ± 2

√
2), k ∈ Z.

Ответ. (π
2
+ 2πk) − i ln(3 ± 2

√
2), k ∈ Z.

Кол-пр1.8. Решите уравнение ch z + 1 = 0.

− ch z + 1 = 0⇐⇒ cos iz = −1⇐⇒ iz = −π + 2πk⇐⇒ z = iπ(2m + 1),m ∈ Z.
Ответ. πi(1 + 2m),m ∈ Z.

Ш-пр.1. Доказать предел limn→∞ nan = 0 для ∣a∣ < 1.
Сперва заметим, что это очевидно, потому что степень всегда растет/падает быстрее, чем линейная

функция. Можем считать, что a ≠ 0. Положим q = 1
∣a∣ , тогда q > 1 и можно записать, что q = 1 + δ, где

δ > 0. Отсюда, используя формулу бинома Ньютона, получаем

qn = (1 + δ)n > n(n − 1)
2

δ2 > n
2δ2

4
при n > 2,

откуда n∣a∣n = n
qn
< 4

nδ2
< ε при всех n ⩾ Nε, где Nε = [ 4

εδ2
] + 1. Следовательно, limn→∞ n∣a∣n = 0 и

limn→∞ na
n = 0.

(??? еще раз потом подумаю!)

Ш-пр.2. Доказать сходимость ряда
∞
∑
n=1

nan и найти его сумму S, если ∣a∣ < 1.

Если Sn =
n

∑
k=1

kak, то используя формулу суммы геометрической прогрессии, получаем

Sn − Sna = a + a2 + . . . + an − nan+1 =
a − an+1

1 − a
− nan+1,

откуда

Sn =
a

(1 − a)2
− an+1

(1 − a)2
− na

n+1

1 − a
.

Так как limn→∞ a
n+1 = 0 и limn→∞ na

n+1 = 0 ( пример 1), то limn→∞ Sn = a
(1−a)2 . Итак, если ∣a∣ < 1, то

данный ряд сходится и его сумма S = a
(1−a)2 .
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Ш-пр.
3.
1) Кривая z = cos t, π ⩽ t ⩽ 2π является отрезком [−1,1], ориентированным в направлении от точки

z = −1 к точке z = 1 (рис. 2.4).
Уравнение этой кривой можно записать в виде z = t,−1 ⩽ t ⩽ 1, или в виде z = 2t−1,0 ⩽ t ⩽ 1. 2) Кривая

z = eit, 0 ⩽ t ⩽ π, является полуокружностью ∣z∣ = 1, Im z ⩾ 0, ориентированной против часовой стрелки
(рис. 2.5). −1 Рис. 2.4 Рис. 2.5

Ш-пр.4.

Кривая z = eit,0 ⩽ t ⩽ 2π является окружностью ∣z∣ = 1, ориентированной против часовой стрелки, с
началом и концом в точке z = 1. Это пример простой замкнутой кривой (рис. 2.6).

Ш-пр.5.
Кривая z = σ(t),−π

2
⩽ t ⩽ 2π, где

σ(t) = { eit, −π
2
⩽ t ⩽ π,

3t
π
− 4, π ⩽ t ⩽ 2π

является незамкнутой с самопересечением в точке z = 1 (рис. 2.7). При этом точки z1 = σ(0) и z2 = σ ( 5π3 )
являются различными на данной кривой, хотя как точки плоскости они совпадают: z1 = z2 = 1.

Ш-пр.6.
Кривая z = cos t,−π ⩽ t ⩽ π, является отрезком [−1,1], проходимым дважды: сначала от точки z = −1

к точке z = 1 и затем от точки z = 1 к точке z = −1 (рис. 2.8). Это пример замкнутой кривой, у которой
каждая точка интервала (−1,1) является точкой самопересечения.

Ш-пр.7.
Границей области 0 < ∣z − z0∣ < ε, ε > 0 является точка z = z0 и окружность ∣z − z0∣ = ε, ориентированная

против часовой стрелки и проходимая один раз (рис. 2.9). Эту область будем называть так: «круа ∣z − z0∣ <
ε сыколотой точкой z0 или «проколотая окрестность точки z0. Эта область является неодносвязной.

Ш-пр.8.
Область ∣z∣ < 1,0 < arg z < 2π будем изображать, как указано на рис. 2.10, и называть так: «круе ∣z∣ < 1

с разрезом по отрезку [0; 1]. Граничная кривая Г этой области состоит из следующих частей: отрезок
[0,1], проходимый от точки z = 1 до точки z = 0 нижний берег разреза; отрезок [0,1], проходимый от
точки z = 0 до точки z = 1 - верхний берег разреза; окружность ∣z∣ = 1, проходимая против часовой
стрелки один раз. Отметим, что каждой точке полуинтервала (0,1] соответствуют две различные точки
кривой .

Ш-пр.9.
Граница Γ области 1 < ∣z∣ < 2 (рис. 2.11) состоит из кривых Γ1 и Γ2, где Γ1 - окружность ∣z∣ = 2,

ориентированная против
часовой стрелки, Γ2 - окружность ∣z∣ = 1, ориентированная по часовой стрелке.

Ш-1.
Доказать сходимость последовательности и найти ее предел:
1) { an

1+a2n } , ∣a∣ < 1; 2) { an

1+a2n } , ∣a∣ > 1;
3) { 1

n
(1 + eiφ + . . . + einφ)} ,0 < φ < 2π;

4) { 1√
n
(1 − eiφ + e2iφ − . . . + (−1)neinφ)} ,−π < φ < π.

Ш-2.
Доказать, что если ∣zn∣ ⩽ M < ∞ при n > n0, то из последовательности {zn} можно выбрать

подпоследовательность {znk
}, сходящуюся к конечному пределу.
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Ш-3.
Пусть limn→∞ zn = A ≠ ∞. Доказать, что

lim
n→∞

z1 + z2 + . . . + zn
n

= A.

Ш-4.
Пусть limn→∞ zn = A ≠ ∞, limn→∞ ζn = B ≠ ∞. Доказать, что

lim
n→∞

z1ζn + z2ζn−1 + . . . + znζ1
n

= AB.

Ш-5.
Пусть числа λ1, λ2, . . . положительны и пусть limn→∞ (λ1 + λ2 + . . . + λn) = +∞. Доказать, что из

равенства limn→∞ zn = A ≠ ∞ следует равенство

lim
n→∞

λ1z1 + λ2z2 + . . . λnzn
λ1 + λ2 + . . . + λn

= A.

Ш-6.
Доказать, что для сходимости последовательности {zn} к бесконечности необходимо и достаточно,

чтобы сходилась к +∞ последовательность действительных чисел {∣zn∣}.

Solution

(??? нужно повторить, как вообще мы доказываем утверждения!!!)
(?? в одну сторону - очевидно, в другую - тоже очевидно, да?)

Ш-7. Очевидное свойство предела

Доказать, что limn→∞ zn = ∞ в том и только в том случае, когда limn→∞
1
zn
= 0.

Solution

Ш-9.
Пусть точкаM(z) имеет пространственные координаты (ξ, η, ζ). Найти пространственные координаты

точки M :
1) M(−z)
2) M(z̄);
3) M ( 1

z
).

Solution

Ш-19.
Дать геометрическое описание множеств сферы Римана, отвечающих следующим множествам C:
1) Re z > 0; 2) Im z < 0 3) ∣z∣ > 1; 4) ∣z∣ < 1.

Ш-11.
Доказать, что отличные от точек O и N точки M (z1) и M (z2) сферы Римана диаметрально

противоположны в том и только в том случае, когда точки z1 и z2 связаны условием z1z̄2 = −1.

Ш-12.
Доказать, что окружности на сфере Римана отвечает на C или окружность, или прямая, причем

прямая получается в том и только в том случае, когда окружность на сфере Римана проходит через ее
верхний полюс N .
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Ш-13.
Найти значения параметра a, при которых окружности C отвечают большим кругам на сфере Римана:

1) ∣z − a∣ = a (a > 0);
2) ∣z + a

2
∣ = a (a > 0); 3) ∣z − i∣ = a (a > 0); 4) ∣z − 2ai∣ = a (a > 0).

Ш-14.
Расстояние в пространстве между точками M (z1) и M (z2) называется хордальным расстоянием

между точками z1 и z2 расширенной C и обозначается символом k (z1, z2). Доказать формулы:
1) k (z1, z2) = ∣z1−z2∣√

1+∣z1∣2⋅
√

1+∣z2∣2
(z1 ≠ ∞, z2 ≠ ∞)

2) k (z1,∞) = 1√
1+∣z1∣2

.

Ш-15.
Дать геометрическое описание множества точек z C, удовлетворяющих неравенству:
1) k(z,0) < R,0 < R < 1,
2) k(z,∞) < R,0 < R < 1;
3) k(z, i) > 1√

2

4) 1
2
< k(z,1) < 1√

2
.

Ш-16.

Доказать, что ряд
∞
∑
n=1

zn абсолютно сходится, если выполнено одно из условий:

1) ∣zn∣ <Mρn (n > n0,M > 0,0 < ρ < 1);
2) limn→∞ ∣ zn+1zn

∣ = ρ < 1;
3) ∣zn∣ <Mn−α (n > n0,M > 0, α > 1);
4) ∣zn∣ < M

n(lnn)α (n > n0,M > 0, α > 1).

Ш-17. Абсолютная сходимость ряда
Доказать абсолютную сходимость ряда:

1)
∞
∑
n=1

nαzn, ∣z∣ < 1, α ∈ R;

2)
∞
∑
n=1

n!
nn z

n, ∣z∣ < e;

3)
∞
∑
n=1

(2n−1)!
(n!)2

zn

1+zn , ∣z∣ ⩽
1
4
.

Solution

(я забыл такие задачи, по матану тоже их нужно отдельно переучивать.)

Ш-18.
Пусть {λn} - последовательность положительных чисел таких, что λk+1 ⩽ λk (k ∈ N), limn→∞ λn = 0,

а {zn} - такая последовательность комплексных чисел, что ∣
n

∑
k=1

zk∣ ⩽ M,M > 0, n ∈ N. Доказать, что ряд
∞
∑
n=1

λnzn сходится.

Ш-19.
Найти все значения α ∈ R, при которых сходится ряд:

1)
∞
∑
n=1

n−αein;

2)
∞
∑
n=1

n−αeiπ/n

3)
∞
∑
n=1
(n2 + 1)−α (eiπ/n − 1).
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Ш-29.
Убедиться в дифференцируемости следующих функций и найти их производные:
1) (1 + it)2, t ∈ R;
2) 1

t+i , t ∈ R;
3) (1 + i

√
t)3, t > 0;

4) eit, t ∈ R.

Ш-21. Простые интегралы

1)
1

∫
0

(1 + it)2dt

2)
1

∫
0

(a + (b − a)t)ndt, n = 0,1, . . .

3)
1

∫
0

dt
1+it ;

4)
1

∫
0

1+it
1−itdt

5)
π

∫
0

e−itdt

6)
π

∫
−π
eintdt, n = ±1,±2, . . .

Solution

(??? по идее прямо они и считаются, проверю)

Ш-23.
Пусть φ(t) - действительная функция, дифференцируемая в точке t0, a z(t) - комплекснозначная

функция, дифференцируемая в точке φ (t0). Доказать, что функция z1(t) = z(φ(t)) дифференцируема в
точке t0 и что z′1 (t0) = z′ (φ (t0))φ′ (t0)

Ш-24.
Пусть функция z(t) дифференцируема и отлична от нуля. Доказать форМулi::
1) d

dt
∣z(t)∣ = ∣z(t)∣Re z

′(t)
z(t) ;

2) d
dt
arg z(t) = Im z′(t)

z(t) ;

3) d
dt

z(t)
∣z(t)∣ = i

z(t)
∣z(t)∣ Im

z′(t)
z(t) .

Ш-25.
Пусть действительная функция φ(t) монотонна и непрерывно дифференцируема на отрезке [a, b], а

комплекснозначная функция z(t) непрерывна на отрезке [φ(a), φ(b)]. Доказать, что

b

∫
a

z(φ(t))φ′(t)dt =
φ(b)

∫
φ(a)

z(t)dt.

Ш-26.
Пусть комплекснозначная функция z(t) непрерывна на отрезке a ⩽ t ⩽ b. Доказать неравенства:

1) ∣
b

∫
a
z(t)dt∣ ⩽

b

∫
a
∣z(t)∣dt;

2) ∣
b

∫
a
z(t)dt∣ ⩽ (b − a)maxa⩽t⩽b ∣z(t)∣;

3) ∣
b

∫
a
z(t)dt∣ ⩾ ∣

b

∫
a
Re z(t)dt∣;

4) ∣
b

∫
a
z(t)dt∣ ⩾ ∣

b

∫
a
Im z(t)dt∣.

180



4.1.4 Problems about Properties of Complex Functions

Ш-27.
Пусть z(t) и ζ(t) - комплекснозначные функции, непрерывные на отрезке a ⩽ t ⩽ b. Доказать, что: 1)

справедливо неравенство Коши-Буняковского-Шварца:

RRRRRRRRRRRRR

b

∫
a

z(t)ζ(t)dt
RRRRRRRRRRRRR

2

⩽
b

∫
a

∣z(t)∣2dt ⋅
b

∫
a

∣ζ(t)∣2dt;

2) при p > 1, q > 1, 1
p
+ 1
q
= 1 выполняется неравенство Гёльдера:

RRRRRRRRRRRRR

b

∫
a

z(t)ζ(t)dt
RRRRRRRRRRRRR
⩽
⎧⎪⎪⎪⎨⎪⎪⎪⎩

b

∫
a

∣z(t)∣pdt
⎫⎪⎪⎪⎬⎪⎪⎪⎭

1/p

⋅
⎧⎪⎪⎪⎨⎪⎪⎪⎩

b

∫
a

∣ζ(t)∣qdt
⎫⎪⎪⎪⎬⎪⎪⎪⎭

1/q

;

3) при p > 1 справедливо неравенство Минковского:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

b

∫
a

∣z(t) + ζ(t)∣pdt
⎫⎪⎪⎪⎬⎪⎪⎪⎭

1/p

⩽
⎧⎪⎪⎪⎨⎪⎪⎪⎩

b

∫
a

∣z(t)∣pdt
⎫⎪⎪⎪⎬⎪⎪⎪⎭

1/p

+
⎧⎪⎪⎪⎨⎪⎪⎪⎩

b

∫
a

∣ζ(t)∣pdt
⎫⎪⎪⎪⎬⎪⎪⎪⎭

1/p

;

4) при 0 < p < 1 выполняется другое неравенство Минковского:

b

∫
a

∣z(t) + ζ(t)∣pdt ⩽
b

∫
a

∣z(t)∣pdt +
b

∫
a

∣ζ(t)∣pdt.

Ш-28.
Пусть комплекснозначная функция z(t) непрерывна на отрезке [0,1] и пусть z(0) ≠ 0. Доказать, что

несобственный интеграл
1

∫
0

z(t)t−αdt сходится при α < 1 и расходится при α ⩾ 1.

Ш-29.
Пусть комплекснозначная функция z(t) непрерывна при t ⩾ 1 и пусть существует отличный от нуля

предел этой функции при t → +∞. Доказать, что несобственный интеграл
∞
∫
1

z(t)t−αdt сходится при α > 1

и расходится при α ⩽ 1.

Ш-39.
Пусть комплекснозначная функция z(t) непрерывна при t ⩾ 1 и пусть функции Re z(t) и Im z(t)

неотрицательны и монотонны при t ⩾ 1. Доказать, что несобственный интеграл
∞
∫
1

z(t)dt и ряд
∞
∑
n=1

z(n)
сходятся или расходятся одновременно.

Ш-31.
Пусть φ(t) - действительная функция, непрерывно дифференцируемая при t ⩾ 1 и монотонно

стремящаяся к нулю при t → +∞, а z(t) - комплекснозначная функция, непрерывная при t ⩾ 1 и
обладающая тем свойством, что

RRRRRRRRRRRR

t

∫
1

z(u)du
RRRRRRRRRRRR
⩽M < ∞, t ⩾ 1.

Доказать, что несобственный интеграл
∞
∫
1

z(t)φ(t)dt сходится.
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Ш-32.
Выяснить, при каких действительных значениях параметра α сходится несобственный интеграл:

1)
1

∫
0

eit
2

t−αdt

2)
∞
∫
1

1−it2
1+it2 t

−αdt

3)
1

∫
0

( 1+it
1−it)

2
tα(1 − t)1−αdt

4)
∞
∫
0

( 1+it
2

1+it )
4
e−αtdt

5)
1

∫
0

eitt−α(ln t)2dt

6)
∞
∫
2

1+it
1−it ⋅ t

−α dt
ln2 t

.

Ш-33.

Доказать, что несобственный интеграл
∞
∫
1

eit
β

t−αdt при действительных значениях постоянных α и β

сходится в том и только в том случае, когда эти постоянные связаны соотношением α >min(1,1 − β).
Рассмотрев функцию z(t) = eit на отрезке [0,2π], легко убедиться, что для комплекснозначных

функций теорема Ролля неверна. В задачах 34-37 предлагается доказать теоремы, заменяющие до
некоторой степени теоремы Ролля и Лагранжа. В связи с этим определим некоторые понятия. Плоское
множество E называется выпуклым, если вместе с каждыми двумя точками, принадлежащими этому
множеству, ему принадлежит и весь прямолинейный отрезок, соединяющий эти две точки.

Легко видеть, что пересечение любого набора выпуклых множеств также является выпуклым
множеством.

Выпуклой оболочкой h(E) произвольного плоского множества E называется пересечение всех
выпуклых множеств, содержащих множество E.

Ш-34.
Пусть f(t) - комплекснозначная функция, непрерывная на отрезке [a, b] и дифференцируемая в

каждой внутренней точке этого отрезка. Доказать, что число λ = f(b)−f(a)
b−a принадлежит выпуклой

оболочке множества значений, принимаемых функцией f ′(t) на интервале (a, b). функции
F (t) = Re{e−iθf(t)} ,0 ⩽ θ < 2π.

Ш-35.
Пусть функция f(t) удовлетворяет тем же условиям, что и в задаче 34, а g(t) - действительная

функция, непрерывная на отрезке [a, b] и имеющая отличную от нуля производную в каждой внутренней
точке этого отрезка. Доказать, что число λ = f(b)−f(a)

g(b)−g(a) принадлежит выпуклой оболочке множества

значений, принимаемых функцией f ′(t)
g′(t) на интервале (a, b).

Ш-36.
Рассмотрев функции

f(t) = t, g(t) = eit

на отрезке [0, π], убедиться, что условие действительности функции g(t) в задаче 35 существенно.

Ш-38.
Пусть f(t) и g(t) - непрерывные комплекснозначные функции, удовлетворяющие условиям:
1) g(t) ≠ 0 при a ⩽ t < b;
2) limt→b−0 f(t) = limt→b−0 g(t) = 0; 3) функции f(t) и g(t) дифференцируемы при a ⩽ t < b;
4) limt→b−0

f ′(t)
g′(t) = A ≠ ∞;

5) ∣arg g′(t)∣ ⩽ α < π
2
, a ⩽ t < b. Доказать, что limt→b−0

f(t)
g(t) = A.
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Ш-39.
Выяснить, какая кривая определяется параметрическим уравнением (указать множество точек

плоскости и порядок их прохождения):
1) z = a + (b − a)t,0 ⩽ t ⩽ 1;
2) z = Reit,0 ⩽ t ⩽ π,R > 0;
3) z = t + it2, t ⩾ 0;
4) z = t + i

t
, t ⩾ 1

5) z = 1 + e−it,0 ⩽ t ⩽ 2π;
6) z = t cos t,0 ⩽ t ⩽ 2π.

Ш-49.
Пусть кривая γ задана параметрическим уравнением z = z(t), a ⩽ t ⩽ b и пусть функция z(t) имеет в

точке t0 отличную от нуля производную z′ (t0). Доказать, что кривая γ имеет в точке z (t0) касательную
и что комплексное число z′ (t0) изображает на C вектор, направленный по этой касательной.

Ш-41.
Пусть кривая γ задана параметрическим уравнением z = z(t), a ⩽ t ⩽ b, где z(t)-функция, имеющая

две непрерывные производные на отpeзке [a, b]. Обозначим через τ(t) комплексное число, изображающее
единичный вектор касательной к кривой γ в точке z(t) (направленный в ту же сторону, что и сама кривая в
этой точке); через ν(t) обозначим комплексное число, изображающее единичный вектор нормали к кривой
γ в точке z(t) (направленный вправо от кривой); через ρ(t) обозначим кривизну кривой γ в точке z(t).
Доказать формулы:

1) τ(t) = z′(t)
∣z′(t)∣ ;

2) ν(t) = −i z
′(t)
∣z′(t)∣ ;

3) ρ(t) = 1
∣z′(t)∣ ∣Im

z′′(t)
z′(t) ∣.

Ш-44.
Пусть z = κ(t), 0 ⩽ t ⩽ l,- натуральное уравнение кривой γ и пусть функция κ(t) дважды непрерывно

дифференцируема на отрезке [0, l], а величины τ(t), ν(t), ρ(t) имеют тот же смысл, что и в задаче 41.
Доказать формулы:

1) τ(t) = κ′(t);
2) ν(t) = −iκ′(t);
3) ρ(t) = ∣κ′′(t)∣.

Ш-45.
Описать с помощью неравенств область D, если ее граница ∂D состоит из одной замкнутой кривой,

определяемой параметрическим уравнением:
1) z = a + ρeit,0 ⩽ t ⩽ 2π;
2) z = a + ρe−it,0 ⩽ t ⩽ 2π;
3) z = −it,−∞ < t < ∞;
4) z = t + it2,−∞ < t < ∞;
5) z = t2,−∞ < t < ∞.

Ш-46.
Пусть D - конечная область, а ее граница ∂D состоит из одной замкнутой кривой, заданной

параметрическим уравнением z = z(t), a ⩽ t ⩽ b, где функция z(t) непрерывно дифференцируема на
отрезке [a, b]. Доказать, что для площади σ(D) области D справедлива формула

σ(D) = 1

2

b

∫
a

∣z(t)∣2 Im z′(t)
z(t)

dt.

Указание. Воспользоваться тем, что Im z′(t)
z(t) =

d
dt
arg z(t) (см. задачу 24.2).
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Ш-47.
Пусть D-конечная область, а ее граница ∂D состоит из m замкнутых кривых, заданных

параметрическими уравнениями
z = zk(t), ak ⩽ t ⩽ bk, k = 1,2, . . . ,m,

где zk(t) - функции, непрерывно дифференцируемые на отрезках [ak, bk] соответственно. Доказать, что
для площади σ(D) области D справедлива формула

σ(D) = 1

2

m

∑
k=1

bk

∫
ak

∣zk(t)∣2 Im
z′k(t)
zk(t)

dt.

Область D C называется звездообразной относительно точки z0 ∈ D, если вместе с каждой точкой z1 ∈ D
она содержит и прямолинейный отрезок, соединяющий эту точку с точкой z0.

4.1.5 Problems about the Riemann Sphere (????)
(тут задачи были, помню. вопросы все еще остались.)
(выше про это задачи уже выгружены)

Ш-8. Сфера Римана (???)
Выберем в пространстве систему координат ξ, η, ζ таким образом, чтобы оси Oξ и Oη совпадали с

осями Ox и Oy C, а ось Oζ была направлена по диаметру сферы Римана (рис. 2.2). Пусть x = Re z,
y = Im z, а точка M(z) имеет пространственные координаты (ξ, η, ζ). Доказать формулы:

ξ = x

1 + ∣z∣2
, η = y

1 + ∣z∣2
, ζ = ∣z∣2

1 + ∣z∣2

x = ξζ

ξ2 + η2
, y = ηζ

ξ2 + η2
.

Solution

4.1.6 Problems about Curves and Domains in C
(выше про это задачи уже выгружены)

4.1.7 Problems about Limits and Continuity of f ∈ C
(?? пересмотрю задачник, упущено условие, видимо)

Ш-пр.1
1) Функции z,Re z, Im z, z̄, ∣z∣ непрерывны во всей C C.
2) Многочлен P (z) = a0zn + a1zn−1 + . . . + an с комплексными коэффициентами является непрерывной

функцией во всей C C.
3) Рациональная функция R(z) = P (z)

Q(z) , где P (z),Q(z)-многочлены, непрерывна во всех точках C, в
которых Q(z) ≠ 0

Ш-пр.2

Пусть D - полукруг ∣z∣ < 2, Im z > 0 (рис. 3.3). Рассмотрим в этой области функцию f(z) =
√
reiφ/2,

где z = reiφ,0 < φ < π. Эту функцию можно записать в виде f(z) = u(x, y) + iv(x, y), где

u(x, y) =
√
r cos

φ

2
= 4
√
x2 + y2 cos(1

2
arctg

y

x
)

v(x, y) =
√
r sin

φ

2
= 4
√
x2 + y2 sin(1

2
arctg

y

x
)

Так как функции u(x, y) и v(x, y) непрерывны в области D, то функция f(z) также непрерывна в этой
области. По условленной договоренности считаем, что эта функция доопределена на граничной кривой
своими предельными значениями изнутри области по формулам: f (2eiφ) =

√
2eiφ/2 при 0 ⩽ φ ⩽ π;

f(x) =
√
x при 0 ⩽ x ⩽ 2; f(x) = i

√
∣x∣ при −2 ⩽ x ⩽ 0. Поэтому функция f(z) непрерывна в D̄.
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Ш-пр.3
Пусть D - круг ∣z∣ < 2 с разрезом по отрезку [0,2] (рис. 3.4). Pacсмотрим в этой области функцию

f(z) =
√
reiφ/2,

где
z = reiφ, 0 < φ < 2π.

Так же, как и в примере 2, можно доказать, что функция f(z) непрерывна в области D. Впрочем, и
геометрически видно, что r = ∣z∣ и полярный угол φ (рис. 3.4) являются непрерывными функциями от
(x, y). Доопределим функцию f(z) на граничной кривой области D формулами:

f (2eiφ) =
√
2eiφ/2 при 0 < φ < 2π,

на верхнем берегу разреза
f(x + i0) = lim

z→x
Im z>0

f(z) =
√
x при 0 ⩽ x ⩽ 2

на нижнем берегу разреза

f(x − i0) = lim
z→x

Im z<0
f(z) = −

√
x при 0 ⩽ x ⩽ 2.

Получилась функция, которая не является непрерывной в D̄, так как на разных берегах разреза она
принимает разные значения: ее нельзя «склеить» вдоль разреза так, чтобы она оставалась непрерывной.
В этом случае функцию f(z) будем называть непрерывной в областиD вплоть до ее границы. «Разрежем»
(разобьем) область D примера 3 отрезком [−2,0] на две области: D1 - верхний полукруг ∣z∣ < 2, Im z > 0
(рис. 3.3) и D2 - нижний полукруг ∣z∣ < 2, Im z < 0. Тогда функция f(z) примера 3 непрерывна в D̄1 и D̄2.

Ш-пр.4.

Доказать, что функция f(z) = z2 равномерно непрерывна на множестве D = {z ∶ ∣z∣ ⩽ R}, но не
является равномерно непрерывной на C.

1) Так как D - замкнутое ограниченное множество, а функция z2 непрерывна в каждой точке z ∈ C
и, в частности, на множестве D, то она равномерно непрерывна на этом множестве (теорема Кантора).
2) Нужно доказать, что существует число ε0 > 0 такое, что для любого δ > 0 найдутся точки zi = zi(δ) ∈
C(i = 1,2) такие, что

∣z1 − z2∣ < δ, ∣f (z1) − f (z2)∣ ⩾ ε0.

По заданному δ > 0 выберем натуральное число n ∈ N так, чтобы выполнялось неравенство 1√
n
< δ, и в

качестве искомых точек возьмем
z1 =
√
n + 1, z2 =

√
n.

Тогда

∣z1 − z2∣ =
√
n + 1 −

√
n = 1√

n + 1 +
√
n
< 1√

n
< δ

∣f (z1) − f (z2)∣ = 1 = ε0

Ш-пр.5.
Найти все решения уравнения ez = −2.
Все решения этого уравнения даются формулой

zk = ln ∣ − 2∣ + i(arg(−2) + 2kπ),

где ln ∣ − 2∣ = ln 2, arg(−2) = π, т. е. zk = ln 2 + i(2k + 1)π, k ∈ Z.

Ш-пр.6.
Доказать, что если z = x + iy, то имеют место асимптотические формулы

∣ sin z∣ ∼ e
∣y∣

2
, ∣ cos z∣ ∼ e

∣y∣

2

при y →∞.
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Так как sin z = 1
2
(eiz − eiz), то, используя свойства модуля (неравенства треугольника), получаем

1

2
∣∣eiz ∣ − ∣e−iz ∣∣ ⩽ ∣ sin z∣ ⩽ 1

2
(∣eiz ∣ + ∣e−iz ∣) ,

где
∣eiz ∣ = ∣e−yeix∣ = e−y, ∣e−iz ∣ = ey

Отсюда следует, что
1

2
∣ey − e−y ∣ ⩽ ∣ sin z∣ ⩽ 1

2
(ey + e−y) ,

∣ sin z∣ ∼ e
y

2
при y → +∞

и ∣ sin z∣ ∼ e−y
2

при y → −∞. Следовательно,

∣ sin z∣ ∼ e
∣y∣

2
при y →∞

Аналогично доказывается, что

∣ cos z∣ ∼ e
∣y∣

2
при y →∞.

Ш-пр.
7
Пусть f(z) ≡ 1, a и b-соответственно начало и конец кривой γ. Тогда интегральная сумма (3) равна

n

∑
k=1
(zk − zk−1) = z1 − z0 + z2 − z1 + . . . + zn − zn−1 =

= zn − z0 = b − a,

откуда ∫
γ
dz = b − a. Таким образом, интеграл ∫

γ
dz зависит только от начальной и конечной точек кривой

γ и не зависит от nymu интегрирования. В этом случае вместо ∫
γ
dz можно писать

b

∫
a
dz.B частности, если

a = b, то ∫
γ
dz = 0, т. е. интеграл ∫

γ
dz по любой замкнутой кривой равен нулю.

Ш-пр.8.
Вычислим интеграл In = ∫

Cρ

(z − z0)n dz, где n - целое число, Cρ - окружность ∣z − z0∣ = ρ, ρ > 0,

ориентированная против часовой стрелки.
Уравнение окружности Cρ запишем в виде z = z0 + ρeit,0 ⩽ t ⩽ 2π. Тогда dz = iρeitdt и по формуле (6)

находим:

In = iρn+1
2π

∫
0

eit(n+1)dt,

откуда при n = −1 получаем I−1 = 2πi, а при n ≠ −1 по формуле Ньютона-Лейбница получаем:

In =
ρn+1

n + 1
eit(n+1)∣

t=2π

t=0
= 0.

Таким образом,

∫
∣z−z0∣=ρ

(z − z0)n dz ={
0, n = 0,1,±2,±3, . . . ,
2πi, n = −1

Ш-1.
Доказать, что сумма и произведение функций, непрерывных на множестве E, также являются

функциями, непрерывными на этом множестве. Частное двух функций, непрерывных на множестве E,
также является непрерывной на этом множестве функцией, если знаменатель не обращается в нуль ни в
одной точке множества E.
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Ш-2. Анализ равномерной непрерывности
Выяснить, будут ли следующие функции равномерно непрерывны в области 0 < ∣z∣ < 1:
1) f = e−1/∣z∣;
2) f = Re z

∣z∣

3) f = (Re z2)2

z2
;

4) f = e−1/z
2

.

Ш-3.
Пусть функция f(z) определена и непрерывна на замкнутом ограниченном множестве E. Доказать,

что: 1) функция ∣f(z)∣ ограничена на множестве E и достигает наибольшего и наименьшего значения; 2)
функция f(z) равномерно непрерывна на множестве E.

Ш-4.
Функции f(z) и g(z) равномерно непрерывны на множестве E. Можно ли утверждать, что функция

f(z)g(z) равномерно непрерывна на множестве E?

Ш-5.
Пусть функция f(z) определена и равномерно непрерывна в ограниченной области D. Доказать, что

в каждой точке границы области D функция f(z) имеет предел и что функция f(z), доопределенная на
границе области D

D
этими предельными значениями, непрерывна в замкнутой области D̄.

Ш-6.
Пусть область D ограничена простой кусочно-гладкой кривой. Доказать, что функция, непрерывная

в области D вплоть до ее границы, равномерно непрерывна в этой области.

Ш-7.
Пусть область D можно разбить на конечное число областей D1,D2, . . . ,Dn, каждая из которых

ограничена простой кусочно-гладкой кривой. Доказать, что для непрерывности функции f(z) вплоть
до границы области D необходимо и достаточно, чтобы функция f(z) была равномерно непрерывна в
каждой из областей D1, . . . ,Dn.

Ш-15.
Описать точки z, в которых следующие функции принимают чисто мнимые значения:
1) sin z;
2) sh z; 3) cos z
4) ctg z; 5) th z.

Ш-16.
Найти все точки, в которых обращаются в нуль следующие функции:
1) sin z;
2) cos z;
3) sh z
4) ch z.

Ш-17.
Найти все решения следующих уравнений:
1) sin z = 4i

3
;

2) sin z = 5
3
;

3) cos z = 3i
4
;

4) cos z = 3+i
4

5) tg z = 5i
3
;

6) ctg z = − 3i
5
; 7) sh z = i

2
8) ch z = 1

2
.
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Ш-18.
Доказать, что при ∣z∣ ⩽ R имеют место неравенства: 1) ∣ ch z∣ ⩽ chR; 2) ∣ sh z∣ ⩽ shR; 3) ∣ cos z∣ ⩽ chR; 4)

∣ sin z∣ ⩽ shR.

Ш-19.
Пусть x = Re z, y = Im z. Доказать, что: 1) Функция ez стремится к бесконечности при x, стремящемся

к +∞, и это стремление равномерно по y. 2) Функция ez стремится к нулю при x→ −∞ и это стремление
равномерно по y. 3) Функции sin z и cos z стремятся к бесконечности при y → ±∞ и это стремление
равномерно по x.

Ш-29.

Доказать, что: 1) Функция ez
2

стремится к бесконечности при z →∞ в любом угле вида

∣arg z − π∣ ⩽ α

и в любом угле вида ∣arg z∣ ⩽ α, если только α < π
4
. 2) Функция ez

2

стремится к нулю при z →∞ в любом
угле вида

∣arg z ± π
2
∣ ⩽ α < π

4
.

Ш-21.

Пусть P (z) = zn +a1zn−1 + . . .+an. Доказать, что функция eP (z) стремится к бесконечности при z →∞
в углах

∣arg z − 2kπ

n
∣ ⩽ α < π

2n
(k = 0,1, . . . , n − 1),

и стремится к нулю при z →∞ в углах

∣arg z − (2k + 1)π
n

∣ ⩽ α < π

2n
(k = 0,1, . . . , n − 1).

Ш-22.
Пусть x = Re z, y = Im z. Доказать неравенства:
1) 2e−2y

1+e−2y ⩽ ∣ tg z − i∣ ⩽
2e−2y
1−e−2y (y > 0);

2) 2e2y

1+e2y ⩽ ∣ tg z + i∣ ⩽
2e2y

1−e−2y (y < 0);
3) 2e−2y

1+e−2y ⩽ ∣ ctg z + i∣ ⩽
2e−2y
1−e−2y (y > 0);

4) 2e2y

1+e2y ⩽ ∣ ctg z − i∣ ⩽
2e2y

1−e2y (y < 0).

Ш-23.
Вычислить интеграл ∫

C

∣z∣dz в случаях, когда кривая C является:

1) прямолинейным отрезком, идущим из точки z = −i в точку z = i;
2) полуокружностью

∣z∣ = 1, Re z ⩾ 0,
идущей из точки z = −i в точку z = i.

Ш-24.

∫
C

z sin zdz =? C - прямолинейный отрезок, идущий из точки z = 0 в точку z = i.

Ш-25.
Пусть функция f(z) непрерывна во всей расширенной плоскости. Обозначим через Ca прямолинейный

отрезок, идущий из точки a в точку a + 1. Доказать, что

lim
a→∞∫

Ca

f(z)dz = f(∞)
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Ш-26.
Пусть функция f(z) непрерывна в полуплоскости Im z ⩾ 0 и удовлетворяет неравенству

∣f(z)∣ ⩽M ∣z∣m.

Обозначим через CR полуокружность ∣z∣ = R, Im z ⩾ 0, идущую из точки z = R в точку z = −R. Доказать
неравенство RRRRRRRRRRRRR

∫
CR

f(z)eizdz
RRRRRRRRRRRRR
⩽ πMRm.

Ш-27.
Пусть функция f(z) непрерывна в угле

−α ⩽ arg z ⩽ α (0 < α < π),

и пусть zf(z) → A при z → ∞, ∣arg z∣ ⩽ α. Обозначим через CR дугу окружности ∣z∣ = R, ∣arg z∣ ⩽ α,
идущую из точки z = Re−iα в точку z = Reiα. Доказать, что

lim
R→∞∫

CR

f(z)dz = 2iαA.

4.1.8 Problems about Integration of f ∈ C
(выше уже эти задачи выгружены. пока не понял. что тут сложного????)

4.1.9 Problems about Uniform Convergence and Power Series
(осталось выгрузить, пока забил.)

Ш-пр.1.

Доказать, что ряд
∞
∑
n=1

√
ne−nz сходится равномерно на мноЖестве E = {z ∶ Re z ⩾ δ > 0}.

Так как ∣e−nz ∣ = e−nx, где x = Re z, то на множестве E справедливо неравенство ∣
√
ne−nz ∣ ⩽

√
ne−nδ,

а из сходимости ряда
∞
∑
n=1

√
ne−nδ, где δ > 0, следует равномерная сходимость на множестве E данного

функционального ряда.

Ш-пр.2.
Найти радиус R сходимости степенного ряда:

1)
∞
∑
n=1

(1+i)n
n3n

zn;

2)
∞
∑
n=1

(n!)2
(2n)!z

n;

3)
∞
∑
n=1

4nz3n.

Solution

1) Так как ∣1 + i∣ =
√
2 и существует

lim
n→∞

n
√
∣cn∣ = lim

n→∞

n

√
(
√
2)n

n3n
=
√
2

3
lim
n→∞

1
n
√
n
=
√
2

3
,

то по формуле (4) получаем R = 3√
2
.

2) В этом случае

lim
n→∞

∣ cn
cn+1
∣ = lim

n→∞
(2n + 2)(2n + 1)
(n + 1)2

= 4,
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и по формуле (5) находим R = 4.
3) Пусть 4z3 = t, тогда 4nz3n = tn. Так как ряд

∞
∑
n=1

tn сходится, если ∣t∣ < 1 и расходится при ∣t∣ > 1, то

данный ряд сходится, если 4∣z∣3 < 1, т. е. при ∣z∣ < 1
3√
4
, и расходится при ∣z∣ > 1

3√
4
. Следовательно R = 1

3√
4
.

Заметим, что R можно найти и по формуле (4).

Ш-1.
Пусть на множестве E определены функции fn(z), n ∈ N, и f(z) такие, что для всех n ∈ N и всех z ∈ E

справедливо неравенство ∣fn(z) − f(z)∣ ⩽ an, где an → 0 при n→∞. Доказать, что fn(z) ⇉ f(z), z ∈ E.

Ш-2.

Доказать, что на каждом замкнутом множестве E, лежащем в круге ∣z∣ < 1, последовательность { 1
1+zn }

равномерно сходится к функции f(z) = 1, а на каждом замкнутом множестве E, лежащем в области ∣z∣ > 1,
эта последовательность равномерно сходится к функции f(z) = 0.

Ш-3.

Доказать, что последовательность {nze−n
2z2} равномерно сходится в угле ∣arg z∣ ⩽ α при любом α, где

0 ⩽ α < π/4, к функции f(z) = 0.

Ш-4.
Пусть последовательность {fn(z)} равномерно сходится на множестве E к функции f(z), и пусть

функции fn(z) непрерывны на множестве E. Доказать, что функция f(z) также непрерывна на этом
множестве.

Ш-5.

Пусть ряд
∞
∑
n=1
∣un(z)∣ равномерно сходится на множестве E, а функции vn(z) определены на множестве

E и удовлетворяют неравенствам ∣vn(z)∣ ⩽ ∣un(z)∣ (z ∈ E). Доказать, что ряд
∞
∑
n=1

vn(z) равномерно сходится

на множестве E.

Ш-6.
Доказать равномерную сходимость ряда на множестве E:

1)
∞
∑
n=1

1
n2 z

−2n,E = {z ∶ ∣z∣ ⩾ 1}

2)
∞
∑
n=1

n3e−nz, E = {z ∶ Re z ⩾ δ > 0}

3)
∞
∑
n=1

2n

zn+z−n , E = {z ∶ ∣z∣ ⩽ ρ < 1
2
};

4)
∞
∑
n=1

2−n cosnz,E = {z ∶ ∣ Im z∣ ⩽ δ < ln 2}.

Ш-7.

Пусть limn→∞
n
√
∣an∣ = 1. Доказать равномерную сходимость ряда на множестве E ∶

1)
∞
∑
n=1

anz
n,E = {z ∶ ∣z∣ ⩽ ρ < 1};

2)
∞
∑
n=1

ane
−nz,E = {z ∶ Re z ⩾ δ > 0};

3)
∞
∑
n=1

ane
−n2z,E = {z ∶ Re z ⩾ δ > 0};

4)
∞
∑
n=1

an
2n

cosnz,E = {z ∶ ∣ Im z∣ ⩽ δ < ln 2}.
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Ш-8.
Найти радиус сходимости степенного ряда:

1)
∞
∑
n=1
(n+3
n+6)

n2

⋅ zn

2)
∞
∑
n=1

n!
nn z

n

3)
∞
∑
n=1

6nz5n;

4)
∞
∑
n=1

n!e−n
α

zn, α > 1;

5)
∞
∑
n=1

n (cos 1
n
)2n

3

⋅ zn; 6)
∞
∑
n=1

(2+i
√
5)n

(3−i
√
7)2n z

3n.

Ш-9.

Пусть R - радиус сходимости ряда
∞
∑
n=0

cnz
n. Найти радиус сходимости ряда:

1)
∞
∑
n=0

cmn z
n,m ∈ N

2)
∞
∑
n=0

cmn z
mn,m ∈ N;

3)
∞
∑
n=0

cn
1+∣cn∣z

n

Ш-19.

Доказать, что степенные ряды
∞
∑
n=1

cnz
n,

∞
∑
n=1

cn
n+1z

n+1 и
∞
∑
n=1

ncnz
n−1 имеют один и тот же радиус

сходимости.

Ш-11.
Обозначим радиусы сходимости степенных рядов

∞
∑
n=0

anz
n,

∞
∑
n=0

bnz
n,

∞
∑
n=0
(an + bn) zn,

∞
∑
n=0

anbnz
n

через R1,R2,R3,R4 соответственно. Доказать, что

R3 ⩾min (R1,R2) , R4 ⩾ R1 ⋅R2.

Ш-12.
Доказать, что если имеет место неравенство

∣ cn
cn+1
∣ ⩾ R(1 + α

n
) , n > n0,

где α > 0, то степенной ряд
∞
∑
n=0

cnz
n сходится во всех точках окружности своего круга сходимости.

Ш-13.
Пусть все числа cn положительны, ck−1 > ck(k ∈ N) и cn → 0 при n →∞. Доказать, что степенной ряд

∞
∑
n=0

cnz
n сходится во всех точках окружности ∣z∣ = 1, за исключением, быть может, точки z = 1.

Ш-14.
Выяснить, в каких точках окружности круга сходимости сходятся следующие ряды:

1) z + 2
1⋅3z

2 + 2⋅4
1⋅3⋅5z

3 + . . . ; 2)
∞
∑
n=1

zn

n
√
n
;

3)
∞
∑
n=2

zn

n ln2 n
;
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4)
∞
∑
n=1

(2n)!
(n!)2 z

n;

5)
∞
∑
n=1

(3n)!
(2n)!n!(−1)

nz2n;

6)
∞
∑
n=2

(−1)n
n lnn

z3n; 7)
∞
∑
n=1

eπin2/2
n

zn; 8)
∞
∑
n=1

eπin2/2
√
n

zn.

Ш-15.

Доказать вторую теорему Абеля: если степенной ряд
∞
∑
n=0

cnz
n сходится в точке z0, то он равномерно

сходится на всем прямолинейном отрезке, соединяющем точку z = 0 с точкой z0.

4.1.10 Problems about Residues

Ш-13.пр.1. Элементарные вычеты
Найти res

z=a
f(z), если:

1) f(z) = z2+7z
z2−z−2 , a = −1;

2) f(z) = ze1/z
2

, a = ∞;
3) f(z) = 2 cos z−cos3 z

sin z
, a = π

4) f(z) = z3+2z2+3z
(z−1)3 , a = 1;

5) f(z) = 1
z(e2z−1) , a = 0;

6) f(z) = ez/(1−z), a = 1 и a = ∞;
7) f(z) = z sin z+1

z−1 , a = 1;
8) f(z) = z2

(z−2)(z2+1) , a = ∞.

1)

Имеем вычет 1го порядка. Так как z2 − z − 2 = (z + 1)(z − 2), то f(z) = g(z)
z+1 , где g(z) = z2+7z

z−2 , поэтому

res
z=−1

f(z) = g(−1) = 2.

2)

(??? это хороший пример, не понял его, потом вернусь!!!) Функция f(z) представляется в области
D = {z ∶ 0 < ∣z∣ < ∞} рядом Лорана

f(z) = z + 1

z
+
∞
∑
n=2

1

n!z2n−1
,

в котором коэффициент при 1
z

равен 1. По формуле (6) находим res
z=∞

f(z) = −1.
3) Точка z = π-полюс первого порядка функции f(z), так как z = π - нуль кратности 1 функции sin z.

Пусть
h(z) = 2 cos z − cos3 z, φ(z) = sin z.

Тогда по формуле (8), где h(π) = −1, φ′(π) = −1, находим resz=π f(z) = 1.
4) Точка z = 1 - полюс третьего порядка функции f(z). Пусть

h(z) = z3 + 2z2 + 3z

тогда по формуле (12), где h′′(z) = 6z + 4, h′′(1) = 10, находим

res
z=1

f(z) = h
′′(1)
2
= 5.

5) Точка z = 0 - полюс второго порядка функции f(z). Воспользуемся формулой (10). Найдем

lim
z→0
( z

e2z − 1
)
′
= lim
z→0

e2z − 1 − 2ze2z

(e2z − 1)2
.
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Применяя формулу Тейлора для функции e2z, получаем

e2z − 1 − 2ze2z = −2z2 + . . . , (e2z − 1)2 = 4z2 + . . . ,

поэтому искомый предел равен − 1
2

и res
z=0

f(z) = − 1
2
.

6) Так как z
1−z = −1 −

1
z−1 , то

f(z) = e−1 ⋅ e−1/(z−1) = e−1 (1 − 1

z − 1
+ 1

2(z − 1)2
+ . . .) ,

откуда следует, что
res
z=1
f(z) = −e−1.

Функция f(z) имеет в C единственную изолированную особую точку z = 1 и регулярна в области 1 < ∣z∣ <
∞. По теореме о вычетах (формула (3))

res
z=∞

f(z) = − res
z=1

f(z) = e−1.

7) Положим t = z − 1, тогда

f(z) = (t + 1) sin(1 + 2

t
) = φ(t)

и
res
z=1
f(z) = res

t=0
φ(z).

Найдем коэффициент c−1 при 1
t

ряда Лорана

φ(t) = (t + 1) (sin 1 ⋅ cos 2
t
+ cos 1 ⋅ sin 2

t
) =

= (t + 1) [sin 1(1 − 2

t2
+ . . .) + cos 1(2

t
− 4

3t3
+ . . .)] .

Отсюда следует, что c−1 = 2 cos 1 − 2 sin 1 и res f(z) = 2(cos 1 − sin 1). 8) Функция f(z) регулярна в области
2 < ∣z∣ < ∞, а точка z = ∞ является для этой функции нулем кратности 1, причем f(z) ∼ 1

z
при z → ∞.

Это означает, что коэффициент ряда Лорана функции f(z) в окрестности точки z = ∞ равен 1 и поэтому
res
z=∞

f(z) = −1.

Ш-13.пр.2.
Найти вычеты функции f(z) во всех ее конечных особых точках и в бесконечности, если:
1) f(z) = z4

1+z4
2) f(z) = sin z

z3(z−π) ;

3) f(z) = z3

z+1e
1/z

4) f(z) = 1
z2−4 cos

z−1
z+1 .

1) Нулями функции z4+1, т. е. корнями уравнения z4 = −1, являются числа zk = eiπ+2kπ/4, k = 0,1,2,3,
и точки zk - полюсы первого порядка функции f(z). По формуле resz=a f(z) = h(a)

φ′(a) находим

res
z=zk

f(z) =
z4k
4z3k
= zk

4
,

где

z0 =
1 + i√

2
, z1 =

i − 1√
2
,

z2 = −z0 = −
1 + i√

2
, z3 = −z1 =

1 − i√
2
.

По теореме о вычетах

res
z=∞

f(z) = −
3

∑
k=0

res
z=zk

f(z) = 0.

Этот результат также следует из того, что ряд Лорана функции f(z) в окрестности бесконечности
содержит только члены вида c2kz2k (k ∈ Z).
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2) Точка z = 0-полюс второго порядка функции f(z), а точка z = π-устранимая особая точка этой
функции (точка регулярности). Других особых точек в конечной плоскости у функции f(z) нет. Найдем
коэффициент c−1 ряда Лорана при 1

z
функции f(z). Имеем

f(z) = 1

z2
(1 − z

2

3!
+ . . .)(− 1

π
)(1 − z

π
)
−1
=

= − 1

πz2
(1 − z

2

3!
+ . . .)(1 + z

π
+ z

2

π2
+ . . .)

откуда c−1 = − 1
π2 и

z=0
f(z) = − 1

π2 . Далее, res
z=π

f(z) = 0, a res
z=∞

f(z) = − resz=0 f(z) = 1
π2 . 3) В конечной

плоскости функция f(z) имеет две изолированные особые точки: z = −1 (полюс первого порядка) и
существенно особую точку z = 0.

По формуле resz=a f(z) = h(a)
φ′(a) находим res z=−1f(z) = −e−1. Для нахождения вычета в бесконечности

воспользуемся разложением функции f(z) в ряд Лорана:

f(z) = z2 (1 + 1

z
)
−1
e1/z =

= z2 (1 − 1

z
+ 1

z2
− 1

z3
+ . . .)(1 + 1

z
+ 1

2z2
+ 1

6z3
+ . . .)

откуда находим, что коэффициент c−1 при 1
z

равен 1
6
− 1

2
+ 1 − 1, т. е. c−1 = − 1

3
. Поэтому res

z=∞
f(z) = 1

3
.

По теореме о вычетах

res
z=0
f(z) = − res

z=−1
f(z) − res

z=∞
f(z) = e−1 − 1

3
.

4) В конечной плоскости функция f(z) имеет три особые точки: z1 = 2 и z2 = −2 - полюсы первого порядка,
z = −1 - существенно особая точка. По формуле (9) находим

res
z=2
f(z) = g(2),

где

g(z) = 1

z + 2
cos

z − 1
z + 1

.

Следовательно,

res
z=2

f(z) = 1

4
cos

1

3
.

Аналогично находим

res f(z) = −1
4
cos 3.

Функция f(z) регулярна в бесконечности и имеет там нуль второго порядка (f(z) ∼ cos 1/z2 при z →∞).
Поэтому res

z=∞
f(z) = 0. По теореме о вычетах

res
z=−1

f(z) = − res
z=2

f(z) − res
z=−2

f(z) = 1

4
(cos 3 − cos 1

3
) .

Ш-13.пр.3. Вычет от отношения многочленов
Пусть

Pn(z) = anzn + an−1zn−1 + . . . + a1z + a0,
Qn(z) = bnzn + bn−1zn−1 + . . . + b1z + b0

где an ≠ 0, bn ≠ 0, т. е. Pn(z) и Qn(z) - многочлены степени n. Найдем resz=∞ f(z), где f(z) = Pn(z)
Qn(z) .

Функция f(z) регулярна в точке z = ∞. Для нахождения искомого вычета воспользуемся типичной
формулой resz=∞ f(z) = limz→∞[z(f(∞) − f(z))], где f(∞) = an

bn
. Тогда

z(f(∞) − f(z)) = z (an
bn
− anz

n + an−1zn−1 + . . . + a1z + a0
bnzn + bn−1zn−1 + . . . + b1z + b0

) = φ(z)

или

φ(z) = z
⎛
⎝
an
bn
−
an + an−1

z
+ . . . + a0

zn

bn + bn−1
z
+ . . . + b0

zn

⎞
⎠
= anbn−1 − bnan−1

b2n
+ h(z),

где h(z) → 0 при z →∞, откуда

lim
z→∞

φ(z) = anbn−1 − bnan−1
b2n

= res
z=∞

f(z).
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Ш-13.1.
Вычислить:
1) resz=∞

sin z
z2

2) resz=∞ e
1/z;

3) resz=1
ez

(z−1)2

4) res
z=∞

z2 sin π
z

5)
z=π/4

cos z
z−π

4
; 6) res

z=1
ze1/(z−1).

Ш-13.2.
Найти вычеты следующих функций во всех их конечных особых точках:
1) 1

z+z3 ;
2) z2

1+z4 ; 3) z2

(1+z)3 ;
4) 1
(z2+1)3 ;

5) 1
(z2+1)(z−1)2 ;

6) z2n

(z−1)n , n ∈ N; 7) 1
sinπz

; 8) ctgπz 9) th z; 10) cth2 πz 11) cos z
(z−1)2 ; 12) 1

ez+1 ; 13) sinπz
(z−1)3 ; 14) 1

sin z2
.

Ш-13.3.
Найти resz=a f(z), если:
1) f(z) = ez+1

(z+1)2 , a = ∞;
2) f(z) = 1

(z2+4)2z3 , a = 0
3) f(z) = sin ( 1

z
+ 1
z2
) , a = 0;

4) f(z) = z2 cos ( 1
z
− 1
z2
) , a = 0

5) f(z) = z2 sin z
z−1 , a = 1

6) f(z) = 3z2+4z+5
2z2−3z+4 , a = ∞.

Ш-13.4.
Найти вычеты следующих функций в бесконечности:
1) z4+1

z6−1 ;
2) cosπ z+2

2z

3) sin 1
z

z−1

4) cos2 π
z

z+1 ;

5) (z
10+1) cos 1

z

(z5+2)(z6−1)
6) z cos2 π

z
.

Ш-13.5.
Найти вычеты следующих функций во всех их особых точках и в бесконечности:
1) 1

z6(z−2) ;

2) 1+z8
z6(z+2) ;

3) 1+z10
z6(z2+4) ;

4) 1+z2n
zn(z−a) , a ≠ 0, n ∈ N;

5) sin z sin 1
z
;

6) cos z
(z2+1)2 ; 7) 1+z8

z4(z4+1) cos z ch z 8) sin z
(z2+1)2 .

Ш-13.6.
Вычислить:
1) res

z=0
zn−1
sinn z

, n ∈ N;

2) res
z=0

sin3z−3 sin z
sin z(sin z−z)

3) resz=0
tg z−z

(1−cos z)2 ;
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4) resz=0
zn−2
shn z

, n ∈ N, n ≠ 1; 5) res zn−3z=0 ctgn z, n ∈ N, n ≠ 1;
6)

z=0
z

ch z−1−z2/2 .

Ш-13.7.
Пусть функция g(z) регулярна в точке z = ∞, а функция h(z) имеет в точке z = ∞ нуль кратности 1.

Доказать, что
res
z=∞
[g(z)h(z)] = −g(∞) lim

z→∞
(zh(z)).

Ш-13.8.
Доказать, что для каждой четной функции f(z)

res
z=0

f(z) = res
z=∞

f(z) = 0

(в предположении, что написанные вычеты имеют смысл).

Ш-13.9.
Доказать, что для четной функции f(z) имеет место равенство

res
z=z0

f(z) = − res
z=−z0

f(z),

а для нечетной функции f(z) - равенство

res
z=z0

f(z) = res
z=−z0

f(z),

(в предположении, что написанные вычеты имеют смысл).

Ш-13.19.
Пусть f(z) = g(az), где a ≠ 0. Доказать, что

res
z=z0a

f(z) = 1

a
res g(z).

Ш-13.11.
Пусть f(z) = zmg (zn), где m и n-целые числа, удовлетворяющие условиям m ⩾ 0,m < n. Доказать,

что
res

z=z0e2kπi/n
f(z) = e2kπi(m+1)/n res

z=z0
f(z).

Ш-13.12.
Пусть функции φ(z) и ψ(z) регулярны в конечной точке z0 и имеют в ней нуль порядка m. Доказать

формулы:
1) resz=z0 {

φ(z)
ψ(z) ⋅

1
z−z0 } =

φ(m)(z0)
ψ(m)(z0) ;

2) res{φ(z)
ψ(z) ⋅

1
(z−z0)2

} = 1
m+1

φ(m)(z0)
ψ(m)(z0) [

φ(m+1)(z0)
φ(m)(z0) −

ψ(m+1)(z0)
ψ(m)(z0) ].

Ш-13.13.
Найти res

z=z0
{f(z)φ(z)}, если функция φ(z) регулярна в точке z0, а функция f(z) имеет в точке z0

полюс первого порядка с вычетом A.

Ш-13.14.

Найти resz=z0
f ′(z)
f(z) , если функция f(z): 1) регулярна в точке z0 и имеет там нуль кратности m; 2)

имеет в точке z0 полюс порядка m.
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Ш-13.15.

Найти res
z=z0
{φ(z) f

′(z)
f(z) }, если функция φ(z) регулярна в точке z = z0, а функция f(z): 1) регулярна в

точке z0 и имеет там нуль кратности m; 2) имеет в точке z0 полюс порядка m.

Ш-13.16.
Найти res f(φ(z)), если функция φ(z) регулярна в точке z0 и φ′ (z0) ≠ 0, а функция f(z) имеет в

точке φ (z0) полюс первого порядка с вычетом A.

Ш-13.17.
Пусть функция f(z) регулярна при R < ∣z∣ < ∞, а res f(z) = 0. Доказать, что функция f(z) имеет

первообразную, регулярную при R < ∣z∣ < ∞.

Ш-13.18.
Выяснить, при каких значениях параметров a, b следующие функции однозначны во всей C:

1)
z

∫
1

a+e1/ζ
ζ

dζ

2)
z

∫
1

a sin ζ+bζ cos ζ
ζ2

dζ

3)
z

∫
1

sin(ζ+aζ3)
ζ4

dζ

4.1.11 1.6. Residues by Kolesnikova

Определение. Пусть z = z0 ∈ C - изолированная особая точка однозначного характера регулярной
функции f(z), т. е. f(z) регулярна в некоторой проколотой окрестности точки z = z0 ∈ C. Пусть
C ∶ ∣z − z0∣ = ρ - произвольная окружность в этой окрестности. Окружность ориентирована так, что при
обходе контура точка z = z0 ∈ C̄ остаётся слева. Тогда 1

2πi ∳∣z−z0∣=ρ f(z)dz называется вычетом функции
f(z) в точке z = z0 ∈ C̄ и обозначается

1

2πi
∳∣z−z0∣=ρ

f(z)dz = res
z=z0

f(z)

Оказывается, что числовое значение вычета полностью определяется коэффициентом при 1
z−z0 , если

z0 ∈ C, и коэффициентом при 1
z
, если z0 = ∞.

Покажем это.
Пусть z0 ∈ C - конечная точка. Тогда

1
2πi ∳∣z−z0∣=ρ f(z)dz =

= 1

2πi
∳∣z−z0∣=ρ

((a0 + a1 (z − z0) + . . . + an (z − z0)n + . . .)+

+( a−1
z − z0

+ a−2

(z − z0)2
+ . . . + a−n

(z − z0)n
+ . . .))dz =

= 1

2πi
∳∣z−z0∣=ρ

a−1
z − z0

dz = ∣ z − z0 = ρe
iφ

dz = ρeiφidφ ∣ =
1

2πi
a−1i

2π

∫
0

dφ = a−1

т. e. res
z=z0∈C

f(z) = a−1.

Все функции fm(z) = (z − z0)m ,m ∈ Z,m ≠ −1 имеют однозначные первообразные (z−z0)
m+1

m
,m ∈ Z,m ≠

−1, и интегралы по замкнутому контуру ∳∣z−z0∣=ρ fm(z)dz = 0.
Остался ∳∣z−z0∣=ρ

a−1
z−z0 dz, который мы и вычислили.

∣z − z0∣ = ρ
Пусть теперь z0 = ∞. Направление контура изменилось на противоположное:
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1

2πi
∯∣z−z0∣=ρ

f(z)dz =

= 1

2πi
∳∣z−z0∣=ρ

((a0 + a1z + . . . + anzn + . . .)+

+(a−1
z
+ a

z2
+ . . . + a

zn
+ . . .))dz =

= 1

2πi
∯∣z−z0∣=ρ

a−1
z
dz = ∣ z = ρeiφ

dz = ρeiφidφ ∣= −a−1
т. e.

res
z=∞

f(z) = −a−1

Обратите внимание - в точке z0 = ∞ вычет равен коэффициенту при 1
z
, взятому с обратным знаком.

Вы, очевидно,
заметили, что это связано с тем, что обход z0 = ∞ происходит в обратном направлении по сравнению с
обходом конечной точки.

Всегда ли нужно раскладывать функцию в ряд Лорана, чтобы найти вычет в точке? Оказывается,
не всегда.

Вычет в конечной точке a ∈ C
I. Если a ∈ C - устранимая особая точка (УОТ), то resz=a f(z) = 0, т. к. нет слагаемых главной части,

содержащих отрицательные степени разности (z − a).
II. a ∈ C - полюс.

Полюс 1-го порядка.
а) res

z=a
f(z) = limz→a(f(z)(z − a))

(lim
z→a
(f(z)(z − a)) = lim

z→a
(
∞
∑
0

ak(z − a)k +
a−1
z − a

)(z − a) = a−1)

б) Если функция представима в виде f(z) = φ(z)
ψ(z) , где φ(a) ≠ 0, ψ(a) = 0, ψ′(a) ≠ 0, то

res
z=a

f(z) = φ(a)
ψ′(a)

(1.21)

(lim
z→a
(f(z)(z − a)) = lim

z→a
φ(z)(z − a)

ψ(z)
=

= lim
z→a
(φ(a) + φ′(a)(z − a) + . . .) (z − a)

ψ′(a)(z − a) + . . .
= φ(a)
ψ′(a)

)

Полюс k-го порядка.

res
z=a

f(z) = 1

(k − 1)!
lim
z→a

dk−1 ((z − a)kf(z))
dzk−1

(1.22)

III. a ∈ C - существенно особая точка (СОТ). Вычет вычисляется разложением в ряд Лорана в
проколотой окрестности точки a ∈ C. Полностью ряд находить не надо - необходимо найти лишь
коэффициент при 1

z−a .

Вычет в ∞
Если z = ∞ - устранимая особая точка (УОТ), то, в отличие от конечной точки, вычет может быть и

отличен от 0, т. к. коэффициент при 1
z

находится в правилъной части ряда Лорана и никак не связан с
типом особой точки в ∞.

Иногда коэффициент при 1
z

находится из ряда Лорана, но можно и по формуле
res
res
z=∞

f(z) = lim
z→∞

z(f(∞) − f(z)), где f(∞) = lim
z→∞

f(z) (1.23)

Во всех остальных особых точках коэффициент a−1 при 1
z

находится разложением в ряд Лорана в
проколотой окрестности z = ∞:

res
z=∞

f(z) = −a−1

Лемма. Если f(z) регулярна в C, за исключением, быть может, конечного числа изолированных

особых точек a1, a2, . . . , an, то
n

∑
k=1

resz=ak f(z) = 0.
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1.6.1. Вычет для ez, sin z, cos z, ch z, sh z в ∞
Найти вычеты в ∞ функций ez, sin z, cos z, ch z, sh z можно по-разному.
Все зти функции регулярны в C и не имеют конечных особых точек. Поэтому сумма вычетов

относительно всех конечных особых точек равна 0 . В этом случае, по лемме, вычет на ∞ равен сумме
вычетов относительно всех конечных особых точек с обратным знаком, т.е. вычет в ∞ для любой из
функций: ez, sin z, cos z, ch z, sh z - равен 0 . Мы изучили разложение функций ez, sin z, cos z, ch z, sh z в ∞.
Там нет отрицательных степеней z - вычет любой из этих функций в ∞ равен 0 .

Кол-1.

17. Найдите res
z=0

sin3z−3 sin z
(sin z−z) sin z .

Точка z = 0 - полюс 1-го порядка (П1), т. к. в числителе 0 третьего порядка, а в знаменателе 0
четвёртого порядка. Boc-
пользуемся формулой (1.20) для П1:
resz=0

sin3z−3 sin z
(sin z−z) sin z = limz→0

(sin 3z−3 sin z)z
(sin z−z) sin z =

= lim
z→0

(− 27z3

3!
+ 3z3

3!
+ o (z4)) z

(− z3
3!
+ o (z4)) (z + o (z2))

= 24

Ответ. 24.

Кол-1.
18. Найдите вычеты функции

f(z) = 1

(z2 + 3 − 4i) (z − 2i)2

во всех особых точках.
Все особые точки - полюсы. Найдём их:

z2 + 3 − 4i = 0⇐⇒ z2 = 12 + 4i + (2i)2 ⇐⇒ z = ±(1 + 2i)
Итак, z = ±(1 + 2i) - полюсы 1-го порядка. Воспользуемся формулой (1.21) для П1:

φ(z) = 1

(z − 2i)2
, ψ(z) = z2 + 3 − 4i⇒

⇒ res
z=1+2i

1

(z2 + 3 − 4i) (z − 2i)2
= 1

2(1 + 2i)

res
z=−1−2i

1

(z2 + 3 − 4i) (z − 2i)2
= − 1

2(1 + 2i)(1 + 4i)2

Точка z = 2i - полюс 2-го порядка:

res
z=2i

1

(z2 + 3 − 4i) (z − 2i)2
= 1

1!
lim
z→2i
( (z − 2i)2

(z2 + 3 − 4i) (z − 2i)2
)
′

∣
2i

=

= −2z
(z2 + 3 − 4i)2

∣
2i

= −4i
(1 + 4i)2

Несмотря на наличие формул, иногда удобнее находить a−1 «в лоб» - разлагать функцию в ряд Лорана.

Кол-1.

19. Найдите resz=∞
Pn(z)
Qn(z) .

Пусть Pn(z) = anzn + an−1zn−1 + . . . + a0,Qn(z) = bnzn+ +bn−1zn−1 + . . . + b0.
Тогда limz→∞

Pn(z)
Qn(z) =

an
bn
⇒ z = ∞ - УОТ. Найдём коэффициент при 1

z
«в лоб»:

Pn(z)
Qn(z)

=anz
n + an−1zn−1 + . . . + a0

bnzn + bn−1zn−1 + . . . + b0
= an
bn
⋅
1 + an−1

anz
+ o ( 1

z
)

1 + bn−1
bnz
+ o ( 1

z
)
=

= an
bn
⋅ (1 + an−1

anz
+ o(1

z
))(1 − bn−1

bnz
+ o(1

z
)) =

=1
z
⋅ an
bn
(an−1
an
− bn−1

bn
) + слагаемые, не содержащие

1

z
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Отсюда следует, что res
z=∞

Pn(z)
Qn(z) =

anbn−1−an−1bn
b2n

.

Ответ. anbn−1−an−1bn
b2n

.

Кол-1.

20. Найдите res
z=0

1
z(ez−1) .

В точке z = 0 полюс 2-го порядка (П2).
Найдём коэффициент при 1

z
функции f(z) = 1

z(ez−1) «в лоб»:

1

z (1 + z + z2

2
+ o (z2) − 1)

= 1

z2 (1 + z
2
+ o(z))

=

=
1 − z

2
+ o(z)
z2

= 1

z
(−1

2
) + слагаемые, не содержащие

1

z
⇒

⇒ res
1

z = 0
= −1

2
.

Ответ. − 1
2
.

Зачем нужны вычеты и особые точки?

4.1.12 Problems about Variation of the Argument of a Function along
a Curve

Ш-16.пр.1. Типичное приращение аргумента

Найти приращение аргумента функции f(z) = z3(z + 1) вдоль кривой γ, заданной параметрически:

z = z(t) = cos t + i sin t, t ∈ [0, π
2
] .

Solution

∆γ arg (f1(z) ⋅ f2(z)) =∆γ arg f1(z) +∆γ arg f2(z) ⇒

∆γ arg f(z) = 3∆γ arg z +∆γ arg(z + 1).

⇒ ∆γ arg z =
π

2
, ∆γ arg(z + 1) =

π

4
,

∆γ arg f(z) = 3 ⋅
π

2
+ π
4
= 7

4
π.

Ш-16.1. Типичное приращение аргумента

Найти приращение аргумента функции z(⋅) ∈ C1[0,1] на отрезке [0,1], заданной в виде z(t) = x(t) +
iy(t), где

x(t) = 4 cos(π
2
t) − 3, y(t) = 3 sin(π

2
t) .

Solution

(не знаю, к произведению не преобразуется, поищу в методичках)
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Ш-16.2. Типичное приращение аргумента

Найти приращение аргумента функции z(⋅) ∈ C1[0,1] на отрезке [0,1], заданной в виде z(t) = x(t) +
iy(t), где

x(t) = (2 + t) sin 4πt, y(t) = (1 + t) cos 4πt + 3

2
.

Solution

Ш-16.3.

Вычислить приращение аргумента функции z2 + 1 вдоль ориентированной кривой γ, заданной в виде
z(t) = x(t) + iy(t), где

x(t) = 5 cos t, y(t) = 2 sin t, t ∈ [0, π
2
] .

Solution

Ш-16.4.

Вычислить приращение аргумента 1
z2+2z вдоль ориентированной кривой γ, заданной в виде z(t) =

x(t) + iy(t), где

x(t) = 3 sin t, y(t) = 2 cos t, t ∈ [0, π
2
] .

Solution

Ш-16.5. Типичное приращение аргумента

Вычислить приращение аргумента функции z2+1
z2−4 вдоль ориентированной кривой γ, заданной в виде

z(t) = x(t) + iy(t), где

x(t) = cos t, y(t) = 2 sin t, t ∈ [π
2
,
3

2
π] .

Ш-16.6. Типичное приращение аргумента

Вычислить приращение аргумента функции tg z
z

вдоль ориентированной замкнутой кривой,
задаваемой уравнением

∣x∣1/2 + ∣y∣1/2 = 21/2,
при однократном ее обходе против часовой стрелки.

Ш-16.7. Типичное приращение аргумента

Вычислить приращение аргумента функции ch2 z
z

вдоль ориентированной замкнутой кривой,
задаваемой уравнением ∣x∣ + ∣y∣ = 3, при однократном ее обходе по часовой стрелке.

Ш-16.8.
Доказать равенство

∆γ arg z =∆γ arg(z − 1)
для любой простой кусочно-гладкой замкнутой кривой γ, содержащей в области, ограниченной кривой γ,
отрезок [0,1].

4.1.13 Problems about Regular Branches

Самарова.ветви1-.3 Существование ветви, рад и интеграл

Доказать, что многозначная функция Ln z−i
3i+z допускает выделение регулярных ветвей в C с разрезом

по дуге окружности {z ∶ ∣z + i∣ = 2, Re z ⩾ 0}.
Разложить регулярную ветвь этой функции g(z), Im g(2i) = 2π, в ряд Тейлора по степеням (z + i) в

окрестности точки z = −i.
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Вычислить интеграл

∳∣z+i∣=1
(z + 1)g(z)
(z + i)2

dz

Доказательство существования

Многозначная функция Ln f(z), где f(z) - голоморфная в области D функция и f(z) ≠ 0 для z ∈
D, допускает выделение регулярных ветвей в D тогда и только тогда, когда для любой замкнутой
кусочногладкой кривой γ в D выполняется условие

∆γ arg f(z) = 0

Изобразим комплексную плоскость с указанным в задаче разрезом и рассмотрим на ней произвольную
замкнутую кривую γ. Возможны 2 случая.

a) Разрез лежит внутри области, ограниченной кривой γ:

⇒ ∆γ arg
z − i
3i + z

=∆γ arg(z − i) −∆γ arg(z + 3i) = 2π − 2π = 0

б) Разрез лежит вне области, ограниченной кривой γ:

⇒ ∆γ arg
z − i
3i + z

=∆γ arg(z − i) −∆γ arg(z + 3i) = 0 − 0 = 0

Доказано.

Разложение в ряд

(тут, видимо, идея в том, что мы преобразуем функцию так, чтобы она зависела именно от z + i,
потому что именно в окрестности точки −i нужно раскладываться.)

Продолжим разрез вверх на мнимой оси по лучу (i,+i∞) и преобразуем функцию g(z) к виду

g(z) = C + Ln(z − i) − Ln(z + 3i) = C + Ln((z + i) − 2i) − Ln((z + i) + 2i) =

= C1 + Ln(1 −
z + i
2i
) − Ln(1 + z + i

2i
)

где C1 - некоторая константа, а у Ln (1 − z+i
2i
) и Ln (1 + z+i

2i
) выбраны те ветви, которые принимают значение

0 при z = −i. Поскольку на интервале мнимой оси (−3i, i) справедливо равенство

C1 + Ln(1 −
ix + i
2i
) − Ln(1 + ix + i

2i
) = C1 −

∞
∑
n=1

1

n
( ix + i

2i
)
n

−
∞
∑
n=1

(−1)n−1

n
( ix + i

2i
)
n

то по теореме единственности в области ∣z + i∣ < 2 справедливо разложение

g(z) = C1 −
∞
∑
n=1

1

n
(z + i

2i
)
n

−
∞
∑
n=1

(−1)n−1

n
(z + i

2i
)
n

Для того, чтобы определить константу C1, найдем значение g(−i). С этой целью рассмотрим рис.
ниже, где красная линия - разрез:
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Найдем сначала значение g(2i). По формуле h (z0) = ln ∣f (z0)∣ + iarg f (z0) + 2πki, k = 0,±1,±2, . . .

g(2i) = ln ∣ 2i − i
3i + 2i

∣ + iarg 2i − i
3i + 2i

+ 2πki = − ln 5 + 2πki

С учетом условия Im g(2i) = 2π получаем: g(2i) = − ln 5 + 2πi. Для вычисления значения g(−i)
воспользуемся формулой h(z) = h (z0) + ln ∣f(z)∣

∣f(z0)∣ + i∆γ arg f(z) с z0 = 2i:

g(−i) = g(2i) + ln
∣ −i−i
3i+(−i) ∣

∣ 2i−i
3i+2i ∣

+ i∆γ arg
z − i
3i + z

= − ln 5 + 2πi + ln 5 + i (∆γ arg(z − i) −∆γ arg(z + 3i)) =

= − ln 5 + 2πi + ln 5 + i(π − 0) = 3πi

Отсюда
g(−i) = C1 = 3πi

Окончательно:

g(z) = 3πi −
∞
∑
n=1

1

n
(z + i

2i
)
n

−
∞
∑
n=1

(−1)n−1

n
(z + i

2i
)
n

=

= 3πi −
∞
∑
n=1

(z + i)n

n(2i)n
(1 + (−1)n−1) = 3πi −

∞
∑
k=0

2(z + i)2k+1

(2k + 1)(2i)2k+1

Вычисление интеграла

(??? додумаю, почему так можно контур деформировать запросто? не глубоко это вижу)

Поскольку внутри круга ∣z + i∣ < 1 подынтегральная функция (z+1)g(z)
(z+i)2 имеет единственную особую

точку z = −i, то по теореме Коши о вычетах получаем, что

∳∣z+i∣=1
(z + 1)g(z)
(z + i)2

dz = 2πi res
z=−i

(z + 1)g(z)
(z + i)2

Для подсчета вычета воспользуемся разложением функции g(z) в ряд Тейлора по степеням (z + i),
записав в явном виде его начало:

g(z) = 3πi − 2(z + i)
2i

+ o(z + i) = 3πi + i(z + i) + o(z + i)

Тогда
(z + 1)g(z)
(z + i)2

= 1

(z + i)2
((z + i) + 1 − i)(3πi + i(z + i) + o(z + i)) =

= 1

(z + i)2
(3πi(1 − i) + (z + i)(3πi + i(1 − i)) + o(z + i))

Таким образом, коэффициент c−1 в разложении функции (z+1)g(z)
(z+i)2 в ряд Лорана по степеням (z + i)

равен
c−1 = 3πi + i(1 − i) = 1 + i(3π + 1)
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res
z=−i

(z + 1)g(z)
(z + i)2

= c−1 = 1 + i(3π + 1)

∳∣z+i∣=1
(z + 1)g(z)
(z + i)2

dz = 2πi res
z=−i

(z + 1)g(z)
(z + i)2

= 2πi(1 + i(3π + 1)) = −2π(3π + 1) + 2πi

Ответ:

g(z) = 3πi −
∞
∑
k=0

2(z + i)2k+1

(2k + 1)(2i)2k+1
, ∳∣z+i∣=1

(z + 1)g(z)
(z + i)2

dz = −2π(3π + 1) + 2πi

Самарова.ветви1-.4 Интеграл от ветви

Пусть g(z) - регулярная ветвь многозначной функции
√
z2 + 9 в C с разрезом по лучам

{z ∶ z = 3i + (1 − i)t, t ⩾ 0} u {z ∶ z = −3i − (1 − i)t, t ⩾ 0}
такая, что arg g(−4) = 0. Вычислить интеграл

∳
γ1∪γ2

dz

(g(z) + 3 + z
2
)2

где γ1 = {z ∶ ∣z∣ = 1} и γ2 = {z ∶ ∣z − 4∣ = 1
2
} окружности, ориентированные против хода часовой стрелки.

Solution

1. Выясним сначала, какие особые точки есть у подынтегральной функции.
Поскольку g(z) - регулярная ветвь многозначной функции

√
z2 + 9, то

g2(z) = z2 + 9
Для того, чтобы найти особые точки, решим у равнение

g(z) = −3 − z
2

Возводя обе части уравнения (17) в квадрат, получаем

z2 + 9 = (3 + z
2
)
2

z2 + 9 = 9 + 3z + z
2

4
3z2

4
= 3z

z1 = 0; z2 = 4

Так как воз ведение обе их частей уравнения в квадрат может привести к появлению по сторонних
корней, то полученные корни нуж но проверить.

a) Рассмот рим сначала ко рень z1 = 0. Чтобы осуществить проверку, вычислим значение g(0). С этой
целью сделаем рисунок.

На рис. 9 красными линиями обозначен разрез.
Найдем сначала значение g(−4). По формуле (4)

g(−4) =
√
∣(−4)2 + 9∣ ⋅ e

2πki
2 = 5eπki

С учетом условия arg g(−4) = 0 получаем: g(−4) = 5. Для вычисления значения g(0) воспользуемся
формулой (5) с z0 = −4:
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g(0) = g(−4) ⋅

¿
ÁÁÀ ∣0 + 9∣
∣(−4)2 + 9∣

⋅ e
i
2∆γ arg(z2+9) = 5 ⋅ 3

5
e

i
2 (∆γ arg(z−3i)+∆γ arg(z+3i)) =

= 3e
i
2
(arctg 4

3+2π−arctg
4
3
) = 3eπi = −3

Подставляя значения g(0) = −3 и z = 0 в уравнение (17), убеждаемся, что о но пре вращается в ве рное
равенство. Таким образом, z = 0-это особая точка подынтегральной функции.

б) Проверим теперь корень z2 = 4. Чтобы осуществить проверку, вычислим значение g(4). С этой
целью сделаем новый рисунок.

Найдем значение g(4) по формуле (5) с z0 = 0:

g(4) = g(0) ⋅

¿
ÁÁÀ∣16 + 9∣
∣0 + 9∣

⋅ e
i
2∆γ arg(z2+9) = −3 ⋅ 5

3
e

i
2 (∆γ arg(z−3i)+∆γ arg(z+3i)) =

= −5e
i
2
(−(2π−arctg 4

3
)−arctg 4

3
) = −5e−πi = 5

Подставляя найденное значение g(4) и z = 4 в уравнение (17), видим, что

5 ≠ −3 − 4

2

Таким образом, z = 4 не являет ся особой точкой подынтегральной функции.
2. Перейдем к вычислению интеграла

∳
γ1∪γ2

dz

(g(z) + 3 + z
2
)2
= ∳∣z∣=1

dz

(g(z) + 3 + z
2
)2
+ ∳∣z−4∣= 1

2

dz

(g(z) + 3 + z
2
)2

Рассмотрим интегралы из правой части равенства по отдельности. Поскольку внутри круга

∣z − 4∣ ⩽ 1

2

нет особых точек подынтегральной функции, то

∳∣z−4∣= 1
2

dz

(g(z) + 3 + z
2
)2
= 0

Поскольку внутри круга ∣z∣ ⩽ 1 подынтегральная функция имеет единственную особую точку z = 0, то
по теореме Коши о вычетах получаем

∳∣z∣=1
dz

(g(z) + 3 + z
2
)2
= 2πi res

z=0

1

(g(z) + 3 + z
2
)2

Для подсчета вычета найдем несколько первых членов разложения функции g(z) по формуле Тейлора
по степеням z:

g(z) = g(0) + g′(0)z + g′′(0)z
2

2
+ o (z2)

Дифференцируя функцию g(z) по формуле (6), полу чаем

g′(z) = g(z) 2z

2 (z2 + 9)
= g(z) z

z2 + 9
Ô⇒ g′(0) = 0

Вычислим вторую производную

g′′(z) = g′(z) z

z2 + 9
+ g(z) 1

z2 + 9
− g(z) 2z2

(z2 + 9)2
Ô⇒ g′′(0) = −3

9
= −1

3
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Таким образом,

g(z) = −3 − z
2

6
+ o (z2)

g(z) + 3 + z
2
= z
2
− z

2

6
+ o (z2)

1

(g(z) + 3 + z
2
)2
= 1

( z
2
− z2

6
+ o (z2))

2
= 4

z2 (1 − z
3
+ o(z))2

=

= 4

z2
(1 − z

3
+ o(z))

−2
= 4

z2
(1 + 2z

3
+ o(z))

Значит, в разложении функции 1

(g(z)+3+ z
2
)2

в ряд Лорана по степеням z коэффициент

c−1 =
8

3

res
z=0

1

(g(z) + 3 + z
2
)2
= 8

3

∳∣z∣=1
dz

(g(z) + 3 + z
2
)2
= 2πi res

z=0

1

(g(z) + 3 + z
2
)2
= 16πi

3

Ответ:

∳
γ1∪γ2

dz

(g(z) + 3 + z
2
)2
= 16πi

3

Ш-17.1. Существование ветви
Доказать, что существует единственная функция h(z), непрерывная на всей C с разрезом по

положительной части действительной оси и удовлетворяющая условиям:

h(z) ∈ Ln z, h(−1) = πi.

Доказать, что эта функция регулярна в области ее определения.

Solution

Ш-17.2.
Пусть функция f ∶ G → C регулярна в области G и f(z) ≠ 0 ∀z ∈ G. Пусть функция h ∶ G → C есть

непрерывная ветвь многозначной функции Ln f(z). Доказать, что h является регулярной функцией.

Solution

Ш-17.3.

Существуют ли регулярные ветви в области C/[−1,1] у многозначной функции Ln (z2 + z)?

Solution

Ш-17.4. Ветви у {
√
z2 − z}

Существуют ли регулярные ветви в области C/[−1,1] у многозначной функции {
√
z2 − z}?

Solution

Ш-17.5. Ветви

Существуют ли регулярные ветви в области G = {z ∶ ∣z∣ > 2} у многозначной функции {
√
z − 1}?
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Solution

Ш-17.6. Ветви

Существуют ли регулярные ветви в области G = {z ∶ ∣z∣ > 2} у многозначной функции Ln z2−1
z2+1?

Ш-17.7. Ветви

Существуют ли регулярные ветви в области G = C/[−i, i] у многозначной функции { 3
√
1 + z2}?

Ш-17.8. Ветви
Существуют ли регулярные ветви в области G = C/[0,+∞) у многозначной функции {zz}?

Ш-17.9.
Доказать, что следующие многозначные функции допускают выделение регулярных ветвей в областях

G, указанных в скобках:
1) {
√
1 − z2 Ln z} , G = C/([−∞,−1] ∪ [0,+∞));

2) {(z2 + 1)z} , G = C/((−i∞,−i) ∪ [i,+i∞));
3) Ln (z2 − 1)Ln z, G = C/[−1,+∞);

4) {(z2 − 1)
√
z} ,G = {z ∶ Im z > 0}.

Ш-17.19.
Пусть функция f(z) регулярна в области G и удовлетворяет там условию Re f(z) > 0. Доказать, что

следующие многозначные функции допускают выделение регулярных ветвей в области G: 1) { 3
√
f(z) + i}

2) Ln 1+if(z)
1−if(z) .

Ш-17.11.
Пусть функция f(z) регулярна в области G и не принимает там значений, лежащих на луче [a,+∞],

где a ∈ R. Доказать, что многозначная функция {
√
a − f(z)} допускает выделение регулярных ветвей в

области G, причем существует единственная ветвь φ(z), удовлетворяющая условию Reφ(z) > 0 (z ∈ G).

Ш-17.12.
Пусть функция f(z) регулярна в области G и не принимает значений, лежащих на кривой γ, идущей

из точки z = 0 в точку z = ∞, оставаясь в левой полуплоскости. Доказать, что многозначная функция
Ln f(z) допускает выделение регулярных ветвей в области G, и существует такая ветвь φ(z), для которой
справедливо неравенство

∣ Imφ(z)∣ < 3π

2
(z ∈ G).

Ш-17.13.
Доказать, что следующие многозначные функции допускают выделение регулярных ветвей в областях

G, указываемых в скобках:
1) {Ln (z +

√
1 + z2)} (G = {z ∶ Re z > 0}); 2) {

√
z +
√
z} (G = {z ∶ Im z > 0});

3) {Ln (iz +
√
1 − z2)} (G = C/((−∞,−1]∪[1,+∞))); 4) {Ln(

√
z+
√
z − 1)} (G = C/((−∞,0]∪[1,+∞)));

5) {
√
Ln z}(G = {z ∶ Im z > 0}).

Ш-17.14.
Доказать, что многозначная функция

{
√
(z − a1) (z − b1)⋯(z − an) (z − bn)}

допускает выделение регулярных ветвей во всей C с разрезами по непересекающимся прямолинейным
отрезкам [ak, bk], k = 1,2, . . . , n.
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Ш-17.15.
Доказать, что следующие многозначные функции допускают выделение регулярных ветвей в

указываемых областях:

1) Ln z2+2z+2
z2−2z+2 , плоскость C с разрезами ;

2) { 4
√
1 − z4}, плоскость C с разрезами ;

3) { 3
√
4z + z5}, плоскость C с разрезами ;

4) {
√
sin z}, G = {z ∈ C ∶ z ∉ [2πk;π(2k + 1)],∀k = 0,±1,±2, . . .};

5) {Ln tg z}, G = {z ∈ C ∶ z ∉ [πk;πk + π
2
] ,∀k = 0,±1,±2, . . .};

6) {
√
z(1 − z)Ln z

1−z} , G = {z ∈ C ∶ z ∉ [0,1]}.

Solution 1

Solution 2

Solution 3

Solution 4

Solution 5

Solution 6

Ш-18.пр.1. Разложение ветви в ряд Тейлора
Пусть hk(z) - регулярная ветвь многозначной функции Ln(1+ z) в области G = {z ∶ ∣z∣ < 1}, такая, что

hk(0) = 2πik. Разложить функцию hk(z) в ряд Тейлора по степеням z в области G.

Solution

По формуле производных регулярных ветвей h′(z) = f ′(z)
f(z) , g

′(z) = f ′(z)
n(g(z))n−1 получаем, что h′k(z) =

1
1+z .

Отсюда легко вычислить и остальные производные:

h′′k(z) =
−1

(1 + z)2
, . . . , h

(n)
k (z) =

(−1)n−1(n − 1)!
(1 + z)n

.

Коэффициенты ряда Тейлора cn =
h
(n)
k
(0)

n!
,

hk(z) = hk(0) +
+∞
∑
n=1

(−1)n−1zn

n
, ∣z∣ < 1

Ш-18.пр.2. Разложение ветви в ряд Тейлора
Пусть a ∈ C, a ≠ 0, и φk(z) - регулярная ветвь многозначной функции {(1 + z)a} в области G = {z ∶ ∣z∣ <

1}, такая, что
φk(0) = e2πaik.

Разложить каждую функцию φk(z) в ряд Тейлора по степеням z в области G.

208



4.1.13 Problems about Regular Branches

Solution

По определению многозначной функции

{(1 + z)a} = eaLn(1+z)

существует регулярная ветвь hk(z) ∈ Ln(1 + z) в области G, такая, что

φk(z) = eahk(z), hk(0) = 2πik.

Дифференцируя сложную функцию, получаем

φ′k(z) = φk(z)
a

1 + z
, . . . , φ

(n)
k (z) = φk(z)

a(a − 1) . . . (a − n + 1)
(1 + z)n

.

Вычисляя коэффициенты cn ряда Тейлора, получаем

φk(z) = φk(0) ⋅
+∞
∑
n=0

Cna z
n, ∣z∣ < 1

где Cna =
a(a−1)...(a−n+1)

n!

Ш-18.пр.3. Разложение ветви в ряд Тейлора

Разложить в ряд Тейлора по степеням z регулярную ветвь g(z) многозначной функции { 3
√
1 − z2} в

области G = {z ∶ ∣z∣ < 1} с начальным значением g(0) = e2πi/3.

Solution

По формуле φk(z) = φk(0) ⋅
+∞
∑
n=0

Cna z
n, ∣z∣ < 1 при a = 1

3
и делая замену ζ = −z2, сразу получаем ответ:

g(z) = e2πi/3
+∞
∑
n=0

Cn1/3(−1)
nz2n, ∣z∣ < 1.

Ш-18.пр.4. Разложение ветви в ряд Лорана

Пусть h(z)-регулярная ветвь многозначной функции Ln 1−z
1+z в области G = C/[−1,1], такая, что

предельное значение
h(0 + i0) = lim

y→0
y>0

h(iy) = 0.

Найти значения h(0− i0), h(i), h(∞). Разложить функцию h(z) в ряд Лорана по степеням z в окрестности
бесконечности и указать кольцо сходимости этого ряда.

Solution

(?? чего такая огромная задача???)
Такая регулярная ветвь h(z) существует и единственна в данной области G, так как выполнены все

условия существования ветвей. В том числе для любой замкнутой ориентированной простой кусочно-
гладкой кривой γ ⊂ G справедливо равенство

∆γ arg
1 − z
1 + z

=∆γ arg(z − 1) −∆γ arg(z + 1) = 0.

По формуле (1) вычислим значения h(0−i0), h(i), h(∞). Выберем кривую γ1 = {z ∶ ∣z+1∣ = 1} с началом
в точке 0+i0 (на верхнем краю границы [−1,1]) и концом в точке 0−i0 (на нижнем краю границы [−1,1]).
Тогда

h(0 − i0) = h(0 + i0) + ln ∣1
1
∣ + i (∆γ1 arg(z − 1) −∆γ1 arg(z + 1)) = i(0 − 2π) = −2πi.
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Выбирая отрезок мнимой оси γ2 = [0, i] с началом в точке 0 + i0 и концом в точке i, получаем

h(i) = h(0 + i0) + ln ∣1 − i
1 + i
∣ + i (∆γ2 arg(z − 1) −∆γ2 arg(z + 1)) = i(−

π

4
− π
4
) = −iπ

2
.

Для вычисления h(∞) выберем произвольное действительное число x > 1 и вычислим вначале значение
h(x). Для этого возьмем соответствующую кривую γ3 с началом в точке 0 + i0 и концом в точке x. По
формуле (1) получаем

h(x) = h(0 + i0) + ln ∣1 − x
1 + x

∣ + i (∆γ3 arg(z − 1) −∆γ3 arg(z + 1)) = ln ∣
1 − x
1 + x

∣ + i(−π + 0)

откуда limx→+∞ h(x) = h(+∞) = −iπ. Так как ∞ является изолированной особой точкой регулярной
функции h(z), то из равенства заключаем, что ∞ есть устранимая особая точка и h(∞) = −iπ. Для
разложения функции h(z) в ряд Лорана в окрестности бесконечности представим в G многозначную
функцию в виде

Ln
1 − z
1 + z

= Ln(−1) + Ln(1 − 1

z
) − Ln(1 + 1

z
) = Ln(−1) + h1(z) − h2(z).

В последнем выражении многозначность содержится в первом слагаемом, а функции h1(z) и h2(z)
однозначны, причем h1(z) - регулярная ветвь функции Ln (1 − 1

z
) в данной области G и такая, что

h1(∞) = 0, a h2(z) - регулярная ветвь функции Ln (1 + 1
z
) в области G, такая, что h2(∞) = 0. Делая

замену ζ = 1
z
, легко убедиться, что такие регулярные ветви в области G существуют, а в силу примера 1

получаем выражения для их рядов Лорана (см. (4)):

h1(z) =
+∞
∑
n=1

(−1)n−1

n
(−1
z
)
n

, ∣z∣ > 1;

h2(z) =
+∞
∑
n=1

(−1)n−1

n
(1
z
)
n

, ∣z∣ > 1.

Из определения функции h(z) как ветви многозначной функции Ln 1−z
1+z и из выражения (6) получаем

h(z) − h1(z) + h2(z) ∈ Ln(−1),
т. е. h(z) − h1(z) + h2(z) = i(π + 2πk(z)),

где k(z) принимает целочисленные значения. Так как в равенстве слева стоят непрерывные функции,
то k(z) = k0 = const. Переходя к пределу при z → ∞, получаем h(∞) = i (π + 2πk0), т. е. h(z) = h1(z) −
h2(z) + h(∞) при ∣z∣ > 1. Отсюда получаем ряд Лорана (в силу его единственности) функции h вида

h(z) = −iπ +
+∞
∑
n=1

[(−1)n − 1]
n

⋅ 1
zn
= −iπ −

+∞
∑
k=0

2

2k + 1
z−2k−1

в кольце сходимости ∣z∣ > 1.

Самарова.ветви1-.1 Разложение ветви в ряд Тейлора
Регулярная ветвь многозначной функции

g(z) = e−z ⋅ Ln(z − 1)

в плоскости с разрезом
{z ∈ C ∶ z = 1 − it, t ⩾ 0}

определена условием
g′′(0) = 1 − iπ

Найти первые три члена разложения g(z) в ряд Тейлора по степеням (z − 2).
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Solution

Обозначим h(z) регулярную ветвь функции Ln(z − 1) такую, что

g(z) = e−z ⋅ h(z)

и найдем, чему равно значение h(0):

g′(z) = −e−zh(z) + e−zh′(z)
g′′(z) = e−zh(z) − 2e−zh′(z) + e−zh′′(z)

Вычислим производные функции h(z) по формуле h′(z) = f ′(z)
f(z) :

h′(z) = 1

z − 1
, h′′(z) = − 1

(z − 1)2

Подставим эти выражения в формулы (8) и (9):

g′(z) = −e−zh(z) + e−z

z − 1

g′′(z) = e−zh(z) − 2e−z

z − 1
− e−z

(z − 1)2

Из условия

g′′(0) = 1 − iπ
получаем

g′′(0) = h(0) + 2 − 1 = 1 − iπ Ô⇒ h(0) = −iπ
Поскольку в задаче нужно найти три члена разложения в ряд Тейлора по степеням (z − 2) нам

потребуется значение h(2). Для того, чтобы его найти, сделаем рисунок.

На рис. 1 красной линией обозначен разрез. Для вычисления значения h(2) воспользуемся формулой
(2) ∶

h(2) = h(0) + ln ∣2 − 1∣
∣0 − 1∣

+ i∆γ arg(z − 1) = −iπ + (−iπ) = −2iπ

Теперь можно выписать первые три члена разложения функции g(z) в ряд Тейлора по степеням (z−2),
вычисляя g(2), g′(2), g′′(2) по формулам (7), (10) и (11)

g(z) = g(2) + g′(2)(z − 2) + g
′′(2)
2
(z − 2)2 + o ((z − 2)2) =

= e−2h(2) + (−e−2h(2) + e−2) (z − 2) + e
−2h(2) − 2e−2 − e−2

2
(z − 2)2 + o ((z − 2)2) =

= e−2(−2iπ) + e−2(1 + 2iπ)(z − 2) − e−2 2iπ + 3
2
(z − 2)2 + o ((z − 2)2)

Ответ:
g(z) = −2iπe−2 + e−2(1 + 2iπ)(z − 2) − e−2 2iπ + 3

2
(z − 2)2 + o ((z − 2)2)
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Ш-18.1. Сколько ветвей?
Пусть G - односвязная область, не содержащая точек z = 0 и z = ∞, но содержащая точку z = 1.

Выяснить, сколько различных регулярных ветвей φ(z) в области G, удовлетворяющих указываемому
условию, допускают следующие многозначные функции:

1) (z − 1)Ln z,φ(1) = 0;
2) {zz} , φ(1) = 1
3) {ziz} , φ(1) = 1;
4) {z1/2z} , φ(1) = 1;
5) {z1/4z} , φ(1) = 1;
6) {zz} , φ′(1) = 1.

Ш-18.2.
Пусть φ(z) - регулярная ветвь многозначной функции Ln(z+i) в областиG, удовлетворяющая условию

φ(1−i) = 0. Найти значение φ(−1−i) в случаях, когда область G: 1) вся комплексная плоскость с разрезом
по лучу [−i∞,−i]; 2) вся комплексная плоскость с разрезом по лучу [−i,+i∞].

Ш-18.3.
Пусть G - вся комплексная плоскость с разрезами по лучам [−∞,−1] и [1,+∞], а φ(z) - регулярная

ветвь многозначной функции Ln (1 − z2) в области G, удовлетворяющая условию φ(0) = 0. Найти:
1) φ(i);
2) φ(−i);
3) φ ( 1+i√

2
);

4) φ ( 1−i√
2
).

Ш-18.4.
Пусть G - вся расширенная комплексная плоскость с разрезом по отрезку [−1,1]. Через φ1(z)

обозначим регулярную ветвь многозначной функции {
√

1+z
1−z} в области G, удовлетворяющую условию

φ1(+i0) = 1, a через φ2(z) - регулярную ветвь многозначной функции Ln 1+z
1−z в области G,

удовлетворяющую условию φ2(−i0) = 0. Найти величины:
1) φ1(−i0);
2) φ1(−i);
3) φ2(+i0)
4) φ2(i).

Ш-18.5.
Пусть G - вся расширенная комплексная плоскость с разрезом по прямолинейному отрезку [−i, i], а

φ(z) - регулярная ветвь многозначной функции Ln 1+iz
1−iz в области G, удовлетворяющая условию φ(1) =

πi/2. Найти значения:
1) φ(−0);
2) φ(−1);
3) φ(−

√
3);

4) φ(∞).

Ш-18.6.
Пусть G - вся комплексная плоскость с разрезами по отрезкам [−2,−1] и [1,2], a φ(z) - регулярная

ветвь многозначной функции {
√
(z2 − 1) (z2 − 4)} в области G, положительная на интервале (−1,1). Найти

значения:
1) φ(3);
2) φ(−3);
3) φ(i);
4) φ(−i).
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Ш-18.7.
Пусть G - вся комплексная плоскость с разрезами по отрезкам [−1, i] и [−i,1], а φ(z) - регулярная

ветвь многозначной функции {
√
1 − z4}, положительная на интервале (−1,1). Найти значения:

1) φ(
√

5
3
) ; 2) φ(−

√
5
3
)

3) φ(i
√

5
3
)

4) φ(−i
√

5
3
).

Ш-18.8.
Пусть a и b - две различные конечные точки C, а γ - некоторая простая непрерывная кривая, идущая

из точки a в точку b. Через G обозначим всю комплексную плоскость с разрезом по кривой γ, a через
φ(z) - произвольную регулярную ветвь многозначной функции Ln z−a

b−z в области G. Доказать, что для
каждой точки z0 кривой γ, отличной от точек a и b, имеет место равенство φ (z+0 )−φ (z−0 ) = 2πi, где символ
φ (z±0 )означает предел функции φ(z) при стремлении точки z к точке z0 справа (слева для знака «-») от
кривой γ.

Ш-18.9.

Пусть φ(z) - регулярная ветвь многозначной функции { 3
√
1 − z2} в области G, удовлетворяющая

условию φ(0) = 1. Найти значение φ(−3) в случаях, когда область G: 1) вся комплексная плоскость с
разрезами по лучам [1,+∞] и [−1,−1+ i∞] 2) вся комплексная плоскость с разрезами по лучам [1,1− i∞]
и [−1,−1 + i∞];

3) вся комплексная плоскость с разрезами по лучам [1,1 − i∞] и [−1,−1 − i∞].

Ш-18.19.
Пусть P (z) - многочлен. Доказать, что любая функция f(z), регулярная во всей C с разрезом по

положительной части действительной оси, непрерывная вплоть до границы этой области и при всех
действительных x > 0 удовлетворяющая условию

f(x + i0) − f(x − i0) = P (x),

имеет вид

f(z) = −P (z)
2πi

h(z) + g(z)

где g(z) - функция, регулярная во всей C, а h(z) - регулярная ветвь многозначной функции Ln z в
плоскости с разрезом по положительной части действительной оси.

Указание. Для доказательства регулярности функции g(z) во всей C воспользоваться теоремой
Морера.

Ш-18.11.
Найти общий вид функции f(z), регулярной во всей C с разрезом по положительной части

действительной оси, непрерывной вплоть до границы этой области, за исключением точки z = 0, и
удовлетворяющей одному из условий (x > 0):

1) f(x + i0) − f(x − i0) = (1 + x)2 lnx;
2) f(x + i0) − f(x − i0) = ln2 x
3) f(x + i0) − f(x − i0) = sin

√
x;

4) f(x + i0) − f(x − i0) = sin(α lnx)
x−1 ;

5) f(x + i0) − f(x − i0) = x+1
ln2 x+π2 ;

6) f(x + i0) − f(x − i0) =
√
x lnx; 7) f(x + i0) − f(x − i0) = lnx

3√x 8) f(x + i0) − f(x − i0) =
√
x lnx

ln2 x+π2 (x + 1).

Ш-18.12.
Пусть G - вся комплексная плоскость с разрезом по положительной части действительной оси, а φ(z) -

регулярная ветвь многозначной функции Ln(1+
√
z), удовлетворяющая условию φ(−1) = 1

2
ln 2+ πi

4
. Найти

значение φ(4 − i0).
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Ш-18.13.
Пусть G - вся комплексная плоскость с разрезами по лучам [−i∞,−i] и [i,+i∞], а регулярная функция

φ(z) определена условиями

φ(z) ∈ Ln (z +
√
1 + z2) , φ(0) = 0 (z ∈ G).

Найти значения:
1) φ ( i

√
2

2
)

2) φ (− i
2
)

3) φ ( 5i
3
+ 0).

Ш-18.14.

Пусть φ(z) - регулярная ветвь многозначной функции Ln(
√
z + 2

√
1 − z), удовлетворяющая условию

φ(1
2
) = 1

2
ln

9

2
.

Найти значение φ(4) в случаях, когда область G: 1) вся комплексная плоскость с разрезами по лучам
[−∞,0] и [1,1 + i∞]; 2) вся комплексная плоскость с разрезами по лучам [−i∞,0] и [1,1 − i∞].

Ш-18.15.
Пусть G - вся комплексная плоскость с разрезами по лучам [−i∞,0] и [1,1+i∞], а регулярная функция

φ(z) определена условиями
φ(z) ∈ LnLn z, φ (e2) = ln 2 (z ∈ G).

Найти значение φ (−eπ).

Ш-18.16.
Пусть G - вся комплексная плоскость с разрезом, изображенным на рис. 18.1, а регулярная функция

φ(z) определена условиями

φ(z) ∈ {
√
π2 + Ln2 z} , φ(1) = π (z ∈ G).

Найти значения:
1) φ(i)
2) φ(−i).

Ш-18.17.
Пусть G - вся комплексная плоскость с разрезом, изображенным на рис. 18.2, а регулярная функция

φ(z) определена условиями
φ(z) ∈ {

√
1 +
√
z + 1}, φ(8) = 2 (z ∈ G).

Найти значения:
1) φ(−3/4); 2) φ(−2).

Ш-18.18.
Пусть G-вся комплексная плоскость с разрезом, изображенным на рис. 18.3, а регулярная функция

φ(z) определена условиями

φ(z) ∈ Ln (iz +
√
1 − z2) , φ(0) = πi (z ∈ G).

Найти значения:
1) φ(1/2)
2) φ(−1/2)
3) φ(4i/3).

Ш-18.19.

Доказать, что многозначная функция { 3
√
1 − z2} не допускает выделения регулярной ветви в области

G = {z ∶ 1 < ∣z∣ < ∞}.
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Ш-18.29.
Выяснить, допускают ли приводимые ниже многозначные функции выделение регулярных ветвей в

областях G, указываемых в скобках:

1) { 3

√
z+1
z+i }(G = {z ∶ 1 < ∣z∣ < ∞}); 2) {2Ln(z + 1) − Ln(z − i)} (G = {z ∶ 1 < ∣z∣ < ∞});

3) {
√
(z2 − 1) (z2 − 4)} (G = {z ∶ Re z > 0, ∣z − 3∣ > 2,5});

4) { 3
√
1 − z5}(G = {z ∶ Re z > 0, z ∉ [1, e2πi/5] , z ∉ [1, e−2πi/5]}).

Ш-18.21.
Выяснить, при каком соотношении между числами α1 и α2 многозначная функция

α1 Ln(z − 1) + α2 Ln z

допускает выделение регулярной ветви в области 1 < ∣z∣ < ∞.

Ш-18.22.
Выяснить, при каком соотношении между числами α1, α2 и α3 многозначная функция

{(z − 1)α1(z + 1)α2zα3}

допускает выделение регулярной ветви в области 1 < ∣z∣ < ∞.

Ш-18.23.
Доказать, что в плоскости с разрезом по отрицательной части действительной оси существует

регулярная ветвь многозначной функции Ln(1 −
√
z), удовлетворяющая условию φ(2i) = −πi/2.

Ш-18.24. Ветвь в спирали
Пусть φ(z) - регулярная ветвь многозначной функции Ln z в области, изображенной на рис. 18.4,

удовлетворяющая условию φ(1) = 0.

Найти φ′(2). Разложить функцию φ(z) в ряд Тейлора в окрестности точки z = −3 по степеням z + 3.

Solution

Ш-18.25.
Пусть g(z) - регулярная ветвь многозначной функции { 3

√
z} в области, изображенной на рис. 18.4,

такая, что g(−1) = −1. Найти g(−2), g′(−3). Разложить g(z) в ряд Тейлора в окрестности точки z = 2
по степеням z − 2 жить функцию φ2(z) в ряд Тейлора в окрестности точки z = 4 по степеням (z − 4).
Разложить φ1(z) и φ2(z) в ряды Лорана в окрестности точки z = ∞.

Ш-18.27.
Пусть g(z) - регулярная ветвь многозначной функции { 4

√
z} в плоскости c разрезом по лучу [0,+∞)

такая, что g(1 + i0) = 1. Найти g(1 − i0), g(16 − i0), g(−16), g′(−16), g′′(−16).

Ш-18.29.
Для всех регулярных ветвей h(z),w(z) многозначных функций в круге ∣z∣ < 1 доказать формулы:

1) h(z) = h(0) + 2
+∞
∑
n=0

z2n+1
2n+1 , где h(z) ∈ Ln 1+z

1−z

2) w(z) = w(0) +
+∞
∑
n=0
(−1)n z

2n+1
2n+1 , где w(z) ∈ Arctg z;

3) 1−z
z
h(z) = −1 +

+∞
∑
n=1

zn

n(n+1) , где h(z) ∈ Ln(1 − z), h(0) = 0.
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Ш-18.39.
Найти разложение в ряд Тейлора по степеням z в окрестности точки z = 0 следующих функций,

содержащих регулярные ветви g(z), h(z) многозначных функций:
1) sh g(z) ⋅ sin g(z), где g(z) ∈ {

√
z}, g(0) = 0;

2) 1
2g(z)h (

1+g(z)
1−g(z)), где g(z) ∈ {

√
z}, g(0) = 0, h(z) ∈ Ln z, h(1) = 0;

3) 1
g(z) , где g(z) ∈ {

√
1 − z3} , g(0) = 1

4) h(z), где h(z) ∈ Ln (1 + z + z2) , h(0) = 0.

Ш-18.31.

Используя тот факт, что регулярная функция f(z) ∈ {Arcsin z√
1−z2

} удовлетворяет дифференциальному
уравнению

(1 − z2) f ′(z) − zf(z) = 1, f(0) = 0,

доказать формулу

f(z) =
+∞
∑
n=0
(−1)n (2n)!!

(2n + 1)!!
z2n+1, ∣z∣ < 1.

Ш-18.32. Ряд для ветви f(z) ∈ {(Arctg z
z
)2} , f(0) = 1

Для регулярной ветви

f(z) ∈ {(Arctg z

z
)
2

} , f(0) = 1,

доказать формулу

f(z) = 1 +
+∞
∑
n=1
(−1)n (1 + 1

3
+ . . . + 1

2n + 1
) z2n

n + 1
, ∣z∣ < 1.

Указание. Подобрать для функции f(z) подходящее дифференциальное уравнение, которому она
удовлетворяет.

Ш-18.33.
Используя биномиальный ряд, доказать справедливость формул разложения в ряд Лорана

регулярных ветвей f(z) многозначных функций:

1) f(z) = 1 +
−1
∑

n=−∞
a(a+1)...(a−n−1)

(−n)! zn, где

f(z) ∈ {( z

z − 1
)
a

} , f(∞) = 1, ∣z∣ > 1

2) f(z) = 1
z
+

−1
∑

n=−∞

1
2 ⋅

3
2 ...(

1
2−n−1)

(−n)! z2n−1, где

f(z) ∈ { 1√
z2 − 1

} , f(2) = 1√
3
, ∣z∣ > 1

3) f(z) = 1 +
−1
∑

n=−∞
α(α+1)...(α−n−1)

(−n)! (b − a)−n ⋅ (z − a)n, где

a ≠ b, f(z) ∈ {(z − a
z − b

)
α

} , f(∞) = 1, ∣z − a∣ > ∣b − a∣

4) f(z) = ln 2 +
−1
∑

n=−∞
(−1)n+1

2n
⋅

1
2 ⋅

3
2⋯(

1
2−n−1)

(−n)! z2n, где

f(z) ∈ Ln z +
√
z2 + 1
z

, f(2) = ln(1 +
√
5

2
) , ∣z∣ > 1.
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Ш-18.34.
Убедиться, что следующие многозначные функции допускают выделение регулярных ветвей в кольце

G, и разложить все регулярные ветви в ряд Лорана по степеням z − a в кольце G (точка и кольцо G
указаны в скобках):

1) Ln (z−1)(z−2)(z+1)(z+2)(a = 0,G = {z ∶ 1 < ∣z∣ < 2});

2) Ln (z+1)
2

z2+4 (a = 0,G = {z ∶ ∣z∣ > 2});
3) Ln z(z+3)

(z+2)(z−1)(a = −1,G = {z ∶ 1 < ∣z + 1∣ < 2});

4) Ln (z−1)2
(z+2)(z+3)(a = −1,G = {z ∶ ∣z + 1∣ > 2}).

Ш-18.35.

Пусть g(z) - регулярная ветвь многозначной функции { 3
√
z + 9} в плоскости с разрезом по кривой

z = 9eit,−π ⩽ t ⩽ π
2

и лучу z = 9i+ti, t ⩾ 0, такая, что arg g(10) = 2π
3

. Вычислить g(−8), g(−1), g(−9+8i), g′(0).
Разложить g(z) в ряд Тейлора в окрестности точки z = 3 по степеням z − 3 и нарисовать наибольшую
область, в которой этот ряд сходится к функции g(z).

Ш-18.36.
Пусть h(z) - регулярная ветвь многозначной функции Ln(2 − z) в плоскости с разрезом по кривой

z = 2eit,0 ⩽ t ⩽ 3
2
π, и лучу z = −2i+t, t ⩾ 0, такая, что Imh(−3) = 0. Вычислить h(−2−0), h(−2+0), h(2+i),

h′(0). Разложить функцию h(z) в ряд Тейлора с центром в точке z = −1. Найти радиус сходимости этого
ряда. Нарисовать наибольшую область, в которой ряд сходится к функции h(z).

Ш-18.37.

Пусть g(z) - регулярная ветвь многозначной функции { 3
√
z(2 − z)2} в плоскости с разрезом по отрезку

[0,2], такая, что g(1+ i0) = 1. Найти g(1− i0), g(−3), g′(3). Разложить g(z) в ряд Лорана по степеням
z в окрестности точки z = ∞.

Ш-18.38.

Пусть h(z) - регулярная ветвь многозначной функции Ln z+1
3−z в плоскости с разрезом по отрезку [−1,3],

такая, что h(1 + i0) = 0. Найти h(1 − i0), g(−2), g′(−3) Разложить h(z) в ряд Тейлора с центром в точке
z = 5 и в ряд Лорана по степеням z в окрестности точки z = ∞. Найти области сходимости этих рядов.

Ш-18.39.

Пусть h(z) - регулярная ветвь многозначной функции Ln z+i
z+1 в плоскости с разрезом по линии

{z ∶ ∣z∣ = 1,−π
2
⩽ arg z ⩽ π}

такая, что h(0) = iπ
2
. Разложить h(z) в ряд Лорана по степеням z в окрестности точки z = ∞.

Ш-18.49.
Пусть h(z) - регулярная ветвь многозначной функции

Ln
z − i
z + i

− 1

z − 2
в плоскости с выколотой точкой z = 2 и разрезом по полуокружности {z ∶ ∣z∣ = 1,Re z ⩾ 0}, такая, что

h(0) = −iπ + 1
2
. Разложить h(z) в ряд Лорана по степеням z в кольце 1 < ∣z∣ < 2.

Ш-18.41.
Пусть g(z) - регулярная ветвь многозначной функции

{ 3
√
z2(1 − z)} + 1

z − 3i

в плоскости с выколотой точкой z = 3i и разрезом по отрезку [0,1], такая, что g(−1) = 3
√
2− 1

1+3i . Разложить
g(z) в ряд Лорана по степеням z в кольце 1 < ∣z∣ < 3.
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Ш-18.42.

Пусть h(z) - регулярная ветвь многозначной функции Ln (z2 − z − 6) в плоскости с разрезом по линиям
{Re z = −2, Im z ⩽ 0} и {Re z = 3, Im z ⩽ 0}, такая, что h(4) = ln 6. Разложить h(z) в ряд Тейлора с центром
в точке z = 1 и найти радиус сходимости этого ряда.

Ш-18.43.

Пусть f(z) - регулярная ветвь многозначной функции Ln (z2 − 2z) в плоскости с разрезами по
положительной части мнимой оси и по отрезку [0,2] действительной оси, выделяемая условием

Im f(−1 +
√
3i) = −π

2
.

Вычислить f(1+2i). Разложить f(z) в ряд Тейлора с центром в точке z = 1+2i. Найти радиус сходимости.
Вычислить сумму ряда при z = −1 +

√
3i

4.1.14 Problems about Analytic Continuation
(!!!!! I’LL SOON SOLVE PROBLEMS HERE)

Ш-пр.1.

Степенной ряд
+∞
∑
n=0

zn сходится в круге B1(0) и расходится при ∣z∣ ⩾ 1. При этом по теореме

Вейерштрасса сумма f1 данного ряда является регулярной в круге B1(0) функцией, и она совпадает в
этом круге B1(0) с функцией f2(z) = 1

1−z , которая определена и регулярна в C/{1}. Таким образом, при
любом a ∈ C/[1,+∞) элемент (B∣a−1∣(a), f2) является непосредственным аналитическим продолжением
элемента (B1(0), f1) (так как не пусто множество B1(0) ∩B∣a−1∣(a), в котором эти функции совпадают).
При любом действительном a > 1 множество B1(0) ∩ B∣a−1∣(a) пусто, но элемент (B∣a−1∣(a), f2) является
аналитическим продолжением элемента (B1(0), f1), так как введя, например, еще один элемент
(B∣i−1∣(i), f2), мы убеждаемся, что последний элемент является непосредственным аналитическим
продолжением как элемента (B1(0), f1), так и элемента (B∣a−1∣(a), f2).

Ш-пр.2.
Рассмотрим пять элементов, составленных из регулярных ветвей многозначной функции {

√
z}, вида

(B1(1), f0) , (B1(i), fπ/2), (B1(−i), f−π/2) , (B1(−1), fπ) , (B1(−1), f−π), где

fs(z) =
√
∣z∣ei/2args z,

причем

args z ∈ (s −
π

2
, s + π

2
) , s = 0,±π/2,±π

Легко убедиться, что каждая функция fs на соответствующем ей круге является регулярной ветвью
многозначной функции {

√
z}, причем fπ(z) = −f−π(z) при всех z ∈ B1(−1). В силу определения элемент

(B1(i), fπ/2) (так же, как и элемент (B1(−i), f−π/2)) является непосредственным аналитическим
продолжением элемента (B1(1), f0), так как на множестве B1(1) ∩ B1(i) функции f0 и fπ/2 равны (см.
рис. 20.1). Аналогично элемент (B1(−1), fπ) есть непосредственное аналитическое продолжение
элемента (B1(i), fπ/2), а элемент (B1(−1), f−π) есть непосредственное аналитическое продолжение
элемента (B1(−i), f−π/2). В итоге получили, что два разных элемента (B1(−1), fπ) и (B1(−1), f−π)

являются аналитическим продолжением одного и того же элемента (B1(1), f0).

Ш-1.
Доказать, что функция, регулярная в области G, является функцией, аналитической в области G.

Ш-2.
Доказать, что если функция, аналитическая в области G, не зависит от формы кусочно-гладкой

ориентированной кривой, вдоль которой ведется аналитическое продолжение, а зависит только от ее
конца, то эта функция регулярна в области G.
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Ш-3.
Пусть F1 и F2 - две аналитические функции в области G. Доказать, что функции F1 + F2 и F1 ⋅

F2, определяемые элементами вида (Br(a), f1 + f2), (Br(a), f1 ⋅ f2), где (Br(a), f1) и (Br(a), f2) - любые
элементы F1 и F2, также являются аналитическими функциями в G.

Ш-4.
Пусть F1 и F2 - две аналитические функции в области G, определяемые элементами вида (Br(a), f1)

и (Br(a), f2), причем для любого элемента (Br(a), f2) функции F2 регулярная функция f2(z) ≠ 0, z ∈
Br(a). Доказать, что функция F1

F2
, определяемая элементами вида (Br(a), f1f2 ), аналитична в области G.

Ш-5.
Пусть F - аналитическая функция в области G, определяемая элементами вида (Br(a), f). Пусть

g ∶ C→ C - регулярная функция на плоскости C. Доказать, что функция, определяемая элементами вида
(Br(a), g(f)), является аналитической в области G.

Ш-6.
Определим для всякой точки a ∈ C/{0} и для всякой кусочно-гладкой ориентированной кривой γa с

началом в точке 1 и концом в точке a, причем
такой, что 0 ∉ γa, величину

hγa(a) = ∫
γa

dζ

ζ

и функцию hγa ∶ B∣a∣(a) → C вида

hγa(z) = hγa(a) +
z

∫
a

dζ

ζ
, z ∈ B∣a∣(a).

Доказать, что семейство элементов
(B∣a∣(a), hγa) , a ∈ C/{0}

образует функцию (обозначаемую Ln z), аналитическую во всей C с выколотой точкой z = 0.

Ш-7.
Пусть α - произвольное комплексное число. Доказать, что семейство элементов

(B∣a∣(a), eαhγa(z)) , a ∈ C/{0},

где функция hγa определена в задаче 6, образует функцию zα, аналитическую в C/{0}

Ш-8.
Определим для всякой точки a ∈ C, a ≠ i, a ≠ −i, и для всякой кусочно-гладкой ориентированной кривой

γa с началом в точке 0 и концом в точке a, причем такой, что i ∉ γa,−i ∉ γa, величину

gγa(a) = ∫
γa

dζ

1 + ζ2

и функцию gγa ∶ Bra(a) → C вида

gγa(z) = gγa(a) +
z

∫
a

dζ

1 + ζ2
, z ∈ Bra(a), ra =min{∣a − i∣, ∣a + i∣}.

Доказать, что семейство элементов
(Bra(a), gγa) , a ≠ ±i,

образует функцию (обозначаемую Arctg z), аналитическую в C/({i} ∪ {−i}).
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Ш-19.
Доказать, что множество значений, принимаемых элементами аналитической функции Ln z (см.

задачу 6) в произвольной точке a ∈ C/{0}, совпадает с множеством значений выражения

Lna = ln ∣a∣ + iArg a.

Ш-11.
Доказать, что множество значений, принимаемых элементами аналитической функции zα (см. задачу

7) в произвольной точке a ∈ C/{0}, совпадает с множеством значений выражения

{aα} = eαLna.

Ш-12.
Доказать, что множество значений, принимаемых элементами аналитической функции Arctg z (см.

пример 8) в произвольной точке a из области G = {z ∈ C ∶ z ≠ ±i} совпадает с множеством значений
выражения

1

2i
Ln

1 + ia
1 − ia

.

Ш-13.
Для следующих многозначных выражений и областей G найти аналитические в области G функции,

которые изображаются этими выражениями:
1) {zz}, где G = {z ∈ C ∶ z ≠ 0};
2) {z2 Ln2 z}, где G = {z ∈ C ∶ z ≠ 0};
3) Ln (1 − z2), где G = {z ∈ C ∶ z ≠ 1, z ≠ −1};
4) { 3
√
1 + z2}, где G = {z ∈ C ∶ z ≠ i, z ≠ −i};

5) {
√
1 − z4}, где G = {z ∈ C ∶ z ≠ ±i, z ≠ ±1};

6) Ln z2−1
z2+1 , где G = {z ∈ C ∶ z ≠ ±i, z ≠ ±1}. 7) {

√
z2 − 1}, где G = {z ∈ C ∶ z ≠ ±1}; 8) Ln z−1

z+1 , где
G = {z ∈ C ∶ z ≠ ±1}.

Ш-16.
Доказать, что если какой-либо элемент аналитической в области G функции эквивалентен нулю, то

эта функция тождественно равна нулю.

Ш-17.
Пусть начальный элемент (Br(a), f0) порождает в области G ⊂ C аналитическую функцию. Доказать,

что в области G существует аналитическая функция с начальным элементом

⎛
⎝
Br(a),

z

∫
a

f0(ζ)dζ
⎞
⎠
.

Ш-18.
Доказать, что существует функция, аналитическая во всей C с выколотыми точками z = 0 и z = 1,

которая изображается формулой LnLn z. f0(z) = 1
zh(z) , h(z) =

z

∫
2

dζ
ζ
.

Ш-19.
Доказать существование функций, изображаемых следующими многозначными формулами и

аналитических в данных областях G:
1) {(z + 1)α(Ln z)β}, где G = {z ∈ C ∶ z ≠ 0, z ≠ ±1};
2) Ln (z +

√
z2 + 1), где G = {z ∈ C ∶ z ≠ ±i};

3) Ln(1 − 4
√
z), где G = {z ∈ C ∶ z ≠ 0, z ≠ 1}; 4) {

√
z +
√
z}, где G = {z ∈ C ∶ z ≠ 0, z ≠ 1}; 5) { 3

√
πi + Ln z},

где G = {z ∈ C ∶ z ≠ 0, z ≠ −1}; 6) {
√
1 +
√
Ln z}, где G = {z ∈ C ∶ z ≠ 0, z ≠ e}.
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Ш-29.

Доказать, что сумма степенного ряда
∞
∑
n=0

z2
n

является полной аналитической функцией в круге

сходимости B1(0) = {z ∶ ∣z∣ < 1}.

Ш-22.
Доказать, что функция f , определенная рядом

+∞
∑
n=0

azn

(a − z)n+1
, a ∈ C/{0},

в круге его сходимости является непосредственным аналитическим продолжением функции g,

определяемой рядом
+∞
∑
n=0
( 2z
a
)n в круге его сходи- мости.

Ш-23.

Пусть функция f регулярна в окрестности точки z = 0, а последовательность {f (n)(z)} сходится там
равномерно и

lim
n→∞

f (n)(0) = 1.

Доказать, что предельная функция этой последовательности аналитически продолжается в C.

4.1.15 Problems about Singular Points of Entire Analytic Functions

Ш-пр.1.

Ряд
+∞
∑
n=0

zn сходится в круге B1(0) к функции 1
1−z и расходится в каждой точке окружности ∣z∣ = 1, а

особой точкой суммы ряда является лишь одна точка z = 1 - полюс первого порядка.

Ш-пр.2.
Ряд

+∞
∑
n=0

(−1)n+1

n(n + 1)
zn+1

сходится в круге B1(0) к функции
S(z) = −z + (1 + z)h0(1 + z),

где
h0(z) = ln ∣z∣ + iargгл z, и argгл z ∈ (π,π),

при этом очевидно, что ряд (2) абсолютно сходится в любой точке окружности ∣z∣ = 1. Особой точкой
суммы ряда (2) является точка z = −1, это логарифмическая точка ветвления полной аналитической
функции, получаемой из элемента (B1(0), S(z)).

Ш-пр.3.
Точки 0,∞ являются точками ветвления полных аналитических функций Ln z и n

√
z. В самом деле,

по формулам (1) из §20 при γ̃ = {z ∶ ∣z∣ = r} с началом в точке a, ∣a∣ = r, после одного обхода окружности
против часовой стрелки получаем другие значения элементов

h̃a(a) = ha(a) + 2πi, g̃a(a) = g(a) ⋅ e2πi/n.

После нескольких обходов окружности из формул (3) получаем, что у функции n
√
z точки 0 и ∞ суть

точки ветвления n-го порядка, а у функции Ln z точки 0 и ∞ суть логарифмические точки ветвления.
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Ш-пр.4.

Рассмотрим аналитическую в C/{1}функцию 1
8√
z−1 , которая имеет элемент (B1(2), f0), где регулярная

функция f0 определена
по формуле

f0(z) =
1

8
√
∣z − 1∣

e−(i/8)(∆γ2z
arg(z−1)).

Продолжая элемент (B1(2), f0) по окружности ∣z − 1∣ = 1, получаем, что точки z = 1,∞-точки ветвления 8
-го порядка.

Ш-пр.5.
Рассмотрим аналитическую в C/{0} функцию cos

√
z. Для этого возьмем элемент (B1(1), g0)

аналитической функции
√
z такой, что g0(1) = 1

При однократном обходе точки 0 по замкнутой кривой значение функции g0(z) меняется на значение
−g0(z), а функция cos g0(z) в силу четности cos z не меняется, т. е. аналитическая функция однозначна
в C, причем точка z = ∞ - существенно особая точка, а точка z = 0 правильная точка (т. е. точка, где
функция регулярна). Это же видно из разложения функции cos

√
z в степенной ряд

cos
√
z = 1 − z

2!
+ z

2

4!
− . . . , ∣z∣ < ∞.

Ш-пр.6.
Рассмотрим аналитическую в C/{0} функцию sin

√
z. Любой ее элемент можно представить в круге

B∣a∣(a), a ≠ 0, в виде регулярной функции

sin
√
z = g0(z)(1 −

z

3!
+ z

2

5!
− . . .) = g0(z) ⋅ f(z),

где (B∣a∣(a), g0) - элемент аналитической функции
√
z, a f - регулярная в C функция. Таким образом,

аналитическая функция sin
√
z имеет, как и функция

√
z, точки ветвления второго порядка в точках 0 и

∞.

Ш-1.
Найти и исследовать особые точки полных аналитических функций:
1)
√
z2 − 1

2) 3
√
1 − z2

3) sin
√
z√

z

4) Ln z−1
z+1

5) 1
2+ 3√z

6) Ln sin z 7) 3
√
ez − 1 8) 1

2+Ln z .

Ш-2.
Приведенные ниже функции аналитичны в кольце G = {z ∶ 0 < ∣z∣ < 1}. Определить характер точки

ветвления z = 0.
1) 1√

z
; 2)
√
h(z), где h(z) ∈ Ln(1 + z), h(0) = 0;

3) Ln z+1
z

;
4)
√
z + 3
√
z

5) Ln(
√
z + z);

6) 1
Ln z

; 7) z
√
2 8) n

√
Ln z 9) 3

√
sinπz 10) LnLn z 11) Lnctg πz

2
; 12) e−

√
Ln z.

Ш-3.
Найти и исследовать особые точки полных аналитических функций:
1) e1/(

√
z−1)

2) 1

1+
√
Ln z

3)
√
z

4√z+1
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4) Ln 1−√z
1+√z ;

5)
√

3
√
z − 1

6) 1
z
Ln 1

1−z .

Ш-4.
Указанные ниже функции аналитичны в плоскости с разрезом по отрезку [−1,1]. Определить

характер особой точки z = ∞.
1)
√
z (z2 − 1);

2) Ln (z +
√
z2 − 1)

3) 3
√
h(z), где h(z) ∈ Ln z+1

z−1 ;h(x) > 0 при x > 1;
4) LnLn z;

5)
√

Ln z+g(z)
2z

, где g(z) ∈ {
√
z2 − 1} ; g(x) > 0 при x > 1;

6) 3

√
Ln z+g(z)

2z
, где g(z) ∈ {

√
z2 − 1} ; g(x) < 0 при x > 1;

Ш-5.
Пусть z = a - точка ветвления конечного порядка для функций F(z) и G(z). Доказать, что для

функций F(z) + G(z) и F(z)G(z) она также является точкой ветвления конечного порядка, или
изолированной особой точкой однозначного характера.

Ш-6.
Пусть z = a - точка ветвления порядка m для функции F(z) и точка ветвления порядка n для функции

G(z). Определить порядок точки ветвления z = a для функций F(z)+G(z) и F(z) ⋅G(z) в предположении,
что m и n взаимно просты.

Ш-7.
Решить предыдущую задачу, предположив, что m и n различны, но не обязательно взаимно просты.

Ш-8.
Найти и исследовать особые точки полных аналитических функций:
1) 3
√
z(1 − z)2

2) Arctg z

3) Ln (z +
√
z2 + 1) 4) (Arcsin z)2

5) 3
√
Arcsin z

6) eArctg z; 7)
√
zArctg z 8) sin

√
z√

z(1−z)
.

Ш-9.
Пусть функция F(z) аналитична в кольце G = {z ∶ r < ∣z∣ < R}, а (Br(a), fa) - какой-либо элемент

функции F(z) с центром в точке a ∈ G. Символом (Br(a),{fa}m) обозначим элемент, получаемый из
элемента (Br(a), fa) продолжением по окружности γ = {z ∶ ∣z∣ = ∣a∣}, проходимой m раз против часовой
стрелки. Доказать, что для n-значности функции F(z) в кольце G необходимо и достаточно, чтобы
{fa(z)}m ≠ fa(z), z ∈ Br(a), при m = 1,2, . . . , n − 1, а {fa(z)}n = fa(z), z ∈ Br(a).

Ш-19.
Пусть z = a-точка ветвления порядка n для функции F(z). Доказать, что выражение F (a + ζn)

представляет собой n функций, имеющих точку ζ = 0 изолированной особой точкой однозначного
характера.

Ш-11.
Доказать, что если функция F(z) имеет точку z = a точкой ветвления порядка n, то ее можно

представить в виде
F(z) = f( n

√
z − a),

где функция f(w) имеет точку w = 0 изолированной особой точкой однозначного характера.
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Ш-12.
Пусть функция f(z) регулярна в круге ∣z−a∣ < r, имеет в точке z = a нуль порядка m и не имеет других

нулей. Доказать, что выражение n
√
f(z) представляет собой: a) если числа m и n взаимно просты, то

функцию, аналитическую в кольце 0 < ∣z−a∣ < r и имеющую в точке z = a алгебраическую точку ветвления
порядка n; б) если m делится на n, то n различных функций, регулярных в круге ∣z − a∣ < r в) если числа
m и n имеют общий наибольший делитель p,1 < p < n, то p различных функций, аналитических в кольце
0 < ∣z − a∣ < r и имеющих в точке z = a алгебраическую точку ветвления порядка n/p.

Ш-13.
Доказать, что утверждения а) и в) задачи 12 сохраняют силу и в случае, когда функция f(z) имеет

в точке z = a полюс порядка m и не имеет в остальных точках круга ∣z − a∣ < r ни нулей, ни полюсов.

Ш-14.
Доказать, что функцию F(z), имеющую в точке z = a алгебраическую точку ветвления порядка n,

можно представить в виде F(z) = f( n
√
z − a), где функция f(w) регулярна в точке w = 0 или имеет в ней

полюс.

Ш-15.
Доказать, что функцию F(z), имеющую в точке z = a алгебраическую точку ветвления порядка n,

можно представить в виде

F(z) =g0(z) + (z − a)1/ng1(z) + (z − a)2/ng2(z) + . . .+
+ (z − a)(n−1)/ngn−1(z),

где функции gk(z) регулярны в точке z = a или имеют в ней полюсы.

Ш-16.
Пусть z = a - алгебраическая точка ветвления функции F(z). Доказать, что существует кольцо

0 < ∣z − a∣ < δ, в котором все элементы функции F(z) не обращаются в нуль.

Ш-17.
Пусть z = a - алгебраическая точка ветвления функций F(z) и G(z). Доказать, что для функций

F(z) + G(z), F(z)G(z), F(z)
G(z)

точка z = a может быть только или алгебраической точкой ветвления, или полюсом, или устранимой
особой точкой.

Ш-18.
Пусть z = a-алгебраическая точка ветвления функции F(z) и limz→aF(z) = b, а w = b - алгебраическая

точка ветвления функции G(w). Доказать, что z = a - алгебраическая точка ветвления функции G[F(z)]

Ш-19.
Пусть z = a-алгебраическая точка ветвления функции F(z) и limz→aF(z) = b, а b ≠ ∞, а функция f(w)

регулярна в точке w = b и f ′(b) ≠ 0. Доказать, что точка z = a является алгебраической точкой ветвления
одного и того же порядка для функций f[F(z)] и F(z) (если f ′(b) = 0, то порядок точки ветвления для
функции f[F(z)] может быть меньше, чем для функции F(z); см. задачу 12).

Ш-29.
Пусть z = a - алгебраическая точка ветвления второго порядка для функции F(z) и limz→aF(z) = b,

а w = b - алгебраическая точка ветвления третьего порядка для функции G(w). Каким может оказаться
порядок точки ветвления z = a для функции G[F(z)] (указать все возможности)?
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Ш-21.
Решить предыдущую задачу для произвольных порядков ветвления m и n (для функций F(z) и G(w)

соответственно).

Ш-22.
Доказать, что если точка z = a является логарифмической точкой ветвления для функции F(z) и

алгебраической точкой ветвления для функции G(z) = eF(z), то предел G(z) при z → a может быть равен
только или нулю, или бесконечности.

Ш-23.

Пусть функция F(z) аналитична в кольце r < ∣z − a∣ < R. Доказать, что выражение F (a + eζ)
представляет собой совокупность конечного или бесконечного числа функций, регулярных в полосе ln r <
Re ζ < lnR.

Ш-24.
Пусть функция f(z) регулярна в области G, ограниченной простой кусочно-гладкой кривой, а кривая

γ лежит в области G, за исключением ее конца ζ, расположенного на границе этой области. Доказать,
что если при некотором k

f (k)(z) → ∞ (z → ζ, z ∈ γ)
то точка ζ - особая точка функции f(z).

Ш-25.
Используя результат задачи 24, доказать, что все регулярные ветви приводимых ниже функций в

области G имеют точку ζ своей особой точкой (точка ζ и область G указаны в скобках после формулы
для функции).

1) Arctg z(ζ = i, ζ = −i;G = {z ∶ ∣z∣ < 1});
2) Ln (z +

√
1 + z2) (ζ = i; ζ = −i, ζ = ∞;G = {z ∶ Re z > 0});

3) Arcsin z(ζ = 1, ζ = −1; ζ = ∞;G = {z ∶ Im z > 0});
4) z3 Ln z(ζ = 0;G = {z ∶ ∣z − 1∣ < 1}).

Ш-26.
Доказать, что все регулярные в области G ветви приводимых ниже функций имеют особую точку в

бесконечности (область G указана в скобках):
1) 1

3√z (G = {z ∶ Im z > 0}).
2) 1

Ln z
(G = {z ∶ Re z > 1}).

3) 1
z3 Ln z

(G = {z ∶ Im z > 0}). Указание. Исследовать точку ζ = 0 для функции f(1/ζ).

Ш-27.

Доказать, что функция e−(Ln z)
2

допускает выделение регулярных ветвей в полуплоскости Re z > 0 и
что каждая из ветвей имеет особые точки z = 0 и z = ∞.

Ш-28.

Функция (1+i
√
z)−2 имеет две ветви, регулярные в верхней полуплоскости. Доказать, что точка z = ∞

является особой точкой для обеих ветвей, а точка z = −1 - только для одной из них.

Ш-29.

Пусть f(z) - регулярная ветвь функции (1+i
√
z)−2, определяемая условием

√
z > 0 при z > 0. Доказать,

что если функцию f(z) рассматривать только как функцию в верхней полуплоскости, то точка z = −1
является для нее особой точкой, а если как функцию только в нижней полуплоскости, то не является
особой.
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Ш-39.

Доказать, что функция f(z) =
∞
∫
0

e−tz√
1+t2

dt регулярна в полуплоскости Re z > 0 и что точка z = 0 является

для нее особой точкой.

Ш-31.
Пусть функция φ(t), непрерывная и положительная при t ⩾ 0, удовлетворяет условию

−M ln t ⩽ lnφ(t) ⩽M ln t (t ⩾ 1).

Доказать, что функция f(z) =
∞
∫
0

φ(t)e−tzdt регулярна в полуплоскости Re z > 0, и что точка z = 0 является

для нее особой точкой.

Ш-32.
Пусть функция φ(t) непрерывна при t ⩾ 0 и удовлетворяет условию

∣φ(t) − eiαt∣ ⩽Me−δt, t ⩾ 0 (δ > 0,−∞ < α < ∞).

Доказать, что функцию f(z) =
∞
∫
0

φ(t)e−tzdt можно аналитически продолжить на полуплоскость Re z > −δ

с выколотой точкой z = iα, в которой эта функция имеет простой полюс с главной частью 1
z−iα .

Ш-33.
Доказать, что аналитическое продолжение каждой из следующих функций не имеет во всей плоскости

никаких особых точек, кроме полюсов. Найти все полюсы этих функций и главные части в этих полюсах.

1)
∞
∫
0

e−tz
1+e−αt dt, 3)

∞
∫
0

e−tz
1+te−t dt

2)
∞
∫
0

te−tz

(1+e−αt)2 dt, α > 0

4)
∞
∫
0

e−tz

1+αe−t+βe−t2 dt,α > 0, β > 0.

Ш-34.
Пусть функция φ(t) непрерывна и положительна на отрезке [0,1]. Доказать, что функция f(z) =

1

∫
0

φ(t)
t−z dt, регулярная при Im z > 0 (и даже во всей плоскости с разрезом по отрезку [0,1]), имеет особые

точки z = 0 и z = 1.

Ш-35.
Пусть функция φ(t) регулярная в некоторой области, содержащей отрезок [0,1]. Доказать, что

функция f(z) =
1

∫
0

φ(t)
t−z dt, регулярная при Im z > 0, имеет особые точки z = 0 и z = 1.,

Ш-37.

Доказать, что если на окружности круга сходимости ряда f(z) =
∞
∑
n=0

anz
n имеется хотя бы один полюс

f(z), то ряд расходится во всех точках этой окружности.

Ш-38.
Пусть последовательность {cn} , n = 0,1,2, . . . удовлетворяет условию

∣cn +Ae−i(n+1)α∣ <
M

Rn
, n = 0,1,2, . . . , (R > 1,−∞ < α < ∞).

Доказать, что функцию f(z) =
∞
∑
n=0

cnz
n можно аналитически продолжить в круг ∣z∣ < R с выколотой

точкой z = eiα, причем в точке z = eiα функция f(z) имеет простой полюс с главной частью A (z − eiα)−1.
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Ш-39.
Доказать, что если функция f(z) регулярна в круге ∣z∣ ⩽ R, за исключением простого полюса в точке

Reiα, с главной частью A
z−Reiα , то

f(z) =
∞
∑
n=0

cnz
n

где

∣cn +AR−n−1e−i(n+1)α∣ <
M

(R + ε)n
, n = 0,1,2, . . . (ε > 0).

Ш-49.

Пусть ряд f(z) =
∞
∑
n=0

anz
n имеет на границе круга сходимости лишь одну особую точку, а именно

полюс z = z0 порядка m. Доказать, что an = Anm−1
zn0
[1+ε(n)], где ε(n) → 0, при n→∞,A постоянная, A ≠ 0.

Ш-41.

Доказать, что если на границе круга сходимости степенного ряда f(z) =
∞
∑
n=0

anz
n лежит лишь одна

особая точка z = z0, являющаяся полюсом для f(z), то существует предел

lim
n→∞

an
an+1

= z0.

Ш-42.

Пусть радиус сходимости ряда f(z) =
∞
∑
n=0

cnz
n равен R,0 < R < ∞. Введем обозначение:

ν(r,φ) = lim
n→∞

RRRRRRRRRRR

f (n) (reiφ)
n!

RRRRRRRRRRR

1/n

, 0 < r < R, 0 ⩽ φ < 2π.

Доказать, что: a) функция ν(r,φ) является непрерывнеой функцией r и φ и удовлетворяет неравенству
ν(r,φ) ⩽ (R − r)−1; б) max0⩽φ<2π ν(r,φ) = 1

R−r ; в) если ν(r,φ) = 1
R−r , то точка z = Reiφ является особой

точкой функции f(z); г) если ν(r,φ) < 1
R−r , то точка z = Reiφ не является особой точкой функции f(z).

Ш-43.

Пусть f(z) =
∞
∑
n=0

cnz
n, limn→∞ ∣cn∣1/n = 1, и все коэффициенты cn неотрицательны. Доказать, что точка

z = 1-особая точка функции f(z).

Ш-44.
Доказать, что утверждение задачи 43 остается в силе и при более слабых предположениях:

Re cn ⩾ 0 (n > n0) , lim
n→∞

(Re cn)1/n = 1.

Ш-45.

Пусть p и q - некоторые целые положительные числа, а радиус сходимости ряда f(z) =
∞
∑
n=0

cnz
np+q

равен единице. Доказать, что: a) функция f(z) имеет не менее p особых точек на окружности ∣z∣ = 1; б)
если z0 = eiα - особая точка функции f(z), то точки

zk = ei(α+(2πk/p)), k = 1,2, . . . , p − 1,

также являются ее особыми точками.
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Ш-47.
Доказать, что каждая точка окружности ∣z∣ = 1 является особой точкой для функций

1) f(z) =
∞
∑
n=0

z2
n

.

2) f(z) =
∞
∑
n=0

zn!.

4.1.16 1.5. Singular Points of Regular Functions by Kolesnikova

Определение. Точка z = a ∈ C называется изолированной особой точкой однозначного характера
функции f(z), если f(z) регулярна в некоторой проколотой окрестности точки z = a ∈ ∈ C, но не регулярна
в самой точке.

1.5.1. Классификация изолированных особых точек
Пусть функция f(z) регулярна в некоторой проколотой окрестности 0 < ∣z − z0∣ < ρ, если z0 ∈ C, или

f(z) регулярна в некоторой проколотой окрестности z0 = ∞ ∶ R < ∣z∣ < ∞.
В силу теоремы, f(z) разлагается в этих проколотых окрестностях в соответствующие ряды Лорана,

тогда так классифицируются особые точки.
Если limz→z0 f(z) = A ∈ C, то z0 называется устранимой особой точкой (УОТ).
Это равносильно тому, что ряд Лорана не содержит главной части:

а) если z0 ∈ C, то f(z) =
∞
∑
0
ak (z − z0)k ,0 < ∣z − z0∣ < ρ;

б) если z = ∞, то f(z) = a0 +
∞
∑
1

ak
zk
,R < ∣z∣ < ∞.

Например,
a) f(z) = sin z

z
⇒ limz→0

sin z
z
= 1⇒ z = 0 - YOT,

б) f(z) = cos 1
z
⇒ limz→∞ cos 1

z
= 1⇒ z = ∞ - УOT.

2. Если limz→z0 f(z) = ∞, то z0 называется полюсом (П).
Это равносильно тому, что главная часть ряда Лорана содержит конечное число слагаемых.
При этом особая точка называется полюсом порядка k( ПК), если
главная часть содержит не более k слагаемых и коэффициент при 1

(z−z0)k
отличен от 0, если z0 ∈ C,

коэффициент при zk отличен от 0, если z0 = ∞.
При этом

a) если z0 ∈ C, то f(z) =
∞
∑
0
an (z − z0)n +

k

∑
1

am
(z−z0)m , ak ≠ 0,0 < ∣z − z0∣ < ρ

б) если z = ∞, то f(z) =
∞
∑
0

an
(z)n +

k

∑
1
amz

m, ak ≠ 0,

R < ∣z∣ < ∞
Порядок полюса иногда можно определить и не разлагая функцию в ряд Лорана.
Это можно сделать, если функция представима в виде f(z) = φ(z)

ψ(z0) , где φ(z) имеет 0 порядка m,ψ(z)
имеет 0 порядка m + k, то f(z) имеет в этой точке полюс порядка k.

Регулярная функция g(z) в точке z = a имеет 0 порядка n, если

g(a) = 0, g′(a) = 0, . . . , g(n−1)(a) = 0, g(n)(a) ≠ 0
Например,

a) f(z) = ez−1
z2
= e−1

z2

∞
∑
0

zk

k!
= e−1

z2
+ e−1

z
+ e−1

∞
∑
2

zk−2
k!
,0 < < ∣z∣ < ∞ ⇒ z = 0 - полюс 2-го порядка (П2),

б) f(z) = 3z3 − 4z + 16
z
⇒ {z = 0 −Π1,

z = ∞ −Π3,

в) f(z) = 1
1+ch z ⇒ z = 0 −Π2, т. к. (1 + ch z)′n=0 = sh 0 = 0, (1 + ch z)′′z=0 = ch0 ≠ 0.

3. Если limz→z0 f(z) не существует, то z0 - существенно особая точка (СОТ). Это равносильно тому, что
ряд Лорана содержит в главной части бесконечное число слагаемых.

Например,

а) f(z) = ez → { +∞, z → +∞;
0, z → −∞ ⇒ z = ∞−COT , или, т. к. f(z) = ez = a0 +

∞
∑
1
akz

k, ∣z∣ < ∞ - главная часть

содержит бесконечно много слагаемых ⇒ z = ∞ COT.
б) f(z) = cos 1

z
⇒ limz→0 cos

1
z

не существует ⇒ z = 0 - COT.
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1.5.2. z = ∞ - всегда особая точка в C
Так как R-окрестностью точки z = ∞ называется внешность окружности радиуса R с центром в

любой точке a ∶ ∣z - −a ∣> R,R ⩾ 0, то окрестность точки z = ∞ всегда проколотая, или кольцо, ибо никакая
функция f(z) не определена в этой «точке», а может лишь иметь или не иметь предел при z →∞. Поэтому
точку z = ∞ будем всегда считать особой. Это оправдывается и тем, что если в области D ∈ C находятся
только устранимые особые точки, то работает интегральная теорема Коши: ∫

∂D

f(z)dz = 0. Если же D ∈ C̄

и содержит только устранимые особые точки, среди которых z = ∞, то ∫
∂D

f(z)dz может быть как равен 0,

так и отличен от 0 - работает так называемая теорема о вычетах: вычет в z = ∞, если даже это УОТ, может

быть отличен от 0 . Или, например, просто посчитаем ∳∣z∣=10
dz
z
= ∣ z = 10eiφ,

dz = 10eiφidφ ∣ = i
0

∫
2π

dφ = −2πi ≠ 0,

несмотря на то, что у подынтегральной функции точка z = ∞ - устранимая особая точка.
Итак, в нашем пособии z = ∞ - всегда особая точка.

П р и м е ч а н и е 1. Так как окрестность z = ∞ всегда проколотая, то слово проколотая обычно опускают.
Примечание 2. Уже известно, что ez, sin z, cos z,

ch z, sh z - регулярные во всей плоскости функции, разлагаются в ряд Тейлора в окрестности любой точки
a ∈ C, имеют при этом радиус сходимости R = ∞. Функции ex, sinx, cosx, chx, shx - это «след» функций
ez, sin z, cos z, ch z, sh z на действительной оси.

Если a ∈ C, то круг ∣z − a∣ < ∞, в котором сходятся ряды Тейлора для ez, sin z, cos z, ch z, sh z, содержит
промежуток ∣x − a∣ < ∞, в котором как раз и сходятся ряды Тейлора для ex, sinx, cosx, chx, shx как след
рядов Тейлора для ez, sin z, cos z, ch z, sh z.

Определение. Если в любой окрестности точки z0 ∈ C или z0 = ∞ находится, по крайней мере, одна
особая точка, отличная от z0, то z0 является и называется неизолированной особой точкой (НОТ).

Простейшие примеры.
f(z) = 1

1+cos z . Ясно, что точки, где 1 + cos z = 0, особые. Найдём их:

1 + cos z = 0⇐⇒ zk = π + 2πk, k ∈ Z

lim
z→zk

1

1 + cos z
= ∞⇒ zk = π + 2πk − полюс.

Какого порядка? Очень частый ответ - первого. Но это не так, потому что, во-первых ,1 + cos zk =
0, (1 + cos z)′zk = − sin zk = 0, (1 + cos z)

′′
zk
≠ 0, поэтому полюс 2 -го порядка.

А во-вторых, из школьной тригонометрии известно (правда, для 1 + cos 2x, но мы знаем, что эти
формулы верны и для z), что 1 + cos z = 2 cos2 z

2
, т. е. здесь 0 второго порядка!

Замечаем сразу, что zk Ð→
k→∞

. Это значит, что z = ∞ - неизолированная особая точка (НОТ), в данном
случае предельная точка полюсов.
2) f(z) = e

1
1/z +1. Ясно, что точки, где e1/z +1 = 0⇐⇒ 1

zk
= i(π+2πk), k ∈ Z⇒ zk = 1

i(π+2πk) - особые. Так как
1

e1/z+1 Ð→z→zk
∞, а eξ при ξ →∞ не имеет предела, то zk - существенно особая точка (COT).

Видно, что zk = 1
i(π+2πk) Ð→k→∞ 0. Значит, z = 0 - неизолированная особая точка (HOT), в данном случае

предельная точка существенно особых точек.

Кол-1.
15. Найдите все особые точки функции

f(z) =
etgπz sin 2πz

3

(2z + 1) (ez + 1)
и определите их тип.
Прежде всего надо переписать функцию в другом виде:

f(z) =
e

sinπz
cosπz sin 2πz

3

(2z + 1) (ez + 1)

т. к. tg z не является самостоятельной функцией, а это частное двух классических (иначе некоторые
теряют точки, где знаменатель равен 0).

В таких примерах важно знать, в каком порядке вести исследование. Никогда не надо начинать с
особых точек числителя или знаменателя.

Сначала выписываем особые точки числителя: cosπz = 0, z = ∞. Выписываем особые точки
знаменателя - это только что выписанная точка z = ∞.

Теперь важно понять, что отсюда следует, что f(z), по теореме о регулярности дроби, регулярна
всюду в C, кроме, быть может, точек, где знаменатель обращается в 0 .
3. Это точки: z = − 1

2
, ez + 1 = 0. Обращаем внимание на то, что это точки регулярности знаменателя,

которые могут оказаться особыми точками дроби.
Выпишем список «кандидатов» в особые точки, одновременно решая возникающие уравнения:
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z = ∞ cosπz = 0⇐⇒ z = 1
2
+ k, k ∈ Z.

Точек бесконечно много - последовательность zk = 1
2
+ +k Ð→

k→∞
∞ ⇒ в любой окрестности z = ∞

находится бесконечно много особых точек, т. е. мы «бесплатно» получаем ответ для пункта 1).
z = ∞ - неизолированная особая точка - НОТ (в дальнейшем можно уточнить, какие особые точки

накапливаются в окрестности z = ∞). z = − 1
2
. ez + 1 = 0⇐⇒ ez = −1⇐⇒ zk = i(π + 2πk) Ð→

k→∞
∞, k ∈ Z - опять

получили, что z = ∞ - НОТ.
С чего начать исследование?

После нахождения «кандидатов» в особые точки выписываем неизолированные особые точки и начинаем
рассматривать изолированные. Удобнее всего часто бывает начать с точек регулярности знаменателя, в
которых он обращается в 0 .
4) z = i(π + 2πk), k ∈ Z.

Начнём с 4) (можно было и с 3)).
Надо проверить, не являются ли эти точки особыми для каких-нибудь множителей числителя или
знаменателя или не обращаются ли какие-нибудь множители числителя или знаменателя в 0 в этих
точках. В нашем случае ясно, что нет. Поэтому точки zk = i(π + 2πk) - это полюса 1-го порядка, т. к.
(ez + 1)′ = ez ≠ 0.
3) Точка z = − 1

2
. Проверяем, не является ли эта точка особой для каких-нибудь множителей числителя

или знаменателя или не обращаются ли какие-нибудь множители числителя или знаменателя в 0 в этой
точке. В нашем случае при k = −1 эта точка совпадает с особой точкой числителя, т. к. cos (− 1

2
π) = 0.

Числитель не имеет предела, а знаменатель обращается в 0. Выяснить, что происходит с дробью,
можно, например, одним из двух следующих способов.
a) Можно воспользоваться тем, что если a ∈ C и является СОТ для f(z) и полюсом для g(z), то a ∈ C -
СОТ для f(z)g(z).
б) Можно показать «в лоб», что дробь не имеет предела. Удобно сделать замену z + 1

2
= t ⇐⇒ z = t − 1

2
.

Тогда

f(z) =
e

sinπ(t− 1
2
)

cosπ(t− 1
2
) sin

2π(t− 1
2
)

3

2t (e(t− 1
2
) + 1)

∼ −
e

1
sinπt sin π

3

2t (e− 1
2 + 1)

∼ Ae
− 1

πt

t

Так как A e−
1
πt

t
= A

t

∞
∑
0

1
k!
(− 1

πt
)k и главная часть содержит бесконечно много слагаемых,t = 0 - СОТ.

Поэтому z = − 1
2

- существенно особая точка (COT).
2) Точки z = 1

2
+ k, k ∈ Z⇐⇒ zk = 1

2
+ k Ð→

k→∞
∞.

Во-первых, и эти точки скапливаются в окрестности z = ∞.
Проверяем, не являются ли эти точки особыми для какихнибудь множителей числителя или знаменателя
или не обращаются ли какие-нибудь множители числителя или знаменателя в 0 в этих точках.
«Подозрение» вызывает поведение sin 2πz

3
∶ sin 2πz

3
= 0⇐⇒ ⇐⇒ 2πz

3
= πn⇐⇒ z = 3

2
n,n ∈ Z.

Сравним их с точками zk = 1
2
+ k:

3

2
n = 1

2
+ k⇐⇒ 3n − 1 =2k⇒ n = 2m + 1⇒

⇒ 3(2m + 1) − 1 = 2k⇐⇒ k = 3m + 1
Ну вот! Общие точки!

Поэтому
а) zk = 1

2
+k, k ≠ −1, k ≠ 3m+1−COT, т. к. числитель предела не имеет, а остальные множители ограничены

и отличны от 0 .
б) Пусть теперь zm = 1

2
+ 3m + 1. Удобно сделать замену переменных z − ( 1

2
+ 3m + 1) = t. Тогда

f(z) =
e

sinπz
cosπz sin 2πz

3

(2z + 1) (ez + 1)
∼ Ae−

1
πt t⇒

⇒ zm =
1

2
+ 3m + 1 − тоже СОТ.

Ответ. 1) z = ∞−HOT, предельная точка полюсов и существенно особых точек,
2) zn = 1

2
+ k, k ∈ Z −COT.

3) zn = i(π + 2πk), k ∈ Z - полюса 1-го порядка.

Кол-1.

16. Найдите все особые точки функции f(z) = e
1

chz (πz+π+1)
1+cos 1

z+1
и определите их тип.

Выпишем «кандидатов» в особые точки. Решение будем оформлять по схеме предыдущего примера,
но более кратко.
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z = ∞; ch z = 0 ⇐⇒ cos iz = 0 ⇐⇒ iz = π
2
+ πk ⇐⇒ zk = πi (− 1

2
+ k) Ð→

k→∞
∞ ⇒ z = ∞ − HOT, k ∈ Z;

1 + cos 1
z+1 = 0⇐⇒

1
z+1 = π + 2πk⇐⇒ zk = 1

π(2k+1) - −1 Ð→
k→∞

−1⇒ z = −1¯ НОТ.
Видите? По ходу решения элементарных уравнений мы определили типы двух особых точек: z = ∞ и
z = −1. Одна особая точка числителя, а другая - особая точка знаменателя. Если бы начали с них, то
наверняка бы запутались!

Исследуем остальные.
2) zk = πi (− 1

2
+ k) −COT (значения всех остальных функций дроби ∈ C и не равно 0),

3) zk = 1
π(2k+1) − 1. Заметим, что πz + π + 1 = 0⇐⇒ z = −1 - − 1

π
, что соответствует k = −1. Поэтому

а) если k ≠ −1, то zk = 1
πk
− 1 - полюс (внимание!) 2 -го порядка.

Почему 2-го порядка?
Во-первых, потому, что первая производная 1+ + cos 1

z+1 равна 0, потому что там, где косинус равен -1,
синус равен 0, а вторая отлична от 0 (проверьте).

Во-вторых, по формулам школьной тригонометрии 1 + cos 1
z+1 = 2 cos

2 1
2(z+1) , а это ноль 2-го порядка!

б) если k = −1, то z = −1 − 1
π

- полюс 1-го порядка, т. к. в числителе 0 первого порядка, а в знаменателе 0
второго порядка.
Ответ. 1) z = ∞ - HOT, предельная точка существенно особых точек;
2) z = −1 −HOT, предельная точка полюсов;
3) zk = πi (− 1

2
+ k) , k ∈ Z −COT

4) zk = 1
π(2k+1) − 1, k ∈ Z, k ≠ −1 - полюс 2 -го порядка;

5) z = − 1
π
− 1 - полюс 1-го порядка.

1.5.3. Функции e−
1
x2 и e−

1
z2

Вспомним пример (который приводится на 1-м курсе) функции, ряд Тейлора для которой в
окрестности x = 0 существует, сходится, но не к самой функции. Функция определяется так:

f(x) = {e
− 1

x2 , x ≠ 0
0, x = 0

(1.19)

Вычисления, по определению, показывают, что все производные в точке x = 0 равны 0 -
соответствующий этой функции ряд Тейлора состоит из нулевых членов, а потому его сумма
тождественно равна 0 . Функция f(x) бесконечно дифференцируема на всей оси.

Ho! Сама функция f(x) обращается в 0 только в одной точке - ряд к заданной функции не сходится.
Почему? В чём дело?

На первом курсе этот факт объяснить невозможно. Зато мы теперь сможем.
Рассмотрим функцию f(z) = e−

1
z2 . Она регулярна в C/{0}. Точка z = 0 - существенно особая точка

(COT). Функция регулярна в проколотой окрестности 0 < ∣z∣ < ∞, а потому разлагается в ней в ряд
Лорана:

f(z) = e−
1
z2 =

∞
∑
0

(−1)n

n!z2n
, 0 < ∣z∣ < ∞

Функция f(x) — «след» f(z) на действительную ось. Но f(z), как мы увидели, разлагается в
окрестности z = 0 не в ряд Тейлора, а в ряд Лорана, причём правильная часть состоит всего лишь из
одного члена: a0 = 1, а главная часть имеет бесконечно много слагаемых. Поэтому и на оси Ox имеем

e−
1
x2 =

∞
∑
0

(−1)n
n!x2n ,0 < ∣x∣ < ∞, а ряд Тейлора не существует!

Так как z = 0 - COT, то limz→0 e
− 1

z2 не существует. Это означает, что по разным направлениям пределы
разные. Но оказалось, что limx→0 e

− 1
x2 = 0, и, если это принять за значение f(x)∣x=0 = 0, то мы и получим

ряд Тейлора в 0, который не имеет отношения к f(x).

4.1.17 Problems about Isolated Singular Points of Single-Valued
Type

Ш-пр.1.
Найти все особые точки функции f(z) и определить их вид (тип), если:
1) f(z) = e1/z

2

2) f(z) = z6

(z+1)2(z2+4)
3) f(z) = 1

cos 1/z
4) f(z) = z−π

sin 2z−2 sin z
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5) f(z) = e1/ sin z
6) f(z) = 1

z
− 1
ez−1

1) Функция e1/z
2

регулярна во всех точках z ∈ C, кроме точки z = 0. Пусть z = x+ iy, тогда если z = x,
то e1/x

2

→ ∞ при x → 0, а если z = iy, то e−1/y
2

→ 0 при y → 0. Таким образом, функция e1/z
2

не имеет
предела в точке z = 0 и поэтому z = 0 - существенно особая точка этой функции. Это можно установить,
представив функцию e1/z

2

рядом Лорана в окрестности точки z = 0, т. е. рядом

e1/z
2

= 1 +
∞
∑
n=1

1

n!z2n

Главная часть этого ряда f1(z) =
∞
∑
n=1

1
n!z2n

содержит бесконечное число ненулевых слагаемых. Точка z = ∞

есть точка регулярности функции e1/z
2

, так как

lim
z→∞

e1/z
2

= 0.

Это утверждение равносильно тому, что функция eζ
2

регулярна в точке ζ = 0 2) Нули функций (z + 1)2 и
z2 + 4, т. е. точки z1 = −1, z2 = 2i, z3 = −2i являются полюсами функции f(z), причем z1 - полюс второго
порядка, a z2 и z3-полюса первого порядка, так как эти точки не являются нулями функции z6, z1 - нуль
кратности 2 функции (z + 1)2, а z2 и z3 - нули кратности 1 функции z2 + 4.

Точка z = ∞ - полюс второго порядка функции f(z), так как f(z) регулярна в области ∣z∣ > 2 и
f(z) ∼ z2 при z →∞. Других особых точек в C у функции f(z) нет. 3) Нули функции cos 1

z
, т. е. точки

zk =
1

π
2
+ πk

, k ∈ Z,

являются полюсами первого порядка. Действительно, если φ(z) = cos 1
z
, то

φ′ (zk) = −
1

z2k
sin

1

zk
= (−1)

n+1

z2k
≠ 0.

Точка z = 0 не является изолированной особой точкой. Она является предельной точкой (точкой
накопления) полюсов zk.

Точка z = ∞-точка регулярности функции f(z), так как функция 1
cos ζ

регулярна в точке ζ = 0. Других
особых точек в C у функции f(z) нет. 4) Пусть g(z) = sin 2z − 2 sin z, тогда

g(z) = 2 sin z(cos z − 1).

Так как zk = kπ (k ∈ Z) - нули кратности 1 функции sin z, а z̃m = 2mπ (m ∈ Z) - нули кратности 1
функции cos z − 1, то z′n = 2nπ (n ∈ Z) - нули кратности 2 функции g(z), а

z′′n = (2n + 1)π (n ∈ Z)

- нули кратности 1 этой функции. Поэтому точки z′n - полюсы второго порядка функции f(z), а точки
z′′n (кроме точки z = π)-полюсы первого порядка функции f(z), так как z = π - нуль функции z −π. Точка
z = ∞ является предельной точкой полюсов функции f(z), a других особых точек (кроме перечисленных)
у функции f(z) в C нет. 5) Покажем, что точки zk = kπ, k ∈ Z (нули функции sin z) являются существенно
особыми точками функции f(z). Пусть g(z) = sin z, тогда

g (zk) = 0, g′ (zk) = coskπ = (−1)k

и поэтому
sin z = (−1)k(z − kπ)h(z), где h(kπ) = 1.

Пусть k = 2n, тогда
sin z = (z − 2πn)h(z).

Если z = x и x → 2πn + 0, то sinx → +0 и f(x) → +∞, а если z = x и x → 2π − 0, то sinx → −0 и f(x) → 0.
Таким образом, функция f(z) не имеет предела при z → 2πn, n ∈ Z, и точки 2πn - существенно особые.
Аналогично установим, что точки (2n + 1)π,n ∈ Z, также являются существенно особыми. Итак, точки
zk = kπ, k ∈ Z, - существенно особые точки функции f(z), а точка z = ∞ - их предельная точка.

6) Запишем f(z) в виде

f(z) = e
z − 1 − z
z (ez − 1)

.

Нули функции ez − 1, т. е. точки zk = 2kπi(k ∈ Z, k ≠ 0)-полюсы первого порядка функции f(z) (они не
являются нулями функции ez − 1− z). Точка z = 0 - устранимая особая точка, так как она является нулем
второго порядка функций ez − 1 − z и z (ez − 1). Точка z = ∞-предельная точка полюсов функции f(z).
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Ш-пр.2.
Найти главную часть f1(z) ряда Лорана функции f(z) в окрестности точки a и определить вид особой

точки a, если:
1) f(z) = z3e1/z, a = 0;
2) f(z) = 1

(z2+1)2 , a = i
3) f(z) = z cos 1

z−1 , a = 1;
4) f(z) = z5+z2

z2+4 , a = ∞.

1) Так как e1/z =
∞
∑
n=0

1
znn!

, то

f(z) = z3 + z2 + z
2
+ 1

6
+
∞
∑
n=4

1

n!zn−3
,

f1(z) =
∞
∑
n=1

1

(n + 3)!zn
.

Главная часть f1(z) содержит бесконечное число ненулевых слагаемых и поэтому z = 0 - существенно
особая точка функции f(z).

2) f(z) = h(z)
(z−i)2 ,

h(z) = 1

(z + i)2
= h(i) + h′(i)(z − i) +

∞
∑
k=2

h(k)(i)
k!

(z − i)k,

где h(i) = − 1
4
, h′(i) = − 2

(2i)3 = −
i
4
, откуда

f1(z) =
h(i)
(z − i)2

+ h
′(i)
z − i

= − 1

4(z − i)2
− i

4(z − i)
,

a z = i - полюс второго порядка функции f(z). 3) Пусть z−1 = t, тогда f(z) = φ(t) = (t+1) cos 1
t
. Представим

функцию φ(t) в окрестности точки t = 0 ее рядом Лорана

φ(t) = (t + 1)(1 +
∞
∑
n=1

(−1)n

(2n)!t2n
) .

Отсюда следует, что главная часть ряда Лорана функции f(z) в окрестности точки z = 1 - ряд

f1(z) =
∞
∑
n=1

(−1)n

(2n)!z2n−1
+
∞
∑
n=1

(−1)n

(2n)!z2n
,

a z = 1 - существенно особая точка функции f(z). 4) Разделив многочлен z5 + z2 на многочлен z2 + 4,
представим функцию f(z) в виде

f(z) = z3 − 4z + z
2 + 16z
z2 + 4

.

Функция g(z) = z2+16z
z2+4 регулярна в точке z = ∞, так как она регулярна в области ∣z∣ > 2 и существует

limz→∞ g(z) = 1.
Поэтому главная часть ряда Лорана функции f(z) в окрестности бесконечно удаленной точки есть

сумма z3 − 4z, а z = ∞ - полюс третьего порядка функции f(z).

Ш-пр.3.
Пусть a ≠ ∞ - существенно особая точка функции f(z) и полюс функции g(z). Докажем, что z = a -

существенно особая точка функции φ(z) = f(z)g(z).
Предположим противное. Тогда z = a-либо устранимая особая точка, либо полюс функции φ(z). Если

z = a-устранимая особая точка функции φ(z), то существует конечный limz→a φ(z) = A. По условию, z = a
- полюс функции g(z) и поэтому g(z) = h(z)

(z−a)m , h(a) ≠ 0,m ∈ N. Но тогда функция

f(z) = φ(z)
g(z)

= φ(z)
h(z)

(z − a)m

имеет в точке a предел, равный нулю, что противоречит условию (функция f(z) не имеет предела в точке
a, так как для нее точка a является существенно особой). Если z = a - полюс функции φ(z), то

φ(z) = h1(z)
(z − a)k

, h1(a) ≠ 0, k ∈ N,
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и тогда

f(z) = h1(z)
h(z)

(z − a)m−k,

откуда следует, что при m ⩾ k точка z = a является устранимой, а при m < k - полюсом функции f(z), что
противоречит условию. Итак, z = a - существенно особая точка функции φ(z).

Ш-пр.4.
Найти все особые точки функции f(z) и определить их вид:
1) f(z) = e1/(i−z)

1+sin πiz
2

2) f(z) = ectgπz

(z2−1)2(ch z+1)

3) f(z) = e1/z
3
cos 1

z+1
sin3 z(z4+1)2 ;

4) f(z) = (z
2+π2) tg z
sh z

(eπ/(2z) − e).
1) Особыми точками функции f(z) в C могут быть только точка z = i и корни уравнения sin πiz

2
= −1

- точки zk такие, что
πizk
2
= −π

2
+ 2kπ,

откуда zk = i(1 − 4k), k ∈ Z. Точка i является существенно особой точкой функции e1/(i−z) и полюсом
функции 1

1+sin(πiz/2) .
Откуда следует (пример 3), что z = i - существенно особая точка функции f(z). Точки zk(k ≠ 0)

- полюсы первого порядка функции f(z), так как в силу условия cos πizk
2
≠ 0 они являются нулями

кратности 1 функции 1+ sin πiz
2

, а z = ∞ - предельная точка полюсов. 2) Особыми точками функции f(z)
в C могут быть только точки 1 и −1, а также корни zk уравнения sinπz = 0 (числа zk = k, k ∈ Z) и корни
z̃k уравнения ch z = −1, равносильного уравнению ez = −1, откуда z̃k = iπ + 2kπi(k ∈ Z).

Точки zk = k(k ∈ Z, k ≠ ±1) - существенно особые точки функции f(z), точки z = ±1 также являются
(пример 3) существенно

особыми - это полюсы функции 1
(z2−1)2(ch z+1) . Точки z̃k - полюсы первого порядка (sh zk ≠ 0) функции

f(z). Точка z = ∞ - предельная точка для точек zk и z̃k. 3) Точка z = 0 - нуль функции sin z = 0

(полюс функции f(z)e−1/z
3

) и существенно особая точка функции e−1/z
3

является существенно особой
точкой функции f(z) (пример 3). Точка z = −1 также является существенно особой точкой функщии
f(z). Корни уравнения

z4 = −1
т. е. точки zk = eiπ(2k+1)/4 (k = 0,1,2,3) - полюсы второго порядка, а точки z̃k = kπ(k ∈ Z, k ≠ 0)
- полюсы третьего порядка функции f(z). Точка z = ∞ - предельная точка полюсов z̃k. 4) Особыми
точками в C могут быть только нули функций cos z, sh z и точка z = 0. Точка z = 0 - существенно особая
точка функций eπ/(2z) и f(z), точки zk = π

2
+ kπ (k ∈ Z) - нули кратности 1 функции cos z - являются

полюсами первого порядка функции f(z). Нули функции sh z - точки z̃k = kπi(k ∈ Z, k ≠ ±1) - являются
полюсами первого порядка функции f(z), а iπ и −iπ - устранимые особые точки, z = ∞ - предельная точка
полюсов z̃k.

Ш-1.
Доказать, что точка z = a является устранимой особой точкой для следующих функций:
1) z2−1

z−1 (a = 1)
2) sin z

z
(a = 0);

3) z
tg z

(a = 0);
4) 1−cos z

z2
(a = 0);

5) ctg z − 1
z
(a = 0);

6) 1
ez−1 −

1
sin z
(a = 0); 7) 1

cos2 z
− 1

(z−π
2
)2
(a = π

2
) ; 8) z

2−1
z3+1(a = ∞).

Ш-2.
Доказать, что точка z = a является полюсом следующих функций:
1) 1

z
(a = 0);

2) 1
(z2+1)2 (a = i);

3) z2+1
z+1 (a = ∞);
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4) z
1−cos z (a = 0);

5) z
(ez−1)2 (a = 0);

6) ctg π
z
(a = ∞); 7) z

(ez+1)2 (a = πi) 8) tgπz (a = ± 1
2
,± 3

2
, . . .).

Ш-3.
Пусть функции f(z) и g(z) регулярны в точке z = a и f(a) = g(a) = 0. Доказать, что:
1) limz→a

f(z)
g(z) = limz→a

f ′(z)
g′(z)

2) limz→a
f(z)
g(z) = limz→a { g

′(z)f2(z)
f ′(z)g2(z)}.

Ш-4.
Пусть функции f(z) и g(z) регулярны в точке z = a и f(a) = g(a) = 0. Доказать, что точка z = a

является изолированной особой точкой однозначного характера для функции F (z) = f(z)/g(z) и что она
не может быть существенно особой точкой.

Ш-5.
Пусть z = a - изолированная особая точка однозначного характера для функции f(z). Доказать, что

точка z = a является существенно особой точкой функции f(z) в том и только в том случае, если
существуют такие две последовательности z′1, z

′
2, . . . и z′′1 , z

′′
2 , . . ., что limn→∞ z

′
n = limn→∞ z

′′
n = a, a

limn→∞ f (z′n) = A, limn→∞ f (z′′n) = B,A ≠ B.

Ш-6.
Доказать, что точка z = ∞ является существенно особой точкой для функции sin z.

Ш-7.
Доказать, что точка z = a является существенно особой точкой функций:
1) ez (a = ∞);
2) e−z

2

(a = ∞)
3) sin π

z2
(a = 0);

4) z2 cos π
z
(a = 0);

5) etg z (a = π
2
);

6) sin (ez) (a = ∞); 7) cos z
z+1(a = −1); 8) sin π

z2+1(a = −i).

Ш-8.
Найти все изолированные особые точки однозначного характера для следующих функций и

определить их вид:
1) z

sin z
;

2) 1−cos z
sin2 z

3) z2 sin z
z+1 ;

4) 1
z2−1 cos

πz
z+1 ;

5) ctg z − 1
z

6) z (e1/z − 1); 7) ectg
π
z 8) sin (e1/z).

Ш-9.
Доказать, что изолированная особая точка однозначного характера z = a является для функции f(z)

устранимой особой точкой, если выполняется одно из следующих условий (расположенных в порядке
ослабления ограничений): 1) функция f(z) ограничена в некоторой окрестности точки z = a;

2) lim(z − a)f(z) = 0;
3) limρ→0 ∫

∣z−a∣=ρ
∣f(z)∣∣d(z)∣ = 0.
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Ш-19.
Пусть z = a - изолированная особая точка однозначного характера для функции f(z),

удовлетворяющей в некоторой окрестности этой точки неравенству ∣f(z)∣ < M ∣z − a∣−m, где M и m -
некоторые положительные постоянные. Доказать, что точка z = a не может быть существенно особой
точкой функции f(z).

Ш-11.
Пусть функция f(z) имеет в конечной точке z = a полюс порядка m. Определить порядок полюса в

точке z = a функции f (n)(z).

Ш-12.
Пусть Pm(z) и Qn(z) - многочлены степеней m и n соответственно. Найти порядок полюса в

бесконечности для следующих функций:
1) Pm(z) +Qn(z),m ≠ n;
2) Pm(z) ⋅Qn(z)
3) Pm(z)

Qn(z) ,m > n.

Ш-13.
Пусть функции f(z) и g(z) имеют в точке z = ∞ полюсы порядков m и n соответственно. Доказать,

что функция F (z) = f(g(z)) имеет в точке z = ∞ полюс порядка mn.

Ш-14.
Пусть функция g(z) регулярна в точке z = a и g(a) = b, а функция f(ζ) имеет в точке ζ = b полюс

порядка m. Доказать, что функция F (z) = f(g(z)) имеет в точке z = a полюс порядка mn, где n -
кратность нуля функции g(z) − b в точке z = a.

Ш-15.
Найти все особые точки функции f(z) и определить их вид, если:
1) f(z) = 1−ch z

2

ez−e3z

2) f(z) = z2−4z−5
(z+3)(1+cosπz)

3) f(z) = e2z−ez
(z2−1) sinπz

4) f(z) = 1
4 sh(z−1) +

1
z2−6z+5

5) f(z) = 6 sh z−z(6+z2)
(ez−1)5 ;

6) f(z) = e3z−cos2 z
z2

− 3 cth z; 7) f(z) = etgπz sin 2πz
3

(2z+1)(ez+1) ; 8) f(z) = tg zetgz

tg 4z
9) f(z) = z3−sh3 z

(ez−1)5 10) f(z) =
ectgπz cos πz

4

(z−1)2(ch z+1) ; 11) f(z) = 4z2+4πz−8π2

(e2iz−1)2 − 3π
z+2π ; 12) f(z) = z3+2πz2+π2z

sin3 z
− π
z+π .

Ш-16.
Пусть последовательность функций {fn(z)}, регулярных в кольце 0 < ∣z − a∣ < r, равномерно сходится

в каждой замкнутой части этого кольца. Доказать, что если каждая функция fn(z) имеет в точке z = a
полюс порядка m, то предельная функция f(z) регулярна в кольце 0 < ∣z − a∣ < r и имеет в точке z = a
полюс порядка не выше m, или устранимую особую точку.

Ш-17.
Найти все особые точки функции f(z) и определить их вид, если:
1) f(z) = sin π

z

z2+z−2 ;
2) f(z) = cos π

z

sin z+1 ;

3) f(z) = 1−sin iπ
z

eπz−1
4) f(z) = z2+4z−12

1+sin 3π
z

5) f(z) = 8z2−6z+1
1−cos π

z

6) f(z) = cos πz
z+1

1+cosπz ; 7) f(z) = (z−2)(3z
2−4z−4)

1−sin π
z

; 8) f(z) = sinπz
eπ/(z+i)−i 9) f(z) = e1/(z−2i)

1−cos iπz 10) f(z) = ecos(πi/2z)−1
i+sh 3πz

2

.
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Ш-18.

Пусть z = a - полюс функции f(z). Доказать, что для функции ef(z) точка z = a является существенно
особой.

Ш-19.

Пусть f(z) - функция, регулярная на множестве C, за исключением единственного полюса z = a
первого порядка. Доказать, что если a = ∞, то f(z) - линейная функция, т. е. f(z) = Az +B, где A ≠ 0, а
если a ≠ ∞, то f(z) - дробно-линейная функция, т. е. f(z) = az+b

cz+d , где ad − bc ≠ 0, c ≠ 0.

Ш-29.
Найти все особые точки функции f(z) и определить их вид, если:
1) f(z) = z2+ln2 2

sin z− 5
4

ch 1
z
;

2) f(z) = 4z2+π2

1+e2z (ch
π
z
− 1)

3) f(z) = z2+ln2 2
cos z+ 3i

4

sh 1
z

4) f(z) = 4z2−12iz−5
shπz−i e1/(shπ/z);

5) f(z) = shπz−cos iπ
z

(i−eπ/z)2

6) f(z) = (2z−π)e1/ cosz
z cos 2z cos z

7) f(z) =
cos πi

2(z−1)
eπz+eπ ; 8) f(z) = 4z2−12z+5

sinπz−1 e1/(sinπ/z); 9) f(z) = e1/ sinz(z2+4π2)
z2 sh z

10)

f(z) = z3 sh 1
4z

e1/z−e2/z .

Ш-21.
Пусть f(z) - целая функция, принимающая каждое конечное значение только один раз. Доказать,

что f(z) - линейная функция, т. е. f(z) = az + b, a ≠ 0.

Ш-22.
Пусть z = a - существенно особая точка функции f(z). Можно ли утверждать, что и для функции

1
f(z) точка z = a является существенно особой?

Ш-23.
Пусть точка z = a является существенно особой точкой функции f(z). Обозначим

M(ρ) =max∣z−a∣=ρ ∣f(z)∣⋅ Доказать, что при любом k > 0

lim
ρ→0

ρkM(ρ) = +∞.

Ш-24.
Пусть функция g(z) регулярна в точке z = a и g(a) = b, а ζ = b - существенно особая точка функции

f(ζ). Доказать, что z = a - существенно особая точка функции F (z) = f(g(z)).

Ш-25.
Пусть функции a1(z), . . . , an(z) регулярны в точке a или имеют там полюс, z = a - существенно особая

точка функции f(z). Доказать, что z = a - существенно особая точка функции

F (z) = fn(z) + a1(z)fn−1(z) + . . . + an(z).

Ш-26.
Найти все особые точки функции f(z) и определить их вид, если:
1) f(z) = ctg e

z−1
ez+1

2) f(z) = 1
sh(πi 1+ez1−ez )

3) f(z) = z2 sin2 z sin(z−(π/2))−1
(cos z−1)2 esin z/z

4) f(z) = e1/ ch2z(πz+π+1)
1+cos 1

1+z
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5) f(z) = ecosz/2/(1+cosz)
(z+π)3(1+cos2 z)

6) f(z) = z2+π2

sh2z
(eπ/z − e2) tg2 z 7) f(z) = esinz/(1−cosz)

(2π−z)2(1+sin2 z) 8) f(z) = 4z2+π2

ch3z
(ez/(z−2) − 1) ctg2 z 9) f(z) =

z sin3 z cos 1
1−z

(cos z−1)2 esin
2 z/z2 ; 10) f(z) = (z−

π
2
)3 cos z cos 1

z−π
(sin z−1)2 ecos z/(z−(π/2)).

Ш-27.
Пусть Pm(z) и Qn(z) - многочлены степениm и n соответственно, не имеющие общих нулей. Доказать,

что нули многочленаQn(z) и только эти точки являются полюсами функции f(z) = Pm(z)
Qn(z) , а других особых

точек в конечной плоскости у функции f(z) нет. Показать, что точка z = ∞ является полюсом порядка
m − n функции f(z), если m > n и точкой регулярности, если m ⩽ n.

Ш-28.

Пусть мероморфная функция f(z) имеет в C лишь конечное число полюсов a1, a2, . . . , am (точка z = ∞
также может быть полюсом). Доказать, что f(z) - рациональная функция (отношение двух многочленов)
и пред-

ставляется в виде

f(z) = A + f0(z) +
m

∑
k=1

fk(z),

где fk(z) и f0(z)-соответственно главные части ряда Лорана функции f(z) в окрестностях точек ak и
z = ∞,A = limz→∞ (f(z) − f0(z)).

Ш-29.
Пусть функция f(z) регулярна в области D = {z ∶ 0 < ∣z∣ < ρ} и f(z)�≡0. Каким условиям должна

удовлетворять функция f(z) в точке z = 0, чтобы можно было указать регулярную в круге Bρ(0) = {z ∶
∣z∣ < ρ} функцию g(z), где g(z)�≡0, такую, что limz→0[f(z)g(z)] = 0.

Ш-39.
Пусть функция f(z) регулярна в проколотой окрестности точки z = 0, т. е. в области D = {z ∶ 0 < ∣z∣ <

ρ} и для всех z ∈D справедливо неравенство

∣f(z)∣ ⩽ A√
∣z∣
, где A > 0.

Доказать, что z = 0 - устранимая особая точка функции f(z).

Ш-31.
Пусть целая функция f(z) в некоторой области ∣z∣ > R удовлетворяет условию ∣f(z)∣ ⩾ A∣z∣m, где

A > 0, m ⩾ 0-целое число. Доказать, что f(z) - многочлен.

4.1.18 Problems about Asymptotics (!?!?!)

Самарова.ст.ф-1. Асимптотика интеграла
Используя метод стационарной фазы, найти главный член асимптотики при λ→∞ интеграла

1

∫
0

cos teiλt
2

dt

Solution.

В этой задаче амплитуда f(t) = cos t, а фаза S(t) = t2. Найдем стационарные точки фазы:

S′(t) = 2t = 0 ⇐⇒ t = 0
Единственная стационарная точка t = 0 ∉ (0,1), поэтому сразу же применить метод стационарной

фазы мы не можем. Однако заметим, что функция
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cos teiλt
2

является четной, поэтому

I(λ) =
1

∫
0

cos teiλt
2

dt = 1

2

1

∫
−1

cos teiλt
2

dt

Теперь стационарная точка t = 0 ∈ (−1,1), и метод стационарной фазы применим.
Поскольку

S′′(0) = 2 > 0
то в силу метода стационарной фазы получаем

I(λ) = 1

2

1

∫
−1

cos teiλt
2

dt = 1

2
eiλS(0)+iπ/4f(0)

√
2π

λS′′(0)
+O ( 1

λ
) = 1

2
eiπ/4

√
π

λ
+O ( 1

λ
)

при λ→∞.
Ответ. 1

2
eiπ/4

√
π
λ

Самарова.ст.ф-2. Асимптотика интеграла
Используя метод стационарной фазы, найти главный член асимптотики при λ→∞ интеграла

+∞

∫
−∞

eiλ
√
t2+1

t2 + 1
dt

Solution

В этой задаче амплитуда

f(t) = 1

t2 + 1

а фаза S(t) =
√
t2 + 1.

Найдем стационарные точки фазы:

S′(t) = 2t

2
√
t2 + 1

= t√
t2 + 1

= 0 ⇐⇒ t = 0

Поскольку метод стационарной фазы можно применять к интегралам с конечными пределами
интегрирования, а в задаче рассматривается несобственный интеграл, то представим исходный интеграл
в виде суммы трех интегралов

+∞

∫
−∞

eiλ
√
t2+1

t2 + 1
dt =

−1

∫
−∞

eiλ
√
t2+1

t2 + 1
dt +

1

∫
−1

eiλ
√
t2+1

t2 + 1
dt +

+∞

∫
1

eiλ
√
t2+1

t2 + 1
dt

Найдем асимптотику каждого из интегралов.

1. K интегралу

I2(λ) =
1

∫
−1

eiλ
√
t2+1

t2 + 1
dt

применим стационарной фазы. Для этого вычислим S′′(t):

S′′(t) = ( t√
t2 + 1

)
′

=

√
t2 + 1 − t ⋅ 2t

2
√
t2+1

t2 + 1
= t

2 + 1 − t2

(t2 + 1)3/2
= 1

(t2 + 1)3/2

Поскольку
S′′(0) = 1 > 0
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то в силу метода стационарной фазы получаем

I2(λ) =
1

∫
−1

eiλ
√
t2+1

t2 + 1
dt = eiλS(0)+iπ/4f(0)

√
2π

λS′′(0)
+O ( 1

λ
) =

= eiλ+iπ/4
√

2π

λ
+O ( 1

λ
)

при λ→∞.

2. Для того, чтобы найти асимптотику интеграла I1(λ) =
−1
∫
−∞

eiλ
√

t2+1
t2+1 dt проинтегрируем его по частям

I1(λ) =
−1

∫
−∞

1

iλt
√
t2 + 1

⋅ iλte
iλ
√
t2+1

√
t2 + 1

dt =
−1

∫
−∞

1

iλt
√
t2 + 1

d (eiλ
√
t2+1) =

= eiλ
√
t2+1

iλt
√
t2 + 1

RRRRRRRRRRR

−1

−∞
+ 1

iλ

−1

∫
−∞

eiλ
√
t2+1

√
t2 + 1 + t ⋅ t√

t2+1
t2 (t2 + 1)

dt =

= −e
iλ
√
2

iλ
√
2
+ 1

iλ

−1

∫
−∞

eiλ
√
t2+1 1 + 2t2

t2 (t2 + 1)3/2
dt

Следовательно,

∣I1(λ)∣ =
RRRRRRRRRRRRR
−e

iλ
√
2

iλ
√
2
+ 1

iλ

−1

∫
−∞

eiλ
√
t2+1 1 + 2t2

t2 (t2 + 1)3/2
dt

RRRRRRRRRRRRR
⩽ 1

λ

⎛
⎜
⎝

1√
2
+
−1

∫
−∞

1 + 2t2

t2 (t2 + 1)3/2
dt
⎞
⎟
⎠

В силу сходимости интеграла
−1

∫
−∞

1 + 2t2

t2 (t2 + 1)3/2
dt

получаем, что

I1(λ) = O (
1

λ
)

при λ→∞.
(!!!! додумаю, как это конкретно!!!)

3. Точно также находим асимптотику интеграла

I3(λ) =
+∞

∫
1

eiλ
√
t2+1

t2 + 1
dt = O ( 1

λ
)

при λ→∞. Таким об разом,
+∞

∫
−∞

eiλ
√
t2+1

t2 + 1
dt = eiλ+iπ/4

√
2π

λ
+O ( 1

λ
)

при λ→∞.
Ответ. eiλ+iπ/4

√
2π
λ

Самарова.ст.ф-4. Интеграл
Доказать, что

+∞

∫
−∞

e−t
2

cos(2λt)dt = e−λ
2√
π
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Solution

(мб перенесу ее выше, потому что тут не нужна стац фаза)
Поскольку интеграл

I(λ) =
+∞

∫
−∞

e−t
2

cos(2λt)dt

является четной функцией, будем для определенности считать, что λ ⩾ 0. Преобразуем интеграл I(λ)
к виду

+∞

∫
−∞

e−t
2

cos(2λt)dt = Re
+∞

∫
−∞

e−t
2+i2λtdt = Re

+∞

∫
−∞

e−t
2+i2λt+λ2−λ2

dt =

= e−λ
2

Re

+∞

∫
−∞

e−(t−iλ)
2

dt = e−λ
2

Re

+∞−iλ

∫
−∞−iλ

e−z
2

dz

Для того, чтобы вычислить интеграл

I1(λ) =
+∞−iλ

∫
−∞−iλ

e−z
2

dz

рассмотрим контур γ, изображенный на рисунке

Поскольку для любого R функция f(z) = e−z
2

голоморфна внутри области, ограниченной контуром
γ, то

∳
γ
e−z

2

dz = 0

С другой стороны,

∳
γ
e−z

2

dz =
R−iλ

∫
−R−iλ

e−z
2

dz +
R

∫
R−iλ

e−z
2

dz +
−R

∫
R

e−z
2

dz +
−R−iλ

∫
−R

e−z
2

dz

Найдем предел каждого из интегралов при R → +∞.
1. Интеграл по нижней стороне прямоугольника стремится к искомому

R−iλ

∫
−R−iλ

e−z
2

dz →
+∞−iλ

∫
−∞−iλ

e−z
2

dz = I1(λ)

2. Покажем, что интеграл по правой стороне прямоугольника стремится к нулю. Действительно,

RRRRRRRRRRRRR

R

∫
R−iλ

e−z
2

dz

RRRRRRRRRRRRR
=
RRRRRRRRRRRRR

0

∫
−λ

e−(R+is)
2

ds

RRRRRRRRRRRRR
⩽

0

∫
−λ

e−R
2+s2ds ⩽ λe−R

2+λ2

→ 0

при R → +∞.
3. Интеграл по верхней стороне прямоугольника стремится к интегралу Пуассона, взятому со знаком

минус

−R

∫
R

e−z
2

dz → −
+∞

∫
−∞

e−s
2

ds = −
√
π

4. Интеграл по левой стороне прямоугольника стремится к нулю. Доказательство почти дословно
повторяет доказательство, проведенное в пункте 2 .
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Таким образом,

I1(λ) =
+∞−iλ

∫
−∞−iλ

e−z
2

dz =
√
π

Следовательно,

I(λ) =
+∞

∫
−∞

e−t
2

cos(2λt)dt = e−λ
2

Re I1(λ) = e−λ
2√
π

Доказано.

Избры-2.2. Асимптотика биномиальных коэффициентов (??)
В этой задаче Вам предлагается вычислить асимптотику биномиальных коэффициентов, используя

интегрирование в C и метод перевала.
- Для начала, докажите следующую точную формулу:

Ckn =
1

2πi
∫
∣z∣=1

dz

z

(1 + z)n

zk
,

где интегрирование по единичной окружности ведется против часовой стрелки.
- Положите теперь k = xn, где 0 < x < 1, и считайте, что n,xn, (1 − x)n≫ 1. Используя метод перевала

для интеграла из предыдущего пункта, найдите приближенное выражение для Ckn.
- Чтобы убедиться в правильности Вашего ответа, можете записать Ckn = n!/k!(n - k)! и

воспользоваться формулой Стирлинга для приближенного вычисления факториалов,

n! ≃
√
2πn(n

e
)
n

Самарова.ст.ф-3. Асимптотика функций Бесселя
Найти главный член асимптотики при λ→∞ функции Бесселя n-го порядка (n ∈ N)

Jn(λ) =
1

π

π

∫
0

cos(λ sin t − nt)dt

Solution

Преобразуем функцию Jn(λ) к виду, подходящему для применения метода стационарной фазы

Jn(λ) =
1

π

π

∫
0

cos(λ sin t − nt)dt = 1

π

π

∫
0

(cos(λ sin t) cosnt + sin(λ sin t) sinnt)dt =

= 1

π
Re

π

∫
0

cosnteiλ sin tdt + 1

π
Im

π

∫
0

sinnteiλ sin tdt

1. Рассмотрим сначала интеграл

I1(λ) =
π

∫
0

cosnteiλ sin tdt

Амплитуда подынтегральной функции f(t) = cosnt, а фаза S(t) = sin t. Найдем стационарные точки
фазы:

S′(t) = cos t = 0 ⇐⇒ t = π
2

Таким образом, фаза имеет на интервале (0, π) единст венную стационарную то чку t = π
2
. Вычислим

вторую производную фазы в этой то чке

S′′ (π
2
) = − sin π

2
= −1 < 0

Применяя метод стационарной фазы к интегралу I1(λ), получаем
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I1(λ) =
π

∫
0

cosnteiλ sin tdt = eiλS(
π
2
)−iπ4 f (π

2
)
¿
ÁÁÀ 2π

−λS′′ (π
2
)
+O ( 1

λ
) =

= eiλ−iπ/4 cos nπ
2

√
2π

λ
+O ( 1

λ
)

при λ→∞.
2. Теперь найдем асимптотику интеграла

I2(λ) =
π

∫
0

sinnteiλ sin tdt

В этом случае амплитуда f(t) = sinnt, а фаза S(t) = sin t-таже, что и в первом случае, с единственной
стационарной точкой t = π

2
∈ (0, π), для которой

S′′ (π
2
) = −1 < 0

Применяя метод стационарной фазы к интегралу I2(λ), получаем

I2(λ) =
π

∫
0

sinnteiλ sin tdt = eiλS(
π
2
)−iπ4 f (π

2
)
¿
ÁÁÀ 2π

−λS′′ (π
2
)
+O ( 1

λ
) =

= eiλ−iπ/4 sin nπ
2

√
2π

λ
+O ( 1

λ
)

при λ→∞. Следовательно,

Jn(λ) =
1

π
Re I1(λ) +

1

π
Im I2(λ) =

= 1

π

⎛
⎝
Re
⎛
⎝
eiλ−iπ/4 cos

nπ

2

√
2π

λ

⎞
⎠
+ Im

⎛
⎝
eiλ−iπ/4 sin

nπ

2

√
2π

λ

⎞
⎠
⎞
⎠
+O ( 1

λ
) =

= 1

π

⎛
⎝
cos(λ − π

4
) cos nπ

2

√
2π

λ
+ sin(λ − π

4
) sin nπ

2

√
2π

λ

⎞
⎠
+O ( 1

λ
) =

=
√

2

πλ
cos(λ − π

4
− nπ

2
) +O ( 1

λ
)

при λ→∞.
Ответ.

√
2
πλ

cos (λ − π
4
− nπ

2
)

Избры-2.3. Асимптотика функций Бесселя (??)
Функцию Бесселя порядка ν можно представить в виде контурного интеграла

Jν(z) =
1

2πi
∫
C

dt

tν+1
exp(z

2
{t − 1

t
}) ,

в котором разрез функции tν+1 проведен вдоль луча (−∞,0), а контур C имеет вид:
найти при z к бесконечности асимптотику ее (?!!??)
(контур снизу слева идет по рел оси огибает ноль, возвращается назад влево)

4.1.19 Problems about the Laplace Transform
(!!! тут просто связка с диффурами, типичная тема как диффуров, так и матана. проработаю потом,

пока не готов.)
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Ш-пр.1.
Найти изображение F (p) функции f(t), считая, что f(t) = 0 при t < 0, если:
1) f(t) = sin2 t
2) f(t) = cos 3t sin t
3) f(t) = cos3 t; 4) f(t) = t ch t.
1) Используя тождество

sin2 t = 1 − cos 2t
2

и таблицу оригиналов и изображений, получаем

F (p) = 1

2
(1
p
− p

p2 + 4
) = 2

p (p2 + 4)
.

2) Так как

cos 3t sin t = 1

2
(sin 4t − sin 2t),

то по таблице находим

F (p) = 1

2
( 4

p2 + 16
− 2

p2 + 4
) = p2 − 8
(p2 + 4) (p2 + 16)

.

3) Используя тождество

cos3 t = 1

4
(cos 3t + 3 cos t),

находим

F (p) = 1

4
( p

p2 + 9
+ 3p

p2 + 1
) .

4) Так как

t ch t = 1

2
(tet + te−t) ,

то по таблице находим

F (p) = 1

2
( 1

(p − 1)2
+ 1

(p + 1)2
) = p2 + 1
(p2 − 1)2

.

Ш-пр.2.
Найти оригинал f(t), если задано его отображение F (p):
1) F (p) = p+8

p2+p−2
2) F (p) = 1

p(p+1)2

3) F (p) = 6
(p2+1)(p2+4)

4) F (p) = 1
(p2+4)2 .

1) Так как p2 + p − 2 = (p − 1)(p + 2), то F (p) можно представить в виде суммы простых дробей, т. е.

F (p) = A

p − 1
+ B

p + 2
,

где

A = res
p=1

p + 8
(p − 1)(p + 2)

= (p + 8
p + 2

)
p=1
= 3,

B = res
p=−2

F (p) = (p + 8
p − 1

)
p=−2
= −2.

Числа A и B можно найти из тождества

p + 8 = A(p + 2) +B(p − 1).

Итак, F (p) = 3
p−1 −

2
p+2 , откуда по таблице находим

f(t) = 3et − 2e−2t.
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2) Представим F (p) в виде суммы элементарных дробей:

F (p) = A
p
+ B

p + 1
+ C

(p + 1)2
,

откуда
1 = A(p + 1) +Bp(p + 1) +Cp.

Полагая в этом тождестве p = 0, находим A = 1, а если p = −1, то C = −1. Наконец, приравнивая в этом
тождестве коэффициенты при p, получаем 2A +B +C = 0, откуда B = −1. Итак,

F (p) = 1

p
− 1

p + 1
− 1

(p + 1)2
,

откуда
f(t) = 1 − e−t − te−t.

3) Чтобы воспользоваться таблицей, преобразуем изображение

F (p) = 6

(p2 + 1) (p2 + 4)
= 1

4
( 3

p2 + 1
− 3

p2 + 9
) ,

откуда с помощью таблицы находим

f(t) = 1

4
(3 sin t − sin 3t) = sin3 t.

4) Чтобы использовать таблицу, преобразуем изображение:

F (p) =
p2 + 4 − (p2 − 4)

8 (p2 + 4)2
= 1

8
( 1

p2 + 4
− p2 − 4
(p2 + 4)2

) .

По таблице находим оригинал

f(t) = 1

16
sin 2t − 1

8
t cos 2t.

Ш-пр.3. Задача Коши (??)
Решить задачу Коши для уравнения

x′′(t) − 3x′(t) + 2x(t) = 6e−t

с начальными условиями x(0) = 2, x′(0) = 0.
(чисто диффуры уже и идут!)
Пусть x(t) ≓X(p), тогда, используя свойство (3) дифференцирования оригинала, получаем

x′(t) ≓ pX(p) − x(0) = pX(p) − 2,
x′′(t) ≓ p2X(p) − px(0) − x′(0) = p2X(p) − 2p.

Поэтому, переходя в уравнении к изображениям, находим

p2X(p) − 2p − 3(pX(p) − 2) + 2X(p) = 6

p + 1
,

откуда X(p) = 2p
p2−1 =

1
p−1 +

1
p+1 . По таблице получаем

x(t) = et + e−t = 2 ch t.
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Ш-пр.4.
Решить задачу Коши для уравнения

x′′(t) + x(t) = t cos 2t

с начальными условиями x(0) = x′(0) = 0.
Пусть x(t) ≓X(p), тогда

x′′(t) ≓ p2X(p).
Переходя в уравнении к изображениям, получаем

p2X(p) +X(p) = p2 − 4
(p2 + 4)2

откуда

X(p) = p2 − 4
(p2 + 1) (p2 + 4)2

.

Заметим, что таблица содержит оригиналы для функций 1
p2+1 и 1

p2+4 . Кроме того, воспользуемся тем, что
в примере 2 (4) для изображения 1

(p2+4)2 найден оригинал

1

16
sin 2t − t

8
cos 2t

Учитывая это, представим X(p) в следующем виде:

X(p) = A

p2 + 1
+ B

p2 + 4
+ C

(p2 + 4)2
.

Чтобы найти A,B и C, введем обозначение p2 = s и приведем дроби к общему знаменателю. Тогда

s − 4 = A(s + 4)2 +B(s + 1)(s + 4) +C(s + 1).

Полагая в этом тождестве s = −4, s = −1 и s = 0, найдем C = 8
3
, A = − 5

9
,−4 = 16A+ 4B +C, откуда B = 5

9
. Так

как 1
p2+1 ≓ sin t,

1
p2+4 ≓

1
2
sin 2t, то

x(t) = −5
9
sin t + 5

9
⋅ 1
2
sin 2t + 8

3
( 1

16
sin 2t − 1

8
t cos 2t) , т. е.

x(t) = −5
9
sin t + 4

9
sin 2t − 1

3
t cos 2t.

Ш-пр.5.
Решить задачу Коши для системы уравнений

{ x
′(t) + y′(t) + x(t) + y(t) = t
x′′(t) − y′(t) + 2x(t) = 3 (e−t − 1)

с начальными условиями x(0) = y(0) = 0, x′(0) = −1.
Пусть x(t) ≓X(p), y(t) ≓ Y (p). Тогда

x′(t) ≓ pX(p), x′′(t) ≓ p2X(p) + 1, y′(t) ≓ pY (p).

Переходя к изображениям в системе уравнений, получаем

⎧⎪⎪⎨⎪⎪⎩

pX(p) + pY (p) +X(p) + Y (p) = 1
p2
,

p2X(p) + 1 − pY (p) + 2X(p) = 3 ( 1
p+1 −

1
p
) .

Решая эту систему, находим

X(p) = 1

p + 1
− 1

p
, Y (p) = 1

p2
,

откуда x(t) = e−t − 1, y(t) = t.
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4.2 Problems on Multivalued Functions

Ш-1.
Найти изображение F (p) оригинала f(t), если:
1) f(t) = sin t sin 3t;
2) f(t) = t sh t;
3) f(t) = sin3 t
4) f(t) = cos4 t + sin4 t.

Ш-2.
Найти оригинал f(t) по его изображению F (p), если:
1) F (p) = 1

p2−4p+5 ;
2) F (p) = 1

p2(p2+1) ;
3) F (p) = p+1

p3−2p2−5p+6 ;
4) F (p) = 1

p(p−1)(p2+4) ;
5) F (p) = 1

(p+1)(p+3)3 ;

6) F (p) = p2+2p−1
p3+3p2+3p+1 ; 7) F (p) = (5p+3)

(p−1)(p2+2p+5) ; 8) F (p) = p2

(p2+4)(p2+9) ; 9) F (p) = 1
(p+1)3(p+3) ; 10) F (p) =

1
(p−1)2(p−2)3 .

Ш-3.
Решить задачу Коши для дифференциального уравнения с заданными начальными условиями:
1) x′′(t) − 2x′(t) + x(t) = t2et, x(0) = 0, x′(0) = 1;
2) x(3)(t) + 3x(2)(t) + 3x′(t) + x(t) = 1, x(0) = x′(0) = x′′(0) = 0;
3) x(3)(t) − 2x(2)(t) + x′(t) = 4, x(0) = 1, x′(0) = 2, x′′(0) = −2;
4) x(3)(t) + x(2)(t) = cos t, x(0) = −2, x′(0) = x′′(0) = 0;
5) x′′(t) + x(t) = 2 cos t, x(0) = −1, x′(0) = 1;
6) x′′(t)+4x(t) = 2 sin 2t, x(0) = −1, x′(0) = 0; 7) x(4)(t)−x(t) = 1, x(0) = 1, x′(0) = 1, x′′(0) = 2, x(3)(0) = −1;

8) x(4)(t) − 5x(2)(t) + 10x′(t) − 6x(t) = 0,

x(0) = 1, x′(0) = 0, x′′(0) = 6, x(3)(0) = −14.

Ш-4.
Решить задачу Коши для системы дифференциальных уравнений с заданными начальными

условиями:

1) { x
′(t) = −x(t) + 2y(t),
y′(t) = −x(t) − 4y(t), x(0) = y(0) = 1;

2) { x
′(t) − 2x(t) − 4y(t) = 0,
y′(t) + x(t) + 2y(t) = 0, x(0) = 2, y(0) = 1;

3) { x
′(t) + 3x(t) − 4y(t) = 9e2t,

2x(t) + y′(t) − 3y(t) = 3e2t, x(0) = 2, y(0) = 0;

4) { x
′(t) + y′(t) = 1,
x(2)(t) + y′(t) + x(t) = et,

x(0) = 1, x′(0) = 2, y(0) = 0, y′(0) = −1.

4.2 Problems on Multivalued Functions

4.2.1 2.1. Multivalued Functions. Definition. Regular Branches

2.1.1. Определение Ln z

Определение. По определению, положим

Ln z =
z

∫
1

dξ

ξ
(2.1)

Заметим, что
z

∫
1

dξ
ξ

- это криволинейный интеграл 2 -го рода. Он зависит от кривой, соединяющей

точки ξ = 1 и ξ = z. Пусть задана кривая γ ∶ ξ = r(t)eiφ(t). Тогда dξ = dreiφ(t)+ +ir(t)eiφ(t)dφ и

247



4.2.1 2.1. Multivalued Functions. Definition. Regular Branches

Ln z = ln ∣z∣ + i∆γφ (2.2)

где ∆γφ - приращение аргумента z при движении точки из z = 1 в рассматриваемую точку z по кривой
γ.

А чему может быть равен Ln z∣z=1?
Рассмотрим кривую γ, проходимую против часовой стрелки, охватывающую начало координат и
возвращающуюся в точку z = 1, например, окружность ∣z∣ = 1. Тогда

Ln z∣z=1 = ∳∣z∣=1
dξ

ξ
= 2πi!

Если кривая «обойдёт» начало координат в одном и том же направлении k раз, то

Ln z∣z=1 = ∳∣z∣=1
dξ

ξ
= 2πki, k ∈ Z

где знак k выбирается в соответствии с направлением обхода.
На практике, конечно, при вычислении Ln1 не очень понятно, сколько раз уже «обошли» z = 0. Поэтому
в общем случае значение Ln1 имеет вид

Ln1 = 2πki, k ∈ Z (2.3)

а в «частных» случаях значение придётся находить отдельно.
Посмотрим, как влияет кривая γ на значение логарифма в точке z (см. рис. 2.1-2.3).

Рис. 2.1
Видно, что на рис. 2.1 при движении по прямой из z = 1 в рассматриваемую точку z приращение

аргумента просто совпадает с величиной угла между вектором z и осью Ox в данном случае это arctg 2,
т. е. Ln(1 + 2i) = ln

√
5 + iarctg 2.

На рис. 2.2 кривая γ довольно «экзотична», но приращение аргумента по-прежнему равно величине
угла между осью Ox и вектором z. При движении по кривой γ вектор z то отклонился влево, затем
развернулся в обратную сторону.

Рис. 2.2
На рис. 2.3 картина другая - вектор повернулся в другую сторону на угол, равный (4π − arctg 2).

Тогда Ln(1 + 2i) = ln
√
5 + i(arctg 2 − 4π).

248



4.2.1 2.1. Multivalued Functions. Definition. Regular Branches

Рис. 2.3
В одной и той же точке получили разные значения Ln z ! Функция Ln z - многозначная!
Когда приращение аргумента меняется, а когда — нет?

Так как x + iy = r(cosφ + i sinφ) ⇒ y
x
= tg(φ + πk), то dφ = darctg y

x
= xdy−ydx

x2+y2 и ∫
γ
dφ = ∫

γ

xdy−ydx
x2+y2 -

криволинейный интеграл второго рода. Подынтегральное выражение является полным дифференциалом
в любой односвязной области, не содержащей начало координат.

Отсюда следует, что, если внутри замкнутого контура в односвязной области нет точки z = 0 ⇐⇒
x2 + y2 = 0, то ∳γ dφ = ∳γ

xdy−ydx
x2+y2 = 0, а если z = 0 находится внутри, то ∳γ dφ = 2πk при k-кратном обходе

z = 0 в одном направлении.
Поэтому, если γ — произвольная кривая в односвязной области, не охватывающая начало координат,

то
φ(z)
∫
1

dφ =
(x,y)
∫
1

xdy−ydx
x2+y2 зависит только от точки z и не зависит от кривой, соединяющей 1 и z (см. рис.

2.1-2.2).
Если контур охватывает начало координат, то значение интеграла может изменяться при каждом

обходе на 2π или −2π в зависимости от направления обхода (см. рис. 2.3).
Так как ∆, φ(z) отличаются, в зависимости от γ, на 2πk, то геометрически в плоскости это угол φ0

между векторами z = 1 и z плюс 2πk, т. е. ∆γφ(z) - одно из значений аргумента z.

Так как Ln z =
z

∫
1

dξ
ξ
= ln ∣z∣ + i∆φγ(z), то значение Ln z в точке имеет вид

Ln z = ln ∣z∣ + iarg z = ln ∣z∣ + i (φ∗ + 2πk) , k ∈ Z (2.4)

где φ∗ - одно из возможных значений аргумента z.
П р и м е ч а н и е. Мы не будем использовать обозначение Arg z,aarg z обозначает любое возможное
значение аргумента z.

Рассмотрим интеграл внимательней.

По определению, Ln z =
z

∫
1

dξ
ξ
= ln ∣z∣ + i∆γφ, где ∆γφ - приращение аргумента z при движении точки из

z = 1 в рассматриваемую точку z.
Но не всегда удобно рассматривать именно это приращение - бывает, что z = 1 вообще не принадлежит

области рассмотрения Ln z. Часто значение Ln z известно в некоторой точке z0 - оно зависит от того, по
какой кривой γ0 «пришли» в эту точку из точки z = 1. Так как ln ∣z∣ однозначная функция в плоскости,
то значение Ln z полностью определится значением аргумента z в точке z0.

Как тогда найти значение Ln z?
Имеем

Ln z =
z

∫
1

dξ

ξ
=

z0

∫
1

dξ

ξ
+

z

∫
z0

dξ

ξ
=

= ln ∣z0∣ + i (φγ0 (z0) − φ(1)) + ln ∣z∣ − ln ∣z0∣ + i (φγ(z) − φ (z0)) =
= ln ∣z∣ + i (φ (z0) +∆γφ) = ln ∣z∣ + i (arg z0 +∆γφ)

Теперь ∆γφ - приращение аргумента z при движении уже от точки z0 до z по кривой γ, а φγ0 (z0)−φ(1)
- аргумент z0, который зависит от того, как «пришли» из 1 в z0. Он имеет вид α+ 2πk, k ∈ Z, где α - одно
из возможных значений аргумента z0.

Например, arg(−1) = π + 2πk = −π + 2πm,k,m ∈ Z и т. д.
Итак, получили формулу для многозначной функции Ln z:

Ln z = ln ∣z∣ + i (arg z0 +∆γφ) (2.5)

где ∆γφ - это приращение аргумента z при движении по кривой γ от точки z0 до точки z. Оно
существенно зависит от кривой и является неоднозначной функцией в плоскости.
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4.2.1 2.1. Multivalued Functions. Definition. Regular Branches

Поэтому ещё раз подчеркнём, что
Ln z - многозначная функция.
При работе с формулой (2.5)в качестве точки z0 может быть взята и точка z = 1. При этом значение arg 1
может быть отлично от 0 - оно имеет вид 2πki. Ведь не известно, сколько
раз уже обошли начало координат до того, как заинтересовались тем, как меняется Ln z при дальнейшем
изменении z.

Пр и ме ч ан и е. Можно показать, что Ln z - это функция, обратная к экспоненте:
eLn z = eln ∣z∣+iarg z = ∣z∣eiarg z = z.

2.1.2. Точки z = 0 и z = ∞ - точки ветвления Ln z. Регулярные ветви Ln z в
плоскости с разрезом от z = 0 до z = ∞. Производная ветви Ln∗ z, Ln∗ f(z)

Обозначение. Значком * внизу будем обозначать ветвь многозначной функции.
Определение. Точка z = a ∈ C называется точкой ветвления многозначной функции F (z), если F (z)

определена в некоторой проколотой окрестности точки z = a ∈ C и после обхода точки z = a по замкнутому
контуру, принадлежащему её окрестности, значение функции меняется.

Определение. Регулярная в области D функция f(z) называется регулярной ветвью многозначной
функции F (z), если её значения в каждой точке D совпадают с одним из значений F (z) в этой точке.

В предыдущем пункте было показано, что значение Ln z =
z

∫
1

dξ
ξ

в любой точке односвязной области

плоскости, не содержащей начало координат, зависит только от точки z и не зависит от кривой γ,
соединяющей 1 и z, т. е. функция в этой области является однозначной функцией точки, т.е. в такой
области существует регулярная ветвь Ln z.

Если же γ «охватывает» начало координат, то значение может меняться.
Покажем, что Ln z имеет две точки ветвления: z = 0 и z = ∞.
Точка z = 0 является точкой ветвления функции Ln z.
По определению, Ln z = ln ∣z∣ + i (arg z0 +∆γφ). Зафиксируем какое-нибудь значение аргумента z0 ∶

Ln z0 = ln ∣z∣ + iarg z0 и обойдём начало координат по любой простой замкнутой кривой γ, например,
против часовой стрелки. При этом значение
аргумента увеличилось на 2π, а значит, и изменилось значение Ln z в точке z0. Оно стало равным Ln z =
ln ∣z∣ + i (arg z0 + 2π).

Точка z = ∞ тоже является точкой ветвления функции Ln z.
В нашем пособии z = ∞ всегда особая точка. Заметим, что обход z = 0 - это обход и z = ∞ (только в

противоположном направлении), т. к. в плоскости нет других особых точек, а потому и z = ∞ - точка
ветвления функции Ln z.

При обходе несколько раз в одном направлении z = 0 или z = ∞ мы никогда не вернёмся к
начальному значению. Такая точка ветвления называется точкой ветвления бесконечного порядка, или
логарифмической точкой ветвления.

Исключим возможность обхода точек ветвления - проведём произвольный разрез, их соединяющий.

Тогда в получившейся односвязной плоскости с разрезом
b

∫
a
dφ =

b

∫
a

xdy−ydx
x2+y2 зависит только от точек a, b и

не зависит от кривой, их соединяющих.
Это значит, что в этой области ∆γφ не зависит от γ и Ln z распадается на регулярные ветви

Lnk z = fk(z) = ln ∣z∣ + i (φ0k +∆φ) , k ∈ Z (2.6)

где φ0k = φ0 + 2πk, а φ0 - одно из возможных значений аргумента z в точке z0.
Как видно, fk(z) полностью определяется значением аргумента fk(z) в одной точке - точке z0, вернее

значением аргумента z0. Формулу (1.6) можно записать и по-другому:

fk(z) = ln ∣z∣ + i (φ0k +∆φ) ⇒
⇒fk (z0) = ln ∣z0∣ + iφ0k ⇐⇒ iφ0k = fk (z0) − ln ∣z0∣ ⇒

⇒fk(z) = ln ∣z∣ + fk (z0) − ln ∣z0∣ + i∆φ = fk (z0) + ln ∣
z

z0
∣ + i∆φ

Lnk z = fk(z) = fk (z0) + ln ∣
z

z0
∣ + i∆φ (2.7)

Ещё раз отметим, что в плоскости с разрезом от 0 до ∞ приращение ∆φ не зависит от γ !
С многозначными функциями приходится обращаться очень внимательно.
Например, как связать Ln z2 с Ln z?

Здесь нам потребуются формулы (1.3).
В отличие от такой неоднозначной связи между аргументом произведения и аргументами сомножителей,
в теории показывается, что связь между приращениями аргументов вдоль кривой однозначна:

∆arg (z1z2) =∆φ1 +∆φ2 (2.8)

и, в частности,
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∆arg (z2) = 2∆φ (2.9)

Воспользуемся формулой (1.3): arg z20 = 2arg z0 + 2πk ≠ ≠ 2arg z0 и свойством приращений ∆γ arg z
2 =

2∆γ arg z.
Тогда Ln z2 = 2 ln ∣z∣ + i (arg z20 + 2∆γφ) = 2 ln ∣z∣ + i (2arg z0+ +2πk + 2∆γφ) ,a

Ln z = ln ∣z∣ + i (arg z0 +∆γφ) ⇒ 2Ln z = 2 ln ∣z∣ + i (2arg z0 + 2∆γφ). Поэтому в общем случае

Ln z2 ≠ 2Ln z (2.10)

Удобней пользоваться формулой

Ln z2 = 2 ln ∣z∣ + i (arg z20 + 2∆γφ) (2.11)

Теперь приведём ещё одну формулу:

Ln f2(z) = 2 ln ∣f(z)∣ + i (arg f2 (z0) + 2∆γ arg f(z)) (2.12)

Опять замечаем, что так как arg f2 (z0) = 2arg f (z0) + 2πn, то, вообще говоря,

2Ln f(z) ≠ Ln f2(z)
Теперь заметим, что все ветви Ln∗ z многозначной функции Ln z в окрестности точки отличаются на

2πk, поэтому

(Ln∗ z)′ =
1

z
(2.13)

а тогда и

(Ln∗ f(z))′ =
f ′(z)
f(z)

(2.14)

2.1.3. Функция zα

Определение. По определению,

zα = eαLn z = eα(ln ∣z∣+i(φ0+∆γφ)) = ∣z∣αeαi(φ0+∆γφ) (2.15)

Дано новое определение степени. А не изменятся ли при этом свойства привычных целых степеней
z?

2.1.3. а) Функция zn, n ∈ Z, является однозначной функцией в

По новому определению, zn = enLn z = en(ln ∣z∣+i(φ0+∆γφ)) это композиция экспоненты и многозначного
логарифма. Поэтому проверим, не являются ли точки z = 0 и z = ∞ точками ветвления.

Пусть в некоторой точке, по определению, zn0 = en(ln ∣z∣+iφ0). Обойдём начало координат (значит,
и z = ∞). Получим значение после возвращения: zn0 ∣∗ = en(ln ∣z∣+i(φ0+2π)) = en(ln ∣z∣+iφ0) = zn0 . Функция
однозначна.

2.1.3. б) Функция x
√
z имеет две точки ветвления: z = 0 и z = ∞. Производная

ветви. Арифметический корень n-й степени, 2n
√
x, 2n+7

√
x

Функция распадается на регулярные ветви в плоскости с произвольным разрезом, соединяющим точки
z = 0 и z = ∞.

По определению, n
√
z = z 1

n = eLnz
n = e

ln ∣z∣+i(φ0+∆γφ)
n = ∣z∣ 1n e

iφ0
n e

i(∆γφ)
n , n

√
z0 = ∣z0∣

1
n e

iφ0
n .

Обойдём начало координат (значит, и z = ∞). Получим значение после возвращения: n
√
z0∣∗ =

e
ln ∣z∣+i(φ0+2π)

n = ∣z0∣
1
n e

iφ0
n e

2πi
n ⇒, если n > 1, то значение изменилось.

Следовательно, z = 0 и z = ∞ - точки ветвления.
Обойдём начало координат (значит, и z = ∞) ещё раз в том же направлении. Получим после возвращения:
7
√
z0∣∗∗ = ∣z0∣

1
n e

iφ0
n e

4πi
n ≠ ∣z0∣

1
n e

iφ0
n , если n > 2. После k-го, k < n, обхода получим n

√
z0e

2πki
n ≠ n

√
z0, а после

n-го обхода, как видно, вернёмся к начальному значению.
Такая точка ветвления называется точкой ветвления конечного порядка, или алгебраической точкой

ветвления.
Чтобы исключить многозначность, соединим произвольным разрезом z = 0 и z = ∞. Тогда функция

n
√
z распадётся на n однозначных в плоскости с разрезом от z = 0 до z = ∞ функций fk(z):

fk(z) = n
√
∣z∣e

iφ0k
n e

i∆φ
n , k = 0,1, . . . , (n − 1) (2.16)
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— регулярных ветвей n
√
z, где φ0k = φ0 + 2πk,φ0 - одно из возможных значений аргумента z0.

Регулярную в плоскости с разрезом от z = 0 до z = ∞ ветвь можно записать и по-другому:

fk(z) = n
√
∣z∣e

iφ0k
n e

i∆φ
n ⇒ fk (z0) = n

√
∣z0∣e

iφ0k
n ⇐⇒

⇐⇒ e
iφ0k

n = fk (z0)
n
√
∣z0∣
⇒ fk(z) = fk (z0) n

√
∣ z
z0
∣e

i∆φ
n

fk(z) = fk (z0) n

√
∣ z
z0
∣e

i∆φ
n (2.17)

В плоскости с разрезом от 0 до ∞ приращение ∆φ не зависит от γ !
П р и м е ч а н и е. Формулами (2.7) и (2.17) мы в нашем пособии пользоваться практически не будем,

предпочитая формулы (2.6) и (2.16). Это потому, что ветвь определяется, вообще говоря, не значением
f(z), а значением arg z0. Kроме того, применение формул (2.6) и (2.16), на наш взгляд, даёт возможность
чётче почувствовать сам факт выделения ветви.

Регулярную ветвь f0(z) многозначной функции z
√
z, определённую в плоскости с разрезом по

отрицательной полуоси, для которой f0(1) = 1, иногда называют главной ветвъю n
√
z. Вероятно, это

потому, что на положительной полуоси f0(z) принимает значения арифметического корня n-й степени
из x ∶ f0(x) = n

√
x = x 1

n , x ⩾ 0 и значения корня чётной степени из x ∶ f0(x) = 2n
√
x = x 1

2n , x ⩾ 0.
При этом можно заметить, что f0(z) не существует при x < < 0 - там разрез. А на верхнем и нижнем

берегах разреза
f0(z) принимает комплексные значения. А что с корнем нечётной степени из x?

Как известно, x2n+1 определён при x ∈ R, а x
1

2n+1 при x ⩾ 0. Но нет ни одной ветви 2n+1√z, значения
которой совпали бы со значениями 2n+1√x на всей числовой оси.

Пусть f∗(z) - произвольная ветвь 7
√
z = z 1

n . Тогда

fn∗ (z) = z ⇒ nfn−1∗ (z)f ′∗(z) = 1⇐⇒

⇐⇒ f ′∗(z) =
1

nfn−1∗ (z)
= 1

n( 3
√
z)n−1∗

(2.1)

Заметим, что при этом f ′∗(z) ≠ 1
n
z

1
n−1.

Если f∗(z) - произвольная ветвь n
√
g(z), то

fn∗ (z) = g(z) ⇒ nfn−1∗ (z)f ′∗(z) = g′(z) ⇐⇒

⇐⇒ f ′∗(z) =
g′(z)

nfn−1∗ (z)
= g′(z)
n( n
√
g(z))n−1∗

(2.19)

2.1.3. в) Функция 72
√
zn не имеет точек ветвления. Формула n

√
zn представляет

собой n различных однозначных в C функций:

fk(z) = ze
2πki
n , k = 0,1, . . . , (n − 1).

По определению, n
√
zn = eLnzn

n = e
ln ∣zzn+i(arg(zn0 )+n∆γφ)

n . Pacсмотрим произвольную точку z0 ∈ C и
выберем φ0 - одно из возможных значений аргумента числа zn0 (arg zn0 ≠ narg z0 !). Тогда
n
√
zn0 = e

lnz0
m+i(argzn0 )

n . Обойдём начало координат (значит, и z = ∞). Получим значение после

возвращения: n
√
zn0 ∣∗ = e

ln ∣zz0nn+i(arg(zn0 )+2πn)
n - исходное значение.

Пр и ме чание. Если же считать, что arg zn0 = narg z0, то n
√
zn0 = e

lnzn0
n = e

lnz0
∣+i(narg(z0))

n = ∣z0∣ eiarg z0 = z0,
т. е. это однозначная функция. На самом деле, например, 3

√
8 = 2e 2πki

3 , k = 0,1,2, а согласно только что
полученному, n

√
zn0 = z0, т. е. 3

√
8 = 3
√
23 = 2.

Итак, z = 0 и z = ∞ не являются точками ветвления. Что же мы получили?
Заметим, что n

√
zn = eLnzn

n = e
ln ∣z∣n+i(narg(z0)+2πm+n∆φ)

n = eln ∣z∣ei(arg z0+∆φ)e 2πmi
n = ze 2πmi

n ,m = 0,1, . . . , (n−1),
т. е. получили n различных однозначных функций

n
√
zn = ze

2πmi
n , m = 0,1, . . . , (n − 1) (2.20)
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Кол-2.

1. Упростите число ii.
По определению, ii = eiLn i = ei(0+i(π2 +2πk)) = e−(π2 +2πk), k ∈ Z. Комплексное число в комплексной

степени, оказалось, представляет собой счётное множество действительных чисел!
Ответ. e−(

π
2 +2πk), k ∈ Z.

Кол-2.
2. Найдите значение f(−2 + 2i), f ′(−2 + 2i), где f(z) - регулярная ветвь многозначной функции 5

√
z в

плоскости с разрезом, изображённым на рис. 2.4, если f(1) = 1.

Рис. 2.4
По определению, 5

√
z = 5
√
∣z∣ei

(φ0+∆φ)
5 . По условию, f(1) = 1. Найдём e

iφ0
5 для нашей ветви: f(1) =

ei
(φ0)

5 = 1. Теперь можно выписать формулу ветви f(z) = 5
√
∣z∣ei

∆φ
5 , а затем найти f(−2 + 2i) ∶ f(−2 + 2i) =

10
√
8ei

(2π+ 3π
4
)

5 = 10
√
8e

11πi
20 .

Найдём производную:

f5(z) = z ⇒ 5f4(z)f ′(z) = 1⇒

⇒ f ′(z) = 1

5f4(z)
⇒ f ′(−2 + 2i) = e

− 11πi
5

10 5
√
2

Ответ. 10
√
8e

11πi
20 ; e

− 11πi
5

10
5√
2

2.1.3. г) Функция zα

Посмотрим, в каком случае начало координат (значит, и z = ∞) может оказаться точкой ветвления
для zα. Пусть
f (z0) = ∣z0∣α eαiφ0 . Обойдём начало координат - получим значение f∗ (z0) = ∣z0∣α eαiφ0e2παi, которое не
равно f (z0) = ∣z0∣α eαi(φ0), если 2πα ≠ 2πk. Тогда в плоскости с разрезом по кривой, соединяющей 0 и
∞, zα распадается на регулярные ветви.

Найдём производную ветви

(zα)′∗ = (e
αLn z)′∗ = (e

αLn z)∗ ⋅
α

z
=
α (zα)∗

z
, т. е.

(zα)′∗ =
α (zα)∗

z
(2.21)

(zα)′∗ =
α (zα)∗

z
≠ αzα−1 (2.22)

2.1.4. Точки ветвления и регулярные ветви n
√
Pn(z). Производная ветви

Многозначная функция n
√
Pn(z), где многочлен Pn(z) имеет m, где 2 ⩽ m ⩽ n, различных корней (т.

е., по крайней мере, два корня различны), имеет m точек ветвления - это различные корни Pn(z). При
этом z = ∞ не является точкой ветвления n

√
Pn(z)

Аналитическая функция n
√
Pn(z) распадается на n регулярных ветвей в плоскости с любым разрезом,

соединяющим различные корни Pn(z).
Запишем многочлен в виде: Pn(z) = (z − a1)k1 (z − a2)k2 . . . (z - - akm)

km ,
m

∑
1
ki = n.

По определению,
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n
√
Pn(z) =

n

√
(z − a1)k1 (z − a2)k2 . . . (z − akm)

km =

= n
√
∣Pn(z)∣e

i(φ0+∆γPn(z))
n

где φ0 - одно из значений аргумента Pn(z) в точке z0,∆γφi приращение аргумента вектора z − ai при
движении по кривой γ из точки z0 в z,∆γPn(z) = k1∆γφ1 + k2∆γφ2 + . . . + km∆γφm.

В точке z0:

n

√
(z − a1)k1 (z − a2)k2 . . . (z − akm)

km ∣
z0

= n
√
∣Pn (z0)∣e

iφ0
n

Обойдём точку a1 по окружности γ1 с центром в ai, в которой нет других нулей многочлена (см. рис.
2.5a).

Рис. 2.5a

Рис. 2.5б
Вектор z − ai повернулся вокруг точки z = ai, а остальные векторы «качались» то в одну сторону, то в
другую. После возвращения имеем: ∆γφi = 2π, а все ∆γφk = 0, k ≠ i, и

n

√
(z − a1)k1 (z − a2)k2 . . . (z − akm)

km ∣
z0∗
= n
√
∣Pn (z0)∣e

i(φ0+2π)
n =

= n
√
∣Pn (z0)∣e

iφ0
n ei

2π
n ≠ n

√
∣Pk (z0)∣e

iφ0
n

— значение изменилось. Значит, ai — точка ветвления.
Так как нулей конечное число, то найдётся окружность γ некоторого радиуса, вне которой нет нулей
многочлена. Обойдём по ней ∞ (см. рис. 2.5б) Тогда ∆γφk = 2π, k = 1,2, . . ., m, и после возвращения
получим

n

√
(z − a1)k1 (z − a2)k2 . . . (z − akm)

km ∣
z0∗
=

= n
√
∣Pn (z0)∣e

i(φ0+2π(k1+k2+...+km))
n = n

√
∣Pn (z0)∣e

i(φ0)
n

значение не изменилось, ∞ не является точкой ветвления.
Чтобы исключить возможность обхода отдельного нуля, сделаем разрез, соединяющий все нули

многочлена. Тогда в плоскости с разрезом, соединяющим все различные нули многочлена, полная

254



4.2.1 2.1. Multivalued Functions. Definition. Regular Branches

аналитическая функция n
√
Pn(z) распадается

на n регулярных ветвей

fk(z) = n
√
∣Pn(z)∣e

i(φ0k+∆γPn(z))
n (2.23)

где φ0k = φ0 + 2πk, k = 0,1, . . . , (n − 1), φ0 - одно из возможных значений аргумента числа Pn (z0) ∶
fk (z0) = n

√
∣Pn(z)∣e

i(φ0+2πk)
n .

fk(z) = fk (z0) n

¿
ÁÁÀ∣ Pn(z)

Pn (z0)

RRRRRRRRRRRRR
e

i∆γPn(z)
n (2.24)

где ∆γPn(z) = k1∆γφ1 + k2∆γφ2 + . . . + km∆γφm.
Область не односвязна - приращения аргументов зависят от γ, но значение функции не зависит от выбора
γ. Поэтому при решении конкретного примера желательно выбирать более удобный «путь» от z0 к z.

Найдём производную ветви:

fk(z) = n
√
Pn(z)∗ ⇒ fnk (z) = Pn(z) ⇒

⇒ nfn−1k (z)f ′k(z) = P ′n(z) ⇐⇒ f ′k(z) =
P ′n(z)

nfn−1k (z)

П р и ме ч а н и е. Если многозначная функция имеет вид

n
√
Pk(z) =

n

√
(z − a1)k1 (z − a2)k2 . . . (z − akm)

km

где
m

∑
1
ki = k < n, то z = ∞ является точкой ветвления, и функция распадается на регулярные ветви в

плоскости с разрезом, соединяющим z = ∞ с различными корнями многочлена.

2.1.5. Точки ветвления и регулярные ветви n

√
Pl(z)
Ql(z)

Многозначная функция n

√
Pl(z)
Ql(z) , где многочлен Pl(z), имеет 1 ⩽ m ⩽ l < n различных корней, а

многочлен Ql(z) имеет 1 ⩽ j ⩽ l < n различных корней, то n

√
Pl(z)
Ql(z) имеет m + j

точек ветвления - это различные корни Pl(z) и Ql(z). При этом z = ∞ не является точкой ветвления для
n

√
Pl(z)
Ql(z) .

Аналитическая функция n

√
Pl(z)
Ql(z) распадается на n регулярных ветвей в плоскости с любым разрезом,

соединяющим различные корни Pl(z) и Ql(z).
Пусть Pl(z) = (z − a1)k1 (z − a2)k2 . . . (z − akm)

km ,
m

∑
j=1

ki = l,

Ql(z) = (z − b1)l1 (z − b2)l2 . . . (z − blj)
lj
,
j

∑
i=1
li = l. Тогда, по определению,

n

¿
ÁÁÁÀ
(z − a1)k1 (z − a2)k2 . . . (z − akm)

km

(z − b1)l1 (z − b2)l2 . . . (z − blj)
lj
= n

¿
ÁÁÀ∣ Pl(z)

Ql(z)
∣ e

i(φ0+∆γPl(z)−∆γQl(z))
n

где ∆γPl(z) −∆γQl(z) = k1∆γφ1 + k2∆γφ2 + . . . + km∆γφm - −(l1∆γψ1 + l2∆γψ2 + . . . + lj∆γψj)
Пусть в точке z0

n

¿
ÁÁÁÀ
(z − a1)k1 (z − a2)k2 . . . (z − akm)

km

(z − b1)l1 (z − b2)l2 . . . (z − blj)
lj

RRRRRRRRRRRRRRz0
= n

¿
ÁÁÀ∣ Pl (z0)

Ql (z0)
∣e

iφ0
n

Обойдём, например, точку ai (см. рис. 2.5a). Тогда ∆γφi = 2π,∆γφp = 0, p ≠ i,∆γψk = 0, k =
1,2, . . . , j.⇒∆γPl(z) - −∆γQl(z) = ki∆γφi. После обхода

n

¿
ÁÁÁÀ
(z − a1)k1 (z − a2)k2 . . . (z − akm)

km

(z − b1)l1 (z − b2)l2 . . . (z − blj)
lj

RRRRRRRRRRRRRRz0
=

= n

¿
ÁÁÀ∣ Pl (z0)

Ql (z0)
∣e

iφ0
n e

i2πki
n ≠ n

¿
ÁÁÀ∣ Pl (z0)

Ql (z0)

RRRRRRRRRRRRR
e

iφ0
n , т. к. ki < n

Точка ai — точка ветвления. Теперь обойдём z = ∞.
Тогда
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n

¿
ÁÁÁÀ
(z − a1)k1 (z − a2)k2 . . . (z − akm)

km

(z − b1)l1 (z − b2)l2 . . . (z − blj)
lj

RRRRRRRRRRRRRRz0
= n

¿
ÁÁÀ∣ Pl (z0)

Ql (z0)
∣e

iφ0
n

а после обхода ∆γφi = 2π, i = 1,2, . . . ,m;∆γψi = 2π, i = 1, 2, . . . , j.

n

¿
ÁÁÁÀ
(z − a1)k1 (z − a2)k2 . . . (z − akm)

km

(z − b1)l1 (z − b2)l2 . . . (z − blj)
lj

RRRRRRRRRRRRRRz∗0

=

= n

¿
ÁÁÀ∣ Pl (z0)

Ql (z0)
e

i(φ0+2πl−2πl)
n = n

¿
ÁÁÀ∣ Pl (z0)

Ql (z0)
e

iφ0
n

Поэтому точка z = ∞ не является точкой ветвления, и функция n

√
Pl(z)
Ql(z) распадается на n регулярных

ветвей в плоскости с любым разрезом, соединяющим различные корни Pl(z) и Ql(z):

fk(z) = n

¿
ÁÁÀ∣ Pl(z)

Ql(z)
∣e

i(φ0k+∆kPl(z)−∆γQl(z))
n (2.25)

где φ0k = φ0 + 2πk, l = 0,1, . . . , (n − 1), φ0 - одно из возможных значений аргумента числа Pl(z0)
Ql(z0) .

П р и меч ан и е 1. И здесь, конечно, можно написать формулу, аналогичную (2.24), но лучше понять,
как выделить fk(z), чем запоминать то, что можно не запоминать.

2.1.6. Точки ветвления и регулярные ветви LnPn(z). Производная ветви
Многозначная функция LnPn(z), где многочлен Pn(z) имеет m(2 ⩽ m ⩽ n) различных корней (т. е.,

по крайней мере, два корня различны), имеет m+1 точку ветвления - это различные корни Pn(z) и z = ∞.
Аналитическая функция LnPn(z) распадается на регулярные ветви в плоскости с любым разрезом,

соединяющим различные корни Pn(z) и z = ∞.
Запишем многочлен в виде:

Pn(z) = (z − a1)k1 (z − a2)k2 . . . (z − akm)
km ,

m

∑
1

ki = n

По определению,

LnPn(z) = ln ∣Pn(z)∣ + i(φ0 +
n

∑
1

ki∆γφi) (2.26)

В точке z0 ∶ LnPn(z)∣z0 = ln ∣Pn (z0)∣ + iφ0.
Обойдём точку ai (см. рис. 2.5a). После возвращения имеем: LnPn(z)∣z0∗ = ln ∣Pn (z0)∣ + i (φ0 + 2πki) ≠
ln ∣Pn (z0)∣ + +iφ0, значит, z = ai - точка ветвления.

Теперь обойдём z = ∞ (см. рис. 2.5б). После возвращения ∆γφi = 2π, i = 1,2, . . . ,m и

LnPn(z)∣∞∗ = ln ∣Pn (z0)∣ + i(φ0 +
n

∑
1
2πki) =

= ln ∣Pn (z0)∣ + i (φ0 + 2πn) ⇒
⇒ z = ∞ - тоже точка ветвления.

Поэтому аналитическая функция LnPn(z) распадается на регулярные ветви в плоскости с любым
разрезом, соединяющим различные корни Pn(z) и z = ∞:

fk(z) = ln ∣Pn(z)∣ + i(φ0k +
n

∑
1

ki∆φi) (2.27)

φ0k = φ0 + 2πk, k ∈ Z, где φ0 - одно из возможных значений аргумента Pn (z0).
Область односвязна - значения ∆φi не зависят от γ.

Найдём производную любой ветви LnPn(z) ∶

Ln∗ Pn(z)′ =
1

Pn(z)
⋅ P ′n(z)
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2.1.7. Точки ветвления и регулярные ветви Ln Pn(z)
Qn(z)

Функция Ln Pn(z)
Qn(z) , где Pn(z) имеет 1 ⩽ m ⩽ n,

m

∑
i=1
ki = n, различных корней, а Qn(z) имеет 1 ⩽ j ⩽

n,
j

∑
i=1
li = n различных корней, имеет m + j точек ветвления - это различные корни Pn(z) и Qn(z). При

этом z = ∞ не является точкой ветвления Ln Pn(z)
Qn(z) .

Аналитическая функция Ln Pn(z)
Qn(z) распадается на регулярные ветви в плоскости с любым разрезом,

соединяющим различные корни Pn(z) и Qn(z).
По определению,

Ln
Pn(z)
Qn(z)

= ln ∣ Pn(z)
Qn(z)

∣ + i (φ0 +∆γPn(z) −∆γQn(z)) (2.28)

где φ0 - значение аргумента дроби Pn(z)
Qn(z) в точке z0, а

∆γPn(z) −∆γQn(z) = k1∆γφ1 + k2∆γφ2 + . . .+
+ km∆γφm − (l1∆γψ1 + l2∆γψ2 + . . . + lj∆γψj) (2.29)

В точке z0 ∶ Ln Pn(z)
Qn(z) ∣z0

= ln ∣ Pn(z0)
Qn(z0) ∣ + iφ0.

Проводим уже хорошо известные обходы. Получаем
a) после обхода al:

Ln
Pn(z)
Qn(z)

∣
z∗0

= ln ∣ Pn (z0)
Qn (z0)

∣ + i (φ0 + 2πikl) ⇒

⇒ z = ai — точка ветвления;
б) после обхода z = ∞:

Ln
Pn(z)
Qn(z)

∣
∞∗
= ln ∣ Pn (z0)

Qn (z0)
∣ + i(φ0 + 2π

m

∑
1

kl − 2π
j

∑
1

li) =

= ln ∣ Pn (z0)
Qn (z0)

∣ + iφ0 ⇒

⇒ точка z = ∞ не является точкой ветвления.
Аналитическая функция Ln Pn(z)

Qn(z) распадается на регулярные ветви:

fk(z) = ln ∣
Pn(z)
Qn(z)

∣ + i (φ0k +∆γPn(z) −∆γQn(z)) (2.30)

в плоскости с любым разрезом, соединяющим различные корни Pn(z) и Qn(z), φ0k = φ0 + 2πk, k ∈ Z,
где φ0 - одно из возможных значений аргумента Pn(z0)

Qn(z0) .
Область не односвязна - приращения зависят от γ.

Кол-2.

3. Пусть f(z) - регулярная ветвь многозначной функции
√
z2 − 4 в плоскости с разрезом по кривой:

γ = {∣z∣ = 2, Im z ⩾ 0} (см. рис. 2.6), такая, что f(+∞) > 0.
Найдите f (− i√

2
) , f ′ (− i√

2
).

Многозначная функция
√
z2 − 4 имеет две точки ветвления: z = −2, z = 2. Она распадается на

регулярные ветви в плоскости с произвольным разрезом, соединяющим z = −2 и z = 2. Заданный разрез
удовлетворяет этому условию (см. рис. 2.6).

По определению, fk(z) =
√
∣(z + 2)(z − 2)∣e

i(φ0k+∆γφ1
+∆γφ2)

2 .

По условию, f(+∞) > 0⇒ e
i(φ0)

2 = 1⇒ f(z) =
√
∣z2 − 4 ∣ e

i(∆γφ1+∆γφ2)
2 .
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Рис. 2.6

Рис. 2.7
Проведём «путь» γ от +∞ до z = − i√

2
сначала по прямой y = 0, x ∈ [5;+∞), а затем по прямой,

соединяющей точки z =
= − i√

2
и z = 5 (см. рис. 2.6). Тогда

∆γφ1 =∆γ arg(z + 2) = −α
∆γφ2 =∆γ arg(z − 2) = −(π − α) ⇒

⇒ f (− i√
2
) = 3√

2
e

i(−(π−α)−α)
2 = − 3i√

2

Теперь найдём f ′ (− i√
2
).

Заметим, что f(z) =
√
z2 − 4∗ - одна из ветвей

√
z2 − 4. Следовательно,

f2(z) = z2 − 4⇐⇒ 2f(z)f ′(z) = 2z ⇐⇒

⇐⇒ f ′(z) = z

f(z)
⇒ f ′ (− i√

2
) = 1

3
.

Ответ. − 3i√
2
; 1
3
.

Кол-2.

4. Пусть f(z) - регулярная ветвь многозначной функции 3
√
(z + 1) (z2 + 1) в плоскости с разрезом,

изображённым на рис. 2.7, такая, что f(0) = 1. Найдите f(−3i), f( - −1 − i).
Многозначная функция 3

√
(z + 1) (z2 + 1) имеет три точки ветвления: z = −1, z = i, z = −i. Она

распадается на регулярные ветви в плоскости с произвольным разрезом, соединяющим точки z = −1, z =
i, z = −i. Заданный разрез удовлетворяет этому условию.

По определению,

f(z) = 3
√
∣(z + 1)(z − i)(z + i)∣e

i(φ0+∆γφ1+∆γφ2+∆γφ3)
3

Так как f(0) = 1, то f(0) = 1 ⋅ e
iφ0
3 = 1⇐⇒ e

iφ0
3 = 1 и

f(z) = 3
√
∣(z + 1)(z − i)(z + i)∣e

i(∆γφ1+∆γφ2+∆γφ3)
3

Найдём приращения аргументов при движении от z = 0 до z = −3i по кривой γ, изображённой на рис.
2.8:
∆arg(z − i) = −2π,∆arg(z + i) = −π,∆arg(z + 1) = −arctg 3 ⇒ ⇒ f(−3i) = 3

√
∣(−3i + 1)(−9 + 1)∣e

i(−3π−arctg 3)
3 =

2 6
√
10e

i(−3π−arctg 3)
3 .
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Рис. 2.8

Рис. 2.9
А теперь, ради интереса, пройдём в точку z = −3i по другому пути - кривой γ∗, изображённой на рис.

2.9.
Тогда приращения аргументов будут другие:

∆arg(z − i) = 0,∆arg(z + i) = π,∆arg(z + 1) = 2π − arctg 3,⇒

⇒ f(−3i) = 3
√
∣(−3i + 1)(−9 + 1)∣e

i(0+π+2π−arctg 3)
3 =

= 2 6
√
10e

i(3π−arctg 3)
3 = 2 6

√
10e

i(3π−arctg 3)
3 e2πi = 2 6

√
10e

i(−3π−arctg 3)
3

Но значение функции, как и должно быть, то же самое.
Найдём теперь значение f(−1 − i).
Пройдём по кривой γ (см. рис. 2.10).
Тогда

∆arg(z − i) = −arctg 1

2

∆arg(z + i) = −3π
2

∆arg(z + 1) = −π
2
,⇒
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Рис. 2.10

⇒ f(−1 − i) = 3
√
∣(−i)(1 + 2i)∣e

i(−arctg 1
2
−2π)

3 =
√
5e

−i(arctg 1
2
+2π)

3

Ответ. 2 6
√
10e

i(−3π−arctg 3)
3 ,

√
5e

−i(arctg 1
2
+2π)

3 .

Кол-2.

5. Выясните, сколько регулярных ветвей имеет функция 3
√
z2 − 7

√
z2 в области G = {z ∈ C, Im(1 − i)z >

0}. Найдите значение этих ветвей в точке z = e 3πi
4 .

Мы знаем, что 3
√
w имеет точки ветвления в точках, в которых подкоренное выражение обращается в

0, и в точке, где оно обращается в ∞. Но знаем также, что у 3
√
w3 нет точек ветвления. У нас под корнем

сложное выражение - поэтому, если оно где-то обратится в 0, необходимо будет проверить порядок этого
нуля.

Аналитическая функция 7
√
z2 имеет две точки ветвления: z = 0, z = ∞ и распадается на регулярные

ветви в плоскости с разрезом, соединяющим z = 0 и z = ∞. Этот разрез можно провести вне заданной
области, поэтому в заданной области существуют при этом условии 7 регулярных ветвей: f0(z), f1(z),
. . . , f6(z).

По определению, 7
√
z2k = 7

√
∣z2∣e

φ0k+2∆φ

7 . Выделим ветви fk(z) в точке z = 1:
fk(1) = ei

φ0k
7 = e 2πik

7 ⇒ fk(z) = 7
√
∣z2∣e 2πik

7 ei
2∆φ

7 , k = 0,1, . . . ,6.
Найдём нули подкоренного выражения:

z2 − 7
√
z2 = 0⇒ z14 = z2 ⇐⇒

⇐⇒ {
z = 0
z12 = 1⇔ zm = e

2πmi
12 = eπmi

6 ,m = 0,1, . . . ,11

Теперь выясним их порядок: (z2 − fk(z))
′ = 2z − f ′k(z). Найдём f ′k(z) ∶

f7k(z) = z2 ⇐⇒ 7f6k(z)f ′k(z) = 2z ⇐⇒ f ′k(z) =
2z

7f6k(z)
⇒

⇒ (2z − f ′k(z)) = 2z (1 −
1

7f6k(z)
)

Найдём (z2 − fk(z))
′

в точках z = zm. Заметим, что ∣fk (zm)∣ = 1, поэтому (z2m − fk (zm))
′ ≠ 0, и все

нули подкоренного выражения являются нулями первого порядка. Значит, они - точки ветвления.
Теперь будем выяснять, какие точки будут точками ветвления функции 3

√
z2 − fk0(z).

Для этого проверим, в каких из точек zm подкоренное выражение для конкретной ветви fk0(z)
обратится в 0 .

Сначала найдём значения подкоренного выражения в точках zm:

fk0 (zm) = e
2πik0

7 ei
2mπ
7⋅6 = e

2πik0
7 ei

mπ
7⋅3 = e

i(6k0+m)π
21 ⇒

⇒ z2m − fk0 (zm) = ei
mπ
3 = e

i(6k0+m)π
21 = 0⇐⇒

⇐⇒ m

3
= 6k0 +m

21
⇐⇒m = k0

т. е. точкой ветвления для 3
√
z2 − fk0(z) является точка z = zm, где m = k0.

Если такая точка для ветви fk0(z) находится вне заданной области, то в заданной области эту ветвь
можно выделить, т. к. разрез можно провести вне её.

На рис. 2.11 видно, что в области находятся точки z2, z3, . . . , z7. Значит, это точки вет-

260



4.2.2 2.2. Expansion into Series of Regular Branches of Multivalued Functions 1

Рис. 2.11 вления 3
√
z2 − fk0(z) для f2(z), f3(z), . . . , f7(z). Но k ∈ {0,1, . . . ,6}.

Что такое f7(z)? Это просто f0(z), т. к. f7(z) = 7
√
∣z2∣e 2πi7

7 ei
2∆φ

7 = f0(z).
Что в итоге? В области G ветви 3

√
z2 − fk0(z) для f2(z), f3(z), . . . , f6(z), f0(z) выделить нельзя - для

их выделения надо делать разрезы. Зато точка z = z1 = e
πi
6 - точка ветвления 3

√
z2 − f1(z) находится вне

области G, и разрез можно сделать там, а в нашей области будут существовать gk(z), k = 0,1,2 - три ветви
3
√
z2 − f1(z). Теперь найдём значения этих ветвей в точке z = e 3πi

4 :
f1(z) = e

2πi
7 e

2i∆φ
7 ⇒

⇒ z2 − f1(z)∣z= 3πi
4
= e2 3πi

4 − e 2πi
7 e

2i3π
7⋅4 = e 3πi

2 − e iπ
2 = −2i = 2e 3πi

2 ⇒

⇒ gk (
3πi

4
) = 3
√
2ei

( 3π
2
+2πk)
3 = 3

√
2ei

(3+4k)π
6 , k = 0,1,2

Ответ. Три ветви. 3
√
2ei

(3+4k)π
6 , k = 0,1,2.

Кол-2.

6. Пусть f(z) - регулярная ветвь многозначной функции Ln(z + 1) (z2 + 1) в плоскости с разрезом,
изображённым на рис. 2.12, такая, что f(0) = 2πi. Найдите f(−3i), f ′(−3i).

Сделаем чертёж разреза (см. рис. 2.12).
Так как область односвязна, то ∆φi не зависят от γ. По определению,

f(z) = ln ∣(z + 1) (z2 + 1)∣ +
+ i (φ0 +∆φ1 +∆φ2 +∆φ3)

Рис. 2.12
По условию, f(0) = 2πi = iφ0 ⇒ f(z) = ln ∣(z + 1) (z2 + 1)∣ + +i (2π +∆φ1 +∆φ2 +∆φ3). Найдём приращения
аргументов при движении по кривой γ от z = 0 до z = −3i (см. рис. 2.15):
∆arg(z − i) = 0, ∆arg(z + i) = π, ∆arg(z + 1) = 2π − arctg 3⇒ ⇒ f(−3i) = ln ∣(−3i + 1)(−9 + 1)∣ + i(2π + 0 +
π + 2π − arctg 3) =

= ln 8
√
10 + i(5π − arctg 3)

Теперь найдём производную в точке z = −3i:

f(z) =Ln∗(z + 1) (z2 + 1) ⇒ f ′(z) = 3z2 + 2z + 1
(z + 1) (z2 + 1)

⇒

⇒ f ′(−3i) = 3(−9) − 6i + 1
(−3i + 1)(−9 + 1)

= 2 + 21i
20

Ответ. ln 8
√
10 + i(5π − arctg 3); 2+21i

20
.

4.2.2 2.2. Expansion into Series of Regular Branches of Multivalued
Functions 1

До сих пор речь шла о формулах для регулярных ветвей многозначных функций, которые работали
в плоскостях с разрезом, соединяющим все точки ветвления. Регулярная ветвь определялась значением
ветви в одной точке. Сейчас нас будет интересовать поведение и формулы ветвей в окрестности точки
или в кольце, потому что речь пойдёт о разложении ветви в ряд Тейлора или Лорана.
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2.2.1. Разложение в ряды Тейлора и Лорана регулярных ветвей Ln z,Ln(z−a)(z−
b),Ln az+b

ez+d

2.2.1. а) Разложение в ряды Тейлора регулярных ветвей Ln z

Рассмотрим Ln z и его ветви.
Итак, значение многозначной функции Ln z в любой точке определяется формулой

Ln z = ln ∣z∣ + i (arg z0 +∆γφ)
где ∆γφ - приращение аргумента z при движении по кривой γ от точки z0 до точки z. Оно существенно

зависит от кривой и является неоднозначной функцией в плоскости.
Известно, что в плоскости с разрезом, соединяющим точки 0 и ∞,Ln z распадается на регулярные

ветви f∗(z):

f∗(z) = ln ∣z∣ + i (arg z0 +∆φ)
где ∆φ - приращение аргумента z при движении от точки z0 до точки z. Оно уже не зависит от

кривой γ. Так можно найти значение ветви в любой точке плоскости с разрезом.
Так как любая ветвь регулярна в плоскости с разрезом от 0 до ∞, то в окрестности любой точки z0,

не принадлежащей разрезу, она разлагается в ряд Тейлора по степеням разности z − z0.
Допустим, что точка z = 1 вместе с некоторой окрестностью ∣z−1∣ < δ находится вне разреза. Очевидно,

что δ — это расстояние z = 1 до разреза (поэтому δ ⩽ 1).
Будем рассматривать f0(z) - ту ветвь Ln z, у которой f0(1) = 0. Заметим сразу, что при разных видах

разреза это будут разные ветви (области определения разные!) и у каждой ветви своя окрестность.

Тогда, в этой окрестности по определению, f0(z) =
z

∫
1

dξ
ξ
= ln ∣z∣ + i∆φ, где ∆φ - приращение аргумента

z при движении точки из z = 1 в рассматриваемую точку z по кривой γ. Но рассматриваемая окрестность
односвязна и не содержит начала координат - приращение не зависит от γ. Так как Ln z рассматривается
в окрестности точки, то интеграл берётся по произвольным кривым, принадлежащим этой окрестности,
и зависит только от точки z.

Покажем, что в окрестности ∣z − 1∣ < δ ⩽ 1 ветвь f0(z) представляется в виде ряда Тейлора:

f0(z) =
∞
∑
0

(−1)k (z − 1)
k+1

k + 1
, ∣z − 1∣ < δ ⩽ 1 (2.31)

Рассмотрим интеграл в окрестности ∣z − 1∣ < ρ точки z = 1. Разложим его в ряд Тейлора по степеням
разности (z − 1):

z

∫
1

dξ
ξ
=

z

∫
1

dξ
(ξ+1−1) =

z

∫
1

dξ
1+(ξ−1) =

z

∫
1

∞
∑
0
(−1)k(ξ − 1)kdξ =

=
∞
∑
1
(−1)k−1 (z−1)

k

k
, ∣z − 1∣ < 1

Получившийся ряд сходится при ∣z − 1∣ < 1 и представляет там регулярную функцию S(z), которая,
как видно, при действительных значениях x, ∣x − 1∣ < 1, совпадает с lnx. Ряд полностью определяется
производными ветви f0(z) в точке z = 1, его радиус сходимости, естественно, равен расстоянию от центра
разложения z = 1 до ближайшей особой точки z = 0 - получившийся ряд не «замечает» разреза, который
может «не
задеть» окрестность ∣z−1∣ < ρ. Но по теореме о регулярной функции S(z) и f0(z) в окрестности ∣z−1∣ < δ ⩽ 1
совпадают.

Поэтому ветвь f0(z) многозначной функции Ln z, у которой f0(1) = 0, естественно назвать ln z. При
этом f0(z) в окрестности ∣z − 1∣ < δ ⩽ 1 разлагается в ряд Тейлора:

Ln0(z) = f0(z) = ln z =
∞
∑
0
(−1)k (z−1)

k+1

k+1 , ∣z − 1∣ < δ ⩽ 1.

Заметим, что в окрестности ∣z − 1∣ < δ ⩽ 1 ветвь f0(z) может быть записана в виде

Ln0(z) = f0(z) = ln z = ln(1 + (z − 1)), Ln0(1) = 0
Заметим также, что если разрез пойдёт вне положительной полуоси, то ln z совпадёт с lnx на всей

области определения lnx:

f0(z) = ln z = lnx =
x

∫
1

dξ

ξ
, x > 0

Теперь рассмотрим в окрестности ∣z − 1∣ < 1 произвольную ветвь Ln∗ z многозначной функции Ln z ∶
Ln∗ z = Ln∗(z+ +1 − 1) = Ln∗(1 + (z − 1)). Видно, что в точке z = 1 ветвь принимает значение Ln∗1. Так
как ветвь однозначно определяется значением в точке, то эту ветвь можно представить в виде Ln∗(z) =
Ln∗(1 + (z − 1)) = Ln∗ 1 + ln(1 + (z − 1)), где ln(1+ +(z − 1)) - это та ветвь Ln(1 + (z − 1))( или Ln z),
для которой Ln(1 + (z − 1))∣z=1 = 0. Отсюда следует, что любая ветвь f∗(z), регулярная в некоторой
окрестности ∣z − 1∣ < δ ⩽ 1 точки z = 1, разлагается в ряд Тейлора:
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Ln∗ z = f∗(z) = f∗(1) +
∞
∑
0
(−1)k (z−1)

k+1

k+1 , ∣z − 1∣ < δ ⩽ 1.
Сделав замену переменных z − 1 = ξ, получим

ln(1 + ξ) =
∞
∑
1

(−1)k−1ξk

k
, ∣ξ∣ < 1

Чаще всего будем пользоваться именно этой формулой. Запишем её в более обычной форме:

ln(1 + z) =
∞
∑
1

(−1)k−1zk

k
, ∣z∣ < 1 (2.34)

Поведение ln z в окрестности z = 1 и ln(1 + z) в окрестности z = 0 одинаково.
Теперь рассмотрим произвольную точку z1 ≠ 0, не принадлежащую разрезу. Тогда существует

некоторая окрестность ∣z − z1∣ < ρ точки z1 ≠ 0, в которой регулярна f∗(z) - любая ветвь Ln z. Очевидно,
что ρ - это расстояние z = z1 до разреза.

Покажем, что тогда f∗(z) представима в окрестности ∣z - −z1 ∣< δ ⩽ ∣z1∣ (если ρ > 1, то δ = ∣z1∣ ; если
ρ ⩽ ∣z1∣, то δ = ρ) в виде суммы ряда Тейлора:
Ln∗ z = f∗ (z1) + ln (1 + z−z1

z1
) =

= f∗ (z1) +
∞
∑
1

(−1)k−1
k
( z−z1
z1
)
k
, ∣z − z1∣ < δ ⩽ ∣z1∣ ⋅ (2.35)

Первый способ. Преобразуем подлогарифмическое выражение
Ln∗ z ≡ Ln∗ (z + z1 − z1) ≡ Ln∗ z1 (1 + z−z1

z1
). Видно, что любая ветвь принимает значение Ln∗ z1 в точке

z1 ≠ 0. Поэтому можно записать, что
f∗(z) = Ln∗ z1 (1 + z−z1

z1
) = Ln∗ z1 + ln (1 + z−z1

z1
) =

= f∗ (z1) + ln(1 +
z − z1
z1
)

где ln (1 + z−z1
z1
) - та ветвь Ln (1 + z−z1

z1
), для которой Ln (1 + z−z1

z1
)∣
z=z1
= 0. Разложение такой ветви

уже известно ln (1 + z−z1
z1
) =

∞
∑
1

(−1)k−1
k
( z−z1
z1
)
k
, ∣z − z1∣ < ∣z1∣.

Кроме того, заметим, что на луче z−z1
z1
= t, t ∈ R,⇐⇒ ⇐⇒ z = z1 + z1t, t > −1 функция ln (1 + z−z1

z1
)

принимает
действительные значения и разлагается в классический ряд по степеням t. В силу теоремы единственности

и ln (1 + z−z1
z1
) =

∞
∑
1

(−1)k−1
k
( z−z1
z1
)
k
, ∣z − z1∣ < ∣z1∣. Что касается f∗(z), то Ln∗ z = f∗ (z1) + ln (1 + z−z1

z1
) =

= f∗ (z1) +
∞
∑
1

(−1)k−1

k
(z − z1

z1
)
k

, ∣z − z1∣ < δ ⩽ ∣z1∣

Можно это же показать по-другому.

Пусть ветвь регулярна в некоторой окрестности ∣z − z1∣ < ρ точки z1. По определению, f∗(z) =
z1

∫
1

dξ
ξ
+

z

∫
z1

dξ
ξ
= f∗ (z1)+ +

z

∫
z1

dξ
ξ

, где интеграл рассматривается в окрестности ∣z − z1∣ < < ρ.

Разложим интеграл в ряд Тейлора по степеням z − z1:
z

∫
z1

dξ

ξ + z1 − z1
=

z

∫
z1

1

z1

dξ

(1 + ξ−z1
z1
)
=

= [ при условии, что ∣ξ − z1
z1
∣ < 1] =

=
∞
∑
0

z

∫
z1

(−1)k

z1
(ξ − z1

z1
)
k

dξ =
∞
∑
0

(−1)k

zk+11

(z − z1)k+1

k + 1
, ∣z − z1∣ < ∣z1∣ .

Отсюда следует, что в окрестности ∣z − z1∣ < δ ⩽ ∣z1∣ ветвь f∗(z) разложилась в ряд Тейлора:

Ln∗ z = f∗(z) = f∗ (z1) +
∞
∑
1

(−1)k−1
zk1

(z−z1)k
k

, ∣z − z1∣ < δ ⩽ ∣z1∣.

Итак, любая ветвь f(z) многозначной функции Ln z, если она определена в некоторой окрестности
∣z − z0∣ < ρ ⩽ ∣z0∣ точки
z = z0, приводится к виду

f(z) = f (z0) + ln(1 +
z − z0
z0
) (2.36)
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и разлагается в этой окрестности в ряд Тейлора:

f(z) = f (z0) +
∞
∑
1

(−1)k−1 (z − z0)k

k (z0)k
, ∣z − z0∣ < ρ ⩽ ∣z0∣ (2.37)

2.2.1. б) Разложение в ряды Тейлора регулярных ветвей Ln(z − a)(z − b)
Теперь рассмотрим ветви, регулярные в окрестности точки z = c, более сложной многозначной

функции Ln(z − a)(z − b). Она имеет три точки ветвления: z = a, z = b, z = ∞ и распадается на регулярные
ветви в плоскости с разрезом, их соединяющих.

Пусть z = c не принадлежит разрезу. Тогда любая ветвь регулярна в некоторой окрестности этой
точки, а значит, разлагается в ней в ряд Тейлора.

Приведём формулу любой ветви в виду, удобному для рассмотрения в окрестности точки z = c:

f∗(z) = Ln∗(z − a)(z − b) ≡ Ln∗(z − a − c + c)(z − b − c + c) ≡

≡ Ln∗(c − a)(c − b) (1 +
z − c
c − a

)(1 + z − c
c − b

)

Видно, что любая ветвь принимает в точке z = c одно из значений Ln(c − a)(c − b). Поэтому можно
записать, что любая ветвь f(z) многозначной функции Ln(z − a)(z − b) в окрестности точки z = c может
быть приведена к виду

f(z) = f(c) + ln(1 + z − c
c − a

) + ln(1 + z − c
c − b

)

где «маленькие» логарифмы принимают значения, равные 0 при z = c, и имеют стандартные
разложения по степеням (z - −c) ∶
f(z) = f(c) + ln (1 + z−c

c−a) + ln (1 +
z−c
c−b ) =

= f(c) +
∞
∑
1

(−1)k−1(z−c)k
k

( 1
(c−a)k +

1
(c−b)k )

∣z − c∣ < δ ⩽min{∣c − a∣, ∣c − b∣}
(2.38)

2.2.1. в) Разложение в ряды Тейлора и Лорана регулярных ветвей Ln az+b
ez+d

Рассмотрим теперь многозначную функцию Ln az+b
ez+d . Она имеет уже только две точки ветвления:

z = − b
a
, z = −d

e
(∞, как мы показали в п. 2.1.7, не является точкой ветвления) и распадается на регулярные

ветви в плоскости с разрезом, их соединяющим.
Пусть точка z = c не принадлежит разрезу.
Тогда любая ветвь регулярна в некоторой окрестности ∣z −c ∣< ρ этой точки и разлагается в ней в ряд

Тейлора (где ρ — расстояние от точки z = c до разреза).
Приведём формулы всех ветвей к виду, удобному для рассмотрения в окрестности точки z = c:

f∗(z) = Ln∗
az + b
ez + d

≡ Ln∗
a(z − c + c) + b
e(z − c + c) + d

≡

≡ Ln∗
b + ac
d + ec

1 + a(z−c)
b+ac

1 + e(z−c)
d+ec

=

= Ln∗
b + ac
d + ec

+ ln(1 + a(z − c)
b + ac

) − ln(1 + e(z − c)
d + ec

)

где «маленькие» логарифмы равны 0 при z = c и имеют стандартные разложения при ∣z − c∣ < δ ⩽
min{∣c + b

a
∣ , ∣c + d

e
∣}.

Теперь заметим, что в отличие от Ln z и Ln(z − a)(z − b), у которых z = ∞ является точкой ветвления,
у полной аналитической функции Ln αz−a

βz−b точка z = ∞ не является точкой ветвления. Поэтому любая
ветвь в плоскости с разрезом, соединяющим нули числителя и знаменателя, является регу-
лярной в некоторой проколотой окрестности ρ < ∣z∣ < ∞ точки z = ∞ и может быть разложена в ней в ряд
Лорана.

Воспользуемся предыдущими рассуждениями - приведём все ветви к виду, удобному для рассмотрения
в окрестности z = ∞ ∶
Ln∗

αz−a
βz−b ≡ Ln∗ (

α
β
⋅ 1−

a
αz

1− b
βz

) = Ln∗ αβ + ln (1 −
a
αz
) − ln (1 − b

βz
).

Отсюда следует, что любая ветвь f(z) многозначной функции Ln αz−a
βz−b в окрестности точки z = ∞ может

быть представлена в виде
f(z) = f(∞) + ln (1 − a

αz
) − ln (1 − b

βz
) =
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= f(∞) −
∞
∑
1

1
kzk
(( a

α
)k − ( b

β
)
k
) ,max{∣ a

α
∣ , ∣ b

β
∣} ⩽ δ < ∣z∣ < ∞.

Все «маленькие» логарифмы равны 0 при z = ∞.

2.2.2. Риманова поверхность Ln z

По определению, Ln z =
z

∫
1

dξ
ξ

. Рассмотрим окрестность C0 ∶ ∣z − 2∣ < 2 (см. рис. 2.13) точки z = 2. Тогда

можно записать Ln z =
z

∫
1

dξ
ξ
=

2

∫
1

dξ
ξ
+

z

∫
2

dξ
ξ
= Ln2 +

z

∫
2

dξ
ξ

, где ∣z − 2∣ < 2. Окрестность ∣z − 2∣ < 2 - односвязная

область, не содержит начало координат, поэтому значение в любой точке z круга не зависит от того,
по какой кривой берётся криволинейный интеграл. Рассмотрим, например, ту ветвь f0(z), для которой
f0(2) = ln 2 + 2πk0i, k0 ∈ Z. Разложим интеграл в ряд Тейлора:

z

∫
2

dξ

ξ
=

z

∫
2

dξ

(ξ + 2 − 2)
= 1

2

z

∫
2

dξ

1 + ξ−2
2

=

=
∞
∑
0

(−1)k (z − 2)
k+1

2k+1(k + 1)
, ∣z − 2∣ < 2

Тогда f0(z) = ln 2 + 2πk0i +
∞
∑
1
(−1)k−1 (z−2)

k

2kk
, ∣z − 2∣ < 2.

Рис. 2.13

Рис. 2.14
Теперь возьмём точку z1 в круге C0, но такую, что круг C1 ∶ ∣z − z1∣ < ∣z1∣ (см. рис. 2.14) с центром в

этой точке радиуса ∣z1∣ частично «выходит» из круга ∣z − 2∣ < 2, например, z1 = (2; 1,5).

Тогда f1 =
z

∫
1

dξ
ξ
=
z1

∫
1

dξ
ξ
+

z

∫
z1

dξ
ξ

. Разложим интеграл в окрестности этой точки:

z

∫
z1

dξ

(ξ − z1) + z1
=

z

∫
z1

1

z1

dξ

1 + ξ−z1
z1

=

=
∞
∑
0

(−1)k

zk+11

(z − z1)k+1

k + 1
, ∣z − z1∣ < ∣z1∣

Получаем, что
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f1(z) = f0 (z1) +
∞
∑
1

(−1)k−1

zk1

(z − z1)k

k
, ∣z − z1∣ < ∣z1∣

Таким образом, мы получили значение регулярной функции, значения которой совпадают со
значениями Ln z в области C0 ∪ C1. Продолжим процесс, выбирая точки, например
z2 = (1; 3), z3 = (−1; 1), z4 = (−2; 0), получим регулярную функцию в области C0 ∪ C1 ∪ C2 ∪ C3 ∪ C4 (см.
рис. 2.15). На
самом деле мы осуществили аналитическое продолжение элемента f0(z) по выбранной
последовательности точек. Теперь вырежем из бумаги полученные кружочки и приклеим их друг на
друга, помещая центры в соответствующие точки (как на рис. 2.14). Если положить склеенную фигуру
на плоскость, получится рис. 2.15 .

Рис. 2.15
Теперь - внимание! Рассмотрим окрестность C5 с центром в точке z5 = −1 − 1,5i ∶ C5 ∶ ∣z − (−1 − 1,5i)∣ <
∣1 − 1,5i∣. В ней f5(z) = f4(−1 − 1, i) +

∞
∑
1

(−1)k−1
zk5

(z−z5)k
k

, ∣z − z5∣ < ∣z5∣. Но, если мы нарисуем эту окрестность

в исходной плоскости, то она пересечёт окрестность C0 (см. рис. 2.16).
В «лунке» уже есть f0(z) и появились значения f5(z) = f0(z) + 2πi. Это очевидно, потому что мы

обошли начало координат.
«Исправим» ситуацию с многозначностью - приклеим кружок к кружку C4. Теперь наша поверхность из
кружков уже не поместится на нашу плоскость - начинается «второй экземпляр» плоскости. Продолжим
наш процесс, наклеивая,
например, последовательно кружки C6 ∶ ∣z+2∣ < 2,C7 ∶ ∣z−(1 - −0,5i)∣ < ∣1−0,5i∣ (см. рис. 2.17). Кружочки
по такому же принципу можно приклеивать, выбирая соответствующие zi, чтобы наша поверхность из
кружков «разрасталась» и по винтовой поверхности и «вширь» - будет постепенно получаться то, что
называется Римановой поверхностью для Ln z. Это будет бесконечная «вверх» и «вниз» специфическая
«винтовая» поверхность, на которой Ln z является однозначной функцией.

Рис. 2.16

Рис. 2.17
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2.2.3. Разложение в ряды Тейлора и Лорана

регулярных ветвей n
√
z, n
√
Pm(z), n

√
Pm(z)
Qk(z)

2.2.3. а) Разложение в ряды Тейлора регулярных ветвей x
√
z

Как известно, многозначная функция n
√
z распадается на регулярные ветви в плоскости с разрезом,

соединяющим точки z = 0 и z = ∞. Пусть точка z = a не принадлежит разрезу - тогда для любой ветви
существует некоторая окрестность ∣z − a∣ < ρ ⩽ ∣a∣ этой точки, в которой она регулярна (где ρ - расстояние
от точки z = a до разреза, ρ ⩽ ∣a∣).

Для разных ветвей окрестности, вообще говоря, разные они определяются разрезом.
Приведём формулу произвольной ветви f∗(z) к виду, удоб-

ному для рассмотрения в окрестности точки z = a:

f∗(z) = n
√
z∗ ≡

n
√
(z − a + a)∗ ≡ n

√
a(1 + z − a

a
)

Видно, что любая ветвь в точке z = a - центре разложения, принимает одно из значений n
√
a. Поэтому

формулу можно записать в виде

f∗(z) ≡ n
√
a∗ (1 +

z − a
a
)

1
n

0
= f∗(a) (1 +

z − a
a
)

1
n

0

где (1 + z−a
a
)

1
n

0
— это та регулярная ветвь многозначной функции (1 + z−a

a
)

1
n , которая равна 1 при

z = a, или, что то же, принимает действительные значения на прямой z−a
a
= y ∈ R, а потому разлагается в

окрестности в стандартный ряд Тейлора.
Итак, в окрестности точки z = a любая ветвь f(z) многозначной функции n

√
z имеет вид

f(z) = f(a)(1+ z − a
a
)

1
n

0
=

= f(a)
∞
∑
0

Ck1
n

(z − a)k

ak
, ∣z − a∣ < ρ ⩽ ∣a∣ (2.40)

2.2.3. б) Разложение в ряды Тейлора и Лорана регулярных ветвей x
√
P n(z)

Если рассматривать многозначную функцию

n
√
(z + a)k(z + b)n−k

то она распадается на регулярные ветви в плоскости с разрезом, соединяющим различные нули
подкоренного выражения.

Проводя аналогичные рассуждения для конечной точки z = c, получим, что в окрестности точки z = c
ветвь функции f∗(z) = n

√
(z + a)k(z + b)n−k примет вид f∗(z) = n

√
(z + a)k(z + b)n−k ≡

≡ n
√
(z + a − c + c)k(z + b − c + c)n−k∗ ≡

≡ n

√

(a + c)(b + c) (1 + z − c
a + c

)
k

(1 + z − c
b + c

)
n−k
∗ =

= n
√
(a + c)(b + c)∗ (1 +

z − c
a + c

)
k
n

0
(1 + z − c

b + c
)

n−k
n

0

Отсюда следует, что в окрестности точки z = a любая ветвь f(z) многозначной функции
n
√
(z + a)k(z + b)n−k имеет вид

f(z) = f(c) (1 + z − c
a + c

)
k
n

0
(1 + z − c

b + c
)

n−k
n

0
(2.41)

где g(z) = (1 + z−c
a+c)

k
n

0
- та ветвь многозначной функции (1 + z−c

a+c)
k
n , для которой g(c) = 1 и

g(z) = (1 + z − c
a + c

)
k
n

0
=
∞
∑
0

Cmk
n
(z − c
a + c

)
m

, ∣z − c∣ < ∣a + c∣

Точка z = ∞ не является точкой ветвления, поэтому каждая ветвь регулярна в некотором кольце
ρ < ∣z∣ < ∞, и её можно раскладывать в нём в ряд Лорана.
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Приведём формулы всех ветвей к виду, удобному для рассмотрения в окрестности ∞:

f∗(z) = n
√
(z + a)k(z + b)n−k ≡ n

¿
ÁÁÀ

zn (1 + a
z
)
k

(1 + b
z
)
n−k
∗

Видно, что любая ветвь в ∞ принимает одно из значений n
√
zn. Но это значение по модулю равно ∞

- работать с ним не просто.
Можно поступать двояко.

Во-первых, в п. 2.1.3, (2.20), показано, что n
√
zn — это формула, которая содержит n различных

однозначных функций: n
√
zn = ze 2πmi

n . Поэтому можно записать, что

fm(z) = ze
2πmi

n (1 + a
z
)

k
n

0
(1 + b

z
)

n−k
n

0
,m = 0,1, . . . , (n − 1) (*)

где g(z) = (1 + a
z
)

k
n

0
- это та ветвь функции (1 + a

z
)

k
n , для которой g(∞) = 1 и

g(z) = (1 + a
z
)

k
n

0
=
∞
∑
0

Clk
n
(a
z
)
l

, ∣a
z
∣ < 1⇐⇒ ∣z∣ > ∣a∣

Во-вторых, чтобы избежать работы с ∞, часто рассматривают f(z)
z
∣
∞

. Подробнее см. в примерах.

2.2.3. в) Разложение в ряды Тейлора и Лорана регулярных ветвей n

√
Pm(z)
Qm(z)

Если рассматривать функцию n

√
a0(z−a)m
b0(z−b)m ,m < n, то она распадается на регулярные ветви в плоскости

с разрезом, соединяющим нули числителя и знаменателя.
Пусть точка z = c не принадлежит разрезу. Тогда любая ветвь регулярна в некоторой окрестности

∣z − c∣ < ρ (где ρ - расстояние от точки z = a до разреза) и разлагается там в ряд Тейлора.
С помощью преобразований, аналогичных предыдущим, получим, что

f∗(z) = n

¿
ÁÁÀa0(z − a)m

b0(z − b)m
∗ ≡ n

¿
ÁÁÀa0(z − c + c − a)m

b0(z − c + c − b)m
∗ ≡

≡ n

¿
ÁÁÁÀ(c − a

c − b
)
m a0
b0

(1 + z−c
c−a)

m

(1 + z−c
c−b )

m =

= n

√
(c − a
c − b

)
m a0
b0
∗ (1 + z − c

c − a
)

m
n

0
(1 + z − c

c − b
)
−m

n

0
=

= f∗(c) (1 +
z − c
c − a

)
m
n

0
(1 + z − c

c − b
)
−m

n

0

т. е. любая ветвь f(z) многозначной функции n

√
a0(z−a)m
b0(z−b)m в окрестности точки z = c может быть

приведена к виду

f(z) = f(c) (1 + z − c
c − a

)
m
n

0
(1 + z − c

c − b
)
−m

n

0
(2.42)

Точка z = ∞ не является точкой ветвления для функции n

√
a0(z−a)m
b0(z−b)m , поэтому любая ветвь регулярна

в некотором кольце ρ < ∣z∣ < ∞, и её можно раскладывать в нём в ряд Лорана:

f∗(z) = n

¿
ÁÁÀa0(z − a)m

b0(z − b)m
≡ n

¿
ÁÁÁÀa0

b0

(1 − a
z
)m

(1 − b
z
)m
∗

= n

√
a0
b0
∗ (1 − a

z
)

m
n

0
(1 − b

z
)
−m

n

0
= f∗(∞)(1 −

a

z
)

m
n

0
(1 − b

z
)
−m

n

0

т. е. любая ветвь f(z) многозначной функции n

√
a0(z−a)m
b0(z−b)m в окрестности точки z = ∞ может быть

приведена к виду

f(z) = f(∞)(1 − a
z
)

m
n

0
(1 − b

z
)
−m

n

0
(2.43)

268



4.2.2 2.2. Expansion into Series of Regular Branches of Multivalued Functions 1

2.2.3. г) Разложение регулярных ветвей n
√
Pm(z), m < n в ряд Тейлора

Если степень многочлена Pm(z) меньше n, то z = ∞ является точкой ветвления функции n
√
Pm(z),m <

n, и любая регулярная ветвь функции разлагается в ряд Тейлора в окрестности любой точки c, не
принадлежащей разрезу, соединяющему различные корни многочлена Pm(z) и ∞.

2.2.3. д) Разложение регулярных ветвей n

√
Pk(z)
Qm(z) , k < n,m < n, k ≠m в ряд Тейлора

Если степень числителя не равна степени знаменателя, то z = ∞ является точкой ветвления функции
n

√
Pk(z)
Qm(z) , k < n, m < n, k ≠m, и любая регулярная ветвь функции разлагается в ряд Тейлора в окрестности

любой точки c, не принадлежащей разрезу, соединяющему нули числителя, знаменателя и ∞.

2.2.4. Ряды Тейлора функций (1 + x2)α и (1 + z2)α, ln (1 + x2) и ln (1 + z2)
Известно, что ряды Тейлора в окрестности x = 0 функций (1+x)α и ln(1+x) имеют радиус сходимости,

равный 1 . Это естественно, т. к. при x = −1 производные, начиная с некоторого n, становятся
неограниченными.

Но почему и у функций (1 + x2)α и ln (1 + x2) радиус сходимости равен 1? Ведь эти функции
бесконечно дифференцируемы на всей числовой оси. На этот вопрос на 1-м курсе ответа нет.

Рис. 2.18
Многозначные функции (1 + z2)α , α ≠ 1

2
и Ln (1 + z2) имеют по три точки ветвления: z = ±i, z = ∞.

Поэтому распадаются на регулярные ветви в плоскости с разрезом, их соединяющим. Проведем, для
примера, разрез по лучам мнимой оси: (−i∞;−i]∪ ∪[i;+i∞)( см. рис. 2.18), чтобы ветви существовали на
оси Ox.
Рассмотрим сначала f(z) - ту ветвь (1 + z2)α, для которой f(0) = 1. Тогда эта ветвь определена, в
частности, на всей действительной оси и совпадает там с функцией f(x) = (1+ +x2)α (проверьте!)

Функция f(z) регулярна в окрестности z = 0, значит, разлагается там в ряд Тейлора по степеням z.
Радиус сходимости ряда равен расстоянию до ближайшей особой точки, т. е. ∣z∣ <
< 1. А вот «следом» f(z) на действительной оси является функция f(x) = (1 + x2)α, значит, она
раскладывается в ряд Тейлора по степеням x на промежутке (−1; 1), что как раз и совпадает с
результатом 1-го курса и одновременно объясняет то, почему радиус сходимости равен 1 (несмотря на
то, что функция бесконечно дифференцируема на всей числовой оси!).

Теперь попробуем разложить f(x) = (1 + x2)α по степеням разности (x − a), где a ≠ 0, a ∈ R. Все

производные в точке x = a существуют, значит, можно записать, что ряд имеет вид
∞
∑
0

fk(a)
k!
(x − a)k. Но

сходится ли ряд, а если сходится, то где и к чему, первокурсник сказать не сможет. Произведя обычную
замену переменных: t = x − a, можно привести функцию к виду
f(x) = (1 + ((x − a) + a)2)α ⇐⇒ f̃(t) = (1 + a2)α (1 + t2+2at

1+a2 )
α
.

Но квадратный трёхчлен 1 + t2+2at
1+a2 не разлагается на линейные множители с действительными

коэффициентами, поэтому свести к произведению известных рядов нельзя.
Попробуем сделать это с помощью ТФКП.
Так как (1 + z2)α распадается на регулярные ветви в плоскости с разрезом (см. рис. 2.19), то любая

ветвь регулярна в окрестности z = a, a ≠ 0, a ∈ R, и разлагается в ряд Тейлора по степеням разности
z − a, радиус которого равен расстоянию от центра разложения до ближайшей особой точки, т. е. радиус
сходимости ряда равен

√
a2 + 1.
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Рис. 2.19
Теперь мы можем ответить на вопросы первокурсника: так как f(x) = (1 + x2)α является следом f(z)

на ось Ox, то f(x) = (1 + x2)α разлагается в ряд Тейлора в окрестности a ≠ 0, a ∈ R, и радиус сходимости
этого ряда равен

√
a2 + 1.

Посмотрим, как выглядит ряд в ТФКП.
Так как

(1 + z2)α = ((z + i)(z − i))α ≡ ((z − a + a + i)(z − a + a − i))α ≡

≡ ((a + i)(a − i) (1 + z − a
a + i

)(1 + z − a
a − i

))
α

=

= (a2 + 1)α∗ (1 +
z − a
a + i

)
α

0
(1 + z − a

a − i
)
α

0

a f(a) = (1 + a2)α∗ , то

f(z) = f(a) (1 + z − a
a + i

)
α

0
(1 + z − a

a − i
)
α

0

Каждый из множителей (1 + z−a
a+i )

α

0
(1 + z−a

a−i )
α

0
разлагается в свой ряд Тейлора, но оба имеют один и

тот же радиус сходимости R = ∣a ± i∣ =
√
a2 + 1.

Обозначим, для удобства, z − a = t, a + i = b, a − i = b̄. Тогда

(1 + t
b
)
α

0
(1 + t

b̄
)
α

0
=

= (1 + α t
b
+ α(α − 1)t

2

2!b2
+ . . . + α(α − 1) . . . (α − k + 1)

k!bk
+ . . .)×

× (1 + α t
b̄
+ α(α − 1)t

2

2!b̄2
+ . . . + α(α − 1) . . . (α − k + 1)

k!!k
+ . . .) =

= 1 + αt( b̄ + b
b̄b
) + t2 (α(α − 1)

2!
( 1
b2
+ 1

b̄2
) + α2 1

bb̄
) + . . .

Видно, что коэффициенты разложения действительны. Записать общий член можно, но он выглядит
громоздко. Отсюда, в частности, видно, что f(x) = (1 + x2)α, как след f(z), имеет в окрестности точки
x = a вид

f(x) = (a2 + 1)α (1 + x − a
a + i

)
α

(1 + x − a
a − i

)
α

каждый множитель которого является биномом, но с комплексными коэффициентами (этого на 1-м
курсе не проходят).

Более интересным, т. к. получится хороший ряд, будет ряд для ln (1 + x2) в окрестности x = a ≠ 0, a ∈ R.
По-прежнему разложить подлогарифмическое выражение на линейные множители с

действительными коэффициентами невозможно. Поэтому и разложить в ряд в условиях работы в R
тоже не получится. Так как точки ветвления Ln (1 + z2) те же, что и у (1 + z2)α, то разрез оставим тот
же (см. рис. 2.18). Так как

Ln∗ (1 + z2) ≡ Ln∗(z + i)(z − i) ≡ Ln∗(z − a + a + i)(z − a + a − i) ≡

≡ Ln∗(a + i)(a − i) (1 +
z − a
a + i

)(1 + z − a
a − i

) =

= Ln∗ (a2 + 1) + ln(1 +
z − a
a + i

) + ln(1 + z − a
a − i

)
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то

f(z) = ln (a2 + 1) + ln(1 + z − a
a + i

) + ln(1 + z − a
a − i

) =

= ln (a2 + 1) +
∞
∑
1

(−1)k−1(z − a)k

k
((a − i)

k + (a + i)k

(a2 + 1)k
) =

= ln (a2 + 1) + 2
∞
∑
1

(−1)k−1(z − a)k coskα

k (a2 + 1)
k
2

, ∣z − a∣ <
√
a2 + 1

где sinα = 1√
a2+1

, cosα = a√
a2+1

.
Отсюда следует, что

ln (1 + x2) = ln (a2 + 1) + 2
∞
∑
1

(−1)k−1(x − a)k coskα

k (a2 + 1)
k
2

, ∣x − a∣ <
√
a2 + 1

где sinα = 1√
a2+1

, cosα = a√
a2+1

.
Получился «красивый» ряд!

Так проблемы математического анализа объясняются и разрешаются с помощью ТФКП.
Теперь будем решать более сложные задачи.

4.2.3 2.2. Expansion into Series of Regular Branches of Multivalued
Functions 2

Кол-2.
7. Пусть f(z) - регулярная ветвь многозначной функции e−z ⋅ Ln(z − 1) в плоскости с разрезом по

кривой γ ∶ z = 1 − it, t ⩾ 0 такая, что f ′′(0) = 1 − iπ. Найдите первые три члена разложения f(z) в ряд
Тейлора по степеням (z − 2).

Рис. 2.20
Многозначная функция e−z Ln(z−1) имеет, согласно п. 2.1.2, две точки ветвления: z = 1, z = ∞, значит,

распадается на регулярные ветви в плоскости с произвольным разрезом, их соединяющим. Заданный
разрез удовлетворяет этому условию (см. рис. 2.20).

Задача любопытная, потому что и формула функции не совсем обычная, и условие выделения ветви
не стандартное. Будем рассматривать (e−z ⋅ Ln(z − 1)) ez, чтобы при дифференцировании не появлялся
Ln(z − 1).

Поэтому f∗(z)ez = Ln(z − 1)∗ = ln ∣z − 1∣ + i (φ0 +∆φ) , φ0 = arg (z0 − 1). Чтобы найти φ0, воспользуемся
условием задачи:

f(z)ez = Ln(z − 1)∗ ⇒ f(z)ez + f ′(z)ez = 1

z − 1
⇐⇒

⇐⇒ f ′(z)ez = 1

z − 1
− f(z)ez ⇒

⇒ 2f ′(z)ez + f(z)ez + f ′′(z)ez = − 1

(z − 1)2
⇒

⇒ f ′′(z)ez = − 1

(z − 1)2
− 2

z − 1
+ f(z)ez
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По условию, f ′′(0) = 1 − iπ = 1 + f(0) ⇐⇒ f(0) = −iπ⇒ ⇒ f(0) = iφ0 = −iπ⇒

⇒ f(z)ez = ln ∣z − 1∣ + i(−π +∆φ)

Найдём f(2) ∶ f(2)e2 = −2πi.
Теперь приведём формулы ветвей к виду, удобному для рассмотрения в окрестности z = 2:

f∗(z)ez =Ln∗(z − 1) = Ln∗(z − 2 + 1) = Ln∗ 1 + ln(1 + (z − 2)) ⇒
⇒ f(2)e2 = Ln∗ 1⇒ f(z) = (−2πi + ln(1 + (z − 2)))e−z

Так как f(z) регулярна в окрестности ∣z − 2∣ < 1 точки z = 2, то разложим её в ряд Тейлора. Общий
член произведения рядов записать затруднительно.

Поэтому ответим на вопрос задачи - найдём первые три члена:

f(z) = (−2πi + ln(1 + (z − 2)))e−2e−(z−2) =

= e−2 (−2πi + (z − 2) − (z − 2)
2

2
+ o ((z − 2)2))×

× (1 − (z − 2) + (z − 2)
2

2
+ o ((z − 2)2)) =

= e−2 (−2πi + (1 + 2πi)(z − 2) − (πi + 1,5)(z − 2)2 + o ((z − 2)2))

Ответ. e−2 (−2πi + (1 + 2πi)(z − 2) − (πi + 1,5)(z − 2)2 + o ((z − 2)2)).

Кол-2.

8. Пусть f(z) - регулярная ветвь многозначной функции Ln (z + iz2) в плоскости с разрезом по
положительной полуоси и отрезку [0; i], такая, что Im f (e−iπ6 ) = 0.
a) Разложите f(z) в ряд Тейлора в круге с центром в точке 1 + i

2

b) Найдите сумму ряда в точке z = e−iπ6 .
c) Укажите окрестность точки z = 1 + i

2
, в которой S(z) = f(z).

d) Укажите область, в которой S(z) = f(z).
Аналитическая функция Ln (z + iz2) имеет, как показано в п. 2.1.6, три точки ветвления: z = ∞, z =

0, z = i. Значит, она распадается на регулярные ветви в плоскости с разрезом, соединяющим эти точки,
— заданный разрез этому условию удовлетворяет (см. рис. 2.21).

Как известно, вопрос об отыскании области сходимости ряда Тейлора или Лорана решается без
нахождения коэффициентов рядов - важны лишь свойства функции.

Видно (см. рис. 2.22), что любая ветвь регулярна в окрестности ∣z − (1 + i
2
)∣ < 1

2
, значит, она

разлагается в ней в ряд Тейлора. Но радиус сходимости ряда Тейлора, построенного в окрестности точки
z = (1 + i

2
), равен расстоянию от центра

разложения до ближайшей особой точки. В нашем примере R = ∣1 + i
2
∣ =
√
5
2

(см. рис. 2.22).

Рис. 2.21
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Рис. 2.22

Рис. 2.23
Ряд не «чувствует» разреза - он мог пойти, например, по отрицательной полуоси и лучу [1;+i∞).

Обозначим сумму ряда S(z).
c) Тогда, если говорить об окрестности точки z = 1+ i

2
, в которой S(z) = f(z), то S(z) = f(z) в окрестности

∣z − (1 + i
2
)∣ < < 1

2
(см. рис. 2.22).

d) Если говорить об области, в которой S(z) = f(z), то это часть круга ∣z − (1 + i
2
)∣ <

√
5
2

, ограниченная
границами разреза (см. рис. 2.23).

Теперь перейдём к пункту а).
Найдём формулу ветви. По определению, f∗(z) = Ln∗ iz(z − i) = ln ∣iz(z − i)∣ + i (φ0∗ +∆φ1 +∆φ2). Так

как Im f (e−iπ6 ) = iφ0 = 0, то

f(z) = ln ∣iz(z − i)∣ + i (∆φ1 +∆φ2)
∆φ1 =∆arg z, ∆φ2 =∆arg(z − 1)

Приведём все ветви к виду, удобному для рассмотрения в окрестности центра разложения:
Ln∗ (z + iz2) ≡ Ln∗ iz(z − i) ≡

≡ Ln∗ i(z − (1 +
i

2
) + (1 + i

2
))(−i + z − (1 + i

2
) + (1 + i

2
))
∗

выражение громоздкое.
Сделаем замену, положив t = z − (1 + i

2
) ,1 + i

2
= a. Тогда получим

Ln∗ i(t + a)(t + ā) ≡

≡ Ln∗ iaā(1 +
t

a
)(1 + t

ā
) ≡ Ln∗

5i

4
(1 + t

a
)(1 + t

ā
) =

= Ln∗ 5i
4
+ ln (1 + t

a
) + ln (1 + t

ā
) = f∗(0) + ln (1 + t

a
) + ln (1 + t

ā
).

3. Найдём f (1 + i
2
) = f(t)∣t=0.
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f (1 + i
2
) = ln 5

4
− i((2π −π

6
− arctg 1

2
)+

+(2π − (π
2
− arctg 1

2
− π
6
))) = ln 5

4
− i7π

2

Теперь можно записать ряд Тейлора:

S(t) = f(0) +
∞
∑
n=1

(−1)n−1tn

n
( 1

an
+ 1

ān
) =

= ln 5

4
− i7π

2
+
∞
∑
n=1

(−1)n−122n+1tn cosnarctg 1
2

5
n
2 n

, ∣t∣ <
√
5

2

S(z) = ln 5

4
− i7π

2
+
∞
∑
n=1

(−1)n−122n+1 (z − 1 − i
2
)n cosnarctg 1

2

5
n
2 n

∣z − 1 − i
2
∣ <
√
5

2

b) Найдём сумму ряда в точке z = e−iπ6 .
Подставим в формулу S(z) = ln ∣iz(z − i)∣ + i (φ0 +∆φ1+ +∆φ2) , φ0 = (arg(iz(z − i)))1+ i

2
, известное

значение S (1 + i
2
) в центре разложения в ряд, где S (1 + i

2
) = f (1 + i

2
):

S (1 + i
2
) = ln ∣i(1 + i

2
)(1 − i

2
)∣ + i (φ0) = ln

5

4
− i7π

2
⇒ φ0 = −

7π

2

Поэтому S(z) = ln ∣iz(z − i)∣ + i(−7π
2
+∆φ1 +∆φ2)

Рис. 2.24
Найдём приращения аргументов, пройдя по прямой от центра круга до точки z = e−πi

6 , т. е. от (1; 1
2
) до

(
√
3
2
;− 1

2
) ( см. рис. 2.24):

∆φ1 = −(
π

6
+ arctg 1

2
)

∆φ2 = −(
π

2
− arctg 1

2
− π
6
)

Получим S (e−iπ6 ) = 1
2
ln 3 − 4πi.

Ответ. 1
2
ln 3 − 4πi.

Кол-2.

9. Пусть f(z) - регулярная ветвь многозначной функции
√

9z2−1
z2

в плоскости с разрезом по кривой γ:
∣z − i

4
∣ = 5

12
, Im z ⩾ 0, такая, что f ( i

2
) =
√
13.

a) Разложите f(z) в ряд Лорана по степеням z в окрестности z = ∞.
б) Найдите границы кольца сходимости полученного ряда.
в) Вычислите сумму ряда в точке z = i

2
.

г) Укажите кольцо, в котором сумма ряда равна f(z).
Задача не самая простая. Какие точки ветвления у функции?
Первый способ. В числителе два корня различные. В знаменателе корни одинаковы - это значит, что

после обхода z = 0 приращение аргумента z равно 4π, и значение не изменится. Отсюда следует, что
√

9z2−1
z2

имеет только две точки ветвления: z = ± 1
3

и, в силу предыдущего пункта, распадается на регулярные ветви
в плоскости с разрезом, их соединяющим. Заданный разрез удовлетворяет этому условию (см. рис. 2.25
a).
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Рис. 2.25a

Рис. 2.25б

Рис. 2.25в
По определению,

√
9z2 − 1
z2

∗ =
√
∣9z

2 − 1
z2

∣e
i(φ0+∆γφ1+∆γφ2−2∆γφ3)

2 ⇒

⇒ f ( i
2
) =
√
13 =

√
13e

i(φ0)
2 ⇐⇒ e

i(φ0)
2 = 1⇒

⇒ f(z) =
√
∣9z

2 − 1
z2

∣e
i(∆γφ1+∆γφ2−2∆γφ3)

2

Любая ветвь, определённая в нашей плоскости с разрезом, регулярна в кольце 2
3
< ∣z∣ < ∞, поэтому

разлагается в нём в ряд Лорана. Теперь рассмотрим произвольную ветвь в окрестности z = ∞:
√

9z2 − 1
z2

≡
√

9(1 − 1

9z2
)
∗
=
√
9∗ (1 −

1

9z2
)

1
2

0
= f∗(∞)(1 −

1

9z2
)

1
2

0

Найдём f(+∞):

∆γφ1 =∆γ arg (z +
1

3
) = −arctg 3

2

∆γφ2 =∆γ arg (z −
1

3
) = π + arctg 3

2

∆γφ3 =∆γ arg z = −
π

2
⇒ f(+∞) = 3eiπ = −3⇒

⇒ f(z) = −3(1 − 1

9z2
)

1
2

0
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Разложим −3 (1 − 1
9z2
)

1
2

0
в ряд Лорана

−3(1 − 1

9z2
)

1
2

0
= −3

∞
∑
0

Ck1
2

(−1)k

(9z2)k
,

1

3
< ∣z∣ < ∞

Ряд сходится в кольце 1
3
< ∣z∣ < ∞ (см. рис. 2.25б), но его сумма S(z) совпадает с f(z) только в области

D = R2/ (∣z − i
2
∣ < 5

12
∪ ∣z∣ < 1

3
) (см. рис. 2.25в). Если говорить о том, в каком кольце они совпадают, то

S(z) = f(z) = −3
∞
∑
0
Ck1

2

(−1)k
(9z2)k ,

5
12
+ 1

4
= 2

3
< ∣z∣ < ∞ (см. рис. 2.25в). Теперь будем искать S ( i

2
). Разрез

мы задали по своей воле, а ряд построен по «поведению» ветви в окрестности ∞ и имеет своё кольцо
сходимости - он не «видит» разреза - радиус внутренней границы кольца «диктуют» особые точки z = ± 1

3
.

А разрез вполне мог находиться внутри круга ∣z∣ < 1
3
.

Видно, что при наличии разреза «продвинуться» из ∞, где известно значение S(∞), в точку z = i
2
,

минуя внутренность круга ∣z∣ < 1
3
, где S(z) не существует, невозможно. Найдём формулу S(z) в кольце

∣z∣ > 1
3
:

Так как S(∞) = −3 = 3e
i(φ0)

2 ⇐⇒ e
i(φ0)

2 = −1, то

Рис. 2.26 т. к. ∆γφ1 = arctg 3
2
,∆γφ2 = π − arctg 3

2
,∆γφ3 = π

2
, где ∆γφi - приращение соответствующего

вектора при движении из z = +∞ в точку z = i
2

(см. рис. 2.26).

Ответ. −3
∞
∑
0
Ck1

2

(−1)k
(9z2)k , 1

3
< ∣z∣ < ∞;S ( i

2
) = −

√
13;S(z) = f(z), 2

3
< ∣z∣ < ∞.

Второй способ. Задачу можно оформить и по-другому.
Так как n

√
zn = ze 2πki

n , k = 0,1, . . . , (n − 1), то
√

9z2 − 1
z2

=
√
9z2 − 1∗√
z2

=
√
9z2 − 1∗
ze

2πki
2

⇐⇒

⇐⇒ z

√
9z2 − 1
z2

= e−πki
√
9z2 − 1∗, k = 0,1.

Тогда, по определению,

zf(z) = e−πki
√
∣9z2 − 1∣e

i(φ0∗+∆2
γφ1+∆γφ2)
2 ⇒

⇒ i

2
f ( i

2
) = i

2

√
13 =

√
13

2
e−πkie

i(φ0)
2 ⇐⇒ e−πkie

i(φ0∗
2 = i⇒

⇒ f(z)z = i
√
∣9z2 − 1e

i(∆γφ1+∆ γφ2)
2 ⇒

⇒ f(+∞) =
i
√
∣9z2 − 1∣e

i(∆γφ1+∆2
γφ2)

2

z
=

=
i∣z∣
√
∣9 − 1

z2
∣e

i(∆2
γφ1+∆γφ2)

2

∣z∣
= −3
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В окрестности ∞:
√

9z2 − 1
z2

= f∗(∞)(1 −
1

9z2
)

1
2

0
⇒ f(z) = −3(1 − 1

9z2
)

1
2

0
, z ∈D

Далее, как в первом способе.

Кол-2.

10. Пусть f(z) - регулярная ветвь многозначной функции 3
√
z(2 − z)2 в плоскости с разрезом по

отрезку [0; 2], такая, что f(1 + i0) = 1.
a) Разложите f(z) в ряд Лорана по степеням z в окрестности z = ∞.
б) Найдите f ′(3).

Аналитическая функция 3
√
z(2 − z)2 имеет две точки ветвления: z = 0, z = 2. Значит, она распадается

на регулярные ветви в плоскости с разрезом, соединяющим эти точки - заданный разрез этому условию
удовлетворяет (см. рис. 2.28).

Видно (см. рис. 2.27), что любая ветвь регулярна в кольце 2 < ∣z∣ < ∞, значит, разлагается в нём в
ряд Лорана.

Рис. 2.27

Рис. 2.28

Первый способ.

По определению (мы вывели и формулу, но зачем помнить то, что можно не помнить?):

f∗(z) = ( 3
√
z(2 − z)2)

∗
= 3
√
∣z(2 − z)2∣ei

φ0+∆γφ1+2∆γφ2
3

По условию,
f(1 + i0) = 1 = 1 ⋅ ei

φ0
3 ⇒ f(z) = 3

√
∣z(2 − z)2∣ei

∆γφ1+2∆γφ2
3 .

2. Приведём все ветви к виду, удобному для рассмотрения в окрестности центра разложения. Видно, что
модуль f(z) в ∞ равен ∞. С этим не всем удаётся справиться.

Поэтому рассмотрим f(z)
z

:

f(z)
z
= 1

z

⎛
⎝

3

√
z3 (1 − 2

z
)
2⎞
⎠
∗

= 1

z
( 3
√
z3)

∗
(1 − 2

z
)

2
3

0
= (f∗(z)

z
)(1 − 2

z
)

2
3

0

Так как f∗(z)
z
=
( 3
√
z(2−z)2)

∗
z

=
3
√
∣z(2−z)2∣
z

ei
∆3

γφ1+2∆γφ2
3 , то

277



4.2.4 2.3. Computation of Integrals of Regular Branches

f(z)
z
∣
+∞
= 1

z

3
√
z3∣
+∞
=

3
√
∣z(2 − z)2∣
∣z∣

ei
∆γφ1+2∆γφ2

3 =

= ei
∆γφ1+2∆γφ2

3 = ei
0−2π

3

Поэтому f(z) = ze−i 2π3 (1 − 2
z
)

2
3

0
= e− 2πi

3

∞
∑
n=0

Cn2
3

(−1)n2n
zn−1 , ∣z∣ > > 2 в окрестности z = ∞.

а) Ответ. e−
2πi
3

∞
∑
n=0

Cn2
3

(−1)n2n
zn−1 , ∣z∣ > 2.

Второй способ. (для более «смелых»).
По определению,

По условию,

f(1 + i0) = 1 = 1 ⋅ ei
φ0
3 ⇒ f(z) = 3

√
∣z(2 − z)2∣ei

∆γφ1+2∆γφ2
3

Найдём f(∞).
Воспользуемся тем, что n

√
zn∗ = e 2πki

n z, k = 0,1,2, . . ., (n − 1) - это n однозначных функций (см. п.
2.1.3).

Тогда

3
√
z(2 − z)2∗ ≡ 3

√
z3 (1 − 2

z
)
2

∗ = 3
√
z3∗(1 − 2

z
)

2
3

0
=

= ze
2πki

3 (1 − 2

z
)

2
3

0
, k = 0,1,2

Идём в +∞ ∶ f(+∞) = +∞ ⋅ ei 0−2π3 = e 2πki
3 ⋅ +∞⇐⇒ e

2πki
3 = e−i 2π3 ⇒ f(z) = e− 2πi

3 z (1 − 2
z
)

2
3

0
.

Можно пойти и в −i∞, например:

f(∞) = f(−i∞) = +∞ ⋅ ei
3π
2
+π

3 = −i∞ ⋅ e
2πki

3 ⇐⇒ e
2πki

3 = e−
2πi
3

Подставляем и получаем тот же результат:

f(z) = e−
2πi
3 z (1 − 2

z
)

2
3

∗

Теперь найдём f ′(3):

f3(z) = z(z − 2)2 ⇐⇒

⇐⇒ 3f2(z)f ′(z) = (z − 2)2 + 2z(z − 2) ⇐⇒ f ′(3) = 7

3f2(3)

Найдём f(3) ∶ f(3) = 3
√
3ei

0−2π
3 ⇒ f ′(3) = 7

3√
3

9
ei

4π
3 .

б) Ответ. 7
3√
3

9
ei

4π
3 .

4.2.4 2.3. Computation of Integrals of Regular Branches
Прежде всего надо вспомнить формулировку теоремы о вычетах.
Теорема. Пусть в области D ⊂ C кусочно-гладкой границей функция f(z) регулярна всюду, кроме,

быть может, конечного числа изолированных особых точек однозначного характера a1, a2, . . . , an, и f(z)
непрерывна на D̄. Тогда

∫
∂D

f(z)dz = 2πi
n

∑
k=1

res
z=ak

f(z)

Обращаем внимание на то, что речь идёт об однозначных функциях. Поэтому теорема применима
лишь к ветвям многозначных функций.

Рассмотрим любопытные примеры.
Пример 2.11. Что можно сказать о значении интеграла

∳∣z∣=1
dz√
z − 1

?
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Значение интеграла ∳∣z∣=1
dz√
z−1 не существует.

Почему?
Во-первых, потому, что под знаком интеграла стоит многозначная функция - теорема о вычетах не
применима. Понятно.

А тогда, может быть, можно посчитать интегралы от ветвей? Многозначная функция
√
z

распадается на регулярные ветви в плоскости с разрезом, соединяющим 0 и ∞. Как бы его ни
проводить, он обязательно пересечёт заданную окружность, и знаменатель на всей окружности не будет
однозначной функцией.

Ответ. Значение интеграла не существует.

Кол-2.
12. Что можно сказать о значении интеграла

∳∣z−1∣= 1
2

dz√
z − 1

?

Под знаком интеграла стоит многозначная функция - теорема о вычетах не применима. Понятно.
А тогда, может быть, можно посчитать интегралы от ветвей? Многозначная функция

√
z распадается

на регулярные ветви в плоскости с разрезом, соединяющим 0 и ∞.
Если провести разрез, идущий вне круга ∣z − 1∣ ⩽ 1

2
, то в круге ∣z − 1∣ = 1

2
будут существовать две

регулярные ветви многозначной функции
√
z ∶ f1(z), f1(1) = 1 и f2(z), f2(1) = −1. Тогда ∳∣z−1∣= 1

2

dz
f2(z)−1 = 0,а

∳∣z−1∣= 1
2

dz

f1(z) − 1
= 2πi res

z=1

1

f1(z) − 1
= 2πi

f ′1(1)

f21 (z) = z ⇒ 2f ′1f1 = 1⇒ ∳∣z−1∣= 1
2

dz

f1(z) − 1
= 4πi

Ответ. Значение интеграла не существует, но можно вычислить значения интеграла от ветвей.

Кол-2.

13. Пусть f(z) - регулярная ветвь многозначной функции 4
√
z3(2i − z) в плоскости с разрезом по

отрезку [0; 2i] такая, что f(2) = 2 8
√
2e

3πi
16 . Вычислите ∳∣z∣=4

zf(z)
z+i dz.

Сделаем эскиз разреза и контура интегрирования (см. рис. 2.29a).
Аналитическая функция 4

√
z3(2i − z) имеет, как показано в п. 2.1.4, две точки ветвления: z = 0, z = 2i.

Значит, она распадается на регулярные ветви в плоскости с разрезом, соединяющим эти точки - заданный
разрез этому условию удовлетворяет (см. рис. 2.29a).

Рис. 2.29a
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Рис. 2.29б
Точки ветвления находятся внутри заданного контура теорема о вычетах не применима. Будем

считать интеграл по внешности: ∳∣z∣=4
zf(z)
z+i dz = −2πi resz=∞

zf(z)
z+i .

Найдём формулу ветви. По определению, 4
√
z3(2i − z)∗ = 4

√
∣z3(2i − z)∣e

i(φ0+3∆γφ1+∆γφ2
4 .

Найдём eiφ0 :

f(2) = 2 8
√
2e

3πi
16 ⇒ 2

8
√
2e

i(φ0)
4 ⇐⇒ e

i(φ0)
4 = e

3πi
16 ⇒

⇒ f(z) = 4
√
∣z3(2i − z)∣e

3πi
16 e

i(3∆γφ1+∆γφ2)
4

Тогда

В окрестности z = ∞:

4
√
z3(2i − z)∗

z
=

4
√
−z4∗
z

(1 − 2i

z
)

1
4

0
⇒

⇒ f(z)
z
∣
+∞
= (

4
√
−z4∗
z
)
+∞
= e

iπ
4 ⇒

⇒ f(z)
z
= e

iπ
4 (1 − 2i

z
)

1
4

0
⇐⇒ f(z) = ze

iπ
4 (1 − 2i

z
)

1
4

0

Теперь будем искать вычет:

zf(z)
z + i

= f(z)
1 + i

z

= ze
πi
4 (1 − 2i

z
)

1
4

0
(1 − i

z
− 1

z2
+ . . .) =

= ze
πi
4 (1 − 1

4

2i

z
+ 1

8
(1
4
− 1)(2i

z
)
2

+ . . .)(1 − i
z
− 1

z2
+ . . .) =

= −9
8

e
πi
4

z
+ слагаемые, не содержащие

1

z
⇒

⇒ res
z=∞

f(z) = 9

8
e

πi
4 и ∳∣z∣=4

zf(z)
z + i

dz = −πi9
4
e

3πi
4 .

Ответ. − 9
4
πie

3πi
4 .

Кол-2.

14. Пусть f(z) - регулярная ветвь многозначной функции 3
√
z2(i − z) в плоскости с разрезом по кривой:

γ = {z ∶ ∣z + i
2
∣ = 3

2
, Im z ⩾ 0, ∣z + i∣ = 1, Im z ⩽ 0} такая, что f(−i) = 3

√
2e

i7π
6 . Вычислите ∳∣z∣=4

f(z)
1+e

2
z
dz.

Сделаем чертёж разреза и контура интегрирования (см. рис. 2.29б). Заметим, что внутри контура
находится неизолированная особая точка z = 0 - теорема о вычетах не применима. Поэтому будем считать
по внешности окружности:

∳∣z∣=4
f(z)
1 + e 2

z

dz = −2πi res
z=∞

f(z)
1 + e 2

z
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Первый способ.

Теперь займёмся подынтегральной функцией. Область не односвязна - приращения зависят от γ.
По определению,

3
√
z2(i − z)∗ = 3

√
∣z2(i − z)∣e

i(φ0+2∆γφ1+∆γφ2)
3 ⇒

⇒ f(−i) = 3
√
2e

i7π
6 = 3
√
2e

i(φ0)
3 ⇐⇒ e

i(φ0)
3 = e

i7π
6 ⇒

⇒ f(z) = 3
√
∣z2(i − z)∣e

i7π
6 e

i(2∆γφ1+∆γφ2)
3

Так как f∗(∞) = ∞, то проще искать f(z)
z
∣
+∞

, где ∣z∣ = z.

Теперь приведём формулы ветвей к виду, удобному для рассмотрения в окрестности z = ∞ ∶ f∗(z)
z
=

3√−z3
z ∗ (1 −

i
z
)

1
3

0
,

f(z)
z
∣
+∞
= f(z)
∣z∣
∣
+∞
= e

i7π
6 e

i(2(2π+π
2
)+π

2
)

3 = −1

Отсюда следует, что f(z) = −z (1 − i
z
)

1
3

0
в окрестности z = ∞.

Разлагаем в ряд Лорана числитель и знаменатель. Тогда

f(z)
1 + e 2

z

= −
z (1 − i

3z
−

1
3
( 1
3−1)
2z2

+ o ( 1
∣z∣2 ))

2 (1 + 1
z
+ 1
z2
+ o ( 1

∣z∣2 ))
=

= −z
2
(1 − i

3z
+ 1

9z2
+ o( 1

∣z∣2
))(1 − 1

z
+ o( 1

∣z∣2
)) ⇒

⇒ res
z=∞

f(z)
1 + e 2

z

= 1

2
(1
9
+ i
3
) = (1 + 3i)

18
и

∳
f(z)

∣z∣=4

f(z)
1 + e 2

z

dz = π(3 − i)
9

Ответ. π(3−i)
9

.

Второй способ.

Теперь приведём формулы ветвей к виду, удобному для рассмотрения в окрестности z = ∞ по-другому:

f∗(z) = 3
√
z2(i − z)∗ ≡ 3

√
−z3 (1 − i

z
)∗ =

Так как

f(z)
z
=

3
√
∣z2(i − z)∣

z
e

i7π
6 e

i(2∆γφ+∆γφ)
3 , то

f(z)
z
∣
+∞
= −e

2πim
4 = −1

Отсюда следует, что f(z) = −z (1 − i
z
)

1
3

0
в окрестности z = ∞.

(Можно сделать и так: f(+∞) = +∞ ⋅ e i7π
6 e

i(2(2π+π
2
)+π

2
)

3 = = −∞ = −∞ ⋅ e 2πim
4 ⇒ f(z) = −z (1 − i

z
)

1
3

0
⋅)

Остальное так же, как в первом способе.

281



4.2.4 2.3. Computation of Integrals of Regular Branches

Кол-2.

15. Пусть f(z) - регулярная ветвь многозначной функции 4
√
1 − z2 в плоскости с разрезом по кривой:

γ = {z ∶ z = eit, t ∈ [0;π], z = 1 + it, t ∈ [0;+∞)} такая, что f(0) = 1. Пусть S(z) =
∞
∑
0
ak(z − 3i)k - регулярная в

области сходимости ряда функция, совпадающая с f(z) в некоторой окрестности точки z = 3i. Найдите
f ( 3i

4
), радиус сходимости ряда S(z) и вычислите интеграл

∳∣z−3i∣= 5
2

S(z)dz
(z − 3i

4
)2

Нарисуем разрез (см. рис. 2.30).
У функции 4

√
1 − z2 три точки ветвления: z = ±1, z = ∞. Поэтому она распадается на регулярные

ветви в плоскости с разрезом, соединяющим эти точки. Заданный разрез этому условию удовлетворяет -
регулярная ветвь существует. Заметим, что f(z) регулярна в окрестности ∣z−3i∣ < 1, а потому разлагается
там в ряд Тейлора. В силу теоремы единственности разложения в ряд Тейлора, это и есть заданный ряд.

Известно, что радиус сходимости ряда Тейлора равен расстоянию до ближайшей особой точки - до
точек z = 1 и z = −1, т. е. R =

√
10, и S(z) определена в окрестности ∣z − 3i∣ < <

√
10. При этом S(z) = f(z),

по крайней мере, в окрестности ∣z − 3i∣ < 1.
Ряд полностью определяется поведением f(z) в окрестности центра разложения и не «замечает»

разреза, который мы выбираем произвольно (лишь бы соединить точки ветвления). Разрез может быть
«опрокинутым» в нижнюю полуплоскость, и тогда весь круг сходимости оказался бы в области
регулярности ветви (но другой, отличной от f(z), т. к. была бы другая область существования).

Итак, сумма S(z) определена в круге ∣z−3i∣ <
√
10, контур интегрирования находится внутри, поэтому

будем вычислять интеграл.
Подынтегральная функция имеет в точке z = 3

4
i полюс второго порядка, а тогда

Осталось найти S′ ( 3i
4
) ∶ 1 − z2 = S4(z) ⇒ −2z = 4S3(z)S′(z) ⇐⇒ S′(z) = − z

2S3(z) . Теперь ясно, что для
вычисления интеграла нам надо найти S ( 3i

4
). Это значение можно было бы найти, если z = 3i

4
подставить

в ряд и вычислить его сумму, что сделать нереально. Нельзя сразу связать f ( 3i
4
) и S ( 3i

4
), т. к. z = 3

4
i

находится под разрезом, а там S(z) ≠ f(z). Нам надо знать S(z) в какой-нибудь точке, а затем найти
S ( 3i

4
). Например, известно, что S(3i) = f(3i).

Найдём формулу нашей ветви f(z).
Так как 4

√
1 − z2 = 4

√
∣1 − z2∣e

i(φ0∗+∆φ1+∆φ2)
4 ,∆φ1 = ∆arg(z - −1) ≡ ∆arg(1 − z),∆φ2 = ∆arg(z + 1), а f(0) = 1,

то на нашей ветви f(0) = e
i(φ0)

4 = 1⇒

⇒ f(z) = 4
√
∣1 − z2∣e

i(∆φ1+∆φ2)
4

Эта формула даёт значение ветви в любой точке плоскости.

Рис. 2.30
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Рис. 2.31
Можем сразу найти ответ на один из вопросов задачи пройдём по оси Oy от 0 до 3i

4
- вычислим

f ( 3i
4
) =
√

5
4
e

i(φ−φ)
4 =

√
5
4
.

Это значение вычисляется для того, чтобы потом было видно, что f ( 3i
4
) ≠ S ( 3i

4
).

Имеем f(3i) = 4
√
10e

i(−π−arctg 3−(π−arctg 3))
4 = −i 4

√
10 = S(3i).

Теперь находим формулу для S(z):

4
√
1 − z2 = 4

√
∣1 − z2∣e

i(φ0∗+∆φ1+∆φ2)
4 ⇒

⇒ S(3i) = 4
√
10e

i(φ0∗)
4 = −i 4

√
10⇒ S(z) = −i 4

√
∣1 − z2∣e

i(∆φ1+∆φ2)
4

«Спустившись» по оси Oy из z = 3i в z = 3i
4
, находим

S (3i
4
) = −i

√
5

4
e

i(−θ+θ)
4 = −i

√
5

4
⇒

⇒ S′ (3i
4
) = − 3i

4 ⋅ 2(−i
√

5
4
)
3
= −3

√
5

25

и тогда

∳∣z−3i∣= 5
2

S(z)dz
(z − 3i

4
)2
= −6π

√
5

25
i

Ответ.
√
10,
√

5
4
,− 6π

√
5

25
i.

Кол-2.

16. Пусть f(z) - регулярная ветвь многозначной функции Ln (z2 − 1) в плоскости с разрезом по кривой:
γ = {z = eit, t ∈ [−π; 0], z = t, t ∈ [1;+∞)} такая, что Im f(−2i) = 3π.

Вычислите интеграл

∳∣z−3i∣= 22
7

z ( f(z)
f(z) − πi

)
2

dz

Нарисуем разрез (см. рис. 2.31).
П р и м е ч а н и е. Рисунок сделан в реальном масштабе, и кажется, что заданная окружность

проходит через точки ветвления. Если было бы так, мы интеграл не знали бы, как считать. На самом
деле радиус окружности меньше

√
10 (( 22

7
)2 = 484

49
< 10), но очень не намного!

У функции Ln (z2 − 1) три точки ветвления: z = ±1, z = ∞. Поэтому она распадается на регулярные
ветви в плоскости с разрезом, соединяющим эти точки. Заданный разрез этому условию удовлетворяет -
регулярная ветвь f(z) существует. Найдём сначала точки, в которых знаменатель может обратиться в 0
.

Пусть Ln∗ (z2 − 1) - ветвь многозначной функции Ln (z2 − 1). Тогда Ln∗ (z2 − 1) = πi⇒ z2 − 1 = eπi ⇐⇒
z = 0.

Найдём формулу нашей ветви. Для любой ветви Ln∗ (z2− −1) = ln ∣z2 − 1∣ + i (φ0 +∆φ1 +∆φ2), где
∆φ1 =∆arg(z + 1), ∆φ2 =∆arg(z − 1), а у нас Im f(−2i) = 3π⇒ φ0 = 3π, и тогда
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f(z) = ln ∣1 − z2∣ + i (3π +∆φ1 +∆φ2)

Найдём f(0) = i(3π − (2π − φ) − φ) = πi.
Отсюда следует, что z = 0 — полюс 2 -го порядка для подынтегральной функции.

Приведём все ветви к виду, удобному для рассмотрения в окрестности z = 0:
Ln∗ (z2 − 1) ≡ Ln∗(−1) (1 − z2) =

= Ln∗(−1) + ln (1 − z2) = f∗(0) + ln (1 − z2)

Так как f(0) = πi, то

f(z) = πi + ln (1 − z2) = πi − z2 − z
4

2
+ o (∣z∣4)

Найдём коэффициент при 1
z
, разложив подынтегральную функцию в окрестности z = 0:

z ( f(z)
f(z) − πi

)
2

=
(πi − z2 + o (∣z∣2))2

z3 (1 + z2

2
+ o (∣z∣2))

2
=
−π2 (1 − z2

πi
+ o (∣z∣2))

2

z3 (1 + z2 + o (∣z∣2))
=

= −π
2

z3
(1 − 2z2

πi
+ o (∣z∣2)) (1 − z2 + o (∣z∣2)) =

= −π
2

z
(−1 − 2

πi
) + слагаемые, не содержащие

1

z
⇒

⇒ res
z=∞
( f(z)
f(z) − πi

)
2

= π2 (1 + 2

πi
) ⇒

⇒ ∳∣z−3i∣= 22
7

z ( f(z)
f(z) − πi

)
2

dz = 2π3 (i + 2

π
)

Ответ. 2π3 (i + 2
π
).

Кол-2.

17. Пусть f(z) - регулярная ветвь многозначной функции Ln (1 + z2) в плоскости с разрезом по
кривой: γ = {z = eit, t ∈ [π

2
; 3π

2
] , z = i + t, t ∈ [0;+∞)} такая, что Im f(0) = 0. Вычислите интеграл

∳∣z−3i∣= 7
4
( f(z)
f(z)+πi)

2
dz.

Эта задача, на первый взгляд, кажется такой же, как предыдущая. Но будет видно, что она окажется
более громоздкой.

Нарисуем эскиз разреза (см. рис. 2.32).
У функции Ln (1 + z2) три точки ветвления: z = ±i, z = ∞.
Поэтому она распадается на регулярные ветви в плоскости с разрезом, соединяющим эти точки. Заданный
разрез этому условию удовлетворяет - регулярная ветвь f(z) существует.

Найдём сначала точки, в которых знаменатель может обратиться в 0.

Рис. 2.32
Пусть Ln∗ (1 + z2) - ветвь многозначной функции Ln (1 + z2). Тогда Ln∗ (1 + z2) = −iπ ⇒ 1 + z2 = −1 ⇐⇒
z = ±i

√
2. Точка z = i

√
2 лежит вне заданной окружности, поэтому надо проверить, обращается ли в 0

знаменатель только в точке z = −i
√
2.
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Найдём формулу нашей ветви. Для любой ветви Ln∗ (1 + z2) = ln ∣1 + z2∣ + i (φ0 +∆φ1 +∆φ2), а для
нашей Im f(0) = 0⇒ ⇒ φ0 = 0, откуда следует, что

f(z) = ln ∣1 + z2∣ + i (∆φ1 +∆φ2)

Тогда для нашей ветви f(−i
√
2) = i(−π + 0) = −iπ. Значит, в точке z = −i

√
2 полюс второго порядка и

∳−3i∣ = 7
4

( f(z)
f(z) + πi

)
2

dz = 2πi res
z=−i

√
2
( f(z)
f(z) + πi

)
2

Видно, что обычная формула вычета будет выглядеть довольно громоздко.
Попробуем вычислить вычет «в лоб», разложив функцию в окрестности z = −i

√
2.

Приведём все ветви к виду, удобному для рассмотрения в окрестности z = −i
√
2:

f∗(z) =Ln∗ (1 + z2) ≡ Ln∗(z + i)(z − i) ≡

≡ Ln∗(z + i
√
2 − i
√
2 + i)(z + i

√
2 − i
√
2 − i) ≡

≡Ln∗(−i
√
2 + i)(−i

√
2 − i)(1 + z + i

√
2

(−i
√
2 + i)

)(1 + z + i
√
2

(−i
√
2 − i)

)

Обозначим, для удобства, at = z+i
√
2

i(1−
√
2) , bt = −

z+i
√
2

i(1+
√
2) и получим

f∗(z) = g(t) = Ln∗(−1)(1 + at)(1 − bt) =
=f∗(−i

√
2) + ln(1 + at) + ln(1 − bt)

Для нашей ветви f(−i
√
2) = −iπ, и поэтому

f(z) = −iπ + ln(1 + at) + ln(1 − bt)
Теперь разложим подынтегральную функцию в ряд Тейлора в окрестности t = 0:

( f(z)
f(z) + πi

)
2

= (−iπ + ln(1 + at) + ln(1 + bt))
2

(ln(1 + at) + ln(1 + bt))2
=

=
−π2 (1 − at

iπ
− bt
iπ
+ o(∣t∣))2

t2(a + b)2 (1 − t(a2+b2)
2(a+b) + o(∣t∣))

=

= − π2

t2(a + b)2
(1 − 2t(a + b)

iπ
+ o(∣t∣))

⎛
⎝
1 +

t (a2 + b2)
(a + b)

+ o(∣t∣)
⎞
⎠
=

= − π2

t(a + b)2
⎛
⎝
−2(a + b)

iπ
+
(a2 + b2)
(a + b)

⎞
⎠
+

слагаемые, не содержащие 1
z
.

Вычислим коэффициент при 1
t
. Так как

a + b = − 1

i(
√
2 − 1)

− 1

i(
√
2 + 1)

= −2
√
2

i
⇒ (a + b)2 = −8

a2 + b2 = ( 1

i(
√
2 − 1)

)
2

+ ( 1

i(
√
2 + 1)

)
2

= −6

то

− π2

t(a + b)2
⎛
⎝
−2(a + b)

iπ
+
(a2 + b2)
(a + b)

⎞
⎠
= π

2

8
( 3i√

2
− 4
√
2

π
) ,

∳∣z+i∣= 7
3

( f(z)
f(z) + πi

)
2

dz = 2πiπ
2

8
( 3i√

2
− 4
√
2

π
) = − π3

4
√
2
(3 + 8i

π
)

Ответ. − π3

4
√
2
(3 + 8i

π
)
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Кол-2.
18. Пусть f(z) - регулярная ветвь многозначной функции Ln z в области G = ∣z − e∣ < 1, такая, что

f(e) = 1. Доказать, что аналитическая функция F (z) =
√
f(z) распадается в области G на регулярные

ветви. Пусть g - регулярная ветвь F (z), такая, что g(e) = −1.
Вычислите интеграл ∳∣z∣=15

dz
g( ez

z+e )
.

Ln z имеет две точки ветвления: 0 и ∞. Значит, функция Ln z распадается на регулярные ветви в
плоскости с любым разрезом, соединяющим 0 и ∞. Так как ветвь задана в круге ∣z − e∣ < e, то разрез
можно провести вне этого круга. Функция

√
f(z) имеет точки ветвления там, где f(z) обращается в 0

или ∞. В круге таких точек нет, область односвязна, значит,
√
f(z) тоже распадается на регулярные

ветви.
Ветвь g(z) задана в круге ∣z − e∣ < e. Проверим, где при этом существует g ( ez

z+e):

∣ ez
z + e

− e∣ < e⇐⇒ ∣ e
2

z + e
∣ < e⇐⇒ ∣z + e∣ > e ( см. рис. 2.33).

Значит, ∳∣z∣=15
dz

g( ez
z+e )

существует. Но внутри контура находится точка z = 0, в которой g ( ez
z+e) не

определена, поэтому будем вычислять интеграл по внешности круга.

Первый способ.

В кольце 15 < ∣z∣ < ∞ функция g ( ez
z+e) регулярна, поэтому

∳∣z∣=15
dz

g ( ez
z+e)

= −2πi res
z=∞

1

g ( ez
z+e)

Рис. 2.33

Рис. 2.34
Заметим, что g(e) = g(z)∣z=∞. Приведём формулы всех ветвей Ln ez

z+e к виду, удобному для рассмотрения
в окрестности z = ∞:

Ln∗
ez

z + e
≡ Ln∗

e

1 + e
z

= Ln∗ e − ln(1 +
e

z
) = f∗(e) − ln(1 +

e

z
) ⇒ f(z) = 1 − ln(1 + e

z
)

Тогда

g ( ez

z + e
) =
√

1 − ln(1 + e
z
) = g(e) (1 − ln(1 + e

z
))

1
2

0
= −1 ⋅ (1 − ln(1 + e

z
))

1
2

0
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Найдём коэффициент при 1
z
:

1

g ( ez
z+e)

= − 1
√

1 − ln (1 + e
z
)
0

= − 1

1 − e
2z
+ o ( e

z
)
=

= − e
2z
+ слагаемые, не содержащие

1

z
⇒

⇒ res
z=∞

g ( ez

z + e
) = e

2

Отсюда следует, что ∳∣z∣=15
dz

g( ez
z+e )
= −eπi.

Ответ. −πi.
П р и м е ч а н и е. Вычет можно было считать и по формуле для УОТ в ∞.

Второй способ.

Сделаем замену переменных: ez
z+e = t⇐⇒ z = te

e−t . Окружность преобразовалась в окружность (можно
проверить в «лоб», расписав ∣ te

e−t ∣ = 15). При этом

t(0) = 0, 0 < t(15) = 15e

15 + e
< e, t(−15) = 15e

15 − e
> e > t(15)

t(15i) = 15i

15i + e
= 15i(15i − e)
−152 − e2

= 152 + 15ie
152 + e2

Координаты центра

1

2
( 15e

15 + e
+ 15e

15 − e
) = 152e

152 − e2

r = 152e

152 − e2
− 15e

15 + e
= 15e2

152 − e2

Отсюда следует, что внешность окружности ∣z∣ = 15 перешла во внутренность окружности C∗ ∶
∣t − 225e

225−e2 ∣ =
15e2

225−e2 (т. к. z = 0 переходит в точку t = 0, находящуюся вне окружности C∗), проходимой в
противоположном направлении (т. к. t(15i) находится в верхней полуплоскости) (см. рис. 2.34).

Делаем замену в интеграле: dz = e2

(t−e)2 dt.
Поэтому
∳∣z∣=15

dz
g( ez

z+e )
= −∳C∗ e

2 dt
g(t)(t−e)2 =

= −2πie2 res
t=e

1

g(t)(t − e)2
= 2πie2 g

′(e)
g2(e)

Вычислим g′(e):

g2(t) = f(t) ⇐⇒ 2g(t)g′(t) = f ′(t) ⇒ g′(e) = f
′(e)

2g(e)

Ho f ′(t) = 1
t
⇒ f ′(e) = 1

e
⇒ ∳∣z∣=15

dz
g( ez

z+e )
= −πie.

Ответ. −πi.
П р и м е ч а н и е. Интересно, что это решение и ответ не зависят от значения ветви f(e), а зависят
только от значения g(e) ∶ ∳∣z∣=15

dz
g( ez

z+e )
= πie
g3(e) .

Правда, по значению g(e) восстанавливается значение f(e): gkm(e) =
√
∗Ln∗ e =

√
∗1 + 2πik = ∣1 +

2πik∣e
i(arg(1+2πik)+2πm)

2 , k ∈ ∈ Z,m = 1,2.
Видно, что если g(e) = −1, то f(e) = 1.

4.2.5 2.4. Computation of Integrals of Real-Valued Functions

2.4.1. Выбор контура интегрирования и регулярных ветвей
При вычислении интегралов от функций действительного переменного, содержащих радикалы или

логарифмы, приходится выбирать замкнутый контур интегрирования и иметь дело с интегралами от
регулярных ветвей многозначных функций. При этом надо иметь в виду некоторые особенности при
подходе к решению таких задач.

Часть выбираемого контура должна совпадать с отрезком, по которому ведётся интегрирование
заданной функции действительного переменного, или отрезком любой длины, если вычисляется
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несобственный интеграл по бесконечному промежутку. Если интеграл содержит логарифм или корень,
то придётся вычислять интеграл по контуру от регулярных ветвей соответствующих многозначных
функций. А многозначная функция распадается на регулярные ветви в плоскости с разрезом,
соединяющим точки ветвления. Так как мы хотим вычислить интеграл по той или другой части
действительной оси, то ветви должны существовать в плоскости с
разрезом именно по действительной оси. Поэтому разрез или его часть будет границей будущего
контура. Так как теория вычетов применяется к интегралам по замкнутому контуру, то «замыкание»
осуществляется так, что либо по дополнительным контурам интегралы будут равны 0, либо мы их
сможем вычислить, либо их значения известны. Регулярные ветви, применяемые при вычислении
интегралов от функции действительного переменного, — это всегда функции, принимающие
действительные значения на той или иной части действительной оси.
Рассмотрим наиболее часто встречающиеся функции.

Так как всегда 2n
√
Pm(x) ⩾ 0, то регулярная ветвь f(z) функции 2n

√
Pm(z), принимающая

неотрицательные значения на некотором отрезке действительной оси, имеет вид

f(z) = 2n
√
∣Pm(z)∣e

∆γ arg(Pm(z))
n

т. к. если 2n
√
Pm(x) = 2n

√
∣Pm(x)∣e

arg(P2n(x+i0))
n ⩾ 0, то e

arg(Pm(x+i0))
n = 1.

2. Что касается функции 2n+1
√
Pm(z), то ситуация может быть двоякой.

a) Регулярная ветвь, принимающая неотрищательные значения в некоторой точке на действительной оси,
имеет вид

f(z) = 2n+1
√
∣Pm(z)∣e

∆γ arg(Pm(z))
n

б) Регулярная ветвь, принимающая отрицательные значения в некоторой точке на действительной
оси, имеет вид

f(z) = − 2n+1
√
∣Pm(z)∣e

∆γ arg(Pm(z))
n

т. к. если

2n+1
√
Pm (x0) = 2n+1

√
∣Pm (x0)∣e

arg(Pm(x0+i0))
n < 0

то
e

arg(Pm(x0+i0))
n = −1

Регулярная ветвь LnPn(z), принимающая действительные значения в некоторой точке x0, имеет вид

f(z) = ln ∣Pn(z)∣ + i∆γ argPn(z)

т.к. если Pn (x0) > 0, то LnPn(z) = ln ∣P0(z)∣ + +i (argPn (z0) +∆γ argPn(z)) ⇒ LnPn (x0) = ln ∣Pn (x0)∣ +
+iargPn (x0), a f (x0) = ln ∣Pn (x0)∣ ⇒ argPn (x0) = 0.

2.4.2. На контуре интегрирования нет особых точек

Кол-2.
19. Вычислите

1

∫
0

dx

(x − 2)2 5
√
x2(1 − x)3

Придётся иметь дело с регулярной ветвью 5
√
z2(1 − z)3, а она существует в плоскости с разрезом,

соединяющим
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Рис. 2.35 точки ветвления z = 0 и z = 1. Так как задан интеграл по отрезку [0; 1], то разрез проведём
именно по этому отрезку с «берегами» l1 и l2. Интеграл несобственный поэтому «изолируем» особые
точки окружностями Cρ1 и Cρ2 . Получился контур на рис. 2.35 .

Будем рассматривать ∳C
dz

(z−2)2f(z) , где C = Cρ1 ∪ l1 ∪ Cρ2 ∪ l2, а f(z) - регулярная ветвь функции
5
√
z2(1 − z)2, принимающая положительные значения на верхнем берегу l1 разреза. Тогда интеграл по

верхнему берегу

1−ρ1

∫
ρ1

dx

(x − 2)2 5
√
x2(1 − x)3

Ð→
ρ1→0

I =
1

∫
0

dx

(x − 2)2 5
√
x2(1 − x)3

Выделим эту ветвь: f(z) = 5
√
∣z2(1 − z)3∣e

i(2∆γφ1+3∆γφ2)
5 . Область не односвязна −∆φ зависит от γ.

По теореме о вычетах

∫
C

dx

(z − 2)2f(z)
= 2πi(res

z=2

1

(z − 2)2f(z)
+ res
z=∞

1

(z − 2)2f(z)
)

Очевидно, что res 1
z=∞ = 0.

В точке z = 2 полюс второго порядка, поэтому

res
z=2

1

(z − 2)2f(z)
= − f

′(2)
f2(2)

Найдём f ′(2):

f5(z) = −z2(z − 1)3 ⇒ 5f4(z)f ′(z) = −2z(z − 1)3 − 3z2(z − 1)2 ⇒
⇒ f ′(2) = −16

5f4(2)

Найдём f(2):

f(2) = 5
√
4e

i(0−3π)
5 ⇒ ∳

C

dz

(z − 2)2f(z)
= 2πi 16

5f6(2)
= 8πie

−2πi
5

5 5
√
4

Итак, с одной стороны, интеграл вычислен.
Теперь, с другой стороны, рассмотрим интегралы по частям границы:

∳C
dz

(z−2)2f(z) = ∳Cρ1

dz
(z−2)2f(z) + ∫

l1

dx

(x−2)2 5
√
x2(1−x)3

+

+∳Cρ2

dz
(z−2)2f(z) + ∫

l2

dz
(z−2)2f(z)

Так как интеграл
1

∫
0

dx

(x−2)2 5
√
x2(1−x)3

сходится, то легко показать, что интегралы по Cρ1 и по Cρ2

стремятся к 0, когда ρ1 → 0 и ρ2 → 0. Остался интеграл по нижнему берегу разреза, на котором
f(x)∣l2 = e

i(4π+0)
5

5
√
x2(1 − x)3:

∫
l1

dz

(z − 2)2f(z)
= −e

−4πi
5

1−ρ2

∫
ρ1

dx

(x − 2)2 5
√
x2(1 − x)3

Ð→
ρ2→0

−e
−4πi

5 I

Поэтому

∳
C

dz

(z − 2)2f(z)
Ð→
ρ1→0
ρ2→0

I (1 − e
−4πi

5 )

и тогда

8πie
−2πi

5

5 5
√
4
= I (1 − e

−4πi
5 ) ⇐⇒ I = 2 5

√
8π

5 sin 2π
5

Ответ. 2
5√
8π

5 sin 2π
5

.
П р и м е ч а н и е. Келательно иметь в виду, что вычислялся интеграл от функции вещественного
переменного ответ должен быть действительным. В нашем случае подынтегральное выражение
неотрицательно на всём промежутке ответ должен быть положительным. Эти условия у нас выполнены
- это даёт уверенность в том, что вычисления верны.
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Кол-2.
20. Вычислите

I =
∞

∫
0

√
x lnx

(z + 1)(x + 2)
dx

Для вычисления интеграла придётся рассматривать ветви Ln z и
√
z. Для обеих функций z = 0 и

z = ∞ являются точками ветвления. Значит, функции распадаются на регулярные ветви в плоскости с
разрезом, их соединяющим, например, по действительной оси. Проведём

Рис. 2.36 этот разрез. Замкнём контур окружностью ∣z∣ = R. Так как z = 0 - точки ветвления, то
отделим её окружностью ∣z∣ = ρ. Итак, получился контур C ∶ Cρ ∪ [ρ;R] ∪CR ∪ [R;ρ] (см. рис. 2.36).

Пусть f(z) - регулярная ветвь Ln z, g(z) - регулярная ветвь
√
z, такие, которые принимают

действительные значения на верхнем берегу разреза, т. е. Im f(x + i0) = 0 и g(x + i0) > 0.
Тогда

f(z) = ln ∣z∣ + i∆γ arg z

g(z) =
√
∣z∣ei∆γ arg z

Теперь, с одной стороны, по теореме о вычетах (внутри находится два полюса 1-го порядка):

∳
C

f(z)g(z)
(z + 1)(z + 2)

dz =

= 2πi (resz=−2 f(z)g(z)
(z+1)(z+2) + resz=−1

f(z)g(z)
(z+1)(z+2)) =

= 2πi(−f(−2)g(−2) + f(−1)g(−1))

Вычислим f(−2), g(−2), f(−1), g(−1). Заметим, что при движении с положительной полуоси в точки
z = −2, и z = −1 приращение аргумента одно и то же и равно π. Поэтому

f(−2) = ln 2 + iπ, g(−2) =
√
2ei

π
2 ,

f(−1) = iπ, g(−1) = ei
π
2 ⇒

⇒ ∳
C

f(z)g(z)
(z + 1)(z + 2)

dz = 2π(
√
2 ln 2) + (2

√
2 − 2)π2i

На верхнем берегу функции известны f(x) = lnx, g(x) =
√
x, а на противоположном берегу разреза

ветви принимают другие значения - приращение аргумента равно 2π ∶ f(x) = lnx + 2πi, g(x) =
√
xeiπ.

А тогда, с другой стороны,

2π(
√
2 ln 2) + (2

√
2 − 2)π2i = ∳

C

f(z)g(z)
(z + 1)(z + 2)

dz =

= ∳
Cρ

f(z)g(z)
(z + 1)(z + 2)

dz +
R

∫
ρ

√
x lnx

(x + 1)(x + 2)
dx+

+ ∳
CR

f(z)g(z)
(z + 1)(z + 2)

dz +
ρ

∫
R

√
xeiπ(lnx + 2iπ)
(x + 1)(x + 2)

dx Ð→
ρ→0
R→∞
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Ð→
ρ→0
R→∞

+∞

∫
0

√
x lnx

(x + 1)(x + 2)
dx + 2iπ

+∞

∫
0

√
x

(x + 1)(x + 2)
dx⇒

⇒
+∞

∫
0

√
x lnx

(x + 1)(x + 2)
dx = π

√
2 ln 2

(Так как заданный несобственный интеграл абсолютно сходится в 0 и в ∞, то легко показать, что при
R →∞, ρ→ 0 интегралы по окружностям стремятся к 0 .)

Ответ. π
√
2 ln 2.

2.4.3. Особые точки на контуре интегрирования

Кол-2.21. Простой интеграл с подвохом
Вычислить

+∞

∫
0

lnx

x2 − 1
dx

Первый способ.

Выберем контур интегрирования (см. рис. 2.37) C = [−R;−1 − ρ1] ∪ Cρ1 ∪ [−1 + ρ1;−ρ2] ∪ Cρ2 ∪ [ρ2; 1−
−ρ3]∪Cρ3∪[1 + ρ3;R]∪CR, где Cρi - полуокружности радиуса ρi с центрами в точках −1,0,1 соответственно.
CR - полуокружность радиуса R с центром в 0 (см. рис. 2.37).

Рис. 2.37

Рис. 2.38
Точки ветвления Ln z ∶ z = 0, z = ∞ находятся вне контура — регулярная ветвь существует.

Пусть f(z) - регулярная ветвь Ln z, такая, что f(z) на положительной полуоси принимает
действительные значения, т. е. f(z) = ln ∣z∣ + i∆arg z.

Будем рассматривать ∳C
f(z)
z2−1dz (см. рис. 2.37). Внутри контура нет особых точек, следовательно,

∳C
f(z)
z2−1dz = 0.
Теперь рассмотрим интегралы по полуокружностям.

Так как z = −1 - полюс первого порядка, то
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∫
Cρ1

f(z)
z2 − 1

dz = ∫
Cρ1

( a−1
z + 1

+
∞
∑
0

ak(z + 1)k)dz = [z + 1 = ρ1eiφ] =

= i
0

∫
π

( a−1
ρ1eiφ

+
∞
∑
0

akρ
k
1e
ikφ)ρ1eiφdφ =

= −iπa−1 + i
∞
∑
0

akρ
k+1
1 (1 − (−1)k+1) Ð→

ρ1→0
−iπ res

z=−1

f(z)
z2 − 1

Так как z = 1 - устранимая особая точка, то

∫
Cρ3

f(z)
z2 − 1

dz = ∫
Cρ3

∞
∑
0

ak(z + 1)kdz Ð→
ρ3→0

0

Мы практически доказали ещё раз, что если a ∈ C - полюс 1-го (П1) порядка или устранимая особая
точка (УОТ), то ∫

Cρ

F (z)dz Ð→
ρ→0

iπ res
z=a

F (z), если полуокружность «пробегается» против часовой стрелки.

Можно показать стандартным способом, что

∫
CR

f(z)
z2 − 1

dz Ð→
R→∞

0 и ∫
Cρ2

f(z)
z2 − 1

dz Ð→
ρ2→0

0

Тогда

0 = ∳
C

f(z)
z2 − 1

dz =
−1−ρ1

∫
−R

ln(−x) + iπ
x2 − 1

dx + ∫
Cρ1

f(z)
z2 − 1

dz +
−ρ2

∫
−1+ρ1

ln(−x) + iπ
x2 − 1

dx+

+ ∫
Cρ2

f(z)
z2 − 1

dz +
1−ρ3

∫
ρ2

ln(x)
x2 − 1

dx + ∫
Cρ2

f(z)
z2 − 1

dz +
R

∫
1+ρ3

ln(x)
x2 − 1

dx + ∫
CR

f(z)
z2 − 1

dz Ð→
ρ1→0
R→∞

Ð→
ρ1→0
R→∞

0

∫
−∞

ln(−x) + iπ
x2 − 1

dx +
+∞

∫
0

ln(x)
x2 − 1

dx − πi iπ

2(−1)
=

= 2I − π
2

2
+ iπ

+∞

∫
0

dx

x2 − 1
⇒
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2I − π2

2
= 0

+∞
∫
0

dx
x2−1 = 0

(??? что-то не понял, почему последний интеграл такой???)
Ответ. π2

4
.

Второй способ.

Теперь выберем другой контур (см. рис. 2.38): C = Cρ1 ∪ [ρ1; 1 − ρ2] ∪ Cρ2 ∪ [1 + ρ2;R] ∪ CR ∪ [R; 1+
+ρ2] ∪ Cρ2 ∪ [1 − ρ2;ρ3], где Cρ1 - окружность радиуса ρ1 с центром в 0,CR - окружность радиуса R с
центром в 0,Cρ2 и Cρ2 - полуокружности радиуса ρ2 с центрами в точках 1 + i0 и 1 − i0 соответственно
(см. рис. 2.38).

Пусть f(z) - регулярная ветвь Ln z, такая, что на верхнем берегу разреза принимает действительные
значения, т. е. f(z) = ln ∣z∣ + i∆arg z. Тогда, с одной стороны,

∳
C

f(z)
z2 − 1

dz = 2πi res
z=−1

f(z)
z2 − 1

= −πif(−1)

С другой стороны,

∳C
f(z)
z2−1dz = ∫

Cρ1

f(z)
z2−1dz +

1−ρ2
∫
ρ1

lnx
x2−1dx+
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+ ∫
Cρ2

f(z)
z2 − 1

dz +
R

∫
1+ρ3

lnx

x2 − 1
dx + ∫

CR

f(z)
z2 − 1

dz +
1+ρ2

∫
R

lnx + 2iπ
x2 − 1

dx+

+ ∫
Cρ2

f(z)
z2 − 1

dz +
ρ1

∫
1−ρ2

lnx + 2iπ
x2 − 1

dx Ð→
ρ1→0
R→∞

∞
ρ1→0
R→∞

∞

∫
0

lnx

x2 − 1
dx +

0

∫
−∞

lnx + 2iπ
x2 − 1

dx − πi2iπ
2
=

=
0

∫
−∞

2iπ

x2 − 1
dx − πi2iπ

2

Видно, что
∞
∫
0

lnx
x2−1dx сократился.

Поэтому будем рассматривать ∳C
f2(z)
z2−1 dz.

С одной стороны,

∳
C

f2(z)
z2 − 1

dz = 2πi res
z=−1

f2(z)
z2 − 1

= −πif2(−1) = −πi(πi)2

С другой стороны,

π2i =∳
C

f2(z)
z2 − 1

dz = ∫
Cρ1

f2(z)
z2 − 1

dz +
1−ρ2

∫
ρ1

ln2 x

x2 − 1
dx+

+ ∫
Cρ2

f2(z)
z2 − 1

dz +
R

∫
1+ρ3

ln2 x

x2 − 1
dx + ∫

CR

f2(z)
z2 − 1

dz+

+
1+ρ2

∫
R

(lnx + 2iπ)2

x2 − 1
dx + ∫

Cρ2

f2(z)
z2 − 1

dz +
ρ1

∫
1−ρ2

(lnx + 2iπ)2

x2 − 1
dx Ð→

ρi→0
R→∞

(т. к. интеграл по нижней полуокружности ∫
Cρ2

f2(z)
z2−1 dz Ð→ρ2→0

Ð→
ρ2→0

−πi f
2(1)
2
= −πi (2πi)

2

2
)

ρi→0
R→0

∞

∫
0

ln2 x

x2 − 1
dx −

∞

∫
0

(lnx + 2iπ)2

x2 − 1
dx − πi(2iπ)

2

2
=

= −
∞

∫
0

4iπ lnx + (2iπ)2

x2 − 1
dx + 2π3i = π3i⇐⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩

I = π2

4∞
∫
0

(2iπ)2
x2−1 dx = 0

Ответ. π2

4
.

Третий способ.

Выберем теперь не совсем обычный контур, т. к. сразу не ясно, как ведёт себя интеграл по вертикали
(см. рис. 2.39).

Итак, контур состоит из Cρ1 - четверти окружности с центром в начале ко-
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Рис. 2.39 ординат, Cρ2 - полуокружности с центром в точке z = 1, полуокружности CR с центром в

начале координат и отрезков [ρ1; 1 − ρ2] , [1 + ρ2;R] , [iR; iρ1]. Тогда 0 = ∳C
f(z)
z2−1dz = ∫

Cρ1

f(z)
z2−1dz+

1−ρ2
∫
ρ1

lnx
x2−1dx+

∫
ρ1

f(z)
z2−1dz+

Ð→
R→∞

ρ1→0,ρ2→0

+∞
∫
0

lnx
x2−1dx + i

+∞
∫
0

lny
y2+1dy −

π2

4
⇒

R

∫
0

lnx
x2−1dx =

π2

4
, т. к.

RRRRRRRRRRR
∫
Cρ1

f(z)
z2−1dz

RRRRRRRRRRR
=
RRRRRRRRRRR

π
2

∫
0

lnρ1+iφ
ρ21e

2iφ−1 iρ1dφ
RRRRRRRRRRR
⩽ π

2
ρ1 lnρ1
ρ21+1

+ π2ρ1
8(ρ21+1)

Ð→
ρ1→∞

0. Интеграл ∫
Cρ2

f(z)
z2−1dz Ð→ρ2→0

0, потому что z = 1 -

УОТ, а ∣ ∫
CR

f(z)
z2−1dz∣ = ∣ ∫

CR

lnR+iφ
z2−1 iRdφ∣ ⩽ π

2
R lnR
R2+1 +

π2R
8(R2+1) Ð→R→∞

0.

Как видно, на вертикали появился лишний интеграл, но он имеет чисто мнимое значение.
Ответ. π2

4
.

4.3 Problems on Other Properties of Functions
(тут тоже много разного есть.)

4.3.1 Problems about Differentiability of Functions. Harmonic Func-
tions

Ш-5.пр.1. Простая дифференцируемость

Найти все точки, в которых дифференцируема функция f(z) = z2

Solution

Так как
∆f = (z0 +∆z)2 − z20 = 2z0 ⋅∆z + (∆z)2,

то ∆f
∆z
= 2z0 +∆z, откуда следует, что существует предел

lim
∆z→0

∆f

∆z
= f ′ (z0) = 2z0.

Итак, f(z) = z2 дифференцируема в любой точке из C.

Дифференцируемость можно проверять, используя условия Коши-Римана:

f(z) = x2 − y2 + 2ixy,

TO
u(x, y) ∶= x2 − y2, v(x, y) ∶= 2xy
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4.3.1 Problems about Differentiability of Functions. Harmonic Functions

Функции u и v дифференцируемы на R2 и выполнены условия Коши-Римана:

∂u

∂x
= 2x = ∂v

∂y
;

∂u

∂y
= −2y = −∂v

∂x
.

Следовательно, f(z) = z2-функция, дифференцируемая во всей плоскости C, и

f ′(z) = ∂u
∂x
+ i ∂v
∂x
= 2x + i2y = 2z

Ш-5.пр.2. Простая дифференцируемость
Найти все точки, в которых дифференцируема функция f(z) = z̄.

Solution

В этом случае
u(x, y) = x, v(x, y) = −y

откуда
∂u

∂x
= 1, ∂v

∂y
= −1,

т. е. условия Коши-Римана (2) не выполнены и поэтому функция f(z) = z̄ нигде не дифференцируема.

Ш-5.пр.3. Особая регулярная функция
Дана гармоническая функция u = xy. Найти регулярную функцию f(z) такую, что u(x, y) = Re f(z).

Solution

Для искомой функции f(z) = u(x, y)+ iv(x, y) нужно найти v(x, y). В силу дифференцируемости f(z)
должны выполняться условия Коши-Римана, т. е.

∂v

∂y
= ∂u
∂x
= y, ⇒ v(x, y) = y

2

2
+ φ(x),

где φ(x) - любая дифференцируемая функция. Из второго уравнения в условиях Коши-Римана (2)
получаем

∂v

∂x
= −∂u

∂y
= −x, ⇒ φ′(x) = −x

φ(x) = −x
2

2
+C. Итак,

v = y
2 − x2

2
+C,

f(z) = xy + i(y
2 − x2

2
+C) = − iz

2

2
+ iC,

где C - произвольное действительное число.

Ш-5.1.
Найти все точки z = x + iy, в которых дифференцируемы функции:
1) Im z; 2) ∣z̄∣2; 3) x2 − iy2; 4) x2 − y2 − 2ixy;
5) x − y + i(x + y)
6) zRe z.

Ш-5.2.
Доказать, что при любом натуральном значении n функция zn дифференцируема во всей C и что

(zn)′ = nzn−1.
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4.3.1 Problems about Differentiability of Functions. Harmonic Functions

Ш-5.3.
Доказать, что всякий многочлен от z является дифференцируемой функцией во всей C, а всякая

рациональная функция дифференцируема в любой точке, где знаменатель не обращается в нуль.

Ш-5.4.
Определим функцию ez при любом комплексном значении z = x + iy равенством ez = ex(cos y + i sin y).

Доказать, что функция ez дифференцируема при любом z и справедливо равенство (ez)′ = ez.

Ш-5.6.
Выяснить, в каких точках z ∈ C дифференцируемы функции, и найти их производные:
1) esh z; 2) cos (2ez); 3) sin z sh z + i cos z ch z
4) ez

z
;

5) z
ez

;
6) sin z

1+z2 .

Ш-5.7.
Выяснить, где дифференцируемы функции, и найти их производные:
1) tg z;
2) ctg z;
3) e2+2

ez−2 ;
4) 1

tg z+ctg z
5) (ez + e−z)−3;
6) sin z

sin z−cos z .

Ш-5.8.
Пусть функция f(z) = u(x, y) + iv(x, y) дифференцируема в точке z0 = x0 + iy0. Доказать

справедливость формул:
1) f ′ (z0) = ∂v

∂y
(x0, y0) − i∂u∂y (x0, y0);

2) f ′ (z0) = ∂u
∂x
(x0, y0) − i∂u∂y (x0, y0);

3) f ′ (z0) = ∂v
∂x
(x0, y0) + i ∂v∂x (x0, y0).

Ш-5.9.
Пусть функция f(z) = u(x, y) + iv(x, y) дифференцируема в области G ⊂ C и пусть одна из функций
1) u(x, y);
2) v(x, y);
3) r(x, y) = ∣f(z)∣;
4) φ(x, y) = arg f(z) coхраняет в области G постоянное значение. Доказать, что f(z) ≡ const.

Ш-5.19.
Пусть u, v - пара сопряженных гармонических функций в области G, а ξ, η - пара сопряженных

гармонических функций в области D. Пусть для любого z = x + iy ∈ G значение u(x, y) + iv(x, y)
принадлежит области D. Доказать, что пара функций U,V вида

U(x, y) = ξ(u(x, y), v(x, y)),
V (x, y) = η(u(x, y), v(x, y))

образует пару сопряженных гармонических функций в области G.

Ш-5.11.
Пусть u, v-пара сопряженных гармонических функций в области G и пусть ни в одной точке области

G функции u и v не обращаются в нуль одновременно. Доказать, что функция

U(x, y) = ln [u2(x, y) + v2(x, y)]

является гармонической в области G.
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Ш-5.12.
Пусть u, v1 и u, v2 - две пары сопряженных гармонических функций в области G с одной и той же

первой функцией u. Доказать, что v1(x, y) − v2(x, y) ≡ const.

Ш-5.13.
В следующих задачах дается одна из пары сопряженных гармонических функций u или v. Найти

вторую функцию пары.
1) u = xy
2) u = x2 − y2 + 2xy;
3) v = y sinx ch y + x sh y cosx
4) u = rφ cosφ + r ln r sinφ (z = x + iy = reiφ).

Ш-5.14.
Найти все гармонические функции вида
1) u = φ (x2 + y2) ; 2) u = φ (x2 − y2);
3) u = φ ( y

x
);

4) u = φ (x
2+y2
x
).

Ш-5.15.
Пусть P (x, y) - многочлен от x и y с комплексными коэффициентами. Обозначим

P ∗(z, z̄) = P (z + z̄
2

,
z − z̄
2i
) .

Доказать, что 1) функции u(x, y) = ReP (x, y), v(x, y) = ImP (x, y) удовлетворяют условиям Коши-
Римана в том и только в том случае, когда многочлен P ∗(z, z̄) не зависит от z̄; 2) многочлен P (x, y)
удовлетворяет уравнению Лапласа ∆P = 0 в том и только том случае, когда многочлен P ∗(z, z̄) можно
представить в виде Q1(z) +Q2(z̄), где Q1 и Q2 - многочлены.

Ш-5.16.
Пусть P (z) - многочлен. Положим

u(x, y) = ReP (x + iy)
v(x, y) = ImP (x + iy)

Доказать, что справедливы формулы
1) P (z) = 2u ( z

2
, z
2i
) − P (0);

2) P (z) = 2iv ( z
2
, z
2i
) + P (0).

Ш-5.17.
Восстановить регулярную функцию f(z) по условию
1) Re f(z) = x3 − 6x2y − 3xy2 + 2y3, f(0) = i;
2) Re f(z) = x sinx ch y − y sh y cosx, f(0) = 0;
3) Im f(z) = y chx cos y + x sin y shx, f(0) = 1;
4) Im f(z) = y cosx ch y − x sinx sh y, f(0) = 2;
5) Im f(z) = x sin y chx + y shx cos y, f(0) = 0;
6) Re f(z) = xex cos y − (y + 1)ex sin y, f(0) = i; 7) ∣f(z)∣ = (x2 + y2) ex; 8) arg f(z) = 2xy;
9) ∣f(z)∣ = rer

2 cos 2φ (z = reiφ); 10) arg f(z) = φ + r sinφ (z = reiφ).

Ш-5.18.

Пусть функции f(z) и g(z) регулярны в некоторой области G. Доказать, что сумма f(z) + g(z)
действительна во всей области G тогда и только тогда, когда f(z) = g(z) + C, где C - действительная
постоянная.
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Ш-5.19.
Пусть функции f(z) и g(z) регулярны в некоторой области G и g(z)�≡0. Доказать, что произведение

f(z)g(z) действительно (неотрицательно) во всей области G тогда и только тогда, когда f(z) = Cg(z), где
C - действительная (неотрицательная) постоянная.

4.3.2 Problems about Cauchy’s Theorem, Cauchy-Type Integral

Ш-6.пр.1. Простой интеграл

I = ∫
γ

dζ
1+ζ2 по полуокружности γ = {z ∶ ∣z − 1

2
∣ = 1

2
, Im z ⩾ 0} с началом в точке 0 и концом в точке 1.

Solution

Подынтегральная функция f(z) = 1
1+z2 регулярна в круге {z ∶ ∣z − 1

2
∣ < ∣ 1

2
+ i∣} , поэтому по теореме

Коши интеграл от этой функции внутри этого круга не зависит от пути интегрирования, т. е. можно
интегрировать, например, по отрезку [0,1]. Тогда получаем

I =
1

∫
0

dx

1 + x2
= arctgx∣x=1

x=0 =
π

4
.

Ш-6.пр.2. Простой интеграл
С помощью интегральной формулы Коши вычислить значение интеграла

I = ∳∣ζ∣=2
eζ

ζ + 1
dζ

где окружность ∣ζ ∣ = 2 обходится против часовой стрелки.

Solution

Сравнивая данный интеграл I с интегральной формулой Коши f(z) = 1
2πi ∳Γ

f(ζ)
ζ−z dζ, видим, что если

выбрать функцию f(z) = 2πiez, то получим, что I = f(−1), т. е. I = 2πie−1.

Ш-6.пр.3. Интеграл Френеля

I1 =
∞

∫
0

cosx2dx, I2 =
∞

∫
0

sinx2dx.

Solution

Это известный пример теории.

∫
ΓR

eiz
2

dz =
R

∫
0

eix
2

dx + ∫
CR

eiz
2

dz + ∫
l

eiz
2

dz = 0.
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∣eiz
2

∣ = e−R
2 sin 2φ ⩽ e−(4R

2/π)φ ⇒

RRRRRRRRRRRRR
∫
CR

eiz
2

dz

RRRRRRRRRRRRR
⩽ R

π/4

∫
0

e−(4R
2/π)φdφ = π

4R
(1 − e−R

2

) → 0 (R →∞).

z ∈ l ⇒ z = reiπ/4, eiz
2

= e−r
2

,

∫
l

eiz
2

dz = −eiπ/4
R

∫
0

e−r
2

dr.

∞

∫
0

e−x
2

dx =
√
π

2
.

Totally:
∞

∫
0

eix
2

dx = eiπ/4
√
π

2
.

Re, Im ⇒
∞

∫
0

cosx2dx =
∞

∫
0

sinx2dx =
√
2π

4
.

Ш-6.1.
Доказать, что если функция f(z) регулярна в круге ∣z − a∣ < R и удовлетворяет условию ∣f(z)∣ ⩽

M (∣z − a∣ < R), то для любых двух точек z1 и z2 из этого круга имеет место неравенство

RRRRRRRRRRRRR

z2

∫
z1

f(ζ)dζ
RRRRRRRRRRRRR
⩽M ∣z2 − z1∣ .

Solution

Ш-6.2.
Доказать, что утверждение задачи 1 остается в силе, если областью регулярности функции f(z)

является не обязательно круг, а произвольная выпуклая область в C. Замечание. Область называется
выпуклой, если вместе с каждой парой принадлежащих этой области точек ей принадлежит и
прямолинейный отрезок, соединяющий эти точки.

Solution

Ш-6.3.
Пусть функция f(z) регулярна в выпуклой области D ⊂ C и удовлетворяет условию Re f(z) ⩾ M >

0(z ∈D). Доказать, что для любых двух точек z1 и z2 из этой области

RRRRRRRRRRRRR

z2

∫
z1

f(ζ)dζ
RRRRRRRRRRRRR
⩾M ∣z2 − z1∣ .

Ш-6.4.
Доказать, что утверждение задачи 3 остается в силе, если условие

Re f(z) ⩾M > 0 (z ∈D)

заменить условием Re{eiφf(z)} ⩾M (действительное число φ не зависит от точки z).
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Ш-6.5.
Пусть функция f(z) регулярна в односвязной области D ⊂ C. Доказать, что функция

Φ(z) =
z

∫
z0

f(ζ)dζ + const (z0 ∈D,z ∈D)

является первообразной функции f(z).

Ш-6.6.
Пусть функции f(z) и g(z) регулярны в односвязной области D ⊂ C, а F (z) и G(z) соответственно

первообразные этих функций. Доказать формулу интегрирования по частям:

b

∫
a

F (z)g(z)dz = F (b)G(b) − F (a)G(a) −
b

∫
a

f(z)G(z)dz.

Ш-6.7.
Найти первообразные функций:
1) eaz
2) chaz;
3) shaz
4) cosaz
5) sinaz
6) eaz cos bz 7) zeaz; 8) z2 chaz; 9) z cosaz.

Ш-6.8.
Пусть функция f(z) регулярна в кольце r < ∣z − a∣ < R. Доказать, что интеграл

∳∣z−a∣=ρ
f(z)dz, r < ρ < R,

не зависит от числа ρ (окружность обходится против часовой стрелки).

Ш-6.9.
Пусть функция f(z) регулярна в кольце r < ∣z∣ < R, а простая кусочно-гладкая кривая γ ограничивает

область, содержащую круг ∣z∣ ⩽ r и лежащую в круге ∣z∣ < R, причем при движении по кривой γ область
остается слева. Доказать, что интеграл ∫

γ
f(z)dz не зависит от выбора кривой γ (удовлетворяющей

поставленным выше условиям).

Ш-6.19.
Пусть функция f(z) регулярна в произвольной области D C. Доказать, что необходимым и

достаточным условием существования первообразной у функции f(z) в области D является равенство
нулю интеграла от функции f(z) по любой простой замкнутой ломаной, лежащей в области D.

Ш-6.11.
Доказать, что следующие функции не имеют первообразных в областях, указанных в скобках:
1) 1

z
(0 < ∣z∣ < ∞);

2) 1
z
− 1
z−1(0 < ∣z∣ < 1);

3) z
1+z2 (0 < ∣z∣ < ∞);

4) 1
z(1−z2)(0 < ∣z∣ < 1).

Ш-6.12.
Пусть функция f(z) регулярна в ограниченной двусвязной области D, заключенной между двумя

замкнутыми кусочно-гладкими кривыми γ1 и γ2, и непрерывна вплоть до ее границы. Доказать, что
функция f(z) имеет в области D первообразную в том и только в том случае, когда

∳
γ1
f(z)dz = 0.
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Ш-6.13.

Пусть функция f(z) регулярна в односвязной в C области, содержащей точку z = ∞. Доказать, что
функция f(z) имеет в этой области первообразную в том и только в том случае, когда limz→∞ zf(z) = 0.

Ш-6.14.

Пусть функция f(z) регулярна в односвязной области D ⊂ C, содержащей точку z = ∞. Обозначим
через D′ область D с выколотой точкой z = ∞. Доказать, что функция f(z) имеет первообразную в
области D′ в том и только в том случае, когда

lim
z→∞

z(f(z) − f(∞)) = 0.

Ш-6.15.

Пусть функции f(z) и g(z) регулярны в области D ⊂ C, содержащей точку z = ∞, и имеют
первообразные в области D′ (область D с выколотой точкой z = ∞). Доказать, что функции
f(z) + g(z), f(z)g(z), P (f(z)), ef(z) (P (w) - произвольный многочлен) также регулярны в области D и
имеют первообразную в области D′.

Ш-6.16.
Пусть функция f(z) регулярна в ограниченной m-связной области D, граница которой состоит из

замкнутых кусочно-гладких кривых Γ1,Γ2, . . . ,Γm. Доказать, что для существования у функции f(z)
первообразной в области D необходимо и достаточно, чтобы

∫
Γk

f(z)dz = 0 (k = 1,2, . . . ,m − 1).

Ш-6.18.
Пусть функция f(z) регулярна в угле −a < arg z < a и удовлетворяет условиям

zf(z) → 0 (z → 0, ∣arg z∣ < a),
zf(z) → 0 (z →∞, ∣arg z∣ < a).

Доказать, что если интеграл
∞
∫
0

f(x)dx сходится, то при любом α из интервала (−a, a) интеграл

∫
arg z=α

f(z)dz также сходится и не зависит от α.

Ш-6.19.

∞

∫
−∞

e−x
2

cosαxdx =? −∞ < α < ∞.

Solution

(по идее схожая с методом для инт Френеля техника должна сработать. Скоро попробую!)

Solution

19.
√
πe−α

2/4.

Ш-6.20.
+∞
∫
0

e−ix
2

dx =?

301



4.3.2 Problems about Cauchy’s Theorem, Cauchy-Type Integral

Solution

20.
√
π
2
e−iπ/4.

Ш-6.21. Много интегралов
С помощью интегральной формулы Коши вычислить интегралы (все окружности обходятся против

часовой стрелки):
1) ∳∣z+i∣=3 sin z

dz
z+i 2) ∳∣z∣=2

dz
z2+1 3) ∳∣z∣=2

ez

z2−1dz;
4) ∳∣z∣=4

cos z
z2−π2 dz; 5) ∳∣z+1∣=1

dz
(1+z)(z−1)3 ; 6) ∳∣z−i∣=1

cos z
(z−i)3 dz

7) ∳∂D
ezdz

z(1−z)3 (D: a) ∣z∣ < 1/2; б) ∣z∣ < 3/2 в) ∣z − 1∣ < 1/2);
8) ∳∣z∣=r

dz
(z−a)n(z−b)(∣a∣ < r < ∣b∣, n = 1,2, . . .).

Solution

(по идее обычные вычеты вообще без проблем всё решат.)

Solution

21. 1) 2π sh 1; 2) 0 ; 3) 2πi sh 1; 4) 0 ; 5) −π/4; 6) −πi ch1 7) a) 2πi; б) πi(2− e); в) −πie; 8) −2πi(b− a)−n.

Ш-6.22.
Пусть функции f(z) и g(z) регулярны в круге ∣z∣ < 1 и непрерывны в замкнутом круге ∣z∣ ⩽ 1. Доказать,

что
1

2πi
∳∣ζ∣=1

[f(ζ)
ζ − z

+ zg(ζ)
zζ − 1

]dζ = { f(z) при ∣z∣ < 1,
g ( 1

z
) при ∣z∣ > 1.

Ш-6.23.

Пусть функция f(z) регулярна в области D ⊂ C, содержащей точку z = ∞, и непрерывна вплоть до ее
границы. Доказать, что в этом случае интегральная формула Коши принимает вид

1

2πi
∫
∂D

f(ζ)
ζ − z

dz = { f(z) − f(∞) при z ∈D,
−f(∞) при z ∉ D̄,

а формула для производных f(z) сохраняет прежний вид. Указание. Применить формулу Коши к
функции f(z) в области DR, получающейся удалением из области D области ∣z∣ ⩾ R, а затем положить
R →∞.

Ш-6.24.
Пусть функция f(z) регулярна в круге ∣z−a∣ < R и непрерывна в замкнутом круге ∣z−a∣ ⩽ R. Доказать

формулу
1

2π

2π

∫
0

f (a +Reiφ)dφ = f(a),

носящую название теоремы о среднем.

Ш-6.25.
Пусть функция f(z) регулярна в круге ∣z∣ < R и непрерывна в замкнутом круге ∣z∣ ⩽ R.

∬
r<∣z∣<R

f(z)dxdy.

Solution

25. π (R2 − r2) f(0).
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Ш-6.26.
Доказать, что функция, регулярная в некоторой области и отличная от тождественной постоянной,

не может принимать во внутренней точке этой области наибольшего по модулю значения. (Принцип
максимума модуля.)

Ш-6.27.
Пусть функция u(x, y) гармонична в круге ∣z − a∣ ⩽ R. Доказать, что

1

2π

2π

∫
0

u(α +R cosφ,β +R sinφ)dφ = u(α,β) (a = α + iβ).

Ш-6.29.
Пусть функция f(z) регулярна в ограниченной области D ⊂ C и непрерывна вплоть до ее границы

∂D, состоящей из конечного числа замкнутых кусочно-гладких кривых. Доказать неравенство

∣f
(n)(z)
n!

∣ ⩽ M ⋅L
2πρn+1

(n = 1,2, . . .),

где M = maxz∈∂D ∣f(z)∣, ρ - расстояние от точки z до границы области D, a L - полная длина границы
области D.

Ш-6.39.
Пусть функция f(z) регулярна в круге ∣z∣ < R и непрерывна в замкнутом круге ∣z∣ ⩽ R. Доказать

неравенство

∣f
(n)(z)
n!

∣ ⩽ MR

(R − ∣z∣)n+1
(n = 1,2, . . .), (∣z∣ < R),

где M =max∣z∣=R ∣f(z)∣.

Ш-6.31.
Пусть функция f(z) регулярна в круге ∣z∣ < R и непрерывна в замкнутом круге ∣z∣ ⩽ R. Доказать

неравенство

∣f
(n)(z)
n!

∣ ⩽ MR

2π

π

∫
−π
(R2 + ∣z∣2 − 2R∣z∣ cosφ)−(n+1)/2 dφ (∣z∣ < R),

где M =max∣z∣=R ∣f(z)∣, и показать, что при n = 1 это неравенство можно записать в виде

∣f ′(z)∣ ⩽ MR

R2 − ∣z∣2
(∣z∣ < R).

Ш-6.32.
Пусть функция f(z) регулярна во всей плоскости и удовлетворяет условию ∣f(z)∣ ⩽ M при всех z.

Доказать, что f(z) тождественно постоянна. (Теорема Лиувилля.) дачи 31 при фиксированном z и
R →∞.

Ш-6.33.
Пусть функция f(z) регулярна во всей плоскости и удовлетворяет неравенству

∣f(z)∣ ⩽M(1 + ∣z∣)p, p > 0.

Доказать, что f(z) - многочлен степени не выше p.
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Ш-6.36.
Пусть функция f(ζ) регулярна в кольце r < ∣ζ ∣ < R и непрерывна в замкнутом кольце r ⩽ ∣ζ ∣ ⩽ R.

Обозначим
f1(z) =

1

2πi
∳∣ζ∣=R

f(ζ) dζ
ζ − z

, (∣z∣ < R),

f2(z) = −
1

2πi
∳∣ζ∣=r

f(ζ) dζ
ζ − z

, (∣z∣ > r)

(окружности обходятся против часовой стрелки). Доказать, что при r < ∣z∣ < R имеет место равенство
f(z) = f1(z) + f2(z).

Ш-6.37.
Пусть функция f(z) регулярна в кольце r < ∣z − a∣ < R. Доказать, что ее можно представить в виде

f(z) = f1(z) + f2(z), где функция f1(z) регулярна в круге ∣z − a∣ < R, а функция f2(z) регулярна при
∣z − a∣ > r и f2(∞) = 0.

Ш-6.38.
Доказать, что представление функции f(z) из предыдущей задачи единственно. Указание.

Воспользоваться теоремой Лиувилля (см. задачу 32).

Ш-6.39.
Пусть простая замкнутая кривая γ1 ограничивает область D1 ⊂ C, а простая замкнутая кривая γ2,

лежащая в области D1, ограничивает область D2 ⊂D1. Доказать, что любую функцию f(z), регулярную
в кольцеобразной области D = D1/D̄2, можно представить в виде f(z) = f1(z) + f2(z), где функция
f1(z) регулярна в области D1, а функция f2(z) регулярна вне области D2. Доказать также, что такое
представление единственно, если наложить условие f2(∞) = 0.

Ш-6.40.
Пусть γ - простая замкнутая кривая, ограничивающая область D ⊂ C, а функция φ(z) регулярна в

некоторой области, содержащей кривую γ. Доказать, что для существования функции f(z), регулярной
в замыкании области D и совпадающей с функцией φ(z) на кривой γ, необходимо и достаточно, чтобы

∳
γ

φ(ζ)
ζ − z

dζ ≡ 0 (z ∉ D̄).

Ш-6.43.
Пусть функция f(ζ) регулярна в угле

−a < arg ζ < a, 0 < a < π,

непрерывна вплоть до его границы и удовлетворяет условиям

f(z) → 0 (z →∞, ∣arg z∣ ⩽ a),
∞

∫
0

∣f(x)∣ dx
1 + x

< ∞.

Обозначим
f1(z) = ∫

arg ζ=−a

f(ζ) dζ
ζ − z

, f2(z) = ∫
arg ζ=a

f(ζ) dζ
ζ − z

Доказать, что: 1) функция f1(z) регулярна во всей плоскости z с разрезом по лучу arg z = −a, а функция
f2(z) - во всей плоскости z с разрезом по лучу arg z = a 2) вне угла ∣arg z∣ ⩽ a имеет место равенство f1 = f2;
3) внутри угла ∣arg z∣ < a имеет место равенство f1 − f2 = 2πi.

4.3.3 Problems about the Taylor Series

Ш-7.пр.1. Разложение в ряд Тейлора
Разложить в ряд Тейлора в окрестности точки z = 0 функции

f(z) = 1

(1 − z)2
и f(z) = z + 11

z2 + z − 2
.
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Solution 1

1
(1−z)2 = (

1
1−z )

′
, 1

1−z =
∞
∑
n=0

zn,

1

(1 − z)2
=
∞
∑
n=0
(n + 1)zn.

Полученный ряд сходится в круге B1(0) = {z ∶ ∣z∣ < 1}.

Solution 2

z2 + z − 2 = (z − 1)(z + 2),

f(z) = z + 11
z2 + z − 2

= A

z − 1
+ B

z + 2
, где A = 4, B = −3.

f(z) = − 4

1 − z
− 3

2 (1 + z
2
)

1
1−z =

∞
∑
n=0

zn ⇒

f(z) = −4
∞
∑
n=0

zn − 3

2

∞
∑
n=0
(−1)n z

n

2n
=
∞
∑
n=0
(3(−1)

n+1

2n+1
− 4) zn.

Этот ряд сходится в круге B1(0) = {z ∶ ∣z∣ < 1}.

Ш-7.7.пр.2. Разложение в ряд Тейлора

Разложить функцию f(z) = (5 − 3z + z2

2
) e6z−z

2−8 в окрестности точки z = 3 в ряд Тейлора.

Solution

z − 3 = t, ez =
∞
∑
n=0

zn

n!

f(z) = t
2 + 1
2

e1−t
2

= e
2
(
∞
∑
n=0

(−1)nt2(n+1)

n!
+
∞
∑
n=0

(−1)n

n!
t2n) =

= e
2
+
∞
∑
n=0
((−1)

(n−1)

(n − 1)!
+ (−1)

n

n!
) t2n =

= e
2
+
∞
∑
n=0

(−1)n+1(n − 1)
n!

(z − 3)2n.

Ряд сходится во всей C.
(???? не знаю тут второй переход происходит, когда мы вынимаем t2n, как так, что там факториал

от отрицательного числа получается??? Решение точно не верное, хотя метод верный потом перерешаю.)

Ш-7.пр.3. Разложение в ряд Тейлора
Разложить функцию ez cos z в ряд Тейлора в окрестности точки z = 0.

Solution

Можно было бы перемножить ряды для двух множителей, однако для эффективнее преобразовать:

ez cos z = ez (e
iz + e−iz

2
) = 1

2
(ez(1+i) + ez(1−i)) .

ez =
∞
∑
n=0

zn

n!
; 1 + i =

√
2eiπ/4 ⇒

ez cos z =
∞
∑
n=0

2n/2eiπn/4 + 2n/2e−iπn/4

2n!
zn =

∞
∑
n=0

2n/2

n!
cos

πn

4
zn.

Радиус сходимости этого ряда R = +∞.
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Ш-7.пр.4.1/2 Разложение в ряд Тейлора
Разложить в ряд Тейлора в окрестности точки z = 0 функции f(z) = z

ez−1 и g(z) = z ctg z.

Solution

Применив метод неопределенных коэффициентов, получим (????)

z

ez − 1
=
∞
∑
n=0

Bn
n!
zn,

где Bn - числа Бернулли,

B0 = 1, B1 = −
1

2
,

C0
n+1B0 +C1

n+1B1 + . . . +Cnn+1Bn = 0,

Ckn+1 - биномиальные коэффициенты (k = 0,1, . . . , n). Ряд (12) сходится в круге B2π(0) = {z ∶ ∣z∣ < 2π}.

Ш-7.пр.4.2/2 Разложение в ряд Тейлора
Разложить в ряд Тейлора в окрестности точки z = 0 функцию g(z) = z ctg z.

Solution

ctg z = cos z

sin z
= ie

2iz + 1
e2iz − 1

= i + 2i

e2iz − 1
;

z

ez − 1
=
∞
∑
n=0

Bn
n!
zn,

z
ez−1 =

∞
∑
n=0

Bn

n!
zn ⇒

z ctg z = iz + 2iz

e2iz − 1
= iz + 1 + (−1

2
)2iz +

∞
∑
n=1

(2i)2nB2n

(2n)!
z2n = 1 +

∞
∑
n=1

(−1)n22nB2n

(2n)!
z2n.

Этот ряд содержит только члены z2k, так как z ctg z - четная функция, этот ряд сходится в круге радиуса
π.

Ш-7.пр.5. Порядок нуля
Найти порядок нуля z = π функции

f(z) = (z2 − π2)2 sin4 z.

Solution

Очевидно:

z2 − π2 = (z − π)h1(z), h1(π) ≠ 0,
sin z = (z − π)h2(z), h2(π) ≠ 0,

⇒ f(z) = (z − π)6h(z) h(π) ≠ 0

Точка z = π - нуль функции f(z) кратности 6.

vmath.ru Интеграл

2π

∫
0

dx

a + cosx
=? a > 1
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Solution

eix ≡ z. При изменении x от 0 до 2π переменная z пробегает окружность ∣z∣ = 1 в положительном
направлении.

cosx = 1

2
(eix + e−ix) = z

2 + 1
2z

dz = ieixdx = izdx, ⇒ dx = dz
iz

I = ∳∣z∣=1
dz

iz ( z2+1
2z
+ a)

= 2

i
∳∣z∣=1

dz

z2 + 2az + 1

Корни знаменателя z1 = −a +
√
a2 − 1, z2 = −a −

√
a2 − 1 - простые полюсы, ∣z1∣ < 1 и z1 лежит внутри

круга ∣z∣ = 1:

res f (z1) =
1

z − z2
∣
z=z1
= 1

2
√
a2 − 1

I = 2
i
⋅ 2πi

2
√
a2−1

= 2π√
a2−1

.

Ш-7.1.
Используя формулы (3) и (5), доказать, что:

1) 1
4
(ez + e−z + 2 cos z) =

∞
∑
n=0

z4n

(4n)!

2) 1
3
(ez + 2e−z/2 cos z

√
3

2
) =

∞
∑
n=0

z3n

(3n)! .

Solution

(просто подставить и собрать члены)

Ш-7.2.
Используя формулу (8), доказать, что:

1) 2
(1+z)3 =

∞
∑
n=0
(−1)n(n + 1)(n + 2)zn, ∣z∣ < 1

2) z(z+a)
(a−z)3 =

∞
∑
n=1

n2zn

an+1 , ∣z∣ < ∣a∣, a ≠ 0;

3) 1
z2+a2 =

∞
∑
n=0
(−1)na−2(n+1)z2n, ∣z∣ < ∣a∣, a ≠ 0

4) 1
(1+z2)2 =

∞
∑
n=0
(n + 1)(−1)nz2n, ∣z∣ < 1 ∣;

5) z2+4z4+z6
(1−z2)4 =

∞
∑
n=1

n3z2n, ∣z∣ < 1 ∣ 6) (1 − z)−m−1 =
∞
∑
n=0

(n+1)(n+2)...(n+m)
m!

zn, ∣z∣ < 1, m ∈ N.

Solution

(просто подставить и собрать члены. проделаю еще раз!!!)

Ш-7.3. Разложения в Тейлора
Разложить в ряд Тейлора в окрестности точки z = 0 функцию:
1) 1
(1+z)2 ;

2) 1
(1−z2)2

3) 1
(1+z3)2

4) 1
(1−z6)3

5) 1
(z+1)(z−2)

6) 2z−5
z2−5z+6 7) z

(z2+1)(z2−4) ; 8) z3

(z2+1)(z−1) ; 9) 1
(z2−1)2(z2+4) 10) 1

1+z+z2 ; 11) 2z−1
4z2−2z+1 ; 12) 1

(1+z)(1+z2)(1+z4) 13)
1

(1−z4)(1+z+z2+z3) .
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Ш-7.4.
Разложить функцию

f(z) = 2z2 + 2z − 7
z2 + z − 2

в ряд Тейлора в окрестности точки z = −1.

Ш-7.5.
Разложить функцию

f(z) = z2 + 2z
(z + 1)3

в ряд Тейлора в окрестности точки z = 1.

Ш-7.6.
Разложить в ряд Тейлора в окрестности точки z = 0 функции:
1) sin2 z;
2) cos3 z;
3) sin4 z + cos4 z
4) cos2 z + ch2 z
5) e2 sin z
6) ch z ⋅ cos z.

Ш-7.7.
Разложить функцию

f(z) = (z2 − 4z + 5) e4z−z
2

в ряд Тейлора в окрестности точки z = 2.

Ш-7.8.
Разложить функцию

f(z) = (z
2

3
+ 2z − 1) cos(2z + 6)

в ряд Тейлора в окрестности точки z = −3.

Ш-7.9.
Найти первые три отличные от нуля члена разложения в ряд Тейлора в окрестности точки z = 0

функции:
1) tg z;
2) z
(1−z2) sin z

3) ez+cos z

Ш-7.19.
Используя метод неопределенных коэффициентов, показать, что коэффициенты An степенного ряда

1

1 − z − z2
=
∞
∑
n=0

Anz
n

определяются условиями A0 = 1,A1 = 1,An+1 = An+An−1, n ∈ N. Числа An называются числами Фибоначчи.
Доказать, что

An =
1√
5

⎡⎢⎢⎢⎢⎣
(
√
5 + 1
2
)
n+1

− (1 −
√
5

2
)
n+1⎤⎥⎥⎥⎥⎦

, n ∈ N.
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Ш-7.11.
Определить порядок m нуля z = a функции f(z), если:
1) f(z) = (cos 3z − cos 5z)2(1 − cos 2z)3, a = 0;
2) f(z) = (z2 − π2)3 sin3 z, a = π
3) f(z) = (z2 + π2)2 (e2z − 1)4 , a = πi;
4) f(z) = (z4 + 2z3 − 2z − 1)2 (eiπz + 1)3 , a = −1.

Ш-7.12.
Найти разложение в ряд Тейлора в окрестности точки z = 0 функции, удовлетворяющей указанным

ниже условиям:
1) f ′(z) = f(z), f(0) = 1;
2) (1 + z2) f ′(z) = 1, f(0) = 0;
3) f ′′(z) + λ2f(z) = 0, f(0) = 0, f ′(0) = λ;
4) (1 − z2) f ′′(z) − zf ′(z) = 0, f(0) = 0, f ′(0) = 1;
5) zf ′′(z) + f ′(z) + zf(z) = 0, f(0) = 0, f ′(0) = 1;
6) (1 − z2) f ′′(z) − 5zf ′(z) − 4f(z) = 0, f(0) = 0, f ′(0) = 1.

Ш-7.13.
Пусть функция f(z) регулярна в некоторой окрестности точки z = 0 и удовлетворяет условиям

f(0) = 0, f(z) = z + f (z2) .

Доказать, что f(z) =
∞
∑
n=0

z2
n

.

Ш-7.14.
Пусть функция f(z) регулярна в некоторой окрестности точки z = 0 и удовлетворяет условиям

f(0) = 1, f ′(z) = (1 + qz)f (q2z) ,

где q - заданное действительное число, такое, что ∣q∣ ⩽ 1. Доказать, что

f(z) =
∞
∑
n=0

zn

n!
q

n(n+1)
2 .

Ш-7.15.
Используя формулу (12) (пример 4), доказать, что:

1) tg z =
∞
∑
n=1
(−1)n 22n(1−22n)

(2n)! B2nz
2n−1, ∣z∣ < π

2

2) z
sin z
= 1 +

∞
∑
n=1
(−1)n 2−22n

(2n)! B2nz
2n, ∣z∣ < π.

Ш-7.16.
Пусть функция f(z) регулярна в односвязной области D, содержащей точку z0. Доказать, что для

любой точки z ∈D справедлива формула

f(z) = f (z0) +
n

∑
k=1

f (k) (z0)
k!

(z − z0)k +
1

n!

z

∫
z0

(z − t)nf (n+1)(t)dt

Ш-7.17.
Доказать, что

1

cos z
=
∞
∑
n=0
(−1)n E2n

(2n)!
z2n, ∣z∣ < π

2
,

где коэффициенты E2n (числа Эйлера) определяются условиями

E0 = 1, E2k−1 = 0 (k ∈ N),
E0 +C2

2nE2 +C4
2nE4 + . . . +C2n

2nE2n = 0, n ∈ N
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4.3.4 Problems about Sequences and Series of Analytic Functions

Ш-8.1.
Доказать, что суммы следующих рядов регулярны в областях, указываемых в скобках:

1)
∞
∑
n=0

cosnz
n!
(∣z∣ < ∞);

2)
∞
∑
n=1

n!
nn sinnz(∣ Im z∣ < 1);

3)
∞
∑
n=1
[ z(z+n)

n
]
n
(∣z∣ < 1);

4)
∞
∑
n=1

1
n(z−n)(z ≠ 1,2, . . .);

5)
∞
∑
n=1

(−1)n
z+n (z ≠ −1,−2, . . .);

6)
∞
∑
n=1
(−1)nn−z (Re z > 0); 7)

∞
∑

n=−∞
2−n

2znn (Re z > 0); 8)
∞
∑
n=0

e−z
2√n(∣arg z∣ < π/4).

Ш-8.2.
Пусть {λn}-возрастающая последовательность положительных чисел и пусть

lim
n→∞

n

λn
= α > 0, a lim

n→∞
∣an∣1/n = ρ > 0.

Доказать, что сумма ряда
∞
∑
n=1

ane
−λnz

регулярна в полуплоскости Re z > α lnρ.

Ш-8.3.
Доказать, что следующие бесконечные произведения представляют функции, регулярные в областях,

указываемых в скобках:
1) ∏∞n=1 (1 − zn) (∣z∣ < 1);
2) ∏∞n=1 (1 + z2nnz) (∣z∣ < 1);
3) ∏∞n=1 (1 − z

n
) ez/n (∣z∣ < ∞)

4) ∏∞n=1 (1 + (−1)n ⋅ zn) (∣z∣ < ∞)
5) ∏∞n=1 cos zn(∣z∣ < ∞);
6) ∏∞n=1 th n2

z2
(∣arg z∣ < π

4
).

Ш-8.4.

Пусть ряд
∞
∑
k=1
∣ck ∣ сходится, а функция u(z) регулярна в области D. Доказать, что бесконечное

произведение
∞
∏
k=1
(1 + cku(z))

представляет функцию, регулярную в области D.

Ш-8.5.
Пусть сходятся ряды

∞
∑
k=1

ck,
∞
∑
k=1

c2k, . . . ,
∞
∑
k=1

cmk ,
∞
∑
k=1
∣ck ∣m+1 .

Доказать, что бесконечное произведение
∞
∏
n=1
(1 + cnn−z)

представляет функцию, регулярную в полуплоскости Re z > 0.
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Ш-8.6.
Доказать регулярность функций, представленных следующими интегралами в областях, указанных в

скобках:
1)
∞
∫
0

e−iz
1+t2 dt (Re z > 0)

2)
∞
∫
1

tz−1e−tdt (∣z∣ < ∞);

3)
∞
∫
0

tz−1e−tdt (Re z > 0);

4)
∞
∫
1

tz−1
t2+1dt (Re z < 2)

5)
∞
∫
0

tz−1
t2+1dt

6)
∞
∫
0

dt
(t2+1)(1+etz)(Re z > 0) 7)

∞
∫
0

e−tdt
e2πitz+1(Im z > 0); 8)

1

∫
0

tz(1 − t)1−zdt (−1 < Re z < 2); 9)
1

∫
0

cos tz
z+t dt(z ∉

[−1,0], z ≠ ∞) 10)
∞
∫
0

t sin t
t2+z2 (Re z > 0)

Ш-8.7.
Пусть функция φ(t) непрерывна при t ⩾ 0 и удовлетворяет условию

lim
t→+∞

ln ∣φ(t)∣
t

= σ.

Доказать, что интеграл
∞

∫
0

φ(t)e−tzdt

представляет функцию, регулярную в полуплоскости Re z > σ.

Ш-8.8.
Пусть функция φ(t) непрерывна при −∞ < t < ∞ и удовлетворяет условиям

lim
t→+∞

ln ∣φ(t)∣
t

= σ1, lim
t→−∞

ln ∣φ(t)∣
t

= σ2, σ2 > σ1.

Доказать, что интеграл
∞

∫
−∞

φ(t)eitzdt

представляет функцию, регулярную в полосе σ1 < Im z < σ2.

Ш-8.9.
Найти области регулярности функций, представленных следующими интегралами:

1)
∞
∫
0

φ(t)
t+z dt, ∣φ(t)∣ ⩽M(1 + t)

−α, α > 0;

2)
∞
∫
1

φ(t)
t2−z2 dt, ∣φ(t)∣ ⩽M

3)
∞
∫
0

φ(t)
et+zdt, ∣φ(t)∣ ⩽M(1 + t)

m,m < ∞;

4)
∞
∫
−∞

φ(t)
et+zdt, ∣φ(t)∣ ⩽ M

1+t2

5)
∞
∫
1

φ(t)
(t3−z3)2 dt, ∣φ(t)∣ ⩽Mtα, α < 5

7) ∫
γ

e−t
t+zdt(γ = {t ∶ arg t = α}),−π < α < π; 8) ∫

γ

t2dt
et+z (γ = {t ∶ arg t = α}),0 ⩽ α ⩽ π

2
; 9)

∫
γ

cos t
et−z (γ = {t ∶ arg t =

π
2
, 0 ⩽ ∣t∣ ⩽ π}).
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Ш-8.19.
Пусть функции fn(z), n = 1,2, . . ., регулярны в круге ∣z∣ < 1 и удовлетворяют условиям

∣fn(z)∣ ⩽M(1 − ∣z∣)−m (∣z∣ < 1, n = 1,2, . . .),

где числа M и m не зависят от n. Доказать, что из последовательности {fn(z)} можно выбрать
подпоследовательность {fnk

(z)}, равномерно сходящуюся строго внутри круга ∣z∣ < 1.

Ш-8.11.
Пусть граница ∂D ограниченной области D состоит из конечного числа простых кусочно-гладких

кривых и пусть на ∂D определены и непрерывны функции φn(ζ). Доказать, что если последовательность
{φn(ζ)} равномерно ограничена на ∂D, то из последовательности функций {fn(z)},

fn(z) =
1

2πi
∫
∂D

φn(ζ)
(ζ − z)m

dζ

)m - фиксированное целое число) можно выделить подпоследовательность {fnk
(z)}, равномерно

сходящуюся строго внутри области D.

Ш-8.12.
Пусть функции fn(z), n = 1,2, . . ., регулярны в области D и удовлетворяют условиям Re fn(z) ⩾ 0 (z ∈

D,n = 1,2, . . .). Доказать, что из последовательности {fn(z)} можно выделить подпоследовательность
{fnk
(z)}, равномерно сходящуюся строго внутри области D (возможно, к бесконечности).

Ш-8.13.
Пусть функции fn(z), n = 1,2, . . ., регулярны и равномерно ограничены в области D. Доказать, что

если последовательность {fn(z)} сходится на множестве E, имеющем хотя бы одну предельную точку в
области D, то она равномерно сходится строго внутри области D. (Теорема Виталu.)

Ш-8.14.
Пусть функции un(x, y), n = 1,2, . . ., гармоничны в области D и пусть последовательность {un(x, y)}

равномерно сходится в области D к функции u(x, y). Доказать, что функция u(x, y) гармонична в области
D. носвязной части области D. Там можно построить регулярные функции fn(z), для которых Re fn(x+
iy) = un(x, y).

Ш-8.15.
Пусть функции un(x, y), n = 1,2, . . ., гармоничны в области D и удовлетворяют условиям

∣un(x, y)∣ ⩽M ((x, y) ∈D,n = 1,2, . . .).

Доказать, что из последовательности {un(x, y)} можно выделить подпоследовательность {unk
(x, y)},

равномерно сходящуюся строго внутри области D.

Ш-8.16.
Пусть функции un(x, y), n = 1,2, . . ., гармоничны в области D и удовлетворяют условиям

un+1(x, y) ⩾ un(x, y) ((x, y) ∈D,n = 1,2, . . .).

Доказать, что последовательность {un(x, y)} равномерно сходится строго внутри области D (возможно,
к +∞).

Ш-8.17.
Пусть функции fn(z), n = 1,2, . . ., регулярны в области D, не обращаются в этой области в нуль и

удовлетворяют неравенствам
∣fn(z)∣ ⩽Mn (z ∈D,n = 1,2, . . .)

(постоянная M не зависит от n). Доказать, что из последовательности { n
√
∣fn(z)∣} можно выделить

подпоследовательность, равномерно сходящуюся строго внутри области D к функции ∣g(z)∣, где g(z)-
регулярная в области D функция.
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Ш-8.18.

Пусть степенной ряд
+∞
∑
n=0

cnz
n имеет радиус сходимости R,0 < R < ∞. Доказать, что для каждой точки

z0 = Reiφ

существуют такие последовательности {nk} и {zk}, для которых

lim
k→∞

zk = z0;
nk

∑
n=0

cnz
n
k = 0.

Указание. См. задачи 17 и 13.

4.3.5 Problems about the Uniqueness Theorem. Analytic Continua-
tion

Ш-пр.1.
Существуют ли функции f , регулярные в точке z0 = 0, удовлетворяющие при всех n ∈ N условиям a)

f ( 1
n
) = f (− 1

n
) = 1

n2 ; б) f ( 1
n
) = f (− 1

n
) = 1

n+1 , n ∈ N?
a) Функция f(z) = z2 удовлетворяет условиям. б) Допустим, что функция с указанными свойствами

существует. Рассмотрим функцию f1 вида f1(z) = z
z+1 . Она удовлетворяет условию f1 ( 1n) =

1
n+1 , n ∈ N,

т. е. совпадает с f на бесконечной последовательности точек { 1
n
} и 1

n
→ 0 при n → ∞. По теореме

единственности f(z) ≡ f1(z) в окрестности точки z0 = 0. Однако f1 (− 1
n
) ≠ 1

n+1 . Получили противоречие,
которое возникло в силу предположения, что регулярная функция f с указанным свойством существует.
ЗадАчи

Ш-1.
Пусть функция f(z) регулярна в замыкании Ḡ области G и f(z)�≡ const. Доказать, что в области G

лежит лишь конечное число решений уравнения f(z) = a (при произвольном фиксированном значении a).

Ш-2.
Существует ли функция f(z), регулярная в некоторой окрестности точки z = 0 и удовлетворяющая

одному из следующих условий (для всех n = 1,2, . . .)
1) f ( 1

n
) = sin πn

2
; 9) f ( 1

n
) = f (− 1

n
) = 1

n3 ;
2) f ( 1

n
) = 1

n
cosπn; 10) f ( 1

n
) = f (− 1

n
) = sin πn

2

n3 ;

3) f ( 1
n
) = 1

2n+1 ; 11) f ( 1
n
) = f (− 1

n
) = cos2(πn)

n2 ;

4) f ( 1
n
) = cos2 πn

2n+1 ; 12) f ( 1
n
) = f (− 1

n
) = sin2 πn

2

n2

5) f ( 1
n
) = 1

2n+cosπn ; 13) ∣f ( 1
n
)∣ < e−n;

6) f ( 1
n
) = f (− 1

n
) = 1

n2 ; 14) 2−n < ∣f ( 1
n
)∣ < 21−n; 7) f ( 1

n
) = f (− 1

n
) = 1

2n+1 ; 15) n−5/2 < ∣f ( 1
n
)∣ < 2n−5/2; 8)

f ( 1
n
) = e−n, 16) ∣f ( 1

n
) − cosπn

2n+1 ∣ <
1
n2 .

Ш-3.
Пусть функции f1(z) и f2(z) регулярны в области D и удовлетворяют в этой области

дифференциальному уравнению f ′(z) = P (z, f(z)), где P (z,w) - многочлен от своих переменных.
Доказать, что если в некоторой точке z0 ∈D имеет место равенство f1 (z0) = f2 (z0), то f1(z) ≡ f2(z).

Ш-4.
Пусть функции f1(z) и f2(z) регулярны в области D и удовлетворяют в этой области

дифференциальному уравнению
f (m)(z) = P (z, f, f ′, . . . , f (m−1)) ,

где P - многочлен от своих переменных. Доказать, что если в некоторой точке z0 ∈ D имеют место
равенства

f1 (z0) = f2 (z0) , . . . , f (m−1)1 (z0) = f (m−1)2 (z0) ,

то f1(z) ≡ f2(z).
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Ш-5.
Доказать, что функциональное уравнение f(z) = f(2z) не имеет решений, peгулярных в точке z = 0 и

отличных от тождественной постоянной.

Ш-6.

Пусть q = e2πiα, где α - иррациональное число. Доказать, что функциональное уравнение f(z) = f(qz)
не имеет решений f(z), регулярных при 1/2 < ∣z∣ < 2 и отличных от тождественной постоянной.

Ш-7.
Пусть f(z) - периодическая функция, регулярная в некоторой области, содержащей точку z = ∞.

Доказать, что f(z) = const во всей области регулярности.

Ш-8.
Доказать, что функции ez, cos z, sin z, ch z, sh z, определяемые nервоначально лишь для

действительных значений переменного, можно регулярно продолжить на всю комплексную плоскость,
разложив эти функции в ряд Тейлора.

Ш-9.
Найти возможно более широкую область, в которую можно регулярно продолжить с действительной

оси функции:
1) tg z;
2) ctg z;
3) th z

4) e1/ cos z;
5) e− tg z

6) sin(th z); 7) cos (ez
2

) 8) th (ez); 9) ctg(ch z).

Ш-19.
Доказать, что функцию ln z, определенную для действительных положительных значений z, можно

регулярно продолжить на всю комплексную плоскость с разрезом по отрицательной части действительной
оси и, обозначив это регулярное продолжение символом h(z), получить для него формулу

h(z) = ln ∣z∣ + iarg z (∣arg z∣ < π).

Указание. Воспользоваться формулой ln z =
z

∫
1

dt
t
, справедливой для всех действительных положительных

z.

Ш-11.
Пусть α-произвольное действительное число. Доказать, что функцию zα, определенную для

действительных положительных z, можно регулярно продолжить на всю комплексную плоскость с
разрезом по отрицательной части действительной оси и, обозначив это регулярное продолжение
символом (zα), получить для него формулу

(zα) = ∣z∣αeiαarg z (∣arg z∣ < π).

Указание. Воспользоваться формулой ln z =
z

∫
1

dt
t
, справедливой для всех действительных

положительных z.

Ш-11.
Пусть α-произвольное действительное число. Доказать, что функцию zα, определенную для

действительных положительных z, можно регулярно продолжить на всю комплексную плоскость с
разрезом по отрицательной части действительной оси и, обозначив это регулярное продолжение
символом (zα), получить для него формулу

(zα) = ∣z∣αeiαarg z (∣arg z∣ < π).

Указание. Воспользоваться формулой zα = eα ln z, справедливой для всех действительных положительных
z.
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Ш-12.
Пусть функция Φ (z1, . . . , zn) определена, когда

zk ∈Dk (k = 1,2, . . . , n)

и регулярна по каждой переменной zk в области Dk при произвольных фиксированных значениях
остальных переменных. Доказать, что если каждая область Dk содержит непустой интервал (ak, bk)
действительной оси и если

Φ (z1, . . . , zn) = 0 (z1 ∈ (a1, b1) , . . . , zn ∈ (an, bn)) ,

то Φ (z1, . . . , zn) ≡ 0.

Ш-13.
Опираясь на справедливость приводимых ниже формул для действительных значений переменных,

доказать их справедливость и для произвольных комплексных значений этих переменных:
1) ez1+z2 = ez1 ⋅ ez2 ;
2) cos2 z + sin2 z = 1;
3) sin 2z = 2 sin z cos z;
4) ch2z = ch2 z + sh2 z;
5) sin (z1 + z2) = sin z1 cos z2 + cos z1 sin z2
6) ch (z1 + z2) = ch z1 ch z2 + sh z1 sh z2 7) cos z1 + cos z2 = 2 cos z1+z2

2
cos z1−z2

2
; 8)

sh z1 + sh z2 = 2 sh z1+z2
2

ch z1−z2
2

.

Ш-14.
Пусть функция f(z) регулярна в некоторой области, содержащей отрезок [0,1], и удовлетворяет

условию f(z + 1) = f(z). Доказать, что функцию f(z) можно регулярно продолжить в некоторую полосу
−δ < Im z < δ, δ > 0.

Ш-15.
Пусть функция f(z) регулярна в некоторой области, содержащей отрезок [0,1], и удовлетворяет

условию
f(z + 1) = zf(z) + p(z),

где p(z) - многочлен. Доказать, что функцию f(z) можно регулярно продолжить в некоторую полосу
−δ < Im z < δ, δ > 0.

Ш-16.
Пусть функция f(z) регулярна в некоторой области, содержащей отрезок [1,2], и удовлетворяет

условию
f(2z) = f(z) + p(z),

где p(z) - многочлен. Доказать, что функцию f(z) можно регулярно продолжить в некоторый угол
−δ < arg z < δ, δ > 0.

Ш-17.
Пусть функция f(z) регулярна в кольце ρ < ∣z∣ < 1, ρ > 0, и удовлетворяет в нем функциональному

уравнению
f(z) = f (z2) + g(z),

где g(z) - некоторая данная функция, регулярная в круге ∣z∣ < 1. Доказать, что функцию f(z) можно
регулярно продолжить в кольцо 0 < ∣z∣ < 1.

Ш-18.
Гамма-функция Эйлера Г)z) определена при действительных z > 0 равенством

Γ(z) =
∞

∫
0

tz−1e−tdt.

Доказать, что функцию (z) можно регулярно продолжить на всю комплексную плоскость, за исключением
точек z = 0,−1,−2, . . .. ному уравнению Γ(z + 1) = zΓ(z).
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Ш-19.
Бета-функция Эйлера B(z, ζ) определяется при действительных z > 0 и ζ > 0 равенством

B(z, ζ) =
1

∫
0

tz−1(1 − t)ζ−1dt.

Доказать, что функцию B(z, ζ) можно регулярно продолжить по каждой из переменных на всю
комплексную плоскость, за исключением точек z = 0,−1,−2, . . . (соответственно ζ = 0,−1,−2, . . .).

(????) ным уравнениям

B(z, ζ) = B(ζ, z), B(z + 1, ζ) = z

z + ζ
B(z, ζ).

Ш-29.
Пусть функция φ(ζ) регулярна в кольце r ⩽ ∣ζ ∣ ⩽ R. Доказать, что функцию f(z), заданную в круге

∣z∣ < r с помощью формулы

f(z) = 1

2πi
∳∣ζ∣=r

(ζ − z)mφ(ζ)dζ (∣z∣ < r)

)m - целое число) можно регулярно продолжить в круг ∣z∣ < R и что это регулярное продолжение g(z)
задается формулой

g(z) = 1

2πi
∳∣ζ∣=R

(ζ − z)mφ(ζ)dζ (∣z∣ < R).

Ш-21.
Доказать, что следующие функции могут быть регулярно продолжены на области G, указанные в

скобках:
1) f(z) = ∳∣ζ∣=1 e

(ζ+ 1
ζ ) dζ
ζ−z , ∣z∣ < 1 (G = {z ∶ ∣z∣ < ∞});

2) f(z) = ∳∣ζ∣=1 e
(ζ+ 1

ζ ) dζ
ζ−z , ∣z∣ > 1 (G = {z ∶ ∣z∣ > 0});

3) f(z) = ∳∣ζ∣=2
cos(ζ+ 1

ζ )
ζ2+1

dζ
(ζ−z)2 , ∣z∣ < 2 (G = {z ∶ ∣z∣ < ∞})

4) f(z) = ∳∣ζ∣=2
cos(ζ+ 1

ζ )
ζ2+1

dζ
(ζ−z)2 , ∣z∣ > 2 (G = {z ∶ z ≠ 0, i,−i});

5) f(z) = ∳∣ζ∣=1 sh (ζ +
1
ζ
) dζ
ζ2+z2 , ∣z∣ < 1 (G = {z ∶ ∣z∣ < ∞});

6) f(z) = ∳∣ζ∣=1
e−1/ζ
ch ζ

dζ
ζ2+z2 , ∣z∣ < 1 (G = {z ∶ z ≠ ±πi/2,±3πi/2, . . .}).

Ш-22.
Пусть функция φ(ζ) регулярна в полосе −a ⩽ Re ζ ⩽ 0 и удовлетворяет условию

∣φ(ζ)∣ ⩽M(1 + ∣ζ ∣)−α, α > 0 (−a ⩽ Re ζ ⩽ 0)

Доказать, что функция

f(z) =
+i∞

∫
−i∞

φ(ζ)
ζ − z

dζ (Re z > 0)

допускает регулярное продолжение в полуплоскость Re z > −a и что это продолжение g(z) дается
формулой

g(z) =
−a+i∞

∫
−a−i∞

φ(ζ)
ζ − z

dζ (Re z > −a)

Ш-23.
Доказать, что для регулярного продолжения g(z), построенного в задаче 22, справедлива также

формула

g(z) =
i∞

∫
−i∞

φ(ζ)
ζ − z

dζ − 2πiφ(z) (−a ⩽ Re z < 0)

Указание. Воспользоваться интегральной формулой Коши.
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4.3.6 Problems about the Maximum Principle

Ш-1.
Пусть функция f(z) регулярна в области G. Доказать, что если для любой последовательности точек

zn ∈ G, сходящейся к какой-либо точке границы области G, имеет место неравенство

lim
n→∞

∣f (zn)∣ ⩽M,

то или в каждой внутренней точке области G имеет место неравенство ∣f(z)∣ <M , или f(z) ≡Meiφ.

Ш-2.
Пусть функция f(z) регулярна в круге ∣z∣ < 1 и удовлетворяет в этом круге неравенству ∣f(z)∣ < M .

Доказать, что если f(0) = 0, то функция f(z) удовлетворяет в круге ∣z∣ < 1 и более сильному неравенству

∣f(z)∣ ⩽M ∣z∣,

причем если хотя бы в одной точке z0,0 < ∣z0∣ < 1, имеет место равенство ∣f (z0)∣ =M ∣z0∣, то

f(z) =Mzeiφ,

где φ - действительная постоянная. (Лемма Шварца.) Указание. Рассмотреть функцию f(z)/z и
доказать, что ее можно регулярно продолжить в точку z = 0.

Ш-3.
Пусть функция f(z) регулярна в круге ∣z∣ < R и удовлетворяет там неравенству ∣f(z)∣ <M , а f(0) = 0.

Доказать, что

∣f ′(0)∣ ⩽ M
R
,

причем знак равенства возможен только для функции f(z) =Meiφ ⋅ z
R

.

Ш-4.
Пусть функция f(z) регулярна в круге ∣z∣ < R, удовлетворяет там неравенству ∣f(z)∣ <M и обращается

в нуль в некоторой точке z0 этого круга. Доказать неравенства

∣f(z)∣ ⩽M R ∣z − z0∣
∣R2 − zz̄0∣

(∣z∣ < R); ∣f ′ (z0)∣ ⩽
MR

R2 − ∣z0∣2
.

Ш-5.
Пусть функция f(z) регулярна в полосе ∣Re z∣ < π/4, удовлетворяет там неравенству ∣f(z)∣ < 1 и

обращается в нуль в точке z = 0. Доказать, что ∣f(z)∣ ⩽ ∣ tg z∣ в этой полосе.

Ш-6.
Пусть функция f(z) регулярна при Re z > 0, удовлетворяет там неравенству ∣f(z)∣ < 1 и обращается в

нуль в точках z1, z2, . . . , zm. Доказать, что

∣f(z)∣ ⩽ ∣z − z1∣ ∣z − z2∣ . . . ∣z − zm∣
∣z + z̄1∣ ∣z + z̄2∣ . . . ∣z + z̄m∣

(Re z > 0).

Ш-7.
Пусть функция f(z) регулярна и ограничена в полуплоскости Re z > 0, а в последовательности точек

{zn} , zn → ∞, этой полуплоскости обращается в нуль. Доказать, что или f(z) ≡ 0, или ряд
∞
∑
n=1

Re 1
zn

сходится.

Ш-8.
Пусть функция f(z) регулярна и ограничена в круге ∣z∣ < R, а в последовательности {zn} точек этого

круга обращается в нуль. Доказать, что или f(z) ≡ 0, или ряд
∞
∑
n=1
(R − ∣zn∣) сходится. Указание. См.

задачу 4.
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Ш-9.
Пусть функция f(z) регулярна в круге ∣z∣ < 1, удовлетворяет там неравенству ∣f(z)∣ <M , a f(0) = w0.

Доказать неравенство
∣f(z) −w0∣
∣M2 − f(z)w̄0∣

⩽ ∣z∣
M

(∣z∣ < 1).

Ш-19.
Пусть функция f(z) регулярна в круге ∣z∣ < R и удовлетворяет неравенствам ∣f(z)∣ <M, ∣f(0)∣ ⩽m <M .

Доказать неравенство

∣f(z)∣ ⩽MM ∣z∣ +mR
MR +m∣z∣

(∣z∣ < R).

Ш-11.
Пусть P (z) - многочлен степени n, а M(r) =max∣z∣=r ∣P (z)∣. Доказать, что при 0 < r1 < r2 имеет место

неравенство
M (r1)
rn1

⩾ M (r2)
rn2

,

причем знак равенства хотя бы при одной паре значений r1 и r2 возможен только для многочлена вида
P (z) = azn.

Ш-12.

Пусть P (z) = zn+a1zn−1+ . . .+an. Доказать, что хотя бы в одной точке окружности ∣z∣ = 1 имеет место
неравенство ∣P (z)∣ > 1, или P (z) ≡ zn.

Ш-13.
Пусть P (z) - многочлен степени n, удовлетворяющий на интервале (−1,1) неравенству ∣P (z)∣ ⩽ M .

Доказать, что в каждой точке z0, лежащей вне этого интервала, имеет место неравенство ∣P (z0)∣ ⩽M(a+
b)n, где a и b - полуоси эллипса с фокусами −1 и 1, проходящего через точку z0. ∣ζ ∣ > 1

Ш-14.

Пусть функция f(z) регулярна в области G и пусть infz∈G ∣f(z)∣ = µ > 0. Доказать, что или f(z) ≡ µeiφ,
или ∣f(z)∣ > µ для каждой внутренней точки области G.

Ш-15.
Пусть функция f(z) регулярна в области G и непрерывна в ее замыкании Ḡ, а на границе области G

ее модуль сохраняет постоянное значение. Доказать, что если функция f(z) отлична от тождественной
постоянной, то она обращается в нуль хотя бы в одной точке области G.

Ш-16.

Пусть функции f1(z), . . . , fm(z) регулярны в области G и пусть M = limz→∂G {∣f1(z)∣ + . . . + ∣fm(z)∣}.
Доказать, что если хотя бы одна из fk(z) отлична от тождественной постоянной, то в каждой точке из G
имеет место неравенство ∣f1(z)∣ + . . . + ∣fm(z)∣ <M .

Ш-17.
Пусть функция f(z) регулярна в круге ∣z∣ < R, а m-целое положительное число. Доказать, что если

функция f(z) отлична от тождественной постоянной, то функция

Im(r) =
1

2π

2π

∫
0

∣f (reiφ)∣m dφ

монотонно возрастает при 0 ⩽ r < R.
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Ш-18.
Доказать, что функция u(z), гармоническая в области G, субгармонична в этой области. Указание.

См. задачу 6.27.

Ш-19.
Пусть функция u(z) гармонична в области G. Обозначим M = sup{u(z) ∶ z ∈ G},m = inf{u(z) ∶ z ∈ G}.

Доказать, что если m < M , то в каждой точке области G справедливы неравенства m < u(z) < M .
(Принцип максимума и минимума для гармонических функций.)

Ш-29.
Доказать, что функция u(z) = ∣f(z)∣ субгармонична в области G, если функция f(z) регулярна в

области G.

Ш-21.
Пусть функция u(z) имеет в областиG ⊂ C непрерывные частные производные второго порядка (по x =

Re z и по y = Im z) и пусть ∂2u
∂x2 + ∂

2u
∂y2
⩾ 0 в области G. Доказать, что функция u(z) субгармонична в области

G. yказание. Написать в неравенстве определения субгармоничности для функции u (z0 + ρeiφ) формулу Тейлора с
остаточным членом (перейдя к переменным x = Re z и y = Im z).

Ш-22.
Пусть функция f(z) регулярна в области G. Доказать, что функции u(z) = ln ∣f(z)∣ и u(z) = ∣f(z)∣α, α >

0, субгармоничны в области G. ничности неравенство очевидно. В остальных точках субгармоничность
легко проверяется, скажем, с помощью результата задачи 21.

Ш-23.
Пусть функции u1(z) и u2(z) субгармоничны в области G. Доказать, что: 1) если числа a и b

положительны, то функция au1(z) + bu2(z) субгармонична в области G; 2) функция
u(z) = max{u1(z), u2(z)} субгармонична в области G; 3) функция u(z) = ∣u1(z)∣α при α > 1

субгармонична в области G; 4) при α > 0 функция u(z) = eαu1(z) субгармонична в области G.

Ш-24.
Пусть функции f1(z), . . . , fm(z) регулярны в области G. Доказать, что при α > 0 функция u(z) =

∣f1(z)∣α + . . . + ∣fm(z)∣α субгармонична в области G.

Ш-25.
Пусть функция f(z) регулярна в круге ∣z∣ < R. Доказать, что функция

Iα(r) =
1

2π

2π

∫
0

∣f (reiφ)∣α dφ

при любом α > 0 является монотонно возрастающей функцией r в интервале 0 ⩽ r < R (если f(z)�≡ const).
субгармоническую функцию переменной z = reiφ.

Ш-26.
Доказать, что функция

u(z) = φ(Re z)
субгармонична в полосе a < Re z < b в том и только в том случае, когда функция φ(x) выпукла книзу на
интервале a < x < b.
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Ш-27.

Доказать, что функция u (reiθ) = φ(r) субгармонична в кольце ρ < ∣z∣ < R в том и только в том случае,
если функция φ(r) логарифмически выпукла на интервале (ρ,R), т. е. если для любых трех значений
ρ < r1 < r2 < r3 < R имеет место неравенство

φ (r2) ⩽ φ (r1)
ln r3 − ln r2
ln r3 − ln r1

+ φ (r3)
ln r2 − ln r1
ln r3 − ln r1

.

Ш-28.

Доказать, что функция u (reiθ) = rρφ(θ) субгармонична в угле α < θ < β в том и только в том случае,
когда функция φ(θ) тригонометрически ρ-выпукла на интервале (α,β), т. е. если для любой тройки
значений θ1, θ2, θ3, удовлетворяющих условиям α < θ1 < θ2 < θ3 < β и θ3 − θ1 < π/ρ, имеет место неравенство

φ (θ2) ⩽ φ (θ1)
sinρ (θ3 − θ2)
sinρ (θ3 − θ1)

+ φ (θ3)
sinρ (θ2 − θ1)
sinρ (θ3 − θ1)

.

Ш-29.
Пусть функция f(z) регулярна в кольце ρ < ∣z∣ < R. Обозначим

M(r) =max
∣z∣=r
∣f(z)∣.

Доказать, что при ρ < r1 < r2 < r3 < R имеет место неравенство

lnM (r2) ⩽
ln r3 − ln r2
ln r3 − ln r1

lnM (r1) +
ln r2 − ln r1
ln r3 − ln r1

lnM (r3) .

(Теорема Адамара о трех кругах.)

Ш-39.
Пусть функция f(z) регулярна в кольце ρ < ∣z∣ < R. Обозначим

Iα(r) =
1

2π

2π

∫
0

∣f (reiφ)∣α dφ (α > 0).

Доказать, что при ρ < r1 < r2 < r3 < R имеет место неравенство

Iα (r1) ln
r3
r2
+ Iα (r2) ln

r1
r3
+ Iα (r3) ln

r2
r1
⩾ 0.

Ш-31.
Пусть функция f(z) регулярна в полуплоскости Re z > 0 и удовлетворяет неравенству

∣f(z)∣ ⩽ M ∣z∣
(1 + ∣z∣)α

, α > 1 (Re z > 0).

Доказать, что функция

I(φ) =
∞

∫
0

∣f (reiφ)∣ dr
r

является выпуклой вниз функцией φ на интервале −π/2 < φ < π/2.

4.4 Problems on Integrals

4.4.1 Problems about Calculating Typical Integrals (!!!!)

Самарова.ветви2-1 Типичный интеграл

+∞

∫
0

x − 1
n
√
x (x2 + 1)

dx =? n ∈ N+
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Solution

h(z) = n
√
z ∶ h(1) = 1

h(i) = h(1) ⋅ n

¿
ÁÁÀ∣i∣
∣1∣
⋅ e

i
n∆γ1

arg z = e
iπ
2n

res
z=i
f(z) = i − 1

2ih(i)
= i − 1
2ie

iπ
2n

= 1 + i
2
e−

iπ
2n

h(−i) = h(1) ⋅ n

¿
ÁÁÀ∣− i∣
∣1∣
⋅ e

i
n∆γ2

arg z = e
i3π
2n

res
z=−i

f(z) = i + 1
2ih(−i)

= i + 1
2ie

i3π
2n

= 1 − i
2
e−

i3π
2n

∳
γ
f(z)dz = 2πi(1 + i

2
e−

iπ
2n + 1 − i

2
e−

i3π
2n ) = π ((i − 1)e−

iπ
2n + (i + 1)e−

i3π
2n )

hlow(x) = h(1) ⋅ n

¿
ÁÁÀ∣x∣
∣1∣
⋅ e

i
n∆γ3

arg z = n
√
xe

i2π
n

Следовательно,

∫
I−
c,R

f(z)dz = −
R

∫
ε

x − 1
h(x) (x2 + 1)

dx = −
R

∫
ε

x − 1
n
√
xe

i2π
n (x2 + 1)

dx =

= − e−
i2π
n

R

∫
ε

x − 1
n
√
x (x2 + 1)

dx→ −e−
i2π
n ⋅ I (R →∞, ε→ 0)

RRRRRRRRRRRRR
∫
CR

f(z)dz
RRRRRRRRRRRRR
⩽max

CR

∣f(z)∣ ⋅ 2πR ⩽ (R + 1)2πR
n
√
R (R2 − 1)

ε→0→ ⇒ ∫
CR

f(z)dz ε→0→

RRRRRRRRRRRRR
∫
Cε

f(z)dz
RRRRRRRRRRRRR
⩽max

Cε

∣f(z)∣ ⋅ 2πε ⩽ (ε + 1)2πε
n
√
ε (1 − ε2)

ε→0→ ⇒ ∫
Cε

f(z)dz ε→0→ 0

∳
γ
f(z)dz → I − e−

i2π
n ⋅ I = (1 − e−

i2π
n ) I (R →∞, ε→ 0)

(1 − e−
i2π
n ) I = π ((i − 1)e−

iπ
2n + (i + 1)e−

i3π
2n )

(e
iπ
n − e−

iπ
n ) I = π ((i − 1)e

iπ
2n + (i + 1)e−

iπ
2n )

2i sin
π

n
I = π (2i cos π

2n
− 2i sin π

2n
)

I = π (
cos π

2n

sin π
n

−
sin π

2n

sin π
n

) = π ( 1

2 sin π
2n

− 1

2 cos π
2n

)

I = π ( 1

2 sin π
2n

− 1

2 cos π
2n

)
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Самарова.ветви2-2 Типичный интеграл

+∞

∫
2

ln(x − 2)
x2
√
x − 2

dx =?

Solution

(?? я не уверен, где тут проводить разрез, нужно логарифм еще как-то вычислить. чуть потренируюсь
- и еще раз попробую решить!)

Ответ: I = π(ln 2−2)
4
√
2

Самарова.ветви2-3 Нетипичный интеграл

+∞

∫
0

lnx

(x + α)2
dx =? α > 0

Solution

We introduce a new function with square:

f(z) = h2(z)
(z + α)2

, h(z) = Ln(z) ∶ h(1) = 0.

res
z=−α

f(z) = res
z=−α

h2(z)
(z + α)2

= (h2(z))′∣
z=−α

= 2h(−α)h′(−α) = 2h(−α)
−α

h(−α) = h(1) + ln ∣ − α∣
∣1∣
+ i∆γ1 arg z = lnα + iπ

res
res
z=−α

f(z) = 2h(−α)
−α

= −2(lnα + iπ)
α

∳
γ
f(z)dz = −2πi2(lnα + iπ)

α
= −4πi(lnα + iπ)

α

∳
γ
f(z)dz = ∫

I+
ε,R

f(z)dz + ∫
CR

f(z)dz + ∫
I−
ε,R

f(z)dz + ∫
Cε

f(z)dz

1. ∫
I+
ε,R

f(z)dz =
R

∫
ε

ln2 x
(x+α)2 dx→

+∞
∫
0

ln2 x
(x+α)2 dx (R →∞, ε→ 0)

h(x) = h(1) + ln ∣x∣
∣1∣
+ i∆γ3 arg z = lnx + 2πi

∫
I−R
ε,R

f(z)dz = −
R

∫
ε

h2(x)
(x + α)2

dx = −
R

∫
ε

(lnx + 2πi)2

(x + α)2
dx→ −

+∞

∫
0

(lnx + 2πi)2

(x + α)2
dx (R →∞, ε→ 0)
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3.
∫
CR

f(z)dz → 0 (R →∞)

RRRRRRRRRRRRR
∫
CR

f(z)dz
RRRRRRRRRRRRR
⩽max

CR

∣f(z)∣ ⋅ 2πR ⩽ (lnR + 2π)
22πR

(R − α)2
→ 0 (R →∞)

4.
∫
Cε

f(z)dz → 0 (ε→ 0)

RRRRRRRRRRRRR
∫
Cε

f(z)dz
RRRRRRRRRRRRR
⩽max

Cε

∣f(z)∣ ⋅ 2πε ⩽ (− ln ε + 2π)2πε
(α − ε)2

→ 0 (ε→ 0)

∳
γ
f(z)dz →

+∞

∫
0

ln2 x

(x + α)2
dx −

+∞

∫
0

(lnx + 2πi)2

(x + α)2
dx =

=
+∞

∫
0

ln2 x − ln2 x − 4πi lnx − 4π2

(x + α)2
dx =

= −4πi
+∞

∫
0

lnx

(x + α)2
dx − 4π2

+∞

∫
0

1

(x + α)2
dx (R →∞, ε→ 0)

−4πi
+∞

∫
0

lnx

(x + α)2
dx − 4π2

+∞

∫
0

1

(x + α)2
dx = −4πi lnα

α
+ 4π2

α

Приравнивая мнимые части выражений, стоящих в правой и левой частях равенства, находим

+∞

∫
0

lnx

(x + α)2
dx = lnα

α

Избры-1.2

I2 =
+∞

∫
−∞

dx

x6 + 1
, I3 =

+∞

∫
−∞

dx

(x2 + 4)2
=?

Solution

(вроде все очень просто)

Избры-1.3

I4(t) =
+∞

∫
−∞

dx
eixt

x4 + 1
, I5(t) =

+∞

∫
−∞

dx
eixt

(x − i)2
=? Im t =0

Solution

(тоже все леммой Жордана делается)

Избры-1.4
Найдите

I6 =
+∞

∫
−∞

x2dx

coshx
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Solution

(?? тут не уверен пока что, ну нужно представить чосинус через мнимый параметр... хз, тут подумать
нужно.)

Избры-2.1
For n = 1,2,3:

I1(n,α) =
∞

∫
0

zαdz

(1 + z2)n
=? I2(n,α) =

∞

∫
0

zαdz

(1 + z3)n
=?

Примечание: Интегралы для n = 1 придётся вычислить явно используя технику выделения регулярных
ветвей. Вычисления для n = 2,3 будут весьма громоздкими, однако, можно придумать, как получить их
из слегка изменённого интеграла с n = 1.

Solution

Избры-2.2

I3(α) =
∞

∫
0

zα ln(z)
1 + z2

dz =?

Используя знания из предыдущей задачи, подумайте, что делать с интегралом вида

I3(α,n) =
∞

∫
0

zα lnn(z)
1 + z2

dz.

Посчитайте его для значения n = 2. Для n = 1 возьмите предел α → 0 и покажите, что результат совпадает
с ответом из лекции Для последнего интеграла.

Solution

Избры-2.3

I =
1

∫
−1

(1 + z) 1
4 (1 − z) 3

4

1 + z
dz =?

Solution

Избры-2.4

J =
∞

∫
0

ln(x)
cosh2(x)

dx =?

Solution

Ш-23.пр.1.

I =
+∞

∫
−∞

x2

1 + x4
dx =?
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Solution

Функция f(z) = z2

1+z4 удовлетворяет условиям леммы 1 и имеет в области D, ограниченной
полуокружностью ΓR(R > 1) и отрезком [−R,R], только две особые точки

z1 = eiπ/4 и z2 = ei3π/4,

которые являются полюсами первого порядка. Так как resz=zk f(z) = z2

4z3
∣
z=zk
= 1

4zk
, k = 1,2, то по формуле

вычетов находим

I = 2πi( res
z=z1

f(z) + res
z=z2

f(z)) = 2πi

4
(e−iπ/4 + e−i3π/4) =

= πe
iπ/2

2
(e−iπ/4 + e−i3π/4) = π e

iπ/4 + e−iπ/4

2
= π cos π

4
= π√

2
.

Ш-23.пр.2.

I =
+∞

∫
−∞

dx

(x2 + 4)3
=?

Solution

В области D, ограниченной полуокружностью ΓR и отрезком [−R,R], применима лемма о том, что
интеграл от функции f(z) = 1

(z2+4)3 по полуокружности зануляется. Функция имеет в верхней
полуплоскости {z ∶ Im z > 0} единственную особую точку z1 = 2i - полюс третьего порядка. По формуле
вычетов I = 2πi res f(z). Так как f(z) = h(z)

(z−2i)3 , где h(z) = (z + 2i)−3, то

res
z=2i

f(z) = 1

2
h′′(2i) = (−3)(−4)

2
(z + 2i)−5∣

z=2i
= 3

2 ⋅ 44i

I = 2πi 3

2 ⋅ 44i
= 3π
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Ш-23.пр.3. Интеграл Лапласа

I(α) =
+∞

∫
−∞

cosαx

1 + x2
dx =? α ∈ R

Solution

Если α = 0, то I(0) = π. Кроме того, I(α)-четная функция. Поэтому достаточно вычислить I(α) при
α > 0.

Пусть

J(α) =
+∞

∫
−∞

eiαx

1 + x2
dx, где α > 0.

Тогда I(α) = ReJ(α). К функции f(z) = eiαz

1+z2 , где α > 0, применима лемма Жордана и поэтому

∫
ΓR

f(z)dz → 0 при R → +∞,

где ΓR = {z ∶ ∣z∣ = R, Im z ⩾ 0}.
Функция f(z) имеет в верхней полуплоскости единственную особую точку z0 = i - полюс первого

порядка, вычет в которой равен

res
z=i
f(z) = e

iαz

2z
∣
z=i
= e
−α

2i
,
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и поэтому по формуле (4) находим

J(α) = 2πi ⋅ res
z=i

f(z) = πe−α при α > 0,

I(α) = ReJ(α) = πe−α при α > 0,

Ответ:
I(α) = πe−∣α∣, α ∈ R

Ш-23.пр.4.

I =
+∞

∫
−∞

(x − 1) sin(8x − 7)
x2 − 2x + 5

dx =?

Solution

Вычислим интеграл

J ∶=
+∞

∫
−∞

(x − 1)ei(8x−7)

x2 − 2x + 5
dx I = ImJ

f(z) = g(z)ei8z, g(z) ∶= (z − 1)e
−7i

z2 − 2z + 5
,

К f(z) применима лемма Жордана и поэтому ∫
ΓR

f(z)dz → 0 при R → +∞, где ΓR = {z ∶ ∣z∣ = R, Im z ⩾ 0}.

Функция f(z) имеет в верхней полуплоскости единственную особую точку z0 = 1 + 2i - полюс первого
порядка, а

res
z=1+2i

f(z) = (z − 1)e
i(8z−7)

(z2 − 2z + 5)′
∣
z=1+2i

= 1

2
ei(1+16i) = e

−16

2
(cos 1 + i sin 1).

По формуле (4) находим
J = 2πi res z=1+2if(z) = πe−16i(cos 1 + i sin 1),

откуда
I = ImJ = πe−16 cos 1.

Ш-23.пр.5. Интеграл Дирихле (???)

I =
+∞

∫
0

sinx

x
dx =?

Solution

Пусть Γρ,R - контур, изображенный на рис.

Рассмотрим интеграл Iρ,R = ∫
Γρ,R

eiz

z
dz. Рис. 23.2 Этот интеграл равен нулю, так как функция eiz/z

регулярна внутри контура Γρ,R. C другой стороны, он равен сумме интегралов, взятых по
полуокружностям Γρ,ΓR и отрезкам [−R,−ρ], [ρ,R]. Имеем

eiz

z
= 1

z
+ h(z),
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где h(z) - функция, регулярная в точке z = 0. Если z ∈ Γρ, то

z = ρeiφ, 0 ⩽ φ ⩽ π, dz = iρeiφdφ,

∫
Γρ

1

z
dz = i

0

∫
π

dφ = −iπ.

Функция h(z) ограничена в окрестности точки z = 0 и, следовательно, ε1(ρ) = ∫
Γρ

h(z)dz → 0, при ρ → +0.

Отсюда получаем

∫
eiz

z
dz = −iπ + ε1(ρ)

По лемме Жордана ε2(R) = ∫
ΓR

eiz

z
dz стремится к нулю при R → +∞. Далее, сумма интегралов по

отрезкам [−R,−ρ], [ρ,R] равна

−ρ

∫
−R

eix

x
dx +

R

∫
ρ

eix

x
dx =

R

∫
ρ

eix − e−ix

x
dx = 2i

R

∫
ρ

sinx

x
dx.

Следовательно,

0 = Iρ,R = 2i
R

∫
ρ

sinx

x
dx − iπ + ε1(ρ) + ε2(R),

где ε1(ρ) → 0(ρ→ +0), ε2(R) → 0(R → +∞). Так как интеграл I сходится, то существует

lim
ρ→+0
R→+∞

R

∫
ρ

sinx

x
dx = I.

Переходя в соотношении (5) к пределу при ρ→ +0,R → +∞, получаем 2iI − iπ = 0, откуда I = π/2.

Ш-23.пр.6. Интеграл с логарифмом и квадратом

I =
+∞

∫
0

3
√
x

(x + 8)2
dx =?

Solution

В C с разрезом по лучу [0,+∞) функция f(z) = 3
√
∣z∣eiφ/3,0 < φ < 2π, является регулярной ветвью

многозначной функции { 3
√
z}.

Рассмотрим область D-круг {z ∶ ∣z∣ < R}, R > 8, с разрезом по радиусу [0,R]. Граница этой области
Γ = γ+ ∪ CR ∪ γ−, где γ+верхний берег разреза, CR - окружность {z ∶ ∣z∣ = R}, γ−- нижний берег разреза,
ориентация кривой Γ показана на рис. 23.3.

Функция g(z) = f(z)
(z+8)2 регулярна в области D, за исключением точки z = −8 - полюса второго порядка,

и непрерывна около вплоть до Г. По теореме о вычетах получаем

∫
Γ

g(z)dz = 2πi res
z=−8

g(z), т. е.

∫
CR

f(z)
(z + 8)2

dz + ∫
γ+

f(z)
(z + 8)2

dz + ∫
γ−

f(z)
(z + 8)2

dz = 2πi res
f(z)
(z + 8)2

.

Покажем, как с помощью этого равенства можно вычислить интеграл (6). Рассмотрим поочередно члены
полученного равенства.
●
Оценим интеграл

IR = ∫
CR

f(z)
(z + 8)2

dz
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При ∣z∣ = R получаем
∣f(z)∣ = 3

√
R, ∣z + 8∣ ⩾ ∣∣z∣ − 8∣ = R − 8 > 0,

откуда 1
∣z+8∣ ⩽

1
R−8 . Поэтому

∣IR∣ ⩽
3
√
R

(R − 8)2
⋅ 2πR → 0 при R → +∞.

●
Если z ∈ γ+, то

f(z) = f(x + i0) = 3
√
x, x ⩾ 0.

Поэтому

I1 = ∫
γ+

f(z)
(z + 8)2

dz =
R

∫
0

3
√
x

(x + 8)2
dx.

Отметим, что при R → +∞ этот интеграл стремится к искомому интегралу (6).
●
Если z ∈ γ−, то

f(z) = f(x − i0) = 3
√
xe2πi/3, x ⩾ 0.

Поэтому интеграл

I2 = ∫
γ−

f(z)
(z + 8)2

dz = −e2πi/3
R

∫
0

3
√
x

(z + 8)2
dx = −e2πi/3 ⋅ I1.

●
Правая часть равенства (7) не зависит от R при R > 8 и равна

2πi ⋅ res z=−8
f(z)
(z + 8)2

= 2πif ′(z)∣z=−8 = 2πi
f(z)
3z
∣
z=−8
=

= 2πi ⋅ 2

3(−8)
eπi/3 = −πi

6
eπi/3.

В результате из равенства (7) при R → +∞ получаем

(1 − e2πi/3) I = −πi
6
eπi/3,

откуда

I = − πieπi/3

6 (1 − e2πi/3)
= π

12

1
eπi/3−e−πi/3

2i

= π

12 sin π
3

= π

6
√
3

Ш-23.пр.7. Типичный интеграл корня и дроби

I =
2

∫
1

5

¿
ÁÁÀ(2 − x)3
(x − 1)3

dx.

Solution

Для вычисления этого интеграла с помощью вычетов регулярно продолжим подынтегральную
функцию с интервала (1,2] в некоторую область в C, граница которой содержит отрезок [1,2]. Так как

подынтегральная функция при продолжении в C становится многозначной функцией { 5

√
(2−z)3
(z−1)3 }, то

необходимо позаботиться о возможности выделения регулярных ветвей этой функции в полученной

области. В области C/[1,2] у функции { 5

√
(2−z)3
(z−1)3 } существуют регулярные ветви. Выберем такую ее

регулярную ветвь f(z), у которой f(x + i0) > 0 при x ∈ (1,2). Если для разреза [1,2] ввести, как и в
предыдущей задаче, два берега: верхний γ+ и нижний γ−, то эта ветвь f(z) непрерывно продолжима на
границу γ+ ∪ γ− всюду, кроме точки 1. Чтобы выполнялись условия теоремы Коши о вычетах, нужно
исключить точку 1 из границы и рассмотреть область

D(r) = C/([1,2] ∪ {z ∶ ∣z − 1∣ ⩽ r}), где r ∈ (0,1).
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В этой области функция f(z) всюду регулярна (кроме∞) и непрерывно продолжима вплоть до ее границы
Γr = Cr ∪γ+r ∪γ−r , где окружность Cr = {z ∶ ∣z −1∣ = r} ориентирована по ходу часовой стрелки, γ+r - верхний
берег разреза отрезка [1+ r,2] с ориентацией от точки 1+ r до точки 2, γ−r - нижний берег разреза отрезка
[1 + r,2] с ориентацией от точки 2 до точки 1 + r. Таким образом выбранная ориентация границы Γr
является положительной для области D(r).

Так как в области D(r) функция f(z) имеет единственную особую точку z = ∞, то по теореме Коши
о вычетах получаем

∫
γ+r

f(z)dz + ∫
Cr

f(z)dz + ∫
γ−r

f(z)dz = 2πi res
z=∞

f(z).

Покажем, что второе слагаемое левой части (8) стремится к нулю при r → +0. Имеем
RRRRRRRRRRRRR
∫
Cr

f(z)dz
RRRRRRRRRRRRR
⩽ ∫
Cr

∣f(z)∣∣dz∣ ⩽ ∫
Cr

(1 + r
r
)
3/5
∣dz∣ = (1 + r

r
)
3/5

2πr → 0 при r → +0.

Если x ∈ γ+r , то f(x) = 5

√
( 2−x
x−1)

3
,

∫
γ+r

f(z)dz =
2

∫
1+r

f(x)dx→ I при r → +0.

Если x ∈ γ−r , то

f(x) = 5

√
(2 − x
x − 1

)
3

e−i
6π
5

так как

∆γ arg (2 − z
z − 1

)
3

= −6π,

где γ = {z ∶ ∣z − 2∣ = ε,0 < ε < 1} - окружность, ориентированная по ходу часовой стрелки. Поэтому

∫
γ−r

f(z)dz → −e−6πi/5I при r → +0.

Найдем res
z=∞

f(z) = −c−1, где c−1 - коэффициент при 1
z

ряда Лорана функции f(z) в окрестности точки
z = ∞. Если x ∈ R и x > 2, то

f(x) = 5

¿
ÁÁÀ∣(2 − x)

3

(x − 1)3
∣e−i3π/5 = e−3πi/5 (1 − 2

x
)
3/5
(1 − 1

x
)
−3/5
=

= e−
3πi
5 (1 − 6

5x
+ . . .)(1 + 3

5x
+ . . .) =

= e−3πi/5 (1 + (3
5
− 6

5
) 1
x
+ . . .) = S(x).

Так как сумма аналитического продолжения полученного ряда S(z) и функция f(z) регулярны в кольце
{z ∶ ∣z∣ > 2}, причем f(x) = S(x) для всех x ∈ R, x > 2, то по теореме единственности для регулярных
функций

f(z) = S(z) = e−3πi/5 − e
−3πi/5

z
⋅ 3
5
+
∞
∑
k=2

ck
zk

для всех z ∈ C, ∣z∣ > 2. Следовательно,

res
z=∞

f(z) = −c−1 =
3

5
e−3πi/5.

Переходя к пределу в равенстве (8) с учетом соотношений (9)-(11), получаем

I (1 − e−6πi/5) = 6

5
πie−3πi/5

или

I (e
3πi/5 − e−3πi/5

2i
) = 3π

5
,

откуда находим

I = 3π

5 sin 3π
5
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Ш-23.пр.8.

I =
+∞

∫
0

lnx

(x + 1)(x + 2)2
dx.

Solution

В C с разрезом по лучу [0,+∞) функция h(z) ∶= ln ∣z∣ + iφ,0 < φ < 2π является регулярной ветвью
многозначной функции Ln z.

R(z) ∶= 1

(z + 1)(z + 2)2
, f(z) = R(z)h2(z)

и рассмотрим область D, граница Γ которой огибает 0 с радиусом 0 < ρ < 1 и замыкается на большом
радиусе R > 2.

∫
Cρ

f(z)dz + ∫
CR

f(z)dz + ∫
γ+

f(z)dz + ∫
γ−

f(z)dz = 2πi [ res
z=−1

f(z) + res z=−2f(z)] .

Рассмотрим поочередно члены этого равенства. Так как

∣h(z)∣ ⩽ ∣ ln ∣z∣∣ + 2π, то
RRRRRRRRRRRRRR
∫
Cρ

f(z)dz
RRRRRRRRRRRRRR
=
RRRRRRRRRRRRRR
∫
Cρ

h2(z)dz
(z + 1)(z + 2)2

RRRRRRRRRRRRRR
⩽ (∣ lnρ∣ + 2π)

22πρ

(1 − ρ)(2 − ρ)2
→ 0 при ρ→ +0,

RRRRRRRRRRRRR
∫
CR

f(z)dz
RRRRRRRRRRRRR
=
RRRRRRRRRRRRR
∫
CR

h2(z)dz
(z + 1)(z + 2)2

RRRRRRRRRRRRR
⩽ (lnR + 2π)

22πR

(R − 1)(R − 2)2
→ 0 при R → +∞

Если z ∈ γ+, то h(z) = lnx, а если z ∈ γ−, то h(z) = lnx + 2πi. Так как сумма интегралов по γ+и γ−в левой
части (13) равна

R

∫
ρ

ln2 x ⋅R(x)dx −
R

∫
ρ

(lnx + 2πi)2R(x)dx = −4πi
R

∫
ρ

lnx ⋅R(x)dx + 4π2

R

∫
ρ

R(x)dx,

то переходя в левой части равенства (13) к пределу при ρ→ +0, R → +∞, получаем −4πiI + 4π2I1, где

I1 =
+∞

∫
0

dx

(x + 1)(x + 2)2
.

Найдем значение суммы вычетов:

res
z=−1

f(z) = h2(z)
(z + 2)2

∣
z=−1
= (iπ)2 = −π2,

res
z=−2

f(z) = (h
2(z)
z + 1

)
′

∣
z=−2
= [ 2h(z)

z(z + 1)
− h2(z)
(z + 1)2

]∣
z=−2
=

= ln 2 + iπ − (ln 2 + iπ)2 = π2 + ln 2 − ln2 2 + iπ(1 − 2 ln 2).

Из равенства (13) следует, что

−4πiI + 4π2I1 = 2πi (ln 2 − ln2 2 + iπ(1 − 2 ln 2)) ,

откуда находим, приравняв действительные и мнимые части и учитывая, что I1 ∈ R,

I = 1

2
(ln2 2 − ln 2)
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Ш-23.1. Интегралы со степенями

1)
∞
∫
−∞

x2dx
(x2+1)(x2+9) ;

2)
∞
∫
−∞

x2−x+2
x4−10x2−9dx

3)
∞
∫
−∞

dx
x2−2ix−2 ;

4)
∞
∫
−∞

x2+1
x4+1dx

5)
∞
∫
−∞

x4+1
x6+1dx

6)
∞
∫
−∞

x2dx
x4+6x2+25 7)

+∞
∫
−∞

dx
(x2+9)(x2+16) ; 8)

+∞
∫
−∞

dx
(x2+1)3

Solution

(просто обычными вычетами и берем, Леммой Жордана, проблем не должно быть.)

Ш-23.2. Интегралы со степенями и тригонометрией

1)
+∞
∫
−∞

x+x3

1+x4 sin 3xdx;

2)
+∞
∫
−∞

cos 4x
1+x6 dx

3)
+∞
∫
−∞

(x+1) sin 2x
x2−4x+8 dx;

4)
+∞
∫
−∞

(x−2) cosx
x2−6x+10 dx

5)
+∞
∫
−∞

(x+3) sin x
2

x2+4x+20 dx;

6)
+∞
∫
−∞

(x−4) cos 2
3x

x2−6x+90 dx; 7)
+∞
∫
−∞

(2−x) cos(3x−2)
x2−2x+2 dx; 8)

+∞
∫
−∞

(x−3) sin(x−1)
x2+4x+5 dx 9)

+∞
∫
−∞

(2x+3) sin(x+5)
x2+4x+8 dx 10)

+∞
∫
−∞

(x+7) cos(x+2)
x2+2x+5 dx 11)

+∞
∫
−∞

(x3+7x) sin 2x

x4+5x2+4 dx 12)
+∞
∫
−∞

4x2 cosx
x4+8x2+16dx; 13)

+∞
∫
−∞

cos(3−8x)
4x2−7x+5dx 14)

+∞
∫
−∞

sin(3−6x)
3x2−4x+3dx; 15)

+∞
∫
−∞

x sin(2−x)
x2+2 dx; 16)

+∞
∫
−∞

x cos(1−2x)
x2+4 dx; 17)

+∞
∫
−∞

cos(1−2x)
x−4+ 5

x

dx 18)
+∞
∫
−∞

sin(1−3x)
x−2+ 5

x

dx 19)
+∞
∫
−∞

x3 cos(1−2x)
(2x2+1)(x2+4)dx; 20)

+∞
∫
−∞

x3 sin(2−x)
(x2+2)2 dx.

Solution

(интересные задачи, скоро посмотрю!.)

Ш-23.3.
Пусть R(z) - рациональная функция, имеющая полюсы a1, a2, . . . , an в верхней полуплоскости и

полюсы b1, b2, . . . , bm на действительной оси (и не имеющая других полюсов при Im z ⩾ 0). Доказать,
что если функция R(z) удовлетворяет условию R(z) = O ( 1

z
) при z →∞, то справедлива формула

v.p.
∞

∫
−∞

R(x)eixdx = 2πi
n

∑
k=1

res
z=ak

R(z)eiz + πi
m

∑
k=1

res
z=bk

R(z)eiz

(при условии, что интеграл в левой части существует). Указание. Применить теорему о вычетах к
интегралу от функции R(z)eiz по границе области

{z ∶ Im z > 0, ∣z∣ < R, ∣z − b1∣ > ρ1, . . . , ∣z − bm∣ > ρm} ,

a затем перейти к пределу при R → +∞, ρk → +0. Пределы интегралов по малым окружностям будут,
вообще говоря, отличны от нуля.
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Ш-23.4.

1) v. p.
∞
∫
−∞

1−eiαx

x2 dx a) α > 0 б) α < 0

2)
+∞
∫
0

1−cosαx
x2 dx, α > 0;

3)
+∞
∫
0

( sinx
x
)n dx,n = 2,3,4;

4)
+∞
∫
0

cos 2ax−cos 2bx
x2 dx, a > 0, b > 0;

5)
+∞
∫
0

sinax
x(x2+b2)dx, a > 0, Re b > 0;

6)
+∞
∫
0

x2−b2
x2+b2

sinax
x

dx, a > 0, Re b > 0; 7)
+∞
∫
0

sin2 ax
x2(x2+b2)dx, a > 0, Re b > 0; 8)

+∞
∫
0

x−sinx
x3(x2+a2)dx, Rea > 0.

Ш-23.5.

1)
2

∫
−2

dx
4
√
(2+x)2(4−x2)

;

2)
2

∫
0

dx
3
√
x2(2−x)

3)
1

∫
0

dx

(x−3)2
√
x−x2

;

4)
6

∫
0

1
x+2
√

x
6−xdx

5)
5

∫
0

4
√
x(5−x)7
x2−5x−6 dx

6)
1

∫
−1

x
√
1−x2

x2−3x+2dx

Ш-23.6.

1)
+∞
∫
1

√
x−1 ln(x−1)
x2+3x dx; 2)

+∞
∫
2

ln(x−2)
(x2−1)

√
x−2dx;

3)
+∞
∫
0

√
x lnxdx
x2+1

4)
+∞
∫
0

lnx

(x+1) 4√
x3
dx

5)
+∞
∫
0

lnxdx
(x+1)(2x+1)√x

6)
+∞
∫
1

dx

(x2+1)
√
x−1 7)

+∞
∫
0

dx
5√x(x+1)2 8)

+∞
∫
0

√
x lnx

(x+1)(x+2)dx.

Ш-23.7. Интересные интегралы

1)
+∞
∫
0

lnx
(x+1)2 dx;

2)
+∞
∫
0

lnxdx
x2+2x+2 ;

3)
+∞
∫
0

lnxdx
(x2+1)2 ;

4)
+∞
∫
0

lnxdx
(x+1)(x2+1) ;

5)
+∞
∫
0

x lnx
(x2+1)2 dx;

6)
+∞
∫
0

x2 lnx
(x2+1)2 dx; 7)

+∞
∫
0

lnx
x2−1dx; 8)

+∞
∫
0

( lnx
x−1)

2
dx; 9)

+∞
∫
0

ln2 x
(x2+1)2 dx; 10)

+∞
∫
0

( lnx
x−1)

3
dx; 11)

+∞
∫
−∞

x
shx

dx; 12)
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+∞
∫
0

xdx
shx chx

; 13)
+∞
∫
0

( x
shx
)2 dx; 14)

+∞
∫
0

( x
shx
)3 2dx; 15)

+∞
∫
0

x2

chx
dx; 16)

1

∫
0

ln 1−x
x

dx
1+x2 ; 17)

1

∫
0

(ln x
1−x)

2 dx
x+1 ; 18)

1

∫
−1
(ln 1+x

1−x)
2 dx
x2 19)

+∞
∫
0

dx
(x2+π2) chx 20)

+∞
∫
−∞

exdx
(x2+π2) chx

Solution

(интересные задачи, скоро посмотрю!.)

Ш-23.8.
Пусть R(z) - рациональная функция, непрерывная и действительная при действительных значениях

z, а a1, . . . , an - ее полюсы, лежащие в верхней полуплоскости. B предположении сходимости интегралов
доказать формулы:

1)
+∞
∫
−∞

R(x) ln ∣x−a∣dx = −2π Im
n

∑
s=1

resz=as R(z)g(z) (здесь a - действительное число, а g(z) - произвольная

ветвь многозначной функции Ln(z − a), регулярная в верхней полуплоскости);

2)
+∞
∫
−∞

R(x)∣x − a∣α−1dx = − 2π
sin πα

2
Im

n

∑
s=1

resz=as R(z)g(z) (здесь a - действительное число, α > 0, a g(z)

- ветвь многозначной функции ( z−a
i
)α−1, регулярная в верхней полуплоскости и положительная при

положительных значениях z−a
i
);

3)
+∞
∫
−∞

R(x) ln ∣x2 − a2∣dx = −2π Im
n

∑
s=1

resz=as R(z)g(z) (здесь a > 0, a g(z) - произвольная ветвь

многозначной функции Ln (z2 − a2), регулярная в верхней полуплоскости);

4)
+∞
∫
−∞

R(x) ln (x2 + a2)dx = −4π Im
n

∑
s=1

res
z=as

R(z)g(z) (здесь a > 0, a g(z) - произвольная ветвь

многозначной функции Ln(z + ai), регулярная в верхней полуплоскости).

Ш-23.9.

1)
+∞
∫
−∞

3
√
∣x−1∣
x2+1 dx; 2)

+∞
∫
−∞

ln∣x2−1∣
x2+1 dx;

3)
+∞
∫
−∞

ln(x4+2x2+2)
x2+4 dx

4)
+∞
∫
−∞

√√
x2 + 1 − x dx

x2+1 ; 5)
+∞
∫
−∞

dx

(x2+1)
√
∣x−1∣

6)
+∞
∫
0

ln(x2+2x+2)
(x2+1)2 dx 7)

+∞
∫
0

ln(1+x2)
x2

dx
1+x2

12)
+∞
∫
0

(
√√

1 + x2 + x +
√√

1 + x2 − x − 2) dx
x2 ; 13)

+∞
∫
0

√√
1+x2+x−

√√
1+x2−x

x
√
1+x2

dx; 14)
+∞
∫
0

√√
(x2 + a2) (x2 + b2) + x2 − ab dx

(x2+1)2 , a > 0, b > 0.

Ш-23.19.
Доказать, что

+∞

∫
0

x2mdx

1 + x2n
= π

2n

1

sin 2m+1
2n

π

где m и n,m < n, - целые неотрицательные числа, рассмотрев интеграл от функции z2m (1 + z2n)−1 по
границе угла 0 < arg z < π

n
.

Ш-23.11.

1)
+∞
∫
0

xdx
(4x2+π2) shx ;

2)
+∞
∫
−∞

exdx
(4x2+π2) chx ;
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3)
+∞
∫
0

sh2 xdx
(4x2+π2) ch2 x

;

4)
+∞
∫
0

xdx
(4x2+9π2) shx ;

5)
+∞
∫
0

lnxdx
(x2+1)(4 ln2 x+9π2) ;

6)
+∞
∫
0

√
x lnx

(x2−1)(ln2 x+π2)dx 7)
+∞
∫
1

ln(x+
√
x2−1)

x2 dx 8)
+∞
∫
1

ln x+
√
x2−1

x−
√
x2−1

dx
x2+1 9)

+∞
∫
0

lnxdx
(x2+a2)(4 ln2 x+π2) , a > 0 10)

+∞
∫
a

ln(x+
√
x2−a2)

x2+a2 dx, a > 0; 11)
+∞
∫
a

arctg a
x

dx√
x2−a2

, a > 0; 12)
+∞
∫
0

ln(ex+
√
e2x−e2a)

chx
dx.

Магистратура МФТИ 2019.6.
+∞
∫
−∞

sinx
x(x+i)dx =?

Solution

Решается типичными методами, важно просто не затупить:

+∞

∫
−∞

sinx

x(x + i)
dx = lim

R→+∞

R

∫
−R

( i

x + i
− i
x
) sinxdx =

= i lim
R→+∞

R

∫
−R

sinx

x + i
dx − i lim

R→+∞

R

∫
−R

sinx

x
dx =

= 1

2
lim
R→+∞

R

∫
−R

eix − e−ix

x + i
− iπ = πi res

z=−i

e−iz

z + i
− iπ = iπ

e
− iπ = iπ (1

e
− 1) .

Ответ: iπ ( 1
e
− 1).

4.4.2 Problems about Computing Integrals over Closed Contours

Ш-14.пр.1. Простой интеграл вычетами

I =
‰
∣z∣=4

z4

ez + 1
dz =?

Solution

Найдем все конечные особые точки подынтегральной функции f(z). Это корни уравнения ez + 1 = 0,
т.е. точки zk = πi + 2πik, k ∈ Z. Из них внутри круга {z ∶ ∣z∣ < 4} лежат только точки z0 = πi и z−1 = −πi.
Следовательно, по теореме о вычетах

I = 2πi( res
z=πi

f(z) + res
z=−πi

f(z)) .

Так как точки ±πi - полюсы первого порядка для функции f(z), то

res
z=±πi

f(z) = z4

(ez + 1)′
∣
z=±πi

= z
4

ez
∣
z=±πi

= −π4

откуда находим I = 2πi (−π4 − π4) = −4π5i.
Замечание. Здесь нельзя использовать при вычислении интегралов вычет в бесконечности, так как в

этих примерах точка ∞ является неизолированной особой точкой для подынтегральных функций.
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Ш-14.пр.2. Простой интеграл вычетами

I =
‰
∣z∣=3

dz

(z − 1)2(1 − cos z)
=?

Solution

Найдем все особые точки подынтегральной функции f(z). Это корни уравнения cos z = 1, т. е. точки
zk = 2πk, k ∈ Z, а также точка z̃ = 1.

Следовательно, по теореме о вычетах

I = 2πi(res
z=1

f(z) + res
z=0

f(z))

Так как z̃ = 1 - полюс второго порядка для функции f(z), то

res
z=1

f(z) = lim
z→1
(f(z)(z − 1)2)′ = lim

z→1
( 1

1 − cos z
)
′
= = − sin z

(1 − cos z)2
∣
z=1
= − sin 1

(1 − cos 1)2
.

Точка z0 = 0 также является полюсом второго порядка для f(z), вычет в ней удобнее находить,
вычислив коэффициент c−1 ряда Лорана функции f(z) в окрестности точки 0. Ряды имеют вид

1

(1 − z)2
= ( 1

1 − z
)
′
= 1 + 2z + 3z2 + . . . ;

1

1 − cos z
= 1

1 − (1 − z2

2
+ z4

4!
− z6

6!
+ . . .)

= 1
z2

2
(1 − z2

12
+ . . .)

= 2

z2
(1 + z

2

12
− . . .) ,

при перемножении этих рядов получим:

(1 + 2z + 3z2 + . . .) ⋅ ( 2
z2
+ 1

6
+ . . .) = 2

z2
+ 4

z
+ 6 + 1

6
+
+∞
∑
k=1

ckz
k

откуда c−1 = 4. Следовательно,

res f(z) = c−1 = 4, I = 2πi(4 − sin 1

(1 − cos 1)2
) .

Замечание. Здесь нельзя использовать при вычислении интегралов вычет в бесконечности, так как в
этих примерах точка ∞ является неизолированной особой точкой для подынтегральных функций.

Ш-14.пр.3. Простой интеграл вычетами

I =
‰
∣z+i∣=2

z2

z2 − 9
sin

1

z
dz =?

У подынтегральной функции f(z) = z2

z2−9 sin
1
z

всего четыре особые точки: z0 = 0, z1 = 3, z2 = −3, z3 = ∞.
В соответствии с этим интеграл I можно вычислить двумя способами.

1 способ через вычеты в оставшихся точках

По теореме о вычетах для области D = {z ∶ ∣z + i∣ > 2} имеем:

I = −2πi(res
z=3

f(z) + res
z=−3

f(z) + res
z=∞

f(z)) .

Точки ±3 являются полюсами первого порядка для функции f(z) в области D, найдем вычеты
функции в этих точках:

res
z=±3

f(z) =
z2 sin 1

z

(z2 − 9)′
∣
z=±3
=
z2 sin 1

z

2z
∣
z=±3
= 3

2
sin

1

3
.

Точка ∞ является устранимым нулем первого порядка функции f(z), причем f(z) ∼ 1
z

при z →∞, откуда
res
z=∞

f(z) = −1. Следовательно,

I = −2πi(3
2
sin

1

3
+ 3

2
sin

1

3
− 1) = 2πi(1 − 3 sin 1

3
)
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2 способ. Сложный нужный вычет в нужной точке

I = 2πi res f(z).
Точка z0 = 0 является существенно особой точкой для f(z).

Чтобы найти вычет в точке z0, вычислим коэффициент c−1 ряда Лорана в окрестности z0 = 0.
Так как

sin
1

z
= 1

z
− 1

3! ⋅ z3
+ 1

5! ⋅ z5
− 1

7! ⋅ z7
+ . . . ;

z2

z2 − 9
= −z

2

9
⋅ 1

1 − z2

9

= −z
2

9
(1 + z

2

9
+ z

4

92
+ . . .) == −z

2

9
− z

4

92
− z

6

93
− . . . ,

то, перемножив полученные ряды, находим

f(z) = 1

z
( 1

3! ⋅ 9
− 1

5! ⋅ 92
+ 1

7! ⋅ 93
− . . .) +

+∞
∑
k=−∞
k≠−1

ckz
k

откуда

c−1 =
1

3! ⋅ 9
− 1

5! ⋅ 92
+ 1

7! ⋅ 93
− . . . = 1

3! ⋅ 32
− 1

5! ⋅ 34
+ 1

7! ⋅ 36
− . . .

Так как sin 1
3
= 1

3
− 1

3!⋅33 +
1

5!⋅35 − . . ., то

c−1 = −(sin
1

3
− 1

3
) ⋅ 3 = 1 − 3 sin 1

3
.

Следовательно, I = 2πi ⋅ c−1 = 2πi (1 − 3 sin 1
3
).

Ш-14.пр-4. Простой интеграл вычетами

I =
‰
∣z∣=7

1 − ch z
z3 + 4π2z

dz =?

Solution

Найдем все особые точки подынтегральной функции f(z), решив уравнение

z (z2 + 4π2) = 0

откуда z0 = 0, z1 = 2πi, z2 = −2πi. Точки ±2πi являются нулями числителя первого порядка (1 −
ch(±2πi) = 0, − sh(±2πi) ≠ 0), а также нулями знаменателя первого порядка. Поэтому эти точки
являются устранимыми для f(z). Значит, res

z=±2πi
f(z) = 0.

Точка z0 = 0 является нулем числителя второго порядка (1 − ch0 = 0, − sh 0 = 0,− ch0 ≠ 0) и нулем
знаменателя первого порядка. Поэтому эта точка также является устранимой и res

z=0
f(z) = 0. В итоге по

теореме о вычетах для круга {z ∶ ∣z∣ < 7} получаем:

I = 2πi(resres
z=0

f(z) + res
res
z=2πi

f(z) + res
z=−2πi

f(z)) = 0.

Замечание. Вычисление интеграла в примере 4 вторым способом по теореме о вычетах для внешности
круга было возможно, но более сложно, чем вычисление первым способом.

Ш-14.пр-5. Простой интеграл вычетами

I =
‰
∣z∣=4

z4

1 − z8
dz =?
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Solution

Найдем все конечные особые точки подынтегральной функции f(z). Это восемь полюсов первого
порядка на окружности {z ∶ ∣z∣ = 1}, корни уравнения z8 = 1.

Поскольку вне круга {z ∶ ∣z∣ < 4} находится только одна особая точка z0 = ∞, то в данном примере
удобнее вычислить интеграл с помощью вычета функции f(z) в точке z = ∞.

Заметим, что f(z) - четная функция и ее ряд Лорана в окрестности точки z = ∞ содержит только
четные степени z. Поэтому коэффициент этого ряда при 1

z
равен нулю и res

z=∞
f(z) = 0. Следовательно,

I = −2πi res f(z) = 0.

Ш-14.пр.6. Интеграл I = ∳∣z∣=1
dz

e2/z−e1/z (?)

I =
‰
∣z∣=1

dz

e2/z − e1/z
.

Solution

(???? почему теорема о вычетах не используется для ряда полюсов??? в теории напишу объяснение!!)
Найдем все конечные особые точки подынтегральной функции f(z), решив уравнение e2/z = e1/z или

e1/z = 1, откуда 1
z
= 2πik, k ∈ Z, k ≠ 0, т.е.

zk =
1

2πik
, k ∈ Z, k ≠ 0.

Кроме того, особой является точка z0 = 0 - предельная точка полюсов zk. Следовательно, теорему о
вычетах можно использовать только для области D = {z ∶ ∣z∣ > 1}, в которой лежит лишь одна особая
точка z̃ = ∞. Учитывая, что

I = −∳∣z∣=1
f(z)dz

получаем I = −2πi res f(z). Для данной функции f(z) точка z = ∞-полюс первого порядка и поэтому ее
ряд Лорана в окрестности ∞ имеет вид

f(z) = Az +B + c−1
z
+ c−2
z2
+ . . .

Для данной функции f(z) точка z = ∞ - полюс первого порядка и поэтому ее ряд Лорана в окрестности
∞ имеет вид

f(z) = Az +B + c−1
z
+ c−2
z2
+ . . . .

Пусть φ(z) = f ( 1
z
), тогда

φ(z) = A
z
+B + c−1z + . . . .

Для нахождения c−1 нужно найти коэффициент при z ряда Лорана функции φ(z) в окрестности точки
z = 0. В данном примере

φ(z) = e−z

ez − 1
= 1

z
(1 − z + z

2

2
+ . . .)(1 + z

2
+ z

2

6
+ . . .)

−1

=

= 1

z
(1 − z + z

2

2
+ . . .)(1 − z

2
+ z

2

12
+ . . .) .

Нужно найти коэффициент при z2 в произведении выражений в скобках. Он равен 1
12
+ 1

2
+ 1

2
= 13

12
. Итак,

c−1 = 13
12

и res
z=∞

f(z) = − 13
12
. Тогда

I = −2πi(−13
12
) = 13πi

6
.
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Ш-14.пр.7. Интеграл по углу от дроби с синусом

I =
‰ 2π

0

dφ

a + sinφ
=?, a > 1

Задача решается комплексификацией, а дальше вычетами.
(!! если синус, то сразу к комплексному аргументу переходим как тут и сделано!)
Пусть z = eiφ, φ ∈ [0; 2π], тогда sinφ = eiφ−e−iφ

2i
= 1

2i
(z − 1

z
) , dz = izdφ, dφ = dz

iz
. Получаем:

I = ∳∣z∣=1
dz

iz (a + 1
2i
(z − 1

z
))
= ∳∣z∣=1

2dz

z2 + 2iaz − 1
.

Найдем все особые точки подынтегральной функции f(z), решив уравнение

z2 + 2iaz − 1 = 0.

Так как D = −4a2 + 4 = 4 (1 − a2), то z1,2 = −2ia±2i
√
a2−1

2
= −i (a ∓

√
a2 − 1). Внутри круга {z ∶ ∣z∣ < 1} лежит

только один полюс первого порядка z1 = i (
√
a2 − 1 − a) . Поэтому

res
z=z1

f(z) = 2

(z2 + 2iaz − 1)′
∣
z=z1
= 2

2z + 2ai
∣
z=z1
= 1

i
√
a2 − 1

,

I = 2πi res
z=z1

f = 2π√
a2 − 1

Хорошая задача.

Ш-14.1.

1) ∳∣z∣=1
dz
z

2) ∳∣z∣=2
dz

(z−1)2 ;
3) ∳∣z∣=2

dz
z2+1 ;

4) ∳∣z∣=3
dz

z2+z+1
5) ∳∣z∣=3

z4

z2+z−2dz;
6) ∳∣z+i∣=2

dz
z2(z2−7z+12) .

Ш-14.2.

1) ∳∣z∣=3
z cos π

z

z+2i dz

2) ∳∣z∣=4
e1/(z−1)
z−2 dz;

3) ∳∣z− 1
2
∣=1

z3e1/z
1−z2 dz;

4)
∣z∣=2

z2 sin 1
1−zdz;

5) ∳∣z∣=1
1

4i+3z cos
5i

6z+3idz

6) ∳∣z∣=2
1

3+iz e
4i/(z−i)dz;

7) ∳∣z∣=3/2
z tg z

(z2−1)2 dz; 8) ∳∣z∣=5/2
z2

z−3 sin
z
z−2dz 9) ∳∣z−i∣=3

z
z2+9 ch

z
z−2dz; 10) ∳∣z∣=6

z2

eiz+idz; 11) ∳∣z∣=3
dz

(z−1)2(1−e2z) ;

12) ∳∣z∣=2
z2

z−1e
1/(z−1)dz;

13) ∳∣z+ 1
3
∣= 1

6

3z+1
1−sin π

2z
dz 14) ∳∣z∣=4

zdz
e1/z+e1/2z 15) ∳∣z∣=2

ez
5

z(1+z5)dz 16) ∳∣z−π
2 (1−i)∣=π

zdz
cos z−ch z ; 17)

∳∣z∣=1
(z−i) sin 1

iz

(z−3i)2 dz 18) ∳∣z∣=1
(z+1) cos i

z

(2i−z)2 dz 19) ∳∣z∣=1/2
z+ 2

π

(2 sin 1
3z −1)

dz; 20) ∳∣z+i∣=3/2
2(z+3i) ch 1

2z

z4+10z2+9 dz; 21)

∳∣z∣=1
z− 1

ln2

e1/z−2dz 22) ∳∣z−π
2
∣=3

2z−i ln 2
tg z− i

3

dz 23) ∳∣z+1−i∣=2
z+i

(z−i) sh 1
2z

dz 24) ∳∣z−1∣=1
zdz

(π−3z)(1+cos 3z) .
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Ш-14.3.
Сделав соответствующую замену переменной, свести данный интеграл к интегралу по замкнутому

контуру в C и вычислить его:

1)
2π

∫
0

dφ
a+cosφ(a > 1)

2)
2π

∫
0

dφ
(a+b cosφ)2 (a > b > 0)

3)
2π

∫
0

dφ

(a+b cos2 φ)2

4)
2π

∫
0

ecosφ cos(nφ − sinφ)dφ, n ∈ Z В задачах 4-6 предполагается, что при движении по границе

области D в направлении интегрирования сама область D остается слева.

Ш-14.4.
Доказать, что интеграл

∫
eiz

(z − i)2
dz

взятый по границе Γ полуплоскости {z ∶ Im z > 0}, равен сумме вычетов подынтегральной функции в этой
полуплоскости, и найти его значение.

Вычеты границе полукруга {z ∶ Im z > 0, ∣z∣ < R}, а затем перейти к пределу при R →∞.

Ш-14.5.
Убедиться в применимости теоремы о вычетах к следующим интегралам, взятым по границам Γ

бесконечных областей D, и вычислить эти интегралы:
1) ∫

Γ

ze−z
z2−1dz (D = {z ∶ Re z > 0})

2) ∫
Γ

ez

sh2z
dz (D = {z ∶ −π

4
< Im z < π

4
})

3) ∫
Γ

z3

(z−1)2 e
−z3dz (D = {z ∶ −π

6
< arg z < π

6
}).

Ш-14.6.
Убедиться, что к интегралам, взятым по границам указанных областей D теорема о вычетах

неприменима:
1) I = ∫

Γ

e−z
2

dz (D = {z ∶ Im z > 0});

2) I = ∫
Γ

sin z
1+z2 dz (D = {z ∶ Im z > 0}).

Ш-14.7.
Пусть функции f(z) и g(z) регулярны в замыкании D̄ конечной области D, причем функция f(z)

имеет в области D нули a1, . . . , an (каждый нуль пишется столько раз, каков его порядок) и не имеет
других нулей ни в области D, ни на ее границе Γ. Доказать, что

∳
Γ
g(z)f

′(z)
f(z)

dz = 2πi
n

∑
k=1

g (ak) .

Ш-14.8.
Пусть функция f(z) задачи 7 имеет в области D еще и полюсы b1, . . . , bm (каждый полюс также

пишется столько раз, каков его порядок). Доказать, что

∳
Γ
g(z)f

′(z)
f(z)

dz = 2πi
n

∑
k=1

g (ak) − 2πi
m

∑
k=1

g (bk) .
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Ш-14.9.
Пусть функция f(z) регулярна в замыкании D̄ конечной области D с границей Γ, а точки a1, . . . , an

лежат в области D и попарно различны. Обозначим

P (z) = (z − a1) . . . (z − an)

и
Φ(z) = −P (z)

2πi
∳
Γ

f(ξ)
P (ξ)

dξ

ξ − z
(z ∉ D̄).

Доказать, что функция Φ(z) аналитически продолжается на всю плоскость и представляет собой
многочлен степени n − 1, удовлетворяющий условиям

Φ (ak) = f (ak) (k = 1,2, . . . , n).

(Многочлен Φ(z) называется интерполяционным многочленом Лагранжа.)

Ш-14.19.
Доказать формулу

1

2πi
∳∣z∣=1

e
x
2
(z+ 1

z
)dz =

∞
∑
n=0
(x
2
)
2n+1 1

n!(n + 1)!

4.4.3 1.7. Computation of Integrals over Closed Contours Using
Residues by Kolesnikova

Теорема. Пусть в области D ⊂ C̄ с кусочно-гладкой границей функция f(z) регулярна всюду, кроме,
быть может, конечного числа изолированных особых точек однозначного характера a1, a2, . . . , an и f(z)
непрерывна на D̄. Тогда

∫
∂D

f(z)dz = 2πi
n

∑
k=1

res
z=ak

f(z) (1.24)

Кол-1.

21. Вычислите ∳∣z∣=2
ez

2016

z(z2016−1)dz.

Внутри окружности расположено 2017 полюсов 1-го порядка: { z = 0,
z2016k − 1 = 0, k = 1,2, . . . ,2016 , а вне

- одна существенно особая точка z = ∞. В полюсах вычет считается легко, но полюсов 2017! А z = ∞ -
COT, в которой вычет считается не всегда легко.

Что делать?

Первый способ.

Так как ∳∣z∣=2
ez

2016

z(z2016−1)dz = −∳∣z∣=2
ez

2016

z(z2016−1)dz, то, чем считать 2017 вычетов, попробуем найти вычет
в ∞.

Будем искать a−1 разложением подынтегральной функции в окрестности ∞ ∶

ez
2016

z (z2016 − 1)
dz = 1

z2017

(1 + z2016 + (z
2016)2

2!
+ . . .)

1 − 1
z2016

=

= 1

22017
⎛
⎝
1 + z2016 +

(z2016)2

2!
+ . . .
⎞
⎠
(1 + 1

z2016
+ ( 1

z2016
)
2

+ . . .) =

(теперь будем последовательно умножать слагаемые первой скобки на вторую скобку и выписывать
только коэффициенты при слагаемых вида z2016)

= 1

z
(1 + 1

2!
+ 1

3!
+ . . . + 1

k!
+ . . .)+
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слагаемые, не содержащие 1
z
.

Суммируем получившийся числовой ряд:

1 + 1

2!
+ 1

3!
+ . . . + 1

k!
+ . . . = e − 1⇒ res

z=∞
ez

2016

z (z2016 − 1)
= 1 − e

и получим
Ответ. 2πi(e − 1).
Пр и м е ч а н и е. Не всегда при вычислении вычета в СОТ получается такой знакомый ряд.

Второй способ.

Попытаемся всё же посчитать 2016 вычетов в полюсах.
resz=0

ez
2016

z(z2016−1) = limz→0
ez

2016

z2016−1 = −1. resz=zk
ez

2016

z(z2016−1) =
ez

2016
k

zk2016z2015k

= e
2016

.
Вот это да! Вычеты во всех 2016 точках одинаковы!

Поэтому

∳∣z∣=2
ez

2016

z (z2016 − 1)
dz = 2πi(−1 + 2016 ⋅ e

2016
) = 2πi(e − 1)

Ответ. 2πi(e − 1).

Кол-1.

22. Вычислите ∳∣z∣= 1
2

z+ 2
π

2 sin 1
3z −1

dz.
Найдём особые точки:

2 sin
1

3z
− 1 = 0⇐⇒ 1

3z
= (−1)k π

6
+ πk⇐⇒

⇐⇒ zk =
2

π ((−1)k + 6k)
Ð→
k→∞

0, k ∈ Z

Оказалось, что внутри окружности находится бесконечно много полюсов - теорема о вычетах не
применима. Вне: z = 2

π
и z = ∞. Поэтому другого пути нет - придётся искать вычеты в полюсах 1-

го порядка в точках z = 2
π

и z = ∞.
Найдём коэффициент при 1

z
ряда Лорана в z = ∞:

z + 2
π

2 sin 1
3z
− 1
= −z

1 + 2
πz

1 − 2
3z
+ 2

3!27z3
+ o ( 1

z4
)
=

= −z (1 + 2

πz
)(1 + 2

3z
+ 4

9z2
+ o( 1

z2
)) =

= −1
z
( 4

3π
+ 4

9
) + . . .⇒ res

z=∞

z + 2
π

2 sin 1
3z
− 1
= 4

3π
+ 4

9

res
z + 2

π

2 sin 1
3z
− 1
= 4

2π cos 1
3z
⋅ − 1

3z2

∣
2
π

= −16
√
3

π3

Отсюда следует, что

∳∣z∣= 1
2

z + 2
π

2 sin 1
3z
− 1

dz = −2πi(−16
√
3

π3
+ 4

3π
+ 4

9
)

Ответ. −2πi (− 16
√
3

π3 + 4
3π
+ 4

9
).

Кол-1.

23. Вычислите ∳∣z∣=1 e
x
2
(z+ 1

z
)dz.

Очень интересный пример!
Во-первых, задача с параметром x !

Во-вторых, подынтегральная функция имеет две особые точки - обе точки являются существенно
особыми: z = 0 и z = ∞, а ряды по степеням z в обеих точках одинаковы!
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Поэтому абсолютно всё равно, в какой из особых точек считать вычеты.
Пусть это будет точка z = 0.

Тогда ∳∣z∣=1 e
x
2
(z+ 1

z
)dz = 2πires

z=0
e

x
2
(z+ 1

z
).

Вычет будем искать разложением в окрестности z = 0 в ряд Тейлора e
xz
2 и разложением в ряд Лорана

e
x
2z :
e

x
2
(z+ 1

z
) = e x

2 ze
x
2

1
z =

= (1 + (x
2
) z + 1

2!
(x
2
)
2

z2 + . . . + 1

n!
(x
2
)
n

zn + . . .)×

× (1 + (x
2
) 1
z
+ 1

2!
(x
2
)
2 1

z2
+ . . . + 1

n!
(x
2
)
n 1

zn
+ . . .) =

= 1

z
((x

2
) + 1

2!
(x
2
)
3

+ 1

2!3!
(x
2
)
2+3
+ . . . + 1

n!(n + 1)!
(x
2
)
n+n+1

+ . . .)+

+ слагаемые, не содержание
1

z
⇒

⇒ res
z=0

e
x
2
(z+ 1

z
) =

= (x
2
) + 1

2!
(x
2
)
3

+ 1

2!3!
(x
2
)
2+3
+ . . . + 1

n!(n + 1)!
(x
2
)
n+n+1

+ . . . =

=
∞
∑
n=0

1

n!(n + 1)!
(x
2
)
2n+1

⇒

⇒ ∳∣z∣=1
e

x
2
(z+ 1

z
)dz = 2πi

∞
∑
n=0

1

n!(n + 1)!
(x
2
)
2n+1

.

Ответ. 2πi
∞
∑
n=0

1
n!(n+1)! (

x
2
)2n+1.

4.4.4 Problems about Integrals of Regular Branches (???!!!)
(тоже тут по идее мощные задачи)

Ш-19.пр.1.

Пусть регулярная ветвь g(z) многозначной функции {
√
z2 − 4} определена в области G,

представляющей собой комплексную плоскость с разрезом по полуокружности {z ∶ ∣z∣ = 2, Im z ⩾ 0} (рис.
19.1), причем главная часть ряда Лорана функции g(z) в окрестности z = ∞ равна z.

J = ∳∣z∣=1
dz

g(z) − 3z
.

Прежде всего следует проверить, что в заданной области G действительно существуют регулярные
ветви функции {

√
z2 − 4}. (Сделайте это самостоятельно.)

Для вычисления интеграла J по теории вычетов надо найти особые точки подынтегральной функции,
т. е. точки, в которых справедливо равенство g(z) = 3z. Чтобы их найти, замечаем, что из последнего
равенства следует g2(z) = (3z)2. Так как по определению корня g2(z) = z2 − 4, то получаем равенство
z2 − 4 = 9z2, т. е. z1,2 = ± i√

2
- точки, в которых возможно равенство g(z) = 3z.

Уточним значения g (± i√
2
). Для этого удобно вначале вычислить значение функции g в конечной

точке, например в точке z = 0. Допустим, что мы знаем значение g(0). Тогда для любого действительного
числа x > 2 вычислим значение g(x) по формуле (2) из §18:

g(x) = g(0)
√
∣x

2 − 4
4
∣ei/2(∆γ arg(z−2)+∆γ arg(z+2)) =

= g(0)x
2

√
1 − 4

x2
ei/2(π+0) = i

2
g(0) ⋅ x(1 − 2

x2
+ o( 1

x2
)) .

Последнее равенство записано с помощью формулы Тейлора для функции действительного переменного.
По теореме о единственности регулярной функции отсюда следует, что

g(z) = i
2
g(0) (z − 2

z
+ o(1

z
)) , z ∈ G.
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Так как по условию задачи главная часть ряда Лорана функции g(z) в ∞ paвна z, отсюда получаем, что
g(0) = −2i. Теперь легко вычислить значения g ( i√

2
) и g (− i√

2
) по той же формуле (2) из §18:

g ( i√
2
) = −2i

¿
ÁÁÀ∣−(1/2) − 4

4
∣∣e(i/2)(−arcctg 2

√
2+arcctg 2

√
2) = − 3i√

2
.

Аналогично получаем, что

g (− i√
2
) = − 3i√

2
,

т. е. равенство g(z) = 3z справедливо в точке z = − i√
2
. Так как g′(z) = z

g(z) , то g′ (− i√
2
) = 1

3
≠ 3. Таким

образом, точка z = − i√
2

есть полюс первого порядка подынтегральной функции f(z) = 1
g(z)−3z . B итоге

вычисляем интеграл по теореме о вычетах

J = 2πi res f = 2πi 1

g′ (− i√
2
) − 3

= −3πi
4
.

Ш-19.1.
Для всех регулярных в области G ветвей hk(z) или gk(z) указанных многозначных функций

вычислить интегралы по положительно ориентированной границе ∂G области G:
1) ∳∂G

cos z
πi+hk(z)dz, где hk(z) ∈ Ln z,G = {z ∶ ∣z + 1∣ < 1

2
};

2) ∳∂G
hk(z)
sinπz

dz, где hk(z) ∈ Ln z,G = {z ∶ ∣z − 1∣ < 1
2
};

3) ∳∂G hk(z)dz, где hk(z) ∈ Ln z−1
z+1 ,G = {z ∶ ∣z∣ > 2};

4) ∳∂G
dz

gk(z) , где gk(z) ∈ {
√
4z2 + 4z + 3} ,G = {z ∶ ∣z∣ > 1};

5) ∳∂G
dz

5−z+4gk(z) , где gk(z) ∈ {
√
1 − z},G = {z ∶ ∣z + 3∣ < 1}.

Ш-19.2.
Проверить, что многозначные функции допускают выделение в области G регулярной ветви,

удовлетворяющей заданным условиям, и вычислить интеграл от этой ветви по положительно
ориентированной границе ∂G области G:

1) ∳∂G
dz

(2+g(z)) sin z , где G = {z ∶ ∣z∣ < 1
2
} , g(z) ∈ {

√
z − 1}, g(0) = i.

2) ∳∂G
dz

1+h(z) , где G = {z ∶ ∣z − 3∣ < 0,99}, h(z) ∈ Ln(z − 2), h(3) = 0.
3) ∳∂G

dz
h(z)−3πi , где G = {z ∶ ∣z + 2∣ < 3

2
} , h(z) ∈ Ln z, h(−e) = 1 − πi.

4) ∳∂G
z+2

z+h(z)dz, где G = {z ∶ ∣z + 2∣ < 5
2
} , h(z) ∈ Ln(1 − z), h(1 − e) = 1.

5) ∳∂G g(z)dz, где G = {z ∶ ∣z∣ > 1,1}, g(z) ∈ {
√

z−1
z+1} , g (

5
3
) = − 1

2
.

6) ∳∂G
dz

1+2 sing(z) , где G = {z ∶ ∣z − 10∣ < 9,99}, g(z) ∈ {
√
z}, g(4) = −2. 7) ∳∂G g(z)dz, где G = {z ∶ ∣z∣ >

∣a∣ + ∣b∣}, g(z) ∈ {
√
(z − a)(z − b)},

lim
z→∞

g(z)
z
= 1.

8) ∳∂G
dz
g(z) , где G = {z ∶ ∣z∣ > ∣a∣ + ∣b∣}, g(z) ∈ {

√
(z − a)(z − b)}, limz→∞

g(z)
z
= −1. 9) ∳∂G

zdz
g(z) , где G = {z ∶

∣z∣ > ∣a∣ + ∣b∣}, g(z) ∈ { 3
√
(z − a)2(z − b)}, limz→∞

g(z)
z
= e−2πi/3. 10) ∳∂G

zdz
g(z) , где G = {z ∶ ∣z∣ > ∣a∣ + ∣b∣}, g(z) ∈

{ 4
√
(z − a)3(z − b)}, limz→∞

g(z)
z
= 1. 11) ∳∂G g(z)dz, где G = {z ∶ ∣z∣ > ∣a∣ + ∣b∣}, g(z) ∈ {(z − a)α(z − b)1−α},

limz→∞
g(z)
z
= 1. 12)

∂G
zg(z)h(z)dz, где G = {z ∶ ∣z∣ > ∣a∣ + ∣b∣}, g(z) ∈ {

√
z−a
z−b }, limz→∞ g(z) = 1, h(z) ∈

Ln z−a
z−b , limz→∞ h(z) = 0. 13) ∳∂G g(z)h(z)dz, где G = {z ∶ ∣z∣ > ∣a∣ + ∣b∣}, g(z) ∈ { 3

√
z−a
z−b }, limz→∞ g(z) =

1, h(z) ∈ Ln z−a
z−b , limz→∞ h(z) = 2πi 14) ∳∂G z

nh(z)dz, где G = {z ∶ ∣z∣ > ∣a∣+∣b∣}, h(z) ∈ Ln z−a
z−b , limz→∞ h(z) =

2πi, n = 0,1,2, . . . 15) ∳∂G f(z)dz, где G = {z ∶ −1 < Re z < 1}, f(z) ∈ { ctg
√
z√

z
}. 16) ∳∂G

dz
(z4+1)⋅g(z) , где G =

{z = x + iy ∶ x > y2} , g(z) ∈ {
√
1 + z2}, g(0) = 1
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Ш-19.3.

∫
∂G

g(z)h(z)
1 + z2

dz,

где G = {z ∈ C ∶ z ∉ (−∞,0]}, g(z) ∈ {
√
z}, g(1) = 1, h(z) ∈ Ln z, h(1) = 0.

Указание. Сначала рассмотреть интеграл по границе области Gρ,R = {z ∶ ρ < ∣z∣ < R,−π < arg z < π}
(кольцо с разрезом), а затем перейти к пределам при ρ→ 0,R → +∞.

Ш-19.4.

1) ∫
∂G

g(z)h2(z)
(z−i)2 dz, где G = {z ∈ C ∶ −π < arg z < π}, g(z) ∈ {

√
z}, g(1) = 1, h(z) ∈ Ln z, h(1) = 0;

2) ∫
∂G

g(z)dz, где G = {z ∈ C ∶ z ∉ [−1,1]}, g(z) ∈ {
√

z−1
z+1},

3) ∫
∂G

g(z)dz
z2−1 , где G = {z ∈ C ∶ z ∉ [−i, i]}, g(z) ∈ {

√
1 + z2}, g(0 + 0) = 1

Ш-19.5.

Пусть f(z) - регулярная ветвь многозначной функции { 3
√
z + 9} в C с разрезом по кривой

{z ∶ z = 9eit,−π ⩽ t ⩽ π
2
}, и лучу {z ∶ z = 9i + ti, t ⩾ 0}, такая, что arg f(10) = 2π

3
.

∳∣z∣=5
2 − f(z)
(z + 1)2

dz

Ш-19.6.
Пусть f(z) - регулярная ветвь многозначной функции Ln(z + 3) в C с разрезом по кривой

{z ∶ z = 3eit,−π ⩽ t ⩽ π
2
} и лучу {z ∶ z = 3i − t, t ⩾ 0} такая, что Im f(4) = 2π.

∳∣z∣=2,5
f(z)

z(z + 2)2
dz.

Ш-19.7.

Пусть f(z) - регулярная ветвь многозначной функции { 4
√
z + 16} в C с разрезом по кривой

{z ∶ z = 16eit,−π
2
⩽ t ⩽ π}, и лучу {z ∶ z = −16i − ti, t ⩾ 0}, такая, что arg f(20) = −π

2
.

∳∣z∣=13
2 − f(z)
z(z + 12)

dz

Ш-19.8.
Пусть f(z) - регулярная ветвь многозначной функции Ln(z + 5) в C с разрезом по кривой

{z ∶ z = 5eit,−π
2
⩽ t ⩽ π} и лучу {z ∶ z = −5i − t, t ⩾ 0}, такая, что Im f(6) = −2π.

∳∣z∣=4,5
f(z)

z2(z + 4)
dz

Ш-19.9.
Пусть f(z), f(0) = ln 2 + iπ, - регулярная ветвь многозначной функции Ln(z − 2) в плоскости c

разрезом по отрезку [1,2] и лучу {z ∶ z = 1 + iy,−∞ < y ⩽ 0}.

∳∣z−4∣=1,5
zf(z)
(z − 3)3

dz

Ш-19.19.

Пусть f(z), f(1 − i) = i, - регулярная ветвь многозначной функции { 3
√
z − 1} в плоскости c разрезом

по отрезку [1,2] и лучу {z ∶ z = 2 − iy,0 ⩽ y < +∞}.

∳∣z−8∣=2
z(f(z) − 2)
(z − 9)2

dz
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Ш-19.11.
Пусть f(z), f(0) = ln 4 − iπ, - регулярная ветвь многозначной функции Ln(z − 4) в плоскости c

разрезом по отрезку [3,4] и лучу {z ∶ z = 3 + iy,0 ⩽ y < +∞}.

∳∣z−7∣=2,5
zf(z)

(z − 6)(z − 5)2
dz

Ш-19.12.

Пусть f(z), f(−2) = 1 − i, - регулярная ветвь многозначной функции { 4
√
z − 2} в плоскости c

разрезом по отрезку [1,2], и лучу
{z ∶ z = 1 + iy,0 ⩽ y < +∞}.

∳∣z−15∣=4
(z + 2)(f(z) − 2)
(z − 18)2

dz.

Ш-19.13.
Пусть f(z), f(2) = 0,- регулярная ветвь многозначной функции Ln(z − 1) в плоскости с разрезом по

отрезкам [0,1], [0, i], и лучу {z ∶ Im z = 1,Re z ⩾ 0}.

∳∣z−1−4i∣=2
f(z)dz

(z − 1 − 4i)(z − 1 − 3i)2
.

Ш-19.14.

Пусть f(z), f(9) = 2,- регулярная ветвь многозначной функции { 3
√
z − 1} в плоскости с разрезом по

отрезкам [0,1], [0,−i], и лучу {z ∶ Im z = −1,Re z ⩾ 0}.

∳∣z−1+3i∣=1
(z − 1)3f(z)
(z − 1 + 3i)3

dz.

Ш-19.15.

Пусть f(z) - регулярная ветвь многозначной функции { 3
√
2z − 8} в C с разрезом по лучу {z ∶ z = 4−it, t ∈

[0,+∞)}, причем f(8) = −1 − i
√
3.

∳
∂D

dz

f(z) − z + 2
dz,

где ∂D - граница круга D = {z ∶ ∣z − 2∣ < 3
2
}.

Ш-19.16.

Пусть f(z) - регулярная ветвь многозначной функции Ln z2+2z
4

в плоскости с разрезом по лучу [−2,+∞)
действительной оси, причем Im f(−4) = 0.

∳
∂D

dz

f(z) − πi
,

где область D состоит из точек круга ∣z + 2∣ < 4, расстояние от которых до разреза больше 1.

Ш-19.29.

Пусть f(z) - регулярная ветвь многозначной функции { 4
√
z3(6 − z)} в плоскости с разрезом по отрезку

[0,6] такая, что f(3 + 0i) = 3.

∳∣z∣=7
zf(z)
z − 3

dz

Ш-19.21.

Пусть f(z) - регулярная ветвь многозначной функции Ln 5−z
3+z в плоскости с разрезом по отрезку [−3,5]

такая, что f(1 + 0i) = 0.

∳∣z∣=7
(z + z2) f(z)

z − 3
dz
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Ш-19.22.

Пусть f(z) - регулярная ветвь многозначной функции { 3
√
z2(4 − z)} в плоскости с разрезом по отрезку

[0,4] такая, что f(2 + 0i) = 2.

∳∣z∣=7
zf(z)
z − 2

dz

Ш-19.23.

Пусть f(z) - регулярная ветвь многозначной функции Ln 1−z
1+z в плоскости с разрезом по дуге: {z ∶ ∣z∣ =

1, Im z ⩽ 0} такая, что f ( i√
3
) = −πi

3
.

∳∣z∣= 3
2

dz

(3f(z) − 2πi)(z − 3)

Ш-19.25.

Пусть f(z) - регулярная ветвь многозначной функции Ln 2i−z
2i+z в плоскости с разрезом по дуге: {z ∶

∣z∣ = 2,Re z ⩽ 0}, такая, что f(2) = π
2
i.

∳∣z∣=3
dz

(z + 4i)(3f(z) + 2πi)

Ш-19.26.

Пусть f(z) - регулярная ветвь многозначной функции {
√
z2 + 3} в плоскости с разрезом по дуге:

{z ∶ ∣z∣ =
√
3, Re z ⩽ 0} такая, что f(1) = 2.

∳∣z∣=2
zdz

(z − 3)(f(z) + 2
√
3)

Ш-19.27.

Пусть f(z) - регулярная ветвь многозначной функции { 4
√
z2 − 1} в плоскости с разрезом по кривой

γ = {z ∶ z = eit,0 ⩽ t ⩽ π; z = t,−∞ < t ⩽ −1}

такая, что f(0) = eπi/4. Пусть S(z) =
+∞
∑
k=0

Ak(z − 2i)k - регулярная в круге сходимости функция,

совпадающая с f(z) в окрестности точки z = 2i. Найти радиус сходимости ряда S(z) и вычислить
интеграл

∳∣z−2i∣= 3
2

S(z)
(z − 3

4
i)2

dz

Ш-19.29.

Пусть f(z) - регулярная ветвь многозначной функции { 4
√
1 − z2} в плоскости с разрезом по кривой

γ = {z ∶ z = eit,0 ⩽ t ⩽ π; z = 1 + it,0 ⩽ t < ∞}

такая, что f(0) = 1. Пусть S(z) =
+∞
∑
k=0

Ak(z − 3i)k - регулярная в круге сходимости функция, совпадающая

с f(z) в окрестности точки z = 3i. Найти радиус сходимости ряда S(z) и вычислить интеграл

∳∣z−3i∣= 5
2

S(z)
(z − 3

4
i)2

dz
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Ш-19.39.
В C с разрезами по кривым γ1 и γ2, где

γ1 = {z ∶ z = t, t ⩽ −2}
γ2 = {z ∶ z = t,−1 ⩽ t ⩽ 0; z = it − 1,0 ⩽ t < ∞}

рассматривается регулярная ветвь f(z) многозначной функции { 3
√
z(z + 2)}, такая, что

f (−3
2
) = − 3

√
3

4

Пусть S(z) =
+∞
∑
k=0

Ak(z − 3i)k - регулярная в круге сходимости функция, совпадающая cf(z) в окрестности

точки z = 3i. Найти радиус сходимости ряда S(z) и вычислить интеграл

∳∣z−3i∣= 5
2

S(z)
(z + 2 − 2i)2

dz

Ш-19.31.

Пусть f(z) - регулярная ветвь многозначной функции Ln 3+iz
z−1 в плоскости с разрезом по отрезку [1,3i]

такая, что f(0) = ln 3 − πi. Вычислить f(∞) и интеграл

∳∣z∣=4
z2f(z)
z + 3

dz

Ш-19.34.

Пусть f(z) - регулярная ветвь многозначной функции { 3
√
z2(i − z)} в плоскости с разрезом по отрезку

[0, i] такая, что f(1) = 6
√
2eiπ/4. Вычислить f ( i

2
+ 0) и интеграл

∳∣z∣=3
zf(z)
3z + i

dz

Ш-19.35.

Пусть g(z) - регулярная ветвь многозначной функции Ln 2i−z
z+1 в плоскости с разрезом по кривой γ =

γ1 ∪ γ2, где

γ1 = {z ∶ ∣z∣ = 2,−π ⩽ arg z ⩽
π

2
} ,

γ2 = {z ∶ z = x,−2 ⩽ x ⩽ −1}

такая, что g(0) = ln 2 − 3πi
2

.

∳
z=4

zg(z)
1 + tg 1

z

dz

Ш-19.36.

Пусть f(z) - регулярная ветвь многозначной функции { 3
√
z2(i − z)} в плоскости с разрезом по кривой

γ = γ1 ∪ γ2, где

γ1 = {z ∶ ∣z +
i

2
∣ = 3

2
,Re z ⩾ 0}

γ2 = {z ∶ ∣z + i∣ = 1,Re z ⩽ 0}

такая, что f(−i) = 3
√
2ei7π/6.

∳∣z∣=4
f(z)

1 + e2/z
dz.
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Ш-19.38.

Пусть f(z) - регулярная ветвь многозначной функции { 4
√
z2(2i + z)2} в плоскости с разрезом по кривой

γ = γ1 ∪ γ2, где
γ1 = {z ∶ ∣z + 2i∣ = 2,Re z ⩽ 0},
γ2 = {z ∶ ∣z + 3i∣ = 1,Re z ⩾ 0},

такая, что f(−3i) =
√
3eπi.

∳∣z∣=5
f(z)

1 + 2 sin 1
z

dz

Ш-19.39.

Пусть h(z) - регулярная ветвь многозначной функции Ln 2+iz
2+z в плоскости с разрезом по кривой

γ = {z ∶ ∣z∣ = 2,−π ⩽ arg z ⩽ π
2
}

такая, что h(∞) = 1
2
πi. Вычислить и интеграл

∳∣z∣=1
ezh(z)
sin3 z

dz.

Ш-19.49.

Пусть g(z) - регулярная ветвь многозначной функции {
√
2z2 + 1} в плоскости с разрезом по кривой

γ = {z ∶ ∣z∣ = 1√
2
,Re z ⩾ 0}, где g(0) = 1.

∳∣z∣=1
dz

(z − 2)(g(z) + 3)
.

Ш-19.41.

Пусть g(z) - регулярная ветвь многозначной функции { 3
√
(z − 2)2(2i − z)} в плоскости с разрезом по

отрезку [2i,2] такая, что главная часть ее ряда Лорана в ∞ равна e−iπ/3z.

∳∣z∣=1
g(z)
sh3 z

dz

Ш-19.47.

Пусть g(z) - регулярная ветвь многозначной функции { 4
√
z2 − 1} в C с разрезом по кривой γ = γ1 ∪ γ2,

где
γ1 = {z ∶ ∣z∣ = 1, π ⩽ arg z ⩽ 2π}
γ2 = {z ∶ Im z ⩽ −1,Re z = 0}

причем g(2) = 4
√
3.

∳∣z−i∣= 5
4

z ( g(z)
g(z) − eπi/4

)
2

dz

Ш-19.48.

Пусть h(z) - регулярная ветвь многозначной функции Ln (z2 + 1) в C с разрезом по кривой γ = γ1 ∪γ2,
где

γ1 = {z ∶ ∣z∣ = 1,
π

2
⩽ arg z ⩽ 3π

2
}

γ2 = {z ∶ Im z = 1,Re z ⩾ 0}

причем Imh(0) = 0.

∳∣z+3i∣= 7
4

( h(z)
h(z) + πi

)
2

dz
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Ш-19.49.

Пусть f(z) - регулярная ветвь многозначной функции Ln ( z−1
z+1) в области G = {z ∶ ∣z∣ > 1} такая, что

f(∞) = 0. Доказать, что многозначная функция {
√
f(z) + 4i} распадается в G на регулярные ветви.

Пусть g(z) - регулярная ветвь функции {
√
f(z) + 4i} в G такая, что g(∞) = −

√
2(i + 1).

Ш-19.59.

Пусть f(z) - регулярная ветвь многозначной функции {
√

3−z
3+z} в области G = {z ∶ ∣z∣ > 3} такая, что

f(∞) = −i. Доказать, что многозначная функция Ln(f(z) − i) распадается в G на регулярные ветви.
Пусть g(z) - регулярная ветвь функции Ln(f(z) − i) в G такая, что g(∞) = ln 2 − iπ

2
.

4.4.5 Problems about Integrals Reducible to the Gamma Function

Ш-24.пр.3 Интеграл I =
π/2

∫
0

sinp−1φ cosq−1φdφ

Выразить через значения гамма-функции интеграл

I =
π/2

∫
0

sinp−1 φ cosq−1 φdφ

где p, q ∈ R, p, q > 0.
Делаем подстановку

x = sinφ, cosφ =
√

1 − sin2 φ = (1 − x2)1/2

dx = cosφdφ, dφ = dx

cosφ
= dx

(1 − x2)1/2

если φ ∈ [0;π/2], то x ∈ [0; 1]. Интеграл I сводится к интегралу от бета-функции:

I =
1

∫
0

xp−1 (1 − x2)(q−1)/2 dx

(1 − x2)1/2
=

1

∫
0

xp−1 (1 − x2)(q/2)−1 dx = 1

2

Γ (p
2
)Γ ( q

2
)

Γ (p+q
2
)

Ш-24.пр.4
Выразить через значения гамма-функции интеграл

I =
π/2

∫
0

tgr φdφ, где r ∈ R, −1 < r < 1.

Сведем интеграл I к интегралу вида I =
π/2
∫
0

sinp−1 φ cosq−1 φdφ, где p = r + 1, q = 1 − r. Этот интеграл

уже решен заменой переменных, так что

I = 1

2

Γ ( r+1
2
)Γ ( 1−r

2
)

Γ ( r+1+1−r
2
)
= 1

2
Γ(r + 1

2
)Γ(1 − r

2
) ,

так как Γ(1) = 1. Упростим, исключив из гамма-функцию. Если взять z = r+1
2

, то по формуле приведения
получаем

Γ(r + 1
2
)Γ(1 − r

2
) = Γ(z)Γ(1 − z) = π

sinπz
= π

sin (π r+1
2
)
= π

cos πr
2

,

откуда
I = π

2 cos πr
2
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Ш-24.пр.5 Интеграл I =
1

∫
0

lnp 1
xdx

Выразить через значения гамма-функции интеграл

I =
1

∫
0

lnp
1

x
dx

где p ∈ R, p > −1.
Делаем замену переменной

ln
1

x
= t, x = e−t, dx = −e−tdt

если x ∈ [0; 1], то t меняется от +∞ до 0. Используя представление гамма-функции в виде интеграла,
получаем

I =
0

∫
+∞

tp (−e−t)dt =
+∞

∫
0

tpe−tdt = Γ(p + 1)

Ш-24.пр.6
Выразить через значения гамма-функции интеграл

I =
+∞

∫
0

tz−1e−itdt,

где z ∈ C,0 < Re z < 1.
Если r,R > 0, r < R, то рассмотрим область

D(r,R) = {z ∶ r < ∣z∣ < R,0 < arg z < π/2},
то есть область с границей D(r,R) из дуг окружностей

CR = {z ∶ ∣z∣ = R,0 ⩽ arg z ⩽ π/2},
Cr = {z ∶ ∣z∣ = r,0 ⩽ arg z ⩽ π/2}

и отрезков [r,R], [ir, iR].
Пусть f(ζ) = ζz−1e−ζ , ζ ∈ C. Тогда по теореме Коши

∳
∂D+(r,R)

f(ζ)dζ = 0

т.е.

∫
C−r

f(ζ)dζ +
R

∫
r

f(ζ)dζ + ∫
C+

R

f(ζ)dζ +
ir

∫
iR

f(ζ)dζ = 0

Если ζ ∈ CR, то ∣ζz−1∣ ⩽ Rx−1 стремится к нулю при R → +∞ (по условию x = Re z < 1). Поэтому по лемме
Жордана

∫
C+

R

f(ζ)dζ → 0 (R → +∞)

Если ζ ∈ Cr, то ∣ζz−1∣ ⩽ rx−1. Поэтому
RRRRRRRRRRRRRR
∫
C−r

f(ζ)dζ
RRRRRRRRRRRRRR
⩽ ∫
Cr

∣f(ζ)∣ ⋅ ∣dζ ∣ = rx−1 ∫
Cr

∣dζ ∣ = rx−1 ⋅ πr
2
= πr

x

2
→ 0 (r → +0),

так как по условию x = Re z > 0. Переходя к пределу при r → +0, R → +∞ в основном равенстве, получаем
+∞

∫
0

tz−1e−tdt −
+∞

∫
0

(it)z−1e−itd(it) = 0,

т.e.

Γ(z) =
+∞

∫
0

tz−1e−tdt =
+∞

∫
0

iz−1tz−1e−itidt = iz
+∞

∫
0

tz−1e−itdt = (eiπ/2)
z
+∞

∫
0

tz−1e−itdt

Откуда
+∞

∫
0

tz−1e−itdt = Γ(z)e−πiz/2
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Ш-24.пр.7
Выразить через значения гамма-функции интегралы

+∞

∫
0

cosxndx,

+∞

∫
0

sinxndx, n ∈ N, n ⩾ 2.

Используя
+∞
∫
0

tz−1e−itdt = Γ(z)e−πiz/2, где z = 1
n
, n ∈ N, n ⩾ 2, получаем

Γ( 1
n
) e−πi/2n =

+∞

∫
0

t
1
n−1e−itdt = I

Делаем в интеграле замену переменной
t

1
n = x, t = xn.

Тогда dt = nxn−1dx = nt(n−1)/ndx,

I =
+∞

∫
0

t(1−n)/ne−ix
n

nt(n−1)/ndx = n
+∞

∫
0

e−ix
n

dx,

откуда
+∞

∫
0

e−ix
n

dx = 1

n
Γ( 1

n
) e−πi/(2n)

Выделяя в этом равенстве действительные и мнимые части, получаем соответственно

+∞

∫
0

cosxndx = 1

n
Γ( 1

n
) cos π

2n

+∞

∫
0

sinxndx = 1

n
Γ( 1

n
) sin π

2n

В частности, при n = 2 имеем

+∞

∫
0

cosx2dx = 1

2
Γ(1

2
) cos π

4
= 1

2

√
π

1√
2
=
√
π

2
√
2

+∞

∫
0

sinx2dx = 1

2
Γ(1

2
) sin π

4
=
√
π

2
√
2

Ш-24.1

Ш-24.1.1) Доказать B(z, ζ) = B(ζ, z)

(хз)

Ш-24.1

2) B(m,n) = 1
m+n−1C

m
n (m,n = 1,2, . . . ,m < n);

Ш-24.1

3) B(z + 1, ζ) = z
z+ζB(z, ζ)

Ш-24.1

4) Γ(n + z + 1) = (n + z)(n + z − 1)⋯zΓ(z)(n = 1,2, . . .).

351



4.4.5 Problems about Integrals Reducible to the Gamma Function

Ш-24.2.
Доказать формулы:

1)
+∞
∫
0

xze−x
2

dx = 1
2
Γ ( z+1

2
) (Re z > −1);

Ш-24.2

2)
+∞
∫
0

xze−x
p

dx = 1
p
Γ ( z+1

p
) (p > 0,Re z > −1);

Ш-24.2

3)
+∞
∫
0

tz−1e−ζtdt = ζ−zΓ(z) (Re z > 0, ∣arg ζ ∣ < π
2
);

Ш-24.2

4)
+∞
∫
0

tz−1 cos tdt = Γ(z) cos πz
2
(0 < Re z > 1);

Ш-24.2

5)
+∞
∫
0

tz−1 sin tdt = {Γ(z) sin
πz
2
, z ≠ 0(−1 < Re z < 1),

π
2
, z = 0;

Ш-24.2

6)
+∞
∫
0

sinxp

xp dx = 1
p−1Γ (

1
p
) cos π

2p
(p > 1

2
);

Ш-24.2

7)
+∞
∫
0

1−cosxp

x2p dx = p
(p−1)(2p−1)Γ (

1
p
) cos π

2p
(p > 1

2
);

Ш-24.2

8)
+∞
∫
0

e−x
p cospλ cos (xp sinpλ)dx = 1

p
Γ ( 1

p
) cosλ (p > 0,− π

2p
< λ < π

2p
)

Ш-24.2

9)
+∞
∫
0

xz−1e−x
p cosλ sin (xp sinλ)dx = 1

p
Γ ( z

p
) sin λz

p

(Re z > 0, p > 1,−π
2
< λ < π

2
)

Ш-24.3.

1)

Доказать формулы:

1)
1

∫
0

tα−1 (1 − t2)β−1 dt = 1
2
B (α

2
, β) (Reα > 0,Reβ > 0);
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Ш-24.3

2)
1

∫
0

tα−1 (1 − tp)β−1 dt = 1
p
B (α

p
, β) (p > 0,Reα > 0,Reβ > 0);

Ш-24.3

3)
+∞
∫
0

tα−1dt
(1+t)α+β = B(α,β) (Reα > 0,Reβ > 0);

Ш-24.3

4)
+∞
∫
0

tα−1dt
(1+t2)β =

1
2
B (α

2
, β − α

2
) (Reα > 0,Re (β − α

2
) > 0)

Ш-24.3

5)
+∞
∫
0

tα−1dt
(1+tp)β =

1
p
B (α

p
, β − α

p
) (p > 0,Reα > 0,Re (β − α

p
) > 0).

Ш-4.
Доказать формулы:

Ш-24.4

1)
1

∫
0

tα−1(1−t2)β−1

(1+t2)(α/2)+β dt = 2
−(α/2)−1 B (α

2
, β) (Reα > 0,Reβ > 0);

Ш-24.4

2)
1

∫
0

tα−1(1−tp)β−1

(1+tp)(α/p)+β dt =
1
p
2−(α/p)B (α

p
, β) (здесь p > 0,Reα > 0,Reβ > 0);

Ш-24.4

3)
1

∫
−1

(1+t)α−1(1−t)β−1
(t+a)α+β dt = 2α+β−1(a + 1)−α(a − 1)−βB(α,β) (здесь a > 1,Reα > 0,Reβ > 0);

Ш-24.5
1) Пусть Reα > 0,Reβ > 0. Доказать, что

1

∫
−1

(1 + x)2α−1(1 − x)2β−1

(1 + x2)α+β
dx = 2α+β−2 B(α,β).

Ш-6.
Пусть Γ - произвольная спрямляемая кривая, идущая из точки z = −π

2
в точку z = π

2
, оставаясь в

полуплоскости {z ∶ Im z > 0}. Под (sin z)α на кривой Γ мы будем понимать ту ветвь этой функции в
полуплоскости {z ∶ Im z > 0}, которая обращается в единицу в точке z = −π

2
. Доказать, что при всех

комплексных значениях α справедлива формула

∫
Γ

(sin z)αdz = 1 + eπiα

2
B (α + 1

2
,
1

2
) .
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4.4.5 Problems about Integrals Reducible to the Gamma Function

Ш-7.
Пусть Γ - произвольная спрямляемая кривая, идущая из точки z = −i в точку z = i, оставаясь в

полуплоскости {z ∶ Re z > 0}. Под zα−1 и (z2 + 1)β−1 на кривой Γ мы будем понимать те ветви этих функций
в полуплоскости {z ∶ Re z > 0}, которые обращаются в единицу в точках z = 1 и z = 0 соответственно.
Доказать, что при Reβ > 0 и при любом комплексном значении α справедлива формула

∫
Γ

zα−1 (z2 + 1)β−1 dz = i cos πα
2

B(α
2
, β) .

Ш-8.
Доказать, что 1) при любом α и при Reβ > 0

π
2

∫
0

(cosφ)β−1 cosαφdφ = 2−β sin π(β − α)
2

B(α − β + 1
2

, β) ;

2) при любом α и при Reβ > − 1
2

π/2

∫
0

(cosφ)2β cos2 αφdφ = 2−2β−2 cosπ(α − β)B(α − β,2β) + 1

2
B(β + 1

2
,
1

2
)

3) при Reβ < 1 и Re(α − β) > 0
∞

∫
0

e−αx

(shx)β
dx = 2β−1 B(α + β

2
,1 − β) ;

4) при Reβ > −1, Re(α + β) < 0,Re(α − β) > 0,

∞

∫
0

(shx)β shαxdx = 2−β−2 [ B(β + 1,−α + β
2
) −B(β + 1, α − β

2
)] .

Ш-9.
Доказать, что при Reα > 0,Reβ > 0

π/4

∫
−π/4

(cosφ − sinφ)2α−1(cosφ + sinφ)2β−1dφ = 2α+β−2 B(α,β).

Ш-19.
Доказать, что при 0 < Reα < 1 справедлива формула

π/4

∫
−π/4

(cosφ − sinφ
cosφ + sinφ

)
2α−1

dφ = π

2 sinπα
.

Ш-11.
Доказать формулу

1

2πi
∫
Γ

et ⋅ t−zdt = 1

Γ(z)
,

где Γ - положительно ориентированная граница области

{t ∶ ∣t∣ > ρ, ∣arg t∣ < π − η}, (0 ⩽ η ⩽ π
2
) .
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Ш-12.
Обозначим через Dσ,ρ полуплоскость {z ∶ Re z < σ}, из которой выброшены круги {z ∶ ∣z +n∣ < ρ}, n =

1,2, . . .. Доказать, что при любых фиксированных значениях постоянных ρ > 0, σ и m справедливо
неравенство

∣Γ(z)∣ ⩽M(1 + ∣z∣)−m (z ∈Dσ,ρ)
с некоторой постоянной M , зависящей от выбора чисел ρ, σ,m.

Ш-13.
Доказать, что

∣Γ(1
2
+ iξ)∣ =

√
π

chπξ
, −∞ < ξ < ∞.

Ш-14.

Доказать, что при любых значениях s, лежащих в угле {s ∶ ∣arg s∣ < π
2
}, справедлива формула

1

2πi

1
2+i∞

∫
1
2−i∞

Γ(z)s−zdz = e−s

4.4.6 1.8. Computation of Integrals of Real-Valued Functions by
Kolesnikova

1.8.1. Выбор контура интегрирования
При вычислении интегралов от функций действительного переменного с помощью интегралов от

функции комплексного переменного, прежде всего, возникает вопрос о выборе контура интегрирования.
С чего начать?
Часть контура интегрирования должна совпадать с отрезком, по которому ведётся интегрирование

заданной функции действительного переменного, или отрезком любой длины, если вычисляется
несобственный интеграл по бесконечному промежутку. Так как теория вычетов применяется к
интегралам по замкнутому контуру, то нужно контур замкнуть. «Замыкание» осуществляется так, что
либо по дополнительным контурам интегралы будут равны 0, либо мы их сможем вычислить, либо их
значения известны. Нередко при вычислении, например, несобственного интеграла от −∞ до +∞ в
качестве отрезка действительной оси выбираются симметричные отрезки. Тогда приходится вычислять

только v.p.
+∞
∫
−∞

f(z)dx. Заметим, что если
+∞
∫
−∞

f(z)dx сходится, то v.p.
+∞
∫
−∞

f(x)dx =
+∞
∫
−∞

f(x)dx

Рассмотрим пример.

Кол-1.24.
Вычислите

2π

∫
0

dφ

(a + b cosφ)2
, a > b > 0

Этот интеграл в принципе можно вычислять и на первом курсе, сделав универсальную замену
переменных t = tg φ

2
. Но эти вычисления будут громоздкими (попробуйте!).

Попробуем его вычислить, применяя методы ТФКП.
Интеграл от 0 до 2π - ясно, что придётся считать интеграл по окружности. Теперь надо выразить
подынтегральную функцию через z. Удачно то, что cosφ = eiφ+e−iφ

2
= z+ 1

z

2
, т. е. z принадлежит единичной

окружности. Теперь выразим dφ через dz:

z = eiφ ⇒ dz = ieiφdφ = izdφ⇒ dφ = −idz
z

Тогда

2π

∫
0

dφ

(a + b cosφ)2
= ∳∣z∣=1

−idz
z (a + b

2
(z + 1

z
))2
= ∳∣z∣=1

−4izdz
(bz2 + 2az + b)2
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Найдём нули знаменателя: bz2 + 2az + b = 0 ⇐⇒ z1 = −a−
√
a2−b2
b

, z2 = −a+
√
a2−b2
b

. Выяснили, что ∣z1∣ > 1,
а ∣z2∣ < 1, поэтому вычет будем считать в точке z = z2. Особая точка z = z2 - полюс второго порядка,
поэтому

res
z=z2

−4iz
b2 (z − z1)2 (z − z2)2

= −4i
b2
( z

(z − z1)2
)
′

z2

= 4i

b2
z1 + z2
(z2 − z1)3

=

= −ia

(
√
a2 − b2)

3
⇒ ∳∣z∣=1

−4i zdz

b2 (z − z1)2 (z − z2)2
= 2πa

(
√
a2 − b2)

3

Ответ. 2πa

(
√
a2−b2)

3 .

1.8.2. Интегралы вида
+∞
∫
−∞

R(x) cosaxdx,
+∞

∫
−∞

R(x) sinaxdx. Лемма Жордана

Исследовать на сходимость (вспомните признак Дирихле) и абсолютную сходимость (вспомните,
например, признак Вейерштрасса) несобственные интегралы вида

+∞

∫
−∞

R(x) cosaxdx,
+∞

∫
−∞

R(x) sinaxdx

где R(x) = Pm(x)
Qn(x) ,m,n ∈ N, - рациональная функция, мы умеем. Теперь научимся их вычислять. Будем

вычислять
+∞
∫
−∞

R(x)eiaxdx, а тогда
+∞

∫
−∞

R(x) cosaxdx = Re
+∞

∫
−∞

R(x)eiaxdx

+∞

∫
−∞

R(x) sinaxdx = Im
+∞

∫
−∞

R(x)eiaxdx

Но на самом деле мы научимся вычислять интегралы вида v.p.
+∞
∫
−∞

R(x)eiaxdx, т. к. будем

рассматривать симметричные отрезки на оси Ox, а уже отсюда получим значение обоих интегралов:

v.p.
+∞

∫
−∞

R(x) sinaxdx = Im v.p.
+∞

∫
−∞

R(x)eiaxdx

v.p.
+∞

∫
−∞

R(x) cosaxdx = Re v.p.
+∞

∫
−∞

R(x)eiaxdx

При этом мы знаем, что, если интеграл сходится, то v.p.
+∞
∫
−∞

f(x)dx =
+∞
∫
−∞

f(x)dx.

1.8.2. a) На контуре интегрирования нет особых точек. Лемма Жордана

Для вычисления v.p.
+∞
∫
−∞

R(x)eiaxdx мы будем рассматривать ∳C R(z)e
iαzdz, где C - некоторый

замкнутый контур.
Предполагаем в этом пункте, что Qn(x) не имеет действительных корней — в этом случае

R

∫
−R

R(x)eiaxdx существует при любом R.

Так как Qn(x) - многочлен с действительными коэффициентами, то его корни входят
комплексно-сопряжёнными парами - поэтому в верхней полуплоскости находится только половина
корней знаменателя.
Выбираем контур интегрирования. Прежде всего это отрезок [−R,R]. Замыкаем контур
полуокружностью CR (см. рис. 1.10).

Так как Qn(x) имеет конечное число корней, то найдётся такое R0, при котором все корни,
расположенные в верхней полу-
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Рис. 1.10 плоскости, будут находиться в полукруге. Мы будем рассматривать R > R0 — тогда значение
∳C f(z)dz не будет меняться при увеличении R, т. к. ∳C f(z)dz полностью определяется особыми точками,
расположенными внутри контура.

Желательно, чтобы интеграл по CR, «ушёл», когда R →∞. Для оценки интеграла по CR служит
Лемма Жордана. Если a > 0 и maxz∈CR

∣R(z)∣ Ð→
R→∞

0, то ∫
CR

R(z)eiαzdz Ð→
R→∞

0.

Пр и м е ч а н и е. При нашем выборе полуокружности CR ∶ ∣z∣ = R, Im z ⩾ 0 знак α очень важен, т. к.
eiα(x+iy) = eiα(x)e−αy ⇒ ∣eiα(x+iy)∣ = e−αy.

Если a < 0 в интеграле
+∞
∫
−∞

R(x)eiaxdx, то лемма Жордана будет работать в нижней полуплоскости.

Итак, будем рассматривать ∳C R(z)e
iαzdz,α > 0.

Кол-1.25.

Вычислите
+∞
∫
−∞

x sin(3−2x)
x2−4x+5 dx.

Для вычисления интеграла выберем контур интегрирования C ∶ [−R;R] ∪CR (см. рис. 1.10).

Так как
+∞
∫
−∞

x sin(3−2x)
x2−4x+5 dx = Im

+∞
∫
−∞

xei(3−2x)
x2−4x+5 dx,α = −2 < 0, а для применения леммы Жордана надо, чтобы

было α > 0, то перепишем наш интеграл по-другому:
+∞

∫
−∞

x sin(3 − 2x)
x2 − 4x + 5

dx = −
+∞

∫
−∞

x sin(2x − 3)
x2 − 4x + 5

dx =

= − Im
+∞

∫
−∞

xe(2x−3)i

x2 − 4x + 5
dx, α = 2 > 0

Теперь рассмотрим

∳
C

ze(2z−3)i

z2 − 4z + 5
dz = ∳

C

ze(2z−3)i

(z − (2 + i))(z − (2 − i))
dz

У подынтегральной функции внутри контура одна особая точка z = 2 + i - полюс 1-го порядка.
Поэтому, с одной стороны, по теореме о вычетах,

∳
C

ze(2z−3)i

z2 − 4z + 5
dz = 2πi res

z=2+i

ze(2z−3)i

z2 − 4z + 5
= 2πi(2 + i)e

i(4+2i−3)i

2(2 + i) − 4
=

= πe−2(2 + i)ei = πe−2((2 cos 1 − sin 1) + i(2 sin 1 + cos 1))

С другой стороны, так как подынтегральная функция удовлетворяет условиям леммы Жордана, а
+∞
∫
−∞

xe(2x−3)i
x2−4x+5 dx сходится по признаку Дирихле, то

∳
C

ze(2z−3)i

z2 − 4z + 5
dz =

R

∫
−R

xe(2x−3)i

x2 − 4x + 5
dx+∫

CR

ze(2z−3)i

z2 − 4z + 5
dz Ð→

R→∞

+∞

∫
−∞

xe(2x−3)i

x2 − 4x + 5
dx

Поэтому
+∞
∫
−∞

xe(2x−3)i
x2−4x+5 dx = πe

−2((2 cos 1 − sin 1) + i(2 sin 1+ + cos 1)),a
+∞

∫
−∞

x sin(3 − 2x)
x2 − 4x + 5

dx = − Im
+∞

∫
−∞

xe(2x−3)i

x2 − 4x + 5
dx = −πe−2(2 sin 1 + cos 1)

Ответ. −πe−2(2 sin 1 + cos 1).
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1.8.2. б) Особые точки на контуре интегрирования

При вычислении интегралов вида
+∞
∫
−∞

R(x)eiaxdx встречаются и такие, у которых Qn(x) имеет

действительные корни zk = ak ∈ R — тогда их надо «обходить» по полуокружностям ∣z − ak ∣ < ρ, Im z ⩾ 0.
Предварительно проведём несколько дополнительных вычислений.

Дополнение
Пусть z = a - полюс 1-го порядка функции f(z).
Рассмотрим ∫

γ
f(z)dz, где γ - полуокружность ∣z - −a ∣= ρ, Im z ⩾ 0, проходимая в направлении, при

котором точка z = a остаётся слева.
Так как z − a −Π1, то

∫
∣z−a∣=ρ1
Im z≥0

f(z)dz = ∫
∣z−a∣=ρ1
Im z≥0

( a−1
z − a

+
∞
∑
0

ak(z − a)k)dz =

= [z − a = ρeiφ] =
π

∫
0

( a−1
ρeiφ

+
∞
∑
0

akρ
keikφ)ρeiφidφ =

= iπa−1 + i
∞
∑
0

akρ
k+1

π

∫
0

ei(k+1)φdφÐ→
ρ→0

iπres
z=a
f(z)

Итак, ∫
z=−a∣=ρ
Im z≥0

f(z)dz Ð→
ρ→0

iπres
z=a
f(z).

2. Пусть теперь z = a - УОТ. Тогда

∫
∣z−a∣=ρ
Im z≥0

f(z)dz = ∫
∣z−a∣=ρ
Im z≥0

∞
∑
0

ak(z − a)kdz = [z − a = ρeiφ] =

=
π

∫
0

∞
∑
0

akρ
keikφρeiφidφ = i

∞
∑
0

akρ
k+1

π

∫
0

ei(k+1)φdφÐ→
ρ→0

0.

Мы доказали, что, если a ∈ C - полюс 1-го порядка (П1) или устранимая особая точка (УОТ), то

∫
∣z=a∣=ρ
Im z≥0

f(z)dz Ð→
ρ→0

iπ res res
z=a
f(z) (1.25)

если полуокружность проходится в направлении, при котором точка z = a остаётся слева.

Кол-1.

26. Вычислите интеграл Дирихле
∞
∫
0

sinax
x

dx.

Заметим, что
∞

∫
0

sinax

x
dx = 1

2

+∞

∫
−∞

sinax

x
dx, I(a) =

+∞

∫
−∞

sinax

x
dx = −I(−a)

нечётная функция относительно параметра a. Очевидно, что I(0) = 0. Поэтому достаточно найти
I(a) для a > 0.

Заметим также, что
+∞
∫
−∞

sinax
x

dx = Im
+∞
∫
−∞

eiax

x
dx, но, в отличие от сходящегося интеграла

+∞
∫
−∞

sinax
x

dx,

интеграл
+∞
∫
−∞

eiax

x
dx расходится в 0 - поэтому нам придётся «обойти» эту особую точку..

Однако существует

J(a) = v.p. ∫
+∞

−∞

eiax

x
dx = v.p. ∫

+∞

−∞

cosax + i sinax
x

dx = i∫
+∞

−∞

sinax

x
dx

т. к. v.p.
+∞
∫
−∞

cosax
x

dx = 0, а
+∞
∫
−∞

sinax
x

dx сходится.
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Итак, I(a) = −i v.p.
+∞
∫
−∞

eiax

x
dx⇐⇒ I(a) = −iJ(a).

Будем рассматривать ∳C
eiaz

z
dz по некоторому замкнутому контуру C.

Рис. 1.11

Первый способ.

Подынтегральная функция имеет одну особую точку: z = 0 - полюс 1-го порядка.
Поэтому выберем контур, изображённый на рис. 1.11. Внутри выбранного контура особых точек нет

- работает интегральная теорема Коши: ∳C
eiaz

z
dz = 0.

Тогда

0 =∳
C

eiaz

z
dz =

=
−ρ

∫
−R

eiax

x
dx +

R

∫
ρ

eiax

x
dx + ∫

Cρ

eiaz

z
dz + ∫

CR

eiaz

z
dz Ð→

R→+∞
ρ→0

v.p.
+∞

∫
−∞

eiax

x
dx − iπ + res

z=0

eiaz

z
dz = v.p.

+∞

∫
−∞

eiax

x
dx − iπ⇒

⇒ v.p.

∫
CR

eiaz

z
dz Ð→

R→+∞
0 по лемме Жордана, ∫

Cρ

eiaz

z
dz Ð→

ρ→0
−iπ res

z=0
eiaz

z
по пункту 1). Дополнения (но

полуокружность обходится по часовой стрелке - поэтому взят знак -).
Итак,

v.p.
+∞
∫
−∞

eiax

x
dx = i

+∞
∫
−∞

sinax
x

dx = iπ⇒
∞
∫
0

sinax
x

dx = π
2
, a > 0,

откуда, в силу нечётности I(a), получаем, что
∞
∫
0

sinax
x

dx = π
2
signa, где signa =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, a > 0,
0, a = 0,
−1, a < 0.

Ответ. π
2
signa.

Второй способ.

Контур можно выбрать другой - как на рис. 1.12.
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Рис. 1.12
Тогда (запишем коротко)

2πi ⋅ 1 = 2πi resz=0 e
iaz

z
dz = ∳C

eiaz

z
dz =

=
−ρ

∫
−R

eiax

x
dx +

R

∫
ρ

eiax

x
dx + ∫

Cρ

eiaz

z
dz + ∫

CR

eiaz

z
dz Ð→

R→+∞
ρ→0

Ð→
R→+∞
ρ→0

v.p.
+∞

∫
−∞

eiax

x
dx + iπres

z=0

eiaz

z
= v.p.

+∞

∫
−∞

eiax

x
dx + iπ⇒

⇒ v ⋅ p ⋅
+∞

∫
−∞

eiax

x
dx = iπ

т. к. ∫
Cρ

eiaz

z
dz Ð→

ρ→0
iπ resz=0

eiaz

z
по пункту 1) Дополнения (но полуокружность обходится теперь против

часовой стрелки).
Ответ. π

2
signa.

Кол-1.

27. Вычислите v.p.
+∞
∫
−∞

1−eiax

x2 dx, если 1) a > 0, 2) a < 0

В отличие от предыдущих примеров,
+∞
∫
−∞

1−eiax

x2 dx pacxoдится в 0. Поэтому существует только

I(a) = v ⋅ p ⋅
+∞

∫
−∞

1 − eiax

x2
dx

Заметим, что I(0) = 0, а

I(a) = v ⋅ p ⋅
+∞
∫
−∞

1−eiax

x2 dx = v ⋅ p ⋅
+∞
∫
−∞

1−cosax−i sinax
x2 dx =

=
+∞
∫
−∞

1−cosax
x2 dx

т. е. I(a) = I(−a).

Поэтому достаточно вычислить интеграл для a > 0. Заметим, однако, что
+∞
∫
−∞

1−cosax
x2 dx вычисляется

в матанализе с помощью дифференцирования по параметру. Но мы его вычислим с помощью интеграла
по замкнутому контуру.

Выберем контур интегрирования (см. рис. 1.11).
Будем вычислять ∳C

1−eiaz

z2
dz. Подынтегральная функция имеет одну особую точку z = 0 - полюс

1-го порядка. Внутри выбранного контура особых точек нет - работает интегральная теорема Коши:
∳C

1−eiaz

z2
dz = 0.

С другой стороны,

0 = ∳
C

1 − eiaz

z2
dz =

−ρ

∫
−R

1 − eiax

x2
dx +

R

∫
ρ

1 − eiax

x2
dx+

+ ∫
Cρ

1 − eiaz

z2
dz + ∫

CR

1 − eiaz

z2
dz Ð→

R→∞
ρ→0

Ð→
R→∞
ρ→0

v.p.
+∞

∫
−∞

1 − eiax

x2
dx − iπres

z=0

1 − eiaz

z2
⇐⇒

⇐⇒ v.p.
+∞

∫
−∞

1 − eiax

x2
dx = iπres

z=0

1 − eiaz

z2
,

так как
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RRRRRRRRRRRRR
∫
CR

1 − eiaz

z2
dz

RRRRRRRRRRRRR
⩽
RRRRRRRRRRRRR
∫
CR

1

z2
dz

RRRRRRRRRRRRR
+
RRRRRRRRRRRRR
∫
CR

eiaz

z2
dz

RRRRRRRRRRRRR
, a

RRRRRRRRRRRRR
∫
CR

1

z2
dz

RRRRRRRRRRRRR
=
RRRRRRRRRRRRR

0

∫
π

e−iφ

R2
Rdφ

RRRRRRRRRRRRR
Ð→
R→∞

0,

RRRRRRRRRRRRR
∫
CR

eiaz

z2
dz

RRRRRRRRRRRRR
Ð→
R→∞

0

по лемме Жордана.
Так как

res
z=0

1 − eiax

z2
dz = lim

z→0

z (1 − eiaz)
z2

= lim
z→0

1 − 1 − iaz + o(z)
z

= −ia

то

v.p.
+∞

∫
−∞

1 − eiax

x2
dx = iπ(−ia) = πa

В силу чётности I(a), v.p.
+∞
∫
−∞

1−eiax

x2 dx = π∣a∣.

Ответ. π∣a∣.
Можно не вычислять интеграл при a < 0. Тем не менее мы приведём вычисления лишь для того, чтобы
показать, как работать с a < 0.

Вычисление интеграла для α < 0.

Первый способ.

Так как a < 0, выберем другой контур интегрирования контур на рис. 1.13, проходимый против
часовой стрелки.

Тогда

ρ

∫
R

1 − eiax

x2
dx +

−R

∫
−ρ

1 − eiax

x2
dx Ð→

R→∞
ρ→0

− v.p.
+∞

∫
−∞

1 − eiax

x2
dx

На новой полуокружности CR для ∫
CR

eiaz

z2
dz работает лемма Жордана при a < 0.

Рис. 1.13
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Рис. 1.14
Внутри контура нет особых точек - поэтому (оценка интегралов по CR аналогична проведённой в
предыдущем пункте):

0 = ∳C
1−eiaz

z2
dz =

ρ

∫
R

1−eiax

x2 dx +
−R
∫
−ρ

1−eiax

x2 dx+

+ ∫
Cρ

1−eiaz

z2
dz + ∫

CR

1−eiaz

z2
dz Ð→

R→∞
ρ→0

Ð→
R→∞
ρ→0

− v.p.
+∞

∫
−∞

1 − eiax

x2
dx − iπ res

z=0

1 − eiaz

z2
⇐⇒

v.p.
+∞

∫
−∞

1 − eiax

x2
dx = −iπ res

z=0

1 − eiaz

z2
= −iπ(−ia) = −πa

Итак, v.p.
+∞
∫
−∞

1−eiax

x2 dx = −πa, a < 0. Ответ. −πa, a < 0.

Ответ. 1) πa; 2) − πa.

Второй способ.

Интеграл можно вычислить и «в лоб» по контуру рис. 1.14 сразу в нужном направлении. Но тогда
работы больше - придётся считать вычеты ещё в двух точках: z = 0, z = ∞.

Тогда, с одной стороны,

∳
C

1 − eiaz

z2
dz = 2πi(res

z=0

1 − eiaz

z2
+ res
z=∞

1 − eiaz

z2
) = 0

T. K.

1 − 1 − iaz + . . .
z2

∣
∞
= 1

z
(−ia) + . . .⇒ res

z=∞
1 − eiaz

z2
= ia

С другой стороны,

0 = ∳
C

1 − eiaz

z2
dz =

−ρ

∫
−R

1 − eiax

x2
dx + ∫

Cρ

1 − eiaz

z2
dz+

+
R

∫
ρ

1 − eiax

x2
dx + ∫

CR

1 − eiaz

z2
dz Ð→

R→∞
ρ→0

Ð→
R→∞
ρ→0

v.p.
+∞

∫
−∞

1 − eiax

x2
dx + iπres

z=0

1 − eiaz

z2
⇐⇒

⇐⇒ v.p.
+∞

∫
−∞

1 − eiax

x2
dx + iπ(−ia) = 0⇐⇒

⇐⇒ v.p.
+∞

∫
−∞

1 − eiax

x2
dx = −πa.

П р и м е ч а н и е. Заметим, что на действительной оси интегралы
l

∫
−l
R(x) cosaxdx,

l

∫
−l
R(x) sinaxdx

совпадают с интегралами
l

∫
−l
R(z) cosazdz,

l

∫
−l
R(z) sinazdz. Тогда почему не рассматриваются интегралы

∫
C

R(z) sinazdz, ∫
C

R(z) cosazdz? Дело в том, что, по лемме Жордана, ∫
CR

R(z)eiazdz Ð→
R→∞

0, если, например,

α > 0 и CR находится в верхней полуплоскости, а

∫
CR

R(z) sinazdz = ∫
CR

R(z)e
iaz − e−iaz

2i
dz =

= ∫
CR

R(z)e
a(−y+ix) − ea(y−ix)

2i
dz
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и, как видно, интеграл «уйдёт» в ∞ при y → +∞.
Следующий пример интерес тем, что выбор контура не так прост.

Кол-1.
28. Вычислите интегралы Френеля:

+∞

∫
0

cosx2dx,

+∞

∫
0

sinx2dx

Ясно, что
+∞
∫
0

cosx2dx = Re
+∞
∫
0

eix
2

dx,
+∞
∫
0

sinx2dx = Im
+∞
∫
0

eix
2

dx. Интеграл
+∞
∫
0

eix
2

dx - это сумма двух

сходящихся по признаку Дирихле интегралов. Выберем отрезок [0;R] в качестве части контура. В силу

сходимости интегралов,
R

∫
0

eix
2

dx Ð→
R→∞

+∞
∫
0

eix
2

dx

Теперь надо чем-то «замыкать» контур.
Заметим, что

∫
C

eiz
2

dz = ∫
C

ei(x
2−y2)e−2xydz

и при x = y ⇒ ∫
x=y

eiz
2

dz = ∫
x=y

e−2x
2

(1 + i)dx - это, с точностью до const, может быть интегралом

Пуассона.
Поэтому в качестве второй границы выберем часть луча x = y и замкнём контур дугой окружности

CR радиуса R (см. рис. 1.15).

Тогда на луче x = y

∫
x=y

e−2x
2

(1 + i)dx == −∫
R cos π

4

0
e−2x

2

(1 + i)dx = −1 + i√
2
∫

R

0
e−t

2

dt Ð→
R→+∞

−1 + i√
2
⋅
√
π

2
.

Осталось оценить интеграл по дуге:

RRRRRRRRRRRRR
∫
CR

ei(x
2−y2+2ixy)dz

RRRRRRRRRRRRR
⩽ ∫
CR

e−2xy ∣dz∣ =

π
4

∫
0

e−R
2 sin 2φRdφ

Известно, что sinx ⩾ 2
π
x,x ∈ [0; π

2
]. Тогда

π
4

∫
0

e−R
2 sin 2φRdφ ⩽

π
4

∫
0

e−
4R2φ

π Rdφ = − π
4R
(e−R

2

− 1) Ð→
R→∞

0

Так как особых точек внутри нашего контура нет, то применима интегральная теорема Коши:

0 = ∳
C
eiz

2

dz =
R

∫
0

eix
2

dx + ∫
CR

eiz
2

dz + (1 + i)
0

∫
R√
2

e−2x
2

dx Ð→
R→∞

I − (1 + i)
√
2π

4
⇐⇒

⇐⇒ I = (1 + i)
√
2π

4
=
+∞

∫
0

cosx2dx + i
+∞

∫
0

sinx2dx⇐⇒

⇐⇒
+∞

∫
0

cosx2dx =
√
2π

4
;

+∞

∫
0

sinx2dx =
√
2π

4

Ответ.
√
2π
4
,
√
2π
4

.
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4.5 Problems on Series

4.5.1 Problems about Sums of Series (??)
(?? чет на это мало задач... пропишу в предисловии, что тут может решиться переходом к интегралу,

это главный ход.)

Избры-1.5 Сумма S(a, b) =
∞
∑

n=−∞
1

2πin+a
1

2πin+b

Вычислите сумму

S(a, b) =
∞
∑
n=−∞

1

2πin + a
1

2πin + b

где a и b действительные параметры. Для этого запишите сумму в виде интеграла вдоль некоторого
контура в C:

S(a, b) = 1

2πi
∫
C

dzf(z) 1

z + a
1

z + b

Чтобы выбрать контур C и функцию f(z), подумайте, где должны находится полюсы f(z) и чему должны
быть равны вычеты в них.

4.5.2 Problems about Laurent Series
(!!! заготовлю эти раздложения в зависимости от колец, это важная заготовка!!)

Ш-11.пр.1. ряд Лорана для f(z) = 1
(1−z)(z+3)

Функцию f(z) = 1
(1−z)(z+3) , регулярную в областях D1 = {z ∶ ∣z∣ < 1}, D2 = {z ∶ 1 < ∣z∣ < 3}, D3 = {z ∶

∣z∣ > 3}, разложить в этих областях в ряд Лорана.
(!! типичная и очень идейно важная задача!!)
Представим f(z) в виде суммы простых дробей:

f(z) = 1

4
( 1

1 − z
+ 1

z + 3
)

Если ∣z∣ < 1, то
1

1 − z
=
∞
∑
n=0

zn

а если ∣z∣ > 1, то
1

1 − z
= − 1

z (1 − 1
z
)
= −

∞
∑
n=1

1

zn
.

Аналогично, если ∣z∣ < 3, то
1

z + 3
= 1

3 (1 + z
3
)
=
∞
∑
n=0

(−1)nzn

3n+1

а если ∣z∣ > 3, то
1

z + 3
= 1

z (1 + 3
z
)
=
∞
∑
n=1

(−1)n−13n−1

zn
.

a) В области D1, где ∣z∣ < 1, получаем

f(z) =
∞
∑
n=0

1

4
[1 + (−1)

n

3n+1
] zn.

Этот ряд есть ряд Тейлора для функции f(z).
б) В области D2, где 1 < ∣z∣ < 3, имеем

f(z) =
∞
∑
n=1
(−1

4
) 1

zn
+
∞
∑
n=0

(−1)nzn

4 ⋅ 3n+1
.

Этот ряд содержит как положительные, так и отрицательные степени z.
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в) В области D3, где ∣z∣ > 3, находим

f(z) =
∞
∑
n=1

(−1)n−13n−1 − 1
4zn

.

Этот ряд содержит только отрицательные степени z.

Ш-11.пр.2.
Рациональная функция f(z) разложена в ряд Лорана

∞
∑
n=0
((−1)

n(n + 1)
z2n

− 4n+1

z2n+1
) .

Разложить ее в ряд Лорана по степеням z в кольце, содержащем точку z = 3
2
. Указать границы кольца

сходимости.
Ряд

f1(z) =
∞
∑
n=0

(−1)n(n + 1)
z2n

сходится в области ∣z∣ > 1, а ряд

f2(z) = −
∞
∑
n=0

4n+1

z2n+1
= −4

z

∞
∑
n=0
( 4
z2
)
n

сходится, если ∣ 4
z2
∣ < 1, т.е. ∣z∣ > 2. Так как точка z = 3

2
содержится в кольце 1 < ∣z∣ < 2, то функцию f2(z)

нужно представить рядом по степеням z, сходящимся в области ∣z∣ < 2. Используя разложение
∞
∑
n=0

tn = 1
1−t ,

запишем f2(z) в виде

f2(z) = −
4

z
⋅ 1

1 − 4
z2

= − 4z

z2 − 4
= z

1 − z2

4

,

откуда

f2(z) =
∞
∑
n=0

z2n+1

4n
, ∣z∣ < 2,

а искомое разложение

f(z) =
∞
∑
n=0

(−1)n(n + 1)
z2n

+
∞
∑
n=0

z2n+1

4n
, 1 < ∣z∣ < 2.

Ш-11.пр.3.
Разложить в ряд Лорана в кольце с центром в точке z = 0, которому принадлежит точка z = 3,

функцию

f(z) = 3z3 + 6z2 − 8
z2 − 3z − 4

.

Указать границы кольца сходимости.
Разделив многочлен 3z3 + 6z2 − 8 на многочлен z2 − 3z − 4,

f(z) = 3z + 15 + 57z + 52
(z − 4)(z + 1)

,

а затем представим полученную правильную дробь в виде суммы простых дробей:

57z + 52
(z − 4)(z + 1)

= A

z − 4
+ B

z + 1
,

где A = 57z+52
z+1 ∣z=4 = 56, B = 57z+52

z−4 ∣z=−1 = 1. Следовательно,

f(z) = 3z + 15 + 56

z − 4
+ 1

z + 1
.

Функция f(z) регулярна во всей C с выколотыми точками z1 = −1, z2 = 4 и ее можно разложить в
ряд по степеням z в областях ∣z∣ < 1,1 < ∣z∣ < 4 и ∣z∣ > 4. Точка z = 3 принадлежит кольцу 1 < ∣z∣ < 4.
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Поэтому функцию 56
z−4 нужно разложить в ряд по положительным степеням z, а функцию 1

z+1 - в ряд по
отрицательным степеням z. Преобразуем исходную функцию:

f(z) = 3z + 15 − 14

1 − z
4

+ 1

z (1 + 1
z
)
,

откуда

f(z) = 3z + 15 − 14
∞
∑
n=0
(z
4
)
n

+
∞
∑
n=0
(−1)n = 1 − z

2
− 14

∞
∑
n=2

zn

4n
+
∞
∑
n=1

(−1)n−1

zn

Полученный ряд сходится в кольце 1 < ∣z∣ < 4.

Ш-11.пр.4. ряд Лорана от f(z) = z2+2
z(z+2i) по z − 2i в кольце с z = 1.

Разложить функцию f(z) = z2+2
z(z+2i) в ряд Лорана по степеням z−2i в кольце D, которому принадлежит

точка z = 1. Указать границы кольца сходимости.
Представим f(z) в виде

f(z) = z
2 + 2iz − 2iz + 2
z(z + 2i)

= 1 − i(1
z
+ 1

z + 2i
) .

Функция f(z) регулярна во всей C с выколотыми точками z = 0 и z = −2i. Поэтому ее можно разложить
в ряд Лорана по степеням z − 2i в областях

∣z − 2i∣ < 2, 2 < ∣z − 2i∣ < 4, ∣z − 2i∣ > 4.

Полагая z − 2i = t, получим f(z) = φ(t), где

φ(t) = 1 − i

t + 2i
− i

t + 4i
.

Так как точка z = 1 принадлежит кольцу
2 < ∣z − 2i∣ < 4,

то функцию φ(t) нужно разложить по степеням t в области 2 < ∣t∣ < 4. Преобразуем функцию φ(t):

φ(t) = 1 − i

t (1 + 2i
t
)
− 1

4 (1 + t
4i
)

Тогда

φ(t) = 1 − i
∞
∑
n=0

(−1)n(2i)n

tn+1
−
∞
∑
n=0

(−1)ntn

in4n+1
,

f(z) =
∞
∑
n=1

(−2i)n

2(z − 2i)n
+ 3

4
+
∞
∑
n=1

(−1)n+1

(4i)n
(z − 2i)n, 2 < ∣z − 2i∣ < 4.

Ш-11.пр.5.
Разложить функцию

f(z) = (z
2

2
− 2z + 5

2
) cos 1

z − 2
в ряд Лорана по степеням z − 2 в кольце

D = {z ∶ 0 < ∣z − 2∣ < ∞}.

Пусть z − 2 = t, тогда

f(z) = 1

2
(t2 + 1) cos 1

t
= 1

2
(
∞
∑
n=0

(−1)n

t2(n−1)(2n)!
+ (−1)

n

t2n(2n)!
) =

= 1

2
t2 + 1

2

∞
∑
n=0
( (−1)

n+1

(2n + 2)!
+ (−1)

n

(2n)!
) 1

t2n
=

= 1

2
t2 + 1

4
+
∞
∑
n=1

(−1)n (4n2 + 6n + 1)
2(2n + 2)!t2n

=

= 1

2
(z − 2)2 + 1

4
+
∞
∑
n=1

(−1)n (4n2 + 6n + 1)
2(2n + 2)!(z − 2)2n
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Ш-11.1.
Найти множество точек z, в которых сходится ряд Лорана:

1)
∞
∑

n=−∞
2−∣n∣zn

2)
∞
∑

n=−∞
zn

3n+1

3)
∞
∑

n=−∞
(z−1)n
chαn

, α > 0;

4)
∞
∑

n=−∞
2−n

2

(z + 1)n;

5)
∞
∑

n=−∞
(2−n

3

+ 1)
−1
(z − a)2n

6)
∞
∑

n=−∞
zn

n2+1 7)
∞
∑

n=−∞
2−n

2

zn
3

; 8)
∞
∑

n=−∞
2nzn

Ш-11.2.
Опираясь на формулу для суммы бесконечно убывающей геометрической прогрессии, а также

используя дифференцирование и интегрирование, доказать:

1) 1
z−b =

−1
∑

n=−∞
b−n−1zn, ∣z∣ > ∣b∣

2) 1
z2−b2 =

−1
∑

n=−∞
b−2(n+1)z2n, ∣z∣ > ∣b∣

3) z2

z2+b2 =
0

∑
n=−∞

(−1)nb−2nz2n, ∣z∣ > ∣b∣;

4) 1
(z−b)2 = −

−2
∑

n=−∞
(n + 1)b−n−2zn, ∣z∣ > ∣b∣

5) 1
z−b =

−1
∑

n=−∞
(b − a)−n−1(z − a)n, a ≠ b, ∣z − a∣ > ∣b − a∣;

6) ( z−a
z−b )

2 =
0

∑
n=−∞

(1 − n)(b − a)−n(z − a)n, a ≠ b, ∣z − a∣ > ∣b − a∣.,

Ш-11.3.
Разложить в ряд Лорана по степеням z в кольце 1 < ∣z∣ < 2 функцию:
1) 1
(z+1)(z−2)

2) z4+1
(z−1)(z+2)

3) z
(z2+1)(z+2)

4) 1
(z−1)2(z+2)

5) 1
(z2+1)(z2−4) ;

6) 1
(z2−1)2(z2+4) .

Ш-11.4.
Разложить в ряд Лорана по степеням z − a в кольце D (точка a и кольцо D указаны в скобках)

функцию:
1) 1

z(z−3)2 (a = 1, D = {z ∶ 1 < ∣z − 1∣ < 2});
2) 1
(z2−9)z2 (a = 1,D = {z ∶ 1 < ∣z − 1∣ < 2});

3) z+i
z2
(a = i,−i ∈D);

4) z2−1
z2+1 (a = 1, 2i ∈D);

5) 1
z(z−1)(z−2) (a = 0,− 3

2
∈D);

6) 2z
z2−2i(a = 1,−1 ∈D); 7) z3

(z+1)(z−2)(a = −1,D = {z ∶ 0 < ∣z + 1∣ < 3}); 8) 1
(z2−1)(z2+4)(a = 0,D = {z ∶ ∣z∣ > 2}).

Ш-11.5.
Разложить данную функцию f(z) в ряд Лорана по степеням z в кольце, которому принадлежит точка

z0. Указать границы кольца сходимости.
1) f(z) = z2+1

z2+ 3
2 z−1

, z0 = 1;

2) f(z) = 2z2−5
z2−z−2 , z0 = 3

2
;
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3) f(z) = 3z2+1
3z2−2z−1 , z0 = 1

2
;

Ш-11.6.
Рациональная функция f(z) разложена в ряд Лорана по степеням z. Разложить ее в ряд Лорана по

степеням z, в кольце, содержащем точку z0, и указать границы кольца сходимости, если:

1) f(z) =
−∞
∑
n=−1
(n + 1)3nzn +

∞
∑
n=0
(n

2

4n
+ (−1)

n

2n
) zn, z0 = −3

Ш-11.

2) f(z) =
∞
∑
n=0
(3nz3n + n2

2n
z3n−1) , z0 = −1

Ш-11.

3) f(z) =
−∞
∑
n=−1
(n5n + (−1)n2n) zn +

∞
∑
n=0

n2

3n
zn, z0 = 1

3
.

Ш-11.7.
Разложить функцию f(z) в ряд Лорана по степеням z − a в кольце D,
1) f(z) = 6z−z2

z2+3z−18 , a = −1, z0 = 3.5;

Ш-11.

2) f(z) = z
(z+2)(z+1)2 , a = −2, z0 = − 3

2

Ш-11.

3) f(z) = 5−4z
(z+1)(z2−1)2 , a = 1, z0 = 0;

Ш-11.

4) f(z) = 4z
(z−1)(z2−1) , a = −1, z0 = −2

Ш-11.

5) f(z) = 9−z2
z(z+9) , a = −4, z0 = 1

2

Ш-11.

6) f(z) = 2z−1
z2−z+i+1 , a = 3, z0 = 1

6

Ш-11.

7) f(z) = 3z−i
z2−(i+1)z−i−2 , a = 1, z0 = 5

2
.

Ш-11.8.
Разложить функцию f(z) в ряд по степеням z в кольце, которому принадлежит точка z0 Указать

границы кольца сходимости.
1) f(z) = z2+6iz+3

z2+2iz+3 , z0 = ie;
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Ш-11.

2) f(z) = 3iz2

z2−5iz−4 , z0 = 3i

Ш-11.

3) f(z) = 7−3z
3z2−4z+1 +

9z2+24
(3z−1)(z−2)2 , z0 = i + 1;

Ш-11.

4) f(z) = z
z2−6z+8 −

2z2−14
(z−4)(z−1)2 , z0 = i − 1;

Ш-11.

5) f(z) = (1−i)z−5
iz2+(3−2i)z−6 , z0 = 1 + 3i

Ш-11.

6) f(z) = (1−i)z−5
iz2+(2−3i)z−6 , z0 = 1 + 2i;

Ш-11.

7) f(z) = 3z−4
(z+3)(z−2i) +

z+4
z2−(1+2i)z+2i , z0 = 1 + i;

Ш-11.

8) f(z) = 2
z2+(i−2)z−2i +

iz−4
z2+z−6 , z0 = 1 + i.

Ш-11.9.
Разложить функцию f(z) в ряд Лорана по степеням z − a в кольце,
1) f(z) = −4+2i

(z−1−2i)(z−5) , a = 1, z0 = 1 + 6i

Ш-11.

2) f(z) = −4−2i
(z+1+2i)(z−3) , a = −1, z0 = −1 − 5i

Ш-11.

3) f(z) = 2z−3+2i
z2−(1+2i)z+2i , a = 2, z0 = 4i;

Ш-11.

4) f(z) = 1
z2+(i−4)z+4−2i +

2iz
z2−4 , a = 1, z0 = 2i

Ш-11.

5) f(z) = 5−2i−z
z2+z(5+i)+5i , a = 1, z0 = 3;
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Ш-11.

6) f(z) = z+2i
iz2−4z+5i , a = 1, z0 = 3;

Ш-11.

7) f(z) = 2+15i−z
z2+z(1−5i)−5i , a = −3, z0 = 1 + i

Ш-11.

8) f(z) = (1+i)z+6
iz2+(5+i)z+5 , a = −3, z0 = 1 + i

Ш-11.19.
Разложить функцию f(z) в ряд Лорана по степеням z − a в кольце,
1) f(z) = z(1−i)

z2−2(1+i)z+4i , a = 2 − 3i, z0 = 0;

Ш-11.

2) f(z) = z(i−1)+i
2z2−(2−i)z−i , a = 2 + 3i, z0 = 0;

Ш-11.

3) f(z) = (i−3)z+4i
3iz2+(1+9i)z+3 , a = −2 + i, z0 = i;

Ш-11.
Разложить функцию f(z) в ряд Лорана по степеням z − a в кольце D:
1) f(z) = z3e1/z, a = 0, D = {z ∶ 0 < ∣z∣ < ∞};
2) f(z) = z2 sin π(z+1)

z
, a = 0,D = {z ∶ 0 < ∣z∣ < ∞};

3) f(z) = z3 cos 1
z−2 , a = 0, D = {z ∶ 0 < ∣z − 2∣ < ∞}.

Ш-12.
Используя разложение функции z ctg z в ряд Тейлора (§7, пример 4(2)), разложить в ряд Лорана по

степеням z в кольце π < ∣z∣ < 2π функцию ctg z

Ш-13.
Используя разложение функции z

ez−1 в ряд Тейлора (§7, пример 4 (1)), разложить в ряд Лорана по
степеням z в кольце 2π < ∣z∣ < 4π функцию 1

ez−1

Ш-14.

Пусть ряды Лорана
∞
∑

n=−∞
an(z − a)n и

∞
∑

n=−∞
bn(z − a)n сходятся в кольце D = {z ∶ r < ∣z − a∣ < R}, а их

суммы соответственно равны f(z) и g(z). Доказать, что ряд Лорана
∞
∑

n=−∞
cn(z − a)n, где cn =

∞
∑

k=−∞
akbn−k,

также сходится в кольце D, а его сумма равна произведению f(z)g(z).

Ш-15.

Пусть ряд Лорана
∞
∑

n=−∞
cn(z − a)n сходится в замкнутом кольце

D̄ = {z ∶ r ⩽ ∣z − a∣ ⩽ R}.
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4.5.3 1.4. Laurent Series by Kolesnikova

Доказать, что
∣cn∣ ⩽M (r−n +R−n) , n ∈ Z,

где M - постоянная, не зависящая от n.

4.5.3 1.4. Laurent Series by Kolesnikova
Теорема. Всякая функция f(z), регулярная в некотором кольце с центром в точке z = a ∶ ρ < ∣z−a∣ < R,

где 0 ⩽ ρ < < R ⩽ ∞, представляется в этом кольце в виде ряда по всем целым степеням разности (z − a):

f(z) =
+∞
∑
−∞

ak(z − a)k =
+∞
∑
0

ak(z − a)k +
−1
∑
−∞

ak(z − a)k, ρ < ∣z − a∣ < R.

Иногда удобнее писать так:

f(z) =
+∞
∑
0

ak(z − a)k +
+∞
∑
1

am
(z − a)m

, ρ < ∣z − a∣ < R.

При этом первое слагаемое называют правильной (или тейлоровской) частью, а второе называют
главной частью ряда Лорана.

Любое слагаемое главной части неограниченно в окрестности центра кольца, а все слагаемые
правильной части ограничены.

Любопытен случай, когда ρ = 0.
Если g(z) регулярна в окрестности точки z = a, то её ряд Лорана совпадает с рядом Тейлора, т. к. главная
часть просто отсутствует (все am равны 0).

Если же функция регулярна только в проколотой окрестности 0 < ∣z − a∣ < R, то функция разлагается
в ней в ряд Лорана!
(Вот почему на первом курсе в теории пределов нельзя было упускать условие x ≠ a !)

Теорема. Разложение регулярной в кольце ρ < ∣z − a∣ < R функции f(z) в ряд Лорана по степеням
(z − a) единственно.

Формулы для коэффициентов ряда Лорана мы не выписываем, потому что ими пользоваться не будем.
При разложении будем применять стандартные разложения.

В дальнейшем нам пригодятся две бесконечно убывающие геометрические прогрессии:

1

1 − z
= 1 + z + z2 + z3 + . . . =

∞
∑
0

zk, ∣z∣ < 1 и (1.15)

1

1 + z
= 1 − z + z2 − z3 + . . . =

∞
∑
0

(−1)kzk, ∣z∣ < 1

1.4.1. Функция f(z) и сумма S(z) её ряда Тейлора или Лорана

Рассмотрим самую простую функцию f(z) = 1
1+az , a ∈ C, a ≠ 0.

Эта функция регулярна в окрестности ∣z∣ < 1
∣a∣ (см. рис. 1.7), а потому разлагается в этой окрестности

в ряд Тейлора. Её можно рассматривать в этой окрестности как бесконечно убывающую геометрическую
прогрессию со знаменателем q = −az:

1

1 + az
=
∞
∑
0

(−1)k(az)k, ∣z∣ < 1

∣a∣
(1.16)

Обратите внимание на то, что после формулы ряда стоит неравенство ∣z∣ < 1
∣a∣ . Не является ли оно

лишним, если в тексте сказано, что мы разложили функцию в окрестности ∣z∣ < 1
∣a∣? Нет, оно является

необходимым. Иначе равенство 1
1+az =

∞
∑
0
(−1)k(az)k становится неверным, потому что области

существования левой части и правой различны: стоящая слева функция определена и регулярна в
C/ {− 1

a
}, а стоящий справа ряд сходится и является регулярной функцией только в круге ∣z∣ < 1

∣a∣ .
2) Теперь рассмотрим ту же самую функцию, но в другой области: ∣az∣ > 1, или, что то же, в кольце
1
∣a∣ < ∣z∣ < ∞ (см. рис. 1.7), где функция тоже регулярна. Это - проколотая окрестность z = ∞, значит,
f(z) разлагается в ней в ряд Лорана по целым степеням z. Теперь вынесем в знаменателе az - тогда
оставшуюся дробь 1

(1+ 1
az
) в рассматриваемой области можно рассматривать как сумму бесконечно

убывающей геометрической прогрессии со знаменателем q = − 1
az

:

1

1 + az
= 1

az

1

(1 + 1
az
)
=
∞
∑
0

(−1)k

ak+1(z)k+1
, ∣z∣ > 1

∣a∣
(1.17)
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Рис. 1.7

Рис. 1.8
Итак, функция f(z) = 1

1+az в разных областях C (см. рис. 1.7) разлагается в разные ряды: в
окрестности ∣z∣ < 1

∣a∣ в ряд Тейлора, в кольце 1
∣a∣ < ∣z∣ < ∞ в ряд Лорана.

Заданная функция f(z) и сумма S(z) её ряда Лорана или Тейлора по степеням z - это разные функции:
у них разные области существования. Эти рассуждения нам всё время будут полезны.

Итак, если дробь 1
a+bz раскладывается в ряд Тейлора в окрестности 0, то в знаменателе выносится

свободный член: 1
a+bz ≡

1
a(1+ bz

a
) , чтобы знаменатель прогрессии был по модулю меньше 1 ; если же дробь

1
a+bz раскладывается в ряд Лорана в окрестности ∞, то в знаменателе выносится bz ∶ 1

a+bz ≡ ≡
1

bz(1+ a
bz
) .

В наших примерах придётся раскладывать в ряд дробнорациональные функции. У дроби надо
сначала выделить целую часть, а затем правильную дробь разложить на сумму элементарных дробей,
которые имеют вид c

(z−a)n . Разложение дроби 1
(1+z)n по степеням z в окрестности 0 можно получить,

продифференцировав n − 1 раз 1
1+z - получится известная формула

1

(1 + z)n
=
∞
∑
0

Ck−nz
k ≡

∞
∑
0

(−n)(−n − 2) . . . (−n − k + 1)
k!

zk, ∣z∣ < 1

Рассмотрим теперь довольно «противный» с точки зрения арифметических вычислений пример.

Кол-1.
12. Исследуйте все возможные разложения функции

f(z) = 2z2(1 − i) + z(13i + 16) + 57i
(z − i)(z + 5)(z + 4i)

по степеням (z + 1 + i).
Важно то, что, зная нули знаменателя, мы сразу можем сказать, в каких кольцах и в какие ряды

может быть разложена эта функция.
Для этого нанесём на плоскость нули знаменателя и проведём окружности с центром в точке z = (−1−i)

(центре возможных колец или окрестностей разложения) и проходящих через точки - нули знаменателя:
i,−5,−4i (см. рис. 1.8).

Получились одна окрестность O(−1 − i) ∶ ∣z − (−1 − i)∣ <
√
5 и три кольца:

K1 ∶
√
5 < ∣z − (−1 − i)∣ <

√
10,

K2 ∶
√
10 < ∣z − (−1 − i)∣ <

√
17,

K3 ∶
√
17 < ∣z − (−1 − i)∣ < ∞ (см. рис. 1.8).
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Функция f(z) представима в виде суммы элементарных дробей:

f(z) = a

z − i
+ c

z + 4i
+ b

z + 5
Теперь можно понять, в какие ряды нам придётся разлагать слагаемые. Обозначим буквой Ti ряд

Тейлора для i-й дроби, а буквой Li - ряд Лорана для i-й дроби.
Все три дроби регулярны в O(−1− i) ∶ ∣z − (−1− i)∣ <

√
5, а потому они разлагаются в этой окрестности

в ряды Тейлора — получим T1, T2, T3. В кольце K1 ∶
√
5 < ∣z − (−1 − i)∣ <

√
10 ситуация другая. Первая

дробь a
z−i регулярна уже в кольце

√
5 < ∣z − (−1 - −i) ∣< ∞, а потому разлагается в этом кольце в ряд

Лорана, остальные дроби регулярны в окрестности ∣z − (−1 − i)∣ <
√
10, а потому разлагаются в кольце

K1 ∶
√
5 < ∣z − (−1 − i)∣ <

√
10 по-прежнему в ряды Тейлора - получится L1, T2, T3. В кольце K2 ∶

√
10 <

∣z − (−1 − i)∣ <
√
17 вторая дробь c

z+4i регулярна уже в кольце
√
10 < ∣z − (−1 − i)∣ < ∞ и там разлагается

в ряд Лорана; третья дробь по-прежнему регулярна в окрестности ∣z − (−1 − i)∣ <
√
17 и разлагается там

в ряд Тейлора - получится L1, L2, T3. В кольце K3 ∶
√
17 < ∣z − (−1 − i)∣ < ∞ все три дроби регулярны и

разлагаются в ряды Лорана - получится L1, L2, L3.
Ряды должны быть по степеням z − (−1 − i). Сделаем, для удобства, во всех дробях замену переменных:
t = z − (−1 - −i) ⇐⇒ z = t − 1 − i, чтобы можно было применить формулы геометрической прогрессии.

Тогда
f(z) = a

z−i +
c

z+4i +
b
z+5 =

a
t−1−2i +

c
t−1+3i +

b
t+4−i ,

и будем теперь производить разложение функции g(t) = a
t−1−2i +

c
t−1+3i +

b
t+4−i по степеням t в ряды Тейлора

или Лорана в соответствующих областях.
Поэтому получим следующие разложения:
∣t∣ <
√
5⇒ T1, T2, T3 ⇒

⇒ g(t) =
∞
∑
0
tk (− a

(1+2i)k+1 −
c

(1−3i)k+1 +
(−1)kb
(4−i)k+1 ) , ∣t∣ <

√
5; K1 ∶

√
5 < ∣t∣ <

√
10⇒ L1, T2, T3 ⇒

⇒ g(t) =
∞
∑
0
tk (− c

(1−3i)k+1 +
(−1)kb
(4−i)k+1 ) + a

∞
∑
0

(1+2i)k
tk+1 ,

√
5 < ∣t∣ <

√
10 K2:

√
10 < ∣t∣ <

√
17 ⇒ L1, L2, T3 ⇒ g(t) = b

4−i
∞
∑
0

(−1)ktk
(4−i)k + +

∞
∑
0

a(1+2i)k+c(1−3i)k
tk+1 ,

√
10 < ∣t∣ <

√
17;

K3 ∶
√
17 < ∣t∣ < ∞ ⇒ L1, L2, L3 ⇒

⇒ g(t) =
∞
∑
0

a(1+2i)k+c(1−3i)k+b(−1)k(4−i)k
tk+1 ,

√
17 < ∣t∣ < ∞.

Однако обычно задача формулируется по-другому, более конкретно. Для упрощения выкладок мы
рассмотрим ту же самую функцию.

Кол-1.
13. Разложить функцию

f(z) = 2z2(1 − i) + z(13i + 16) + 57i
(z − i)(z + 5)(z + 4i)

по степеням z − (−1 − i) в кольце, которому принадлежит точка z0 = 2 + i. Указать границы кольца
сходимости.

Границы кольца сходимости S(z) к f(z) можно указать сразу, как только выяснится, в виде суммы
каких элементарных дробей представляется заданная функция. Рисуются все возможные кольца. Затем
вычисляется расстояние от z0 до центра колец и определяется, в каком кольце находится z0 (см. рис.
1.8).

Точка z0 = 2 + i находится в K2 ∶
√
10 < ∣z − (−1 − i) <

√
17, т. к. ∣2 + i − (−1 − i)∣ = ∣3 + 2i∣ =

√
13.

Осталось найти коэффициенты a, b, c.
Начинаем работать. Раскладывать просят по степеням z - (−1 − i), но, чтобы избежать лишних
арифметических ошибок, не надо делать замену переменных до того, как разложим заданную функцию
на сумму элементарных дробей,

Поэтому

2z2(1 − i) + z(13i + 16) + 57i
(z − i)(z + 5)(z + 4i)

= a

z − i
+ b

z + 5
+ c

z + 4i
=

= a(z + 5)(z + 4i) + b(z − i)(z + 4i) + c(z − i)(z + 5)
(z − i)(z + 5)(z + 4i)

А вот теперь внимание - мы не будем раскрывать скобки, а будем приравнивать числители, подставив
z = zi, являющиеся корнями знаменателя. При этом всегда, без всякой системы, сразу будет определяться
коэффициент той дроби, у которой в знаменателе стоит z − zi, а числители у остальных дробей обратятся
в 0 .
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4.5.3 1.4. Laurent Series by Kolesnikova

z = i ∶ −2(1 − i) + i(13i + 16) + 57i = a(5 + i)5i ⇐⇒ a = 3;
z = −4i ∶ −32(1 − i) − 4i(13i + 16) + 57i = c(−5i)(−4i + 5) ⇐⇒
⇐⇒ c = −1; z = −5 ∶ b(−5 − i)(−5 + 4i) = 50(1 − i) − 5(13i + 16) + 57i⇐⇒ ⇐⇒ b = −2i.
Итак, запишем представление в виде суммы элементарных дробей и воспользуемся найденном в
предыдущем примере
разложением в ряд Лорана в кольце K2:

f(z) = 3

z − i
− 1

z + 4i
− 2i

z + 5
=

= −2i
∞
∑
0

(−1)k(z + 1 + i)k

(4 − i)k+1
+
∞
∑
0

3(1 + 2i)k − (1 − 3i)k

(z + 1 + i)k+1
√
10 < ∣(z + 1 + i)∣ <

√
17

Ответ.

f(z) = −2i
∞
∑
0

(−1)k(z+1+i)k
(4−i)k+1 +

∞
∑
0

3(1+2i)k−(1−3i)k
(z+1+i)k+1√

10 < ∣(z + 1 + i)∣ <
√
17

Кол-1.
14. Разложите функцию

f(z) = z(4 + i) + 12i + 3
z2 + 2iz + 15

+ 3z(i − 1) + 6
z2 + z(1 − 3i) − 3i

в ряд Лорана по степеням z в кольце, которому принадлежит точка z = 1 + 2i. Укажите границы
кольца сходимости.

Разложим каждое слагаемое f(z) в сумму элементарных дробей. Для этого, не раскрывая скобок,
приравниваем числители при значениях zk, равных корням знаменателя - при этом сразу, без всякой
системы, определится коэффициент при дроби, знаменатель которой равен z − zk:

z(4+i)+12i+3
z2+2iz+15 =

a
z−3i +

b
z+5i =

a(z+5i)+b(z−3i)
(z−3i)(z+5i) ⇒

⇒ z = −5i ∶ −5i(4 + i) + 12i + 3 = −8ib⇐⇒ b = 1 + i;
z = 3i ∶ 3i(4 + i) + 12i + 3 = 8ai⇐⇒ a = 3;
z(4+i)+12i+3
z2+2iz+15 =

3
z−3i +

1+i
z+5i

3z(i−1)+6
z2+z(1−3i)−3i =

a
z+1 +

b
z−3i =

a(z−3i)+b(z+1)
z2+z(1−3i)−3i ⇒

⇒ z − 3i = 0 ∶ 9i(i − 1) + 6 = b(3i + 1) ⇐⇒ b = −3
z = −1 ∶ −3(i − 1) + 6 = −a(1 + 3i) ⇐⇒ a = 3i⇒
⇒ 3z(i−1)+6

z2+z(1−3i)−3i =
3i
z+1 −

3
z−3i .

Поэтому

f(z) = 1 + i
z + 5i

+ 3i

z + 1
, z ≠ 3i

Итак, у нас одна окрестность и два кольца (см. рис. 1.9). Так как 1 < ∣1 + 2i∣ =
√
5 < 5, то заданная

точка принадлежит кольцу 1 < < ∣z∣ < 5, в котором и раскладываем функцию:

f(z) = 1 + i
5i (1 + z

5i
)
+ 3i

z (1 + 1
z
)
=

= (1 + i)
∞
∑
0

(−1)kzk

(5i)k+1
+ 3i

∞
∑
(−1)k

zk+1

1 < ∣z∣ < 5, z ≠ 3i
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Other Problems

Рис. 1.9
Ответ. f(z) = (1 + i)

∞
∑
0

(−1)kzk
(5i)k+1 + 3i

∞
∑
0

(−1)k
zk+1 ,1 < ∣z∣ < 5, z ≠ 3i.

1.4.2. Ряд Лорана для ez, sin z, cos z, ch z, sh z в окрестности ∞
Хорошо известно, что ряд Тейлора в 0 для ez имеет вид

ez =
∞
∑
0

zn

n!
, ∣z∣ < ∞ (1.18)

Ряд сходится в круге любого радиуса с центром в начале координат.
А теперь просто посмотрим на равенство (1.18).

Видно, что функция ez представлена в виде суммы степенного ряда в проколотой окрестности z = ∞.
Вспомнив теорему о единственности разложения функции в ряд Лорана, понимаем, что ряд

∞
∑
0

zn

n!
, ∣z∣ < ∞

как раз и является рядом Лорана функции ez в проколотой окрестности точки z = ∞.
Аналогично, ряды Тейлора в 0 для

sin z, cos z, ch z, sh z

являются рядами Лорана в проколотой окрестности точки z = ∞.
Итак, ряды Лорана в окрестности z = ∞:

ez =
∞
∑
n=0

zn

n!
, ∣z∣ < ∞,

cos z =
∞
∑
k=0

(−1)kz2k

(2k)!
, ∣z∣ < ∞, sin z =

∞
∑
k=0

(−1)kz2k+1

(2k + 1)!
, ∣z∣ < ∞,

ch z =
∞
∑
k=0

z2k

(2k)!
, ∣z∣ < ∞, sh z =

∞
∑
k=0

z2k+1

(2k + 1)!
, ∣z∣ < ∞.

5 Other Problems

5.1 General questions

5.1.1 Questions to Test Understanding of the Essence of the Complex
Analysis

(??? I’ll collect them later)

5.1.2 Typical Knowledge-Check Problems
(??? I’ll collect them later)

5.1.3 Questions to Test Understanding of Typical Details
(??? I’ll collect them later)

5.2 Problems on Other Properties and Representations of Functions

5.2.1 Problems about Equations in Complex Variables (?!)
(тут может быть много задач, но пока ими не занимался, простейшие в рамках вуза в разделе выше.)
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5.2.2 Problems about the Argument Principle, Rouché’s Theorem

5.2.2 Problems about the Argument Principle, Rouché’s Theorem

Ш-15.пр.1. Число нулей для P5(z) = z5 + 5z + 1 в типичных областях

Для многочлена P5(z) = z5+5z+1 определить число нулей с учетом их порядков в следующих областях:

a) D1 = {z ∶ ∣z∣ < 1};

a) Положим
f1(z) = 5z + 1, g1(z) = z5

Тогда, если ∣z∣ = 1, то
∣g1(z)∣ = 1, ∣f1(z)∣ = ∣5z + 1∣ > ∣5z∣ − 1 = 4,

т. е. ∣f1(z)∣ > ∣g1(z)∣ при ∣z∣ = 1.

Тогда по теореме Руше, примененной к области D1 и функциям f1 и g1, получаем, что P5(z) = f1(z)+g1(z)
имеет в D1 столько же нулей, сколько f1(z) = 5z + 1, т. е. один.

б) D2 = {z ∶ 1 < ∣z∣ < 2};

б) Выберем f2(z) = z5, g2(z) = 5z + 1. Тогда, если ∣z∣ = 2, то

∣f2(z)∣ = 32, ∣g2(z)∣ = ∣5z + 1∣ ⩽ ∣5z∣ + 1 = 6,

T. е. ∣f2(z)∣ > ∣g2(z)∣. и функциям f2 и g2, получаем, что P5(z) = f2(z) + g2(z столько же нулей, сколько
f2(z) = z5, т. е. пять. Ho

D̃2 =D2 ∪ Γ ∪D1, где Γ = {z ∶ ∣z∣ = 1}.
В области D1 (см. п. а)) функция P5(z) имеет один нуль. Если ∣z∣ = 1, TO

∣P5(z)∣ = ∣f1(z) + g1(z)∣ > ∣f1(z)∣ − ∣g1(z)∣ > 0,

согласно (1), т. е. на окружности Γ у P5(z) нулей нет. Следовательно, в D2 многочлен P5(z) имеет 4
нуля.

в) D3 = {z ∶ ∣z∣ > 2}.

в) Согласно основной теореме алгебры P5(z) имеет в C пять нулей. Выше (п. б)) было показано, что
все они лежат в D̃2. Следовательно, в области D3 нулей нет.

vmath.ru Число нулей

Найти число нулей функции F (z) = z8 − 4z5 + z2 − 1 в единичном круге.

Solution

Пусть f(z) = −4z5, φ(z) = z8 + z2 − 1. Граница C заданной области - единичный круг ∣z∣ = 1.

∣f(z) = ∣ − 4z5∣ = 4∣z∣5 = 4
∣z∣ = 1 ∶ ∣φ(z)∣ ⩽ ∣z∣8 + ∣z∣2 + 1 = 3⇒

∣f(z)∣ > ∣φ(z)∣

Выполнены все условия теоремы Руше. Функция f(z) имеет корень z = 0 кратности 5, лежащий в
∣z∣ < 1. Значит, F (z) = f(z) + φ(z) имеет пять нулей в единичном круге.

vmath.ru Число корней

Найти число корней уравнения z4 − 8z + 10 = 0 в кольце 1 < ∣z∣ < 3
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Solution

Найдем число корней N1 в области ∣z∣ < 1 и число корней N2 в области ∣z∣ < 3. Тогда число корней в
кольце 1 < ∣z∣ < 3 будет равно N = N2 −N1.

a) ∣z∣ < 1.
Пусть F (z) = f(z) + φ(z), где f(z) = 10, φ(z) = z4 − 8z. На границе C единичного круга имеем:

∣z∣ = 1 ∶ ∣f(z)∣ = 10, ∣φ(z)∣ ⩽ ∣z∣4 + 8∣z∣ = 9⇒ ∣f(z) > ∣φ(z) ∣
Выполнены все условия теоремы Руше. Функция f(z) в области ∣z∣ < 1 не имеет нулей. Следовательно

и уравнение F (z) = 0 не имеет корней в единичном круге. N1 = 0.
б) ∣z∣ < 3.
Для круга ∣z∣ < 3 выберем другие f(z) и φ(z):

f(z) = z4, ∣f(z)∣C = 34 = 81
φ(z) = −8z + 10, ∣φ(z)∣c ⩽ 24 + 10 = 34 < ∣f(z)∣

Функция f(z) в области ∣z∣ < 3 имеет корень z = 0 кратности 4, следовательно, по теореме Руше,
функция F (z) = f(z) + φ(z) имеет четыре нуля в области ∣z∣ < 3, то есть N2 = 4.

В итоге получаем: N = N2 −N1 = 4 − 0 = 4

Ш-15.пр.2. Число корней уравнения z + λ − ez = 0 в левой полуплоскости
Определить число корней уравнения

z + λ − ez = 0
в полуплоскости D = {z ∶ Re z < 0}, если λ ∈ R, λ > 1.

Для каждого R > 0 рассмотрим полукруг

D(R) = {z ∶ Re z < 0, ∣z∣ < R}.

Его граница Γ(R) состоит из отрезка I(R) = [−iR, iR] и полуокружности

C(R) = {z ∶ z = Reiφ, π
2
< φ < 3π

2
} .

Пусть f(z) = z + λ, g(z) = −ez. Если z ∈ I(R), то z = iy, где −R ⩽ y ⩽ R, следовательно

∣f(iy)∣ = ∣λ + iy∣ =
√
λ2 + y2 ⩾ λ > 1,

∣g(iy)∣ = ∣eiy ∣ = 1

откуда ∣f(z)∣ > ∣g(z)∣ для z ∈ I(R). Если z ∈ C(R), то ∣z∣ = R, поэтому

∣f(z)∣ = ∣z + λ∣ ⩾ ∣z∣ − λ = R − λ.

Выберем R > λ + 1, тогда
∣f(z)∣ > 1

∣g(z)∣ = ∣ex+iy ∣ = ∣ex∣ < 1

так как x < 0 для z ∈ C(R). Таким образом,

∣f(z)∣ > ∣g(z)∣

для z ∈ C(R) при R > λ+1. По теореме Руше для каждого R > λ+1 в области D(R) функция h(z) = z+λ−ez
имеет столько же нулей, сколько функция f(z) = z + λ, т. е. ровно один нуль. Так как D = ⋃R>0D(R), то
в области D функция h(z) также имеет ровно один нуль.

Замечание. Единственный нуль z0 функции h(z) в D лежит на оси R. Действительно, для x ∈ R
функция h(x) = x + λ − ex непрерывна, причем

h(0) = λ − 1 > 0, lim
x→−∞

h(x) = −∞.

Поэтому по теореме о промежуточном значении непрерывная функция h(x) имеет хотя бы один нуль z0
на интервале (−∞; 0), т. е. z0 ∈ (−∞; 0)

Ш-15.1. Число корней уравнений в областях
Найти число корней уравнений в областях, указанных в скобках:
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1) z4 − 3z + 1 = 0 ({z ∶ ∣z∣ < 1})

2) 2z4 − 5z + 2 = 0 ({z ∶ ∣z∣ < 1});

3) z7 − 5z4 + z2 − 2 = 0 ({z ∶ ∣z∣ < 1});

4) z8 − 4z5 + z2 − 1 = 0({z ∶ ∣z∣ < 1});

5) z3 − 12z + 2 = 0({z ∶ ∣z∣ < 2});

6) z4 − 9z + 1 = 0 ({z ∶ ∣z∣ < 2}); 7) z6 − 6z + 10 = 0 ({z ∶ ∣z∣ > 1}); 8) z4 + z3 − 4z + 1 = 0 ({z ∶ 1 < ∣z∣ < 2});
9) z5 + z2 + 3z + 1 = 0 ({z ∶ ∣z∣ < 1}); 10) z6 + 3z4 + 2z3 + 1 = 0 ({z ∶ ∣z∣ < 2}).

1) 1 корень; 2) 2 корня; 3) 4 корня; 4) 5 корней; 5) 1 корень; 6) 1 корень; 7) 6 корней; 8) 3 корня; 9) 1
корень; 10) 6 корней.

Ш-15.2. Уравнение 1 + z + azn = 0 имеет хотя бы один корень в {z ∶ ∣z∣ ⩽ 2}.
Доказать, что при любом комплексном значении a и при целом n ⩾ 2 уравнение 1 + z + azn = 0 имеет

хотя бы один корень в круге {z ∶ ∣z∣ ⩽ 2}.
Указание. Помимо теоремы Руше воспользоваться формулами Виета (при достаточно больших

значениях ∣a∣).

Ш-15.3.
Доказать, что при λ > 1 уравнение

zeλ−z = 1
имеет в круге {z ∶ ∣z∣ ⩽ 1} ровно один корень (и к тому же действительный).

Ш-15.4.
Доказать, что при λ > 1 уравнение

z = λ − e−z

имеет в полуплоскости {z ∶ Re z ⩾ 0} ровно один корень (и к тому же действительный).

Ш-15.5. Уравнение az3 − z + b = e−z(z + 2) не имеет корней в полуплоскости {z ∶
Re z > 0}.

Доказать, что уравнение
az3 − z + b = e−z(z + 2)

при a > 0, b > 0 не имеет корней в полуплоскости {z ∶ Re z > 0}.

Ш-15.6.
Пусть функция f(z) регулярна в круге {z ∶ ∣z∣ < 1}. Доказать, что существует такое число ρ > 0, что

для всех w из круга {w ∶ ∣w∣ < ρ} уравнение z = wf(z) имеет в круге {z ∶ ∣z∣ < 1} ровно один корень.

Ш-15.7.
Пусть функция f(z) регулярна в круге {z ∶ ∣z∣ < 1} и f(0) ≠ 0. Доказать, что существует такое число

ρ > 0, что для всех w из кольца {w ∶ 0 < ∣w∣ < ρ} уравнение zm = wf(z) имеет в круге {z ∶ ∣z∣ < 1} ровно m
различных корней.

Ш-15.8.
Доказать, что уравнение z sin z = 1 имеет только действительные корни. отрезке

[−(n + 1

2
)π,(n + 1

2
)π]

и сравнить его с числом всех корней этого уравнения в круге {z ∶ ∣z∣ < (n + 1
2
)π}
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5.2.3 Problems about Expansions of Meromorphic Functions into Series and Products (???)

Ш-15.9.
Доказать, что уравнение tg z = z имеет только действительные корни.

Ш-15.19.
Определить число корней многочлена

P5(z) = z5 − 12z2 + 14

в правой полуплоскости D = {z ∶ Re z > 0}.

Ш-15.11.

В каких четвертях находятся корни уравнения z4 + z3 + 4z2 + 2z + 3 = 0?

Ш-15.12.
Доказать, что если функция f(z) регулярна в области D и для каждой точки z из D найдется такое

n, что f (n)(z) = 0, то f(z) - многочлен.

Ш-15.13.
Пусть функции f(z) и F (z) регулярны в ограниченной области D и непрерывны вплоть до ее границы

Γ, на которой функция Im f(z)
F (z) не обращается в нуль. Доказать, что число нулей в области D у функций

F (z) и F (z) + f(z) одинаково.

Ш-15.14.
Пусть функция f(z) регулярна в ограниченной области D, за исключением конечного числа полюсов,

и непрерывна вплоть до ее границы Γ (за исключением тех же полюсов). Обозначим

M =max
z∈Γ
∣f(z)∣.

Доказать, что для каждого комплексного значения a, удовлетворяющего условию ∣a∣ > M , число нулей
функции f(z) − a в области D равно числу ее полюсов в этой области.

Ш-15.15.
Пусть функция f(z) регулярна в ограниченной области D, за исключением конечного числа полюсов,

и непрерывна вплоть до ее границы (за исключением тех же полюсов). Доказать, что если функция
Im f(z) не обращается в нуль на границе области D, то число нулей функции f(z) в области D равно
числу ее полюсов в этой области.

5.2.3 Problems about Expansions of Meromorphic Functions into Se-
ries and Products (???)

Ш-22.пр.1. Разложить w = ctg z в ряд из дробей.
Разложить мероморфную функцию w = ctg z в ряд, состоящий из элементарных дробей.
Особые точки функции ctg z - полюсы первого порядка zk = kπ (k ∈ Z). В качестве правильной

системы контуров Γn выберем систему квадратов (рис. ниже), где

ln = 4πn, dn ⩾
π

2
(n − 1), ln

dn
⩽ 16, n ∈ N.

379



5.2.3 Problems about Expansions of Meromorphic Functions into Series and Products (???)

Пусть точка z лежит на одной из вертикальных сторон квадрата Γn, тогда

z = π
2
+ πm + iy, m ∈ Z, m ⩾ 0,

∣ ctg z∣ =
RRRRRRRRRRR

cos (π
2
+ iy + πm)

sin (π
2
+ iy + πm)

RRRRRRRRRRR
= ∣ sin iy∣
∣ cos iy∣

= ∣e
−y − e−y ∣
e−y + ey

⩽ 1.

Аналогично, если точка z лежит на одной из горизонтальных сторон квадрата Γn, то

z = x + iyn, где ∣yn∣ =
π

2
m (m ∈ Z,m ⩾ 0)

∣ ctg z∣ =
∣eiz + e−iz ∣
∣eiz − e−iz ∣

=
∣eix−yn + e−ix+yn ∣
∣eix−yn − e−ix+yn ∣

⩽ e−yn + eyn
∣e−yn − eyn ∣

= 1 + e−2∣yn∣

1 − e−2∣yn∣
< 2.

Итак, функция ctg z ограничена на квадратах Γn, причем каждый квадрат Γn содержит ровно n полюсов
функции ctg z и на кривых Γn нет полюсов этой функции. Функция ctg z

z
удовлетворяет условию (1)

теоремы Коши.
Найдем главные части fk(z) рядов Лорана функции f(z) = ctg z

z
в ее полюсах zk = kπ (k ∈ Z).

В полюсе z0 = 0 имеем
ctg z

z
= cos z

z sin z
=

1 − z2

2
+ . . .

z2 (1 − z2

3!
+ . . .)

= 1

z2
+ h(z),

где h(z) - функция, регулярная в точке z = 0. Следовательно, f0(z) = 1
z2

. Точка zk = kπ(k ∈ Z, k ≠ 0) -
полюс первого порядка функции f(z), а

res
z=zk

f(z) = (cos z
z
)∣
z=zk

1

(sin z)′∣z=zk
= 1

πk
.

Следовательно, fk(z) = 1
πk(z−zk) . По теореме Коши (формула (2))

ctg z

z
= 1

z2
+
+∞
∑

k=k≠0

1

πk(z − πk)
= 1

z2
+
+∞
∑
k=−∞
k≠0

1

z
( 1

πk
+ 1

z − πk
) ,

откуда

ctg z = 1

z
+
+∞
∑
k=−∞
k≠0

z

πk(z − πk)
= 1

z
+
+∞
∑
k=−∞
k≠0

( 1

πk
+ 1

z − πk
) .

Пусть Gn - область, ограниченная контуром Γn, тогда z = 0 ∈ Γ1, z = π ∈ Γ2, z = −π ∈ Γ3 и т. д. Объединяя
в сумме (6) слагаемые, соответствующие полюсам kπ и −kπ (k ∈ N), получаем

ctg z = 1

z
+
∞
∑
k=1
( 1

z − kπ
+ 1

z + kπ
) = 1

z
+
∞
∑
k=1

2z

z2 − k2π2
.
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5.2.3 Problems about Expansions of Meromorphic Functions into Series and Products (???)

Ш-22.пр.2.

1) Разложить на элементарные дроби tg z

1) Так как tg z = − ctg (z − π
2
), то используя формулу (7), получаем

tg z = − 1

z − π
2

−
∞
∑
k=1
( 1

z − π
2
− kπ

+ 1

z − π
2
+ kπ

) =

= −
∞
∑
k=1
( 1

z − 2k−1
2
π
+ 1

z + 2k−1
2
π
) , откуда

tg z = −
∞
∑
k=1

2z

z2 − ( 2k−1
2
π)2

2) Разложить на элементарные дроби 1
sin2 z

2) Используя равенство
1

sin2 z
= −(ctg z)′

и дифференцируя равномерно сходящийся ряд (6), получаем

1

sin2 z
= 1

z2
+
+∞
∑
k=−∞
k≠0

1

(z − kπ)2
=
+∞
∑
k=−∞

1

(z − kπ)2
.

3) Разложить на элементарные дроби 1
ez−1 .

3) Используя равенства

1

ez − 1
= e−z/2

ez/2 − e−z/2
= 1

2
⋅ e
−z/2 − ez/2 + ez/2 + e−z/2

ez/2 − e−z/2
= −1

2
+ cth z

2
,

cth ζ = i ctg(iζ)
и формулу (7), получаем

1

ez − 1
= −1

2
+ 1

z
+
∞
∑
k=1

2z

z2 + 4k2π2

Ш-22.пр.3. Разложить sin z в бесконечное произведение.

Рассмотрим целую функцию f(z) = sin z
z

. Она имеет нули кратности 1 в точках zk = kπ(k ∈ Z, k ≠ 0), а
функция

F (z) = f
′(z)
f(z)

= ctg z − 1

z

удовлетворяет условиям теоремы о разложении в бесконечное произведение. Так как f(0) = 1, f ′(0) = 0,
то по формуле (5) находим

sin z

z
=
∞
∏
k=1
(1 − z

kπ
) ez/(kπ) (1 + z

kπ
) e−z/(kπ),

откуда

sin z = z
∞
∏
k=1
(1 − z2

k2π2
)

Ш-22.пр.4. Разложить в бесконечное произведение ez − 1.
Разложить в бесконечное произведение целую функцию ez − 1.
Представим данную функцию в виде синуса, сдела преобразования:

ez − 1 = 2ez/2 (e
z/2 − e−z/2

2
) = 2ez/2 sh z

2
,

и воспользовавшись sh ζ = −i sin iζ. Подставляем в известную формулу sin z = z∏∞k=1 (1 − z2

k2π2 ), получаем

ez − 1 = zez/2
∞
∏
k=1
(1 + z2

4k2π2
) .
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5.2.3 Problems about Expansions of Meromorphic Functions into Series and Products (???)

Ш-22.1. Разложение в дроби простейших функций (??)
Доказать формулы:

1) 1
ex−ea = e−a [−

1
2 +

1
z−a +

∞
∑
n=1

2(z−a)
(z−a)2+4n2π2 ];

2) π
sinπz =

∞
∑

n=−∞
(−1)n
z−n

3) 1
ch2z−cos 2z =

1
4z2 +

∞
∑
n=1

n(−1)n
shπn

2πz2

4z4+n4π4 .

Ш-22.2. Разложение в дроби чуть сложнее функций (??)
Доказать формулы:

1) π2

cos2 πz =
∞
∑

n=−∞
(z + 1

2 − n)
−2

;

2) 1
ch z =

∞
∑
n=1

(−1)n+1π
z2+(n− 1

2
)2π2

;

3) ez−e−z
ez+e−x =

∞
∑
n=1

2z

z2+(n− 1
2
)2π2

;

4) eaz

ez−1 =
1
z +

∞
∑
n=1

2z⋅cos 2πna−4πn sin 2πna
z2+4n2π2 ,0 < a < 1.

Ш-22.3. Разложение в дроби целой функции, которая ∣F (z + iy)∣ ⩽Mea∣y∣ (!?!??)
(?? потренирую потом!)
Пусть F (z) - целая функция, удовлетворяющая неравенству

∣F (z + iy)∣ ⩽Mea∣y∣, −π < a < π,

при всех действительных x и y. Доказать, что

πF (z)
sinπz

=
∞
∑
n=−∞

(−1)nF (n)
z − n

,

πF (z)
cosπz

=
∞
∑
n=−∞

(−1)n+1
F (n + 1

2
)

z − n − 1
2

Ш-22.4. Ряды для синусов (!!?)
(! крутые задачи!)
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5.2.3 Problems about Expansions of Meromorphic Functions into Series and Products (???)

1) Доказать, что sinaz
sinπz =

2
π

∞
∑
n=1

(−1)nn sinna
z2−n2 ,−π < a < π;

2) Доказать, что chaz
shπz =

1
πz +

1
π

∞
∑
n=1
(−1)n 2z cosna

z2+n2 ,−π < a < π;

3) Доказать, что π
sinπz =

∞
∑

n=−∞
ei(πn+αn−αz)

z−n ,−π < α < π;

4) Доказать, что
∞
∑

n=−∞
(−1)n sinα(z−n)

z−n = 0,−π < α < π;

5) Доказать, что π2

sin2 πz
= πα +

∞
∑

n=−∞
cosα(z−n)
(z−n)2 ,0 ⩽ α < π

Ш-22.5. Большие ряды для тригонометрических функций
Доказать формулы:

1) e(α+β)z−1
(eαz−1)(eβz−1) = (

1
α +

1
β)

1
z +

∞
∑
k=1
( 2αz
α2z2+4k2π2 + 2βz

β2z2+4k2π2), αβ ≠ 0, α ≠ β

2) ctg(z − a) + ctg a = z
∞
∑

n=−∞
1

(a−πn)(z−a+πn) , sina ≠ 0

3) sina
cos z−cosa =

∞
∑

n=−∞
2a

a2−(z+2πn)2 , sina ≠ 0

4) cosa
sina−sin z =

∞
∑

n=−∞
π−2a

(z−a+2πn)(z+a+(2n−1)π) , cosa ≠ 0.

Ш-22.6. Формула отношений бесконечных произведений f(z) = ∏∞n=1(1− z
bn
)

∏∞n=1(1− z
an
)
f(0)

для некоторой функции
Пусть f(z) - мероморфная функция с полюсами a1, a2, . . . и нулями b1, b2, . . . (каждый нуль пишем

столько раз, какова его кратность, а каждый полюс столько раз, каков его порядок), причем точка z = 0
не является ни нулем, и полюсом функции f(z). Предположим, что

f ′(z)
f(z)

=
∞
∑
n=1

1

z − bn
−
∞
∑
n=1

1

z − an

причем оба ряда равномерно сходятся в каждой ограниченной части плоскости. Доказать, что

f(z) =
∏∞n=1 (1 − z

bn
)

∏∞n=1 (1 − z
an
)
f(0)

причем оба произведения также равномерно сходятся в каждой ограниченной части плоскости.

Ш-22.7. Классические бесконечные произведения (!!!)
(!! в 1ю часть соберу их потом!!!)
Доказать формулы:
1) sh z = z∏∞n=1 (1 + z2

n2π2 );

2) cos z = ∏∞n=1 (1 − z2

(n−(1/2))2π2 )

3) th z = z∏∞n=1
[1+(z/πn)2]

[1+( z
π(n−(1/2)) )

2
]
;

4) eaz − ebz = (a − b)ze(1/2)(a+b)z∏∞n=1 [1 +
(a−b)2z2
4n2π2 ]
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5.3 Problems on the Simplest Conformal Mappings

6) ch z − cos z = z2∏∞n=1 (1 + z4

4n4π4 )

7) cosπz − cosπa = −π
2

2
(z2 − a2)∏∞n=1 [1 − ( z+a2n

)2]∏∞n=1 [1 − ( z−a2n
)2];

8) cosπz = π(2z + 1)∏∞n=1 (1 −
z(z+1)
n2−(1/4))

9) cos z−cosa
1−cosa ∏

∞
n=−∞ (1 − z2

(2πn+a)2 );

10) sin(z − a) + sina = z(π+2a−z)
π+2a ∏n≠0 {1 +

z(π+2a−z)
2πn(π(2n−1)−2a)};

11) sin(z−a)
sina−sin z = −∏

∞
n=0

1− z(z−2a)
π2(2n+1)2−a2

1− z(z+2a)
π2(2n+1)2−a2

;

12) ez
2

+ e2z−1 = 2e(1/2)(z
2+2z−1)∏∞n=1 (1 +

(z−1)4
π2(2n−1)2 );

13) e2 ch z − e2 sh z = 2ee
z−z∏∞n=1 (1 + e−2z

π2n2 ).

Ш-22.8.
Доказать равенства:

∞
∑
n=1

1

n2 + a2
= π

2a
(cthaπ − 1

aπ
)

∞
∑
n=1

1

(n2 + a2)2
= 1

4a4
( π

2a2

sh2 aπ
+ aπ cthaπ − 2)

предполагая, что ни один из знаменателей в этих равенствах не обращается в нуль.

МФТИ.кр Разложите 1
sin2 πz

в сумму элементарных дробей.
(?? видно, не усвоил.)

МФТИ.T.9. Докажите, что π tgπz = −2z
∞
∑
n=0

1
z2−(n+1/2)2

МФТИ.T.10. Докажите, что ∏∞n=2 (1 − 1
n2 ) = 1

2 , ∏∞n=1 (1 + 1
n2 ) = eπ−eπ

2π

МФТИ.Т.11. Докажите, что 1
z ∏

∞
n=1

n
z+n (

n+1
n
)z = Γ(z).

5.3 Problems on the Simplest Conformal Mappings

5.3.1 Problems about Geometric Meaning of the Derivative

Ш-25.пр.1
Найти множество всех точек z0 ∈ C, в которых коэффициент линейного растяжения при отображении

w = f(z) = az+b
cz+d , где a, b, c, d ∈ C, c ≠ 0, ad − bc ≠ 0, равен единице.

Так как коэффициент линейного растяжения в точке z0 равен ∣f ′ (z0)∣, то

1 = ∣f ′ (z0)∣ = ∣
ad − bc
(cz0 + d)2

∣

Откуда

∣ad − bc∣ = ∣cz0 + d∣2 , ∣z0 +
d

c
∣ =
√
∣ad − bc∣
∣c∣

т. е. искомое множество точек z0 − окружность с центром в точке −d
c

и радиусом
√
∣ad−bc∣
∣c∣ .

Ш-25.пр.2

Найти множество всех точек z0 ∈ C, в которых угол поворота кривых при отображении w = f(z) = az+b
cz+d ,

где a, b, c, d ∈ C, c ≠ 0, ad − bc ≠ 0, равен нулю
Так как угол поворота в точке z0 равен arg f ′ (z0), то

0 = arg f ′ (z0) = arg(
ad − bc
(cz0 + d)2

)
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5.3.1 Problems about Geometric Meaning of the Derivative

Тогда
arg(ad − bc) = arg ((cz0 + d)2)

(если выбирать arg(ad−bc) ∈ [0; 2π), то arg (cz0 + d)2 ∈ [0; 2π)), т. е. комплексные числа (ad−bc) и (cz0 + d)2

лежат на одном луче, выходяшем из нуля. Тогда (cz0 + d)2 = (ad − bc) ⋅ t для некоторого t > 0. Отсюда
cz0 + d = ±

√
∣ad − bc∣eiφ/2 ⋅

√
t, где φ = arg(ad − bc) ∈ [0; 2π)

z0 =
√
∣ad − bc∣eiφ/2

c
⋅ τ − d

c
, τ ∈ R

т. е. искомое множество точек z0 − прямая, проходящая через точку −d
c

с направляющим вектором
√
∣ad−bc∣
c

eiφ/2.

Ш-пр.3.
Пусть отображение w = f(z) регулярно в точке z0 и при этом f ′ (z0) ≠ 0. Рассмотрим гладкие кривые

Γ1 и Γ2, проходящие через z0 так, что ∣f(z)∣ = ∣f (z0)∣ для любой z ∈ Γ1,arg f(z) = arg f (z0) для любой
z ∈ Γ2.

Доказать, что Γ1 и Γ2 пересекаются в точке z0 под прямым углом.
Из условий следует, что образом Γ1 при отображении f является дуга Γ′1 окружности с центром O

радиуса ∣f (z0)∣, а образом Γ2 является отрезок Γ′2 луча, выходящего из точки под углом arg f (z0). Отсюда
следует, что Γ′1 и Γ′2 пересекаются в точке f (z0) под прямым углом. Значит, по свойству сохранения углов
кривые Γ1 и Γ2 пересекаются в точке z0 под прямым углом.

Ш-пр.4.
Найти длину Γ′ - образа кривой

Γ = {z ∈ C ∶ z = eit, t ∈ [0;π]}

при отображении w = 1
2
(z + 1

z
).

Длина кривой Γ′ (образа кривой Γ) выражается формулой (3), т. е.

l (Γ′) = ∫
Γ

∣w′(z)∣ ∣dz∣ = ∫
Γ

∣1
2
(1 − 1

z2
)∣ ∣dz∣ =

π

∫
0

1

2
∣1 − 1

e2it
∣ ∣i∥eit∣ ∣dt∣ =

=
π

∫
0

1

2

∣e2it − 1∣
∣e2it∣

dt =
π

∫
0

1

2
∣e2it − 1∣dt =

=
π

∫
0

1

2
∣ cos(2t) − 1 + i sin(2t)∣dt =

= 1

2

π

∫
0

√
(cos(2t) − 1)2 + sin2(2t)dt = 1

2

π

∫
0

√
2 − 2 cos(2t)dt =

= 1

2

π

∫
0

√
4 sin2 tdt =

π

∫
0

∣ sin t∣dt =
π

∫
0

sin tdt = 2.

Ш-пр.5.
Найти площадь G - образа области

D = {z ∈ C ∶ 2 < ∣z∣ < 3,−π
2
< arg z < π

2
}

при отображении w = z2.
Площадь области G выражается формулой (4), т. е.

S(G) = ∬
D
∣w′(z)∣2 dxdy =∬

D
∣2z∣2dxdy = 4∬

D
(x2 + y2)dxdy.

Переходя к полярным координатам x = r cosφ, y = r sinφ, получим

S(G) = 4
π/2

∫
−π/2

dφ

3

∫
2

r3dr = 4π
r4

4
∣
3

2

= 65π
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5.3.1 Problems about Geometric Meaning of the Derivative

Ш-1.
Пусть дан луч {z ∶ arg (z − z0) = φ}, выходящий из точки z0. Найти коэффициент линейного

растяжения R(φ) в точке z0 и угол поворота α(φ) в точке z0 для этого луча при следующих
отображениях:

1) w = z2, z0 = 1;
2) w = z̄2, z0 = i;
3) w = ie2z, z0 = 0;
4) w = 2z + iz̄, z0 = 0;
5) w = z−z0

z+z0 (z0 ≠ 0);
6) w = 1−iz

1+iz , z0 = −i.

Ш-2.
Найти множества всех точек z0, в которых коэффициент линейного растяжения при следующих

отображениях равен единице:
1) w = z2
2) w = z3
3) w = z2 − 2z
4) w = 1

z

5) w = 1+iz
1−iz .

Ш-3.
Найти множества всех тех точек z0, в которых угол поворота при следующих отображениях равен

нулю:
1) w = iz2
2) w = −z3;
3) w = z2 − 2z
4) w = i

z

5) w = 1+iz
1−iz .

Ш-4.
Пусть функция w(z) регулярна в точке z0, а гладкие кривые Γ1 и Γ2, проходящие через точку z0,

обладают тем свойством, что
Rew(z) = Rew (z0) (z ∈ Γ1) ;
Imw(z) = Imw (z0) (z ∈ Γ2) .

Доказать, что если w′ (z0) ≠ 0, то кривые Γ1 и Γ2 пересекаются под прямым углом.

Ш-5.
Пусть функция w(z) регулярна в точке z0, а гладкие кривые Γ1 и Γ2, проходящие через точку z0,

обладают тем свойством, что
∣w(z)∣ = ∣w (z0)∣ (z ∈ Γ1) ;

Rew(z) = Rew (z0) (z ∈ Γ2). Доказать, что если w′ (z0) ≠ 0, то кривые Γ1 и Γ2 при пересечении в
точке z0 образуют углы ±argw (z0) + kπ.

Ш-6.
Найти длины образов следующих кривых при указанных отображениях:
1) Γ = {z ∶ z = it + 1,0 ⩽ t ⩽ 1},w = z2;
2) Γ = {z ∶ z = it,0 ⩽ t ⩽ 2π},w = ez;
3) Γ = {z ∶ z = (1 + i)t,0 ⩽ t ⩽ 2π},w = ez;
4) Γ = {z ∶ z = (1 + i)t,0 ⩽ t ⩽ 1},w = zm (m = 1,2, . . .).

Ш-7.
Найти площади образов областей D при указанных отображениях:
1) D = {z ∶ 2 < ∣z∣ < 3, ∣arg z∣ < π

4
} ,w = z2;

2) D = {z ∶ 0 < ∣Re z∣ < 1, ∣ Im z∣ < π},w = ez;
3) D = {z ∶ 0 < ∣Re z∣ < 1,1 < ∣ Im z∣ < 2},w = z−1

z+1 .
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Ш-8.
Найти область, на которую функция w = ez отображает прямоугольник

D = {1 < x < 2,0 < y < 8}.

Вычислить площадь области w(D) с помощью формулы (4) и объяснить, почему эта формула дает
неправильный ответ.

Ш-9.
Пусть

P (z) = a0 + a1z + . . . + anzn.
Обозначим через L(r) длину образа окружности {z ∶ ∣z∣ = r} при отображении w = P (z), а через S(r) -
площадь образа круга {z ∶ ∣z∣ < r} при том же отображении. Доказать, что: 1) справедливо неравенство
S(r) ⩾ πr2 ∣P ′(0)∣2; 2) справедливо неравенство

r

∫
0

L2(t)
t

dt ⩽ 2πS(r)

3) справедливо неравенство L(r) ⩾ 2πr ∣P ′(0)∣. Указание. Вначале доказать формулы

1

2π

2π

∫
0

P ′ (reiφ)dφ = P ′(0); ∬∣z∣<r
∣P ′(z)∣2 dxdy = π

n

∑
m=0

m ∣am∣2 r2m.

Ш-19.

Пусть Q(z) = z +
n

∑
k=1

ckz
−k. Найти площадь образа кольца {z ∶ r < ∣z∣ < R} при отображении w = Q(z),

считая площадь каждой элементарной площадки с центром в точке w0 столько раз, сколько раз функция
Q(z) принимает значение w0 в кольце {z ∶ r < ∣z∣ < R}.

Ш-11.
Пусть функция w(z) регулярна в области D и пусть ее отображение w = w(z) сохраняет евклидово

расстояние между точками, т. е. для любой пары точек z1 ∈D и z2 ∈D имеет место равенство

∣w (z2) −w (z1)∣ = ∣z2 − z1∣ .

Доказать, что w(z) = eiφz + a, где φ действительная и a комплексная постоянные.

5.3.2 Problems about the Definition and General Properties of Con-
formal Mappings

Ш-пр.1.
Доказать, что отображение f(z) = ez конформно в каждой точке z ∈ C, однако не является

конформным во всей C.
Так как f ′(z) = ez ≠ 0 для всех z ∈ C, то f является конформным в каждой точке z ∈ C.
Однако ez1 = ez2 при z2 = z1 + 2πki, k ∈ Z, т. е. однолистность нарушается в любой области,

содержащей хотя бы две разные точки z1 и z2, такие, что z2 = z1 + 2πki, k ∈ Z.

Ш-пр.2.

Каким условиям должна удовлетворять область D ⊂ C, чтобы отображение f(z) = 1
2
(z + 1

z
) в ней было

конформным?
1) Во-первых, отображение f должно быть конформным в каждой точке области D. Пусть z ∈ C и

z ≠ 0, тогда

f ′(z) = 1

2
(1 − 1

z2
) = 0 при z = ±1.

Следовательно, отображение f конформно во всех точках плоскости C, кроме точек 0; 1;−1. Точки 0 и∞-
полюсы первого порядка функции f(z), следовательно, отображение f конформно в этих точках. Итак,
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отображение f конформно в каждой точке C, кроме точек 1 и −1. 2) Выясним, каким условиям должна
удовлетворять область D, чтобы функция f(z) была однолистна в этой области. Пусть f (z1) = f (z2) и
z1 ≠ z2, тогда

1

2
(z1 +

1

z1
) = 1

2
(z2 +

1

z2
)

откуда z1 ⋅ z2 = 1 Таким образом, однолистность функции f(z) нарушается в любой области, содержащей
хотя бы одну пару точек z1, z2 таких, что z1 ⋅z2 = 1. Итак, для конформности отображения f(z) = 1

2
(z + 1

z
)

в области D ⊂ C необходимо и достаточно, чтобы: 1) область D не содержала точек ±1; 2) область D не
содержала двух разных точек z1 и z2, таких, что z1 ⋅ z2 = 1

Ш-пр.3.

Доказать, что области C,C и D = {z ∶ ∣z∣ < 1} невозможно конформно отобразить друг на друга.
целая функция и ∣f(z)∣ < 1 для всех z ∈ C, поэтому по теореме Лиувилля f(z) ≡ const, что противоречит
ее конформности. 2) Если f конформно переводит C в C, то f(z) - целая, причем f(∞) ≠ ∞, т. е. f
ограничена в окрестности точки∞. Тогда f ограничена в C, и следовательно, f(z) ≡ const. Противоречие.

Ш-пр.4.

Найти все конформные отображения a) C на C; б) C на C.
a) Пусть f конформно переводит C на C и пусть точка z0 ∈ C такова, что f (z0) = ∞. Тогда z0 - полюс

первого порядка (критерий конформности в точке).
Главная часть разложения функции f(z) в ряд Лорана в окрестности z0 равна g(z) = c1z, если z0 = ∞,

или g(z) = c−1
z−z0 , если z0 ≠ ∞. Вычитая из f функцию g, получаем, что (f − g) - целая и ограниченная в C

функция. Следовательно, по теореме Лиувилля f − g = const, т. е. в обоих случаях

f(z) = az + b
cz + d

, где ad − bc ≠ 0.

B частности, если f(∞) = ∞, то f(z) = c1z+d1 (c1 ≠ 0). б) Пусть отображение f конформно переводит C
на C. Тогда оно однолистно в C и образом любой точки из C является точка из C. Следовательно, точка
∞ является изолированной особой точкой функции f(z). Она не может быть существенно особой точкой
или полюсом порядка выше первого, так как иначе нарушается однолистность в некоторой проколотой
окрестности точки ∞.

Главная часть разложения функции f(z) в ряд Лорана в окрестности точки ∞ равна g(z) = c1z, если
∞-полюс первого порядка или g(z) = 0, если ∞ - устранимая особая точка. Тогда аналогично пункту (a)
f − g = const, т. е. f(z) = c1z + d1 (c1 ≠ 0) ( случай c1 = 0 невозможен из-за однолистности f).

Ш-1.
Выяснить, конформно ли отображение f(z) в областях D, указываемых в скобках:
1) f(z) = az+b

cz+d , ad − bc ≠ 0(D = C);
2) f(z) = z2 (D = {z ∶ 1 < ∣z∣ < 2,0 < arg z < 3π

2
});

3) f(z) = z + 1
z
(D = {z ∶ ∣z∣ < 1});

4) f(z) = ez (D = {z ∶ ∣z∣ < 4});
5) f(z) = z2 (D = {z ∶ 3 < ∣z + 2∣ < 4,0 < arg(z + 2) < 3π

2
});

6) f(z) = ez (D = {z ∶ ∣Re[(1 + i)z]∣ < π}) 7) f(z) = z + 1
z
(D = {z ∶ ∣z − i∣ <

√
2}).

Ш-2.

Доказать следующие утверждения: 1) отображение z2 конформно в области D в том и только в том
случае, когда области D и −D не имеют общих точек; 2) отображение 1

2
(z + 1

z
) конформно в области D в

том и только в том случае, когда области D и 1
D

не имеют общих точек; 3) отображение ez конформно в
области D в том и только в том случае, когда области D и D + 2πi не имеют общих точек;

4) f(z) = ez (D = {z ∶ ∣z∣ < 4});
5) f(z) = z2 (D = {z ∶ 3 < ∣z + 2∣ < 4,0 < arg(z + 2) < 3π

2
});

6) f(z) = ez (D = {z ∶ ∣Re[(1 + i)z]∣ < π}); 7) f(z) = z + 1
z
(D = {z ∶ ∣z − i∣ <

√
2}).
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Ш-2.

Доказать следующие утверждения: 1) отображение z2 конформно в области D в том и только в том
случае, когда области D и −D не имеют общих точек; 2) отображение 1

2
(z + 1

z
) конформно в области D в

том и только в том случае, когда области D и 1
D

не имеют общих точек; 3) отображение ez конформно в
области D в том и только в том случае, когда области D и D+2πi не имеют общих точек; 4) отображение
tg z конформно в области D в том и только в том случае, когда области D и D+π не имеют общих точек; 5)
отображение cos z конформно в областиD в том и только в том случае, когда областиD,−D,D+2π,−D+2π
не имеют попарно общих точек.

Ш-3.
Пусть n ⩾ 2-целое число, а α-произвольное действительное число. Доказать, что отображение zn +

neiαz конформно в круге {z ∶ ∣z∣ < 1}.

Ш-4.

Доказать, что отображение z2 + az конформно в полуплоскости {z ∶ Im z > 0} в том и только в том
случае, когда выполняется неравенство Ima ⩾ 0.

Ш-5.

Доказать, что ни одна из регулярных в полуплоскости {z ∶ Im z > 0} ветвей функции
√
z5 не задает

конформное отображение этой полуплоскости.

Ш-6.
Доказать, что если функция Ln z допускает выделение в области D регулярной ветви, то эта

регулярная ветвь задает конформное отображение области D.

Ш-7.
Пусть n-целое положительное число. Доказать, что если функция n

√
z допускает выделение в области

D регулярной ветви, то эта регулярная ветвь задает конформное отображение области D.

Ш-8.
Пусть отображение f(z) конформно на множестве E, а отображение g(ζ) определено на множестве

E′ значений f(z). Доказать, что отображение g(f(z)) конформно на множестве E тогда и только тогда,
когда g(ζ) конформно на множестве E′.

Ш-9.
Пусть функция f(z) регулярна и задает конформное отображение круга {z ∶ ∣z∣ < 1}, a f(0) = 0.

Доказать, что многозначное отображение { n
√
f (zn)} в круге {z ∶ ∣z∣ < 1} распадается на n регулярных и

задающих конформные отображения в круге функций.

Ш-19.

Доказать, что для конформности квадратного трехчлена az2+bz+c в выпуклой области D необходимо
и достаточно, чтобы этот трехчлен был конформным в каждой точке области D.

Указание. Воспользоваться тем, что середина отрезка, соединяющего любые две точки области D,
также лежит в области D.

Ш-11.
Пусть a, b и z0 - заданные комплексные числа. Найти наибольшее значение R, при котором

отображение z2 + az + b конформно в круге {z ∶ ∣z − z0∣ < R}

Ш-12.

Доказать, что отображение z2 + az + b конформно в каждой области D, лежащей по одну сторону от
какой-либо прямой, проходящей через точку z = −a

2
.
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Ш-13.
Доказать, что многочлен anzn+ . . .+a1z+a0 может быть конформным отображением в полуплоскости

{z ∶ Im z > 0} только в том случае, если его степень не выше второй.

Ш-14.
Убедиться, что следующие отображения не конформны в указываемых областяхD, хотя и конформны

в каждой точке этих областей:
1) z2(D ∶= {z ∶ 1 < ∣z∣ < 2})
2) z3(D ∶= {z ∶ Im z > 0})
3) ez(D ∶= {z ∶ ∣z∣ < 4}).

Ш-15.

Доказать конформность отображения z3 − 3z в области

{z ∶ (Re z)2 > 1 + (Im z)2,Re z > 0} .

Ш-16.
Доказать конформность отображения z + ez в полуплоскости {z ∶ Re z < 0}.

Ш-17.
Пусть −∞ < a1 < . . . < an < +∞. Доказать, что любая регулярная ветвь многозначной функции

f(z) = n
√
(z − a1) . . . (z − an) в полуплоскости {z ∶ Im z > 0} задает конформное в этой полуплоскости

отображение.

Ш-18.
Пусть −∞ < a1 < a2 < a3 < a4 < +∞,0 < α < 1. Доказать, что любая регулярная ветвь многозначной

функции

f(z) =
z

∫
0

(ζ − a1)α−1 (ζ − a2)−α (ζ − a3)α−1 (ζ − a4)−α dζ

в полуплоскости {z ∶ Im z > 0} задает конформное отображение этой полуплоскости.

Ш-19.
Пусть функция f(z) регулярна в области D, ограниченной простой замкнутой кривой Γ, и непрерывна

в замыкании этой области. Доказать, что если образ кривой Γ при отображении w = f(z) является простой
замкнутой кривой, то отображение f(z) конформно в области D.

5.3.3 Problems about Fractional-Linear (Möbius) Mappings

Ш-пр.1.

Найти образы следующих линий при отображении w = 1
z
:

1) Γ1-оси y; 2) Γ2 - прямой y = x;
3) Γ3 - прямой y = 2;
4) Γ4 - окружности (x − 1)2 + y2 = 1.
Согласно круговому свойству, образы указанных линий будут прямыми или окружностями. Для их

нахождения достаточно найти образы каких-нибудь трех точек или воспользоваться свойством сохранения
углов при конформном отображении. 1) Так как w(0) = ∞ и 0 ∈ Γ1, то w (Γ1) - прямая. Учитывая
равенства w(i) = −i,w(−i) = i, получаем, что w (Γ1) = Γ1 (рис. 27.2.)
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2) Так как w(0) = ∞ и 0 ∈ Γ2, то w (Γ2) - прямая. Учитывая равенства

w(1 + i) = 1

2
− i
2
, w(−1 − i) = −1

2
+ i
2
,

получаем, что w (Γ2) - прямая y = −x (рис. 27.3). 3) Так как точка 0 не принадлежит Γ3, то w (Γ3)
- окружность. Находим значения w(2i) = − i

2
, w(∞) = 0. Прямые Γ1 и Γ3 ортогональны. Поэтому

окружность w (Γ3) ортогональна прямой w (Γ1) = Γ1 (оси 0y). Следовательно, окружность w (Γ3) касается
оси 0x в точке w = 0 и проходит через точку w = − i

2
. Поэтому ее центр-точка w = − i

4
, а уравнение имеет

вид x2 + (y + 1
4
)2 = 1

16
(рис. 27.4).

4) Так как точка 0 ∈ Γ4 (рис. 27.5), то w (Γ4) - прямая. Окружность Γ4 касается в точке 0 мнимой оси
Γ1 и проходит через точку z = 2. Поэтому прямая w (Γ4) проходит через точку w(2) = 1

2
и параллельна

w (Γ1) = Γ1 - мнимой оси. Следовательно, w (Γ4) - прямая x = 1
2
.
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Ш-пр.2.

Найти образы следующих линий при отображении функцией w(z) = z+i
z−2i :

1) Γ1 - прямой y = x;
2) Γ2 - прямой y = x + 2;
3) Γ3 - окружности x2 + (y − 4)2 = 1;
4) Γ4 - окружности x2 + (y − 1)2 = 1.
1) Для данного отображения w(2i) = ∞. Так как точка 2i ∉ Γ1 (рис. 27.6), то w (Γ1) будет

окружностью. Найдем ее. Точка z = 2i симметрична относительно прямой Γ1 точке z = 2, причем

w(2) = 2 + i
2 − 2i

= 1

4
+ 3

4
i.

По свойству сохранения симметрии точек при дробно-линейных отображениях точки w1 = 1
4
+ 3i

4
и

∞ симметричны относительно окружности w (Γ1), т. е. w1 = 1
4
+ 3

4
i - центр искомой окружности w (Γ1).

Кроме того, точка ∞ ∈ Γ1 и w(∞) = 1, т. е. 1 ∈ w (Γ1). Поэтому радиус окружности w (Γ1) равен

R =
√
(1 − 1

4
)
2

+ (3
4
)
2

= 3
√
2

4
,

откуда w (Γ1) - окружность, заданная уравнением (рис. 27.7):

(u − 1

4
)
2

+ (v − 3

4
)
2

= 9

8
.

2) Точка 2i ∈ Γ2 и w(2i) = ∞ (рис. 27.8). Поэтому w (Γ2) - прямая. Так как ∞ ∈ Γ2, то w(∞) = 1 ∈ w (Γ2).
Поскольку −2 ∈ Γ2, то w(−2) = 1

4
− 3i

4
∈ w (Γ2). Через две точки w1 = 1 и w2 = 1

4
− 3i

4
проводим прямую

w (Γ2) и получаем ее уравнение v = u − 1 (рис. 27.9).
3) Так как окружность Γ3 не содержит точку 2i (рис. 27.10), то ее образ w (Γ3) также будет

окружностью. Найдем точку z∗, симметричную точке z = 2i относительно окружности Γ3. Очевидно,
что z∗ = αi, где

(α − 4) ⋅ (2 − 4) = R2 = 1
т. е. α = 3.5, a значит,

z∗ = 3.5 ⋅ i, w(3.5i) = 3.5i + i
3.5i − 2i

= 3

По свойству сохранения симметрии точек при дробно-линейных отображениях, и так как точки w1 =
∞ и w∗1 = 3 симметричны относительно окружности w (Γ3), получаем, что центр окружности w (Γ3)
находится в точке 3. Кроме того, точка z = 3i ∈ Γ3, и значит, точка w(3i) = 4 ∈ w (Γ3). Поэтому радиус
окружности w (Γ3) равен 1, a ее уравнение имеет вид (u− 3)2 + v2 = 1 (рис. 27.11). 4) Так как окружность
Γ4 содержит точку 2i и w(2i) = ∞ (рис. 27.12), то ее образ будет прямой. Точка 0 принадлежит Γ4,
поэтому w(0) = − 1

2
∈ w (Γ4). Так как w(z) мнимую ось отображает на действительную ось, а окружность

Γ4 ортогональна в точке 0 мнимой оси, то по свойству конформных отображений о сохранении углов
получаем, что прямая w (Γ4) ортогональна в точке z = − 1

2
действительной оси. В итоге w (Γ4) есть

прямая вида u = − 1
2

(рис. 27.13).

Ш-пр.3.

Найти образ области D = C/{z ∶ ∣z − 1∣ ⩽ 1, ∣z − i∣ ⩽ 1} (рис. 27.14) при отображении w = 1
z
.

Найдем образ границы области D при отображении w. Образом окружности {z ∶ ∣z − 1∣ = 1} будет
прямая x = 1

2
(w(0) = ∞, w(2) = 1

2
, угол с осью Ox в точке 2 сохраняется). При этом дуга Γ1 этой

окружности, которая является частью границы D (рис. 27.15), отобразится на связное подмножество
прямой x = 1

2
, соединяющее точки ( 1

2
− i

2
) и ∞ (образы концов дуги). Это будет луч, идущий вниз

(рис. 27.16), так как он не содержит точку 1
2

(образ точки 2, принадлежащей дуге, дополняющей Γ1 до
окружности {z ∶ ∣z − 1∣ = 1}).

Аналогично функция w = 1
z

отображает окружность {z ∶ ∣z − i∣ = 1} на прямую y = − 1
2
, причем дуга Γ2

(рис. 27.17) этой окружности, являющаяся частью границы области D, перейдет в луч, идущий вправо
(рис. 27.18).

Итак, образом границы области D являются два луча (рис. 27.19). Они делят плоскость C на две
области. Так как отображение w взаимнооднозначно в C и образ w(D) области D является областью
(согласно принципу сохранения области), то w(D) совпадет с одной из двух образовавшихся областей.
Чтобы узнать, с какой именно, достаточно найти образ хотя бы одной точки или из D или из дополнения
к D. Например, w(1) = 1. Поэтому w(D) - область, содержащая точку 1 (рис. 27.20).
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Ш-1.
Пусть x = Re z, y = Im z, а C - положительная постоянная. Найти образы каждой линии указанных

семейств при отображении w = 1
z
: 1) семейство окружностей {(x, y) ∶ x2 + y2 = Cx}; 2) семейство прямых

{(x, y) ∶ y = x +C}; 3) семейство прямых {(x, y) ∶ y = Cx}.

ФР отображение двух сфер
(тут используется теория про распрямление, не шарю её, просто так вот можно делать.)

ФР отображение двух шаров с разрезами вне

Отобразить на круг ∣w∣ < 1 внешность кругов ∣z + 1
2
∣ ≤ 1

2
и ∣z − 1

2
∣ ≤ 1

2
c разрезами по отрезкам

действительной оси: [−2,−1], [1,2] (рис. 39).
(та самая задача, где чуть не дожал и минус денежка.)
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Ш-2.

Пусть x = Re z, y = Im z. Найти образы каждой области указанных семейств при отображении w = 1
z
:

1) семейство кругов {(x, y) ∶ x2 + y2 < Cx} (здесь C-положительная постоянная); 2) семейство кругов
{(x, y) ∶ x2 + y2 < Cx} (здесь C-отрицательная постоянная); 3) семейство кругов
{(x, y) ∶ x2 + y2 < Cy} (C - положительная постоянная); 4) семейство полуплоскостей {(x, y) ∶ y > Cx}(C
- положительная постоянная);

5) семейство кругов {z ∶ ∣z − a∣ < R}, где a - фиксированная точка, а положительная постоянная
R удовлетворяет условию R < ∣a∣; 6) семейство кругов {z ∶ ∣z − a∣ < R}, где a-фиксированная точка, а
постоянная R удовлетворяет условию R > ∣a∣.

Ш-3.
Найти образ круга {z ∶ ∣z − 1∣ < 2} при следующих отображениях:
1) w = 1 − 2iz
2) w = 2iz

z+3
3) w = z+1

z−2
4) w = z−1

2z−6 .
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Ш-4.
Найти образ полуплоскости {z ∶ Re z < 1} при следующих отображениях:
1) w = (1 + i)z + 1
2) w = z

z−1+i
3) w = z

z−2 ;
4) w = 4z

z+1
5) w = z−3+i

z+1+i .

Ш-5.
Найти образы указанных областей D при указанных отображениях:
1) D = {z ∶ ∣z∣ < 1, Im z > 0},w = 1−z

1+z ;
2) D = {z ∶ z ∉ [−2,1]},w = z+2

1−z ;
3) D = {z ∶ ∣z − i∣ > 1, Im z > 0},w = 1

z
;

4) D = {z ∶ 1 < ∣z∣ < 2},w = 2
z−1 .

Ш-6.
Отыскать дробно-линейные функции w(z), удовлетворяющие условиям:
1) w(0) = 4,w(1 + i) = 2 + 2i,w(2i) = 0;
2) w(0) = 0,w(1 + i) = 2 + 2i,w(2i) = 4;
3) w(0) = 0,w(1 + i) = ∞,w(2i) = 2i. Найти образ круга {z ∶ ∣z − i∣ < 1} при отображениях, задаваемых

этими функциями.

Ш-7.
Отыскать дробно-линейные функции w(z), удовлетворяющие условиям:
1) w(i) = 2,w(∞) = 1 + i,w(−i) = 0;
2) w(i) = 0,w(∞) = 1,w(−i) = ∞;
3) w(i) = −2,w(∞) = 2i,w(−i) = 2. Найти образ полуплоскости {z ∶ Re z > 0} при отображениях,

задаваемых этими функциями.

Ш-8.
Найти функцию w(z), конформно отображающую область D на область D1 и удовлетворяющую

указанным условиям:
1) D = {z ∶ ∣z∣ < 1}, D1 = {w ∶ ∣w∣ < 1}, w (z0) = 0, argw′ (z0) = α (∣z0∣ < 1);
2) D = {z ∶ ∣z∣ < 1}, D1 = {w ∶ ∣w∣ < 1}, w (z0) = w0, argw′ (z0) = α (∣z0∣ < 1, ∣w0∣ < 1)
3) D = {z ∶ ∣ Im z∣ > 0},D1 = {w ∶ ∣w∣ < 1}, w (z0) = 0, argw′ (z0) = α (Im z0 > 0)
4) D = {z ∶ ∣ Im z∣ > 0},D1 = {w ∶ ∣w∣ < 1},w (z0) = w0,argw

′ (z0) = α (Im z0 > 0, ∣w0∣ < 1)
5) D = {z ∶ ∣ Im z∣ > 0}, D1 = {w ∶ Imw > 0}, w (z0) = w0, argw′ (z0) = α (Im z0 > 0, Imw0 > 0);
6) D = {z ∶ ∣z∣ < 1}, D1 = {w ∶ ∣w∣ < 1}, w(1) = 1, w(i) = 3i−4

5
, w(−1) = −1 7) D = {z ∶ ∣z∣ < 1},D1 =

{w ∶ ∣w∣ < 1},w(i) = i,w ( i
2
) = 4i

5
; 8) D = {z ∶ ∣z∣ < 1},D1 = {w ∶ ∣w∣ < 1},w ( 1

2
) = 1

2
,argw′ ( 1

2
) = π

2
; 9)

D = {z ∶ Im z > 0}, D1 = {w ∶ ∣w∣ < 1}, w(0) = i, w(−1) = 1, w(∞) = −1; 10) D = {z ∶ Im z > 0},D1 = {w ∶
∣w∣ < 1},w(0) = −i,w(2i) = i

3
; 11) D = {z ∶ Im z > 0}, D1 = {w ∶ ∣w∣ < 1}, w(1 + i) = 0, argw′(1 + i) = π;

Ш-9.
Найти общий вид конформного отображения следующих областей на кольцо {w ∶ 1 < ∣w∣ < R}: 1)

{z ∶ ∣z − 3∣ > 9, ∣z − 8∣ < 16}; 2) {z ∶ ∣z − 5∣ > 4,Re z > 0}.

Ш-19.
Пусть w(z) - произвольная дробно-линейная функция, а z1, z2, z3, z4 - четыре попарно различные точки

расширенной C. Обозначим
wk = w (zk) , k = 1,2,3,4.

Доказать, что
w4 −w1

w4 −w2
∶ w3 −w1

w3 −w2
= z4 − z1
z4 − z2

∶ z3 − z1
z3 − z2

.
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Ш-11.
Доказать, что линии уровня модуля дробно-линейной функции являются окружностями или прямыми

линиями.

Ш-12.
Доказать, что линии уровня действительной части дробно-линейной функции являются

окружностями или прямыми линиями.

Ш-13.
Найти условие, которому должны удовлетворять точки z1, z∗1 , z2, z

∗
2 , чтобы существовала окружность

(или прямая), относительно которой точки zk были бы симметричны с точками z∗k(k = 1,2).

Ш-14.
Пусть функция w(z) мероморфна в области D. Доказать следующие утверждения: 1) если при

отображении w = w(z) образом любого отрезка прямой (лежащего в области D) является отрезок прямой,
то w(z)-линейная функция; 2) если при отображении w = w(z) образом любого отрезка прямой (лежащего
в области D) является дуга окружности или отрезок прямой, то w = w(z) - дробно-линейная функция.

Точка a ∈ C называется неподвижной точкой дробно-линейного преобразования f , если f(a) = a.

Ш-15.
Доказать утверждения: 1) каждое дробно-линейное преобразование имеет хотя бы одну

неподвижную точку (конечную или бесконечную); 2) каждое дробно-линейное преобразование, отличное
от тождественного, имеет не более двух неподвижных точек (конечных и бесконечных).

Ш-16.

Доказать, что дробно-линейное преобразование f с единственной неподвижной точкой a ∈ C
удовлетворяет уравнению

1

f(z) − a
= 1

z − a
+A, A ∈ C

при a ≠ ∞, а при a = ∞ имеет вид
f(z) = z +A, A ∈ C.

Ш-17.
Доказать, что дробно-линейное преобразование f с двумя различными конечными неподвижными

точками a и b удовлетворяет уравнению

f(z) − a
f(z) − b

= A ⋅ z − a
z − b

, A ∈ C.

5.3.4 Problems about Conformal Mappings via Elementary Functions

(на это теория хорошо прописана будет, уже писал про это!)

Ш-пр.1.
Найти конформное отображение области D, являющейся верхней полуплоскостью {z ∶ Im z > 0} с

разрезом по отрезку [0, ih], где h > 0 (рис. 28.22), на верхнюю полуплоскость {w ∶ Imw > 0}. Рис. 28.22
Рис. 28.23 Рис. 28.24

Функция ξ = f1(z) = z2 однолистна на области D и конформно отображает область D на область D1,
являющуюся плоскостью с разрезом по лучу [−h2,+∞) (рис. 28.23).

Функция η = f2(ξ) = ξ+h2 конформно отображает область D1 на область D2, являющуюся плоскостью
с разрезом по лучу [0,+∞) (рис. 28.24)

Функция w = f3(η) =
√
∣η∣eiarg η/2, где arg η ∈ (0,2π), конформно отображает область D2 на верхнюю

полуплоскость {Imw > 0}.
Итак, функция w = f3 (f2 (f1(z))) конформно отображает область D на область {w ∶ Imw > 0}.
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Ш-пр.2.
Найти конформное отображение области D, являющейся верхней полуплоскостью {z ∶ Im z > 0} с

разрезом по дуге окружности {z ∶ ∣z∣ = 1,0 ⩽ arg z ⩽ α}, где 0 < α < π (рис. 28.25), на верхнюю
полуплоскость.

Функция ЖКуовского ξ = f1(z) = 1
2
(z + 1

z
) отображает область D на плоскость с разрезами по лучам

(−∞,−1] и [cosα,+∞) (область D1) (рис. 28.26) Рис. 28.25 Рис. 28.26 Дробно-линейная функция η =
f2(ξ) = ξ−cosα

ξ+1 отображает область D1 на область D2, являющуюся плоскостью с разрезом по лучу [0,+∞)
(рис. 28.24). Функция w = f3(η) =

√
∣η∣eiarg η/2, где arg η ∈ (0,2π), конформно отображает область D2 на

верхнюю полуплоскость {w ∶ Imw > 0}. Итак, функция w = f3 (f2 (f1(z))) является искомой.

ФР плоскость с разрезом и выпуклостью

Просто догадываемся о распрямлении, а дальше - жуковский и элементарный довод до ответа.

(потом мб своей рукой пропишу задачу.)

Ш-пр.3.
Область D = {z ∶ Re z > 0, ∣z − 1∣ > 1}/[2,3] (рис. 28.27) конформно отобразить на верхнюю

полуплоскость. Рис. 28.27 Рис. 28.28
Функция ξ = f1(z) = 1

z
отображает область D на область D1, являющуюся полосой с разрезом, т. е.

D1 = {ξ ∶ 0 < Re ξ <
1

2
} / [1

3
,
1

2
] .
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Линейная функция η = f2(ξ) = πi(1 − 2ξ) отображает область D1 на область

D2 = {η ∶ 0 < Imη < π} > [0, π
3
i]

(рис. 28.28). Функция w = f3(η) = eη отображает область D2 на область рис. 28.25 при α = π
3
. Далее см.

пример 2.

Ш-пр.4.
Найти конформное отображение области D (рис. 28.29), являющейся полуполосой {z ∶ 0 < Im z <

π,Re z > 0} с разрезом по отрезку [πi
2
; πi

2
+ 1] на верхнюю полуплоскость.

Функция ξ = f1(z) = ez отображает область D на область D1 (рис. 28.30), являющуюся верхней
полуплоскостью с выброшенным единичным полукругом и разрезом [i, ei]. Функция η = f2(ξ) = 1

2
(ξ + 1

ξ
)

отображает область D1 на верхнюю полуплоскость с разрезом [0, i sh 1] (рис. 28.22 при h = sh 1). Далее
воспользоваться решением приmepa 1. Рис. 28.29 Рис. 28.30

Ш-1.

Найти образы при отображении w = z2 следующих линий: 1) {z ∶ arg z = α} (−π < α ⩽ π); 2) {z ∶ Re z =
a} (a > 0); 3) {z ∶ Im z = a} (a > 0);

4) {z ∶ ∣z∣ = ρ, ∣arg z∣ < π
4
}.

Ш-2.

Найти образы при отображении w = z2 следующих областей: 1) {z ∶ Im z > 0}; 2) {z ∶ Re z > 0};
3) {z ∶ π < arg z < 3π

2
};

4) {z ∶ ∣z∣ < 1, 5π
4
π < arg z < 3π

2
}; 5) {z ∶ Im z < −1}; 6) {z ∶ Re z > 1}; 7) {z ∶ ∣z∣ < 2,0 < arg z < π

2
} ; 8)

{z ∶ ∣z∣ > 1
2
,Re z > 0}.

Ш-3.
Найти образы следующих областей D при отображении регулярной ветвью f(z) функции {z ∶

√
z},

выделяемой ее значением в указанной точке:
1) D = {z ∶ Im z > 0}, g(i) = − 1+i√

2
;

2) D = {z ∶ Re z > 0}, g(1) = 1;
3) D = {z ∶ z ∉ [0,+∞]}, g(−1) = −i;
4) D = {z ∶ z ∉ [−∞,−1]}, g(4) = 2;
5) D = {z ∶ ∣z∣ < 1, Im z > 0}, g(i/2) = 1+i

2
;

6) D = {z ∶ ∣z∣ > 1, 3π
4
< arg z < 5π

4
} , g(−1) = i 7) D = {z ∶ (Im z)2 > 2Re z + 1} , g(−1) = −i 8)

D = {z ∶ Im z > 0, (Im z)2 > 4Re z + 4} , g(−1) = i.

Ш-4.
Найти образы множеств E при указанных отображениях:
1) E = {z ∶ arg z = π

4
} ,w = z3

2) E = {z ∶ ∣z∣ = 2, n
8
< arg z < π

4
} ,w = z4;

3) E = {z ∶ ∣z∣ < 1, Im z > 0},w = z3/2,w ( i
2
) = 1−i

4

4) E = {z ∶ ∣z∣ > 4,Re z > 0},w = z−3/2,w(9) = − 1
27

;
5) E = {z ∶ ∣arg z∣ < π

8
, z ∈ [0,1]} ,w = z8.

Ш-5.
Найти какие-либо функции w(z), осуществляющие конформные отображения областей,

изображенных на рис. 28.31-28.45, на полуплоскость {w ∶ Imw > 0}.
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Ш-6.
Найти функцию w(z), конформно отображающую область

{(x, y) ∶ y2 > 4(x + 1)} (x = Re z, y = Im z)

на круг {w ∶ ∣w∣ < 1} и удовлетворяющую условиям

w(−4) = 0, argw′(−4) = 0.

Ш-7.

Найти функцию w(z), конформно отображающую угол {z ∶ ∣arg z∣ < π
4
} на круг {w ∶ ∣w∣ < 1} и

удовлетворяющую условиям
w(1) = 0, argw′(1) = π.

Ш-8.

Найти образы следующих областей D при отображении регулярной ветвью функции w = z +
√
z2 − 1,

выделяемой ее значением в указываемой точке (в неравенствах, определяющих область, положено x = Re z,
y = Im z, а a, b и α - действительные постоянные):

1) D = {(x, y) ∶ x
2

a2
+ y2

a2−1 > 1} , (a > 0),w(∞) = 0;

2) D = {(x, y) ∶ x
2

a2
− y2

1−a2 < 1} , (0 < a < 1),w(0) = i;
3) D = {z ∶ z ∉ [−∞,−1], z ∉ [1,+∞]},w(0) = i;
4) D = {z ∶ z ∉ [−1,1]},w(∞) = ∞;
5) D = {z ∶ Im z > 0},w(+i∞) = 0;
6) D = {(x, y) ∶ x

2

a2
+ y2

a2−1 < 1, y > 0} , (a > 1),w(+i0) = i; 7) D = {(x, y) ∶ x2

cos2 α
− y2

sin2 α
> 1, x > 0, y > 0},

(0 < α < π
2
) ,w(+∞) = 0;

8) D = {(x, y) ∶ x
2

a2
+ y2

a2−1 < 1, z ∉ [−1,1]} , (a > 1),w(+i0) = −i; 9) D = {(x, y) ∶ x
2

a2
+ y2

a2−1 < 1,
x2

b2
+ y2

b2−1 > 1},
(a > b > 1),w(z) > 1 при b < z < a.

Ш-9.

Доказать, что образом области {z ∶ ∣z − ih∣ >
√
1 + h2} при отображении w = 1

2
(z + 1

z
) является вся

плоскость w с разрезом по дуге окружности, имеющей конщы в точках w = ±1 и проходящей через точку
w = ih.

Ш-19.
Найти какие-либо функции w(z), осуществляющие конформные отображения областей,

изображенных на рис. 28.46-28.61, на полуплоскость {w ∶ Imw > 0}.
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Ш-11.
Найти какие-либо функции w(z), осуществляющие конформные отображения областей,

изображенных на рис. 28.62 − 28.69, на круг {w ∶ ∣w∣ < 1}.

Ш-12.
Найти функцию w(z), конформно отображающую полукруг {z ∶ ∣z∣ < 1, Im z > 0}, на круг {w ∶ ∣w∣ < 1}

и удовлетворяющую условиям

w ( i
2
) = 0, argw′ ( i

2
) = 0.

ФР отображение углов на круг с занулением точки и аргумента её производной
3) Найти функцию w(z), конформно и взаимнооднозначно отображающую область D = {z ∶ α < arg z <

β} на единичный круг U = {z ∶ ∣z∣ < 1} и удовлетворяющую условиям w (z0) = 0, arg w′ (z0) = 0 для z0 = eiγ .
Указать значение в точке z0 используемой многозначной функции.

Угол −π/4,5π/4 с сохранением точки i

(не успеваю вписать решение)
Отображаем на верхнюю полуплоскость поворотом, увеличением угла с помощью нецелой степени,

фикисируем аргумент.

ω2 = (ω2/3
1 )0 = (e

iπ4 z)2/3
0
= ei

π
6 z

2
3 ,2gez2/3 = (z)2/3ei

2argz
2

Находим образ искомой точки: U2 (ei
3π
4 ) = eiπ2 . в частности, i2/3 = eiπ3 .

По формуле L(z) = κ z−A
z−Ā находим функцию. далее считаем ее производную по определению.

w = eiθw2 − i
w2 + i

= eiθ e
iπ6 z

2
3 − eiπ2

ei
π
6 z

2
3 + eiπ2
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w′(i) = lim
z→i

w −w(i)
z − i

= lim
z→i

w

z − i
= eiθ lim

z→i

ei
π
0 z

2
3 − eiπ2

(eiπθ z 2
3 + eiπ2 ) (z − i)

=

eiθ
ei

π
6

ei
π
6 ei

π
3 + eiπ2

lim
z→i

z
2
3 − i 23
z − i

=
eiθei

π
6 (ei/3z2 + z′(i)

2i

= 1

2
ei(θ+

π
6 −

π
2
) ⋅ 2

3
z−1/3(i) = 1

3
ei(θ−

π
3
)e−i

π
6 = 1

3
ei(θ−

π
2
)

w = i z
2
3 − eiπ3

z
2
3 + ei

pi
3

(?? да, не совсем понимаю этот трюк взятия производной от корня, но типа тут мы все равно берем
её в точке, так что просто делать можно по алгоритмам и не задумываться про этот вопрос пока что.)

Задача решается, если просто делать всё последовательно и не тупить.

Угол −π/3,−π с сохранением точки −i

Поворотом и дробной степенью все отображается на верхнюю полуплоскость, дальше по шаблону
строим отображение на круг. Избранная точка переходит как:

ω1(−i) = eiπe−
π
2 = e−a/2;

ω2 (ω1(−i)) = e3ai/2;

ω3 (ω1 (ω2(−i))) = 1 ⋅ e
i
i ⋅

3a
2 = e

3a
4 i;

строим

wn(z) = eiθ
ω3(z) − e3n

2/4

ω3(z) − e−3ni/4

тут
w3(z) = e3πz)

3/2 = e
3ni
2 z3/2

w4(z) = eiθ
e

3πi
2 z3/2 − e 3ni

4

e
3πi
2 z3/2 − e− 3πi

4

ω1 ≡ w4 (w3 (w2 (w1(z))))−

ищем:
ω(i)
∑
z→−i

= lim
z→−i

ω(z) − ω(−i)
z − (−i)

= lim
z→−i

ω(z)
z − e−ωi

=

eθ lim
z→−i

e
3πi
2 z3/2 − e3π/4

(e3nπ/2z3/ − e−3ni/4) (z − e−i//4)

eiθ√
2i

lim
z→−i

e3
3π
2 (z

3/ − e−3m/4

z − e−i/2
) = −ie

iθe32i/2√
2

(z3/2)
′
(−i) =

eiθ−i
π
2 +

3π
2

√
2

⋅ 3
2
z1/2(−i) = 3

2
√
2
eiθ+iπ−iπ/4

дальше приравниваем к условию, находим тету, и ответ готов - это композиция найденных
отображений

ω(z) = e3ni/4 e
3πi/2z3/2 − e3πi/4

e3n/2z3/2 − e−3πi/4

Ш-13.

Найти функцию w(z), конформно отображающую область {z = x + iy ∶ x2 − y2 < 1} на круг {w ∶ ∣w∣ < 1}
и удовлетворяющую условиям w(0) = 0,w(1) = 1.
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Ш-14.
Найти функцию w(z), конформно отображающую круг {z ∶ ∣z∣ < 1}, разрезанный по радиусу [−1,0],

на круг {w ∶ ∣w∣ < 1} и удовлетворяющую условиям

w(1) = −1, w(−1 + i0) = 7 − 4i
√
2

9
, w(−1 − i0) = 7 + 4i

√
2

9
.

Ш-15.
Найти функцию w(z), конформно отображающую всю плоскость z с разрезом по дуге окружности

{z ∶ ∣z∣ = 1, Im z > 0}, на всю плоскость w с разрезом по отрезку [−1,1] и удовлетворяющую условиям
w(1) = 1, w(∞) = ∞

Ш-16.

Найти образы следующих линий при отображении функцией w = 1
2
(z + 1

z
): 1) {z ∶ ∣z∣ = 1, Im z > 0};

2) {z ∶ ∣z∣ = 1,− 3π
4
< arg z < −π

4
}; 3) {z ∶ ∣z∣ = 2};

4) {z ∶ ∣z∣ = 1
2
}

5) {z ∶ arg z = π
4
};

6) {z ∶ arg z = 3π
4
}.

Ш-17.
Найти образы следующих областей при отображении функцией

w = 1

2
(z + 1

z
) :

1) {z ∶ ∣z∣ > 2}
2) {z ∶ ∣z∣ < 1

2
}

3) {z ∶ π
4
< arg z = 3π

4
};

4) {z ∶ π
4
< arg z = 3π

4
, z ∉ [0, i]}; 5) {z ∶ ∣z∣ < 1, z ∉ [0,1]} 6) {z ∶ ∣z∣ > 1, z ∉ [−2,−1], z ∉ [1,+∞]} 7) {z ∶ Im z >

0}/ {z ∶ ∣z∣ = 1,0 < arg z < π
4
, 3π

4
< arg z < π}; 8) {z ∶ ∣z∣ < 1, Im z < 0, z ∉ [−i,− i

2
]} 9) {z ∶ ∣z∣ < 1,0 < arg z < π

2
} 10)

{z ∶ ∣z∣ < 1,− 3π
4
< arg z < −π

4
}.

Ш-18.
Найти образы областей D при отображениях, осуществляемых указанными функциями:
1) D = {z ∶ −π < Im z < 0},w = ez
2) D = {z ∶ ∣ Im z∣ < π},w = ez
3) D = {z ∶ ∣ Im z∣ < π

2
} ,w = ez

4) D = {z ∶ 0 < Im z < 2π,Re z > 0},w = ez
5) D = {z ∶ 0 < Im z < π

2
,Re z > 0} ,w = e2z

6) D = {z ∶ 0 < Re z < π, Im z > 0},w = eiz; 7) D = {z ∶ z ∉ [0,+∞]},w = ln z,w(−1) = −πi 8) D = {z ∶ Im z >
0},w = ln z,w(i) = πi

2
; 9) D = {z ∶ z ∉ [−∞,0], z ∉ [1,+∞]},w = ln z,w(i) = πi

2
; 10) D = {z ∶ ∣z∣ < 1, Im z > 0},w =

ln z,w(i − i0) = − 3πi
2

; 11) D = {z ∶ ∣z∣ < 1, z ∉ [0,1]},w = ln z,w(−1 + 0) = −πi; 12) D = {z ∶ ∣ Im z∣ < π
4
} ,w = th z;

13) D = {z ∶ 0 < Re z < π}, w = tg z; 14) D = {z ∶ 0 < Re z < π
4
} ,w = ctg z; 15) D = {z ∶ 0 < Re z < 1, Im z >

0},w = tgπz; 16) D = {z ∶ 0 < Im z < π},w = ch z; 17) D = {z ∶ Re z > 0,−1 < Im z < 0}, w = chπz;
18) D = {z ∶ Re z > 0,0 < Im z < 1, z ∉ [ i

2
, 1+i

2
]} ,w = chπz; 19) D = {z ∶ ∣ Im z∣ < π,Re z > 0},w = sh z; 20)

D = {z ∶ 0 < Re z < 2π, Im z > 0},w = sin z.

Ш-19.
Найти какие-либо функции w(z), осуществляющие конформные отображения областей,

изображенных на рис. 28.70 − 28.85, на полуплоскость {w ∶ Imw > 0}.

404



5.3.4 Problems about Conformal Mappings via Elementary Functions

ФР отображение бесконечного прямоугольника с вырезами
отобразить то туда:
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делаем так:

элементарная задача, просто нужно знать, что как отображается.

ФР отображение верхней полуплоскости без двух по кругу разрезов

Шаблонная задача на функцию Жуковского.
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Ш-29.
Найти какие-либо функции w(z), конформно отображающие области, изображенные на рис. 28.86-

28.91, на полосу {w ∶ 0 < Imw < 1}.
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Ш-21.
Найти функцию w(z) конформно отображающую полосу {z ∶ ∣ Im z∣ < π} на полосу {w ∶ ∣ Imw∣ < π} и

удовлетворяющую условиям

w(πi) = +∞, w(+∞) = −πi, w(−πi) = −∞.

Ш-22.
Найти какие-нибудь функции, осуществляющие конформные отображения областей, изображенных

на рис. 28.92-28.107, на полуплоскость {w ∶ Imw > 0}
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5.4 Problems on the Specific Conformal Mappings

5.4 Problems on the Specific Conformal Mappings

5.4.1 Problems about the Symmetry Principle
(шарю, порешаю потом)

Ш-пр.1. Отображение креста
Пусть D - плоскость с разрезом по лучу [−4;+∞) и по отрезку [−3i; 3i] (рис. 29.3). Найти конформное

отображение области D на верхнюю полуплоскость {w ∶ Imw > 0}. Рис. 29.3
(уже выше упоминалось оно, тут - подробнее будет)

410



5.4.1 Problems about the Symmetry Principle

Область D симметрична относительно оси Ox. Рассмотрим область D1 = {z ∶ Im z > 0}/[0; 3i] -
верхнюю полуплоскость с разрезом по отрезку [0; 3i]. Пусть D∗1 - область, симметричная D1 относительно
оси Ox. Заметим, что D = D1 ∪ Γ ∪ D∗1 , где Γ - луч (−∞;−4) (рис. 29.4). Найдем отображение w1 =
f1(z), переводящее область D1 в верхнюю полуплоскость G = {w1 ∶ Imw1 > 0} так, что при непрерывном
продолжении функции f1(z) на границу Г получается f1(Γ) - интервал оси Ox. Согласно принципу
симметрии, F1 - регулярное продолжение f1 в нижнюю полуплоскость, будет конформно отображать D
на (C/R) ∪ f(Γ).
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ФР отображение прибитой разрезом полуокружности

Тут все очень просто, потому что я все уже решал, так что пишу коротко. Верхнюю полуплоскость
без кривого разреза жуковским переводим в два луча, дробно линейным - в один луч, корнем - в верхнюю.
Луч от -бес до 1/2 смотрим как переходит, можно график запрогать, ну или каждую точку посмотреть,
куда переходит. Небиективно он отображается в прямую от 1/

√
2 до +беск.

Дальше называем области, говрим, что нижняя тоже переходит в симметричную, в итоге по
принципу симметрии выше найденное отображение отображает область из задания в С без (-беск до
1/
√
2). Отражаем, сдвигаем, корнем назад отображаем - получаем верхнюю полуплоскость.
В итоге композиция двух отображений

ω̃1(z) = ω3 (ω2 (ω1(7)))

ω̃2 =
√
1 − ω1 + 1/21 ⋅ e

i
2avg(−ω1+1/2)

ω1 >
1

2
(z + 1

z
) ; ω2 =

ω1

1 + ω1
;ω3 =

√
∣7∣eiang7/2 =

(потом улучшу верстку, суть можно понять, многое криво скопировалось.)

ФР отображение прямоугольника с двумя палками

(тут типичная задача на принцип симметрии, разве что нужно догадаться, как вывернуть это
прямоугольник. напишу это потом лучше.)

412



5.4.1 Problems about the Symmetry Principle

(а дальше эти элементарныые рассуждения, как в примере Ш.пр.1, просто их уже не пишу, нет
времени, да и тогда как-то неумело написал их.)

О том, как не нужно делать (!?!?!?)

(я что-то крутил туда сюда, просто на удачу получилось. хочу порассуждать, как можно было бы
иначе?? там к разным областям приходил, которые просто даже хз, как делать. есть еще про что
подумать.)

Ш-пр.1.
Пусть D - плоскость с разрезом по лучу [−4;+∞) и по отрезку [−3i; 3i] (рис. 29.3). Найти конформное

отображение области D на верхнюю полуплоскость {w ∶ Imw > 0}. Рис. 29.3
Область D симметрична относительно оси Ox. Рассмотрим область D1 = {z ∶ Im z > 0}/[0; 3i] -

верхнюю полуплоскость с разрезом по отрезку [0; 3i]. Пусть D∗1 - область, симметричная D1 относительно
оси Ox. Заметим, что D = D1 ∪ Γ ∪ D∗1 , где Γ - луч (−∞;−4) (рис. 29.4). Найдем отображение w1 =
f1(z), переводящее область D1 в верхнюю полуплоскость G = {w1 ∶ Imw1 > 0} так, что при непрерывном
продолжении функции f1(z) на границу Г получается f1(Γ) - интервал оси Ox. Согласно принципу
симметрии, F1 - регулярное продолжение f1 в нижнюю полуплоскость, будет конформно отображать D
на (C/R) ∪ f(Γ). Тогда отображение F1, являющееся регулярным продолжением функции w1 = f1(z) в
нижнюю полуплоскость, переводит область D в область G = C/[−5;+∞) (рис. 29.6). Далее, применяя
отображение

w2 (w1) =
√
∣w1 + 5∣ ⋅ eiarg(w1+5)/2, arg (w1 + 5) ∈ (0; 2π),

получаем
w2(G) = {w2 ∶ Imw2 > 0} .

B итоге w(z) = w2 (w1(z)). Заметим, что в примере 1 в исходной области D нельзя было использовать
отображение w = z2, так как оно не конформно в D (нарушается однолистность).

Ш-пр.2.
Пусть

D = {z = x + iy ∶ y2 < 2p(x + p
2
)} , p > 0,

т. е. D - внутренность параболы y2 = 2p (x + p
2
) (рис. 29.7). Найти конформное отображение области D

на верхнюю полуплоскость {w ∶ Imw > 0}.
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Заметим, что область C/D̄ одной из регулярных ветвей функции {
√
z} можно перевести в

полуплоскость (см. §28, п. 1). Однако в области D регулярные ветви корня выделить нельзя (так как
его точка ветвления z = 0 принадлежит D).

Область D симметрична относительно оси Ox. Рассмотрим область D1 = {z ∈ D ∶ Im z > 0}. Заметим,
что D =D1 ∪ Γ ∪D∗1 , где D∗1 - область, симметричная D1 относительно Ox,Γ = (−p

2
;+∞)-луч (рис. 29.7).

Найдем отображение w1 = f1(z), переводящее конформно область D1 на верхнюю полуплоскость так,
что при непрерывном продолжении f1 на D1 ∪ Γ получается f1(Γ) - интервал оси x. Тогда, согласно
принципу симметрии, функция F1, являющаяся регулярным продолжением f1 в нижнюю полуплоскость,
будет конформно отображать D на (C/R) ∪ f(Γ). Подействуем на D1 ∪ Γ конформным отображением

ζ(z) =
√
∣z∣ ⋅ eiarg z/2,

где arg z ∈ (0;π), и получим область

D′1 = ζ (D1) = {ζ ∈ C ∶ 0 < Im ζ <
√
p

2
, Re ζ > 0}

- полуполосу, причем образ луча Γ имеет вид

Γ′ = ζ(Γ) = ( ip
2
; 0] ∪ [0;+∞),

т. е. является объединением полуинтервала мнимой оси и положительной полуоси Ox (рис. 29.8) Здесь
D1 - объединение лежащих в верхней полуплоскости ветвей парабол

{y2 = 2p1 (x +
p1
2
) , p1 ∈ (0;p)} ,

каждая из которых отобразится в горизонтальный луч

{ζ ∶ Im ζ =
√
p1
2
,Re ζ > 0} ,

а полуинтервал (−p
2
; 0] на Γ перейдет в полуинтервал (i

√
p
2
; 0], луч [0;+∞) на Г отобразится на себя (см.

§28, п. 1).
Подействуем конформным отображением η(ζ) =

√
2
p
⋅ ζ на D′1 и Γ′ и получим

D′′1 = η (D′1) = {η ∶ 0 < Imη < π,Reη > 0}
Γ′′ = η (Γ′) = (iπ; 0] ∪ [0;+∞)

(рис. 29.9).
Подействуем конформным отображением u(η) = eη на D′′1 и Γ′′ и получим

D′′′ = u (D′′) = {u ∶ Imu > 0, ∣u∣ > 1}

- верхнюю полуплоскость с выброшенным единичным полукругом,

Γ′′′ = u (Γ′′) = {u ∶ u = eiφ, φ ∈ [0;π]} ∪ [1;+∞)

- объединение верхней единичной полуокружности и луча (см. §28, п. 4) (рис. 29.10).
Подействуем конформным отображением

w1(u) =
1

2
(u + 1

u
)

на D′′′ и Γ′′′ и получим
w1 (D′′′) = {w1 ∶ Imw1 > 0}

- верхнюю полуплоскость,
w1 (Γ′′′) = [−1;+∞)

- луч (см. §28, п. 4) (рис. 29.11). Рис. 29.11 Тогда отображение F1, являющееся регулярным
продолжением функции w1 = f1(z) в нижнюю полуплоскость, переводит область D на G = C/(−∞;−1].
Далее, действуя на G конформным отображением

w2 (w1) =
√
∣w1 + 1∣eiarg(w1+1)/2 (arg (w1 + 1) ∈ (0; 2π)) ,

получаем
w2(G) = {w2 ∶ Imw2 > 0} .

Искомое отображение w(z) = w2 (w1(z)).
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Ш-пр.3.
Доказать, что любое конформное отображение верхней полуплоскости D = {z ∶ Im z > 0} на верхнюю

полуплоскость G = {w ∶ Imw > 0} является дробно-линейным.
Пусть функция w = f(z) осуществляет конформное отображение D на G. Выделим D∗ и G∗ - области,

симметричные областям D и G соответственно относительно действительной оси. При помощи принципа
соответствия границ отображение f может быть непрерывно продолжено из области D на замыкание
D̄ = D ∪ Γ, где Γ = {z ∶ Im z = 0} - действительная ось, причем f взаимно-однозначно отображает Γ на
Γ1 = {w ∶ Imw = 0} - действительную ось. Заметим, что

D ∪ Γ ∪D∗ = C и G ∪ Γ1 ∪G∗ = C.

Согласно принципу симметрии, F - регулярное продолжение f в C конформно переводит C на C.
Следовательно, F - дробно-линейная функция (см. §26, пример 4). Поэтому отображение f , которое
есть сужение F на верхнюю полуплоскость, также является дробно-линейным отображением.

Ш-1.

Обозначим через w(z) функцию, конформно отображающую угол {z ∶ 0 < arg z < π
2
} на сектор

{w ∶ ∣w∣ > 1,0 < argw < π
2
}, и удовлетворяющую условиям w(1) = 1,w(i) = i,w(∞) = ∞. Отыскав функцию

w(z), убедиться, что она: 1) конформно отображает область, изображенную на рис. 29.12, на область
{w ∶ Imw > 0, ∣w∣ > 1}; 2) конформно отображает область, изображенную на рис. 29.13, на область
{w ∶ ∣w∣ > 1}.

Ш-2.
Обозначим через w(z) = w (z; z1, z2, z3) функцию, конформно отображающую полукруг {z ∶ ∣z∣ <

1, Im z > 0}, на такой же полукруг в плоскости w и удовлетворяющую условиям

w (z1) = 1, w (z2) = i, w (z3) = −1

(точки z1, z2, z3 лежат на границе полукруга {z ∶ ∣z∣ < 1, Im z > 0}). Установить, каким условиям должны
удовлетворять точки z1, z2, z3, чтобы функция w(z) конформно отображала круг {z ∶ ∣z∣ < 1} на: 1) круг
{w ∶ ∣w∣ < 1}; 2) полуплоскость {w ∶ Imw > 0}; 3) область, изображенную на рис. 29.14; 4) область,
изображенную на рис. 29.15; 5) область, изображенную на рис. 29.16; 6) область, изображенную на рис.
29.17.

Ш-3.
Найти какие-либо функции w(z), конформно отображающцие области, изображенные на рис. 29.18-

29.29, на полуплоскость {w ∶ Imw > 0}.

415



5.4.1 Problems about the Symmetry Principle

416



5.4.1 Problems about the Symmetry Principle

Ш-4.
Найти какую-либо функцию w(z), конформно отображающую область

{z = x + iy ∶ x2

cos2 α
− y2

sin2 α
> 1, x > 0}

(α - постоянная, 0 < α < π/2) на полуплоскость {w ∶ Imw > 0}.

Ш-5.
Найти какую-либо функцию w(z), конформно отображающую область

{z = x + iy ∶ y2 < 2p(x + p
2
)} , p > 0,

на полуплоскость {w ∶ Imw > 0}.

Ш-6.
Найти какие-либо функции w(z), конформно отображающие области, изображенные на рис. 29.30-

29.33, на круг {w ∶ ∣w∣ < 1}.

Ш-7.
Найти какую-либо функцию w(z), конформно отображающую область

{z ∶ z ∉ [kπi, kπi + i∞] (k = 0,±1,±2, . . .)}

на полуплоскость {w ∶ Imw > 0}.

Ш-8.
Найти какую-либо функцию w(z), конформно отображающую область

{z ∶ Im z > 0, z ∉ [kπ, kπ + πi] (k = 0,±1,±2, . . .)}

на полуплоскость {w ∶ Imw > 0}.
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Ш-9.
Найти какую-либо функцию w(z), конформно отображающую область

{z ∶ Im > 0, z ∉ [2k,2k + 2i], z ∉ [2k + 1,2k + 1 + i] (k = 0,±1, . . .)}
на полуплоскость {w ∶ Imw > 0}.

Ш-11.
Пусть функция f(z) регулярна при {z ∶ Im z > 0}, непрерывна при {z ∶ Im z ⩾ 0} и принимает на

действительной оси действительные значения. Доказать, что функцию f(z) можно регулярно продолжить
на всю комплексную плоскость.

Ш-12.
Пусть функция f(z) регулярна при {z ∶ 0 < Re z < 1}, непрерывна при {z ∶ 0 ⩽ Re z ⩽ 1} и принимает

действительные значения на прямых {z ∶ Re z = 0} и {z ∶ Re z = 1}. Доказать, что функцию f(z)
можно регулярно продолжить на всю комплексную плоскость и что функция F (z), осуществляющая
это аналитическое продолжение, удовлетворяет условию F (z + 2) = F (z)

Ш-13.
Пусть функция f(z) регулярна при {z ∶ 0 < Im z < 1}, непрерывна при {z ∶ 0 ⩽ Im z ⩽ 1} и удовлетворяет

условиям
Re f(z) = 0 (Im z = 0); Im f(z) = 0 (Im z = 1).

Доказать, что функцию f(z) можно регулярно продолжить на всю плоскость и что функция F (z),
осуществляющая это аналитическое продолжение, удовлетворяет условию F (z + 2i) = −F (z).

Ш-14.
Пусть функция f(z) регулярна в прямоугольнике

{z ∶ ∣ Im z∣ < h,0 < Re z < 1},
непрерывна в замыкании этого прямоугольника и удовлетворяет условиям

Im f(z) = 0 (Re z = 0, ∣ Im z∣ < h);
Im f(z) = 1 (Re z = 1, ∣ Im z∣ < h).

Доказать, что функцию f(z) можно регулярно продолжить на полосу {z ∶ ∣ Im z∣ < h} и что функция
F (z), осуществляющая это продолжение, имеет вид iz + F1(z), где функция F1(z) регулярна в полосе
{z ∶ ∣ Im z∣ < h} и периодична с периодом 2.

Ш-15.
Пусть функция f(z) регулярна в полукольце

{z ∶ ρ < ∣z∣ < R, Im z > 0},
непрерывна в его замыкании и принимает действительные значения на отрезках (−R,−ρ) и (ρ,R).
Доказать, что функцию f(z) можно регулярно продолжить в кольцо {z ∶ ρ < ∣z∣ < R} до регулярной в
этом кольце функции.

Ш-16.
Пусть функция f(z) конформно отображает прямоугольник {z ∶ ∣Re z∣ < h, ∣ Im z∣ < h} на какой-либо

круг (или полуплоскость). Доказать, что регулярное продолжение функции f(z) является функцией,
мероморфной во всей плоскости и периодической с периодами 4h и 4ih.

Ш-17.
Пусть функция f(z) конформно отображает сектор

{z ∶ ∣z∣ < 1,0 < arg z < π
n
} ,

на треугольник с теми же вершинами 0,1, eπi/n, причем таким образом, что эти вершины остаются на
месте. Доказать, что функцию f(z) можно регулярно продолжить в круг {z ∶ ∣z∣ < 1} и что функция F (z),
осуществляющая это аналитическое продолжение, конформно отображает круг {z ∶ ∣z∣ < 1} на правильный
2n-угольник (с центром в точке 0 и одной из вершин в точке 1).
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Ш-18.
Доказать, что любое конформное отображение круга на круг (или на полуплоскость) является дробно-

линейным отображением.

Ш-19.
Доказать, что не существует функции, конформно отображающей кольцо {z ∶ 1 < ∣z∣ < R1} на кольцо

{z ∶ 1 < ∣z∣ < R2}, если только R1 ≠ R2.

Ш-29.
Пусть функция f(z) конформно отображает полуплоскость {z ∶ Im z > 0} на область:

{w ∶ Imw > 0,0 < Rew < 1, ∣w − 1

2
∣ > 1

2
} .

Доказать, что регулярное продолжение функции f(z) приводит к функции F (z), регулярной во всей
расширенной C с тремя выколотыми точками (прообразы точек 0,1 и ∞).

КЛС-3.9 Отобразить серп

КЛС-3.10 Отобразить трехгранник
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КЛС-3.11 Отобразить грабли
(колесникова)

5.4.2 Problems about Mapping of Polygons
(пока не до этой темы)

Ш-пр.1.
Найти конформное отображение верхней полуплоскости на треугольник с вершинами A1 = 0,A2 =

a(a > 0) и углами α1π,α2π (рис. 30.2).
Согласно условиям нормировки конформных отображений односвязных областей (§26), в роли

прообразов точек A1,A2,A3 можно взять три произвольные точки на границе верхней полуплоскости.
Пусть a1 = 0, a2 = 1, a3 = ∞, тогда

f(z) = c
z

∫
0

ζα1−1(ζ − 1)α2−1dζ + c1.

Так как f(0) = 0, то c1 = 0.
Запишем f(z) в виде

f(z) = c̃
z

∫
0

ζα1−1(1 − ζ)α2−1dζ
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и подставим z = 1. Получим

a = f(1) = c̃
1

∫
0

ζα1−1(1 − ζ)α2−1dζ,

откуда
c̃ = a

1

∫
0

ζα1−1(1 − ζ)α2−1dζ

= a

B (α1, α2)
,

где B (α1, α2) - бета-функция Эйлера (см. §24). Следовательно,

f(z) = a

B (α1, α2)

z

∫
0

ζα1−1(1 − ζ)α2−1dζ.

Ш-пр.2.
Найти конформное отображение верхней полуплоскости на прямоугольник с вершинами A1 = 1,A2 =

1 + iH,A3 = −1 + iH, A4 = −1 (H > 0) (рис. 30.3).
Найдем конформное отображение w = f(z) первой четверти плоскости z на правую половину

заданного прямоугольника такое, чтобы образом мнимой полуоси {iy ∶ y ⩾ 0} был отрезок [0; iH]. Тогда
по принципу симметрии регулярное продолжение f во вторую четверть будет отображать верхнюю
полуплоскость на весь прямоугольник (продолжение также будем обозначать f).

Согласно условиям нормировки конформных отображений односвязных областей ($26) в роли
прообразов точек 0,1, iH можно взять произвольные точки на границе первой четверти.

Пусть f(0) = 0, f(1) = 1, f(∞) = iH. Этим соответствием функция f задана единственным
образом, причем f({iy ∶ y ⩾ 0}) = [0; iH]. Прообразом вершины 1+iH будет некоторая точка 1

k
> 0 (k ∈ R,,

k < 1, так как порядок расположения точек на границе области сохраняется при конформном отображении
f . Согласно принципу симметрии

f(−1) = −1, f (−1
k
) = −1 + iH

По условию углы равны α1π,α2π,α3π,α4π, где

α1 = α2 = α3 = α4 =
1

2
.

Поэтому по формуле Кристоффеля-Шварца находим

f(z) =c
z

∫
0

(ζ − 1)(1/2)−1(ζ − (−1))(1/2)−1×

× (ζ − 1

k
)
(1/2)−1

(ζ − (−1
k
))
(1/2)−1

dζ + c1 =

=c
z

∫
0

(ζ2 − 1)−1/2 (ζ2 − 1

k2
)
−1/2

dζ + c1 =

=c̃
z

∫
0

dζ√
(1 − ζ2) (1 − k2ζ2)

+ c1
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Так как f(0) = 0, то c1 = 0, а константы c̃, k можно найти из условий: a) f(1) = 1, т. е.

c̃

1

∫
0

dζ√
(1 − ζ2) (1 − k2ζ2)

= 1

б) f ( 1
k
) = 1 + iH, т. е.

c̃

1/k

∫
0

dζ√
(1 − ζ2) (1 − k2ζ2)

= 1 + iH

или, с учетом равенства (1),

c̃

1/k

∫
1

dζ√
(1 − ζ2) (1 − k2ζ2)

= iH.

Система равенств (1), (2) достаточна для нахождения чисел c̃ и k через значения специальной функции

F (z, k) =
z

∫
0

dζ√
(1 − ζ2) (1 − k2ζ2)

которая называется эллиптической функцией Якоби с модулем k (0 < k < 1). Она определена для всех
z ∈ C.

Ш-пр.3.
Найти конформное отображение верхней полуплоскости на область D, содержащую первую четверть,

граница которой состоит из полупрямых {w ∶ Rew ⩽ 0, Imw = 1}, {w ∶ Rew ⩾ 0, Imw = −1} и отрезка [−i; i]
(рис. 30.4).

Область D является треугольником с вершинами A1 = i,A2 = −i, A3 = ∞ и углами соответственно
α1π,α2π,α3π, где

α1 =
3

2
, α2 =

1

2
, α3 = 1.

Согласно условиям нормировки конформных отображений односвязных областей (§26), в роли прообразов
точек A1,A2,A3 можно выбрать произвольные три точки на оси R.

Пусть a1 = −1, a2 = 1, a3 = ∞. Тогда искомое отображение примет вид

w = f(z) = c
z

∫
0

(ζ + 1)3/2−1(ζ − 1)1/2−1dζ + c1 =

= c̃
z

∫
0

(1 + ζ
1 − ζ

)
1/2

dζ + c1 = c̃
z

∫
1

(1 + ζ
1 − ζ

)
1/2

dζ + c̃1,

где

c̃1 = c1 + c̃
1

∫
0

(1 + ζ
1 − ζ

)
1/2

dζ.

Так как f(1) = −i, то c̃1 = −i, а из условия f(−1) = i следует, что

c̃

−1

∫
1

(1 + ζ
1 − ζ

)
1/2

dζ − i = i
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Согласно примеру 1§24 (если взять p = −1/2, q = 1/2), имеем

1

∫
−1

(1 − ζ)−1/2 ⋅ (1 + ζ)1/2dζ = 2−1/2+1/2+1Γ(−1/2 + 1) ⋅ Γ(1/2 + 1)
Γ((−1/2) + (1/2) + 2)

=

= 2Γ(1/2) ⋅ Γ(3/2)
Γ(2)

= 2 ⋅ Γ(1
2
) ⋅ Γ(3

2
) =

= 2 ⋅ Γ(1
2
) ⋅ 1

2
⋅ Γ(1

2
) = (

√
π)2 = π.

Здесь использованы значения Γ(2) = 1,Γ(1/2) =
√
π и свойство

Γ(z + 1) = zΓ(z).

Подставляя вычисленное значение интеграла в равенство (3), получаем

c̃ ⋅ (−π) − i = i, c̃ = −2i
π

Следовательно,

f(z) = −2i
π

z

∫
1

(1 + ζ
1 − ζ

)
1/2

dζ − i

Ш-1.
Найти функции w(z), конформно отображающие полуплоскость {z ∶ Im z > 0} на многоугольники,

изображенные на рис. 30.5 − 30.18, таким образом, чтобы w(0) = A1,w(1) = A2,w(∞) = A3 (вершины Ak
обозначены на рисунках).
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Ш-2.
Найти какие-либо функции w(z), конформно отображающие полуплоскость {z ∶ Im z > 0} на

симметричные многоугольники, изображенные на рис. 30.19 − 30.24.

Ш-3.
Найти функции w(z), конформно отображающие область {z ∶ ∣z∣ > 1} на многоугольники с внутренней

точкой w = ∞, изображенные на рис. 30.25 - 30.27, таким образом, чтобы w(∞) = ∞,w(1) = A1.

Ш-4.
Найти функции w(z), конформно отображающие полуплоскость {z ∶ Im z > 0} на области,

изображенные на рис. 30.28 − 30.31, таким образом, чтобы

w(0) = A1, w(1) = A2, w(∞) = A3.
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Ш-5.
Найти функции w(z), конформно отображающие всю плоскость z с разрезом по отрезку [−1,1] на

области, изображенные на рис. 30.32-30.34, таким образом, чтобы w(∞) = ∞,w(1) = A1.

Ш-6.

Найти функции w(z), конформно отображающие полосу {z ∶ ∣ Im ∣ < 1
2
} на области, изображенные на

рис. 30.35-30.37, таким образом, чтобы w(0) = 0,w(+∞) = A1.

Ш-8.
Найти какую-либо функцию w(z), конформно отображающую полуплоскость {z ∶ Im z > 0} на

плоскость w с разрезами по лучам

[ki, ki + i∞], [(k + 1

4
) i,(k + 1

4
) i + i∞] (k = 0,±1,±2, . . .).

Ш-9.
Найти какую-либо функцию w(z), конформно отображающую полуплоскость {z ∶ Im z > 0} на

полуплоскость w, из которой выброшены полосы

{w ∶ Rew < 0, ∣k − Imw∣ < 1

4
} (k = 0,±1,±2, . . .).

Ш-19.
Найти функции w(z), конформно отображающую полуплоскость {z ∶ Im z > 0} на многоугольники,

изображенные на рис. 30.40 − 30.42, таким образом, чтобы w(0) = A1,w(1) = A2,w(∞) = A3.
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5.4.3 Problems about Conformal Mappings for Boundary-Value
Problems and Harmonic Functions

(чет это совсем не усвоил, а тут вроде связка с умф)

Ш-пр.1.
Найти решение классической задачи Дирихле

{
∆u = 0, ∣z∣ < 1,
u∣∣z∣=1 =

sinφ
5+4 cosφ .

Воспользуемся формулой Пуассона для решения задачи Дирихле в единичном круге. Для этого
выразим граничное условие через комплексную переменную ζ = eiφ. Тогда

sinφ = (ζ − 1

ζ
) 1

2i
, cosφ = 1

2
(ζ + 1

ζ
) ,

u0(ζ) =
sinφ

5 + 4 cosφ
= ζ2 − 1
2i (2ζ2 + 5ζ + 2)

.

Подставляя u0(ζ) в формулу Пуассона, получаем, что u(z) = Re I(z), где I(z) - интеграл вида

I(z) = 1

2πi
∳∣ζ∣=1

(ζ2 − 1) (ζ + z)
2i (2ζ2 + 5ζ + 2) (ζ − z)ζ

dζ.

Вычислим I(z) с помощью вычетов. Найдем все конечные особые точки подынтегральной функции

f(ζ) =
(ζ2 − 1) (ζ + z)

2i (2ζ2 + 5ζ + 2) (ζ − z)ζ
.

Это точки ζ0 = 0, ζ1 = −2, ζ2 = −1/2 (корни уравнения 2ζ2 + 5ζ + 2 = 0), ζ3 = z, где ∣z∣ < 1.
В области {ζ ∶ ∣ζ ∣ > 1} функция f(ζ) имеет только одну конечную особую точку ζ1 = −2. По теореме

Коши о вычетах

I(z) = − res
ζ=−2

f(ζ) − res
ζ=∞

f(ζ),

с учетом ориентации единичной окружности. Так как ζ1 = −2 - полюс первого порядка для f(ζ), то

f
res
ζ=−2
=

(ζ2 − 1) (ζ + z)
2i(ζ − z)ζ (2ζ2 + 5ζ + 2)′

RRRRRRRRRRRζ=−2
=

= 3(z − 2)
2i(−2 − z)(−2)(−3)

= 2 − z
4i(z + 2)

.
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Точка ζ = ∞ является нулем первого порядка для функции f(ζ), причем f(ζ) ∼ 1
4iζ
(ζ →∞), поэтому

res
ζ=∞

f(ζ) = − 1

4i
.

Тогда

I(z) = z − 2
4i(z + 2)

+ 1

4i
= z − 2 + z + 2

4i(z + 2)
= z

2i(z + 2)
Откуда

u(x, y) = Re z

2i(z + 2)
= Re x + iy

2i(x + iy + 2)
= Re [(y − ix)

2
⋅ (x + 2 − iy)
(x + 2)2 + y2

] =

= y(x + 2) − xy
2 ((x + 2)2 + y2)

= y

(x + 2)2 + y2
.

Ш-пр.2.
Найти решение общей задачи Дирихле

{
∆u = 0, y > 0
u∣y=0 =

1
1+x2

Воспользуемся формулой Пуассона для решения задачи Дирихле в верхней полуплоскости:

u(z) = 1

π

+∞

∫
−∞

y

(1 + t2) ((t − x)2 + y2)
dt.

Вычислим этот несобственный интеграл с помощью вычетов. Для функции f(ζ) = y
(1+ζ2)((ζ−x)2+y2) в

верхней полуплоскости есть только две особые точки ζ1 = i и ζ2 = x + iy (так как y > 0 по условию). Это
полюса первого порядка. По теореме 1§23 находим

u(z) = 1

π
⋅ (2πi ⋅ (res

ζ=i
f(ζ) + res

ζ=x+iy
f(ζ))),

где

res f(ζ)
ζ=i

= y

((ζ − x)2 + y2) ⋅ (ζ2 + 1)′
∣
ζ=i
= y

2i ((i − x)2 + y2)
,

res
ζ=x+iy

f(ζ) = y

(1 + ζ2) ((ζ − x)2 + y2)′
∣
ζ=x+iy

= y

(1 + ζ2) (2(ζ − x))
∣
ζ=x+iy

=

= y

(1 + (x + iy)2)2iy
= 1

2i (1 + (x + iy)2)
.

Следовательно,

u(z) = 1

π
(2πi( y

2i ((i − x)2 + y2)
+ 1

2i (1 + (x + iy)2)
)) =

= y

(i − x + iy)(i − x − iy)
+ 1

(1 + i(x + iy))(1 − i(x + iy))
=

= (y + 1)(1 + ix − y)
(1 + y + ix)(1 + y − ix)(1 + ix − y)

= y + 1
(y + 1)2 + x2

.

Ш-пр.3.
Решить в области G = {z ∶ ∣z∣ < 1, Im z > 0} общую задачу Дирихле

{
∆u = 0 в G,
u∣(−1,1) = 0, u∣ ∣z∣=1

Im z⩾0
= 1.

Функция

w = −1
2
(z + 1

z
)
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конформно отображает полукруг G = {z ∶ ∣z∣ < 1, Im z > 0} (рис. 31.1) на верхнюю полуплоскость D = {w ∶
Imw > 0} (см. §28, п. 4). При этом верхняя полуокружность Γ1 = {z ∶ ∣z∣ = 1, Im z ⩾ 0} переходит в отрезок
w (Γ1) = [−1; 1], а отрезок Γ2 = [−1; 1] - в два луча w (Γ2) = (−∞;−1] ∪ [1;+∞) Рис. 31.1 Тогда, согласно
теореме 1, если ũ - решение задачи Дирихле в области D = w(G):

{ ∆ũ = 0 в D,
ũ∣w(Γ1) = 1, ũ∣w(Γ2) = 0,

то функция u(z) = ũ(f(z)) будет решением исходной задачи Дирихле в области G.
Функцию ũ = ũ(w) = ũ(ζ, η), где w = ζ + iη, найдем по формуле Пуассона:

ũ(ζ, η) = 1

π

1

∫
−1

ηdt

(t − ζ)2 + η2
= 1

π

1

∫
−1

d(t/η)

( t
η
− ζ
η
)
2
+ 1
=

= 1

π
(arctg ( t

η
− ζ
η
)∣

1

−1
) =

= 1

π
(arctg (1 − ζ

η
) + arctg (1 + ζ

η
))

Осталось выразить ζ, η через x, y, где z = x + iy,w = ζ + iη, из формулы

w = −1
2
(z + 1

z
)

Приравнивая действительные и мнимые части в равенстве

ζ + iη = −1
2
(x + iy + 1

x + iy
)

получаем

ζ = −x
2
(1 + 1

x2 + y2
)

η = y
2
( 1

x2 + y2
− 1)

Подставляя ζ, η в формулу для ũ(ζ, η) и упрощая, находим

u(x, y) =ũ(ζ(x, y), η(x, y)) =

= 1
π

⎛
⎝
arctg

2 (x2 + y2) + x (x2 + y2) + x
y (1 − x2 − y2)

+

+arctg
2 (x2 + y2) − x (x2 + y2) − x

y (1 − x2 − y2)
⎞
⎠
.

Ш-1.
Решить классическую задачу Дирихле для единичного круга {z ∶ ∣z∣ < 1}:

{
∆u = 0, ∣z∣ < 1
u∣∣z∣=1 =

1
2+sinφ , где z = reiφ.

Ш-2.
Решить общую задачу Дирихле для верхней полуплоскости {z ∶ Im z > 0}:

{∆u = 0, y > 0;
u∣y=0 = sinx, где z = x + iy.

Ш-3.
Решить общую задачу Дирихле для нижней полуплоскости {z ∶ Im z < 0}:
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Ш-4.
Решить общую задачу Дирихле для внешности единичного круга {z ∶ ∣z∣ > 1}:

{
∆u = 0, ∣z∣ > 1;
u∣∣z∣=1 =

1
5−4 cosφ .

Ш-5.
Решить общую задачу Дирихле для первой четверти плоскости D = {z ∶ Im z > 0,Re z > 0}:

⎧⎪⎪⎨⎪⎪⎩

∆u = 0, z ∈D;
u∣Re z=0

Im z>0
= 0, u∣Im z=0

Re z⩾0
= 1.

Ш-6.
Решить общую задачу Дирихле для полуполосы

D = {z ∶ 0 < Im z < π,Re z > 0} ∶
⎧⎪⎪⎨⎪⎪⎩

∆u = 0, z ∈D;
u∣Im z=0

Re z>0
= 0, u∣Im z=π

Re z>0
= 0, u∣ Re z=0

0⩽Im z⩽π
= 1.

Ш-7.
Решить общую задачу Дирихле для области

D = {z ∶ Im z > 0, ∣z + il∣ < R},

где l > R > 0:

{∆u = 0, z ∈D;
u∣Im z=0 = 0, u∣∣z+i∣l=R = T = const.

Ш-8.
Найти функцию Грина задачи Дирихле для оператора Лапласа в единичном круге {z ∶ ∣z∣ < 1}.

Ш-9.
Найти функцию Грина задачи Дирихле для оператора Лапласа в на верхней полуплоскости {z ∶ Im z >

0}.

Ш-19.
Найти функцию Грина задачи Дирихле для оператора Лапласа в единичном полукруге {z ∶ ∣z∣ <

1, Im z > 0}.

6 Problems on Applications in Physics

6.1 Problems about Quantum Mechanics and Field Theory

6.1.1 Problems about Applications in Quantum Mechanics
(????)

6.1.2 Problems about Applications in Field Theory
(????)

6.1.3 Problems about Applications in Quantum Optics
(???? write from that note in wQED)
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6.1.4 Problems about Applications in Electrodynamics

6.1.4 Problems about Applications in Electrodynamics
(знаю, что есть, но еще не трогал)

6.2 Problems about Condensed Matter
(I’ll write later from that note them also here)

6.2.1 Problems about Superconductivity
(???? write from notes on SC)

6.3 Problems about Other Parts of Physics

6.3.1 Problems about Applications in Mechanics
(????)

6.3.2 Problems about Applications in Hydrodynamics
(????)

Избры-1.7 Жидкость в уголке
Используя методы ТФКП, определите профиль скоростей жидкости, предполагая, что течение (i)

постоятпо во времепи, (ii) безвихревое (rot v⃗ = 0), (iii) пе меняется в зависимости от координаты
перпендикулярной плоскости уголка. Кроме того, предполагайте жидкость несжимаемой (div v⃗ = 0).
Естественное граничное условие в описанной задаче - жидкость не затекает в стенку. Обратите
внимание, что задача линейна, то есть если v⃗(r⃗) - решение рассматриваемой задачи, то u⃗(r⃗) = cv⃗(r⃗)
также является решением. В онисанных выше условиях, скорость можно зацать ее «нотенциалом»:
v⃗ = ∇φ. Уравнение на потенциал скорости:

∆φ = ∂
2φ

∂x2
+ ∂

2φ

∂y2
= 0

Вам может пригодится следующее утверждение. Пусть f(z) = f(x + iy) регулярная функция. Как мы
выяснили на лекции ∆f = 0. Тогда, если ω(z) - регулярная функция, то g(z) = f(ω(z)) также
удовлетворяет уравнению ∆g = 0. Лвно выполнив дифференцирование, убедитесь, что это всегда так.
Таким образом, можно решить задачу, например, для α = π (плоский уголок), а затем сжать или
растянугь решение посредством регулярной функции ω(z) до произвольного α. Для однозначности
решения предполагайте, что в плоском уголке поток жидкости однородный (скорость не зависит от
координаты).

Примечание: для задачи удобно использовать степенную функцию zγ . Поскольку, формально
говоря, она многозначная, у Вас могут возникнуть определенные трудности - ведь мы еще не обсуждали
многозначные функщии на лекциях. Чтобы избежать этих проблем, всегда понимайте степенную
функцию как zγ = (ρeiϕ)γ = ργeiγϕ - в этой задаче такого определения достаточно.

(крутая задача, но так и не разобрал)

430



Part IV

Special Topics in a Nutshell
(много всего может быть тут! вот потом и укажу, пока 1й 1й части хватит)

7 Overview of More Advanced Methods and Problems

7.1 Special Methods for Integrals in a Nutshell

7.1.1 Overview of Methods for Oscillatory Integrals

О методе Пикара-Лефшица и осциллирующих интегралах (??)

(известный мощный метод, тем не менее, специфика, пока не до него, но применял его.
не очевидно, как запрограммировать его.)

Основные формулы и идея

Основная идея как запрограмммировать метод ПЛ

О применениях

(в квантовой космологии тут.)
Раз в года 3 такое может и понадобиться.

7.2 Special Conformal Mappings in a Nutshell

(короче, тут очень слабо я понимаю что происходит, очень много доработок и пока что
не актуально.)

7.2.1 Templates for Special Mappings (!!!)

Обсудим отображения, с которых скорее всего стартуем или к которым приводим
решение задач.

Отображение Ф

Видно, что все границы, состоящие из от резков прямой и окружностей, пересекаются в
начале координат. Поэтому распрямим их с помощью дробно-линейного отображения w1 =
= 1

z . Из формулы следует, что действительная ось переходит в действительную, мнимая
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7.2.1 Templates for Special Mappings (!!!)

в мнимую. Поэтому разрезы перейдут на мнимую ось от ± i2 до ±i∞ соответственно.
Окружности перейду т в прямые x = ±1

2 , перпендик ул ярные оси Ox. Получилась
вертикальная полоса с разрезами - рис. 3.546.

В каталоге элемента рных отображений горизонтальные полосы отображаются с
помощью w = ez. Поэтому повернём нашу полосу на угол π

2 , растянем до ширины 2π и
поднимем вверх на π ∶ w2 = w12πe

iπ
2 + iπ (см. рис. 3.55a). Рис. 3.55a Рис. 3.556

Теперь применим w3 = ew2 = eu2eiv2 - получим плоскость с двумя разрезами: разрез
v2 = π,u2 ∈ [π;+∞) перешёл в paзрез w3 = eu2eiπ = −eu2 ∈ (−∞;−eπ], а разрез v2 = π,u2 ∈
∈ [−∞;−π) перешёл в разрез w3 = eu2eiπ = −eu2 ∈ (−eπ; 0] ( см. рис. 3.556) перь «развернём»
плоскость в верхнюю полуплоскость w4 =

√
w3,w4(−1) = i( см. рис. 3.566)

Об аналогичных задачах

Отображение простейших склеенных окружностей
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Первый способ. «Распрямим» границы: w1 = z−i
z+i .

Найдём образ. Из формулы следует, что мнимая ось переходит в действительную,
разрез перешёл в разрез по отрезку [0; 13], т. к. w1(2i) = 2i−i

2i+i =
1
3 , а дуги окружностей,

пересекающие мнимую ось под углом π
4 , переходят в лучи (см. рис. 3.52σ).

Теперь «выстроим» границы в одну линию: w2 = w4
1 (cм. рис. 3.52 в). Далее всё ясно

- сдвиг и «разворот» плоскости в полуплоскость:

w3 = −(w2 −
1

34
) , w4 =

√
w3, w4(−1) = i.

Второй способ. Часто первым делают отображение w1 = z+i
z−i . Тогда образ будет другой

- рис. 3.53a. Рис. 3.53a Рис. 3.536
Теперь w2 = w4

1 - рис. 3.536.
Осуществим так называемое «перетягивание» разреза: из двух разрезов сделаем один

(на сфере Римана это просто перетягивание) - начало одного луча отправляем в 0, а
другого - в ∞ ∶ w2 = w1

w1−34 ,w2(1) = 1
1−34 < 0⇒ разрез пойдёт по положительной полуоси (см.

рис. 3.46a). Теперь w3 =
√
w2, w3(−1) = i. Получилось даже короче.

Отображение горизонтального креста

б отображении креста, используя принцип симметрии (!!??!?)
(вроде типичная задача и к ней отсылок много)
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7.2.1 Templates for Special Mappings (!!!)

Об аналогичных задачах

Отображение звезды

(на это есть задачи, но пока не доходил до них, не частые)
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7.2.2 The Geometric Meaning of the Derivative

Пример 3.10. Отобразить внешность «трёхлопастного пропеллера» (рис. 3.61a) на
единичный круг.

Наша цель - отобразить границы «лопастей» на границу круга.
Вырежем из плоскости угол от 0 до 2π

3 (см. рис. 3.616). Теперь применим
преобразование w1 = z3 - угол перейдёт в плоскость с разрезом по положительной
полуоси (см. рис. 3.61в). «Растянем» плоскость в 2 раза, и сдвинем плоскость на 1
влево: w2 = 2w1 − 1 (см. рис. 3.62).

Теперь применим преобразование, обратное к преобразованию Жуковского, чтобы
получить круг. Из каталога видно, что и внешность единичного круга, и внутренность
единичного круга отображаются на внешность отрезка. Отобразим во внешность
единичного круга, чтобы верхний берег разреза перешёл в верхний, а нижний в нижний
- при отображении с помощью функции Жуковского окружности радиуса, большего 1,
переходят в эллипсы, проходимые в том же направлении (при отображении внутрь
«берега» поменяются местами): w3 = w2 +

√
w2

2 − 1,w3(∞) = ∞ (см. рис. 3.63a). Рис. 3.63a
Рис. 3.636 Теперь уменьшим угол в 3 раза, выбрав ветвь, для которой
w4(8 + i0) = 2 + i0 ∶ w4 = 3

√
w3 = 3

√
∣w3∣e

i∆φ
3 ,∆φ ∈ [0; 2π](cM. рис. 3.63).

Теперь будем применять принцип симметрии. Видно, что части границы - прямые со
штриховкой - перешли в прямые. Поэтому принцип можно применять к любой из
заштрихованных прямых. Применим его к прямой, на которой нанесена мелкая
штриховка на рис. 3.61б.

Тогда вторая ветвь 3
√
w3∗∗ = 3

√
∣w3∣ei

2π
3 e

i∆φ
3 ,∆φ ∈ [0; 2π] отобразит область,

симметричную относительно этой штриховки на область, симметричную такой же
штриховке на рис. 3.63б.

Третья ветвь 3
√
w3∗∗∗ =

3
√
∣w3∣ei

4π
3 e

i∆φ
3 ,∆φ ∈ [0; 2π] отобразит третий угол рис. 3.61σ на

третий угол рис. 3.63б. Отображение внешности «пропеллера» во внешность круга (все
три ветви) можно записать в виде w4 = 3

√
w3. Отображение w5 = 1

w4
переведёт внешность

круга в круг.

О решении аналогичных задач

7.2.2 The Geometric Meaning of the Derivative

Пусть функция w = f(z) регулярна в точке z0 ∈ C (т. е. ее производная f ′(z) существует
в некоторой окрестности точки z0) и пусть f ′ (z0) ≠ 0

Рассмотрим гладкую кривую Γ на C, проходящую через точку z0 (считаем, что Γ
принадлежит окрестности точки z0, в которой существует f ′(z)). Ее образ Γ′ = f(Γ) -
также гладкая кривая, проходящая через точку w0 = f (z0). Для произвольной точки
z ∈ Γ, z ≠ z0, обозначим ∆z = z − z0,∆w = f(z) − f (z0) = w −w0.

Поскольку существует и не равна нулю производная f ′ (z0), то ∆w = f ′ (z0)∆z+o(∆z),
откуда

∣f ′ (z0)∣ = lim
∆z→0

∣∆w∣
∣∆z∣

,

arg f ′ (z0) = arg b′ − arg b,
где b′ - касательный вектор к кривой Γ′ в точке w0, b-касательный вектор к кривой в
точке z0, причем в силу неоднозначности arg равенство (2) следует понимать с точностью
до слагаемого 2πn.
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7.2.2 The Geometric Meaning of the Derivative

Постоянство линейных растяжений

1.1. Правая часть формулы (1) является коэффициентом линейного растяжения
кривой Γ в точке z0 при отображении f . Как видно из равенства (1), эта величина для
заданной точки z0 не зависит от выбора гладкой кривой Γ и равна ∣f ′ (z0)∣. Это свойство
называется свойством постоянства линейных растяжений отображения f в точке z0.

Итак, геометрический смысл модуля производной состоит в том, что ∣f ′ (z0)∣ - это
коэффициент линейного растяжения в точке z0. 1.2. Если f взаимно-однозначно
переводит кривую Γ в кривую Γ′, то их длины можно вычислить соответственно по
формулам:

l(Γ) = ∫
Γ

∣dz∣, l (Γ′) = ∫
Γ′

∣dw∣ = ∫
Γ

∣f ′(z)∥dz∣ .

Отсюда следует, что величина ∣f ′(z)∣ является коэффициентом линейного растяжения
кривой Γ в точке z при отображении f .

1.3. Из формулы (1) также следует, что

∣∆w∣ = ∣f ′ (z0)∣ ∣∆z∣ + o(∣∆z∣),

т. е. при отображении w = f(z) окружность {z ∶ ∣z − z0∣ = ρ} с точностью до o(ρ)
переходит в окружность {w ∶ ∣w −w0∣ = ρ ∣f ′ (z0)∣}. Поэтому свойство постоянства
растяжений называется также свойством сохранения окружсности в малом при
отображении w = f(z).

Сохранение угла между кривыми

2.1. Правая часть формулы (2)-это угол поворота кривой Г в точке z0. Как показывает
формула (2), угол поворота в точке z0 один и тот же для всех гладких кривых Γ и равен
arg f ′ (z0).

Таким образом, геометрический смысл аргумента производной состоит в том, что
arg f ′ (z0) - это угол поворота кривых в точке z0. 2.2. Если Γ1 и Γ2 - две разные гладкие
кривые, проходящие через точку z0, то при рассматриваемом отображении w = f(z)
каждая из них повернется на один и тот же угол, равный arg f ′ (z0). Отсюда получается
следующее свойство сохранения углов: при отображении w = f(z) угол между кривыми Γ1

и Γ2 в точке z0 равен углу между их образами (соответственно Γ′1 и Γ′2) в точке w0 = f (z0);
при этом кривые поворачиваются в одном и том же направлении.

Коэффициент растяжения областей.

Если отображение
w = f(z) = u(x, y) + iv(x, y)

регулярно в области D ⊂ C, то из условий Коши-Римана следует, что для отображения

u = u(x, y), v = v(x, y)

якобиан равен

J(x, y) = det(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

) = ∂u
∂x
⋅ ∂v
∂y
− ∂u
∂y
⋅ ∂v
∂x
= (∂u

∂x
)
2

+ (∂v
∂x
)
2

T.e.
J(z) = J(x, y) = ∣f ′(z)∣2 .

Если при этом функция f осуществляет взаимно-однозначное отображение области D на
область G ⊂ C, то площадь области G равна

S(G) = ∬
G
dudv =∬

D
∣J(x, y)∣dxdy =∬

D
∣f ′(z)∣2 dxdy.
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7.2.3 Other on Conformal Mappings

7.2.3 Other on Conformal Mappings

О решении задач на более сложные отображения типичных областей

(в сложных задачах я еще не тренировался.)

мб тригонометрические функции прокатят (??)

О решении задач на отображения сложных областей

Об идее запрогать (???)

(хз как, пока просто не владею прогой и всё.)

О формуле Гаусса-Кристоффеля (???)

Определение и общие свойства конформных отображений

Основные особенности конформных отображений

(всякое не часто используемое - в часть про теорию добавлю)

Конформные отображения могут быть не биективные и важно понимать,
какую именно область мы отображаем и с какой фазой (!!)

(вот в этом куча подводных камней. например, верхнюю или нижнюю отображаем? в
этом большая разница.)

(мб потом ддя каждого типа опишу, пока не до этого, не уверен, что это нужно.)

Принцип симметрии

Отображение многоугольников

О применении конформных отображений при решении краевых задач для
гармонических функций (!?!!)

(решу скоро задачу)

О задаче Дирихле для уравнения Лапласа

Формулировка: для ограниченной области D ⊂ R2 с кусочно-гладкой границей ∂D = Γ
и непрерывной на Γ функции u0(x, y) найти функцию u = u(x, y) из класса C2(D) ∩C(D̄)
такую, что

{ ∆u = 0 в D,
u∣(x,y)∈Γ = u0(x, y).

Для области D ⊂ R2 с кусочно-гладкой границей ∂D = Γ и функции u0(x, y),
ограниченной и непрерывной на Γ, кроме быть может конечного числа точек
ζk ∈ Γ(k = 1,2, . . . , n), в которых функция u(x, y) имеет разрывы 1 рода (вдоль по кривой
Γ), найти ограниченную функцию из класса C2(D), непрерывную в D̄, кроме точек
ζk(k = 1, . . . , n), такую, что

{ ∆u = 0 в D,
u∣(x,y)∈Γ/{ζ1,...,ζn} = u0(x, y).

Заметим, что в общей задате Дирихле область D может быть неограниченной, а если
точка ∞ принадлежит D, то решение u(x, y) должно быть ограничено в том числе и в
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7.2.3 Other on Conformal Mappings

проколотой окрестности точки ∞. Для удобства функцию u(x, y) будем записывать в
виде u(z), где z = x + iy.

Из умф известно, что решение общей задачи Дирихле при указанных условиях на
область D и функции u и u0 существует и единственно.

Задача Дирихле в круге

1) Решение общей задачи Дирихле для уравнения Лапласа в круге D = {z ∶ ∣z∣ < 1} с
заданной на окружности Γ = {ζ ∶ ∣ζ ∣ = 1} функцией u0 = u0(ζ) представляется интегралом
Пуассона:

u(z) = Re 1

2πi ∮Γ
u0(ζ)

ζ + z
(ζ − z)ζ

dζ, z ∈D.

(?? тут указания для решений)

Задача Дирихле в верхней полуплоскости

Решение общей задачи Дирихле для уравнения Лапласа в полуплоскости D = {z ∶
Im z > 0} с заданной на действительной прямой функцией u0 = u0(t), t ∈ R, представляется
интегралом Пуассона:

u(z) = 1

π

+∞

∫
−∞

y ⋅ u0(t)
(t − x)2 + y2

dt, z = x + iy ∈D

(?? и как его брать, вычетами? практика нужна.)
(?? тут указания для решений)

О задаче Дирихле в произвольной плоскости

3. В случае областей более произвольного вида применима следующая теорема.
Теорема 1. Пусть регулярная функция w = f(z) конформно отображает область D на

область G и пусть функция ũ = ũ(z) является гармонической в области G. Тогда функция
u(z) = ũ(f(z)) является гармонической в области D.

Согласно теореме 1, для решения задачи Дирихле в произвольной области D
достаточно найти конформное отображение области D на более простую область G, в
которой решение задачи Дирихле уже известно, или может быть найдено более простым
способом, чем в D. Этот прием и лежит в основе метода решения задачи Дирихле с
помощью конформных отображений.

О функции Грина для задачи Дирихле

4. Функцией Грина общей задачи Дирихле для оператора Лапласа в области D
называется функция с действительными значениями вида

G(z, ζ) = 1

2π
ln ∣z − ζ ∣ + g(z, ζ), z, ζ ∈D

такая, что:
1) при каждом фиксированном ζ ∈ D функция g(z, ζ) является по переменной z

гармонической в области D и непрерывной в D̄;
2) при каждом ζ ∈D справедливо равенство G(z, ζ)∣z∈Γ = 0.
Зная функцию Грина, можно получить решение (при определенных условиях на

гладкость G) общей задачи Дирихле в виде:

u(z) = ∫
Γ

∂G(z, ζ)
∂n

u0(ζ)∣dζ ∣
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7.2.4 On Applications of Mappings (!??)

где ∂
∂n - дифференцирование в направлении единичной внешней нормали n̄ к границе Γ

области D по переменной ζ.
Если функция w = w(z) реализует конформное отображение области D на единичный

круг {w ∶ ∣w∣ < 1}, то функция Грина для области D имеет вид

G(z, ζ) = 1

2π
ln ∣wζ(z)∣ ,

где

wζ(z) =
w(z) −w(ζ)

1 −w(z) ⋅w(ζ)
.

Задача Неймана

Для заданных ограниченной области D ⊂ R2 с гладкой границей Γ и непрерывной на Γ
функции u1(x, y) найти функцию u = u(x, y) класса C2(D)∩C(D̄), имеющую непрерывную
на Г производную ∂u

∂n в направлении единичной внешней нормали n̄ к Γ и такую, что

{
∆u = 0 в D,
∂u
∂n
∣(x,y)∈Γ = u1(x, y).

Из курса уравнений математической физики известно, что при условии

∫
Γ

u1(s)ds = 0

решение задачи Неймана существует и разность двух разных решений является
константой. B случае односвязной области D задачу Неймана можно свести к
классической задаче Дирихле следующим образом: 1) найти функцию v = v(x, y),
которая является сопряженной гармонической для u = u(x, y), решив следующую задачу
Дирихле:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∆v = 0 в D,

v∣ζ∈Γ =
ζ

∫
ζ0

u1(s)ds,

где ζ0 - фиксированная точка на Γ и интеграл берется по произвольной связной части
границы Γ, соединяющей точки ζ0 и ζ. 2) с помощью условий Коши-Римана ux = vy, uy =
−vx найти u по v (с точностью до постоянного слагаемого).

7.2.4 On Applications of Mappings (!??)

(соберу потом, пока не такой уровень, чтобы их видеть.)

О для применений отображений в гидродинамике

О для применений отображений в электродинамике

(когда-то до электростатики дойду.)

7.3 On Other Functions (!?)

(there are many of them, I’ll write here only important ones, currently, I don’t know, which
are they, so I don’t yet know what to write here)
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7.3.1 Special Properties of Γ(z),B(z, y), ....

7.3.1 Special Properties of Γ(z),B(z, y), ....
Особые свойства Γ(z),

Гамма функция по Горяйнову, Половинкину

Γ(z) =∶ e−γz 1
z

∞
∏
n=1
(1 + z

n
)
−1
ez/n

Γ(1) = 1, Γ(z + 1) = zΓ(z)
Γ(n) = (n − 1 !)

Γ(z) = 1

g(z)
= lim
n→∞

1

gn(z)

g(z)g(−z) = −z2
∞
∏
n=1
(1 − z

2

n2
) = −z sinπz

π

g(−z) = −zg(1 − z)

g(1 − z)g(z) = sinπz

π

Γ(1 − z)Γ(z) = π

sinπz

Полагая в (15.9)z = 1/2, Γ(1/2) =
√
π.

Γ(1
2
+ n) =

√
π
n−1
∏
k=0
(k + 1

2
)

n = 1,2, . . .

gn(z) =
1

n!
exp{z (γ −

n

∑
k=1

1

k
)}

n

∏
k=0
(z + k)

= 1

n!nz
exp{z (γ + lnn −

n

∑
k=1

1

k
)}

n

∏
k=0
(z + k)

nz = ez lnn,

Γ(z) = lim
n→∞

n!nz

z(z + 1) ⋅ . . . ⋅ (z + n)
Если Re z = x > 0,

∣Γ(z)∣ ⩽ Γ(x)

F (z) =
∞

∫
0

tz−1e−tdt

где tz−1 = e(z−1) ln t, ln t ∈ R.

S(α,β) = {z ∈ C ∶ α < Re z < β}

∣tz−1e−t∣ = tRe z−1e−t ⩽Mα,β(t)
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7.3.2 On Elliptic Functions (!?)

где

Mα,β(t) = {
tα−1 при 0 < t < 1,

tβ−1e−t при 1 ⩽ t < ∞.

F (z) = lim
n→∞

Fn(z), Fn(z) =
n

∫
1/n

tz−1e−tdt

∫
∂∆

Fn(z)dz = ∫
∂∆

⎛
⎜
⎝

n

∫
1/n

tz−1e−tdt
⎞
⎟
⎠
dz =

n

∫
1/n

⎛
⎝∫
∂∆

tz−1dz
⎞
⎠
e−tdt = 0.

Следовательно, по теореме 5.4 Морера функции Fn, n = 1,2, . . ., голоморфны в полосе
S(α,β).

Покажем теперь, что Fn(z) → F (z) при n → ∞ равномерно в полосе S(α,β). Пусть
m,n - два натуральных числа и m < n. Тогда для z ∈ S(α,β) имеем

∣Fn(z) − Fm(z)∣ =
RRRRRRRRRRR

1/m

∫
1/n

tz−1e−tdt +
n

∫
m
tz−1e−tdt

RRRRRRRRRRR
⩽

1/m

∫
1/n

Mα,β(t)dt +
n

∫
m
Mα,β(t)dt.

Отсюда и из сходимости интеграла
∞
∫
0

Mα,β(t)dt следует равномерная сходимость

последовательности {Fn(z)} в полосе S(α,β). Но тогда по теореме 12.1 Вейерштрасса
функция F (z) является голоморфной в S(α,β) как локально равномерный предел
последовательности голоморфных функций. Поскольку в проведенных выше
рассуждениях α и β выбирались произвольно, то интеграл в (15.11) определяет
голоморфную в правой полуплоскости Re z > 0 функцию F (z)

Особые свойства B(z, y)

7.3.2 On Elliptic Functions (!?)

(не знаю, зачем это нужно, но такое есть. мб другие функции тоже укажу тут, будет
раздел об эл ф,...,..., и таких-то функциях)

Суть

Определение (?????)

(проверю, норм ли оно????? никогда не думал, что они в неявном виде определяются!!)
Эллиптической функцией называют такую мероморфную функцию f , определённую

на области C, для которой существуют два ненулевых комплексных числа и b, таких что

f(z + a) = f(z + b) = f(z), ∀z ∈ C,

а также частное a
b не является действительным числом. Из этого следует, что для любых

целых m и n
f(z +ma + nb) = f(z), ∀z ∈ C.

Любое комплексное число ω, такое что

f(z + ω) = f(z), ∀z ∈ C,

называют периодом функции f . Если периоды и b таковы, что любое ω может быть
записано как

ω =ma + nb
то a и b называют фундаментальными периодами. Каждая эллиптическая функция
обладает парой фундаментальных периодов. Параллелограмм П с вершинами в
0, a, b, a + b называется фундаментальным параллелоараммом.

СВоЙстВа
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Review of Applications (!?)

- Не существует отличных от констант целых эллиптических функций (первая теорема
Лиувилля).

- Любая эллиптическая функция с периодами a и b может быть представлена в виде

f(z) = h(℘(z)) + g(℘(z))℘′(z),

рациональна. - Эллиптические функции неэлементарны, это было доказано Якоби в 1830-
х годах.

8 Review of Applications (!?)

8.0.1 Complex Analysis for Condensed Media in a Nutshell

(I’ll write it soon!)
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Part V

Other Topics
9 Other Fundamentals

(на всякий случай раздел, скорее всего многое потом добавлю)

9.1 Algebraic Properties of Complex Analysis

(write some statements from algebra, why complex numbers exist and so on? a big discus-
sion, it will be mainly in the note on algebra.)

9.2 Some Well-known Functions and Theorems

9.2.1 On the Riemann Zeta Function

(по идее этого раздела должно на все хватить, не хватит - буду как-то расширяться.)

Основные свойства

(вики, тут тренироваться много нужно ещё.)
- Если взять асимптотическое разложение при N → +∞ частичных сумм вида

N

∑
n=1

1

ns
= ζ(s) + 1

1 − s
N1−s + 1

2
N−s − 1

12
sN−1−s + . . .

справедливую для Re s > 1, она же останется верной и для всех s, кроме тех, для которых
2 − s ∈ N (это тривиальные корни дзета-функции). Из этого можно получить следующие
формулы для ζ(s):

1. ζ(s) = limN→+∞ (
N

∑
n=1

1
ns − N1−s

1−s ), при Re s > 0, кроме s = 1

2. ζ(s) = limN→+∞ (
N

∑
n=1

1
ns − N1−s

1−s −
1
2N

−s), при Re s > −1, кроме s = 1 или 0 ;

3. ζ(s) = limN→+∞ (
N

∑
n=1

1
ns − N1−s

1−s −
1
2N

−s + 1
12sN

−1−s), при Re s > −2, кроме s = 1,0 или −1
и т. д.

- Существуют явные формулы для значений дзета-функции в чётных целых точках:

ζ(2m) = (−1)m+1 (2π)
2m

2(2m)!
B2m, где B2m − число Бернулли.

В частности, ζ(2) = π2

6 (ряд обратных квадратов),
ζ(4) = π4

90 , ζ(6) =
π6

945 , ζ(8) =
π8

9450 , ζ(10) =
π10

93555

- Кроме того, получено значение ζ(3) = −ψ
(2)(1)
2 , где ψ - полигамма-функция;

- При Re s > 1
- 1
ζ(s) =

∞
∑
n=1

µ(n)
ns , где µ(n) - функция Мёбиуса

- ζ(2s)
ζ(s) =

∞
∑
n=1

λ(n)
ns , где λ(n) - функция Лиувиля

- ζ2(s) =
∞
∑
n=1

τ(n)
ns , где τ(n) - число делителей числа n
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9.2.2 The Riemann Hypothesis

О решении задач про дзета-функцию

Об интегралах от дзета-функции

(там какие-то есть способы, пока хз)

Интеграл
1/2

∫
0

ln ( ζ(z)
ζ(1−z))dz

(вставлю потом в каталог)

9.2.2 The Riemann Hypothesis

(опишу когда-то все, что знаю про неё.)

9.3 Other Conformal Mappings

9.3.1 Mappings by Trigonometric Functions

9.3.2 Symmetry Principle

Формулировка принципа симметрии

Случаи применения принципа симметрии (!?!??)

9.3.3 Mappings of Rarely Encountered Domains(??)

Отображение гиперболы

(тоже ведь такое может появиться)
пока известно только это, и я больше не думал:
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9.3.4 Introduction to the Mapping of Polygons (??)

9.3.4 Introduction to the Mapping of Polygons (??)

(тоже про это есть задачи)

9.3.5 What is Conformal Field Theory?

(just intro to how is it connected to complex mappings?)

9.3.6 Examples of Applications of Complex Mappings in Physics

(there are many problems that require mappings, so I’ll make an overview of them here)

9.3.7 Other about Mappings (??)

(укажу то, что больше, чем основы.)

О программировании комплексных отображений (!?!??)

(пока открытый вопрос, как проверять их методами программирования??)

9.4 Complex Manifolds

немного хз, откуда идет эта тема, как-то тут диффгем добавляется незаметно.

9.4.1 Riemann Surface and Manifolds

(????)

поверхность римана

(место для описания происходящего)

моделирование

а моделируется так:
Manipulate [
ParametricPlot3D [
Evaluate@{Re [ ( 1 − [ Alpha ] ) ( r Exp [
I [ CurlyPhi ] ] ) ^ 2 + [ Alpha ] ( r Exp [ I [ CurlyPhi ] ] ) ^ 3 ] ,
Im [ ( 1 − [ Alpha ] ) ( r Exp [ I [ CurlyPhi ] ] ) ^ 2 + [ Alpha ] ( r Exp [
I [ CurlyPhi ] ] ) ^ 3 ] , r Cos [ [ CurlyPhi ] ] } , {r , 0 ,
2} , { [ CurlyPhi ] , −Pi , Pi } , PlotRange −> All , Mesh −> False ,
ColorFunction −> (Hue[#5] &) ,
P lotPo ints −> Contro lAct ive [ {30 , 10} , {60 , 20} ] , MaxRecursion −> 1 ,
BoxRatios −> {1 , 1 , 1} , PlotRange −> All , Axes −> False ,
ImageSize −> {435 , 435} , Boxed −> False ,
MaxRecursion −> Contro lAct ive [ 0 , 2 ] ] , {{ [ Alpha ] , 0 , "%"}, 0 , 1} ]

выглядит она так:

9.5 Other Theorems

(пока тут они, потом доработаю структуру.)
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9.5.1 Bogolyubov’s Theorem on the Wedge Tip (????)

Figure 9.1: поверхность римана

9.5.1 Bogolyubov’s Theorem on the Wedge Tip (????)

Теорема Боголюбова «об острие клина» утверждает, что функция нескольких
комплексных переменных, голоморфная в двух клиновидных областях с общим острием,
на котором она непрерывна, является голоморфной и на острие.

Применение теоремы «об острие клина» в квантовой теории поля (?????)

Данная теорема используется в квантовой теории поля для построения
аналитического продолжения функций Вайтмана. Первая формулировка и
доказательство теоремы были приведены[1] Н. Н. Боголюбовым на международной
конференции в Сиэтле, США (сентябрь 1956 года) и также опубликованы в
монографии[2] (дополнение А, теорема 1). Впоследствии другие доказательства и
обобщения теоремы были приведены Йостом и Леманом (1957), Дайсоном (1958),
Эпштейном (1960) и другими математиками[3]. Важными применениями теоремы об
«острие клина» являются: доказательство дисперсионных соотношений в квантовой
теории поля, аксиоматическая квантовая теория поля, теория обобщённых функций,
обобщение теоремы Лиувилля[3].

Боголюбов Н. Н., Логунов А. А., Тодоров И. Т. Основы аксиоматического подхода в
квантовой теории поля

10 Special Methods

10.1 Different Methods

10.1.1 Overview of ways how to sum complex series

(I don’t know it yet, but there should be different methods, not only by Matsubara one. I’ll
write about it)

11 Numerical Calculations and Modeling
часто хочется посмотреть на комплексную плоскость, посчитать или визуализировать

некоторое выражение.
обсудим, как это сделать.

12 Physical Applications of Complex Analysis

к физике и другим разделам математики
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12.1 Field Theory

12.1 Field Theory

12.1.1 Kramers–Kronig Relations

(????)

12.2 Condensed Matter

12.2.1 Sokhotski Formula

(there are a lot of applications, I’ll write them here from mathematical point of view)

12.2.2 Matsubara summation in CM

(I’ll discuss it in details, because this is top 1 place in physics where nontrivial methods of
compl an are used)

12.3 Hydrodynamics

(???? main mathematical part about it)

13 Other Applications

13.1 On Methods of Complex Analysis in Abstract Mathematical
Physics

(там куча всякой специфики, укажу, вообще, отдельно каждую нужно задротить,
чтобы понять.)

13.2 Programming

(??? how to do numerical solutions of problems of complex analysis and overview of appli-
cations to some problems in programming. maybe I’ll create later two subsections for these)
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Part VI

Appendix
A Introduction

A.1 Other Motivation

Обсудим всю мотивацию, которая позволит нам познать предмет без проблем.

A.1.1 Multiple Results and Applications

(answer what people can do after learning it)

A.1.2 Benefit for Personal and Professional Development

(потом раскрою)

A.1.3 Strong Sides of Complex Analysis

Преимущества комплексного анализа compared to real one

(тут акцентрую, почему он гораздо лучше, чем вещественный. пока не могу четко
сформулировать.)

A.1.4 Amazing Facts

(потом раскрою)

A.2 Thinking Like a Professional in Complex Analysis

(потом раскрою)

A.2.1 Overview of Relevant Applications and Ways to Earn Money
(??)

(не знаю пока)

A.2.2 Building Complex Analysis from Scratch

(a general overview how it can be constructed)

A.2.3 Ways to Guess Some Key Ideas

(overview how people guessed some key ideas)

A.2.4 Thinking for Effective Learning

Осудим, какое мышление наиболее эффективное для усвоение предмета.
(да берется и прожимается также, как любой другой предмет по математике, ничего

особенного.)
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A.3 Acknowledgements

Способы изучения предмета

(потом раскрою)

Необходимые темы для

(потом раскрою)

Дополнительные темы для

(потом раскрою)

A.3 Acknowledgements

Currently, no one except me has worked on the sections of this note (with the exception of
sections taken from books).

A.4 Literature

A.4.1 Main Literature

Основная обучающая

Самарова С. С. Методички для МФТИ https://resolventa.ru/mfti-tfkp
Великолепные методички, большое счастье, что они есть.

М.И. Карлов E.C. Половинкин М.И. Шабунин Методические указания по решению
задач курса тфкп

Крутая методичка, пройду ее тоже. Ссылка

Колесникова, С. И. Теория функций комплексного переменного в задачах: учеб.
пособие МФТИ, 2016. – 200 с.

Прекрасная методичка на 200 страниц, после которой много нужного всего понятно.

[? ] Горьянов В. В. Лекции по ТФКП 2019
Небольшие лекции, где вроде как основное раскрыто.

Books With Many Solved Problems

[2] Шабунин М. И., Е. С. Половинкин, М. Е. Карлов "Сборник задач по теории функций
комплексного переменного"

Основной хороший задачник, который прорешаю и по которому учусь.

A.4.2 Extra Literature

Другая обучающая

[1] Методические указания к решению задач на конформные отображения.
Составители: Калашников А.Л., Филиппов В.Н.

56 страниц про конформные отображения, вроде неплохо написано, нужно будет -
открою, гуглится.
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A.5 Overview

Углубленная и профессиональная литература

Шабаш Б. В. введение в комплексный анализ 1
вроде хорошая книга, потом точно пару дней посижу на ней.

Шабаш Б. В. введение в комплексный анализ 2
вроде хорошая книга, потом точно пару дней посижу на второй части тоже.

Статьи о теоретических методах

Дополнительная по комплексным функциям (?)

Дополнительная по конформным отображениям

Калашников А.Л., Филиппов В.Н. Методические указания к решению задач на
конформные отображения.

Небольшая методичка с разобранными примерами конформных отображений, вроде
многие из них впишу

В помощь по математике

[? ] Карасёв Р.Н. "Отдельные темы математического анализа"

Популярная и обзорная литература

[? ] Кириллов А. А "Что такое число?"
Ничего особо полезного, но интересно в принципе когда-то открыть будет, когда нечего

делать и узнать пару интересных утверждений.

О приложениях

A.5 Overview

(потом раскрою)

A.5.1 General Overview of Complex Analysis

(general comments about what is going on and how topics are connected?)

A.5.2 Review of Further Developments

(??? what people are studying or researching after learning basics?)

A.5.3 Connections with Other Parts of Science

Обсудим связи с разделами
(потом раскрою)

A.6 Description of the Note

A.6.1 General Description of the Note

(write basically the same as for any of my other big note)
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A.6.2 Features of Chapters and Sections

Общие особенности записи

A.6.2 Features of Chapters and Sections

Первая часть про предмет в двух словах

Вторая часть

Часть про приложения

какие вообще приложения я разбирал?

A.6.3 Notations

(list of symbols just to make it easier to read. but it is not that important)

A.7 Puzzles for Different Situations

Обсудим в порядке интересности задачки и вопросы

A.7.1 Everyday Puzzles

A.7.2 Selected Fun Typical Problems

(all this should also be in the problem-solution section!)

Найти
π

∫
0

itan(x)dx

(крутой интеграл, см.ютуб, потом впишу)

Найти
+∞
∫
0

cosxndx,
+∞
∫
0

sinxndx, n ∈ N, n ⩾ 2 (???)

(все еще не разобрал нормально!! потом в разы короче напишу!)

Используя
+∞
∫
0

tz−1e−itdt = Γ(z)e−πiz/2, где z = 1
n , n ∈ N, n ⩾ 2, получаем

Γ( 1
n
) e−πi/2n =

+∞

∫
0

t
1
n
−1e−itdt = I

Делаем в интеграле замену переменной t
1
n = x, t = xn,

I =
+∞

∫
0

t(1−n)/ne−ix
n

nt(n−1)/ndx = n
+∞

∫
0

e−ix
n

dx,

откуда
+∞

∫
0

e−ix
n

dx = 1

n
Γ( 1

n
) e−πi/(2n)

Выделяя в этом равенстве действительные и мнимые части, получаем соответственно
+∞

∫
0

cosxndx = 1

n
Γ( 1

n
) cos π

2n

+∞

∫
0

sinxndx = 1

n
Γ( 1

n
) sin π

2n
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A.7.3 Principal Puzzles

В частности, при n = 2 имеем

+∞

∫
0

cosx2dx = 1

2
Γ(1

2
) cos π

4
= 1

2

√
π

1√
2
=
√
π

2
√
2

+∞

∫
0

sinx2dx = 1

2
Γ(1

2
) sin π

4
=
√
π

2
√
2

A.7.3 Principal Puzzles

(Puzzles about really important questions, even though they are already maybe solved)

Почему так просто в комплексную плоскость выйти удается, а в кватернионы
нет?

(четко на это отвечу, ответ в алгебре.)

A.7.4 Puzzles about Details

("look, this is a tricky detail, why is it so?")

A.8 Short Historical Overview

Обсудим вкратце историю развития...

B Some Math for Assistance

B.0.1 School Mathematics

(write what can be useful here)

тригонометрия

sin(α + β) = sinα cosβ + cosα sinβ
sin(α − β) = sinα cosβ − cosα sinβ
cos(α + β) = cosα cosβ − sinα sinβ
cos(α − β) = cosα cosβ + sinα sinβ

tg(α − β) = tgα + tgβ
1 − tgα ⋅ tgβ

tg(α − β) = tgα ⋅ ctgβ
ctgβ + ctgα

ctg(α + β) =ctgα ⋅ ctgβ + 1
ctgβ − ctgα

(B.1)

также

sin z1 + sh z2 = 2 sh z1+z2
2 ch z1−z2

2
sh z1 − sh z2 = 2 sh z1−z3

2 ch z1+z2
2

ch z1 + ch z2 = 2 ch z1+z2
2 ch z1−z0

2
ch z1 − ch z2 = 2 sh z1+z3

2 sh z1−z2
2

(B.2)

452



B.0.1 School Mathematics

sinx + sin y = 2 sin x+y
2 cos x−y2

sinx − sin y = 2 sin x−y
2 cos x+y2

cosx + cos y = 2 cos x+y2 cos x−y2
cosx − cos y = −2 sin x+y

2 sin x−y
2

(B.3)
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