
Differential Equations
Yury Holubeu ∗

November 27, 2025
This note is not intended for distribution.
Differential equations and applications are discussed in detail. Links below show contents of solved

problems, summary of special topics. I used the following literature.

Contents
Preface and main motivation 2

I —— Typical Differential Equations in a Nutshell —— 3

1 Solution of Typical Differential Equations 3
1.1 Basic Methods for Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Classification and Typical Methods for 1st- and 2nd-Order Equations . . . . . 3
1.1.2 Overview of Equations that Are Solved By Special Functions . . . . . . . . . . 11
1.1.3 Green’s Function Method for Diff. Equations (????) . . . . . . . . . . . . . . . 11
1.1.4 Laplace Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Important Methods and Properties in a Nutshell . . . . . . . . . . . . . . . . . . . . . 13
1.2.1 Cauchy Problem, Initial Conditions, Sturm’s Theorem . . . . . . . . . . . . . . 13
1.2.2 WKB Method, Iterations (?!) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.3 Averaging and Slow Evolution (!?) . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Methods of Differential Equations in Typical Physics Problems . . . . . . . . . . . . . 17

II Fundamentals of Differential Equations 18

2 Main Types of Differential Equations 18
2.0.1 Basic Concepts and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.0.2 Isoclines (?) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 The Simplest Types of Equations and Methods of Their Solution . . . . . . . . . . . . 22
2.1.1 Equations in Total Differentials . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.2 Equations with Separable Variables . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.3 Homogeneous Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Fundamentals of First-Order Linear Equations . . . . . . . . . . . . . . . . . . . . . . 29
2.2.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.2 Bernoulli Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.3 Riccati . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.4 Integrating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.5 Methods for Solving First-Order Equations Not Solved for the Derivative . . . 36
2.2.6 Method of Reducing the Order of Differential Equations (??) . . . . . . . . . . 40

2.3 Study of the Cauchy Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.3.1 Essence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.3.2 Theorem on Existence and Uniqueness of the Solution of the Cauchy Problem

for a Normal System of Equations . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.3.3 Domain of Existence of the Solution . . . . . . . . . . . . . . . . . . . . . . . . 49
2.3.4 First-Order Differential Equations Not Solved for the Derivative . . . . . . . . 49
2.3.5 Dependence of Solutions on Initial Data and Parameters . . . . . . . . . . . . . 49
2.3.6 Cauchy Problem for an nth-Order Equation Solved for the Highest Derivative . 49

2.4 Linear Differential Equations with Variable Coefficients . . . . . . . . . . . . . . . . . . 50
2.4.1 Normal Systems of Linear Differential Equations . . . . . . . . . . . . . . . . . 50

∗https://yuriholubeu.github.io/, yuri.holubev@gmail.com

1

https://yuriholubeu.github.io/
mailto:yuri.holubev@gmail.com


Contents

2.4.2 Basic definitions, Cauchy problem, theorem of existence and uniqueness of the
Cauchy problem solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.4.3 Existence of a fundamental system of solutions for a linear homogeneous system
of differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.4.4 Liouville-Ostrogradsky formula for systems with c =const . . . . . . . . . . . . 50
2.4.5 Structure of solutions of a linear homogeneous system of differential equations . 51
2.4.6 Solving the Cauchy problem for a linear system of differential equations by the

method of variation of constants . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.4.7 Complex amplitude method (?) . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.5 Linear equations of nth order with variable coefficients . . . . . . . . . . . . . . . . . . 53
2.5.1 Theorem of existence and uniqueness of the solution of the Cauchy problem . . 53
2.5.2 Liouville-Ostrogradsky formula for systems with variable coefficients . . . . . . 53
2.5.3 Structure of solutions of linear equations of the nth order . . . . . . . . . . . . 54
2.5.4 The method of variation of constants for a linear inhomogeneous equation . . . 55

2.6 Linear homogeneous equations of the second order with variable coefficients . . . . . . 55
2.6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.6.2 Assault Comparison Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.6.3 Sturm’s theorem on the separation of zeros . . . . . . . . . . . . . . . . . . . . 55
2.6.4 Knezer criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.6.5 The Bessel equation and some properties of its solutions . . . . . . . . . . . . . 56

2.7 Linear diffusers and linear diffuser systems with c1 =const, ∈ R . . . . . . . . . . . . . 56
2.7.1 Exhibitor matrix (??) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3 Other diffuser bases 63
3.1 Boundary value problems for 2nd order linear diffusers with ci=const,∈ R and small

parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.1.1 Boundary value problems for a second-order linear differential equation with

ci=const,∈ R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2 Laplace transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3 Autonomous Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4 Fundamentals of the theory of stability of ODM solutions . . . . . . . . . . . . . . . . 64

3.4.1 Theory according to Ivanov A.P. MIPT (?) . . . . . . . . . . . . . . . . . . . . 64
3.4.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4.3 Sufficient conditions for the stability of solutions for a linear system of equations

with ci=const,∈ R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.4.4 First approximation stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.4.5 Gronwall lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.4.6 About other methods for determining stability (!?!??!) . . . . . . . . . . . . . . 76
3.4.7 On the Applications of Stability Theory . . . . . . . . . . . . . . . . . . . . . . 76

3.5 The first integrals of normal ODM systems . . . . . . . . . . . . . . . . . . . . . . . . 76
3.6 Linear homogeneous partial differential equations of the 1st order . . . . . . . . . . . . 76
3.7 Creation of models of DE from Physical Ideas (!!!) . . . . . . . . . . . . . . . . . . . . 76
3.8 Other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

III Problems 77

4 Typical differential equations 77
4.1 1. First-order equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1.1 Problems about Linear Equations with Constant Coefficients . . . . . . . . . . 77
4.1.2 Problems about equations with separating variables and homogeneous equations 78
4.1.3 Problems about variable substitution method . . . . . . . . . . . . . . . . . . . 80
4.1.4 Problems about the simplest Bernoulli and Riccati equations . . . . . . . . . . 83

2



Contents

4.1.5 Problems about first-order equations not solved with respect to the derivative,
special solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.1.6 Problems Exact Differential Equations . . . . . . . . . . . . . . . . . . . . . . . 93
4.1.7 Problems about researching the Cauchy problem (?!) . . . . . . . . . . . . . . . 97

4.2 Higher-order equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.2.1 Problems about the main types of equations that allow lowering the order . . . 103
4.2.2 Problems about homogeneous and homogeneous in the generalized sense of the

equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.2.3 Problems solved by different methods . . . . . . . . . . . . . . . . . . . . . . . 110
4.2.4 Problems about linear equations with constant coefficients . . . . . . . . . . . . 112
4.2.5 Problems about the method of variation of constants . . . . . . . . . . . . . . . 123
4.2.6 Problems about the operating method (?!!!) . . . . . . . . . . . . . . . . . . . . 124
4.2.7 Problems about Euler’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.2.8 Problems about arbitrary method for Cauchy problem . . . . . . . . . . . . . . 126
4.2.9 Problems about second-order linear equations with variable coefficients . . . . . 128

4.3 Tasks for systems of equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.3.1 Problems about linear systems with constant coefficients . . . . . . . . . . . . . 135
4.3.2 Problems about matrix exponent . . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.3.3 Problems about inhomogeneous systems of equations . . . . . . . . . . . . . . . 145
4.3.4 Problems about the system of equations by the method of variation of constants 147
4.3.5 Problems about the system of equations by the operator method . . . . . . . . 149
4.3.6 Problems about the system of diffusers by an arbitrary method . . . . . . . . . 150
4.3.7 Problems about linear systems of equations with variable coefficients . . . . . . 153

5 Other types and tasks 158
5.1 Other challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.1.1 Problems about Sturm’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 158
5.1.2 Boundary value problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.1.3 Problems about Green’s function G(x, ζ) of the boundary value problem (!!!!!) . 162

5.2 Tasks for special methods (!?!?) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
5.2.1 Problems about the iteration method . . . . . . . . . . . . . . . . . . . . . . . . 163
5.2.2 Problems about the averaging method . . . . . . . . . . . . . . . . . . . . . . . 164
5.2.3 Problems about geometric methods (???) . . . . . . . . . . . . . . . . . . . . . 164

5.3 Tasks for autonomous systems of differential equations . . . . . . . . . . . . . . . . . . 164
5.3.1 Problems about the behavior of phase trajectories near gross equilibrium positions164
5.3.2 Problems about the behavior of phase trajectories near noncoarse equilibrium

positions and on the entire phase plane . . . . . . . . . . . . . . . . . . . . . . . 170
5.3.3 Problems about the stability of equilibrium positions . . . . . . . . . . . . . . . 174
5.3.4 Problems about the first integrals . . . . . . . . . . . . . . . . . . . . . . . . . . 178

5.4 Problems of partial differential equations of the first order . . . . . . . . . . . . . . . . 182
5.4.1 Problems about Linear Homogeneous Equations . . . . . . . . . . . . . . . . . . 182
5.4.2 Problems about Quasilinear and Nonlinear Equations . . . . . . . . . . . . . . 189

5.5 Variational Calculus Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
5.5.1 Problems about the simplest variations . . . . . . . . . . . . . . . . . . . . . . . 193
5.5.2 Problems about the generalization of the simplest variational problem . . . . . 201
5.5.3 Problems about functions from two variables . . . . . . . . . . . . . . . . . . . 203
5.5.4 Problems about second-order derivative functionals . . . . . . . . . . . . . . . . 205
5.5.5 Isoperimetric problems (?) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
5.5.6 Problems about Sufficient conditions of a strict weak local extremum in the

simplest variational problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
5.6 Curve and trajectory problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

5.6.1 Orthogonal Trajectory Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 209
5.6.2 Tasks on the approximate image of integral curves . . . . . . . . . . . . . . . . 211
5.6.3 Problems about applications in ecology . . . . . . . . . . . . . . . . . . . . . . . 211

3



Contents

IV —— Special Differential Equations in a Nutshell —— 212

6 About another about Differential Equations 212
6.1 Other methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

6.1.1 phase trajectories and phase plane . . . . . . . . . . . . . . . . . . . . . . . . . 212
6.1.2 matrix exponent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
6.1.3 method of hackteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

6.2 Other typical diffuser-related tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
6.2.1 On Equations in Differentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
6.2.2 boundary value tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
6.2.3 systems of linear diffusers with constant coefficients . . . . . . . . . . . . . . . . 214
6.2.4 systems of linear diffusers with variable coefficients . . . . . . . . . . . . . . . . 214
6.2.5 Behavior of phase trajectories in the vicinity of noncoarse equilibrium positions

and on the entire phase plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
6.2.6 first integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
6.2.7 simplest problems in partial derivatives . . . . . . . . . . . . . . . . . . . . . . 215
6.2.8 Variational Methods: Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
6.2.9 Other variation methods (??) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

6.3 Some Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
6.4 Methods of diffusers in other questions of physics . . . . . . . . . . . . . . . . . . . . . 215

V Other Topics 216

7 Oscillation Theory: Some Models and Methods 216

8 Numerical Methods 216
8.0.1 Basic numerical methods of solution . . . . . . . . . . . . . . . . . . . . . . . . 216
8.0.2 Software implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
8.0.3 Network Visualization and Modeling . . . . . . . . . . . . . . . . . . . . . . . . 216
8.0.4 visualization of trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
8.0.5 visualization of attractors and chaotic equations . . . . . . . . . . . . . . . . . . 216
8.0.6 wolfram simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

9 Other Analytical Methods 216
9.1 Perturbation Theory for Differential Equations . . . . . . . . . . . . . . . . . . . . . . 216

9.1.1 Typical Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
9.1.2 Solution near the singular point of the basic equation . . . . . . . . . . . . . . . 219
9.1.3 Boundary layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

9.2 Other Methods of Solving Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
9.2.1 Solutions Using Infinite Series (!?!??!) . . . . . . . . . . . . . . . . . . . . . . . 223

9.3 Integrable Systems: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
9.4 Stochastic Differential Equations: Introduction . . . . . . . . . . . . . . . . . . . . . . 223
9.5 Averaging Method (?!) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

9.5.1 Typical method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
9.5.2 Averaged equations for wave motion . . . . . . . . . . . . . . . . . . . . . . . . 227
9.5.3 Other about the averaging method . . . . . . . . . . . . . . . . . . . . . . . . . 229
9.5.4 Introduction to Exotic Methods of Avergaings . . . . . . . . . . . . . . . . . . 229

9.6 Dynamical Systems (???) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
9.7 Geometrical Methods for DE (???) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
9.8 Exotic Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

9.8.1 Chaotic Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
9.8.2 Delayed differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

9.9 Calculus of Variations: Basic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

4



Contents

9.10 Calculus of Variations: Special Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 231
9.11 Calculus of Variations: Special Methods for Applications in Physics . . . . . . . . . . 231

10 Some Famous Equations (??) 231
10.1 Bernoulli equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

10.1.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
10.1.2 Attachments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

10.2 Riccati equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
10.2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
10.2.2 Attachments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

10.3 Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
10.3.1 Airy equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

11 Applications of differential equations 232
11.1 Applications in mathematics and other sciences . . . . . . . . . . . . . . . . . . . . . . 232
11.2 Applications in Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

11.2.1 In mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
11.2.2 In quantum mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
11.2.3 On Applications in Other Physics . . . . . . . . . . . . . . . . . . . . . . . . . . 232

11.3 Life Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
11.3.1 Economic applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
11.3.2 Environmental Applications (?) . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

VI Appendix 234

A Introduction and Overview 234
A.1 Extra Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
A.2 The Mindset of Professionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

A.2.1 Solving Effectively DE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
A.2.2 Attitude to the DE (!?) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
A.2.3 Ways to Guess Some Key Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

A.3 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
A.4 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

A.4.1 Main Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
A.4.2 Extra Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
A.4.3 History of DE in a Nutshell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
A.4.4 Features of This Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

A.5 Puzzles for Different Situations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
A.5.1 Puzzles for Interesting Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 239
A.5.2 Selected Fun Typical Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

B Bibliography 240

5



Contents

Preface and main motivation

(потом напишу)

Головоломки диффуров для мотивации

6



Part I

—— Typical Differential Equations in a
Nutshell ——
1 Solution of Typical Differential Equations

(!!!!! очень много тренироваться нужно в этих методах, пока все плохо прописано.)

1.1 Basic Methods for Differential Equations

1.1.1 Classification and Typical Methods for 1st- and 2nd-Order
Equations

В первую очередь для решения дифференциального уравнения следут определить его
тип.

Типичная классификация диффуров

Сперва замечаем порядок производной. Далее однородные / неоднородные -
определяем по наличию правой части.

Классификация типичных уравнений 1-го порядка

Если оно легко преобразуется к виду X(x)dx = Y (y)dy., то оно - с разделяющимися
переменными.

Если нет, смотрим (? или далее смотрим...) однородность f(λx, λy) = λnf(x, y).
Оно может быть однородным после какой-то замены, например y = zm!!!! Внимательно

подставляем и подбираем m!!!
Далее, оно может быть линейным, если первые степени x′, x, а кроме них ничего нет:

x′ + p(y)x = q(y)

Далее проверяем, можно ли перейти в уравнении к наоборот функции и получить линейное
по y:

y′ + p(x)y = q(x)

Если так - все, больше не роемся, понят но всё.
Переносим все оставшееся в правую часть, если есть степень, у x в ней равна 2, то

следует посмотреть, не уравнение ли это типа

x′(t) + p(t)x(t) = q(t)x2 + f(t),

если да, то это уравнение Риккати.
Степень в правой части любая дробная или целая >0 или <0 (разве что кроме

тривиальных n = 0, 1), - это уравнение Бернулли:

x′ + p(t)x = q(t)xn,

Это можно не увидеть, если n < 0 или дробная. Такие часто встречаются, где n = 3, 4, 5,
они кажутся сложными, но есть четкие инструкции, как их решать.

Если так ничего не получилось, то можно удачными заменами прийти к этим же типам!
Если предлагаются замены, то кропотливо каждую замену проверяем! Иногда

несколько замен дают хорошие сдвиги! Тут самое важное - аккуратно смотреть.
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1.1.1 Classification and Typical Methods for 1st- and 2nd-Order Equations

Классификация типичных уравнений в дифференциалах

(?? пока про последовательность анализа хз, но это не так важно.)
Если у нас уравнение в дифференциалах X(x, y)dx + Y (x, y)dy = 0, то сразу:

разделяются ли переменные, то есть выполняется ли X(x, y) = X(x), Y (x, y) = Y (y)?
если да - с разделяющимися переменными.

Если нет, смотрим проверяем однородность f(λx, λy) = λnf(x, y). Тут важно не
забыть, что подставляем также и в дифференциалы.

Может быть, можно привести к однородному, поискав степень m, при которой y =
zm, так что неоднородность сократиться? Часто m дробная. Находим, подставляем и
проверяем.

Если нет, смотрим “накрест” производные ∂P (x,y)d
∂y

и ∂Q(x,y)d
∂x

, если они равны - оно в
полных дифференциалах.

Если нет - делим на один или второй дифференциал, переходим к диффуру 1-го
порядка, классифицируем по разделу выше, получать там линейное по одному или
второму аргументу, Бернулли, Риккати, т.п.

Если не помогло - гуглим, я не дописал ещё этот раздел.

Классификация нетипичных уравнений 1-го порядка

Если все в левой части и все странное - неразрешенные относительно производной.
(тут мб дальше добавлю, тут Лагранжа, Клеро, еще кого-то, пока не нужно было.)

О решении диффуров 1-го порядка

Способы решения простейших уравнений

В самых простых случаях просто разделяем переменные и интегрируем.
Часто приходится для интегрирования разделить дробь на несколько дробей.
Важно, прежде чем разделить на функции, нужно проверить, не являются ли равные

нулю функции решениями!
Привод к ответу может не всегда быть простым.

Способы решения линейные уравнения

1) линейные уравнения a(t)x′(t) + b(t)x(t) = c(t) решаются приходом к однородному
(обнулению c(t)), далее варьируем постоянную.

Способы решения однородное уравнение одинаковых степеней

- уравнение, где в каждом слагаемом степень суммарно одинаковая. Тогда подстановка
y(x) = xz(x)

(пока что для меня удивительно, что такое работает, но просто пользуюсь, потом пойму,
почему именно такой ход работает.)

Способы решения линейного неоднородно уравнения y′ + a(x)y = f(x)

решается с помощью ответа соответствующего линейного однородного уравнения, и
далее метода вариации постоянной.
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1.1.1 Classification and Typical Methods for 1st- and 2nd-Order Equations

Способы решения уравнения Бернулли y′ + a(x)y = b(x)ym

Тут самое главное увидеть это уравнение!!! Так что всегда мы внимательные по поводу
степеней y!!! Если Бернулли - сразу решаем по алгоритму.

Заменой z = y1−m уравнение Бернулли приводится к линейному неоднородному
уравнению.

Способы решения Уравнение Риккати dx
dt

= a(t)x2 + b(t)x+ c(t)

решается угадыванием частного решения x1(t), и подстановкой x(t) = x1(t) + z(t).
Таким способом приходим к уравнению Бернулли.

О решении диффуров методом понижения порядка

Во всех простых примерах мы стараемся понизить порядок, потому что так будет
решаться наиболее просто.

Важно именно так и делать, а не идти к более общим методами, потому что скорость
решения будет раза в 4 больше!

Понижение порядка преобразованием к полной производной (???)

Например, если сумма двух функций, то может быть, это раскрытая по правилу
Лейбница производная от одной?

Это бы сэкономило пару минут решений.
(посмотрю эти задачи лучше потом!!! тут гениальные ходы)

Если нет y, то понижаем введением p(y) = y′ (???)

То есть уравнение имеет вид: производные от y, а также функции от x.
В случае, когда уравнение не содержит y, порядок уравнения понижается, если сделать

замену, взяв за новую неизвестную функцию y′, а если её нет, то производную наименьшего
порядка, входящую в уравнение.

Если нет x, то понижаем введением p(y) = y′

Когда уравнение не содержит x, порядок уравнения понижается, если за новую
независимую переменную взять y и вводим p(y) = y′. При этом

y′ = p y′′ =
p · dp
dy

Тут важно сразу это сообразить и применить этот метод!

Понижение порядка, используя начальные условия, если они есть (??)

(тоже есть задачи про это.)
(пока хз, как это)
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1.1.1 Classification and Typical Methods for 1st- and 2nd-Order Equations

Линейное однородное дифференциальное уравнение с постоянными
коэффициентами

Линейное дифференциальное уравнение с постоянными коэффициентами это:

n∑
k=0

aky
(k)(t) = any

(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0y = f(t)

здесь y = y(t) - искомая функция, y(k) = y(k)(t) - её k-я производная, a0, a1, a2, ...an -
фиксированные числа, f(t) - заданная функция.

Уравнение
any

(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0y = 0

интегрируется следующим образом: Пусть λ1, ..., λk - все различные корни
характеристического многочлена

anλ
n + an−1λ

n−1 + · · ·+ a1λ+ a0 = 0

кратностей m1,m2, ...,mk, соответственно, m1 +m2 + · · ·+mk = n. Тогда функции

tνeλjt, 1 ≤ j ≤ k, 0 ≤ ν ≤ mj − 1

являются линейно независимыми (вообще говоря, комплексными) решениями
однородного уравнения, они образуют фундаментальную систему решений. Общее
решение уравнения является линейной комбинацией с произвольными постоянными
(вообще говоря, комплексными) коэффициентами фундаментальной системы решений.

Паре комплексно сопряженных корней λj = αj ± iβj, 1 ≤ j ≤ k соответствуют пары
вещественных функций вида tνeαjt cos (βjt) и tνeαjt sin (βjt), j ∈ 1...k, 0 ≤ ν ≤ mj − 1
и построить общее решение уравнения в виде линейной комбинации с произвольными
вещественными постоянными коэффициентами.

Однородное уравнение 2-го порядка:

(частный случай)

a2y
′′ + a1y

′ + a0y = 0

интегрируется следующим образом: Пусть λ1, λ2 - корни характеристического уравнения

a2λ
2 + a1λ+ a0 = 0,

являющегося квадратным уравнением. Вид общего решения однородного уравнения
зависит от значения дискриминанта ∆ = a21 − 4a2a0: - при ∆ > 0 уравнение имеет два
различных вещественных корня

λ1,2 = α1,2 =
−a1 ±

√
∆

2a2
.

общее решение имеет вид:
y(t) = c1e

α1t + c2e
α2t

- при ∆ = 0 - два совпадающих вещественных корня

λ1 = λ2 = α =
−a1
2a2

.
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1.1.1 Classification and Typical Methods for 1st- and 2nd-Order Equations

Общее решение имеет вид:
y(t) = c1e

αt + c2te
αt

- при ∆ < 0 существуют два комплексно сопряженных корня

λ1,2 = α± iβ =
−a1
2a2

± i

√
|∆|

2a2
.

Общее решение имеет вид:

y(t) = c1e
αt cos(βt) + c2e

αt sin(βt)

Общие методы решения уравнений высшего прядка

Если так просто порядок не понижается, то пользуемся этими более общими методами.

Переход к характеристическим числами для уравнений с постоянными
коэффициентами

Просто составляем хар уравнение, решаем, дальше ответ, подробнее напишу потом
уже.

Если у нас неоднородное уравнение, то еще находим частное его решение.

Метод вариации постоянных для уравнения с постоянными
коэффициентами

(напишу эту матрицу, тоже так можно делать. вроде это то же, что и для переменных
коэффициентов?)

Операционный метод для уравнения с постоянными коэффициентами (????)

(пока не понимаю, прокатит он или нет??? мб рил это не сложно?? пока не отработал.)

О решении диффуров 2-го порядка с переменными коэффициентами

0) может быть, можно сделать какую-то замену?!

Да, во-первых смотрим, не решается ли уравнение как-то просто.
Во-вторых пробуем какую-то замену сделать x или y, на функцию от какого-то

параметра, потому что это может просто на порядок упросить уравнение.
(тут укажу, какие могут быть замены)

1) Перейти к однородному, подобрать одно его решение, а далее по формуле
Лиувилля-Остроградского находим второе линейно независимое

(напишу тут формулу эту.)
a0(x)y

′′ + a1(x)y
′ + a2(x)y = 0, где (a0(x), a1(x), a2(x)) - непрерывные функции на

некотором интервале (a,b). ∣∣∣∣ y1(x) y(x)
y′1(x) y′(x)

∣∣∣∣ = Ce−
∫
P (x)dx, гдe

P (x) =
a1(x)

ao(x)
, или

y1y
′ − y′1y = Ce−

∫
P (x)dx
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1.1.1 Classification and Typical Methods for 1st- and 2nd-Order Equations

а это уже уравнение 1го порядка относительно у x). Далее, деля левую и правую части
на y1

2(x), имеем (
y

y1

)′

= Ce−
∫
P (x)dx

2) Метод вариации постоянных (!!!!)

Составляем всё ту же систему уравнений на производные от варьированных
постоянных.

ỹ = Ax3 +Bx2 + Cx+D

После правильно выбранного подбора алгоритм пойдёт по накатанной колее. Используем
метод неопределенных коэффициентов. Кто не знаком - узнает. Найдём первую и вторую
производную:

ỹ′ =
(
Ax3 +Bx2 + Cx+D

)′
= 3Ax2 + 2Bx+ C

ỹ∗′ =
(
3Ax2 + 2Bx+ C

)′
= 6Ax+ 2B

Подставим ỹ и ỹn в левую часть неоднородного уравнения:

ỹn − 4ỹ = 6Ax+ 2B − 4
(
Ax3 +Bx2 + Cx+D

) (1)
=

= 6Ax+ 2B − 4Ax3 − 4Bx2 − 4Cx− 4D
(2)
= 8x3

(1) Раскрываем скобки. (2) Ставим знак = и приписываем правую часть исходного
ДУ. Далее работаем с последним равенством - необходимо приравнять коэффициенты
при соответствующих степенях и составить систему линейных уравнений. В картинках
процесс выглядит так: 6Ax+ 2B − 4Ax3 − 4Bx2 − 4Cx− 4D = 8x3 + 0 · x2 + 0 · x+ 0

Станем искать решение уравнения

an(t)z
(n)(t) + an−1(t)z

(n−1)(t) + ... + a1(t)z
′(t) + a0(t)z(t) = f(t)

полагая, что для соответствующего ему однородного уравнения

an(t)z
(n)(t) + an−1(t)z

(n−1)(t) + ... + a1(t)z
′(t) + a0(t)z(t) = 0

известно решение, которое запишем как

z(t) = c1z1(t) + c2z2(t) + ... + cnzn(t)

Метод состоит в замене произвольных постоянных ck в общем решении на
вспомогательные функции ck(t). Производная для z = c1(t)z1 + c2(t)z2 + ... + cn(t)zn
запишется

z′ = c′1z1 + ... + c′nzn + c1z
′
1 + ... + cnz

′
n

Но мы потребуем дополнительно (ниже показано, что проблем это не вызовет), чтобы

c′1z1 + c′2z2 + ... + c′nzn = 0

Таким образом, z′ = c1z
′
1+ ...+cnz′n Вводя схожие требования для c′k при последовательном

дифференцировании z(t) до (n-1) порядка, получим

c′1z
(k−1) + ... + c′nz

(k−1) = 0 ⇒ z(k) = c1z
(k)
1 + ... + cnz

(k)
n
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1.1.1 Classification and Typical Methods for 1st- and 2nd-Order Equations

А для старшей производной, соответственно

z(n) = c′1z
(n−1)
1 + ... + c′nz

(n−1)
n + ... + c1z

(n)
n + ... + cnz

(n)
n

После подстановки в исходное уравнение и сокращения в нём однородного решения (1),
останется

an(t)
[
c′1(t)z

(n−1)
1 (t) + ... + c′n(t)z

(n−1)
n (t)

]
= f(t)

В результате, приходим к
z1(t)c

′
1(t) + z2(t)c

′
2(t) + ... + zn(t)c

′
n(t) = 0

...
z
(n−2)
1 (t)c′1(t) + z

(n−2)
2 (t)c′2(t) + ... + z

(n−2)
n (t)c′n(t) = 0

z
(n−1)
1 (t)c′1(t) + z

(n−1)
2 (t)c′2(t) + ... + z

(n−1)
n (t)c′n(t) = f(t)/an(t)

Определителем системы (2) служит вронскиан функций z1, z2, ..., zn, что обеспечивает её
однозначную разрешимость относительно c′k.

Примеры по вики
1) Уравнение, в частности возникающее в законе радиоактивного распада

ẋ+ γx = f(t)

Общее решение элементарно интегрируется:

x = c · e−γt

Применим метод Лагранжа:
c′e−γt = f(t)

Откуда искомое решение

x =

∫
f(t)eγtdt · e−γt

2) Уравнение гармонического осциллятора

ẍ+ ω2x = f(t)

Решение однородного уравнения запишем в виде

x = a sinωt+ b cosωt

Согласно системе (2) получаем:{
a′ sinωt+ b′ cosωt = 0,
a′ cosωt− b′ sinωt = f(t)/ω;

a′ =
− cosωt

ω
f(t)

−1
=

cosωt

ω
f(t)

b′ =
sinωt
ω
f(t)

−1
= −sinωt

ω
f(t)

Восстановим решение:

x(t) =

(∫
dt
cosωt

ω
f(t)

)
sinωt−

(∫
dt
sinωt

ω
f(t)

)
cosωt
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1.1.1 Classification and Typical Methods for 1st- and 2nd-Order Equations

О решении диффуров однородного в обобщенном смысле

Пусть теперь уравнение является однородным в обобщенном смысле, т. е. существует
такое число s, что уравнение не меняется при одновременной замене x на λx, y на λsy, y(k)
на λs−ky(k), где λ ̸= 0, k = 1, 2, ..., n. При x > 0 вводим новую независимую переменную t и
новую неизвестную функцию z(t) с помощью замены

x = et, y = zest.

Тогда уравнение приводится к виду, в который не входит t. Следовательно, порядок
уравнения понижается по правилу, изложенному в п. 1. При x < 0 полагаем x = −et.

Линейное неоднородное дифференциальное уравнение с постоянными
коэффициентами

Неоднородное уравнение интегрируется методом вариации произвольных постоянных
(Метод Лагранжа).

общее решение уравнения задается формулой

y(t) = c1y1(t) + ... + cnyn(t) + y0(t),

где c1, ..., cn - произвольные постоянные.
Как в общем случае линейных уравнений, имеет место принцип суперпозиции,

используемый в разных формулировках принципа суперпозиции в физике. В случае,
когда функция в правой части состоит из суммы двух функций

f(t) = f1(t) + f2(t),

частное решение неоднородного уравнения тоже состоит из суммы двух функций

y0(t) = y01(t) + y02(t),

где y0j(t), j ∈ 1, 2 являются решениями неоднородного уравнения с правыми частями
fj(t), j ∈ 1, 2, соответственно. Частный случай: квазимногочлен В случае, когда f(t) -
квазимногочлен, то есть

f(t) = p(t)eαt cos(βt) + q(t)eαt sin(βt)

где p(t), q(t) - многочлены, частное решение уравнения ищется в виде

y0(t) =
(
P (t)eαt cos(βt) +Q(t)eαt sin(βt)

)
ts

где - P (t), Q(t) многочлены, deg(P ) = deg(Q) = Max(deg(p), deg(q)), коэффициенты
которых находятся подстановкой y0(t) в уравнение и вычисление методом
неопределенных коэффициентов. - s является кратностью комплексного числа
w = α + iβ как корня характеристического уравнения однородного уравнения. В
частности, когда

f(t) = p(t)eαt

где p(t) - многочлен, частное решение уравнения ищется в виде

y0(t) = P (t)eαtts

Здесь P (t) - многочлен, deg(P ) = deg(p), с неопределенными коэффициентами, которые
находятся подстановкой y0(t) в уравнение. s является кратностью α, как корня
характеристического уравнения однородного уравнения. Когда же

f(t) = p(t)
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1.1.2 Overview of Equations that Are Solved By Special Functions

где p(t) - многочлен, частное решение уравнения ищется в виде

y0(t) = P (t)ts

Здесь P (t) - многочлен, deg(P ) = deg(p), а s является кратностью нуля, как корня
характеристического уравнения однородного уравнения.

Уравнение Эйлера (??)

Уравнение Эйлера a0x
2y′′ + a1xy

′ + a2y = f(x), x > 0, заменой x = et сводится к
линейному уравнению с постоянными коэффициентами.

О других методах решения простейших задач и уравненй (?)

(это пока не особо применял)
Уравнение вида (a1x+ b1y + c1) dx+(a2x+ b2y + c2) dy = 0 в том случае, когда прямые

a1x+ b1y+ c1 = 0 и a2x+ b2y+ c2 = 0 пересекаются, приводится к однородному уравнению
с помощью переноса начала координат в точку пересечения прямых.

(??? мб пригодится потом, посмотрим.)

1.1.2 Overview of Equations that Are Solved By Special Functions

(напишу потом, все-таки очень часто просто через спефункцию это и решается. это
же в умф в 1й части, но там подробнее. это же суть записи по спецфункциям.)

1.1.3 Green’s Function Method for Diff. Equations (????)

(по идее тут ее суть напишу. пока этот метод не усвоен)

обзор

вроде главный метод решения линейных уравнений
??

Функция Грина для граничной задачи

по определению говорят искать её, потом отработаю.

1.1.4 Laplace Method

(другие очень хорошие методы тоже укажу тут, пока не знаю, какие это? не самые
лучшие - следующая 1я часть)

О методе Лапласа (?!?!?)

(скоро буду стабилить этот метод!)

Суть метода Лапласа (?!??!)

Решаем уравнение
N∑
m=0

(am + bmx) ·
dmY

dxm
= 0.
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1.1.4 Laplace Method

Ищем решение в виде

Y (x) =

∫
C

dtZ(t)ext

(мб строчку укажу, почему то, что дальше, пока опустил)
нение. Решение этого уравнения записывается тривиально Z(t) = 1

Q(t)
exp

(∫ P (t)
Q(t)

dt
)
.

Таким образом, мы получаем следующий «рецепт»:
1. Смотрим на дифференциальное уравнение, строим функции P (t), Q(t); вычисляем

функцию Z(t).
2. Исследуем возможные контура в комплексной плоскости, на концах которого

функция Z(t)Q(t)ext = exp
(
xt+

∫ P (t)
Q(t)

dt
)

зануляется. Как правило, это либо замкнутые
контура, обходящие какие-то особенности подынтегрального выражения; либо контура,
уходящие на бесконечность вдоль какого-нибудь из направлений.

3. Дальше требуется выбрать какой-нибудь один контур интегрирования, который
обычно фиксируется выбором граничных условий. Причём в квантовой механике, как
правило, граничные условия фиксируются при x на вещественной оси, при x → ±∞.
Поэтому для выбора контура интегрирования, сперва требуется вычислить асимптотики
решений, которые получаются, если по-разному выделять контура.

4. Наконец, глядя на различные асимптотики, мы должны выбрать интересующий нас
контур.

Таблица образов и изображений
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1.2 Important Methods and Properties in a Nutshell

1.2 Important Methods and Properties in a Nutshell

1.2.1 Cauchy Problem, Initial Conditions, Sturm’s Theorem

(тут самое важное из теоретической части. потом мб больше раздел сделаю где-то про
это, пока так, ибо я не очень теорией занимаюсь пока что.)

О постановка задачи Коши

применения (!?)

обзор применений.
самое главное, что тут нужно.
на самом деле теоремы диффуров очень и важны тем, что во всяких нюансах они часто

проявляются.

Об особых решениях (????)

(?? есть про это задачи, это пока не усвоил, и это важно наверное!!)

О теореме о существовании и единственности

см свешников диффуры, потому что я совсем забыл о приложениях к моделям разным.

17



1.2.2 WKB Method, Iterations (?!)

доказательство теоремы

применения (!?)

обзор применений.
самое главное, что тут нужно.
на самом деле теоремы диффуров очень и важны тем, что во всяких нюансах они часто

проявляются.

зависимость от начальных условий

применения (!?)

обзор применений.
самое главное, что тут нужно.
на самом деле теоремы диффуров очень и важны тем, что во всяких нюансах они часто

проявляются.

О теореме Штурма

формулировка
нюансы
применения

1.2.2 WKB Method, Iterations (?!)

(по идее в параграфах и смогу указать их)

О методе WKВ (???)

(?? протестирую его хотя бы на каких-то уравнениях??? пока не усвоил нормально.
неужели все так просто, одна формула - и всё решается?)

Укажем самое основное про метод WKB.

WKB в простейшем случае

Рассмотрим уравнение
d2

dx2
f − Uf = 0.

Предположим, что величина p =
√
U меняется достаточно медленно на масштабе p−1, что

означает выполнение неравенства dp/dx ≪ p2. Тогда для функции f можно построить
следующее приближенное решение

f =
C1√
p
exp(S) +

C2√
p
exp(−S), где S(x) =

x∫
dyp(y),

где C1, C2 - некоторые константы.
Подставляя выражение (3.107) в уравнение (3.106), можно убедиться, что оно являет

ся решением, если пренебречь в нем членами с (dp/dx)2 и d2p/dx2. Первое пренебрежение
возможно в силу предполагаемого неравенства dp/dx ≪ p2, а второе в силу неравенства
d2p/dx2 ≪ pdp/dx, которое получ ается из предыдущего дифференцированием по x.
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1.2.3 Averaging and Slow Evolution (!?)

Фактор U в уравнении (3.106) может быть как положительным, так и отрицательным,
к обоим этим случаям одинаково применим метод WKB. B первом случае величина p
является действительной, и два слагаемых в выражении (3.107) являются растущей и
убывающей по x экспонентами. Во втором случае величина p является чи сто мнимой, и
мы имеем дело с экспонентами от мнимых величин S. Другими словами, мы имеем дело
с осциллирующими функциями, если речь идет о действительных решениях.

Тогда мы можем записать

f =
C

|p|1/2
cos(A+ φ)

где S = iA, C - действительная константа и φ-некоторая фаза.

WKB в общем случае

Приведенная схема легко обобщается на случай произвольного оператора Штурма-
Лиувилля (2.6)

d2

dx2
f +Q

df

dx
− Uf = 0.

В этом случае вместо (3.107, 3.108) находим

f =
C1√
p
1

exp (S1) +
C2√
p
2

exp (S2) , где S1,2(x) =

x∫
dyp1,2(y),

где p1,2 являются корнями квадратного уравнения

p2 +Qp− U = 0,

которые могут быть как действительными, так и комплексными.

О применениях (??)

О методе итераций (!!!!???)

(тоже часто использую, так всё ещё не прописал.)

1.2.3 Averaging and Slow Evolution (!?)

Суть метода

F (t, x, ∂tx, ...) + ϵG (t, x, ∂tx, ...) = 0

Пример:
∂2t x+ x = ϵx3.

x0 := x(ϵ = 0) = a cos(t− τ), τ =const,

∂2t x1 + x1 =
1

4
ϵa3[cos(3t− 3τ)+3cos(t− τ)]

x1 =
3

8
ϵa3(t− τ) sin(t− τ)
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1.2.3 Averaging and Slow Evolution (!?)

На достаточно больших временах, когда t ∼ (ϵa2)
−1, поправка становится O(x0), и имеем

нарушение применимости разложения по ϵ.
Усовершенствуем: ищем x ≡ a cos(t − τ), a и τ являются медленными функциями

времени:

−∂ta sin(t− τ) + ∂tτa cos(t− τ) =
3

8
ϵa3 cos(t− τ)

∂ta = 0, ∂tτ =
3

8
ϵa2

a = const, τ = τ0 + (3/8)ϵa2t, где τ0=const,

x = a cos
[
t− (3/8)ϵa2t− τ0

]
,

осцилляции с нелинейным сдвигом к частоте ω = 1 - (3/8) ϵa2.
Установим критерий применимости результата. При выводе уравнений на ∂ta, ∂tτ мы

отбросили члены с ∂2t τ и с ∂2t a. Малым параметром, по которому это можно сделать,
является ϵa2. Именно с этой относительной точностью найдено выражение для ∂tτ ,
поэтому поправка к этому выражению может быть оценена, как ϵ2a4. Таким образом,
поправка к аргументу косинуса в выражении x = a cos(t − τ) может быть оценена, как
tϵ2a4, то есть результат работает при условии t≪ (ϵ2a4)

−1.

Метод Боголюбова-Крылова

∂2t x+ x = ϵG (x, ∂tx) .

z := x+ i∂tx,
∂tz = −iz + iϵG(Re z, Im z).

z ≡ a exp(iφ),

∂ta = ϵ sinφG(a cosφ, a sinφ),

∂tτ = ϵ
cosφ

a
G(a cosφ, a sinφ),

φ = −t+ τ .
Приращения a и τ за период малы в силу малости ϵ. Поэтому при вычислении этих

приращений в правой части a и τ можно считать константами, что дает

∆a = ϵ

2π∫
0

dφ sinφG(a cosφ, a sinφ)

∆τ = ϵ

2π∫
0

dφ
cosφ

a
G(a cosφ, a sinφ)

∂ta =
ϵ

2π

2π∫
0

dφ sinφG(a cosφ, a sinφ)

∂tτ =
ϵ

2π

2π∫
0

dφ
cosφ

a
G(a cosφ, a sinφ)
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1.3 Methods of Differential Equations in Typical Physics Problems

Пример:
∂2t x+ x = ϵ

(
1− x2

)
∂tx ϵ≪ 1

∂ta =
ϵ

2
a
(
1− a2/4

)
, ∂tτ = 0

Обобщение на случай явной зависимости функции G(t) (если G остается
приблизительно периодической функцией времени с T = 2π):

∂ta = ϵ sinφG(t, a cosφ, a sinφ)

∂tτ = ϵ
cosφ

a
G(t, a cosφ, a sinφ)

φ = −t+ τ .

∂ta =
ϵ

2π

2π∫
0

dϕ sinφG(t− ϕ, a cosφ, a sinφ)

∂tτ =
ϵ

2π

2π∫
0

dϕ
cosφ

a
G(t− ϕ, a cosφ, a sinφ)

φ = τ − t+ ϕ.

Обобщение на случай частоты ω:

∂2t x+ ω2x = ϵG

x = a cos(−ωt+ θ),

∂ta =
ϵ

ω

2π∫
0

dφ

2π
sin(φ)G

∂tθ =
ϵ

ωa

2π∫
0

dφ

2π
cos(φ)G

u→ a cosφ, ∂tu→ ω sinφ.

1.3 Methods of Differential Equations in Typical Physics Problems

(по Мигдалу допишу, пока не думал про это)
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Part II

Fundamentals of Differential Equations
Обсудим самые актуальные теоремы, методы решений и примеры дифференциальных

уравнений.
(!! удалю потом всякую ненужную воду!!)

2 Main Types of Differential Equations

(по Диесперову)

2.0.1 Basic Concepts and Definitions

Определение

Уравнение
F (t, x, x′) = 0

где t - независимая переменная, x(t) - неизвестная функция, а x′(t) - её производная,
называется дифференциальным уравнением 1-го порядка, неразрешенным относительно
производной.

Определение

Функция x = φ(t), определённая на интервале J , называет ся решением
дифференциального уравнения (1.1), если 1) φ(t) ∈ C1(J) (непрерывно
дифференцируемая функция):

2) (t, φ(t), φ′(t)) ∈ G для любого t ∈ J
3) F (t, φ(t), φ′(t)) = 0 для любого t ∈ J определено решения на интервале естественным

образом обобщается на случай любого промежутка.
Пусть мы имеем некоторое решение x = φ(t), t ∈ J , уравнения (1.1).
График этого решения называется интегральной кривой (интегральная кривая в

дальнейшем будет отождествляться с решением дифференциального уравнения). Часто
дифференциальное уравнение (1.1) можно представить в виде

dx

dt
= f(t, x), Ω ⊆ R2

Уравнение dx
dt

= f(t, x) называется дифференциальным уравнением 1-го порядка,
разрешённым относительно производной.

Ниже предполагается, что f(t, x) ∈ C(Ω).
Аналогично уравнению (1.1) определяется решение дифференциального уравнения

dx
dt

= f(t, x).
Таким образом, дифференциальное уравнение dx

dt
= f(t, x) имеет решение, если

существуют промежуток J и непрерывно дифференцируемая функция φ(t),
определённая на нем, при подстановке которой в уравнение dx

dt
= f(t, x) последнее

обрашается в тождество.
Если какое-нибудь решение задано неявно в виде уравнения Φ(t, x) = 0, то последнее

носит название интеграла уравнения.
Основной задачей теории обыкновенных дифференциальных уравнений является

отыскание всех решений дифференциального уравнения и изучение свойств этих
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2.0.2 Isoclines (?)

решений. Процесс нахождения решений дифференциального уравнения называется его
интегрированием.

Изучение теории дифференциальных уравнений начнём с уравнения dx
dt

= f(t, x).
Ему можно дать простую геометрическую интерпретацию.
Уравнение определяет в каждой точке (t, x) ∈ Ω интегральной кривой значение

производной x′(t), которое равно тангенсу угла α, образованного касательной в этой
точке с положительным направлением оси Ot.

Если в каждой точке области Ω задано значение некоторой величины, то говорят, что
в ней определено поле этой величины.

Три числа (t, x, x′) определяют направление прямой, проходящей через каждую точку
(t, x) в области Ω.

Таким образом, дифференциальное уравнение dx
dt

= f(t, x) задаёт в области Ω поле
направлений.

Проведём в каждой точке маленький отрезок, указывающий направление касательной.
Тогда совокупность отрезков этих прямых даёт геометрическую картину поля

направлений в области Ω.
Функция x(t) будет решением тогда и только тогда, когда касательная в каждой точке

ее графика совпадает с полем направлений в этой точке.

2.0.2 Isoclines (?)

Обсудим подробно изоклины.
(пока не актуально, потом.)

Определение изоклин

Множество точек, в каждой из которых дифференциальное уравнение dx
dt

= f(t, x)
определяет одно и то же направление с углом α, называется изоклиной.

Знание изоклин часто позволяет построить качественную картину поведения
интегральных кривых уравнения dx

dt
= f(t, x).

Изоклины зад ают ся уравнением tgα = f(t, x).

Пример

Построить методом изоклин качественную картину поведения интегральных кривых
уравнения, которое не интегрируется в элементарных функциях:

dx

dt
= t2 + x2, R2 = t2 + x2 ≥ 0

R2 > 0− окружность , R2 = 0− точкa.

Рассмотрим пример простейшего уравнения dx
dt

= f(t, x), когда его правая
часть не зависит от x:

dx

dt
= f(t), t ∈ J

Все решения дифференциального уравнения (1.3) описываются однопараметрическим
семейством функций:

x(t) =

t∫
t0

f(τ)dτ + C, C ∈ (−∞,∞), t0, t ∈ J

где C - произвольная постоянная, играющая роль параметра.
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2.0.2 Isoclines (?)

Если мы хотим выделить какое-либо решение, то можно потребовать часть не зависит
от x:

dx

dt
= f(t), t ∈ J

Все решения дифференциального уравнения (1.3) описываются однопараметрическим
семейством функций:

x(t) =

t∫
t0

f(τ)dτ + C, C ∈ (−∞,∞), t0, t ∈ J

где C - произвольная постоянная, играющая роль параметра.
Если мы хотим выделить какое-либо решение, то можно потребовать x (t0) = x0.
Это условие называется начальным.
Из него следует, что C = x0.
Интегральная кривая, проходящая через точку с координатами (t0, x0), принимает вид

φ(t) =
t∫
t0

f(t)dt+ x0.

Мы пришли к одному из основных понятий в теории дифференциальных уравнений,
а именно: задаче Коши.

Задача Коши

Пусть (t0, x0) ∈ Ω. Найти интервал J , содержащий точку t0, и решение φ(t), t ∈ J ,
уравнения dx

dt
= f(t, x), определённое на нём C = x0.

Интегральная кривая, проходящая через точку с координатами (t0, x0), принимает вид

φ(t) =
t∫
t0

f(t)dt+ x0.

Мы пришли к одному из основных понятий в теории дифференциальных уравнений,
а именно: задаче Коши. Задача Коши.

Пусть (t0, x0) ∈ Ω.
Найти интервал J , содержащий точку t0, и решение φ(t), t ∈ J , уравнения dx

dt
= f(t, x),

определённое на нём и удовлетворяющее начальному условию φ (t0) − x0. Задача Коши
обозначается следующим образом:

dx

dt
= f(t, x), (t, x) ∈ Ω, x (t0) = x0, (t0, x0) ∈ Ω

Числа t0, x0 называются начальными данными.
Задачу Коши часто называют задачей на начальные значения.
Таким образом, решение задачи Коши (1.5) существует, если существует интервал J >

t0 и решение x = φ(t) уравнения dx
dt

= f(t, x), определенное на J , такое, что выполняется
x0 = φ (t0).

Теорема Коши

Достаточные условия существования и единственности решения задачи Коши
Пусть f(t, x), ∂f(t,x)

∂x
∈ C(Ω).

Тогда для любой точки (t0, x0) ∈ Ω можно указать интервал J = J (t0, x0) ∋ t0, ка
котором существует единственное решение x = φ(t) уравнения dx

dt
= f(t, x),

удовлетворяющее начальному условию x0 = φ (t0).
На основании определений, данных выше, теоре му 1.1 кратко можно

сформулировать следующим образом: если f(t, x), ∂f(t,x)
∂x

∈ C(Ω), то для любой точки
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2.0.2 Isoclines (?)

(t0, x0) ∈ Ω решение задачи Коши (1.5) существует и единственно. Теорему 1.1
существования и единственности решения задачи Коши в силу её важности будем
называть основн ой.

Замечание 1.1.1.
Теорема 1.1 называет ся теоремой Коши [5, 6, 7, 13] и в общем случае носит локальный

характер.
Замечание 1.1.2.
Требование непрерывности f(t, x) обеспечивает существование решения задачи Коши

(1.5) (теорема Пеано [2, 10]), a требование непрерывности ∂f(t,x)
∂x

обеспечивает
единственность решения задачи Коши (1.5).

Определение

1.1.4.
Совокупность всех решений уравнения dx

dt
= f(t, x) называется общим решением.

В ряде случаев все решения уравнения dx
dt

= f(t, x) можно описать c помощью функции
φ(t, C) переменного t и параметра C.

Дадим понятие общего решения и общего интеграла в той форме, в какой они
используются обычно при решении студентами задач (см. также [5, 6]).

Ниже при их определении будем предполагать, что в области Ω выполнены условия
теоремы 1.1.

Общее решение

Функция
x = φ(t, C)

является общим решением дифференциального уравнения dx
dt

= f(t, x) в области D ⊆ Ω,
если

1) для любого допустимого значения C функция φ(t, C) является решением уравнения;
2) любое решение уравнения dx

dt
= f(t, x), график которого проходит через область D,

может быть описано с помощью функции φ(t, C) при соответствующем выборе параметра
C.

При фиксированном C = C0 функция x = φ (t, C0) определяет частное решение.
Множество значений параметра C, которые соответствуют всем интегральным

кривым, проходящим через область D, будет обозначаться (C)D.
Под словами произвольная постоянная C подразумевается, что параметр C может

принимать любое значение из множеств a(C)D.
Такое значение C будет называться допустимым.
Ниже в примере 1.2.2 (раздел 1.2.2) уравнение определено в Ω ≡ R2 и его правая часть

- непрерывно дифференцируемая функция.
Согласно опре делению 1.1.5 общие решения уравнения dx

dt
= f(t, x) в областях x > 0 и

x < 0 описываются функцией x = −1/(t+ C).
Но описать с её помощью общее решение уравнения во в сей плоскости R2 согласно

определению 1.1.5 невозможно.

Общий интеграл

Определение:
Уравнение

Φ(t, x, C) = 0
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2.1 The Simplest Types of Equations and Methods of Their Solution

называет ся общим интегралом дифференциального уравнения dx
dt

= f(t, x) в области
D ⊆ Ω, если

1. для любого допустимого значения С уравнение (1.7) определяет неявно решение
уравнения dx

dt
= f(t, x).

2. любое решение уравнения dx
dt

= f(t, x), график которого проходит через область D,
может быть описано неявно уравнением (1.7) при соответствующем выборе постоянной C.

Из определения следует, что общий интеграл определяет в неявном виде все решения
уравнения dx

dt
= f(t, x) в области D.

Теорема

Пусть в области Ω выполняются условия теоремы 1.1.
Тогда для любой точки (t0, x0) ∈ Ω можно указать такую её окрестность, в которой

все решения уравнения dx
dt

= f(t, x) можно описать с помощью общего решения (1.6) (или
с помощью общего интеграла вuda ∆(t, x) = C)[5, 10]

Следовательно, при условиях теоремы 1.1 все решения уравнения dx
dt

= f(t, x) локально
описыв аются однопараметрическим семейством функций x = φ(t, C), C ∈ (C)D

Интегрируемость в конечном виде

Говорят, что дифференциальное уравнение интегрируемо в конечном виде, если все его
решения могут быть представлены в виде элементарных функций и квадратур с помощью
конечного числа алгебраических операций и суперпозиций.

2.1 The Simplest Types of Equations and Methods of Their Solution

Ниже рассматриваются Диффуры dx
dt

= f(t, x) с такими правыми частями, которые
позволяют проинтегрировать уравнение в конечном виде и доказать существование и
единственность решения задачи Коши (1.5) при более слабых условиях, наложенных на
функцию f(t, x), чем в теореме 1.1.

2.1.1 Equations in Total Differentials

Уравнение dx
dt

= f(t, x) можно представить в виде

dx− f(t, x)dt = 0, (t, x) ∈ Ω

Уравнение (1.8) называется уравнением в дифференциалах.
В более общей форме его можно записать следующим образом:

P (t, x)dt+Q(t, x)dx = 0, (t, x) ∈ Ω

Функции P (t, x), Q(t, x) предполагаются непрерывны ми.
Переменные t и x входят в уравнение P (t, x)dt+Q(t, x)dx = 0 равноправно.
Поэтому его решение можно искать либо в виде x = φ(t), t ∈ J , либо t = ψ(x), x ∈ I; В

первом случае интегрируется уравнение dx
dt

= −P (t,x)
Q(t,x)

, Q(t, x) ̸= 0, во-втором - уравнение
dt
dx

= −Q(t,x)
P (t,x)

, P (t, x) ̸= 0 Функция x = φ(t), t ∈ J называется решением уравнения
P (t, x)dt+Q(t, x)dx = 0, если

P (t, φ(t)) +Q(t, φ(t))φ′(t) ≡ 0, t ∈ J
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2.1.1 Equations in Total Differentials

Аналогично для t = ψ(x), x ∈ I.
случае интегрирует ся уравнение dx

dt
= −P (t,x)

Q(t,x)
, Q(t, x) ̸= 0, во-втором - уравнение dt

dx
=

−Q(t,x)
P (t,x)

, P (t, x) ̸= 0 Функция x = φ(t), t ∈ J называется решением уравнения P (t, x)dt +

Q(t, x)dx = 0, если
P (t, φ(t)) +Q(t, φ(t))φ′(t) ≡ 0, t ∈ J

Аналогично для t = ψ(x), x ∈ I. Задача Коши для уравнения P (t, x)dt + Q(t, x)dx = 0
ставится следующим образом: найти решение уравнения P (t, x)dt+Q(t, x)dx = 0, график
которого проходит через точку (t0, x0) ∈ Ω

Определение

1.2.1.
Уравнение P (t, x)dt+Q(t, x)dx = 0 называется уравнением в полных дифференциалах,

если существует функция U(t, x) ∈ C1(Ω) такая, что

P (t, x)dt+Q(t, x)dx = dU(t, x), (t, x) ∈ Ω

Из определения дифференциала функции U(t, x) следует

P (t, x) =
∂U

∂t
, Q(t, x) =

∂U

∂x

Теорема 1.

3.
Если P,Q ∈ C(Ω), Q ̸= 0 и уравнение P (t, x)dt + Q(t, x)dx = 0 является уравнением

в полных дифференциалах, то 1) функция φ(t), t ∈ J , является решением уравнения
P (t, x)dt+Q(t, x)dx = 0 в.

полных дифференциалах тогда и только тогда, когда выполняется тоэсдество

U(t, φ(t)) ≡ C, t ∈ J

2) через любую точку области Ω проходит единственная интегральная кривая.
До к аз ат ел ь с т в о.
1) Пусть φ(t), t ∈ J , - решение уравнения в полных дифференциалах.
Тогда из формул (1.10) и (1.11) следует

∂U

∂t
(t, φ(t))dt+

∂U

∂x
(t, φ(t))dφ(t) = 0 ⇒ U(t, φ(t)) = C, t ∈ J

Обратно.
Всякая функция x = φ(t), t ∈ J , определяемая неявно уравнением U(t, x) = C, где C -

допустимая постоянная, будет также решением уравнения (1.10).
Действительно, дифференцируя тождество 16
U(t, φ(t)) ≡ C, t ∈ J , по t, получим

∂U

∂t
dt+

∂U

∂x
dφ(t) ≡ 0 ⇒ P (t, φ(t))dt+Q(t, φ(t))dφ(t) ≡ 0 ⇒

⇒ P (t, φ(t)) +Q(t, φ(t))φ′(t) ≡ 0, t ∈ J

2) Для любой точки (t0, x0) ∈ Ω имеем U (t0, x0) = C.
Так как Q (t0, x0) = ∂U

∂x
(t0, x0) ̸= 0, то из теоремы о неявной функции следует, что в

некоторой окрестности точки (t0, x0) уравнение U(t, x) =
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2.1.1 Equations in Total Differentials

= U (t0, x0) задаёт единственным образом решение в виде функции x = φ(t), t ∈
J, φ (t0) = x0.

Она, очевидно, будет решением задачи Коши (1.5).
Здесь уравнение U(t, x) = C, t ∈ J является примером общего интеграла, опре

делённого выше.
Постоянная C принимает значения из множества {U (t0, x0) : (t0, x0) ∈ Ω}, которое

является множеством её допустимых значений.
Для каждого решения x = φ(t), t ∈ J , постоянная C своя.
Таким образом, решение x = φ(t), t ∈ J , принимающее заданное значение

x0 = φ (t0) , (x0, t0) ∈ Ω, находится из общего интеграла U(t, x) = U (t0, x0).
Если Q (t0, x0) = 0, a ∂U

∂t
(t0, x0) = P (t0, x0) ̸= 0 то решение уравнения P (t, x)dt +

Q(t, x)dx = 0, график которого проходит через точку (t0, x0), будет иметь вид t = ψ(x), x ∈
I.

Исключением в смысле теоремы 1.1 существования и единственности служат точки
(t0, x0), для которых одновременно P (t0, x0) = Q (t0, x0) = 0.

Если существует такая окрестность точки (t0, x0), в которой P 2(t, x) +Q2(t, x) > 0, то
точка (t0, x0) называется изолированной особой точкой.

Отсюда следует, что для изолиров анной неособой точки (t0, x0) ∈ Ω решение задачи
Коши существует и единственно.

Оно может быть представлено либо в виде x = φ(t), либо в виде t = ψ(x)

Признак уравнения в полных дифференциалах

Если P,Q, ∂P
∂x
, ∂Q
∂t

∈ C(Ω) и область Ω односвязная, то уравнение P (t, x)dt+Q(t, x)dx = 0
будет уравнением в полных дифференциалах тогда и только тогда, когда в области Ω
выполняется равенство

∂P

∂x
=
∂Q

∂t
Теорема доказывается в курсе математического анализа.

(??? и где же??)
Решение уравнения в полных дифференциалах, выраженное через функции P (t, x)

и Q(t, x), можно получить в виде общего интеграла, как показывает приведенная ниже
теорема.

Теорема о виде полного дифференциала

Пусть в области Ω = (a1, a2) × (b1, b2) выполняются условия теоремы 1.4, уравнение
P (t, x)dt+Q(t, x)dx = 0 является уравнением в полных дифференциалах и Q(t, x) ̸= 0.

Тогда функцию U(t, x) для любой точки (t0, x0) ∈ Ω можно представить в виде

U(t, x) =

t∫
t0

P (τ, x)dτ +

x∫
x0

Q (t0, z) dz, (t, x) ∈ Ω

При этом решение задачи Коши (1.5) единственно и в некоторой окрестности точки (t0, x0)
представимо в виде x = φ(t), t ∈ J .

Док азат ель с т во.

> Согласно соотношениям (1.11) имеем

∂U

∂t
= P (t, x)
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2.1.2 Equations with Separable Variables

Проинтегрируем это уравнение по t, считая x постоянным:

U(t, x) =

t∫
t0

P (τ, x)dτ + ϕ(x)

Функция ϕ(x) здесь предполагает ся непрерывно дифференцируемой.
Дифференцируя найденную функцию U(t, x) по x и используя (1.11) и (1.12), получим

Q(t, x) =
∂U

∂x
=

t∫
t0

∂P

∂x
dt+ ϕ′(x) =

t∫
t0

∂Q

∂t
dt+ ϕ′(x) =

= Q(t, x)−Q (t0, x) + ϕ′(x)

Отсюда следует, что одним из значений функции ϕ(x) будет

ϕ(x) =

x∫
x0

Q (t0, z) dz

В результате получаем формулу (1.13).
Так как Q (t0, x0) ̸= 0, то из теоремы 1.3 следует существование и единственность

решения задачи Коши. 18
Замечание 1.2.1.
Если Q (t0, x0) = 0, а P (t0, x0) ̸= 0, то функцию U(t, x) можно представить в виде

U(t, x) =
t∫
t0

P (τ, x0) dτ +
x∫
x0

Q(t, z)dz. Согласно теоре ме о неявной функции решение

P (t, x)dt+Q(t, x)dx = 0, график которого проходит через точку (t0, x0) ∈ Ω, существует и
единственно. Оно может быть представлено в виде t = ψ(x), x ∈ I.

Если функция Q(t, x) ̸= 0, (t, x) ∈ Ω, то область Ω будет областью единственности
решения.

О применениях (??)

(???? хз????)

2.1.2 Equations with Separable Variables

Рассмотрим уравнение P (t, x)dt + Q(t, x)dx = 0, в котором
P (t, x) = T1(t)X1(x), Q(t, x) = T2(t)X2(x)

T1(t)X1(x)dt+ T2(t)X2(x)dx = 0, (t, x) ∈ Ω

Оно называется уравнением с разделяющимися переменными в симметричной форме.
Будем считать, что Ω = {(t, x) : a1 < t < a2, b1 < x < b2} и функции P (t, x), Q(t, x)

непрерываны в ней.
Обозначим через S множество: S = {(t, x) ∈ Ω : T2(t)X1(x) = 0}, а через

D = {(t, x) : c1 < t < c2 d1 < x < d2} - любую компоненту связности открытого
множества Ω\S

Разделим уравнение (1.14) на T2(t)X1(x).
В результате в области D получим уравнение

T1(t)

T2(t)
dt+

X2(x)

X1(x)
dx = 0
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2.1.2 Equations with Separable Variables

которое называет ся уравнением с разделёнными переменны ми.
Его коэффициенты удовлетворяют условиям теоремы 1.4.
Функция (1.13) и общий интеграл уравнения (1.15) принимают вид

U(t, x) =

t∫
t0

T1(t)

T2(t)
dt+

x∫
x0

X2(x)

X1(x)
dx⇒

t∫
t0

T1(t)

T2(t)
dt+

x∫
x0

X2(x)

X1(x)
dx = C

Последняя формула показывает, что сумма первообразных функций T1
T2

и X2

X1
, прир

авненная к допустимой постоянной C, определяет общий интеграл.
Его можно записать в виде∫

T1(t)

T2(t)
dt+

∫
X2(x)

X1(x)
dx = C

19 Лекции по дифференциальным уравнениям Заметим, что отрезки прямых x = const,
t = const, принадлежащие множеству S, являют ся решениями уравнения (1.14).

Если T2(t)X2(x) ̸= 0, то уравнение (1.16) можно представить в виде (уравнения
разрешённого относительно производной):

dx

dt
= −T1(t)X1(x)

T2(t)X2(x)
= f(t)g(x)

Пример особого решения: уравнение dx
dt

= |x| 23 (!!!!)

(а вот это важно, пока не понял как следует!)
Рассмотрим уравнение с разделяющимися переменными:

dx

dt
= |x|

2
3 , (t, x) ∈ R2

Решение.
Нетрудно видеть, что x(t) = 0, t ∈ R, - решение уравнения dx

dt
= |x| 23 .

Так как правая часть уравнения непрерывная функция, то решение задачи Коши с
начальным условием x (t0) = 0, t0 ∈ R, существует (теорема Пеано).

Однако она не дифференцируемая при x = 0 функция, поэтому единственность
решения задачи Коши не гарантируется.

1. Пусть x > 0.
Тогда x =

(
t+A
3

)3
, t+ A > 0, A ∈ R

2. Если x < 0, то x =
(
t+B
3

)3
, t + B < 0, B ∈ R. Если A = B, то функция x =

(
t+A
3

)3
является решением уравнения dx

dt
= |x| 23 в R2

Если A ̸= B, то для любых t1 < t2 имеются также решения вида

x(t) =


(
t−t1
3

)3
, t < t1

0, t ∈ [t1, t2](
t−t2
3

)3
, t > t2

которые называются составными или композиционными.
Таким образом, интегральными кривыми уравнения dx

dt
= |x| 23 будут все

дифференцируемые кривые, составленные из графиков решений, описанных в пунктах
1), 2), и решения x(t) = 0, t ∈ R.
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2.1.2 Equations with Separable Variables

Определение особого решения (!)

Через произвольную точку (t0, x0) ∈ R2 во всей плоскости проходит бесконечно много
(континуум) интегральных кривых, касающихся оси Ot.

Локально через любую точку (t0, x0) ∈ R2, x0 ̸= 0, проходит одна интегральная кривая.
Такая ситуация возникает потому, что решение x(t) = 0, t ∈ R, является особым (рис.

1.1).
Решение φ(t), t ∈ J дифференциального уравнения dx

dt
= f(t, x) (также как и уравнения

(1.1)) называется особым, если в любой окрестности каждой его точки (t0, φ (t0)) , t0 ∈ J
проходит другая интегральная кривая, имеющая с ним в этой точке общую касательную.

Это определение можно перефразировать следующим образом: решение φ(t), t ∈ J ,
называет ся особым, если в любой окрестности каждой его точки нарушается
единственность решения задачи Коши. Если через точку (t0, x0) проходят две или более
интегральные кривые уравнения dx

dt
= f(t, x), то она называется точкой Пеано для этого

уравнения.
Говорят, что в этой точке имеет место явление Пеано.
Все точки оси Ot являются точками Пеано уравнения dx

dt
= |x| 23 .

(?? явление Пеано???)

Пример особого решения: уравнение dx
dt

= x2 (!!!!)

(казалось бы, простейшее уравнение, а уже есть особое решение. зачем это тут
написано, если ниже это будет обсуждаться??? перенесу в часть ниже потом!?!?!)

Рассмотрим ещё одно уравнение с разделяющимися переменными, правая часть
которого является непрерывно дифференцируемой функцией:

dx

dt
= x2, (t, x) ∈ R2

Решение.
Заметим, что функция x(t) = 0, t ∈ R, является решением.
Пусть x ̸= 0. Тогда уравнение (1.19) эквивалентно уравнению

dx

x2
= dt

Функция x = −1/(t+ C) будет решением уравнения, где C - произвольная постоянная.
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2.1.3 Homogeneous Equations

Вопрос: в каких областях функция x = −1/(t + C) является общим решением? Этот
пример показывает, что теорема 1.1 носит локальный характер.

Несмотря на то, что правая часть уравнения (1.19) является непрерывно
дифференцируемой функцией в R2, любое его нетривиальное решение при стремлении t
к некоторому конечному значению стремится к бесконечности (рис. 1.2).

(???)
Согласно определению 5 функция x = −1/(t + C) является общим решением либо в

области x > 0, либо в области x < 0.

2.1.3 Homogeneous Equations

Уравнение вида
dx

dt
= f

(x
t

)
, t ̸= 0

называется однородным дифференциальным уравнением.
При этом предполагается, что функция f(z) определена и непрерывна на интервале

I = (a, b).
Произведём замену x(t) = tz(t), где z(t) - новая неизвестная функция.
Если функция f(z) определена на интервале I, то функция f

(
x
t

)
будет определена при

a < x
t
< b, то есть в областях Ω1 и Ω2.

Они представлены на рис. 1.3 в предположении a < 0 и b > 0.
Обозначим Ω = Ω1 ∪ Ω2.
Множество Ω не сдержит точку (0, 0).

Теорема

Если f(z) ∈ C(I), f(z) ̸= z, z ∈ I, то через каждую точку (t0, x0) ∈ Ω проходит одна и
только одна интегральная кривая уравнения (1.20).

(До к аз ат ель ст во.
> Положим x(t) = tz(t).
Тогда уравнение (1.20) последовательно принимает вид: z + tdz

dt
= f(z) ⇒ dz

dt
= f(z)−z

t
.

В результате получается уравнение с разделяющимися переменными, для которого
справедлива теорема 1.5.

Если f(z)− z ̸= 0, то решения уравнения (1.20) будут описываться общим интегралом∫
dz

f(z)− z
= ln |t|+ C

Пусть теперь при некотором z = z0, f (z0) = z0.
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2.2 Fundamentals of First-Order Linear Equations

Тогда функции x = z0t, t < 0 и x = z0t, t > 0 будут решениями уравнения (1.20) в
областях Ω1 и Ω2.

При этом они могут быть как особыми, так и частными.
Чтобы проиллюстрировать это утверждение, рассмотрим уравнение

dx

dt
= 2

√
x

t
, t > 0

решениями которого будут функции: x1(t) = 4(
√
t − C)2, t ≥ C2, C > > 0;x = 0; x =

4t, t > 0.
Решение x = 0, t > 0 является особым,
а решение x = 4t, t > 0 - частным.
При этом x1(t) < 4t, t > 0, если C > 0.
Если же C < 0, то x1(t) > 4t, t > 0
Уравнение в дифференциалах P (t, x)dt+Q(t, x)dx = 0 будет однородным, если P и Q

- однородные функции одного и того же порядка.
Оно подстановкой x = tz(t) приводится к уравнению с разделяющими ся переменны

ми. K однородному уравнению приводится и уравнение более общего вида, а именно:

dx

dt
= f

(
αt+ βx+ γ

at+ bx+ c

)
Если αb− aβ ̸= 0, то произведём замену пере менных:{

t = τ + t0
x = y + x0

Определим t0 и x0, решая систему уравнений:{
αt0 + βx0 + γ = 0
at0 + bx0 + c = 0

В результате получим однородное уравнение относительно переменных y и τ .
Пусть теперь αb − aβ = 0, β ̸= 0, тогда подстановка y = αt + βx приводит уравнение

(1.21) к уравнению с разделяющимися переменны ми.

2.2 Fundamentals of First-Order Linear Equations

(важная тема, напишу как следует лучше это.)

2.2.1 Basic Definitions

Определение приведенным линейным уравнением 1-го порядка

Дифференциальное уравнение вида

x′(t) + p(t)x = q(t), t ∈ J

называется приведенным линейным уравнением 1-го порядка. Будем предполагать, что
p(t), q(t) ∈ C(J), где J - некоторый промежуток.

Если q ≡ 0, то уравнение называется однородным. В противном случае -
неоднородным.

Через ΩΠ обозначим множество точек: ΩΠ = {(t, x) : t ∈ J, |x| <∞}
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2.2.1 Basic Definitions

Теорема 1.

7.
Пусть p(t), q(t) ∈ C(J).
Тогда через любую точку (t0, x0) ∈ Ω Проходит единственная интегральная кривая,

определённая на всем промежутке J.

Док азат ель с т во.

Рассмотрим однородное уравнение

x′(t) + p(t)x(t) = 0, t ∈ J

Все его решения описываются функцией

xo(t) = C̃e
−

t∫
t0

p(τ)dτ

, t0, t ∈ J

где C̃ - произвольная постоянная. Задание: получить самостоятельно формулу общего
решения однородного уравнения.

Найдем общее решение уравнения (1.22) методом вариации посто- янной Лагранжа.
Будем искать его в виде

x(t) = C(t)e
−

t∫
t0

p(τ)dτ

где неизвестная функция C(t) ∈ C1(J).
Подставляя функцию x(t), t ∈ J(1.23) в уравнение (1.22), для определения C(t)

получим уравнение: dC
dt

= q(t)e

t∫
t0

p(τ)dτ

.
Интегрирование последнего даёт

C(t) =

t∫
t0

q(ω)e

ω∫
t0

p(τ)dτ

dω +D,D ∈ R

Подставляя найденное значение C(t) в (1.23), получим общее решение неоднородного
уравнения (1.22) :

x(t) = D exp

−
t∫

t0

p(τ)dτ

+ exp

−
t∫

t0

p(τ)dτ

 t∫
t0

q(ω)e

t∫
t0

p(τ)dτ

dω

Общее решение (1.24) состоит из двух слагаемых, первое из которых является общим
решением линейного однородного уравнения, а второе - частным решением линейного
неоднородного уравнения.

Из этой формулы легко получить решение задачи Коши (1.5).
Из начального условия (1.5) находим D = x0.
В результате имеем

x(t) =

x0 + t∫
t0

q(ω)e

t∫
t0

p(τ)dτ

dω

 exp

−
t∫

t0

p(τ)dτ


Докажем единственность решения задачи Коши (1.5).
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2.2.2 Bernoulli Equation

Предположим, что существуют дв а её решения: x1(t) и x2(t).
Составим разность X = x1 − x2.
Функция X(t) удовлетворяет уже однородному уравнению с однородным начальным

условием:  dx1
dt

+ px1 = q,
dx2
dt

+ px2 = q
⇒ dX

dt
= −pX ⇒ X = C exp

−
t∫

t0

p(τ)dτ


X (t0) = x1 (t0)− x2 (t0) = 0 ⇒ C = 0 ⇒ X(t) ≡ 0, t ∈ J ⇒ x1 ≡ x2, t ∈ J

Замечание 1.2.2.
Предполагалось, что (t0, x0) - фиксированная точка.
Формула (1.25) показыв ает зависимость решения задачи Коши (1.5) от начальных

данных.
Её можно записать в виде: x = ϕ (t; t0, x0).
Функция x = ϕ (t; t0, x0) назыв ается общи м решением в фор ме Коши.
Предположим, что можно установить такую зависимость между t0, x0 и некоторым

параметром τ :
t0 = t0(τ), x0 = x0(τ)

что при изменении τ точка (t0, x0) пробегает все интегральные кривые и при этом разным
значениям τ соответствуют разные кривые.

Тогда общее решение в форме Коши x = ϕ (t; t0, x0) превращается в общее решение
x = ϕ (t; t0(τ), x0(τ)) = φ(t; τ).

Воспользуемся этим замечанием и построим функцию, которая будет описывать все
решения уравнения (1.19) во в сей плоскости R2.

Для этого положим x0 = τ и t0 = −τ .
Toгда общее решение будет описываться функцией, зависящей от одного параметра τ :

x = − τ

τ(t+ τ)− 1
, τ ∈ (−∞,+∞)

Например, если зафиксировать значение x0 и положить t0 = τ , то величина t0 играет роль
параметра или произвольной постоянной.

Ниже это замечание будет использовано при исследов ании решений уравнения
Риккати.

Вопрос: может ли решение линейного однородного уравнения (1.22) касаться или
пересекать ось x = 0? 26

2.2.2 Bernoulli Equation

Определение

1.2.4.
Уравнение вида

x′ + p(t)x = q(t)xn, n ̸= 0, 1; t ∈ J

назыв ается уравнением Бернулли.
Предполагается, что q(t), p(t) ∈ ∈ C(J) Уравнение Бернулли всегда интегрируется в

конечном виде.
Действительно, разделим обе части уравнения на xn, считая x ̸= 0.
Тогда
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2.2.3 Riccati

x′

xn
+
p(t)

xn−1
= q(t)

Если произвести подстановку z = x1−n, то в результате для опре деления z(t) получим
линейное уравнение

z′(t) + (1− n)p(t)z = (1− n)q(t)

Согласно формуле (1.24) общее решение линейного уравнение имеет вид

x1−n = CA(t) +B(t)

где C - произвольная постоянная.
Если n > 0, то при делении на xn мы могли потерять нулевое решение.
Проверка показывает, что x(t) = 0, t ∈ J, - решение уравнения Бернулли.
Решим теперь уравнение Бернулли одноимённым методом.
Произведём подстановку x(t) = u(t)v(t), где u(t) и v(t) - неизвестные непрерывно

дифференцируемые функции.
В результате получим уравнение

vu′ + u (v′ + p(t)v) = q(t)vnun

Для опре деления функции v(t) положим

v′(t) + p(t)v(t) = 0

Нетривиальные решения этого уравнения описываются фор мулой (1.23) с постоянной
C ̸= 0.

Среди них выбирается самое простое (например, постоянная C полагается равной
единице).

Уравнение (1.27) становится уранением с р азделяющимися переменными относительно
функции u(t)

2.2.3 Riccati

Определение

1.2.5.
Уравнение вида

x′(t) + p(t)x(t) = q(t)x2 + f(t), t ∈ J

назыв ает ся уравнением Риккати.
Предполагается, что p(t), q(t), f(t) ∈ ∈ C(J)
Уравнение Риккати в общем случае не интегрируется.
Если известно какое-либо его решение x1(t), то произведя подстановку

y(t) = x(t)− x1(t)

мы получим уравнение Бернулли.
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2.2.3 Riccati

Пример уравнения Риккати (???)

Решить уравнение Риккати

t2x′ − 5tx+ t2x2 + 8 = 0, t > 0

(?? чет жесткое какое-то оно, почему?)
Решение.
Из основной теоремы (теоремы существования и единственности решения задачи

Коши) следует, что при t > 0 через каждую точку полуплоскости t > 0 проходит
единственная интегральная кривая.

Найдем частные решения уравнения Риккати.
Будем искать их в виде ϕ(t) = A

t
.

Чтобы найти значения A, подставим функцию ϕ(t) = A
t

в уравнение (P) :

−A− 5A+ A2 + 8 = 0 ⇒ A2 − 6A+ 8 = 0 ⇒ A1 = 2, A2 = 4

В результате мы получили дв а частных решения, а именно ϕ1 =
4
t

и ϕ2 =
2
t
.

Будем искать решения уравнения Риккати в виде

x(t) =
4

t
+ u(t)

Подставив его в уравнение (P ), для определения функции u(t) получим уравнение
Бернулли:

u′ +
3

t
u+ u2 = 0

Произведём подстановку ω = 1
u
.

Функция ω(t) удовлетворяет линейному уравнению, интегрируя которое найдём
решения уравнения (P) :

ω′ − 3

t
ω = 1 ⇒ ω = D1t

3 − t

2
⇒ u =

2

t (2D1t2 − 1)
⇒

⇒ x(t) =
4

t
+

2

t (2D1t2 − 1)

Все решения уравнения (P) при t > 0 описываются функциями[
ϕ1 =

4
t

x(t) = 4
t
+ 2

t(2D1t2−1)

Картина поведения решений уравнения Риккати (Р) при t > 0 представлена на рис. 1.4.
Функция x(t) = 4

t
+ 2

t(2D1t2−1)
, D1 ∈ (−∞, 0], является общим решением в области Ω1 =

{(t, x) : 2 < xt < 4, t > 0}.
По заданной точке (t0, x0) в полуплоскости t > 0 постоянная D1 определяется по

формуле

D1 =
x0t0 − 2

2t20 (x0t0 − 4)

Если искать решения уравнения Риккати в виде

x(t) =
2

t
+ v(t)
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2.2.4 Integrating Factor

то в се решения уравнения (P) при t > 0 будут описываться функция ми[
ϕ2 =

2
t
, t > 0

x(t) = 2
t
+ 2t

t2+D2

При D2 = 0 мы получим решение ϕ1 =
4
t
, а при D2 = ∞− ϕ2.

Если произвести з амену D1 =
−1
2D2

, то множество решений x1(t) ∪ ϕ1(t) перейдёт
во множество решений x2(t) ∪ ϕ2(t).
Рассмотрим решение уравнения Риккати в форме Коши, положив x0 = 1, t0 = τ > 0.
В результате при τ ∈ (2, 4) мы получим функцию, описывающую все решения

уравнения Риккати в области Ω1 в зависимости от параметра τ :

x =
2

t
+

2(τ − 2)t

(τ − 2)t2 + τ 2(4− τ)

Построенная функция удовлет воряет в сем условиям определения 1.1.5 общего решения
уравнения 1-го порядка в области Ω1.

Вопрос: молсно ли построить функции, описывающие все решения уравнения Риккати
в областях Ω2uΩ3?

О другом про уравнение Риккати

(там книги про него вроде написаны, укажу, что вообще есть?)

2.2.4 Integrating Factor

Если левая часть уравнения P (t, x)dt + Q(t, x)dx = 0 не является полным
дифференциалом, то возникает вопрос: нельзя ли найти такую функцию, при
умножении на которую уравнение P (t, x)dt + Q(t, x)dx = 0 станет уравнением в полных
дифференциалах?

Определение

1.2.6.
Функция µ(t, x) ∈ C(Ω), µ(t, x) ̸= 0, называется интегрирующим множителем

уравнения P (t, x)dt + Q(t, x)dx = 0, если при умножении на нее последнее становится
уравнением в полных дифференциалах. Это означает, что существует функция
U ∈ C1(Ω), (t, x) ∈ Ω такая, что µ(Pdt+Qdx) = dU :

µ(Pdt+Qdx) = dU, U ∈ C1(Ω), (t, x) ∈ Ω

Если µ(t, x) ∈ C1(Ω), а функции µP, µQ и область Ω удовлетворяют условиям теоремы
1.4, то
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2.2.4 Integrating Factor

∂(µP )

∂x
=
∂(µQ)

∂t
, (t, x) ∈ Ω

Последнее уравнение можно переписать в виде

Q
∂µ

∂t
− P

∂µ

∂x
= µ

(
∂P

∂x
− ∂Q

∂t

)
, (t, x) ∈ Ω

Для опре деления интегрирующего множителя µ(t, x) мы получили уравнение в частных
производных 1-го порядка.

Его решение 30
является более сложной задачей, чем задача решения уравнения P (t, x)dt+Q(t, x)dx =

0.
О днако нам требуются не все решения уравнения (1.28), а толь ко одно.
На практике интегрирующий множитель часто ищут либо как функцию только от t,

либо от x.
Остановимся на первом случае.
Пусть µ = µ(t) ⇒ ∂µ

∂x
= 0.

Из уравнения (1.28) получаем

dµ

dt
= µ

∂P
∂x

− ∂Q
∂t

Q
,⇒ dµ

µ
=

∂P
∂x

− ∂Q
∂t

Q
dt, (t, x) ∈ Ω

Если правая часть последнего уравнения является только функцией от t, т.е.
∂P
∂x

− ∂Q
∂t

Q
= ω(t), то мы получим µ = Ce

∫
ω(t)dt

Как показывает теорема, доказанная ниже, число интегрирующих множителей для
данного уравнения бесконечно.

Теорема 1.

8.
Если µ(t, x) - интегрирующий мноэситель уравнения P (t, x)dt+Q(t, x)dx = 0, m.e.
µ(Pdt + Qdx) = dU , то интегрирующиим множсителем будет функция µϕ(U), де ϕ

- некоторая непрерывная функция, отличная от нуля. ▷ Имеем ϕ(U)µ(Pdt + Qdx) =
ϕ(U)dU = F ′(U)dU = dF (U).

В качестве функции F (U) можно взять F (U) =
∫
ϕ(U)dU .

Следовательно, µ1 = ϕ(U)µ также является интегрирующим множителем уравнения
P (t, x)dt+Q(t, x)dx = 0.

Можно показать, что полученная формула описывает в сё множество интегрирующих
множителей уравнения P (t, x)dt+Q(t, x)dx = 0 [9].

Теорема 1.8 на практике оказывается очень полезной.
Покажем это на примере.

Пример

1.2.4.
Решить уравнение

x3dt+
(
e−2t − x2

)
dx = 0, x > 0

В силу теоремы 1.8 функция ϕ(t−lnx)
x3

будет интегрирующим множителем уравнения x3dt−
x2dx = 0.

Действительно, умножая уравнение на интегрирующий множитель, получим
ϕ(t−lnx)

x3
(x3dt− x2dx) = ϕ(t− lnx)

(
dt− dx

x

)
= ϕ(t− lnx)d(t− lnx).
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Функция ψ(x)e2t будет интегрирующим множителем уравнения e−2tdx = 0.
Подберем функции ϕ и ψ таким образом, чтобы ϕ(t−lnx)

x2
≡ e2tψ(x) = µ(t, x).

Положим x = 1.
Тогда получим

ϕ(t) = Ce2t, C = ψ(1) ̸= 0 ⇒ ϕ(t− lnx) = Ce2(t−lnx) = Cx−2e2t ⇒

⇒ µ(t, x) = C
e2t

x−5
=⇒ 2e2t

x2
− 1

x4
= C.

Линейное уравнение (1.22), как нетрудно видеть из пункта 1.2.4 (Линейные уравнения),
имеет интегрирующий множитель

µ = exp

−
t∫

t0

p(τ)dτ


уравнение с разделяющимися переменными (1.14), как следует из пункта 1.2.2 (Уравнения
с разделяющимися переменными), имеет интегрирующий множитель 1

T2(t)X1(x)
.

Из этого результата вытекает следующий: если уравнение в дифференциалах
P (t, x)dt + Q(t, x)dx = 0 является однородным с показателем однородности m, то оно
имеет интегрирующий множитель µ = 1

tP+xQ
.

Действительно, произведя подстановку x = tu(t), находим

P (t, tu)dt+Q(t, tu)(udt+ tdu) = 0 ⇒
tm[P (1, u)dt+Q(1, u)(udt+ tdu)] = 0 ⇒

⇒ tm[P (1, u) +Q(1, u)u]dt+ tm+1Q(1, u)du = 0

После умножения уравнения на

µ =
1

tm+1[P (1, u) +Q(1, u)u]

мы получим уравнение с разделяющими переменны ми.
Отсюда следует справедливость нашего утверждения.
(??)

2.2.5 Methods for Solving First-Order Equations Not Solved for the
Derivative

(по идее должна быть компактная теория от Диесперова, потом мб свою добавлю.)

Теория

Рассмотрим дифференциальное уравнение 1-го порядка, неразрешенное относительно
производной:

F (t, x, x′) = 0

в котором t - независимая переменная, а x(t) - искомая функция.
Положим x′ = p.
Будем предполагать, что функция F (t, x, p) определена в области G ⊆ R3

t,x,p, F ∈
C1(G), |∇(F )| ≠ 0

Пусть уравнение F (t, x, x′) = 0 разрешимо относительно x′(t).
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В результате его решения мы получаем одно или несколько уравнений, разрешенных
относительно производной:

dx

dt
= fk(t, x), k ≥ 1

Если вещественные функции fk(t, x) определены в некоторой области D ⊆ R2
t,x и

удовлетворяют условиям теоремы 1.1, то через любую точку (t0, x0) ∈ D проходит одна и
только одна интегральная кривая x = xk(t) каждого из уравнений (1.30).

Эти интегральные кривые также являются интегральными кривыми уравнения
F (t, x, x′) = 0.

Наклон касательной к интегральной кривой x = xk(t) в точке (t0, x0) определяется
значением p0k = fk (t0, x0).

Отметим, что числа (t0, x0, p0k) удовлетворяют уравнению F (t, x, x′) = 0, т.е.
F (t0, x0, p0k) = 0.

Пусть значения p0k различны, и их число равно n.
Тогда через точку (t0, x0) проходит n различных интегральных кривых уравнения

F (t, x, x′) = 0.
Поэтому если требуется выделить одну из них, то необходимо задать
не только начальные данные (t0, x0), но и значение p0k = x′k (t0).

Пример

Рассмотрим уравнение t2x′2 + txx′ − 2x2 = 0, t > 0.
Разрешая его относительно x′, получим x′ = x

t
, x′ = −2x

t
.

Решениями этих уравнений являются функции x = C1t, x = C2

t2
.3 десь C1, C2 -

произвольные постоянные.
От сюда видно, что через каждую точку (t0, x0) , t0 > 0 плоскости R2

t,x проходят две
интегральные кривые.

Чтобы выделить одну из них (например, первую), нужно потребовать
x (t0) = x0, x

′ (t0) =
x0
t0
·

Если уравнение F (t, x, x′) = 0 не удается разрешить относительно производной x′(t),
то его решения часто находятся в параметрической форме.

Определение

Пара функций < ϕ(τ), ψ(τ), τ ∈ T >, называется решением уравнения F (t, x, x′) = 0 в
параметрической форме, если

1) функции ϕ(τ), ψ(τ) ∈ C1(T );ϕ′(τ) ̸= 0, τ ∈ T ;

2)
(
ϕ(τ), ψ(τ), ψ

′(τ)
ϕ′(τ)

)
∈ G для любого τ ∈ T

3) F
(
ϕ(τ), ψ(τ), ψ

′(τ)
ϕ′(τ)

)
= 0 для любого τ ∈ T Здесь предполагается, что T является

интервалом.
Интегральной кривой уравнения F (t, x, x′) = 0 будет кривая t = ϕ(τ), x = ψ(τ), τ ∈ T ,

на плоскости R2
t,x.

В силу определения она является гладкой.
Положим x′ = p и запишем уравнение F (t, x, x′) = 0 в виде F (t, x, p) = 0.
Будем рассматривать t, x, p как декартовые координаты.
Уравнение F (t, x, p) = 0 задает в области G ⊆ R3

t,x,p некоторое множество S.
Если оно не пусто, то S - гладкая поверхность, заданная неявно.
Каждому решению φ(t), t ∈ J , в пространстве R3

t,x,p отвечает кривая
Γ = {(t, x, p) : x = φ(t), p = φ′(t), t ∈ J}.
Назовём её интегральной кривой уравнения в R3

t,x,p.
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Так как F (t, φ(t), φ′(t)) = 0, то она лежит на поверхности S : Γ ⊂ S.
Но не в сякая гладкая кривая, лежащая на поверхности S, является интегральной

кривой уравнения F (t, x, p) = 0, т.к. в каждой её точке должно выполняться соотношение
dx− pdt = 0.

Пусть некоторая кривая Γ на поверхности S удовлетворяет данному соотношению и
описыв ается функциями t = ϕ(τ), x = ψ(τ), p = χ(τ).

Первые две функции определяют кривую γ в плоскости R2
t,x.

Будем предполагать, что ϕ′(τ) ̸= 0, и, следовательно, функция ϕ(τ) обратима и τ
можно выразить через t.

В результате кривая γ будет описываться некоторой функцией x = φ(t).
Вдоль кривой Γ мы, по предположению, имеем dx− pdt = 0 ⇒ p = φ′(t).
Так как кривая Γ лежит на поверхности S, то F (t, φ(t), φ′(t)) = 0.
Следовательно, она - интегральная кривая.
Кривая γ являет ся проекцией Γ на плоскость R2

t,x и является интегральной кривой
уравнения F (t, x, x′) = 0 в плоскости R2

t,x.
Гладкая поверхность, заданная неявно, описыв ает ся локально с помощью двух

параметров.
Обозначим их u, v.
Пусть уравнение F (t, x, p) = 0 допускает в некоторой области D ⊆ R2

u,v

параметрическое представление: t = ϕ(u, v), x = ψ(u, v), p = χ(u, v), (u, v) ∈ D, где
χ(u, v) ∈ C(D), a ϕ(u, v), ψ(u, v) ∈ C1(D).

Под этим следует понимать: 1) отображение (u, v) −→ (ϕ(u, v), ψ(u, v), χ(u, v)) является
взаимно однозначны м отображением D на S; 2) F (ϕ(u, v), ψ(u, v), χ(u, v)) = 0 для любых
(u, v) ∈ D Покажем, что в этом случае интегриров ание уравнения F (t, x, x′) = 0 сводится
к интегрированию уравнения, разрешенного относительно производной.

Считая параметры u и v независимыми переменными, вычислим дифференциалы
функций t = ϕ(u, v) и x = ψ(u, v).

Имеем dt = ∂ϕ
∂u
du+ ∂ϕ

∂v
dv, dx = ∂ψ

∂u
du+ ∂ψ

∂v
dv.

Мы получи м некоторую кривую на поверхности S, если установим соответствующим
образом связь между u и v.

Однако она будет интегральной кривой тогда и только тогда, когда выполняется
соотношение dx− pdt = 0.

Из него мы получим дифференциальное уравнение

∂ψ

∂u
du+

∂ψ

∂v
dv − χ(u, v)

(
∂ϕ

∂u
du+

∂ϕ

∂v
dv

)
= 0 ⇒

⇒
(
∂ψ

∂v
− χ

∂ϕ

∂v

)
dv =

(
χ
∂ϕ

∂u
− ∂ψ

∂u

)
du

34
которое свяжет между собой u и v нужным образом.
Уравнение (1.31) является уравнением в дифференциалах.
Предположим, что оно в некоторой области имеет общее решение v = w(u,C), C =

const.
Тогда при подстановке функций

t = ϕ(u,w(u,C)), x = ψ(u,w(u,C)), x′ = p = χ(u,w(u,C)) в уравнение F (t, x, x′) = 0 оно
обратится в тождество.

Следовательно, мы получили общее решение уравнения F (t, x, x′) = 0 в
параметрической форме.
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Частные случаи неразрешенных относительно производной уравнений (!!)

Если уравнение F (t, x, x′) = 0 можно разрешить относительно x или t, то его
интегрирование не представляет сложности.

1.

Пусть уравнение F (t, x, x′) = 0 разрешено относительно x : x = f (t, x′).
Положив x′ = p, получим x = f(t, p).
В качестве параметров (u, v) возьмём t и p.
Будем считать, что функция f непрерывно дифференцируемая.
Из соотношения dx = pdt получим уравнение(

∂f

∂t
− p

)
dt+

∂f

∂p
dp = 0

которое служит для опре деления связи между p и t.
Уравнение (1.32) также можно получить из уравнения (1.31).
Предположим, что уравнение (1.32) в некоторой области имеет общее решение либо в

виде p = p(t, C), либо в виде t = t(p, C).
Тогда мы получим общее решение уравнения (1.32) либо в виде x = x(t, p(t, C)), либо

в параметрической фopme {
x = x(t(p, C), p)
t = t(p, C)

2.

Пусть теперь уравнение (1.1) можно представить в виде

t = f (x, x′)

Положив x′ = p, будем иметь t = f(x, p).
В качестве параметров возьмём x и p.
Функцию f(x, p) будем считать непрерывно дифференцируе мой.
Тогда из уравнений (1.33) и dx = pdt следует уравнение(

p
∂f

∂x
− 1

)
dx+ p

∂f

∂p
dp = 0

Предположим, что оно в некоторой области имеет общее решение либо в виде p = p(x,C),
либо в виде x = x(p, C).

Тогда уравнение (1.33) (а значит, и уравнение F (t, x, x′) = 0) будет иметь
соответственно общее решение либо в виде t = f(x, p(x,C)), либо в параметрической
форме: {

t = f(x(p, C), p)
x = x(p, C)

уравнение Лагранжа (!?!?!)

Рассмотрим линейное относительно x и t уравнение: x = ϕ(p)t+ +ψ(p), в котором ϕ(p)
и ψ(p) - непрерывно дифференцируемые функции.

Если ϕ(p)��≡p, то это уравнение называется уравнением Лагранжа.
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Из соотношения dx = pdt получаем дифференциальное уравнение

ϕ(p)dt+ ϕ′(p)tdp+ ψ′(p)dp = pdt⇒ (p− ϕ(p))dt = (tϕ′(p) + ψ′(p)) dp

которое служит для определения связи между t и p.
Это уравнение относительно переменной t являет ся линейным:

dt

dp
=

tϕ′(p)

p− ϕ(p)
+

ψ′(p)

p− ϕ(p)

Интегрируя его, получаем решения в параметрическом виде:{
t = B(p) · C + A(p)
x = ϕ(p)t+ ψ(p), C = const

Здесь мы воспользовались фор мулой (1.24) для общего решения линейного уравнения.
Пусть уравнение ϕ(p)− p = 0 имеет решения p = pi.
Тогда функции x = pit+ψ (pi), графики которых являются прямыми линия ми, могут

быть как частными решениями уравнения Лагранжа, так и особыми.

Уравнение Клеро (!??!?!?)

Если ϕ(p) ≡ p, то мы будем иметь уравнение Клеро:

x = pt+ ψ(p), t ∈ (α, β)

Для его решения используем схему решения уравнения Лагранжа.
Из соотношения dx = pdt находим pdt = tdp+pdt+ψ′(p)dp, что даёт нам (t+ ψ′(p)) dp =

0.
Отсюда следует: a) dp = 0 ⇒ p = C.
Значит, найденное однопараметрическое семейство решений имеет вид

x = Ct+ ψ(C)

36
а соответствующие им интегральные кривые являются прямыми линиями; b) t =

−ψ′(p). В этом случае уравнение Клеро имеет решение в параметрической фopme:{
t = −ψ′(p)

x = −pψ′(p) + ψ(p)

Если ψ(p) дв ажды непрерывно дифференцируемая функция и выполняет ся неравенство
ψ′′(p) ̸= 0, то решение t = −ψ′(p), x = pt+ ψ(p) является особым.

Ниже в разделе 2.4 главы 2 это утверждение будет доказано.

2.2.6 Method of Reducing the Order of Differential Equations (??)

(?? хз, о чем тут Диесперов, мб и нормальный метод, мб важный, просто не до него
пока что, ну и скорее всего потом дальше будет все подробно про него, а тут как раз такое
указание.)

Диффуры высших порядков

Пусть функция F (t, x, x1, ..., xn) определена и непрерывна в некоторой области G ⊆
Rn+2(n ≥ 1).
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Определение

Уравнение вида
F
(
t, x, x′, ..., x(n)

)
= 0

в котором t - независимая переменная, x(t) - неизвестная функция, а x′, ..., x(n) - её
производные, назыв ается дифференциальным уравнением n-го порядка.

(Порядок старшей производной, входящей в уравнение, называется порядком
уравнения.)

Определение

1.4.2.
Функция x = ϕ(t), определенная на интервале Jt ⊆ R1, называет ся решением

уравнения (1.34), если 1) ϕ(t) ∈ C(n) (Jt) 2)
(
t, ϕ(t), ..., ϕ(n)(t)

)
∈ G для любого t ∈ Jt 3)

F
(
t, ϕ(t), ..., ϕ(n)(t)

)
= 0 для любого t ∈ Jt. Ниже будут рассмотрены некоторые частные

случаи уравнения (1.34), когда его интегрирование или понижение порядка возможно
осуществить на основании теории однопараметрических групп преобразований.

Однопараметрические группы преобразований на плоскости

В плоскости R2 точек (t, x) рассмотрим семейство {Tα, α ∈ J} обр ати мых преобр азов
аний

Tα : τ = ϕ(t, x;α), η = ψ(t, x;α)

зависящих от одного параметра α ∈ J , где J - интервал из R1.
Функции ϕ и ψ, так же как и все встречающиеся ниже функции, предполагаются

достаточно гладкими по совокупности аргументов.
Каждому фиксированному значению параметра α ∈ J соответствует конкретное

преобразование Tα, которое переводит точки (t, x) в новые точки (τ, η) плоскости R2.
Обозначим через TβTα произведение двух преобразований Tα и Tβ, через I -

тождественное преобразование, а через T−1
α - обратное к Tα преобразование.

По определению имеем TαT
−1
α = T−1

α Tα = I.
Прежде чем продолжить изложение, напомним определение группы.

Определение

1.4.3.
Операцией умножения на множестве G называется правило, по которому любым двум

элементам x, y ∈ G ставится в соответствие некоторый элемент γ(x, y) ∈ G.

Определение

1.4.4.
Семейство G = {Tα, α ∈ J} преобразований (1.35) образует однопараметрическую

группу преобразов аний, если 1) для любых α, β ∈ J существует единственный параметр
γ(α, β) ∈ ∈ J такой, что TβTα = Tγ(α,β) ∈ G 2) существует α0 ∈ J такой, что

Tα0 = I ∈ G

3) для любого α ∈ J существует α−1 ∈ J такой, что T−1
α = Tα−1 ∈ ∈ G Первое условие

означает, что после довательное применение двух преобразований сначала Tα ∈ G, а
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затем Tβ ∈ G равносильно применению преобразования Tγ ∈ G с параметром γ(α, β) ∈ J ,
который однозначно определяется значениями α и β.

Функция γ = γ(α, β) задает закон умножения преобразований на множестве G =
{Tα, α ∈ J} и ниже предполагается достаточное число раз дифференцируемой.

Заметим, что в случае группы преобразов аний свойство ассоциативности 38
всегда имеет место (доказать самим).
Так как преобразование Tα0 = I, то Tα0Tα = Tα, а значит, γ (α, α0) = α.
С другой стороны, TβTα0 = Tβ и γ (α0, β) = β.
В результате для любых α, β ∈ J имеем

γ (α, α0) = α, γ (α0, β) = β

Замечание 1.4.1.
Преобразования, образующие однопараметрическую группу, могут быть заданы как

на всей плоскости R2, так и в некоторой области X ⊆ R2.
Во втором случае преобразование (1.35) при любом α ∈ J переводит точку (t, x),

принадлежащую X, в точку (τ, η), также принадлежащую X.

Определение

Параметр α называет ся каноническим, если функция γ(α, β) имеет вид: γ(α, β) =
α + β.

Тогда в терминах функций (1.35) формула умножения преобр азов аний TβTα = Tα+β
запишется следующим образом:

ϕ(ϕ(t, x;α), ψ(t, x;α); β) = ϕ(t, x;α + β)

ψ(ϕ(t, x;α), ψ(t, x;α); β) = ψ(t, x;α + β)

Замечание 1.4.2.
Если ввести новый параметр θ = θ(α), где θ(α) - строго монотонная функция, то,

вообще говоря, функция γ и интервал J изменятся.
При этом θ станет новым параметром группы.
Ниже будет показано, что всегда существует замена, приводящая к каноническому

параметру.
Для пояснения вышеприведенных определений произведём несколько примеров

преобразований (1.35).
1.
Группа переносов G в доль оси x состоит из преобразований

Tα : τ = t, η = x+ α,
(
α ∈ R1

)
определенных на всей плоскости R2.

В результате двух последовательных переносов получим

τ1 = t, η1 = x+ (α + β)

Значит, γ(α, β) = α + β и параметр α является каноническим.
Далее α−1 = −α и α0 = 0.
Нетрудно видеть, что преобразования, образующие группу переносов вдоль оси x,

могут быть также заданы на любой
полосе X = {a ≤ t ≤ b, |x| <∞}.
Аналогично определяется группа переносов в доль оси t.
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2.
Семейство преобразований

Tα : τ = αt, η = α2x, (α ∈ (0,+∞))

действующих на всей плоскости R2, образуют однопараметрическую группу растяжений.
3десь мы имеем γ(α, β) = αβ, α0 = 1, α−1 =

1
α
.

Это семейство будет также образовывать однопараметрическую группу
преобразований, если их задать в полуплоскости R2

+ = {(t, x) ∈} ∈ R2, t > 0} или
R2

− = {(t, x) ∈ R2, t < 0}, либо, например, в любом из четырех квадрантов.
В этом примере параметр θ = lnα будет каноническим.
3) Следует от метить, что не всякая совокупность преобразований (1.35) образует

однопараметрическую группу.
Возьмем

τ = t+ α, η = x+ α2, α ∈ (−∞,+∞)

Тог да τ1 = t+ (α + β), η1 = x+ (α2 + β2) , β ∈ (−∞,+∞).
Однако з десь не выполняется условие 1 определения однопараметрической группы,

т.к. (α + β)2 ̸= α2 + β2.

Определение

1.4.6.
Функция U(t, x) называется инвариантом однопараметрической группы

преобразований (1.35), если для всех допустимых (t, x) и всех α ∈ J выполняется
равенство

U(τ, η) = U(t, x)

Выше в пункте 1 инвариантом группы переносов является функция U(t, x) = t.
В пункте 2 - функция U = xt−2( при t ̸= 0).
Теория однопараметрических групп широко применяется при решении многих

нелинейных задач механики и физики.
Используемые при их исследовании преобразования часто рассматриваются не на всём

открытом множестве X × J , на котором они определены, а на некотором его сужении
X1 × Jα0 таком, что X1 ⊂ X, Jα0 ⊂ J , где Jα0 - некоторая окрестность точки α0.

Однопараметрические группы могут также рассматриваться на множестве X × Jα0 .

Определение

1.4.7.
Пусть условия 1 − 3 в определении однопараметрической группы преобр азов аний G

выполняются не для всех значений 40
(t, x) ∈ X и всех значений параметра из некоторого фиксиров анного интервала J , а

только для (t, x) ∈ X1 и значений параметров α, β и γ(α, β) в некоторой достаточно малой
окрестности значения α0.

Тогда G называют локальной однопараметрической группой преобразований.
Если рассматривать эти преобразования сразу на множестве X1× ×Jα0 , то группу G

можно называть просто однопараметрической группой.
Это связано с тем, что её преобразования удовлетворяют требованиям 1−3 определения

однопараметрической группы.
Более подробно с теорией однопараметрических групп можно ознакомиться в работе

[3], в которой она довольно просто изложена.
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Сформулируем и докажем лемму и теорему, что позволит лучше понимать излагаемый
ниже материал.

Лемма

1.1.
Во всякой локальной однопараметрической группе можно ввести канонический

параметр.

Теорема

1.9.
Всякая локальная однопараметрическая группа преобразований при помощи

подходящей замены переменных

(t, x) → (u(t, x), v(t, x))

и замены параметра α → θ(α) приводится к локальной группе переНосов

Tθ : ũ = u, ṽ = v + θ

Переменные u и v, представленные в теореме 1.9 (так же как и параметр θ), называются
канонич ескими.

Для доказательства высказанных утверждений запишем групповое свойство 1)
определения 1.18 в виде

τ1 = ϕ(τ, η; β) = ϕ(t, x; γ(α, β))

η1 = ψ(τ, η; β) = ψ(t, x; γ(α, β))

Функция γ(α, β) подчиняется условиям (1.36).
Дифференцируя обе части этих равенств по β и полагая β = α0, получим согласно

(1.36) уравнения 
∂ϕ
∂β
(τ, η; β)

∣∣∣
β=α0

= ∂ϕ
∂α
(x, t;α)

(
∂γ
∂β
(α, β)

)∣∣∣
β=α0

∂ψ
∂β
(τ, η; β)

∣∣∣
β=α0

= ∂ψ
∂α
(x, t;α)

(
∂γ
∂β
(α, β)

)∣∣∣
β=α0

Если ввести обозначения

1

λ
=
∂γ

∂β
(α, β)

∣∣∣∣
β=α0

, ξ(τ, η) =
∂ϕ

∂β
(τ, η; β)

∣∣∣∣
β=α0

, ζ(τ, η) =
∂ψ

∂β
(τ, η; β)

∣∣∣∣
β=α0

то полученная система вместе с начальны ми условиями прини мает вид

∂τ

∂α
= λ(α)ξ(τ, η),

∂η

∂α
= λ(α)ζ(τ, η)

τ = t, η = x при α = α0

Решением задачи Коши (1.38) при заданных ξ и ζ и фиксированных t и x являются
функции (1.35), определяющие исходную однопараметрическую группу преобразований.

Зафиксируем t и x и введем новый параметр θ =
α∫
α0

λ(σ)dσ.

В результате задача Коши (1.38) преобразуется к канониче скому виду:

dτ

dθ
= ξ(τ, η),

dη

dθ
= ζ(τ, η)

τ = t, η = x при θ = 0, (α = α0)
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Уравнения (1.39) называются уравнениями Ли.
Они лежат в основе использования теории однопараметрических групп при решении

дифференциальных уравнений [3].
Предполагается, что в области, в которой рассматриваются уравнения (1.39), функции

ξ(τ, η), ζ(τ, η) непрерывно дифференцируемые, а величина ξ2 + ζ2 ̸= 0.
Точки, в которых ξ2 + η2 = 0, называются стационарными точками

однопараметрической группы.
Предположим, что в окрестности точки (t, x), в которой система уравнений Ли (1.39)

определена, величина ξ > 0.
Поэтому её можно представить в следующей эквивалентной форме:

dη

dτ
=
ζ(τ, η)

ξ(τ, η)
,

dτ

ξ(τ, η)
= dθ

Из теоремы 1.2[5, 10] следует, что все решения 1-го уравнения системы в некоторой
окрестности точки (t, x) могут быть описаны 42

общим интегралом ∆1(τ, η) = C1.
Используя его при интегрировании второго уравнения системы, получим

∆2(τ, η) = C2 + θ

Постоянные C1 и C2 определяются из начальных условий (1.40).
В результате имеем

∆1(τ, η) = ∆1(t, x), ∆2(τ, η) = ∆2(t, x) + θ

Эти соотношения дают решение задачи Коши (1.39) ∧ (1.40).
Если произвести невырожденную замену переменных (это следует из теорем 10.2 и 10.3

в главе 10):

u = ∆1(t, x), v = ∆2(t, x)

то согласно формулам (1.41) локальная однопараметрическая группа преобразований,
порождённая решением задачи Коши (1.39), (1.40), при достаточно малых θ приводится к
группе переносов:

u1 = u, v1 = v + θ

Подчеркнём, что одна из переменных, а именно u, являет ся инвариантом группы.
Обратим также в ни мание, что теорема носит, вообще говоря, локальный характер

(замечание 1.4.1).
В ней показано, что в окрестности любой точки, не являющейся стационарной,

локальная однопараметрическая группа приводит ся к локальной группе переноCOB.
Замечание 1.4.3.
Правые части системы уравнений (1.39) не зависят от переменной θ.
Такие системы называются автономными.
лементы теории автономных систем изложены в главе 8.
Задача Коши для всякой автономной системы порождает локальную

однопараметрическую группу преобразований, для которой независимая переменная
системы (в нашем случае θ) является каноническим параметром.

Это утверждение будет доказано в главе 8.
Стационарные точки однопараметрических групп для автономных систем в этой главе

носят название точек равновесия.

49



2.2.6 Method of Reducing the Order of Differential Equations (??)

Фазовые траектории автономной системы в некоторой окрестности точки, не
являющейся стационарной, ведут себя как прямые линии.>

Замечание 1.4.4.
Будем считать здесь, что в (1.35) параметр α является каноническим.
Возьмём α = α0 и рассмотрим преобразование

τ = ϕ (t, x;α0 +∆α) , η = ψ (t, x;α0 +∆α) , α0 +∆α ∈ J

Если ∆α → 0, то преобразование будет отличаться от тождественного на бесконечно
малую величину и по этой причине называться инфинитезимальны м (или бесконечно
малым) преобразованием.

Разложим функции ϕ(t, x;α), ψ(t, x;α) по формуле Тейлора по параметру α в
окрестности точки α0 и запишем инфинитезимальное преобразование в виде

τ = ϕ (t, x;α0 +∆α) = ϕ (t, x;α0) +
∂ϕ (t, x;α0)

∂α
∆α + o(∆α) =

= t+ ξ(t, x)∆α + o(∆α)

η = ψ (t, x;α0 +∆α) = ψ (t, x;α0) +
∂ψ (t, x;α0)

∂α
∆α + o(∆α) =

= x+ ζ(t, x)∆α + o(∆α)

При выводе этих формул использовались соотношения, опре деляющие функции ξ и ζ.
Вектор (ξ, ζ) являет ся касательным в точке (t, x) к кривой, которая описывает ся

точками (τ, η) в R2 при изменении параметра α согласно формулам (1.35).
Такие кривые называются орбитами точки (t, x).
Однопараметрическая группа преобразований однозначно определяется своим

касательным векторным полем (ξ, ζ), если ξ2 + ζ2 ̸= 0 Сказанное выше резюмирует
теорема Ли.

Теорема 1.

10.
Если функции ϕ(t, x;α), ψ(t, x;α) в бормулаx (1.35) удовлетворяют груповому свойству

(1.37) и имеют разложсения (1.42), то они являются решением задачи Коши (1.39), (1.40).
Если жсе задано ладкое векторное noлe (ξ, ζ) (ξ2 + ζ2 ̸= 0), то решение задачи Коши

(1.39), (1.40) однозначно определяет однопараметрическую группу преобразований (1.35)
(свойство 6 автономных систем в главе 8), для которой это поле является касательным.

Определение

1.4.8.
Две однопараметрические группы преобразований называются подобными, если одну

можно привести к другой при помощи невырожденной замены переменных и
невырожденной замены параметра. 44

Рассмотрим семейство преобразований из пункта 2, которые действуют на
полуплоскости R+.Они образуют однопараметрическую группу преобразов аний.

В этом случае уравнения (1.38) принимают вид

∂τ

∂α
=
τ

α
,

∂η

∂α
= 2

η

α
, t > 0

Уравнения Ли и начальные условия запишем следующим образом:
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dτ

τ
=
dη

2η
=
dα

α
= dθ

τ = t, η = x при θ = 0

θ = α∫
α0=1

dα

α
= lnα


Решение этой задачи Коши при t > 0 нетрудно представить в виде

η

τ 2
= C1, ln τ − θ = C2

Учитывая начальные условия, находим

η

τ 2
=
x

t2
, ln τ = ln t+ θ

Следовательно, мы можем перейти к каноническим переменным

u =
x

t2
, v = ln t, t > 0

сразу во всей полуплоскости R2
+.

Замена переменных является невырожденной, и в результате неё полуплоскость R2
+

взаи мно однозначно отображается на в сю плоскость (u, v).
Следовательно, однопараметрическая группа G = {Tα, α ∈ (0,+∞)}, действующая на

полуплоскости R2
+, подобна группе переносов с канониче ским параметром θ = lnα,

действующей на всей плоскости (u, v).

Инвариантность дифференциального уравнения относительно
однопараметрической группы преобразований

Мы будем говорить, что два дифференциальных уравнения n-го порядка равносильны,
если каждое решение одного уравнения является также решением другого, и наоборот. 45

Определение

1.4.9.
Уравнение (1.34) называет ся инвариантным относительно однопараметрической

группы преобразований G, если при замене переменных (t, x) в нём по формулам (1.35)
мы получим в новых переменных (τ, η) для определения решения η = η(τ) уравнение,
равносильное исходному при всех α ∈ J .

В этом случае также говорят, что уравнение (1.34) допускает группу G.
Возь мё м n = 1.
Тогда новые пере менные (τ, η) и производная dη

dτ
выражаются через старые координаты

(t, x) и производную dx
dt

следующим обр азом:

τ = ϕ(t, x;α), η = ψ(t, x;α),
dη

dτ
=

∂ψ
∂t

+
(
∂ψ
∂x

)
x′

∂ϕ
∂t

+
(
∂ϕ
∂x

)
x′

Аналогично находятся величины
(
τ, η, dη

dτ
, d

2η
d2τ

)
, если n = 2, и т.д. Пример 1.4.1.

Уравнение
txx′′ + tx′2 − 2x2 = 0
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инвариантно относительно группы растяжений

G : τ = t, η = αx, α > 0

Действительно,
α−2

(
τηη′′ + τη′2

)
− wα−2η2 = 0

Отсюда имеем
α−2

(
τηη′′ + τη′2 − 2η2

)
= 0

Для определения решения η(τ) получилось уравнение, равносильное исходному.
Порядок уравнения (1.34) заведомо можно понизить, если оно имеет вид,

F
(
t, x′, ..., x(n)

)
= 0

так как функция x не входит явно в уравнение.
Действительно, произведём замену

y = x′

В результате уравнение (1.34) становится уравнением (n − 1)-го порядка относительно
функции y.

Теорема 1.

11.
Пусть в переменныx (u, v) уравнение (1.34) инвариантно относительно группы

переносов.
Тогда уравнение (1.34) в переменных (u, v) имеет вид

Φ

(
u,
dv

du
, ...
dnv

dun

)
= 0

Док азат ель ст во.
уравнение (1.34) преобразует ся к виду

Φ

(
u, v,

dv

du
, ...,

dnv

dun

)
= 0

По условию теоремы имеем, что уравнение

Φ

(
u, v + θ,

dv

du
, ...
dnv

dun

)
= 0

при любом θ эквивалентно уравнению (1.45).
Следовательно, Φ не зависит явно от v, и мы приходим к уравнению (1.44).
Приняв dv/du за новую неизвестную функцию, понизим порядок уравнения.
Резюме.
Пусть уравнение (1.34) допускает однопараметрическую группу преобразов аний G и

из уравнений Ли мы можем найти канонические переменные (u, v) (например, в виде
элементарных функций) и канонический параметр θ.

При переходе к ним однопараметрическая группа G приводится к группе переносов.
Свойство инвариантности уравнения относительно какой-либо группы не зависит от

выбора переменных, поэтому уравнение (1.34) после перехода к каноническим
переменным (u, v) перейдёт в уравнение, в которое явно не входит одна их этих
переменных. Следовательно, оно интегрируемо в квадратурах в случае уравнения 1-го
порядка или допускает понижение в случае уравнения более высокого порядка.

(дальше очень мощная и крутая теория, на которую я забил просто и всё.)
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2.3 Study of the Cauchy Problem

2.3 Study of the Cauchy Problem

2.3.1 Essence

Теория

Основные определения и предварительные сведения для нормальных систем
обыкновенных дифференциальных уравнений

2.3.2 Theorem on Existence and Uniqueness of the Solution of the
Cauchy Problem for a Normal System of Equations

Теория

Доказательство (!!!)

О нюансах (!!)

(их много, знаю.)

2.3.3 Domain of Existence of the Solution

Теория

2.3.4 First-Order Differential Equations Not Solved for the Derivative

Теория

2.3.5 Dependence of Solutions on Initial Data and Parameters

Теория

2.3.6 Cauchy Problem for an nth-Order Equation Solved for the High-
est Derivative

Теория

Задача Коши, теорема существования и единственности её решения

53



2.4 Linear Differential Equations with Variable Coefficients

2.4 Linear Differential Equations with Variable Coefficients

2.4.1 Normal Systems of Linear Differential Equations

Теория

2.4.2 Basic definitions, Cauchy problem, theorem of existence and
uniqueness of the Cauchy problem solution

Теория

2.4.3 Existence of a fundamental system of solutions for a linear ho-
mogeneous system of differential equations

Теория

2.4.4 Liouville-Ostrogradsky formula for systems with c =const

Теория

Теорема 3.3. Пycmь x⃗i(t) = colon (xi1, · · · , xin) , t ∈ J, i = 1, n, - peшения системы
линейных однородных дифференциальных уравнений (3.2). Тогда для любых t, t0 ∈ J
имеет место формула Лиувилля Остроградского:

W (t) = W (t0) e

t∫
t0

n∑
k=1

pkk(τ)dτ

.

Доказательство. Из (3.7) находим

dW

dt
=
dW T

dt
=

n∑
k=1

∣∣∣∣∣∣
x11 · · · dx1k

dt
· · · x1n

· · · · · · · · · · · · · · ·
xn1 · · · dxnk

dt
· · · xnn

∣∣∣∣∣∣ =
n∑
k=1

Wk.

Согласно однородной системе уравнений (3.2) для функций xlk, l, k = 1, n имеем

dxlk
dt

=
n∑
i=1

pkixli

Подставляя в определитель Wk, получаем

Wk =

∣∣∣∣∣∣∣∣∣
x11 · · ·

n∑
i=1

pkix1i · · · x1n

· · · · · · · · · · · · · · ·
xn1 · · ·

n∑
i=1

pkixni · · · xnn

∣∣∣∣∣∣∣∣∣ =

=

∣∣∣∣∣∣
x11 · · · pkkx1k · · · x1n
· · · · · · · · · · · · · · ·
xn1 · · · pkkxnk · · · xnn

∣∣∣∣∣∣ = pkkW,

dW

dt
=

n∑
k=1

pkkW ⇒ W (t) = Ce

t∫
0

n∑
k=1

pkk(τ)dτ
.

Из начальных условий находим: C = W (t0). Следствие 3.3.1. Если W (t0) = 0 для
некоторого t0 ∈ J , то W (t) = 0 для любого t ∈ J . Если W (t0) ̸= 0 для некоторого t0 ∈ J ,
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2.4.5 Structure of solutions of a linear homogeneous system of differential equations

то W (t) ̸= 0 для любого t ∈ J Замечание 3.1.2. Результат интегрирования уравнения для
W (t) можно представить в виде

W (t) = Ce

∫ n∑
k=1

pkk(t)dt
· ⋄

Замечание 3.1.3. Рассмотрим уравнение второго порядка

a0x
′′ + a1x

′ + a2x = f(t), a0 ̸= 0, t ∈ J.

Произведя замену y = x′, получим систему, являющуюся системой (2.46) при n = 2:{
x′ = y,

y′ = −a2
a0
x− a1

a0
y − f(t)

a0
.

Из системы (3.11) следует

n∑
k=1

pkk = −a1
a0

⇒ W (t) = Ce
−

∫ a1(t)
a0(t)

dt · ⋄

2.4.5 Structure of solutions of a linear homogeneous system of differ-
ential equations

Теория

Теорема 3.4. Пусть φ⃗1(t), · · · , φ⃗n(t), t ∈ J - ФСР линейной однородной системы
дифференциальных уравнений. Тогда для любого её решения x⃗(t), t ∈ J , существует
такой набор постоянных Ci, i = 1, n, что

x⃗(t) =
n∑
i=1

Ciφ⃗i(t).

Доказ ательство. Возьмем какое-либо значение переменной t0 ∈ J . Векторы φ⃗i (t0)
образуют базис, поэтому вектор x⃗ (t0) может быть разложен по этому базису.

x⃗ (t0) =
n∑
i=1

Ciφ⃗i (t0) .

Рассмотрим решение

x⃗⋆(t) =
n∑
i=1

Ciφ⃗i(t).

При t = t0 по построению имеем x⃗ (t0) = x⃗⋆ (t0). Тогда по теореме существования и

единственности получаем x⃗(t) = x⃗⋆(t) =
n∑
i=1

Ciφ⃗i(t) для любого t ∈ J .

От сюда следует, что функция x⃗(t) =
n∑
i=1

Ciφ⃗i(t), где Ci, i = 1, n, - произвольные

постоянные, является общим решением системы линейных однородных
дифференциальных уравнений: любое решение может быть представлено в таком виде и

любая линейная комбинация функций
n∑
i=1

Ciφ⃗i(t) также является решением. Отсюда

вытекает, что размерность пространства решений линейной однородной системы (3.2)
равна n.

55



2.4.6 Solving the Cauchy problem for a linear system of differential equations by the method
of variation of constants

Теорема 3.5. Пусть X⃗(t), t ∈ J , - какое-либо частное решение линейной неоднородной
системы уравнений (3.1), а φ⃗(t), i = 1, n, - фундаментальная система решений
соответствующей линейной однородной системы (3.2). Тогда для любого решения
x⃗(t), t ∈ J , линейной неоднородной системы (3.1) существует такой набор постоянныx,
что

x⃗(t) = X⃗(t) +
n∑
i=1

Ciφ⃗i(t).

Доказательство. Произведем замену z⃗(t) = x⃗(t)− X⃗(t) в системе (3.1):

dz⃗

dt
+
dX⃗

dt
= P z⃗ + PX⃗ +

−−→
f(t) ⇒ dz⃗

dt
= P z⃗.

Из предыдущей теоремы вытекает

z⃗(t) =
n∑
i=1

Ciφ⃗i(t) ⇒ x⃗(t) = X⃗(t) +
n∑
i=1

Ciφ⃗i(t)

Таким образом, решение x(t), t ∈ J неоднородной линейной системы уравнений (3.1)
состоит из двух слагаемых, одно из которых является общим решением однородной
системы, а другое - частным решением неоднородной системы. Определённая в теореме
3.5 функция x(t), t ∈ J является общим решением неоднородной линейной системы
уравнений (3.1).

2.4.6 Solving the Cauchy problem for a linear system of differential
equations by the method of variation of constants

Теория

Пусть φ⃗i(t), t ∈ J, i = 1, n, - фундаментальная система решений однородной системы
(3.2). Решим задачу Коши (3.1), (3.3). Матрица Φ(t), столбцами которой являются
координаты вектор-функций φ⃗i(t), назыв ается фундамент альной. Из теоремы 3.4

следует, что любое решение системы (3.2) можно представить в виде x⃗(t) = Φ(t)C⃗.
Возьмём фундаментальную матрицу такой, чтобы Φ (t0) = E, где t0 ∈ J . Будем и скать
решение неоднородной системы (3.1) в виде

x⃗(t) = Φ(t)
−→
C(t),

−→
C(t) ∈ C1(J).

Подставляя функцию (3.12) в систему (3.1), получим

dx⃗(t)

dt
=
dΦ

dt

−→
C(t) + Φ⃗

dC

dt
= PΦ

−→
C(t) + Φ

d
−→
C

dt
= PΦ

−→
C(t) + f⃗(t)

d
−→
C

dt
= Φ−1(t)f⃗(t) ⇒

−→
C(t) =

−→
C (t0) +

t∫
t0

Φ−1(τ)f⃗(τ)dτ.

Подставляя найденное значение
−→
C(t) в формулу (3.12), находим

x⃗(t) = Φ(t)
−→
C (t0) + Φ(t)

t∫
t0

Φ−1(τ)f⃗(τ)dτ
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2.4.7 Complex amplitude method (?)

При t = t0 имеем x⃗ (t0) = C⃗ (t0) = x⃗0. В результате решение задачи Коши можно
представить в виде

x⃗(t) = Φ(t)−→x0 + Φ(t)

t∫
t0

Φ−1(τ)f⃗(τ)dτ.

Последняя формула носит название формулы Коши. Она была получена методом
вариации постоянных.

2.4.7 Complex amplitude method (?)

(тоже иногда предлагают решить таким методом, проработаю, разберу потом. пока
других методов тоже хватает.)

2.5 Linear equations of nth order with variable coefficients

Теория

2.5.1 Theorem of existence and uniqueness of the solution of the
Cauchy problem

Теория

2.5.2 Liouville-Ostrogradsky formula for systems with variable coef-
ficients

Теория

Введём определитель Вронского для функций xi(t), i = 1, n, t ∈ J ,

W (t) ≡ W [x1(t), · · · , xn(t)] =

∣∣∣∣∣∣∣∣
x1 · · · xn
x′1 · · · x′n
· · · · · · · · ·
x
(n−1)
1 · · · x

(n−1)
n

∣∣∣∣∣∣∣∣ .
Определение 3.2.1. Функции x1(t), · · · , xn(t), t ∈ J , назыв аются линейно независимыми
на промежутке J , если равенство

n∑
i=1

Cixi(t) = 0 (Ci − постоянные )

воз можно для любого t ∈ J , если и только если Ci = 0, i = 1, n. Лемма 3.4. Если функции
x1(t), · · · , xn(t) линейно зависимые на промежутке J, то

W [x1(t), · · · , xn(t)] ≡ 0, t ∈ J.

Обратное утверждение неверно! Действительно, достаточно взять функции

x1(t) =

{
0, t ≤ 0,

e−
1
t2
,t>0, x2(t) =

{
0, t ≥ 0,

e−
1
t2
,t < 0.

Доказать лемму самим. Докажем фор мулу Лиувилля-Остроградского и теорему о
существовании фундаментальной системы решений.
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2.5.3 Structure of solutions of linear equations of the nth order

Для этого рассмотрим линейное олноролное уравнение (3.14). В этом случае в
соответствующей ему системе (2.46) функция f(t, z⃗) = −pn

p0
z1 − · · · − p1

p0
zn и

n∑
i=1

pkk = −p1
p0
, p0(t) ̸= 0. Здесь использов аны обозначения (2.45) : x = z1, · · · , x(n−1) = zn.

Отсюда и из формулы (3.9) получим фор мулу Лиувилля-Острогр адского для решений
линейного однородного уравнения (3.14):

W (t) = W (t0) e
− t

t0

p
p0(ττ)dτ , p0(τ) ̸= 0.

Для уравнения второго порядка (3.10) она была получена ранее в подпараграфе 3.1.3. Из
фор мулы Лиувилля-Остроградского следует: 1) Если существует t0 такой, что W (t0) = 0,
то W (t) = 0 для любого t ∈ J 2) Если существует t0 такой, что W (t0) ̸= 0, то W (t) ̸= 0
для любого t ∈ J .

Лемма 3.5. Пусть x1(t), · · · , xn(t), t ∈ J , - решения линейного однородного уравнения
(3.14). Тогда следующие утверждения эквивалентны: 1) функции x1(t), · · · , xn(t), t ∈ J ,
- линейно независимые; 2) W (t) ̸= 0, ∀t ∈ J ; 3) существует t0 ∈ J такой, что W (t0) ̸= 0.
Док аз атель ь т во. Лемма 3.5 сле дует из леммы 3.3 согласно связи между уравнением
(3.14) и системой (2.46), а также формулы Лиувилля-Острогр адского (3.17).

Определение 3.2.2. Любые n линейно независимые решения линейного однородного ур
авнения (3.14) называются фундаментальной системой решений (ФСР).

Теорема 3.7. Для любого линейного однородного уравнения (3.14) c непрерывными
коэффициентами и p0(t) ̸= 0 существует фундаментальная система решений.

Доказ ательство. Возьмем t0 ∈ J . Из теоремы 3.6 следует, что существуют решения
со следующими начальными условиями:

x
(l−1)
k (t0) = δlk, 1 ≤ l, k ≤ n.

Согласно лемме 3.5 построенные решения являются линейно независимыми и, следов
ательно, образуют фундаментальную систему решений. Мы получим нов ую
фундаментальную систему решений, если возь мём другие начальные данные при
условии W (t0) ̸= 0.

Применения вронскианов

(перекину в раздел про них, это не тут.)
(тут глубоко можно написать потом)
(как раз про многосолитонные решения неплохо поговорить, я пока хз, как там

работает эта модель.)

2.5.3 Structure of solutions of linear equations of the nth order

Теория

Теорема 3.8. Если φ1(t), · · · , φn(t), t ∈ J , - фундаментальная система решений
линейного однородного уравнения (3.14), то для любого его решения x(t), t ∈ J , найдётся

такой набор постоянных Ci, i = 1, n, чтох x(t) =
n∑
i=1

Ciφi(t)
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2.5.4 The method of variation of constants for a linear inhomogeneous equation

2.5.4 The method of variation of constants for a linear inhomogeneous
equation

Теория

Пусть φ1(t), · · · , φn(t) - фундаментальная система решений линейного однородного
уравнения. Будем искать решение уравнения (3.13) в виде

x(t) =
n∑
i=1

Ci(t)φi(t), t ∈ J,Ci(t) ∈ C1(J), t ∈ J . Pacсмотрим соответствующую уравнению

(3.13) систему (2.46) с f(t, z⃗) = −pn
p0
z1 − · · · − p1

p0
zn +

g(t)
p0

.
Согласно обозначениям, принятым в си стеме (3.1), фундаментальная матрица Φ и

вектор-функция g⃗(t) соответствующей системы имеют вид

Φ =


φ1 · · · φn
φ′
1 · · · φ′

n

· · · · · · · · ·
φ
(n−1)
1 · · · φ

(n−1)
n

 , g⃗(t) =


0
0
...
g(t)
p0

 .

Отсюда получаем систему уравнений для определения производных от функций Ci(t), i =
1, n:

Φ
d
−→
C

dt
= g⃗(t) ⇔

φ1C
′
1(t) + · · ·+ φnC

′
n(t) = 0,

φ′
1C

′
1(t) + · · ·+ φ′

nC
′
n(t) = 0,

· · ·
φ
(n−1)
1 C ′

1(t) + · · ·+ φ
(n−1)
n C ′

n(t) =
g(t)
p0
.

Система разрешима, ибо detΦ = W (t) ̸= 0. Определив C ′
i(t), i = 1, n, нетрудно найти

общее решение уравнения (3.13).

2.6 Linear homogeneous equations of the second order with variable
coefficients

Теория

2.6.1 Preliminaries

Теория

2.6.2 Assault Comparison Theorem

Теория

Следствия, вытекающие из теоремы сравнения Штурма

2.6.3 Sturm’s theorem on the separation of zeros

Теория

Примеры использования теоремы Штурма

2.6.4 Knezer criterion

Теория

(?!?!? впервые слышу)
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2.6.5 The Bessel equation and some properties of its solutions

2.6.5 The Bessel equation and some properties of its solutions

Теория

2.7 Linear diffusers and linear diffuser systems with c1 =const, ∈ R
Линейные Диффуры с постоянными вещественными коэффициентами
Линейные неоднородные уравнения (ЛНУ) с квазимногочленом в правой части
Линейные системы дифференциальных уравнений
Системы линейных однородных уравнений с постоянны ми веще ственными

коэффициентами
Линейные неоднородные системы с квазимногочленом в правой части
Пример решения линейной неоднородной системы

2.7.1 Exhibitor matrix (??)

(?? хватит этого раздела или нет? тут по идее все об это)
Рассмотрим матрицу P (t) = (pij(t)) , i, j = 1, n, в которой pij(t) - вещественные или

комплексные функции от t. Если pij(t) удовлетворяют соответствующим условиям, то по
определению

|P | = (|pij(t)|) ,
dP (t)

dt
=

(
d

dt
pij(t)

)
,

t∫
t0

P dt =

 t∫
t0

pij(t)dt

 , i, j = 1, n.

Ниже квадратные матрицы размерности n × n, элементами которых являются числа,
обозначаются A, а матрицы, эдементами которых являются функции, обозначаются
A(t), Ak(t).

Определение 4.3.1. Ряд
∞∑
k=0

Ak(t), где Ak(t) =
(
a
(k)
i,j (t)

)
, называется сходящимся при

фиксированном t ∈ R к матрице A(t) = (ai,j) (t), если при этом t ряды
∞∑
k=0

a
(k)
i,j (t) сходятся

к ai,j(t) при всех i, j = 1, n. Если ряды
∞∑
k=0

a
(k)
i,j (t) сходятся абсолютно при всех i, j = 1, n

и t ∈ R, то матричный ряд называется абсолютно сходящимся. Определение 4.3.2. Мы

говорим, что ряд
∞∑
k=0

Ak(t), где Ak(t) =
(
a
(k)(t)
i,j (t)

)
, сходится равномерно к матрице A(t) =

(ai,j(t)) на конечном промежутке J , если на этом промежутке ряды
∞∑
k=0

a
(k)
i,j (t) сходятся

равномерно к ai,j(t) при всех i, j = 1, n.
Для функциональньх рядов матриц остаются справедливыми теоремы,

сформулированные для рядов функций. Это следует из определений, приведенных
выше, и тем, что ряды, составленные из ij − x элементов матриц, этим теоремам
подчиняются.

Норма матрицы A = (ai,j) , i, j = 1, n определяются следующим образом:

∥A∥ =

√√√√ n∑
i,j=1

|aij|2.

Из этого определения следует, что если ∥A∥ = 0, то aij = 0 ⇐⇒ A = (0)n×n.
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Лемма 4.7. Если ∥Ak(t)∥ ≤ αk, k ∈ {0} ∪ N, t ∈ J , ч числовой ряд
∞∑
k=0

αk сходится, то

ряд
∞∑
k=0

Ak(t) сходится, при этом абсолютно и равномерно на любом конечном промежутке

J .
Док а з а т ел ь с т в о. Для элементов a

(k)
ij (t) матрицы Ak(t) при любых i, j = 1, n

справедливо неравенство ∣∣∣a(k)ij (t)
∣∣∣ ≤ ∥Ak(t)∥ ≤ αk.

Отсюда следует, что ряды, состоящие из i, j - элементов матриц Ak(t) сходятся, и при этом
абсолютно и равномерно на любом конечном промежутке J . Следовательно, ряд матриц
сходится аналогичным образом.

Лемма 4.8. Для любой квадратной матрицы А и любого t ∈ R ряд

∞∑
k=0

Ak(t) = E +
t

1!
A+

t2

2!
A2 + ... +

tk

k!
Ak + ...

сходится, при этом абсолютно и равномерно на любом конечном промежутке J. Здесь
A0(t) = E,Ak(t) =

tk

k!
Ak, k > 0.

Доказательство. Существует такое число b, что |aij| ≤ b для любых i, j = 1, n. Введём
обозначения

A2 =
(
a
(2)
ij

)
, ..., Ak =

(
a
(k)
ij

)
, k = 3, 4, ...

Тогда для элементов матрицы A2 = A · A =
(
a
(2)
ij

)
будем иметь оценку

∣∣∣a(2)ij ∣∣∣ =
∣∣∣∣∣
n∑
s=1

aisasj

∣∣∣∣∣ ≤
n∑
s=1

|aisasj| ≤ nb2, i, j = 1, n.

Нетрудно доказать методом математической индукции, что
∣∣∣a(k)ij

∣∣∣ ≤ ≤ nk−1bk, i, j = 1, n.

Так как a
(k)
i,j (t) =

tk

k!
a
(k)
i,j , k > 0, то ∥Ak(t)∥ = n

∣∣∣ tkk!a(k)i,j

∣∣∣ ≤ |t|knkbk

k!
, k > > 0; ∥A0(t)∥ =

√
n,

согласно найденным оценкам. Следовательно, для каждого t ∈ R можно взять αk =
|t|knkbk

k!
, k > 0;α0 =

√
n. Тогда ряд

∞∑
k=0

αk сходится по признаку Даламбера при любом

выборе b и t. По лемме 4.7 ряд (4.32) сходится к некоторой матрице. Каждый элемент этой
матрицы является сходящимся рядом при любом выборе b и t. Из доказательства леммы
также следует, что ряд (4.32) сходится абсолютно. Если t ∈ J , то ряд (4.32) сходится
на любом конечном промежутке J = ⟨c, d⟩ равномерно. Действительно, предполагая,
например, c, d > 0, числа αk можно выбрать следующим образом: αk = |d|knkbk

k!
, k > 0.

Определение 4.3.3. Ряд (4.32) называется экспоненциальной функцией от матрицы tA
и обозначается etA.

Свойства: 1. Если матрицы A и B коммутируют, т.е. [A,B] ≡ AB −BA = 0, TO

etAetB = et(A+B)

Если [A,B] ̸= 0, то формула (4.32) может не выполняться. Проилл юстрируем это на
примере

A =

(
0 1
0 0

)
, B =

(
1 0
0 0

)
⇒

⇒ etAetB =

(
et t
0 1

)
̸=
(
et et

0 0

)
= et(A+B).
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2. Для ∀t1, t2 ∈ R, и ∀A имеет место равенство: et1Aet2A = e(t1+t2)A;
3. Матрица e−tA является обратной к матрице etA : e−tAetA = e(t−t)A = e(0)n×n = E; 4.

detA

dt
= AetA = etAA; Действительно, из равномерной сходимости ряда (4.32) имеем

detA

dt
= A+

t

1!
A2 + ... +

tk−1

(k − 1)!
Ak + ... =⇒

=⇒ A

(
E +

t

1!
A+ ...

)
= AetA =

(
E +

t

1!
A+ ...

)
A = etAA.

Рассмотрим следующую задачу Коши:

dx⃗

dt
= Ax⃗+ f⃗(t); f⃗(t) ∈ C(J), x⃗ (t0) = x⃗0, t0 ∈ J.

Теорема 4.7. Вектор-функция

x⃗(t) = e(t−t0)Ax⃗0 +

t∫
t0

e(t−τ)Af⃗(τ)dτ

является единственным решением задачи Коши (4.34), определенным на всем промежутке
J . Доказ з тельство.

Существование. Произведем в уравнении (4.34) подстановку x⃗(t) = etAu⃗(t). Тогда

d
(
etAu⃗

)
dt

= AetAu⃗(t) + f⃗(t),

AetAu⃗(t) + etA
du⃗(t)

dt
= AetAu⃗(t) + f⃗(t) ⇒ du⃗(t)

dt
= e−tAf⃗(t).

Интегрируя это уравнение, находим

u⃗(t) = C⃗ +

t∫
t0

e−τAf⃗(τ)dτ.

Здесь C⃗ - произвольный n-мерный числовой вектор. В результате будем иметь

x⃗(t) = etAC⃗ +

t∫
t0

e(t−τ)Af⃗(τ)dτ.

При t = t0, x⃗0 = et0AC⃗ ⇒ C⃗ = e−t0Ax⃗0. Подставив C⃗ в (4.36), получим формулу (4.35):

x⃗(t) = e(t−t0)Ax⃗0 +

t∫
t0

e(t−τ)Af⃗(τ)dτ.

Единственность. Пусть мы имеем два решения x⃗1, x⃗2 задачи Коши (4.34). Обозначим
y⃗ = x⃗1 − x⃗2. Тогда для определения y⃗ получаем однородную задачу Коши

dy⃗

dt
= Ay⃗, y⃗ (t0) = y⃗0 =

−→
0

Из неё сразу находим
y⃗(t) = e(t−t0)Ay⃗0 ≡

−→
0 , ∀t ∈ J.
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Дей ствительно,

y⃗(t) = etAu⃗(t) ⇒ du⃗(t)

dt
=

−→
0 ⇒ u⃗(t) = C⃗ ⇒ C⃗ =

−→
0 ⇒ y⃗(t) ≡ −→

0 , t ∈ J.

Обратим внимание на то, что формула (4.35) получена методом вариации постоянных
Лагранжа.

Рассмотрим ФСР φ⃗1(t), ..., φ⃗n(t) однородной системы уравнений (4.16). Составим
матрицу Φ = (φ⃗1...φ⃗n), которая называется фундаментальной. Её столбцами являются
координаты векторов {φ⃗i} , i = 1, n. Из неединственности выбора ФСР следует
неединственность выбора фундаментальной матрицы. Так как dφ⃗i

dt
= Aφ⃗i, i = 1, n, то

фундаментальные матрицы Φ удовлетворяют матричному уравнению

dΦ

dt
= AΦ

Матрица etA удовлетворяет матричному уравнению (4.37). Её определитель det etA ̸= 0
для ∀t ∈ R. Поэтому она также является фундаментальной и общее решение однородной
системы уравнений (4.16) можно представить в виде: x⃗(t) = ΦC⃗, где C⃗ - произвольный
числовой вектор. Однако встаёт вопрос: как вычислить матрицу etA? Лемма 4.9. Если
A = TBT−1, то etA = TetBT−1. Доказатель ство. Имеем

etA = E +
t

1!
TBT−1 +

t2

2!
TBT−1TBT−1 + ... =

= TET−1 +
t

1!
TBT−1 +

t2

2!
TB2T−1 + ... =

= T

(
E +

t

1!
B +

t2

2!
B2 + ...

)
T−1 = TetBT−1.

В жордановом базисе матрица A принимает следующий вид: J = T−1AT . Матрица J
называется жордановой. Значит, A = TJ T−1 и из леммы 4.9 имеем: etA = TetJT−1. Из
формулы (4.36) для однородной си стемы (4.16) (f(t) ≡ 0, t ∈ J) получаем, что её общее
решение можно представить в виде

x⃗(t) = etAC⃗ = TetJT−1C⃗ = TetJ C⃗†,

где C⃗† = T−1C⃗ - новый произвольный вектор. Следовательно, матрица TetJ так же, как
и etA, является фундаментальной. Рассмотрим случай, когда

J =

 λ1 0
. . .

0 λn

 ,J 2 =

 λ21 0
. . .

0 λ2n

 , ...

J n =

 λn1 0
. . .

0 λnn

 .

От сюда находи м etJ = E + t
1!
J + t2

2!
J 2 + ... =

= E + t
1!

 λ1 0
. . .

0 λn

 + t2

2!

 λ21 0
. . .

0 λ2n

 + ... =
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=


∞∑
k=0

tkλk1
k!

0

. . .

0
∞∑
k=0

tkλkn
k!

 =

 eλ1t 0
. . .

0 eλnt

. Если использовать фундаментальную

матрицу TetJ , то все решения однородной системы (4.16) в конечном итоге будут опи
сываться традиционной формулой:

x⃗(t) = TetJT−1C⃗ =
(
h⃗1, ..., h⃗n

) eλ1t 0
. . .

0 eλnt


 C†

1
...
C†
n

 =

= C†
1h⃗1e

λ1t + ... + C†
nh⃗ne

λnt.

Пусть теперь J имеет имеет вид: J = [Jk1 , ...,Jkl ]. Нетрудно убедиться (доказать самим),
что

J n =
[
J n
k1
, ...,J n

kl

]
и etJ =

 etJk1 0
. . .

0 etJkl


Рассмотрим случай, когда J = Jm, где Jm - жорданова клетка (см. определение 4.7).

Имеем

Jm = λEm +Nm, где Nm =


0 1 0 · · · 0

. . . . . . ...
... . . . . . . 0

0 1
0 · · · 0

 .

Так как матрицы λEm и Nm коммутируют, то

etJm = etλEnetNm = etλEme
tNm = eλtetNm =

eλt
[
E +

t

1!
Nm +

t2

2!
N2
m... +

tm−1

(m− 1)!
Nm−1
m + ...

]
где

Nm+i
m =


0 · · · · · · 0
...

...
...

...
0 · · · · · · 0

 i ⩾ 0

Зн ачит,

etJm = eλt
[
E +

t

1!
Nm + ... +

tm−1

(m− 1)!
Nm−1
m

]
=

= eλt


1 t

1!
t2

2!
· · · tm−1

(m−1)!

0
. . . . . . . . . ...

... . . . . . . t2

2!... . . . t
1!

0 · · · · · · 0 1

 .

Покажем, используя фундаментальную матрицу TetJ , что общее решение однородной
системы уравнений (4.16) так же, как и выше, можно представить в традиционной форме:

x⃗(t) = TetJmC⃗† =
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=
(
h⃗1, h⃗2, ..., h⃗m

)


1 t
1!

t2

2!
· · · tm−1

(m−1)!

0
. . . . . . . . . ...

... . . . . . . t2

2!... . . . t
1!

0 · · · · · · 0 1

 eλtC⃗† =

= eλt
(
h⃗1, ...,

tm−1

(m− 1)!
h⃗1 + ... +

t

1!
h⃗m−1 + h⃗m

) C†
1
...
C†
m

 =

= C†
1h⃗1e

λt + ... + C†
m

(
h⃗m +

t

1!
h⃗m−1 + ... +

tm−1

(m− 1)!
h⃗1

)
eλt

Для лучшего понимания полученных выше результатов найдём непосредственно матрицу
etJ для приведенной ниже системы.

При мер 4.3.1

. dx⃗
dt

=

 −1 1 −2
4 1 0
2 1 −1

 x⃗. Собственные значения матрицы системы, которая ни же

будет обозначаться A, имеют вид: λ1 = 1, λ2 = λ3 = −1. Определим собственные векторы
матрицы A и жорданову матрицу J :

λ1 = 1 =⇒ (A− E )⃗h1 =
−→
0 =⇒ h⃗1 =

 0
2
1


λ2 = −1 =⇒ (A+ E )⃗h2 =

−→
0 =⇒ h⃗2 =

 −1
2
1


λ3 = −1 =⇒ (A+ E )⃗h3 = h⃗2 =⇒ h⃗3 =

 1
−1
0




⇒

Таким образом, жордановый базис состоит из двух жордановых цепочек. Матрицы
etJ1 и etJ2 имеют вид

etJ1 =
(
et
)
, etJ2 =

(
1 t
0 1

)
e−t.

Если воспользоватся формулой (4.39), то можно сразу написать:

etJ =

(
etJ1 0
0 etJ2

)
=

 et 0 0
0 e−t te−t

0 0 e−t


Этот результат можно получить непосредственно, представив матрицу J в виде

J =

 1 0 0
0 −1 0
0 0 −1

+

 0 0 0
0 0 1
0 0 0

 = A+B

Матрицы A,B коммутируют. Дей ствительно 1 0 0
0 −1 0
0 0 −1

 0 0 0
0 0 1
0 0 0

 =

 0 0 0
0 0 −1
0 0 0


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 0 0 0
0 0 1
0 0 0

 1 0 0
0 −1 0
0 0 −1

 =

 0 0 0
0 0 −1
0 0 0

 .

Таким образом, AB = BA. Отсюда вытекает, что

etJ = etAetB = exp

t
 1 0 0

0 −1 0
0 0 −1

 · exp

t
 0 0 0

0 0 1
0 0 0

 =

=

 et 0 0
0 e−t 0
0 0 e−t

 1 0 0
0 1 t
0 0 1

 =

 et 0 0
0 e−t te−t

0 0 e−t


Определим общее решение си стемы, используя фундаментальн ую матрицу etA:

x⃗(t) = etAC⃗ = TetJT−1C⃗ =

=

 0 −1 1
2 2 −1
1 1 0

 et 0 0
0 e−t te−t

0 0 e−t

 1 1 −1
−1 −1 2
0 −1 2

 C1

C2

C3

 =

=

 e−t te−t −2te−t

2 (et − e−t) 2et − (1 + 2t)e−t −2et + 2(1 + 2t)e−t

et − e−t et − (1 + t)e−t −et + 2(1 + t)e−t

 C1

C2

C3

 .

Пример нахождения матричной экспоненты.

Рассмотрим матрицу A:

A =

(
3 −4
4 3

)
= 3E + 4σ2, σ2 =

(
0 −1
1 0

)
.

Здесь σ2 - матрица Паули. Вычи слим матричную экспоненту. Име- em

eAt = e3Ete4σ2t;σ2
2 = −E, σ3

2 = −σ2, σ4
2 = E, ...,

σ2n−1
2 = (−1)n+1σ2, σ

2n
2 = (−1)nE

Отсюда находим

e4σ2t = E + 4σ2t− E
(4t)2

2!
− σ2

(4t)3

3!
+ · · · =

= E

(
1− (4t)2

2!
+ ...

)
+ σ2

(
4t− (4t)3

3!
+ ...

)
=

(
cos 4t − sin 4t
sin 4t cos 4t

)
В результате будем иметь

eAt = e3Ete4σ2t = e3t
(

cos 4t − sin 4t
sin 4t cos 4t

)
· ⋄
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Other diffuser bases

Матричный метод решения системы линейных уравнений второго порядка с
постоянными коэффициентами.

1. Случай различных собственных значений. Рассмотрим задачу Коши:

dz⃗

dt
= Az⃗, z⃗(0) =

(
x(0)
y(0)

)
.

Будем искать матрицу etA в виде

etA = A1e
λ1t + A2e

λ2t, t ∈ R

где A1, A2 - неизвестные чи словые матрицы. Выбор формы, в которой ищется матрица
etA, вытекает из формул

etA = TetJT−1, etJ =

(
eλ1t 0
0 eλ2t

)
.

Производная от матрицы etA равна

AetA = λ1A1e
λ1t + λ2A2e

λ2t.

Положив в ур авнениях t = 0, для определения матриц A1, A2 получим систему:{
E = A1 + A2,

A = λ1A1 + λ2A2
⇒ A1 =

λ2E − A

λ2 − λ1
, A2 =

A− λ1E

λ2 − λ1
.

Если собственные значения являются комплексно-сопряженными λ1,2 = α± iβ, то задача
определения матричной экспоненты упрощается. Нетрудно показать, что её можно искать
в виде

etA = eαt [A1 cos βt+ A2 sin βt] .

2. Случай отсутствия базиса из собственных векторов: λ1 = λ2 = λ. Так как

etJ =

(
1 t
0 1

)
eλt,

то матрицу etA можно искать в виде

etA = A1e
λt + A2te

λt,

где A1, A2 - неизвестные числовые матрицы. Производная от неё имеет виД

AetA = λA1e
λt + A2e

λt + λA2te
λt

Для определения матриц A1, A2 получим при t = 0 систему{
E = A1,

A = λA1 + A2.

Решая её, находим: A1 = E,A2 = A− λE. В результате будем и меть

etA = Eeλt + (A− λE)teλt = (E + t(A− λE))eλt · ⋄

3 Other diffuser bases

(потом продолжу изучать и прописывать структуру, пока просто тут оставлю то, что
когда-то было уже выписано.)
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3.1 Boundary value problems for 2nd order linear diffusers with
ci=const,∈ R and small parameter

3.1.1 Boundary value problems for a second-order linear differential
equation with ci=const,∈ R
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производной

53 Пример решения краевой задачи 1-го рода
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81 Основные понятия и определения 882 Свойства решений автономных систем и
теорема о поведении фазовых траекторий 83 Фазовый портрет решений автономной
линейной системы с действительны ми коэффициентами на плоскости
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3.4 Fundamentals of the theory of stability of ODM solutions

(у диесперова написано куча слов, а пользы от них совсем не много.)

3.4.1 Theory according to Ivanov A.P. MIPT (?)

1. Устойчивость линейных систем

Рассмотрим линейную систему обыкновенных дифференциальных уравнений первого
порядка

ẋ = Ax, x ∈ Rn

Как известно, частные решения системы (1) можно получить алгебраически, решая
характеристическое уравнение

det ∥A− λEn∥ = 0

)En - единичная матрица соответствующего порядка) и полагая

xk(t) = exp (λkt)

причем мнимая экспонента раскладывается по формуле Эйлера

exp(a+ bi) = exp(a)(cos b+ i sin b)

Общее решение системы (1) - это сумма квазимногочленов, т.е. произведений частных
решений (3) на многочлен, степень которого на единицу меньше кратности
соответствующего корня:

x(t) =
∑

Pk(t) exp (λkt)
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Определение. Положение равновесия x = 0 системы

ẋ = f(x), x ∈ Rn, f(0) = 0

называется устойчивым (по Ляпунову), если всякое решение, стартующее из
достаточно малой его окрестности Uδ, не покидает произвольно заданной окрестности
Uc, т.е.

∀ε > 0,∃δ > 0 : ∀x0 = x (t0) ∈ Us,∀t > t0, x(t) ∈ Ux

Понятие асимптотической устойчивости объединяет свойства устойчивости и притяжения.
Последнее означает, что

∀x0 = x (t0) ∈ Us : lim
t→∞

x(t) = 0

В случае линейной системы (1) притяжение достаточно для асимптотической
устойчивости. Справедливо следующее утверждение. Предложение 1. 1) Если все корни
уравнения (2) лежат в левой полуплоскости комплексной плоскости C (т.е. это -
отрицательные действительные числа или мнимые числа с отрицательной
действительной частью), то положение равновесия системы (1) асимптотически
устойчиво. 2) Если хотя бы один из этих корней лежит в правой полуплоскости, то оно
неустойчиво.

Доказательство. Для функции (3) утверждение следует из предельных свойств
экспоненты. Для квазимногочлена (4) аналогичный вывод можно получить, применив
правило Лопиталя-Бернулли. Замечание. Для выяснения расположения корней
алгебраического уравнения с действительными коэффициентами обычно используют
критерий Рауса-Гурвица. При решении прикладных задач высокой размерности можно
также решать характеристическое уравнение при помощи математических
компьютерных пакетов. Необходимое условие устойчивости. Если все корни
алгебраического уравнения с действительными коэффициентами лежат в левой
полуплоскости, то его коэффициенты имеют одинаковые знаки. Критерий
Рауса-Гурвица. Для того, чтобы все корни характеристического уравнения

λn + an−1λ
n−1 + ... + a1λ+ a0 = 0, ai ∈ R, a0 > 0

имели отрицательные действительные части, необходимо и достаточно, чтобы все главные
диагональные миноры матрицы (составлена для случая n = 4 с ясным обобщением)

G =


a1 a0 0 0
a3 a2 a1 a0
0 a4 a3 a2
0 0 0 1


были положительны. Примеры. 1. Исследовать устойчивость системы

...
x + 6ẍ+ 26ẍ+ 46ẋ+ 65x = 0

Составим характеристическое уравнение сопоставляя производным соответствующие
степени переменной λ:

λ4 + 6λ3 + 26λ2 + 46λ+ 65 = 0

⇒ a4 = 1, a3 = 6, a2 = 26, a1 = 46, a0 = 65

Составляем матрицу Гурвица и вычисляем ее угловые миноры:

G =


a1 a0 0 0
a3 a2 a1 a0
0 a4 a3 a2
0 0 0 a4

 =


46 65 0 0
6 26 46 65
0 1 6 26
0 0 0 1


∆1 = 46 > 0,∆2 = 46 ∗ 26− 65 ∗ 6 = 806 > 0,∆3 = ∆4 = 6∆2 − 2116 > 0
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Все миноры положительны, поэтому положение равновесия асимптотически устойчиво.
...
x + 3

...
x − 2ẍ+ 4ẋ+ 2x = 0

2. λ4 + 3λ3 − 2λ2 + 4λ+ 2 = 0

⇒ a4 = 1, a3 = 3, a2 = −2, a1 = 4, a0 = 2

Далее,

G =


4 2 0 0
3 −2 4 2
0 1 3 −2
0 0 0 1


∆1 = 4 > 0,∆2 = −14 < 0

Второй минор оказался отрицательным, и можно сделать вывод о неустойчивости без
дальнейших вычислений. 3. ẍ+ ẋ+ x− αy = 0, ÿ + ẏ + y − βx = 0 В принципе, данную
систему несложно свести к уравнению четвертого порядка для одной из переменных, а
затем строить матрицу Гурвица по аналогии с предыдущими примерами. Однако в этом
нет необходимости: проще вычислить определитель второго порядка, строки которого
соответствуют уравнениям, а столбцы - переменным (по-прежнему каждой производной
отвечает умножение на λ): ∣∣∣∣ λ2 + λ+ 1 −α

−β λ2 + λ+ 1

∣∣∣∣ = 0

Раскрывая этот определитель, получаем(
λ2 + λ+ 1

)2 − αβ = λ4 + 2λ3 + 3λ2 + 2λ+ (1− αβ) = 0

Необходимое условие устойчивости дает αβ < 1. Для матрицы Гурвица имеем выражение

G =


2 γ 0 0
2 3 2 γ
0 1 2 3
0 0 0 1

 , γ = 1− αβ

∆1 = 2 > 0,∆2 = 6− 2γ,∆3 = ∆4 = 8− 4γ

В итоге получаем область асимптотической устойчивости γ ∈ (0, 2) ⇒ |αβ < 1. Интересно
проверить ситуацию на границе этой области. В случае αβ = 1 имеем λ1 = 0, а если
αβ = −1, то λ1,2 = ±i. Оба этих случая относятся к числу критических (см. ниже).

Теоремы первого метода Ляпунова

Здесь речь идет о двух системах: нелинейной (5) и линейной (1), причем матрица A -
это матрица Якоби для функции f(x):

A =

∥∥∥∥ ∂fi∂xj

∥∥∥∥n
i,j=1

Устанавливается связь между устойчивостью двух систем. Важно различать разницу
между двумя понятиями. Термин «устойчивость в первом приближении» означает лишь
устойчивость линейной системы (1). Более сильное свойство «устойчивость по первому
приближению» означает, что обе системы устойчивы либо обе неустойчивы. Теорема 1.
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Если уравнение (2) имеет только корни с отрицательными вещественными частями, то
положение равновесия системы (5) асимптотически устойчиво.

Теорема 2. Если уравнение (2) имеет хотя бы один корень с положительной
вещественной частью, то положение равновесия системы (5) неустойчиво. Примep

ẋ = sin
(
αx+ y2

)
+
√

4− arcsin 2y − 2ex

ẏ = arctg
(
x3 + βy

)
+ ln(1 + 3x), α, β ∈ R

Исследовать устойчивость нулевого положения равновесия. Разложим правые части по
формуле Тейлора и оторосим в полученных выражениях нелинейные члены. В итоге
получим линейную систему

ẋ = (α− 2)x− y, ẏ = 3x+ βy

Для матрицы (6) получаем

A =

(
α− 2 −1
3 β

)
Критерий асимптотической устойчивости: след матрицы (7) отрицателен, a ее
детерминант положителен, т.е.

α + β < 2, (α− 2)β > −3

Особые случаи

Сформулированные в предыдущем разделе теоремы не охватывают всех возможностей:
к особым случаям отнесем наличие корней

характеристического уравнения с нулевой вещественной частью (нули или чисто
мнимые пары). При этом линейная система (1) будет устойчивой (не асимптотически)
либо неустойчива в зависимости от отсутствия или наличия в нормальной форме (9)
жордановых клеток вида (12) или (13). Такие случаи называют особыми, или
критическими, так как для них полная система (5) может быть и асимптотически
устойчивой, и неустойчивой. Для решения используют следующие теоремы второго
метода Ляпунова. Теорема Ляпунова об устойчивости. Пусть существует функция
V (x) > 0, V (0) = 0, непрерывно дифференцируемая в окрестности нуля, для которой

dV

dt
= (gradV, f) ≤ 0

то положение равновесия системы (5) устойчиво. Теорема Ляпунова об асимптотической
устойчивости. Пусть существует функция V (x) > 0, V (0) = 0, непрерывно
дифференцируемая в окрестности нуля, для которой

dV

dt
= (gradV, f) < 0

то положение равновесия системы (5) асимптотически устойчиво. Теорема Четаева о
неустойчивости. Пусть существует функция V (0) = 0 для которой область V (x) > 0
примыкает к началу координат и во всех точках этой области

dV

dt
= (gradV, f) > 0

то положение равновесия системы (5) неустойчиво. Теорема Барбаиина - Красовского.
Если в условиях теоремы Ляпунова об асимптотической устойчивости неравенство (9) -
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нестрогое, причем множество точек фазового пространства, для которых dV/dt = 0, не
содержит целых траекторий системы, за исключением изолированного положения
равновесия, то последнее асимптотически устойчиво. Примеры.

1. ẋ = ax2, тогда λ = 0, причем линейная система ẋ = 0 устойчива. Несложно
убедиться, что в случае a > 0 эта система первого порядка неустойчива, а в случае a < 0 -
асимптотически устойчива. 2. Линейная система ẋ1 = x2, ẋ2 = 0 неустойчива (λ1 = λ2 = 0
с жордановой клеткой), т.к. общее решение x1 = C2t + C1, x2 = C2 возрастает в случае
C2 ̸= 0 до бесконечности. Для стабилизации добавим нелинейные слагаемые:

ẋ1 = x2 − x31, ẋ2 = −x31 − x32

Функция

V =
x41 + 2x22

4
> 0, V̇ = x31

(
x2 − x31

)
+ x2

(
−x32 − x31

)
= −x61 − x42 < 0

удовлетворяет условиям теоремы Ляпунова об асимптотической устойчивости. 3. В
следующей системе

ẋ1 = x2 + ax31, ẋ2 = −x1 + ax32

корни характеристического уравнения для линейной части чисто мнимые: λ1,2 = ±i.
Функция

V =
x21 + x22

2
> 0, V̇ = a

(
x42 + x41

)
удовлетворяет условиям теоремы Ляпунова об асимптотической устойчивости в случае
a < 0 и условиям теоремы Четаева о неустойчивости в случае a > 0. Важно отметить,
что критические случаи не следует рассматривать как некое исключение: в реальных
системах, включающих некоторые конструкционные параметры, они часто возникают
при изменении этих параметров, что кроме того, в консервативных и
обобщенно-консервативных механических системах асимптотическая устойчивость
невозможна, а устойчивость по Ляпунову возможна лишь в критических случаях.

Построение функций Ляпунова

В отличие от общего случая, когда для вывода об устойчивости достаточно рассмотреть
линейное приближение, универсального алгоритма построения функции Ляпунова V в
критических случаях не существует, и можно дать лишь некоторые рекомендации. Для
системы (5) в критическом случае прежде всего можно попытаться построить подобрать
V в виде квадратичной формы. Как правило, этого достаточно для решения учебных
задач. Примеры. 1.

ẋ = −ay − x
[
x2020 + y2020

]
,

ẏ = ax− y
[
x2020 + y2020

]
Здесь линеаризованная система описывает гармонические колебания, корни
характеристического уравнения чисто мнимые. Положим V = x2 + y2 > 0, тогда

V = 2x
(
−ay − x

[
x2020 + y2020

])
+ 2y

(
ax− y

[
x2020 + y2020

])
=

= −2
(
x2 + y2

) [
x2020 + y2020

]
< 0

Таким образом, выполнены условия теоремы Ляпунова об асимптотической устойчивости.
2. ẋ = 2xy, ẏ = x2 + 2y2 В данной задаче линейных членов нет, т.е. λ1 = λ2 = 0. Пусть

V = ax2 + bxy + cy2, тогда
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V̇ = (2ax+ by)2xy + (bx+ 2cy)
(
x2 + 2y2

)
=

= bx3 + 2(c+ 2a)x2y + 4bxy2 + 4cy3

Данная форма третьего порядка знакопеременна, что служит предпосылкой для
применения теоремы Четаева. Положим b = 0, тогда

V̇ = 2(c+ 2a)x2y + 4cy3 = 2y
(
2cy2 + (c+ 2a)x2

)
Если взять a = −1, c = 3, то второй сомножитель в этом выражении будет
положительным. Сама функция V = −x2 + 3y2 положительна в области y > |x|/

√
3, что

позволяет сделать вывод о неустойчивости. К такому же заключению приводит
рассмотрение функции V = xy, положительной в первом квадранте, так как при этом
V̇ = x (x2 + 4y2) > 0. 3. ẋ = −x + y + κx3 ẏ = x − y + κy3, κ ∈ R Здесь один из корней
характеристического уравнения линеаризованной системы равен нулю, второй
отрицателен. Следовательно, в зависимости от нелинейных членов может иметь место
как неустойчивость, так и асимптотическая устойчивость. Положим

V = ax2 + bxy + cy2 ⇒ V̇ = (2ax+ by)
(
−x+ y + κx3

)
+ (bx+ 2cy)

(
x− y + κy3

)
=

(x− y)(−(2a+ b)x+ (2c+ b)y) + κ(2ax+ by)x3 + κ(bx+ 2cy)y3

Квадратичная часть V̇ в общем случае знакопеременна, но если a = c, то

V̇ = −(2a+ b)(x− y)2 + κ(2ax+ by)x3 + κ(bx+ 2ay)y3

т.е. она знакопостоянна. Условия теоремы Ляпунова об асимптотической устойчивости
можно удовлетворить в случае k < 0, полагая a = c = 1, b = 0. В случае k > 0 положим a =
c = 1, b = −2, тогда V = (x− y)2 ≥ 0, V̇ = 2κ(x− y)x3+2κ(−x+ y)y3 = 2κV (x2 + xy + y2),
и выполнены условия теоремы Четаева о неустойчивости. Пример 4

ẋ = −x3 − y3 + xy3

ẏ = x3 − y3 − x4

Доказать асимптотическую устойчивость. В данной системе линейные члены в правой
части отсутствуют. Будем строить функцию Ляпунова в виде однородной V = V2 + V3 +
... + Vk + ..., где Vk - однородная форма соответствующего порядка. Изучим поочередно
производные этих форм в силу уравнений движения.

V2 = ax2 + bxy + cy2 ⇒ V̇2 = (2ax+ by)
(
−x3 − y3 + xy3

)
+ (bx+ 2cy)

(
x3 − y3 − x4

)
=

(b− 2a)x4 + (2c− b)x3y − (b+ 2a)xy3 − (b+ 2c)y4 + ... =
x4
(
(b− 2a) + (2c− b)z − (b+ 2a)z3 − (b+ 2c)z4

)
+ ..., z = y/x

Анализ знака полученного выражения далеко не прост. Может помочь компьютер:
полагая a = 1, b = 0, строим график f(z) для различных > 0. Получаем, что при c=1.1
выполнены условия теоремы Ляпунова об асимптотической устойчивости, причем члены
четвертого порядка в уравнениях движения не играют роли. C другой стороны, имеется
более простое решение: полагаем V2 ≡ 0, тогда V3 не может быть знакоопределенной, и
надо считать V3 ≡ 0. Для следующей формы можно взять простейшее выражение
V4 = x4 + y4 > 0. При этом
V̇4 = 4x3 (−x3 − y3 + xy3) + 4y3 (x3 − y3 − x4) = −4 (x6 + y6) < 0 Т.е. условия теоремы
Ляпунова об асимптотической устойчивости выполнены. Заметим, что здесь члены
седьмого порядка взаимно уничтожились благодаря специальному выбору членов
четвертого порядка в исходной системе. На самом деле, вывод об асимптотической
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устойчивости вовсе от них не зависит. В некоторых задачах вид функции Ляпунова
подбирается исходя из особенностей данной задачи. Пример 5. ẋ = y, ẏ = −y3 − x (y2 + 1)
В линейном приближении имеем пару чисто мнимых корней (устойчивость
неасимптотическая). Умножим первое уравнение на x, второе - на y/ (1 + y2) и сложим,
В итоге получим

d

dt

(
x2 + ln

(
1 + y2

))
= − 2y4

1 + y2

Выражение под знаком производной положительно; примем его за функцию Ляпунова.
Правая часть отрицательна вне множества y = 0, на котором она обращается в нуль. Если
подставить это значение в исходную систему, то получим ẋ = 0, 0 = −x, что означает x ≡ 0.
Асимптотическая устойчивость следует из теоремы Барбашина - Красовского.

О заблуждениях про метод Ляпунова

(коротко укажу. я думал, что тупо можно правую часть уравнения брать, это была
большая ошибка! укажу это потом, чтобы не повторять ошибки!)

3.4.2 Overview

Основные понятия и определения

Во второй главе было показано, что если f⃗(t, x⃗) удовлетворяет условиям теоремы
существования и единственности, то решение ЗК для системы

dx⃗

dt
= f⃗(t, x⃗)

непрерывно зависит от начальных условий, если t ∈ [a, b] (t меняется на конечном
промежутке). В этой главе будет исследоваться зависимость решения задачи Коши от
начальных условий, когда t изменяется на полубесконечном промежутке [t0,+∞). Будем
предполагать, что система (9.1) определена в цилиндре D = Ω × [t0,+∞), где Ω ⊂ Rn

x⃗, и
существует её решение x⃗ = φ⃗(t) с начальными данными t0, x⃗0 (x⃗0 ∈ Ω), которое можно
продолжить на полубесконечный промежуток (t0,+∞) в цилиндре D. Правая часть
системы (9.1)f⃗(t, x⃗) ∈ C1(D). Определение 9.1.1. Решение системы (9.1)
x⃗ = φ⃗(t), t ∈ [t0,+∞), называется устойчивым по Ляпунову, если для любого ε > 0

найдется такое δ > 0, что для любого другого решения x⃗ = ψ⃗(t), начальное значение
которого удовлетворяют неравенству∥∥∥φ⃗ (t0)− ψ⃗ (t0)

∥∥∥ < δ,

решение x⃗ = ψ⃗(t) определено при всех t ≥ t0 и при t ≥ t0 справедливо неравенство

∥φ⃗(t)− ψ⃗(t)∥ < ε для любого t ≥ t0

Решение x⃗ = φ⃗(t) называется асимптотически устойчивым, если оно устойчиво по
Ляпунову и, кроме того,

lim
t→∞

∥φ⃗(t)− ψ⃗(t)∥ = 0

Здесь, как и ранее, в качестве нормы взята ∥x⃗∥ =

√
n∑
i=1

|xi(t)|2. Изучение устойчивости

решения φ⃗(t), t ∈ [t0,+∞), системы уравнений (9.1) может быть сведено к изучению
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устойчивости решения, тождественно равного нулю при t ∈ [t0,+∞), некоторой другой
нормальной системы. Действительно, введем новую неизвестную функцию

y⃗(t) = x⃗(t)− φ⃗(t)

Тогда она будет удовлетворять следующей системе уравнений:

dy⃗

dt
= f⃗(t, y⃗ + φ⃗)− f⃗(t, φ⃗) ≡ g⃗(t, y⃗)

где g⃗(t,
−→
0 ) =

−→
0 , t ∈ [t0,+∞). Так как ∥y⃗(t) − −→

0 ∥ = ∥x⃗(t) − φ⃗(t)∥, то исследование
устойчивости решения φ⃗(t), t ∈ [t0,+∞), системы (9.1) равносильно исследованию
устойчивости нулевого решения y⃗(t) ≡ −→

0 , t ∈ ∈ [t0,+∞) системы уравнений (9.3). В
дальнейшем будем считать, что замена (9.2) уже произведена, т.е. система уравнений
(9.1) имеет нулевое решение x⃗(t) ≡ −→

0 ∈ Ω, t ∈ ∈ [t0,+∞) , f⃗(t,
−→
0 ) ≡ −→

0 Определение 9.1.2.
Если f⃗(t,

−→
0 ) =

−→
0 для любого t ∈ [t0,+∞), то точка x⃗ =

−→
0 , t ∈ [t0,+∞) в фазовом

пространстве называется положением равновесия системы уравнений (9.1).

3.4.3 Sufficient conditions for the stability of solutions for a linear
system of equations with ci=const,∈ R

Пусть матрица A с постоянными вещественными элементами имеет поп арно
различные собственные значения λ1, ..., λm (λi ̸= λj), 1 ≤ m ≤ n. Ниже будет изуч аться
устойчивость решений системы (9.4) н а промежутке [0,+∞).

Спектральный признак устойчивости

Теорема 9.1. (Спектральный признак устойчивости.)
1) Если все собственнъе значения матрицы A удовлетворяют неравенствам Reλi <

0, i = 1,m, то нулевое реиение асимптотиески устойво. 2) Если собственные значения
матрицы A удовлетворяют керавенствам Reλi ≤ 0, i = 1,m и для тех λi, для которых
Reλi = 0, все соответствующие жордановы цепочки имеют длину, равную 1, то нулевое
решение устойчиво по Ляпунову. 3) Если имеется λj, для которого Reλj > 0 или для
которого Reλj = 0, но соответствующие жордановы цепочки имею длину ≥ 2, то нулевое
решение неустоичиво.

Доказ ательство. Все решения системы (9.4) описываются формулой

x⃗(t) = P⃗1(t)e
λ1t + · · ·+ P⃗m(t)e

λmt

где P⃗i(t) - многочлены степени не выше ki − 1, а ki - наибольшая длина жордановой
цепочки, соответствующей λi. Коэфициенты в многочленах P⃗i(t), i = 1,m, в век торном
квазимногочлене (9.5) - векторы из Rn. Если λk = µk + iνk, то для соответствующего
решения имеем

P⃗k(t)e
λkt = P⃗k(t)e

µkt (cos νkt+ i sin νkt) , |cos νkt+ i sin νkt| = 1.

Если µk < 0, то
∣∣∣P⃗k(t)eµkt∣∣∣ → 0 при t → +∞. Рассмотрим сначала случай 1). Одной

из фундаментальных матриц системы (9.4) являет ся etA. Оценим её поведение при t →
∞. Фундаментальная матрица состоит из столбцов ψ⃗1(t), ..., ψ⃗n(t), которые являют ся
решениями системы (9.4). Каждое решение ψ⃗k(t), k = 1, n опи сыв ает ся вектор- функцией
(9.5):

ψ⃗k(t) = P⃗1k(t)e
λ1t + · · ·+ P⃗mk(t)e

λmt, k = 1, n
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Пусть Reλi < −β < 0. Тогда Reλi + β < 0, i = 1,m. Так как при t → ∞ слагаемые в
(9.6)P⃗ik(t)e

λit → 0, то справедлива оценка
∥∥∥P⃗ik(t)e(Reλi+β)t

∥∥∥ ≤
≤ Cik, t ∈ [0,+∞), где Cik - некоторые постоянные. Следов ательно, все слагаемые в

(9.6) ограничены, т ак как∥∥∥P⃗ik(t)eλit∥∥∥ ≤ Cike
−βt, i = 1,m, k = 1, n

и существует такая постоянная C, что
∥∥∥ψ⃗k(t)∥∥∥ ≤ Ce−βt, t ≥ 0, k = 1, n. Отсюда, используя

определение нормы вектор-функции, находим

ψ⃗k(t) =

 a1k(t)
...

ank(t)

 ,
∥∥∥ψ⃗k(t)∥∥∥ =

√√√√ n∑
i=1

|aik|2, |aik| ≤ Ce−βt.

Полученные неравенства позволяют оценить норму фундаментальной матрицы etA:

∥∥etA∥∥ =

(
n∑

k,j=1

|ajk|2
) 1

2

≤ Ke−βt, K = nC.

Любое решение задачи Коши описывается функцией x⃗(t) = etAx⃗0. где x⃗0 = x⃗(0) -
начальное значение, принимаемое при t = 0. Если ∥x⃗0∥ < δ = ε

K
, то

∥x⃗(t)∥ ≤
∥∥etA∥∥ ∥x⃗0∥ < εe−βt ≤ ε, t ∈ [0,+∞). Так как ∥x⃗(t)∥ → 0 при t → +∞, то решение

x⃗(t) =
−→
0 , t ∈ [0,+∞), асимптотически устойчиво. Случай 2) t ∈ [0,+∞), как в случае 1).

По условию, слагаемые с Reλi = 0 содержат только многочлены нулевой степени и
поэтому тоже ограничены. Следов ательно, нулевое решение устойчиво по Ляпунову.
Случай 3) µj > 0, то система уравнений имеет решение ϕ⃗j(t) = eλjth⃗j, где h⃗j -
собственный вектор. Если νj = 0, то

∥∥∥ϕ⃗j(t)∥∥∥ → ∞, t → ∞. Следовательно, решение не

ограничено. Если же νj ̸= 0, то решение ϕ⃗j(t) комплексное. Оно порождает два
вещественных решения Re ϕ⃗j(t) и Im ϕ⃗j(t), которые также не ограничены при t ≥ 0. Из
неограниченности решения следует его неустойчивость.

Пусть не существует ообственного значения с положительной действильной частью, но
имеется λj с Reλj = 0, которому соответствует

жорданова цепочка длины ≥ 2. Тогда нулевое решение также будет неустойчивым.
Действительно, существует решение ϕ⃗j = P⃗j(t)e

λjt, в котором многочлен P⃗j имеет
степень большую или равную 1. Так как

∣∣eλjt∣∣ = 1, то решение не ограничено, а значит,
решение неустойчиво. Доказанная теорема показывает, что для исследования
устойчивости решения линейных уравнений или систем достаточно найти собственные
значения. Для многочленов степени n ≥ 5 в общем случ ае корни не представимы при
помощи радикалов (теорема АбеляРуффини). Однако на помощь приходит критерий
Рауса-Гурвица. Критерий Рауса-Гурвица Для того чтобы у многочлена

λn + a1λ
n−1 + · · ·+ an−1λ+ an

с действительными коэффициент ами все корни имели отрицательные действительные
части, необходимо и достаточно, чтобы все главные миноры м атрицы

a1 1 0 0 ... 0
a3 a2 a1 1 ... 0
a5 a4 a3 a2 · · · 0
· · · · · · · · · · · · · · · ...
a2n−1 a2n−2 a2n−3 a2n−4 ... an


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(где am = 0, если m < 0 или m > n) были положительными, т.е.

∆1 = a1 > 0,∆2 =

∣∣∣∣ a1 1
a3 a2

∣∣∣∣ > 0, ...,

∆n =

∣∣∣∣∣∣∣∣
a1 1 ... 0
a3 a2 ... 0
... ... ... ...

a2n−1 a2n−2 ... an

∣∣∣∣∣∣∣∣ = ∆n−1an > 0.

Последнее условие можно заменить условием an > 0. При n = 4 имеем(
a1 1 0 0
a3 a2 a1 1

)
a1 > 0,

∣∣∣∣ a1 1
a3 a2

∣∣∣∣ > 0,

⇒

∣∣∣∣∣∣
a1 1 0
a3 a2 a1
0 a4 a3

∣∣∣∣∣∣ > 0, a4 > 0.

Теорема 9.2. Если нулевое решение однородной линечной системы уравнен

dx⃗

dt
= Ax⃗

обладает одним из свойст: 1) устоичиво по Ляпунову, 2) асчмптотически устоииво, 3)
еустоиво, то все решения неоднородной линейяой системы уравнений

dx⃗

dt
= Ax⃗+ f⃗(t)

обладают тем же свойством независчмо от f⃗(t). Доказать теорему самим. 9.3. Уст ойчив
ость по первому приближению В теореме 9.1 были сформулированы условия
устойчивости для линейной системы (9.4) с постоянными вещественными
коэффициентами. ти результаты будут обобщены на случай нелинейной автономной
системы (8.1)[8], [13]:

dx⃗

dt
= f⃗(x⃗), x⃗ ⊂ Ω,Ω ⊆ Rn

Относительно f⃗(x⃗) и области Ω предполагается, что f⃗(x⃗) ∈ C1(Ω),
−→
0 ∈ ∈ Ω, f⃗(

−→
0 ) =

−→
0 . От

сюда следует, что функция x⃗ =
−→
0 , t ≥ 0 является решением системы (8.1). Как мы знаем,

систему (8.1) при условии f⃗(x⃗) ∈ C1(Ω) можно представить в некоторой окрестности
x⃗ =

−→
0 в виде

dx⃗

dt
= Ax⃗+ F⃗ (x⃗), F⃗ (

−→
0 ) =

−→
0 , x⃗ ∈ Ω

Зде сь A =
(
∂fi
∂xj

(
−→
0 )
)
, i, j = 1, n, F⃗ (x⃗) ∈ C1(Ω), ∥F⃗ (x⃗)∥ = o(∥x⃗∥) при ∥x⃗∥ → 0. Будем

рассматривать систему (9.8) в цилиндре

D = {(t, x⃗) : x⃗ ∈ Ω, t ∈ [0,+∞)}.

График нулевого решения принадлежит этому цилиндру. Ниже будет и сследован
вопрос о том, как влияют на устойчивость решения линейной системы возмущения,
обусловленные членом F⃗ (x⃗). Рассмотрим залачу Коши:

dx⃗

dt
= Ax⃗+ F⃗ (x⃗), x⃗(0) = −→x0,−→x0 ∈ Ω.

77



3.4.3 Sufficient conditions for the stability of solutions for a linear system of equations with
ci=const,∈ R

Теорема 9.3. Пусть в системе (9.8) функция F⃗ (x⃗) ∈ C1(Ω) и удовлетворяет неравенству

∥F⃗ (x⃗)∥ ≤ ω(x⃗)∥x⃗∥
дде ω(x⃗) → 0 при ∥x⃗∥ → 0. Тогда 1) если все собственные значения матрицы A
удовлетворяют неравенствам Reλi < 0, i = 1, n, то нулевое реиение системы (9.8)
асмптотически устово; 2) если матрица A имеет хотя бы одно λj такое, что Reλj > 0, то
нулевое реиение системы (9.8) неустойчиво; 3) если среди собственных значений матрицы
A имеются такие, что Reλi = 0, а для осталвных собственных значений Reλj < 0, то
усточчивость нулевого решения зависит не толвко от матрицы A, но и от функции F⃗ (x⃗).

Доказ атель ство. Надо показ ать, что при достаточно малом значении ∥−→x0∥ и условии,
что величина ∥F⃗ (x⃗)∥ также является малой, решение задачи Коши (9.9)x⃗ = ϕ⃗(t) может
быть продолжено для в сех t > 0. На промежутке [0, h], на котором оно существует,
уравнение (9.8) согласно формуле (4.34) эквив алентно интегральному соотношению

ϕ⃗(t) = etAx⃗0 +

t∫
0

e(t−s)AF⃗ (ϕ⃗(s))ds.

Так как по условию теоремы собственные значения матрицы A имеют отрицательные дей
ствительные части, то для в сех t > 0 справедлива оценка (9.7), из которой следует неравен
ство ∥∥etA∥∥ ≤ K∗e

−βt, K∗ = K + 1 > 1

в котором β > 0, а величина постоянной K определяется свойствами матрицы A.
Используя это неравенство, из (9.10) н аходи м

∥ϕ⃗(t)∥ ≤
∥∥etA∥∥ ∥x⃗0∥+ t∫

0

∥∥e(t−s)A∥∥ ∥F⃗ (ϕ⃗(s))∥ds =⇒
=⇒ ∥ϕ⃗(t)∥ ≤ K∗e

−βt ∥x⃗0∥+K∗

t∫
0

e−β(t−s)∥F⃗ (ϕ⃗(s))∥ds.

Неравенство (9.11) лежит в основе доказательства того, что решение ϕ⃗(t) задачи Коши
(9.9), для которого нач альное значение ∥ϕ⃗(0)∥ = ∥x⃗0∥ дост аточно мало отлич ается от
нуля, можно продолжить на промежуток [h,+∞) при условии, что величина ∥ϕ⃗(t)∥ ост
аёт ся также малой. Дей ствительно, согласно требов анию, н аложенному в теореме на
функцию ω(x⃗), для любого ε > 0 существует δ > 0 такое, что ∥F⃗ (x⃗)∥ ≤ ε∥x⃗∥

K∗
как только

∥x⃗∥ ≤ δ. Таким образом, до тех пор пока ∥ϕ⃗(t)∥ ≤ δ, справедливо неравенство

eβt∥ϕ⃗(t)∥ ⩽ K∗ ∥x⃗0∥+ ε

t∫
0

eβs∥ϕ⃗(s)∥ds.

Применяя к нему лемму Гронуолла (она доказывается ниже) имеем

eβt∥ϕ⃗(t)∥ ⩽ K∗ ∥x⃗0∥ eεt

или
∥ϕ⃗(t)∥ ⩽ K∗ ∥x⃗0∥ e−(β−ε)t

Если положить ε < β, то согласно неравенству (9.12) величина ∥ϕ⃗(t)∥ убывает с ростом t.
Из него также следует, что ∥ϕ⃗(t)∥ ⩽ K∗ ∥x⃗0∥. Возьмём ∥x⃗0∥ < δ

K∗
(< δ), тогда ∥ϕ⃗(t)∥ < δ. В

результате мы получили утверждение, которое ниже сформулируем следующим образом.
Утверждение: керавенство (9.12) выполяняется для всех t, при которых рещение задачи
Кочи (9.9) существует, и при этом ∥ϕ⃗(t)∥ < < δ, eсли ∥x⃗0∥ < δ

K∗
.
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3.4.4 First approximation stability

3.4.4 First approximation stability

3.4.5 Gronwall lemma

(пока хз, что за.)
Покажем теперь, что оно продолжаемо н а промежуток [h,+∞). Возьмём

произвольное T > h и цилиндр Q = {(t, x) : 0 ≤ t ≤ T, ∥x∥ = δ}. Нач альные данные
принадлежат основ анию цилиндра при t = 0. Поэтому интегральная кривая,
соответствующая решению задачи Коши (9.9), согласно теореме продолжения должна
достигнуть границы цилиндр а Q. Но она не может пересечь его боковую поверхность,
потому что величина ∥ϕ⃗(t)∥ не может принять значение, равное δ. Действительно, так
как в цилиндре ∥x∥ ≤ δ, то все проведенные выше выкладки останут ся справедливыми
и продолженное решение задачи Коши ϕ⃗(t) будет вести себя согласно утверждению.
Поэтому интегральная кривая при продолжении может попасть только на основание
цилиндра, расположенное при t = T . Из произвольности выбора величины T вытекает,
что решение ϕ⃗(t) продолжаемо на промежуток [h,+∞) и, следовательно, для в х t > 0
справедлива формула (9.12). Она показывает, что нулевое решение является устойчивым
по Ляпунову и асимптотически устойчивым. Остальные пункты теоремы даются без док
аз атель ства.

Замеч ани е 9.3.1. Результаты теоремы останут ся верными для неавтономной системы
dx⃗

dt
= Ax⃗+ F⃗ (t, x⃗), F⃗ (t,

−→
0 ) =

−→
0 , x⃗ ∈ Ω, t ≥ 0,

при условии, что ∥F⃗ (t, x⃗)∥ = o(∥x⃗∥) равномерно по t, (t ≥ 0) при ∥x⃗∥ → → 0 9.4. Лемма
Гронуолла Лемма. Пусть кепрерывная функция ω(t) ≥ 0 на промежутке J ⊆ R
удовлетворяет неравенству

ω(t) ≤ B +

∣∣∣∣∣∣
t∫

t0

ω(τ)v(τ)dτ

∣∣∣∣∣∣ ,
где кепрерывная функция v(t) > 0, t ∈ J , а постоянная B ≥ 0. Тодда при всех t, t0 ∈ J

ω(t) ≤ Be

t∫
t0

v(τ)dτ

.

Доказ ательсттво. Пусть B > 0, t ≥ t0. Разделим неравенство (9.13) на правую часть
и умножим на функцию v(t) > 0:

ω(t)v(t)

B +
t∫
t0

ω(τ)v(τ)dτ

≤ v(τ) ⇔ d

dt

ln
B +

t∫
t0

ω(τ)v(τ)dτ

 ≤ v(t).

Ин тегриров ан ие последнего неравен ства дает

ln

B +

t∫
t0

ω(τ)v(τ)dτ

− lnB ≤
t∫

t0

v(τ)dτ

От сюда получаем формулу (9.14):

ω(t) ≤ B +

t∫
t0

ω(τ)v(τ)dτ ≤ Be

t∫
t0

v(τ)dτ

При t ≤ t0 доказательство проводится ан алогично. Если v(t) = 0, t ∈ ∈ J , то неравенство
(9.13) выполняет ся автоматически. Случай B = 0 р ассмотреть самим.
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3.4.6 About other methods for determining stability (!?!??!)

3.4.6 About other methods for determining stability (!?!??!)

(там очень многое есть, просто укажу и все. мб укажу потом в 1й части, а в
предпоследней буду расписывать подробно.)

3.4.7 On the Applications of Stability Theory

О применениях в механике

(отдельно посмотрю, потом пропишу, с ходу лучше не писать это.)

3.5 The first integrals of normal ODM systems

101 Первые интегралы автономных систем и критерий 1-го интеграла
102 Теорема о числе независимых первых интегралов
103 Редукция автоно мных систем с помощью первых интегралов
104 Первые интегралы произвольных нормальных систем

3.6 Linear homogeneous partial differential equations of the 1st order

111 Основные понятия и определения
112 Характеристики и интегральные поверхности линейного уравнения с частными

производны ми 1-го
113 Задача Коши для линейного уравнения с частными производными 1-го порядка и

теорема существования и единственности её решения
114 Пример решения задачи Коши для линейного уравнения с частными производными

1-го порядка

3.7 Creation of models of DE from Physical Ideas (!!!)

ибо этим мы и занимаемся, потом уже думаем над решением

3.8 Other
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Part III

Problems
4 Typical differential equations

Обсудим примеры решений разных дифференциальных уравнений.

4.1 1. First-order equations.

4.1.1 Problems about Linear Equations with Constant Coefficients

МФТИ-T.1 Решить 2x(
√
x+ 1)y′ + y2 +

√
x = 0

Это нетривиальное уравнение на первую производную, следовательно оно может быть именным - да,
это типичное уравнение Риккати.

Угадаем, что решение может иметь вид y = C
√
x, подставим, получим квадратное уравнение на C,

решим, получим C = −1.
Подставим y = −

√
x+ z(x), получим уравнение Бернулли:

2x(
√
x+ 1)z′(x) + 2

√
xz = −z2

Подставим z = 1
u , получим:

−2x(
√
x+ 1)u′ + 2

√
xu = −1

решаем однородное, получаем u = C(
√
x+ 1)2, подставляем с C = C(x), получаем

C + const =
∫

dx

2x(
√
x+ 1)3

введя t ≡
√
x+ 1, разложив 1

(t3(t−1)) = − 1
t −

1
t2 − 1

t3 + 1
(t−1) , находим

u =
1

2
+ (

√
x+ 1)2 ln(

√
x) + (

√
x+ 1)2 ln(

√
x+ 1) +

√
x+ 1 + const(

√
x+ 1)2

в итоге ответ:

y = −
√
x+

(1
2
+ (

√
x+ 1)2 ln(

√
x) + (

√
x+ 1)2 ln(

√
x+ 1) +

√
x+ 1 + const(

√
x+ 1)2

)−1

МФТИ-T.2

Решить задачу Коши: y′′ + 2y′ = y′2

y+1 + y′

x ln
(

y+1
y′

)
, y(1) = 1, y′(1) = 2

e .

(потом порешаю, чет пока не пошла.)

ФР. x2 + y2 + xy − x2y′ = 0, y(e) = 0

Решаем делением, а далее элементарным преобразованием
y′ = x2+y2+xy

x2 = 1 +
(
y
x

)2
+
(
y
x

)
Замена: y/x = v → y = v(x) · x, mo yy y′ = v + x dv

dx ;
y(e)
e = v(e) ⇒

v(e) = 0 v + x dv
dx = 1 + v2 + v → x dv

dx = 1 + v2 ⇒ ⇒
∫

dv
1+v2 =

∫
dx
x → 3 arcty v = lnx+ c, marsa v(l) = 0 wa

tar yas > arcty y/x = lnx− 1 Umb.

ФР. y′ = x
√
y + xy

x2−1
, x > 1

Уравнение Бернулли, решается без проблем по алгоритмам для уравнения Бернулли.

ФР.
(
2xex

2−y2 − sinx
)
dx−

(
2yex

2−y2 + sin y
)
dy = 0

Типичное уравнение в полных дифференциалах, это легко проверяется, дальше элементарно все
считается.
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4.1.2 Problems about equations with separating variables and homogeneous equations

ФР. y′′ = 2 (y′ − 1) cotx, y
(
π
2

)
= π + 13, y′

(
π
2

)
= 3

Решается по алгоритму для уравнений без y:
∫ d(p−1)

p−1 = 2 ·
∫ d(sin x)

sin x ln |p−1| = 2 ln | sinx|+lnC1 p−1 =

C1 sin
2 x dy

dx = C1 sin
2 x+1

∫
dy = c1

∫
sin2 x ·dx+

∫
dx y = c1 ·

∫
1−cos 2x

2 dx+
∫
dx y = c1

2

(
x− sin 2x

2

)
+x+c2

(3 3 = c1 + 1 c1 = 2 π + 13 = π
2 + π

2 + c2 C2 = 13 y = 2x+ 13− sin 2x
2 y = 2x− cosx · sinx+ 13 2

Важно как всегда для таких: не делать никаких сложных ходов, а решать простыми.

ФР. 2 (y′)2 = y′′(y − 1), y(1) = 2, y′(1) = −1

Решаем обычной заменой 2 (y′)
2
= y′′(y − 1) y(1) = 2 y′(1) = −1 y′ = p y′′ = p·dp

dy 2p2 = p · dp
dy (y −

1) (: p ̸= 0 y′ ̸= 0 y ̸= Const → 2p = dp
dy (y − 1)

∫
dp
p = 2

∫ d(y−1)
y−1 ln |p

)
= 2 · ln(y − 1) + lnC1

dy
dx = p =

c1 · (y−1)2 −1 = C1 · (2−1)2 = c1
dy
dx = −(y−1)2

∫ d(y−1)
(y−1)2 = −

∫
dx 1

y−1 = x+C2
1

2−1 = 1+C2 C2 = 0

y − 1 = 1
x y = x+1

x

4.1.2 Problems about equations with separating variables and homo-
geneous equations

Тут все просто, абсолютно ничего сложного.

Р-2.пр.3. Решить 2xydx = (x2 + y2) dy

Перед нами типичное однородное уравнение, которое решается заменой y = xz. Приходим к
уравнению с разделяющимися переменными:

x
(
1 + z2

)
dz + z

(
z2 − 1

)
dx = 0.

Заметим, что z = 0,±1 - решения этого уравнения. Тогда из замены следует, что y = 0 и y = ±x - решения
исходного уравнения. При z ̸= 0,±1 уравнение с разделяющимися переменными можно записать в виде

dx

x
+

(
2z

z2 − 1
− 1

z

)
dz = 0.

Решив это уравнение и использовав замену z = y
x , получаем решения заданного уравнения:

x2 − y2 = Cy, y = 0.

Тут все просто, важно только не потерять решения.
Ответ: x2 − y2 = Cy, y = 0, y = ±x.

Р-2.1. Решить y′ = y2 − y.

Разделяем переменные, не забываем решение y = 0. В правой части преобразовываем 1
y(y−1) =

1/(−1 + y)− 1/y, приходим к Cex = ln y−1
y , отсюда ответ: y = (1− cex)−1, y = 0.

Заметим, что тут можно было бы бы написать ответ: y = (1+cex)−1, y = 0, хотя изначально константа
была только положительная. Это потому что просто можно менять константы на другую со знаком, пока
так объясняю это.

Р-2.2. Решить (x2 + x) y′ − (2x+ 1)y = 0.

Замечаем, что y = 0 решение. Разделяем переменные: dy
y = dx

x + dx
x+1 получаем ответ: y = Cx(x+1), y =

0.

Р-2.3. Решить xy′ cos y + sin y = sin2 y

Замечаем, что sin(y) = 1 решение, разделяем переменные, вычисляем интеграл, заменяя sin(y) ≡ t,
приходим к ответу: Cx = sin y−1

sin y , sin(y) = 1.

Р-2.4. Решить
y′ cosx+ y(1 + y) sinx = 0.
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4.1.2 Problems about equations with separating variables and homogeneous equations

Р-2.5. Решить

2xydx =
(
1− x2

)
dy.

Р-2.6. Решить
x3ydy = (x− 1)dx.

Р-2.7. Решить
yy′ cosx = (1− y) sinx.

Р-2.8. Решить

x
(
1− y2

)
y′ = y

(
1 + y2

)
.

Р-2.9. Решить(
x2 − 1

)
ydx = x

(
x2 + 1

)
dy.

Р-2.10. Решить

x(y + 1)dy =
(
1− y2

)
dx.

Р-2.11. Решить xy′ + y2
(
1
x
− 3x

)
= 0

Спокойно переменные разделяются, при этом y = 0 есть решение, интегрируем, получаем ответ:
1
y + 1

x = C − 3x, y = 0.

Р-2.12. Решить(
1− x2

)2
yy′ + x = 0.

Р-2.13. Решить
(x+ 1)y′ + y(y + 1) = 0.

Р-2.14. Решить(
1 + y2

)
ydx = x

(
1 + 2y2

)
dy.

Р-2.15. Решить

x2
(
x2 + 4

)
y′ = cos2 y.

Р-2.16. Решить
y′ tg2 x− ctg y = 0.

Р-2.17. Решить

(1 + cosx)yy′ =
(
1 + y2

)
sinx.

Р-2.18. Решить

yexdy + xey
2

dx = 0.

Р-2.19. Решить

x(1 + y)y′ + (
√
x+ lnx)

(
1 + y2

)
= 0.
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4.1.3 Problems about variable substitution method

Р-2.20. Решить

(x− 1)yy′ +
(
x2 + 1

)
(y + 1)2 = 0.

Р-2.21. Решить

x2dx+
(
1 + x6

)√
1− 2ydy = 0.

Р-2.22. Решить

y′
√
1− x4 + x (1 + ey) = 0.

Р-2.23. Решить

y′ sin
2 x

cos x + e−y
√
1 + ey = 0.

4.1.3 Problems about variable substitution method

Р-2.24
(2x+ y + 2)dx− (4x+ 2y + 9)dy = 0.

Р-2.25 Решить (4− x− 2y)dx− 2(1 + x+ 2y)dy = 0.

Р-2.2 Решить (2y − x+ 1)dx+ (4y − 2x+ 6)dy = 0.

Р-2.27 Решить (y − 3x+ 2)dx+ (3x− y − 1)dy = 0.

Р-2.28. Найти решение, удовл. н.. у.: 2y (1 + y2) dx+x (3y2 + y + 3) dy = 0, y(1) = 1

Без проблем разделяем переменные, раскладываем функцию от y на дроби, интегрируем, находим
константу из начальных условий, получаем: lnx2 + 3 ln y + arctg y = π

4

Р-2.29. Найти решение, удовл. н.. у.:
x(2y − 1)y′ + 4y2 = 0, y(−1) = −1.

Р-2.30. Найти решение, удовл. н.. у.:
x(1 + y)y′ = y2, y(1) = 1.

Р-2.31. Найти решение, удовл. н.. у.:
3x(x+ 1)y′ = (x+ 2)y, y(1) = −1.

Р-2.32. Найти решение, удовл. н.. у.:
(y + 2)y′ = sin 2x, y(0) = 1.

Р-2.33. Найти решение, удовл. н.. у.:

(ex + 1)
2
y′ +

(
e2x − 1

)
y = 0, y(0) = 1

4 .

Р-2.34. Найти решение, удовл. н.. у.:(
x2 + x

)
y′ −

(
x2 + x+ 1

)
y = 0, y(1) = e

2 .

Р-2.35. Найти решение, удовл. н.. у.:(
x3 + x

)
y′ −

(
3x2 − 1

)
y = 0, y(−1) = −4.
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4.1.3 Problems about variable substitution method

Р-2.36. Найти решение, удовл. н.. у.:

y′ + 3y2 = 3y, y(0) = 1
2 .

Р-2.37. Найти решение, удовл. н.. у.:

y′ =
(
y + y4

)
th x, y(0) = 1.

Р-2.38. Найти решение, удовл. н.. у.:
xy′ + y(1 + y) sinx = 0, y(0) = 1.

Р-2.39. Найти решение, удовл. н.. у.:

2y′ =
(
y2 − 2y

)
ex

2

, y(0) = 1.

Р-2.55
Доказать, что решение задачи Коши существует и единственно при любых начальных данных для

уравнения y′ = a(x)·b(y), где a(x), b(y) заданные и непрерывные соответственно на интервалах (α, β), (γ, δ)
функции, причем b(y) ̸= 0.

Р-2.56
Пусть функции f(x), g(y) непрерывны на всей числовой оси, причем

Р-2.56
Пусть функции f(x), g(y) непрерывны на всей числовой оси, причем

|f(x)| ⩽ A

(1 + |x|)1+ε
, 0 < g(y) ⩽ B(1 + |y|),

где A,B, ε - положительные постоянные. Доказать, что при любых x0, y0 существует единственное,
определенное при −∞ < x < +∞ решение уравнения

y′ = f(x) · g(y),

удовлетворяющее условию y (x0) = y0 и имеющее конечные limx→−∞ y(x), limx→+∞ y(x).

Р-2.57

xy′ = y
(
1 + ln y

x

)
.

Р-2.58

xy′ = x2+y2

x+y .

Р-2.59

xdy =
(
y +

√
x2 + y2

)
dx.

Р-2.60

xydx =
(
x2 − y2

)
dy.

Р-2.61

xdy =
(
y −

√
x2 + y2

)
dx.

Р-2.62
(x+ 2y)dx+ ydy = 0.
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4.1.3 Problems about variable substitution method

Р-2.63(
xy + y2

)
y′ = y2.

Р-2.64
(2x+ y)y′ = x+ 2y.

Р-2.65(
x3 + y3

)
y′ = x2y.

Р-2.66
(x+ 2y)y′ + y = 0.

Р-2.71. (3xdy − ydx) (x2 + y2) + x2ydy − xy2dx = 0.
Имеем однородное уравнение, так что решаем y(x) = z(x)x, получаем после сокращений:

dzx4(3(1 + z2) + z) = −2x3z(1 + z2)dx.

замечаем, что решения y = 0, x = 0, разделяем переменные, приходим у к уравнению:

dz
)3
z
+

1

1 + z2
)
= −2

dx

x
,

получаем уравнение, из которого можно легко выразить ответ: ln
∣∣∣y3

x

∣∣∣+ arctg y
x = C

Ответ: ln
∣∣∣y3

x

∣∣∣+ arctg y
x = C, y = 0, x = 0.

Р-2.72
(x+ y + 1)dx+ (x− y + 3)dy = 0.

Р-2.73
(2x− y − 2)dx+ (x+ y − 4)dy = 0.

Р-2.74
(x+ 2y − 5)dx+ (y − x− 4)dy = 0.

Р-2.75
(x− 1)y′ + 3x+ 2y + 3 = 0.

Р-2.76
(x+ y − 2)y′ + x− y = 0.

Р-2.77
(2x+ y − 3)y′ + y + 1 = 0.

Р-2.78
(x+ 2y)y′ + 2x+ 5y − 1 = 0. Найти решения уравнений, удовлетворяющие заданному н. у. (79-83):

Р-2.79

y′ = 2x+y
x−2y , y(1) = 0.
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4.1.4 Problems about the simplest Bernoulli and Riccati equations

Р-2.80

y′ = y−2x
x+2y ; y(1) = 0

Р-2.81(
y2 − 3x2

)
y′ + xy = 0, y(1) =

√
6.

Р-2.82
xyy′ = (x− 2y)2, y(1) = 2.

Р-2.83
(x − y)2y′ = 4xy, y(−1) = 2. Решить уравнения, приведя их с помощью замены вида y = zm к

однородным уравнениям (84-87):

Р-2.84(
4x2 + y4

)
dy − 2xydx = 0.

Р-2.85(
3x2y2 + 1

)
y′ + 3xy3 = 0.

Р-2.86

y′ = 4x2 − y2

x4 .

Р-2.87

y′ = x+ x3

y .

Р-2.88
Найти интегральные кривые уравнения

xy′ = 2
(
y +

√
y2 − x4

)
,

проходящие через а) точку (2, 5),
б)точку (1, 1).

Р-2.90
Составить дифференциальное уравнение траекторий, пересекающих под углом φ = π

4 параболы с
общей вершиной и общей осью.

Р-2.92
Составить дифференциальное уравнение семейства окружностей, имеющих центр на прямой y = x и

проходящих через начало координат.

4.1.4 Problems about the simplest Bernoulli and Riccati equations

Р-3.пр.1. Найти общее решение xy′ = y − 2x2

Имеем типичное неоднородное уравнение. Ищем общее решение однородного xy′ = y. Преобразовав,
получим dy

y = dx
x , а также решение y = 0. Получаем общее решение однородного уравнения y = Cx, где

C - произвольная постоянная.
Далее варьируем постоянную, т. е. ищем решение заданного уравнения в виде y = C(x) ·x, подставим,

получим
C(x) = −2x+A
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где A - произвольная постоянная. Следовательно, общее решение заданного уравнения имеет вид

y = Ax− 2x2.

Р-3.пр.2. Решить xy′ + 4y = 3xy2

Решаем как типичное уравнение Бернулли. Очевидно, что y = 0 - решение. При y ̸= 0, подставим
z = 1

y , получаем линейное уравнение xz′−4z+3x = 0. Решив это уравнение методом вариации постоянной,
находим z = Cx4+x, где C - произвольная постоянная. Следовательно, y = 0 и 1

y = Cx4+x - все множество
решений заданного уравнения.

Р-3.пр.3. Решить x2y′ + 2x2y2 − 5xy + 4 = 0

Решаем как типичное уравнение Риккати. Угадываем, что y0(x) = 1
x является решением заданного

уравнения. Подставим y = z+ 1
x , получим уравнение Бернулли z′ = z

x − 2z2. Замена u = 1
z при z ̸= 0 дает

линейное уравнение u′ + u
x = 2. u = C

x + x, где C - произвольная постоянная. Отсюда получаем решение
заданного уравнения

y =
x

C + x2
+

1

x

Найти общее решение уравнений (1-31):

Р-3.1. Решить y′ + y = 2ex

Решаем однородное, потом варьируем постоянную, ответ: y = Ce−x + ex.

Р-3.2
xy′ = y − 2x2.

Р-3.3
y2dx+ (xy − 1)dy = 0.

Р-3.4

2ydx+
(

3
y − x

)
dy = 0.

Р-3.5

x
(
4− x2

)
y′ = 2x2y + 1.

Р-3.6
xy′ = x2 + y.

Р-3.7
y′ = y

x − x.

Р-3.8
(x+ y)dx = xdy.

Р-3.9
2x3y′ = 2x2y − 3.

Р-3.10

ydx−
(
x+ y2

)
dy = 0.
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Р-3.11. ydx = (3x− y2) dy

Решаем относительно x(y) : yx′ − 3x = −y2, решаем однородное, варьируем постоянную, не забываем
константное решение, в итоге ответ: x = y2 + Cy3, y = 0.

Р-3.12
y′ = y + 2xex.

Р-3.13(
x+ y2 cos y

)
dy = ydx.

Р-3.14

xy′ = x2 + y − 1
x .

Р-3.15
y′ = y

x − 2x2.

Р-3.16

x4dy =
(
2− x3y

)
dx.

Р-3.17
ydx = (2y − x)dy.

Р-3.18
dx = (2x+ ey) dy.

Р-3.19
x3y′ + 2x2y = 2 lnx.

Р-3.20
(sinx− 1)y′ + y cosx = sinx.

Р-3.21

y′ + 2xy = 2
(
1 + 2x2

)
.

Р-3.22
xy′ − 2y = 2x4.

Р-3.23
x4y′ + 2x3y = 1.

Р-3.24
x2y′ + 2xy = 1.

Р-3.25
xy′ − 3y = 4x2.
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Р-3.26
x3y′ + x2y = x2 − 1.

Р-3.27
4y′ + 12x2y = 3x2.

Р-3.28

xy′ +
(
1 + x2

)
y + x = 0.

Р-3.29

x
(
y −

√
1 + x2

)
dx+

(
1 + x2

)
dy = 0.

Р-3.30
y′ + y tg x = ex cosx.

Р-3.31(
1 + y2

)
dx+

(
xy − y3

)
dy = 0.

Р-3.32
xy′ − y = x2.
Уравнения (32-35) искусственным приемом решаются короче, чем методом вариации постоянной.

Р-3.33(
y + x3 cosx

)
dx− xdy = 0.

Уравнения (32-35) искусственным приемом решаются короче, чем методом вариации постоянной.

Р-3.34
x2y′ + xy + 1 = 0.
Уравнения (32-35) искусственным приемом решаются короче, чем методом вариации постоянной.

Р-3.35(
1 + y2

)
dx+ (2xy − 1)dy = 0.

Уравнения (32-35) искусственным приемом решаются короче, чем методом вариации постоянной.

Р-3.36 Найти решения уравнений, удовлетворяющие н. у.
xy′ + 2y = 3x, y(−1) = 1.

Р-3.37
x2y′ = 5xy + 6, y(1) = 1.

Р-3.38

xy′ = 7y + x4, y(1) = − 1
3 .

Р-3.39
xy′ = 5y + 3x2, y(−1) = −1.

Р-3.40(
1 + x2

)
y′ = 2xy − 2x, y(0) = 2.
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Р-3.41
y′ − y tg x = sinx, y(0) = 0.

Р-3.42(
x2 + x

)
y′ −

(
x2 + x+ 1

)
y + x3 = 0, y(1) = 1.

Р-3.43
xy′ = 3y + 2x5, y(−1) = 1.

Р-3.44
xy′ − 2y = 2x4, y(1) = 1.

Р-3.45
x2y′ + y = 4, y(−1) = 5.

Р-3.46
Найти ортогональные траектории семейства кривых y + x = Ce−x + 1.

Р-3.47 Решить
4xy′ + (4x+ 1)y2 − 4y = 0.

Р-3.48
2xy′ + 2y = x2y2.

Р-3.49
y′ = xy2 + y

x .

Р-3.50
2xy′ = 3y − 4xy3.

Р-3.51
xy′ − y + 2xy2 lnx = 0.

Р-3.52
2xy′ + 2xy3 = y.

Р-3.53
2x2y′ + xy = 2y3.

Р-3.54
xy′ + 4y = 3xy2.

Р-3.54
y′ − y

x = y2.

Р-3.56
xy′ = 2y − 4x2y2.
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Р-3.57
y′ − y + 2xy3 = 0.

Р-3.58
xy′ + 3xy2 = 2y.

Р-3.59
xy′ − y + 4y3 = 0.

Р-3.60
y′ + y tg x+ 4y2 sinx = 0.

Р-3.61
xy′ + 3y = 4x2y2.

Р-3.62
xy′ + 2xy2 = 3y.

Р-3.63
y(y + 1)dx+ (x+ 1)dy = 0.

Р-3.64
y′ cosx+ y sinx+ 3y2 cosx = 0.

Р-3.64
5xy4y′ = y5 + 4.

Р-3.66

y
(
4xy2 − 3

)
dx+ 2xdy = 0.

Р-3.67

8y′ + 3x2y
(
y2 − 4

)
= 0.

Р-3.68

ydx+
(
2x2y − 3x

)
dy = 0.

Р-3.69

3x2dx−
(
x3 + y + 1

)
dy = 0.

Р-3.70

y3dx+
(
x3 ln y − xy2

)
dy = 0.

Р-3.71

ydx+
(
4x3 − x

)
dy = 0.

Р-3.72(
y2 − 1

)
dx− y

[
x+

(
y2 − 1

)√
x
]
dy = 0.
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Р-3.73
Найти решение уравнения 4xyy′ − 3y2 + x2 = 0, удовл. н. у. y(1) = 1.

Р-3.74

Найти интегральную кривую уравнения ydx− 4
(
x+ y2

√
x
)
dy = 0, проходящую через точку (0, 1).

Р-3.74

Найти интегральную кривую уравнения dx − xy
(
1 + xy2

)
dy = 0, пересекающую биссектрисы обоих

координатных углов при x = 1.
Уравнения задач (76-81) искусственным приемом решаются короче, чем методом сведения к

линейному уравнению.

Р-3.76
xy′ − y + xy2 = 0.

Р-3.77
x3y′ − x2y − y3 = 0.

Р-3.78

ydx− x
(
xy2 + 1

)
dy = 0.

Р-3.79
4xy′ + 4xy2 = 4y − y2.

Р-3.80

Найти решение уравнения sin2 x (y′ sinx− y cosx) = y2 cosx, удовлетворяющее условию y
(
π
2

)
= 1.

Р-3.81
Найти решение уравнения cos2 x (y′ cosx+ y sinx) + y2 sinx = 0, удовлетворяющее условию y(0) = 1.
С помощью подбора какого-либо решения найти общее решение уравнений (82− 95):

Р-3.82
2x2y′ + x2y2 + 4 = 2xy.

Р-3.83
x2y′ + x2y2 + 2xy = 2.

Р-3.84

4y′ = y2 + 4
x2 .

Р-3.84
xy′ = y2 + 2(x+ 1)y + x2 + x.

Р-3.86
x2y′ = x2y2 + 3xy + 3.

Р-3.87
x2y′ = y2 + 2xy − 2x2.
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4.1.5 Problems about first-order equations not solved with respect to the derivative, special
solutions

Р-3.88
y′ = y2 − 2xy + x2.

Р-3.89
y′ = y2 − 2xy + x2 − 3.

Р-3.90
y′ + e−xy2 + y = 3ex.

Р-3.91
y′ − exy2 + 3y = e−x.

Р-3.92

y′ = y2 − 2y sinx+ cosx+ sin2 x.

Р-3.93
y′ + y2 − 2y cosx+ sinx+ cos2 x = 0.

Р-3.94
x2y′ − 5xy + x2y2 + 8 = 0.

Р-3.94(
3x2 + 2y

)
(1 + y)dx+

(
2x− x3

)
dy = 0.

Р-3.96
Доказать, что уравнение y′ = ky + f(x), где k = const ̸= 0, f(x) - непрерывная и периодическая

функция, имеет только одно периодическое решение. Найти его.

Еще пара задач
97. Доказать, что у уравнения xy′ + ay = f(x), x > 0, где a = const ̸= 0, f(x) - непрерывная

ограниченная функция, существует только одно решение, ограниченное при x > 0.
98. Доказать, что у уравнения xy′ +αy = f(x), 0 < x < a, где α = const > 0, a > 0, f(x) - непрерывная

функция при 0 < x ⩽ a и limx→+0 f(x) = β, существует только одно решение, ограниченное при 0 < x < a
и имеющее предел при x→ +0. Найти этот предел.

99. Доказать, что у уравнения y′ = a(x)y + b(x), 0 < x < +∞, где a(x), b(x) - непрерывные при
0 ⩽ x < +∞ функции, b(x) - ограничена, a(x) ⩾ a0 = const > 0, существует только одно решение,
ограниченное при 0 < x < +∞.

100. Пусть a(x), b(x) - непрерывные при 0 ⩽ x < +∞ функции, имеющие конечные limx→+∞ a(x) =
A > 0, limx→+∞ b(x) = B. Доказать, что существует единственное решение y0(x) уравнения y′ = a(x)y +
b(x), 0 < x < +∞, имеющее конечный предел при x→ +∞. Найти limx→+∞ y0(x).

Указание. Рассмотреть ограниченное решение и доказать, что оно имеет конечный предел при x →
+∞. Можно воспользоваться правилом Лопиталя. 101. Пусть a(x), b(x) - непрерывные при 0 ⩽ x < +∞
функции, причем существует конечный limx→+∞ a(x) = A > 0 и limx→+∞ xb(x) = 1. Пусть y0(x) - решение
уравнения y′ = a(x)y + b(x), 0 < x < +∞, имеющее конечный предел при x→ +∞. Найти limx→+∞ y0(x).

4.1.5 Problems about first-order equations not solved with respect to
the derivative, special solutions

(тут их очень много, лишь пару выгрузил)
(???? что за особое решение???)

Р-6.1
y3 − 4xyy′ + 8y2 = 0.
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4.1.5 Problems about first-order equations not solved with respect to the derivative, special
solutions

Р-6.3

8xy′3 = y
(
12yr2 − 9

)
.

Р-6.5
x3y′2 + x2yy′ + 1 = 0.

Р-6.7
y′3 − 3x2y′ + 4xy = 0.

Р-6.9
y′ = ln y

y′−1 .

Р-6.11
x3y′2 − 4x2yy′ + 4xy2 + 4y′ = 0

Р-6.13
5xy′2 + 1 = yy′ (1 + yy′).

Р-6.15
1
4y

′2 − y′ + y = 2x− 3.

Р-6.17
y′2 + xy2y′ + y3 = 0.

Р-6.19
y′2 − 2yy′ + 4e2x = 0.

Р-6.21
4y′2 + 3x5y′ = 9x4y.

Р-6.23

y = y′ + 1
2 (x− ln y′).

Р-6.2
y′2 + 2x3y′ − 4x2y = 0.

Р-6.4
x2y′2 − 4x(y + 2)y′ + 4y(y + 2) = 0.

Р-6.6

y′2 − 3xy
2
3 y′ + 9y

5
3 = 0.

Р-6.8
y2y′2 + 2xyy′ − y2 + 1 = 0.
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4.1.5 Problems about first-order equations not solved with respect to the derivative, special
solutions

Р-6.10
xy′2 − 2yy′ + 2y = 0.

Р-6.12
8y2y′3 − 3y + 6(x− 2)y′ = 0.

Р-6.14
x3y2y′2 − 2x2y3y′ + xy4 + 2yy′ = 0.

Р-6.16
y′2 − 8xy′ + 8x2 + 4y = 0.

Р-6.18
2y2y′2 − 2xy′2 + 4yy′ + 1 = 0.

Р-6.20
x4y′2 + xy′ + y = 0.

Р-6.22(
1− x2

)
y′2 + 2xyy′ + x2 = 0.

Р-6.24
yy′ (yy′ − 1) = x− y2.

Р-6.51
4y′3 − 3x2y′ + 4xy = 0.

Р-6.52
4yy′2 − 2xy′3 − x2 = 0.

Р-6.53
4xyy′2 − 8x2y′3 = 1.

Р-6.54

2xyy′2 = 4x3 +
(
x2 + 1

)
y′3.

Р-6.55
2yy′ + 2y − 3x = xy′2.

Р-6.56

4x2y + y′2 = 2x
(
x2 + 1

)
y′.

Р-6.57
y

xy′ + ln y′ = 1.

Р-6.58
xy′ = y (1 + ln y′).
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4.1.6 Problems Exact Differential Equations

Р-6.59

xy′2 = y′ − 3
4e

−2y.

Р-6.60

4x6y − x7y′ + 1
8y

′2 = 0.

Р-6.61
4
9y

′3 − 3x4y′ + 6x3y = 0.

Р-6.62

(xy′ + y)
2
+ 20x2y′ = 0.

Р-6.63
x8 + 5xy′ + y′2 = 5y + 4x5 + 2x4y′.

Р-6.64
xy4y′ + 3y5 + y14 = 0.

Р-6.65
xy′3 + 3yy′2 + 27y4 = 0.

Р-6.66
x4 + 3xy′ + y′2 = 3y + 2x3 + 2x2y′.

4.1.6 Problems Exact Differential Equations
Решается тут все или заменой переменных или интегрирующим множителем.
(пока лень решать, не актуальные задачи, по идее проблем с ними не должно быть, просто возиться

приходится, прежде чем пойму, как привести к полным дифференциалам.)

Р-4.пр.1 Решить (3x2 + y − 1) dx+ (x+ 3y2 − 1) dy = 0.

Заданное уравнение является уравнением в полных дифференциалах, поскольку оно задано на всей
плоскости (x, y) и ∂Q

∂x = ∂P
∂y = 1. Функцию u(x, y) находим из системы уравнений{

∂u
∂x = 3x2 + y − 1
∂u
∂y = x+ 3y2 − 1

Из первого уравнения получаем u(x, y) = x3 + x(y − 1) + φ(y), где φ(y) - произвольная непрерывно
дифференцируемая функция y. Подставляя его во второе уравнение системы, получаем φ′(y) = 3y2 − 1.
Отсюда находим φ(y), a, значит, и функцию u(x, y).B данном примере можно взять u(x, y) = x3 + y3 +
xy − x− y. Следовательно, решения заданного уравнения задаются формулой

x3 + xy + y3 − x− y = C.

Р-4.пр.2 Решить (y − 4xy3) dx = (2x2y2 + x) dy.
Заметим сначала, что y = 0 - решение уравнения. Пусть y ̸= 0. Уравнение запишем в следующем

виде
ydx− xdy = 2y2

(
x2dy + 2xydx

)
.

Если разделить уравнение на y2, то уравнение примет вид

d

(
x

y

)
= 2d

(
x2y
)
.
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Получили уравнение в полных дифференциалах, из которого находим, что ответ: y = 0, x = 2x2y2 + Cy,
где C - произвольная постоянная.

Кстати, интегрирующим множителем заданного уравнения служит функция 1
y2 .

Р-4.пр.3 Решить (x2 + xy2) dx+ (x2y + y3) dy = 0

Здесь ∂M
∂y = 2xy, ∂N∂x = 2xy, так что условие (2) выполнено и, следовательно, данное уравнение есть

уравнение в полных дифференциалах. Это уравнение легко привести к виду du = 0 непосредственной
группировкой его членов. С этой целью перепишем его так: Очевидно, что

x3dx+ xy(ydx+ xdy) + y3dy = 0

x3dx = d

(
x4

4

)
, xy(ydx+ xdy) = xyd(xy) = d

(
(xy)2

2

)
, y3dy = d

(
y4

4

)
Поэтому изначальное уравнение можно записать в виде

d

(
x4

4

)
+ d

(
(xy)2

2

)
+ d

(
y4

4

)
= 0 или d

(
x4

4
+

(xy)2

2
+
y4

4

)
= 0.

Следовательно, x4 + 2(xy)2 + y4 = C есть общий интеграл исходного уравнения.

ФР. y2dx+ (ex − y) dy = 0

Подбором находим, что следует домножить на e−x

y , получим ye−xdx + dy
y − e−xdy = 0, то есть

d (ye−x − ln y) = 0. т.o. ye−x − ln y = c Интегрирующий множитель µ = e−x

y

Р-4.1 Решить(
1− 3x2 − y

)
dx =

(
x− 3y2

)
dy.

Р-4.2(
y2 − 2x3

)
dx+ 2xydy = 0.

Р-4.3[
(x− y)2 − x

]
dx+

[
y − (x− y)2

]
dy = 0.

Р-4.4
(y − sinx)dx+ (x+ ey) dy = 0.

Р-4.5

(y − x)dx+
(
x+ 2e2y

)
dy = 0.

Р-4.13(
1 + 3x2 ln y

)
dx+

(
3y2 + x3

y

)
dy = 0.

Р-4.14(
2x− sin2 y

x2

)
dx+

(
2y + sin 2y

x

)
dy = 0.

Р-4.15(
y
x2 + 1

y

)
dx−

(
x
y2 + 1

x + 2y
)
dy = 0.
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Р-4.16

e
y
x

(
1− y

x

)
dx+

(
1 + e

y
x

)
dy = 0

Р-4.17
y
xdx+ [1 + ln(xy)]dy = 0, x > 0, y > 0.

Р-4.18(
1 + 2x

y3

)
dx+

(
1
y2 − 3x2

y4

)
dy = 0.

Р-4.19

2xydx+
(
y2 − x2

)
dy = 0.

Р-4.20

2xydx =
(
x2 − 2y3

)
dy.

Р-4.21
(3
√
x− y − 2x)dx = (3

√
x− y − 2y)dy.

Р-4.22(
y − 3x2y3

)
dx−

(
x+ x3y2

)
dy = 0.

Р-4.23(
2xy2 + y

)
dx−

(
x2y + 2x

)
dy = 0.

Р-4.24

ydx =
(
x− 2y3

)
dy.

Р-4.25

x3dy + 2
(
y − x2

)
ydx = 0.

Р-4.33(
1
x − y

)
dx = 1

ydy.

Р-4.34(
2x3y + x2y4

)
dx+

(
x4 + x3y3

)
dy = 0.

Р-4.35(
3x2y + 7y2

)
dx−

(
2x3 + 5xy

)
dy = 0.

Р-4.36(
2y − x2y2

)
dx =

(
x3y − x

)
dy.

Р-4.37(
4x3y + 3y2

)
dx−

(
2x4 + xy

)
dy = 0.
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4.1.6 Problems Exact Differential Equations

Р-4.38

(3xdy − ydx)
(
x2 + y2

)
+ x2ydy − xy2dx = 0.

Р-4.39(
3x2 + 2y

)
(1 + y)dx+

(
2x− x3

)
dy = 0.

Р-4.40(
xy3 + 2y

)
dx+

(
x− x2y2

)
dy = 0.

Р-4.41
3xdy + ydx+ xy3(xdy + ydx) = 0.

Р-4.42

xy2dx+
(
x2y − x

)
dy = 0.

Р-4.43

x
(
x2 + y2

)
dy + y(ydx− xdy) = 0.

Р-4.44(
xy3 + y

)
dx+

(
2x+ x2y2

)
dy = 0.

Р-4.45

2x4(xdx+ ydy) +
(
x2 + y2

)2
(xdy − 3ydx) = 0.

Р-4.46
y(2ydx− xdy) + x2(ydx+ 2xdy) = 0.

Р-4.47(
y2 − 3x2

)
dy + xydx = 0.

Р-4.48

xdy − ydx = x
√
x2 + y2 · dx.

Р-4.49
xdy − 2ydx+ xy2(2xdy + ydx) = 0.

Р-4.53
2xdy + ydx+ xy3(xdy + 2ydx) = 0.

Р-4.54(
y2 + y

)
dx+

(
xy + 2x+ 1

y

)
dy = 0.

Р-4.55[(
3x2 + 2

)
y + 3x

]
dx+

(
2x− x3

)
dy = 0.
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4.1.7 Problems about researching the Cauchy problem (?!)

Р-4.56

xy′ − y = 2x3e−
y
x .

Р-4.57

2xy3dx+ x2y2dy =
(
1− y2

)
dy.

Р-4.58(
2xy2 − y

)
dx+

(
y2 ln y + x− y

)
dy = 0.

Р-4.59

x2yy′ + x3 =
(
x2 + y2

)2.
Р-4.60

4x2y2dx+ x3(2y − 1)dy = 0.

4.1.7 Problems about researching the Cauchy problem (?!)
(нужно заготовить теорию!)

Р-5.пр.1

Доказать, что если функции f(x, y) и ∂f(x,y)
∂y непрерывны в области G плоскости R2

(x,y), то f(x, y)

удовлетворяет условию Липшица по y равномерно по x на каждом компакте K ⊂ G.

Доказательство

Рассуждаем от противного. Пусть утверждение неверно. Тогда найдутся компакт K0 ⊂ G и
последовательности {Ln}∞n=1 , Ln > 0,∀n ∈ N , {(xn, y′n)}

∞
n=1 ⊂ K0, {(xn, y′′n)}

∞
n=1 ⊂ K0 такие, что

|f (xn, y′n)− f (xn, y
′′
n)| > Ln |y′n − y′′n| .

Так как K0 - компакт, то из последовательностей точек (xn, y
′
n) и (xn, y

′′
n) можно выбрать сходящиеся

подпоследовательности
(
xnk

, y′nk

)
→ → (x0, y

′
0) ∈ K0,

(
xnk

, y′′nk

)
→ (x0, y

′′
0 ) ∈ K0 при k → ∞. Рассмотрим

функцию

F (x, y′, y′′) =
f (x, y′)− f (x, y′′)

y′ − y′′
, y′ ̸= y′′,

в достаточно малой окрестности точки (x0, y
′
0, y

′′
0 ). Если y′0 ̸= y′′0 , то из непрерывности f(x, y) следует

ограниченность функции F (x, y′, y′′) в этой окрестности. Если же y′0 = y′′0 = y0, то из непрерывности
∂f(x,y)

∂y следует выполнение условия Липшица по y равномерно по x в окрестности точки (x0, y0), что
означает ограниченность F (x, y′, y′′) и в этом случае. Но ограниченность F (x, y′, y′′) противоречит
нашему предположению о компакте K0 при достаточно больших nk. Это доказывает утверждение
примера 1.

Р-5.пр.2
Выполнено ли условие Липшица по y равномерно по x для функции f(x, y) в полукруге x2 + y2 <

R2, y > 0, R > 0, если:
a)f(x, y) = x2 sinx+ y3,
б)f(x, y) = x+ |y|,
в)f(x, y) = x+

√
y? ∆B случае а) для любых двух точек (x, y1) и (x, y2) из полукруга имеем:

|f (x, y1)− f (x, y2)| =
∣∣y31 − y32

∣∣ = |y1 − y2| ·
∣∣y21 + y1y2 + y22

∣∣ ⩽
⩽

3

2

(
y21 + y22

)
|y1 − y2| ⩽ 3R2 |y1 − y2| .

Значит в случае а) условие Липшица выполнено. В случае
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4.1.7 Problems about researching the Cauchy problem (?!)

б)условие Липшица тоже выполнено, так как

|f (x, y1)− f (x, y2)| = ||y1| − |y2|| ⩽ |y1 − y2| .

Покажем, что в случае
в)условие Липшица не выполняется. Рассуждаем от противного. Пусть это условие выполнено в

полукруге с некоторой постоянной Липшица L > 0. Тогда для точек (0, 1) и (0, y), где 0 < y < ε, ε > 0 и
достаточно мало, имеем

|f(0, y)− f(0, 1)| = |√y − 1| ⩽ L|y − 1|.
Отсюда L(√y + 1) ⩾ 1, что невозможно при достаточно малых y > 0. Противоречие. Условие Липшица
не имеет места.

Р-5.пр.3
Указать какой-либо отрезок, на котором существует решение задачи Коши, если:
a)y′ = y2 + x2, y(0) = 0, |x| ⩽ 1, |y| ⩽ 1,
б)y′ = x+ sin

(
x2 + y

)
, y(0) = 0, |x| ⩽ 1,

в)y′ = |x|+ sin y2 + cos y2, y(0) = 0.
Известно, что решение задачи Коши y′ = f(x, y), y (x0) = y0, где f(x, y) и ∂f(x,y)

∂y непрерывны в
прямоугольнике Π = {(x, y) : |x− x0| ⩽ α, |y− −y0| ⩽ β}, всегда существует на [x0 − δ, x0 + δ], где δ =

min
(
α, β

M

)
,M = max |f(x, y)| при (x, y) ∈ Π.

В случае а) имеем α = β = 1,M = 2 и, значит, решение существует при |x| ⩽ 1
2 .

В случае
б)имеем α = 1, β = ∞,M = 2 и, значит, решение существует при |x| ⩽ 1.
В случае
в)для всех |x| ⩽ a при любом a > 0 имеем α = a, β = ∞, M = 2. Следовательно, решение существует

для |x| ⩽ a при любом a > 0, т. е. для всех x ∈ (−∞,+∞).

Р-5.пр.4 Методом последовательных приближений найти решение задачи
Коши: y′ + y = x+ 1, y(0) = 0.

В нашем случае последовательные приближения задаются формулами

y0(x) ≡ 0, yk(x) =

x∫
0

[ξ + 1− yk−1(ξ)] dξ, k = 1, 2, 3, ...

Методом математической индукции можно проверить, что yk(x) = x + (−1)k xk

k! , k = 1, 2, 3, ... Отсюда
следует, что при |x| ⩽ a для любого a > 0yk(x) при k → ∞ равномерно стремится к x. Значит, y = x
является решением задачи Коши.

Р-5.пр.5
Доказать, что последовательность функций yn(x), определяемая соотношениями

y0(x) ≡ 0, yn(x) = 2
1− x

x
− 1

9

x∫
1

y2n−1(t)dt, n = 1, 2, 3, ...,

сходится равномерно на [1, 2] и не сходится равномерно на [1, 8].
Заданная последовательность функций служит последовательными приближениями решения задачи

Коши вида

y′ = − 2

x2
− y2

9
, y(1) = 0.

Рассмотрим сначала эту задачу в области G = {(x, y) : x ∈ [1, 2], |y| ⩽ ⩽ b, b > 0}. В этой области
Gmax

∣∣∣− 2
x2 − y2

9

∣∣∣ = M ⩽ 2 + b2

9 и max
∣∣∣∂f∂y ∣∣∣ = max

∣∣− 2y
9

∣∣ = N ⩽ 2b
9 . Из теоремы существования решения

задачи Коши следует, что последовательные приближения сходятся равномерно на [1, 1 + δ], где число
δ > 0 одновременно удовлетворяет двум оценкам: δ < b

M = b

2+ b2

9

, δ < 1
N = 9

2b . Выбирая число b так,

чтобы обе оценки совпали, получаем b = 3
√
2, δ < 3

2
√
2
. Ясно, что δ = 1 удовлетворяет этому неравенству.

Решая на [1, 8] уравнение Риккати, получаем y = 3
x + 3

x+Cx
2
3
. Из начального условия C = −2. При x→ 8

получаем y → ∞, что противоречит равномерной сходимости.
При исследовании зависимости решения задачи Коши от параметров и начальных данных

используются уравнения в вариациях.
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Р-5.пр.6

Найти ∂φ(x,1,0)
∂y0

от решения y = φ (x, 1, y0) задачи Коши y′ = 2y + x3y2 − x2y3, y(1) = y0
Очевидно, что решением заданного уравнения при н. у. y(1) = 0 является y = φ(x, 1, 0) ≡ 0.
Известно, что искомая функция u = ∂φ

∂y0
должна быть решением уравнения в вариациях по y0

∂u

∂x
=
[
2 + 2x3y − 3x2y2

]
u,

где y = φ(x, 1, 0) ≡ 0, при н. у. u|x0=1 = 1. Другими словами, для нахождения функции u = ∂φ
∂y0

необходимо peшить задачу Коши вида

∂u

∂x
= 2u, u(1) = 1.

Искомым решением является u = e2(x−1).

Р-5.пр.7

Найти ∂φ(x,1,0)
∂x0

от решения y = φ (x, x0, 1) задачи Коши y′ = y − 1 + 2xy2
(
y2 − 1

)
, y (x0) = 1.

Очевидно, что решением заданного уравнения при н. у. y(0) = 1 является y = φ(x, 0, 1) ≡ 1.
Известно, что искомая функция v = ∂φ

∂x0
должна быть решением уравнения в вариациях по x0

∂v

∂x
=
[
1 + 8xy3 − 4xy

]
v,

где коэффициент при v берется при значении y ≡ 1 и при н. у. v|x=0 = −
[
y − 1 + 2xy2

(
y2 − 1

)]∣∣
x=0
y=1

= 0.

Следовательно, для нахождения функции v нужно решить задачу Коши вида

∂v

∂x
= (1 + 4x)v, v(0) = 0.

Отсюда искомое решение v ≡ 0.

Р-5.1
Выполнено ли условие Липшица для функции f(y), если:
a)f(y) = y2, |y| ⩽ α, α > 0,
б)f(y) = |y|, |y| ⩽ α, α > 0,
в)f(y) =

√
|y|, |y| ⩽ α, α > 0?

Р-5.2
Доказать, что из выполнения условия Липшица для функции f(y) на [α, β] следует непрерывность

f(y) на [α, β]

Р-5.3
Выполнено ли условие Липшица по y равномерно по x для функции f(x, y) в круге x2+y2 ⩽ R2, R > 0,

если
a)f(x, y) = x2 + y2

б)f(x, y) = x · |y|,
в)f(x, y) = x

√
|y|?

Р-5.4
Доказать, что если функция f(x, y) непрерывна по x в области G и удовлетворяет в G условию

Липшица по y равномерно по x, то f(x, y) - непрерывна в G.

Р-5.5
Показать, что не дифференцируемые по y при y = 0 функции f1(x, y) = |y|(1 + sinx) и f2(x, y) =

|y|(1 + cosx) удовлетворяют условию Липшица по y равномерно по x на всей плоскости R2
(x,y).
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Р-5.6
Показать, что функция f(x, y) = a(x)y + b(x) удовлетворяет условию Липшица по y равномерно по x

в полосе |x| ⩽ α, α > 0, если только a(x) и b(x) - непрерывные функции при |x| ⩽ α.

Р-5.7

Показать, что функция f(x, y) =
[
1 + a2(x)

]
y2, где a(x) - непрерывная функция при |x| ⩽ α, α > 0,

не удовлетворяет условию Липшица по y равномерно по x в полосе |x| ⩽ α.

Р-5.9
Доказать, что функция f(x, y) = x · y не удовлетворяет условию Липшица по y равномерно по x на

всей плоскости R2
(x,y).

Р-5.10
Методом последовательных приближений найти решение задачи Коши, если:
a)y′ + y = x+ 1, y(0) = 1,
б)y′ + y = 2ex, y(0) = 1,
в)y′ − y = 1− x, y(0) = 1,
г)y′ − y = e2x, y(0) = 1.

Р-5.11
Методом последовательных приближений найти приближения y0(x), y1(x), y2(x) к решению задачи

Коши, если:
a)y′ = y2 − x, y(0) = 1,
б)y′ = y2 + x3, y(0) = 0,
в)y′ = 2y2 + x, y(0) = 1,
г)y′ = x2 − 2y2, y(0) = 0.

Р-5.12
Оценить погрешность, получаемую при замене решения y(x) задачи Коши его последовательным

приближением y3(x), если:
a)y′ = y2 + 2x, y(0) = 0, |x| ⩽ 1, |y| ⩽ 1,
б)y′ = y2 + x2, y(0) = 0, |x| ⩽ 1, |y| ⩽ 1.

Р-5.13
Доказать, что последовательность функций yn(x), определяемая соотношениями y0(x) ≡ 0, yn(x) =

e−x + 1
2e

−2x − 3
2 +

x∫
0

[
2yn−1(t)e

−t − y2n−1(t)
]
dt, n = 1, 2, 3, ... сходится равномерно на [0, 0.2] и не сходится

равномерно на [0, 1].

Р-5.14
Доказать, что последовательность функций yn(x), определяемая соотношениями y0(x) ≡ 0 yn(x) =

1
2

(
1− x2

)
+

x∫
1

1
t

[
(2t+ 1)yn−1(t)− y2n−1(t)

]
dt, n = 1, 2, 3, ... сходится равномерно на [1, 1.1] и не сходится

равномерно на [1, 2].

Р-5.15
Доказать, что последовательность функций yn(x), определяемая соотношениями

y0(x) ≡ 0,

yn(x) = cosx− 2−
x∫

0

sin t [yn−1(t)− cos t]
2
dt, n = 1, 2, 3, ...

сходится равномерно на [0, 0.1] и не сходится равномерно на
[
0, π3

]
.
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Р-5.16
Доказать, что последовательность функций yn(x), определяемая соотношениями

y0(x) ≡ 0,

yn(x) = x+ 2

x∫
0

cos(x− t)yn−1(t)dt, n = 1, 2, 3, ...

сходится равномерно на любом отрезке и найти ее предел.

Р-5.18
Доказать, что последовательность функций yn(x), определяемая соотношениями y0(x) ≡ 0, yn(x) =

4 + 5
x∫
0

sin(x− t)yn−1(t)dt, n = 1, 2, 3, ... сходится равномерно на любом отрезке и найти ее предел.

Р-5.19
Доказать, что последовательность функций yn(x), определяемая соотношениями y0(x) ≡ 0, yn(x) =

5(cosx + sinx) +
x∫
0

[1 + 2(x − t)]yn−1(t)dt, n = 1, 2, 3, ... сходится равномерно на любом отрезке и найти ее
предел.

Р-5.20
Используя какое-либо достаточное условие единственности решения задачи Коши, указать области,

через каждую точку которых прохо- дит единственная интегральная кривая уравнения:
a)y′ = y2 + x4,
б)y′ = x+ 3

√
y − x,

в)y′ = y3 +
√
x+ y,

г)(x+ y)y′ = x ln y,
д) xy′ = ex + ctg y, e) y′ = y +

√
y − x2,

ж) y′ = (y + 1)(y − 1)
2
3 .

Р-5.21
Найти значения вещественных параметров α, β и линии на плоскости, в каждой точке которых

нарушается единственность решения уравнения: а) y′ = yα(1− y)β ,
б)y′ = yα lnβ 1

y ,
в)y′ ln y = yα(1− y)β .

Р-5.22
При каких начальных данных x0, y0, y1 задача Коши y′′ = f (x, y, y′), y (x0) = y0, y

′ (x0) = y1 имеет
единственное решение, если:

a)f (x, y, y′) = 1
x

(
y′ +

√
y − 1

)
,

б)f (x, y, y′) = 1
yy′ ln(xy − 1),

в)f (x, y, y′) = 1
y′

3
√
y − x, г )f (x, y, y′) = 1

y

(
cos y′ + x2 ln y′

)
,

д) f (x, y, y′) = 1
y

(
x− 3

√
y′ − y

)
,

e) f (x, y, y′) = x3ey + sin
(
y′ − x2

) 2
3 .

Р-5.23

Показать, что уравнение y′′ = 3 (y′)
2
3 при начальных условиях y(0) = y′(0) = 0 имеет два решения.

Почему это не противоречит теореме существования и единственности решения задачи Коши?

Р-5.24

Показать, что уравнение y′′ = 2
√
|y′| при начальных условиях y(0) = y′(0) = 0 имеет два решения.

Почему это не противоречит теореме существования и единственности решения задачи Коши?
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Р-5.28

При каких n ∈ N уравнение y(n) = f(x, y), где f(x, y) и ∂f(x,y)
∂y - непрерывны на всей плоскости R2

(x,y),
могут иметь среди своих решений две функции:

a)y1 = x, y2 = x+ x2?
б)y1 = 1− cosx, y2 = 1

2x
2?

Р-5.29
Найти производную по параметру λ при λ = 0 от решения y = φ(x, λ) задачи Коши:
a)y′ = y + λ

(
x2 + y2

)
, y(0) = 0,

б)y′ = −y + λ
(
x+ y2

)
, y(0) = 0,

в)y′ = 2y + λ
(
y2 − x2

)
, y(0) = 0, г )y′ = −3y + λ

(
y2 − x

)
, y(0) = 0, д)

y′ = y − y2 + λ
(
x+ y3

)
, y(0) = 0, e) y′ = y2 − y + λ

(
y4 − x

)
, y(0) = 0, ж)

y′ = 2xy + λ
(
y4 + 2x

)
, y(0) = 0, 3

)
y′ = −2xy + λ

(
y3 − 2x

)
, y(0) = 0.

Р-5.30

Найти ∂φ(x,x0,y0)
∂y0

при y0 = 0 от решения y = φ (x, x0, y0) задачи Коши y′ = f(x, y), y (x0) = y0, если:
a)y′ = 2y + x2y2 − y3, y(0) = y0,
б)y′ = y + 2xy2 + y3, y(0) = y0,
в)y′ = −2y + 2x2y2 + y3, y(0) = y0, г )y′ = −y − y2 − x2y3, y(0) = y0.

Р-5.31

Показать, что ∂φ(x,0,0)
∂x0

= 0 для решения y = φ (x, x0, 0) задачи Коши y′ = f(x, y), y (x0) = 0, если:
a)y′ = y + x

(
y3 + y2

)
, y(0) = 0,

б)y′ = −y + 2x
(
y3 − y2

)
, y(0) = 0,

в)y′ = 2y − x
(
y2 + y4

)
, y(0) = 0,

)
y′ = −2y − x2y

(
y2 + 2y

)
, y(0) = 0.

Р-5.32

Найти с точностью до O
(
x, λ2

)
решение задачи Коши:

a)y′ = 2xy + λ
(
2x+ y2

)
, y(0) = 0,

б)y′ = −2xy + λ
(
y2 − 2x

)
, y(0) = 0,

в)y′ = y2 + y + λ(1 + x), y(0) = 0,
г)y′ = y2 − y + λx, y(0) = 0, д) y′ = −y2 + y + λx, y(0) = 0, e) y′ = −y2 − y + λx, y(0) = 0.

Р-5.33

Пусть y = φ(x, λ) решение задачи Коши y′ = y + sin y, y(0) = λ. Найти ∂φ(x,0)
∂λ и ∂2φ(x,0)

∂λ2 .

Р-5.34

Пусть y = φ(x, λ) решение задачи Коши y′ = λ(1− x) + y − y2, y(0) = 0. Найти ∂φ(x,0)
∂λ и ∂2φ(x,0)

∂λ2 .

Р-5.35

Пусть y = φ(x, α, β) решение задачи Коши y′′ = αy − y2, y(0) = 1, y′(0) = β. Найти ∂φ(x,1,0)
∂α и

∂φ(x,1,0)
∂β .

Р-5.36

Пусть y = φ(x, α, β) решение задачи Коши y′′ = y + 3 sin y, y(0) = α, y′(0) = β. Найти ∂φ(x,0,0)
∂α и

∂φ(x,0,0)
∂β .
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4.2 Higher-order equations

Р-5.37
Пусть y(x) при x ⩾ 0 удовлетворяет уравнению y′ = 1 + x + 100 sin y и н. у. y(0) = 0. Доказать, что

y(x) > 0 для всех x > 0.

Р-5.38

Функция y(x) при x ⩾ 0 удовлетворяет уравнению y′ = 2+ x2 + sin3 y и н. у. y(0) = 0. Имеет ли нули
y(x) при x > 0?

Р-5.39
Функция y(x) при x ⩾ 0 удовлетворяет уравнению y′ = x + cos y. Имеет ли y(x) асимптоту при

x→ +∞?

Р-5.40

Функция y(x) при x ⩾ 0 удовлетворяет уравнению y′ = x + 1
1+y2 . Существует ли конечный

limx→+∞ y(x)?

Р-5.41

Доказать, что каждое решение уравнения y′ = 1
1+x2+y2 определено при −∞ < x < +∞ и имеет

конечные пределы при x→ −∞ и при x→ +∞

4.2 Higher-order equations

4.2.1 Problems about the main types of equations that allow lowering
the order

Р-7.пр.1
Решить

y2y′′ = yy′2 − 2y′.

Заметим, что y = C - решение уравнения. Пусть далее y ̸= C. Перенеся yy′2 в левую часть уравнения,
разделим обе его части на y3. Получаем

yy′′ − y′2

y2
= −2y′

y3
,

(
y′

y

)′

=

(
1

y2

)′

.

Отсюда
y′

y
=

1

y2
+ C, yy′ = 1 + Cy2.

В случае C = 0 имеем
yy′ = 1,

(
y2
)′

= 2, y2 = 2x+ c̃.

В случае C ̸= 0 получаем
yy′

1 + Cy2
= 1,

1

2c
ln
∣∣1 + Cy2

∣∣ = x+ C0.

Последнюю формулу можно преобразовать к виду

y2 = C1 + C2e
− 2x

C1 , C1 ̸= 0.

Ответ. y = C, y2 = 2x+ C, y2 = C1 + C2e
− 2x

C1 , где C,C1, C2 - произвольные постоянные, при этом C1 ̸= 0.
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4.2.1 Problems about the main types of equations that allow lowering the order

Р-7.пр.2
Решить

x4y′′′ + 2x3y′′ = 1.

Сделаем замену y′′ = z. Тогда y′′′ = z′ и уравнение преобразуется к виду x2z′ + 2xz = 1
x2 . Отсюда(

x2z
)′

=
(
− 1

x

)′
, x2z = − 1

x + C, z = − 1
x3 + c

x2 . Возвращаясь к y, имеем

y′′ =
c

x2
− 1

x3
, y′ =

C1

x
+

1

2x2
+ C2, y = C1 ln |x| −

1

2x
+ C2x+ C3.

Ответ. y = C1 ln |x|+ C2x+ C3 − 1
2x , где C1, C2, C3 - произвольные постоянные.

Р-7.пр.3
Решить

y′′(y − 1) + y′(y − 1)2 = y′2.

Заметим, что y = C - решение уравнения. Пусть далее y ̸= C. Положив y− 1 = u, получим уравнение

uu′′ + u2u′ = u′2.

Возьмем u за новую независимую переменную и положим u′(x) = z(u). Тогда u′′(x) = z ·z′(u) и уравнение
примет вид uz · z′ + u2z = z2. Заметим, что z ̸= 0, так как случай z = 0 дает y = C.

Сократив уравнение на z, получаем

uz′ − z = −u2, uz′ − z

u2
= −1,

( z
u

)′
= −1, z = −u2 + Cu.

Отсюда u′(x) = −u2+Cu. В случае C = 0u = 1
x+C0

, а в случае C ̸= 0 1
c ln

∣∣∣ u
C−u

∣∣∣ = x+C0. Полагая u = y−1
и упростив полученное выражение, получаем ответ:

y = C, y = 1 +
1

x+ c
, y = 1 +

C1C2e
C2x

1 + C1eC2x
,

где C,C1, C2 - произвольные постоянные.

Р-7.7.пр.4
Решить задачу Коши

2(y + x)y′′ + y′2 + 2y′ +
1

(y + x)2
= 0, y(

√
2) = 1−

√
2, y′(

√
2) =

√
2− 1.

Положив u = y + x, преобразуем уравнение к виду

2uu′′ + u′2 − 1 +
1

u2
= 0.

Так как это уравнение не содержит x, то положим u′(x) = z(u). При этом u′′ = z · z′(u) и уравнение
примет вид 2uzz′ + z2 − 1 + 1

u2 = 0.
Это уравнение Бернулли. Положив w = z2, получаем uw′ + w = 1 − 1

u2 , (uw)′ = 1 − 1
u2 , uw =

u+ 1
u + C,w = u′2 = 1 + 1

u2 + c
u .

Учитывая начальные данные и равенство u′ = y′ + 1, находим, что u′(
√
2) =

√
2, u(

√
2) = 1. Тогда

C = 0, u′2 = 1 + 1
u2 , u

′ =
√
1+u2

u ,
√
1 + u2 = x + C. Из условия u(

√
2) = 1 следует, что C = 0. Тогда√

1 + (y + x)2 = x. Учитывая начальные данные для y, получаем отсюда ответ. y =
√
x2 − 1− x.

Р-7.7.пр.5
Решить задачу Коши

yy′′ =
(
y′5 + y′2

)
th y, y(0) = 1, y′(0) = −1.

Решить уравнения (1− 17):
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4.2.1 Problems about the main types of equations that allow lowering the order

Р-7.1
xy′′ + xy′2 + y′ = 0, x ̸= 0

Р-7.2
y′′3 + y′5 = (y′′ + y′) y′′y′2.

Р-7.3

y′′ = y′

x ln y′

x + y′

x .

Р-7.4
4y′′

√
y = 1.

Р-7.5
yy′′ − y′2 = y′y2.

Р-7.6
3yy′y′′ = y′3 + 2.

Р-7.7
5yy′3y′′ = y′5 + 4.

Р-7.8
yy′′ = 7y′2 + y4y′.

Р-7.9
yy′′ = 2y′2 − 4y2y′3.

Р-7.10(
y3 + y

)
y′′ −

(
3y2 − 1

)
y′2 = 0.

Р-7.11
yy′′′ − y′y′′ = 0.

Р-7.12
yy′′ = 2y′ + 2y′2.

Р-7.13(
1 + y2

)
y′′ + 2yy′2 = y′.

Р-7.14(
1 + y2

)
y′′ = y

(
y′2 − 1

)
.

Р-7.15
4xy′′ − y′′2 = 4 (y′ + 1).

Р-7.16
2(1− y)y′′ = y′2 + 1.

109



4.2.1 Problems about the main types of equations that allow lowering the order

Р-7.17
2yy′y′′ − y′′2 = y′3. Найти решение уравнения, удовлетворяющее заданным начальным условиям

(18− 38):

Р-7.18

y′′ sin3 x−
(
y′ sin2 x+ y′2

)
cosx = 0, y

(
π
2

)
= 0, y′

(
π
2

)
= 1.

Р-7.19

y′′ cos3 x+
(
y′ cos2 x+ y′2

)
sinx = 0, y(0) = 0, y′(0) = 1.

Р-7.20

(x+ 1)y(n) = y(n−1), n ⩾ 2, y(n−2−k)(0) = (n− 2− k)!, k = 0, 1, ..., n− 2, y(n−1)(0) = 0.

Р-7.21

xy(n) = y(n−1), n ⩾ 2, y(n−2−k)(0) = (n− 2− k)!, k = 0, 1, ..., n− 2, y(n−1)(0) = 0.

Р-7.22
y′′ = 5y

√
y, y(0) = 1, y′(0) = −2.

Р-7.23
y′′ = y′2 + (1− y)y′, y(1) = y′(1) = 1.

Р-7.24

y′′ + y′2 = y′ey, y(0) = 0, y′(0) = 1
2 .

Р-7.25
yy′′ − y′2 + 2 = 0, y(0) = 1, y′(0) = 0.

Р-7.26
yy′′ = y2y′3 + y′2, y(0) = 1, y′(0) = −3.

Р-7.27
3y′y′′ = ey, y(−3) = 0, y′(−3) = 1.

Р-7.28

2yy′′ = y′2
(
3− 4yy′2

)
, y(4) = 1, y′(4) = −1.

Р-7.29
yy′′ − y′2 = y4, y(1) = 2, y′(1) = −4.

Р-7.30
yy′′ = 5y′2 + 3y2y′, y(1) = 1, y′(1) = −1.

Р-7.31

yy′′ =
(
4y′4 − y′2

)
ey, y(0) = 1, y′(0) = − 1

2 .
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4.2.2 Problems about homogeneous and homogeneous in the generalized sense of the equation

Р-7.32
2y2y′′ = 2y′4 − yy′2, y(1) = y′(1) = 1.

Р-7.33
2y2y′′ + y′2 = 4, y(0) = 1, y′(0) = −2.

Р-7.34
3y′y′′ − y′3 − y + 2 = 0, y(0) = 0, y′(0) = 1.

Р-7.35

2
(
y2 + y

)
y′′ −

(
y2 + y + 1

)
y2 + y3 = 0, y(2) = 1, y′(2) = −1.

Р-7.36

2 (ey + 1)
2
y′′ +

(
e2y − 1

)
y′2 + 1 = 0, y(1) = 0, y′(1) = 1

2 .

4.2.2 Problems about homogeneous and homogeneous in the gener-
alized sense of the equation

Р-7.пр.6
Решить

x2yy′′ − 5xyy′ − x2y′2 = 6y2, x ̸= 0.

Заметим сначала, что y = 0 - решение уравнения. Пусть далее y ̸= ̸= 0. Убедившись в однородности по
y, y′, y′′ заданного уравнения, вводим новую функцию z с помощью равенства y′ = yz. После сокращения
на y ̸= 0 получаем уравнение x2z′ − 5xz = 6.

Общим решением этого линейного уравнения первого порядка является z = Cx5 − 1
x . Отсюда и из

замены находим, что
y′

y
= Cx5 − 1

x
.

Решая это уравнение, получаем ответ:

y =
C1

x
eC2x

6

,

где C1 и C2 - произвольные постоянные.

Р-7.пр.7
Решить

xyy′′ + xy′2 = 3yy′, x ̸= 0.

Данное уравнения является однородным по y, y′, y′′ и его можно решить, понизив порядок уравнения
с помощью рекомендуемой замены.

Однако уравнение можно решить и по-другому. Заметим, что y = C - решение уравнения. Пусть
далее y ̸= C. Если иметь ввиду, что

(xyy′)
′
= xyy′′ + xy′2 + yy′,

то заданное уравнение можно записать в виде

(xyy′)
′
=
(
2y2
)′
.

Отсюда xyy′ = 2y2+C или
(
xy2
)′

= 4y2+2C. Полагая y2 = u, получаем уравнение с разделяющимися
переменными

xu′ = 4u+ 2C.

Интегрируя его, получаем ответ. y2 = C1x
4 + C2, где C1 и C2 - произвольные постоянные.
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4.2.2 Problems about homogeneous and homogeneous in the generalized sense of the equation

Р-7.пр.8
Решить задачу Коши

x2 (y′′ + 2yy′) + 2xy2 − 2y = 0, y(1) = 3, y′(1) = −3.

Подставив в уравнение λx вместо x, λsy вместо y, λs−1y′ вместо y′ и λs−2y′′ вместо y′′, потребуем, чтобы
параметр λ входил в одинаковой степени во все слагаемые. Если это возможно, то после сокращения на
множитель с такой степенью λ получим опять то же уравнение. Для определения числа s имеем равенства

2 + s− 2 = 2 + s+ s− 1 = 1 + 2s = s

которые выполняются при s = −1. Полагая x = et, y = z(t)e−t, находим, чTо

y′(x) =
[
z(t)e−t

]′ · e−t = (z′ − z) e−2t

y′′(x) =
[
(z′ − z) e−2t

]′ · e−t = (z′′ − 3z′ + 2z) e−3t

После подстановки в уравнение выражений для x, y, y′, y′′ и сокращения на e−t, получаем уравнение

z′′ − 3z′ + 2zz′ = 0

в которое не входит t. Заметим, что z = C - решение этого уравнения. Из замены следует, что y = c
x -

решение исходного уравнения. При C = 3 такое решение удовлетворяет заданным начальным условиям.
В силу теоремы единственности решения задачи Коши, которая в нашем случае выполняется при x ̸= 0,
других решений заданная задача Коши не имеет. Ответ. y = 3

x . Решить уравнения (39-53):

Р-7.39
xyy′′ − (x+ 1)yy′ = xy′2, x ̸= 0.

Р-7.40
yy′′ − y′2 + y2 sinx = 0.

Р-7.41

yy′′ + yy′

x − y′2 = 0.

Р-7.42
xyy′′ + yy′ = xy′2 + y2, x ̸= 0.

Р-7.43
y2y′′′ − 3yy′y′′ + 2y3 + y3 sinx = 0.

Р-7.44

x2yy′′ = (xy′ + y)
2
, x ̸= 0.

Р-7.45
xyy′′ − yy′ = 2xy′2, x ̸= 0.

Р-7.46
yy′′ + yy′ tg x+ 2y′2 = 0.

Р-7.47
yy′′ + yy′ tg x = 2y′2.
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4.2.2 Problems about homogeneous and homogeneous in the generalized sense of the equation

Р-7.48

yy′′ − yy′

x+1 = 2y′2.

Р-7.49
xyy′′ + 2xy′2 = 2yy′, x ̸= 0.

Р-7.50
xyy′′ + xy′2 + yy′ = 0, x ̸= 0.

Р-7.51

y2y′′ − yy′
(
y′ + y

x

)
+ 4

xy
′3 = 0.

Р-7.52

yy′y′′ − yy′2

x − y′3 = x3y3

Р-7.53
(x+1)yy′′ + yy′ = xy′2, x ̸= −1. Найти решение уравнения при заданных начальных условиях (54-67):

Р-7.54
yy′′ = (1− x)y′2, y(1) = 1, y′(1) = 2.

Р-7.55(
yy′′ − y′2

)
sinx+ y2 = (sinx− cosx)yy′, y

(
π
2

)
= y′

(
π
2

)
= 1.

Р-7.56
xyy′′ − xy′2 + y′ (y′ + y) sinx = 0, y(1) = 1, y′(1) = −1.

Р-7.57
4xyy′′ − 4yy′ + y′2 = 0, y(−1) = 1, y′(−1) = −4.

Р-7.58
xyy′′ − 4xy′2 + 4yy′ = 0, y(1) = 1, y′(1) = 2.

Р-7.59
2xy2y′′ − 2xyy′2 + 2xy′3 = y′y2, y(1) = y′(1) = −1.

Р-7.60
(1− sinx)yy′′ + yy′ cosx = y′2, y(0) = 2, y′(0) = 1.

Р-7.61
y2 (y′′ − y′) = y′2 (y − 2xy′) , y(1) = y′(1) = e.

Р-7.62
xyy′′ + x(2 lnx− 1)y′2 = yy′, y(1) = 1, y′(1) = −2.
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4.2.3 Problems solved by different methods

Р-7.63

xyy′′ +
(
1 + x2

)
yy′ + xy2 = xy′2, y(1) = 1, y′(1) = −1.

Р-7.64

y2y′′ − 3
2x

2y2y′ + 3
8x

2y′3 − yy′2 = 0, y(1) = 1, y′(1) = −2.

Р-7.65
x2y′′ + 2x2yy′ + 2xy2 − 2y = 0,
a)y(1) = 2, y′(1) = 0,
б)y(1) = −1, y′(1) = 1.

Р-7.66

x4y′′ − xyy′ + 2
(
y − x2

)
y = 0, y(1) = 1, y′(1) = 1

2 .

4.2.3 Problems solved by different methods
Все задачи этого пункта можно решать методами, изложенными в п. 1 и п. 2.

Р-7.68
С помощью подстановки y = z2 Решить

2x2yy′′ + 4y2 = x2y′2 + 2xy (y′ +
√
y) , x ̸= 0.

Решить уравнения (69− 87):

Р-7.69
yy′′ − 2y′2 = 0.

Р-7.70(
y2 + y

)
y′′ − (2y + 1)y′2 = 0.

Р-7.71
3yy′′ − 5y′2 = 0.

Р-7.72
4yy′2y′′ = y′4 + 3.

Р-7.73
x2y′′ = 2y′(y − x), x ̸= 0.

Р-7.74
xy′′ = y′ + 2x2yy′, x ̸= 0.

Р-7.75
yy′′ + 4y′ = y′2.

Р-7.76

y′′ =
(

y′

x

)2
+ 2y′

x .
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4.2.3 Problems solved by different methods

Р-7.77
2y (xy′′ + y′) = x(x+ 2)yr2, x ̸= 0.

Р-7.78

x2yy′′ = (xy′ − 2y)
2
, x ̸= 0.

Р-7.79

yy′′ =
(
y3 + y′

)
y′.

Р-7.80
yy′′ + 2y′2 = 3yy′.

Р-7.81

(y + 1)y′′ + y′

y+1 = y′2.

Р-7.82
2x2yy′′ + 4y2 = x2y′2 + 2xyy′, x ̸= 0.

Р-7.83
x2yy′′ + x2y′2 − 5xyy′ + 4y2 = 0, x ̸= 0.

Р-7.84

x4y′′ − x2 (xy′ − y)− (xy′ − y)
3
= 0, x ̸= 0.

Найти решение уравнения при заданных начальных условиях (88− 95):

Р-7.88
xyy′′ + y2 = xy′2 + (x− 1)yy′, y(1) = y′(1) = 2.

Р-7.89

(1 + y)y′′ + xy′2 = 0, y(1) = 0, y′(1) = 1
2 .

Р-7.90

y (y′′ + y′) = yr2
(
xy2 − 1

)
, y(0) = y′(0) = 1.

Р-7.91
(y + 2)y′′ + y′2 = cos 2x, y(0) = −2, y′(0) = 1.

Р-7.92

2
(
yy′′ − y′2

)
=
(
y′2 − 2y′y

)
ex

2

, y(0) = 1, y′(0) = 2.

Р-7.93

x
(
yy′′ − y′2

)
= yy′ ln y

y′ , y(1) = y′(1) = 1.

Р-7.94

xy′′′ − y′′ = x2 cosx, y
(
π
2

)
= 0, y′

(
π
2

)
= 1, y′′

(
π
2

)
= π

2 .
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Р-7.95
3y′′y′′′ − 2y′′3 = 16, y(1) = 2, y′(1) = 0, y′′(1) = −2. Найти интегральные кривые, а) касающиеся

прямой y = 1,
б)пересекающие прямую y = 1 под углом φ = π

4 или φ = 3π
4 , для уравнений (96− 97):

Р-7.96

2
(
yy′′ − y′2

)
+ 3yy′4 = 0.

Р-7.97
y(1− ln y)y′′ + (1 + ln y)y′2 = 0.

Р-7.98

Для уравнения
(
1 + y′2

)
y′′′ = 3y′y′′2 найти интегральные кривые, пересекающие ось ординат под

прямым углом и имеющие в точке пересечения кривизну, равную а) нулю,
б)единице.
Найти решение уравнения при заданных условиях (99− 102):

Р-7.99
y′′ + 2(1− y)y′ = 0, y′(x) ⩾ 0 B(x, 1).

Р-7.100

yy′′ − 2y′2 = 2y4y′, y(2) = 4
√
y′(2) ̸= 0.

Р-7.101
2yy′′ − y′2 + 2yy′4 = 0, y(1) · y′2(1) = 1.

Р-7.102
yy′′ + yy′ tg x = (1− sinx)y′2, y(0) · y′(0) < 0.

4.2.4 Problems about linear equations with constant coefficients

Р-8.пр.1
Решить следующие линейные однородные уравнения:
a)yIV − 6y′′′ + 8y′′ + 6y′ − 9y = 0,
б)yIV + 6y′′′ + 13y′′ + 12y′ + 4y = 0,
в)yIV − 3y′′′ + 5y′′ − y′ − 10y = 0.
а) Составляем характеристическое уравнение

λ4 − 6λ3 + 8λ2 + 6λ− 9 = 0.

Легко видеть, что его корнями являются λ1 = −1, λ2 = 1. Чтобы найти остальные корни, достаточно
разделить левую часть характеристического уравнения на

(
λ2 − 1

)
. Тогда уравнение можно разложить

на множители следующего вида(
λ2 − 1

) (
λ2 − 6λ+ 9

)
=
(
λ2 − 1

)
(λ− 3)2 = 0.

Таким образом получаем еще один корень λ3 = 3 кратности два. Следовательно, общее решение заданного
уравнения имеет вид

y = C1e
−x + C2e

x + (C3 + C4x) e
3x,

где C1, C2, C3, C4 - произвольные постоянные.
б)Нетрудно проверить, что λ1 = −1 и λ2 = −2 являются корнями характеристического уравнения

λ4 + 6λ3 + 13λ2 + 12λ+ 4 = 0.
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4.2.4 Problems about linear equations with constant coefficients

В таком случае это уравнение можно представить в виде

(λ+ 1)2(λ+ 2)2 = 0.

Отсюда видно, что оба корня λ1 = −1, λ2 = −2 кратности два. Значит, общее решение заданного
уравнения имеет вид

y = (C1 + C2x) e
−x + (C3 + C4x) e

−2x,

где C1, C2, C3, C4 - произвольные постоянные.
в)Характеристическое уравнение

λ4 − 3λ3 + 5λ2 − λ− 10 = 0

имеет корни λ1 = −1, λ2 = 2. Разделив левую часть этого уравнения на (λ+1)(λ−2), получаем следующее
представление характеристического уравнения

(λ+ 1)(λ− 2)
(
λ2 − 2λ+ 5

)
= 0.

Это дает еще два комплексно сопряженные корни λ3 = 1− 2i, λ4 = 1+ 2i. Сдедовательно, общее решение
заданного уравнения имеет вид

y = C1e
−x + C2e

2x + ex (C3 cos 2x+ C4 sin 2x)

Для решения линейных неоднородных уравнений с постоянными коэффициентами используются чаще
всего метод неопределенных коэффициентов и принцип суперпозиции.

Р-8.пр.2
Решить линейное пеоднородное уравнение

y′′′ − y′′ − 4y′ + 4y = −8(cos 2x+ 2 sin 2x)− 3ex.

Сначала составляем характеристическое уравнение

λ3 − λ2 − 4λ+ 4 = 0.

Его корнями являются λ1 = −2, λ2 = 1, λ3 = 2. Поэтому общее решение соответствующего линейного
однородного уравнения имеет вид

y0(x) = C1e
−2x + C2e

x + C3e
2x

где C1, C2, C3 - произвольные постоянные. Чтобы получить общее решение заданного уравнения,
необходимо найти какое-либо его решение y1(x) и прибавить к уже найденному общему решению y0(x)
линейного однородного уравнения. Согласно принципу суперпозиции решение y1(x) = y2(x) + y3(x), где
y2(x) - какое-либо решение уравнения

y′′′ − y′′ − 4y′ + 4y = −8(cos 2x+ 2 sin 2x),

а y3(x) - какое-либо решение уравнения

y′′′ − y′′ − 4y′ + 4y = −3ex.

Решение y2(x) ищем в виде
y2(x) = a cos 2x+ b sin 2x

а решение y3(x) ищем в виде
y3(x) = cxex,

где коэффициенты a, b, c находим подстановкой y2(x) и y3(x) в соответствующие уравнения. Подстановка
y2(x) и y3(x) в уравнения дает a = −1,b = 0, c = 1. Таким образом, y1(x) = − cos 2x + xex - решение
исходного уравнения. Общее решение заданного уравнения y(x) = y0(x) + y1(x). Другим методом
решения линейных неоднородных уравнений с постоянными коэффициентами является метод вариации
постоянных.
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Р-8.пр.3 Решить методом вариации постоянных y′′ + y = 1
cos2 x

(!!! напишу лучше метод вариации постоянных!! пока нужную систему получаю медленнее, чем мог
бы.)

Решить методом вариации постоянных

y′′ + y =
1

cos2 x

Характеристическое уравнение имеет вид λ2 + 1 = 0. Его корни λ1 = −i, λ2 = i, и общее решение
линейного однородного уравнения имеет вид

y = C1 cosx+ C2 sinx,

где C1 и C2 - произвольные постоянные. Общее решение неоднородного ищем в виде

y = C1(x) cosx+ C2(x) sinx,

где C1(x) и C2(x) - неизвестные пока непрерывно дифференцируемые функции. Согласно методу вариации
постоянных составим систему уравненийC

′
1(x) cosx+ C ′

2(x) sinx = 0,

− C ′
1(x) sinx+ C ′

2(x) cosx =
1

cos2 x
.

Отсюда находим, что C ′
1(x) =

1
cos x , C

′
2(x) = − sin x

cos2 x . Интегрируя, получаем

C1(x) =

∫
dx

cosx
=

∫
cosxdx

cos2 x
=

∫
d sinx

1− sin2 x
=

1

2
ln

∣∣∣∣ sinx+ 1

sinx− 1

∣∣∣∣+A,

C2(x) =−
∫

sinxdx

cos2 x
=

∫
d cosx

cos2 x
= − 1

cosx
+B,

где A и B - произвольные постоянные. Подставляя найденные значения C1(x) и C2(x) в выражение для
y, найдем общее решение заданного уравнения

y = A cosx+B sinx+
1

2
ln

∣∣∣∣ sinx+ 1

sinx− 1

∣∣∣∣ cosx− tg x.

(?? с этим вроде были проблемы, нужно потренироваться еще!)

Р-8.пр.4. y′′ − 4y′ + 3y = 2 (et + e3t) на метод Лапласа
(??? нужны эти таблицы и методы в теории, пока слабо там!)
Операционным методом решить задачу Коши

y′′ − 4y′ + 3y = 2
(
et + e3t

)
, t ⩾ 0, y(0) = −1, y′(0) = 1.

(??? зачем как ниже мы так считаем, что ноль??? подставили просто бы и всё??)
Будем считать, что при t < 0 решение y(t) ≡ 0 и правая часть уравнения тождественный нуль. Тогда

так продолженные на всю числовую ось t ∈ (−∞,+∞) решение и правая часть уравнения являются
оригиналами. Если y(t) ≓ Y (p), то в силу свойств преобразования Лапласа и начальных условий y′(t) ≓
pY (p) + 1, y′′(t) ≓ p2Y (p) + p − 1. Продолженная нулем при t < 0 правая часть уравнения имеет своим
преобразованием Лапласа функцию 2

(
1

p−1 + 1
p−3

)
. Переходя в исходном уравнении к преобразованию

Лапласа, т. е. умножая его на e−pt и интегрируя по t от нуля до бесконечности, получаем алгебраическое
уравнение для нахождения Y (p)

p2Y (p) + p− 1− 4[pY (p) + 1] + 3Y (p) = 2

(
1

p− 1
+

1

p− 3

)
.

Если считать комплексный параметр p таким, что Re p > 3, то из алгебраического уравнения находим

Y (p) =
1

(p− 1)(p− 3)

[
2

p− 1
+

2

p− 3
− p+ 5

]
.

Разложим правую часть на простые дроби

Y (p) =
A

p− 1
+

B

(p− 1)2
+

c

p− 3
+

D

(p− 3)2
.

Приравнивая выражения для Y (p), находим

A = −2, B = −1, C = 1, D = 1.

Переходя к оригиналам, получаем искомое решение

y(t) = (t+ 1)e3t − (t+ 2)et.
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Р-8.пр.5 уравнение Эйлера
Решить при x > 0 уравнение Эйлера

x2y′′ − xy′ − 3y = 4x3.

Стандартно, уравнение Эйлера решается заменой x = et, y′ = e−ty′t, y′′ = e−2t (y′′tt − y′t). Подставим,
получим:

y′′ − 2y′ − 3y = 4e3t.

Характеристическое уравнение λ2 − 2λ − 3 = 0 имеет корни λ1 = −1, λ2 = 3. Следовательно, общее
решение полученного уравнения с постоянными коэффициентами имеет вид

y(t) = C1e
−t + C2e

3t + ate3t

где C1 и C2 - произвольные постоянные, а коэффициент a находится подстановкой функции ate3t в
уравнение. Подстановка в уравнение дает a = 1. Сделав обратную замену t = lnx, получаем общее
решение заданного уравнения Эйлера

y(x) =
C1

x
+ C2x

3 + x3 lnx.

Решить линейные однородные уравнения (1-38):

Р-8.1
y′′ − 4y′ + 3y = 0.

Р-8.2
y′′ − 6y′ + 8y = 0.

Р-8.3
y′′ + 3y′ + 2y = 0.

Р-8.4
y′′ − y′ − 2y = 0.

Р-8.5
y′′ + 5y′ + 6y = 0.

Р-8.6
y′′ − 4y′ + 8y = 0.

Р-8.7
y′′ − 6y′ + 18y = 0.

Р-8.8
y′′ − 2y′ + 10y = 0.

Р-8.9
y′′ + 2y′ + 5y = 0.

Р-8.10
y′′ + 2y′ + 2y = 0.
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Р-8.11
y′′ − 4y′ + 4y = 0.

Р-8.12
y′′ − 6y′ + 9y = 0.

Р-8.13
y′′ − 8y′ + 16y = 0.

Р-8.14
y′′′ + 4y′′ − y′ − 4y = 0.

Р-8.15
y′′′ + 3y′′ − y′ − 3y = 0.

Р-8.16
y′′′ − 7y′′ + 14y′ − 8y = 0.

Р-8.17
y′′′ + 4y′′ + 5y′ + 2y = 0.

Р-8.18
y′′′ + 3y′′ − 4y = 0.

Р-8.19
y′′′ − 3y′′ + 7y′ − 5y = 0.

Р-8.20
y′′′ + y′′ + 4y′ + 4y = 0.

Р-8.21
y′′′ + 3y′′ + 4y′ + 2y = 0.

Р-8.22
y′′′ − y′′ + y′ − y = 0.

Р-8.23

yIV − y′′′ + 2y′ = 0.

Р-8.24

yIV − 7y′′′ + 14y′′ − 8y′ = 0.

Р-8.25

yIV − 5y′′′ + 7y′′ − 3y′ = 0.

Р-8.26

yIV − 6y′′′ + 9y′′ + 4y′ − 12y = 0.
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Р-8.27

yIV + 5y′′′ + 9y′′ + 7y′ + 2y = 0.

Р-8.28

yIV + 2y′′′ + 2y′′ + 2y′ + y = 0.

Р-8.29

yIV − 2y′′′ + 2y′′ − 2y′ + y = 0.

Р-8.30

yIV − 2y′′ + y = 0.

Р-8.31

yIV + 6y′′′ + 12y′′ + 8y′ = 0.

Р-8.32

yIV + 2y′′′ − 2y′′ + 2y′ − 3y = 0.

Р-8.33

yIV − 5y′′′ + 5y′′ + 5y′ − 6y = 0.

Р-8.34

yIV + 5y′′ + 4y = 0.

Р-8.35

yIV + 8y′′ + 16y = 0.

Р-8.36

yIV + 3y′′ + 2y = 0.

Р-8.37

yIV + 18y′′ + 81y = 0.

Р-8.38
y′′′ + 3y′′ + 3y′ + y = 0. Решить линейные неоднородные уравнения (39− 151):

Р-8.39
y′′ − 3y′ + 2y = (1 + x)e2x.

Р-8.40
y′′ + 2y′ + y = x2e−x.

Р-8.41
y′′ − y′ − 2y = −9xe−x.
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Р-8.42
y′′ + y′ − 6y = −18x2e−x.

Р-8.43
y′′ − y = ex cosx.

Р-8.44

y′′ − y′ + 1
2y = ex sinx.

Р-8.45
y′′ − 4y′ + 4y = x2 + 2e2x.

Р-8.46
y′′ + y′ − 2y = 2xe−2x + 5 sinx.

Р-8.47
y′′ + 4y = 4xe−2x − sin 2x.

Р-8.48
y′′ + 2y′ − 3y = 2 cosx− 8xe−3x.

Р-8.49
y′′ + 9y = 6xe−3x − 3 cos 3x.

Р-8.50
y′′ + 6y′ + 9y = 36xe3x.

Р-8.51
y′′ − 4y′ + 4y = 32xe−2x.

Р-8.52
y′′ + y′ = (5− 2x)e−x − 10 sin 2x.

Р-8.53
y′′ − y′ = (4x+ 3)ex − 2 cosx.

Р-8.54
y′′ − 4y′ = −8e2x cos 2x− 8x+ 2.

Р-8.55
y′′ − 4y′ + 13y = −9 cos 2x− 8 sin 2x.

Р-8.56
y′′ + 4y′ + 4y = 2e−2x.

Р-8.57
y′′ − 2y′ + 5y = 4 cosx+ 2 sinx.
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Р-8.58
y′′ − 8y′ + 20y = −2e3x(2 cosx+ sinx).

Р-8.59
y′′ + y′ − 6y = −5e−3x.

Р-8.60
y′′ − 2y′ + y = 2ex

Р-8.61
y′′ − 7y′ + 12y = −e3x.

Р-8.62
y′′ − 2y′ + 3y = 4 cosx− 2 sinx+ 4e3x.

Р-8.63
y′′ + 2y′ − 3y = (2− 8x)e−3x.

Р-8.64
y′′ − y′ − 12y = e−2x(7 cosx− 5 sinx)− 7e−3x.

Р-8.65
y′′ + 4y = 2 cos 2x− 8x sin 2x.

Р-8.66
y′′ + 4y = 2 cos2 x.

Р-8.67

y′′ + 16y = 2 sin2 x.

Р-8.68
y′′ − 5y′ + 6y = 10 sinx+ e2x.

Р-8.69
y′′ + 2y′ + y = xe−x.

Р-8.70
y′′ − 7y′ + 6y = sinx+ xex.

Р-8.71
y′′ + y = 2 sinx · sin 2x.

Р-8.72
y′′′ − 2y′′ − 3y′ = e−2x.

Р-8.73
y′′′ − 2y′′ − 3y′ = x+ 1.
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Р-8.74
y′′′ − y′′ + y′ − y = 2 cosx.

Р-8.75
y′′′ − 2y′′ + 2y′ = 5 cosx+ 2x.

Р-8.76

y′′′ + 4y′ = ch2 x.

Р-8.77
y′′′ − 4y′ = cos2 x.

Р-8.78

y′′′ + 16y′ = sh2 2x.

Р-8.96
y′′′ − 3y′′ + 4y = 6e2x.

Р-8.97
y′′′ − y′′ − y′ + y = e−x(3 sinx− 4 cosx)

Р-8.98
y′′′ − 8y′′ + 19y′ − 12y = 2e3x − 8 cosx− 36 sinx.

Р-8.99
y′′′ + y′′ = e−x + 2 cosx.

Р-8.100
y′′′ − 2y′′ = sinx.

Р-8.101
y′′′ − 2y′′ = e2x

Р-8.102
y′′′ + y′′ − 2y′ = e3x.

Р-8.103
y′′′ + y′′ − 2y′ = 2− x.

Р-8.104
y′′′ + 2y′′ = cosx.

Р-8.105
y′′′ − 2y′′ + 2y′ = 4x+ cosx.

Р-8.106
y′′′ − 16y′ = 48x2 + 2 cos2 2x.
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Р-8.107

y′′′ − 2y′′ + 2y′ = 20 sin2 x
2 .

Р-8.108
y′′′ + 4y′ = e2x − 8 sin 2x.

Р-8.109

y′′′ + y′′ + 4y′ + 4y = 40 sin2 x.

Р-8.110
y′′′ + 2y′′ = 2e−2x.

Р-8.111
y′′′ − 4y′′ + 5y′ = 15x2 − 4x+ 8 sinx.

Р-8.112
y′′′ − 2y′′ + 2y′ = 6x2 + 2 + 20 cos 2x.

Р-8.113
y′′′ − 6y′′ + 10y′ = 13 cosx+ 10x.

Р-8.114
y′′′ + 2y′′ + 5y′ = 2x− 17 sin 2x

Р-8.115
y′′′ − 2y′′ + y′ = 2x+ 2 cosx.

Р-8.116
y′′′ − 2y′′ = 16 sin 2x− 12x.

Р-8.117
y′′′ − y′′ + y′ − y = 4xex + 4.

Р-8.118
y′′′ + y′′ + y′ + y = 4xe−x + 4.

Р-8.119
y′′′ − y′′ + 4y′ − 4y = 40 cos2 x.

Р-8.120

yIV − 2y′′ + y = 1 + x2.

Р-8.121

yIV − y = ex cosx

Р-8.122

yIV + 2y′′ + y = x2 + 9 sin 2x.
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Р-8.132

4yIV − y′′ = 12x sh2 x
2 + 3 (8− xe−x).

Р-8.133

yIV − 4y′′ = 16 ch2 x− 8

Р-8.134

yIV − 2y′′′ + 2y′′ = 10 cos2 x+ 5 (xex − 1).

Р-8.135

yIV − 2y′′′ − 3y′′ = 8 shx+ 10xex.

Р-8.136

yIV + 2y′′ + y = 18 sin2 x+ 3 sin 2x+ x3.

Р-8.137

yIV − 2y′′ + y = 8 ch2 x
2 + x2 − 2e−x.

Р-8.138

yIV + y′′′ − 2y′′ = 3ex + 32e2x.

Р-8.139

yIV + y′′ = 8 cos2 x
2 .

Р-8.140

yIV − 3y′′ − 4y = 24 cos 2x+ 20e2x.

Р-8.141

yIV + 3y′′′ − 4y′′ = 5 shx.

Р-8.142

yIV − y = −8(cosx+ 3 sinx)e2x − 4e−x.

Р-8.143

yIV − y′′ = 4x cosx+ 12 sinx− 2ex.

Р-8.144

yIV − 4y′′′ + 3y′′ = 4 cosx+ 8 sinx+ 6.

Р-8.145

yIV + 7y′′′ + 16y′′ + 10y′ = −5e−x.

Р-8.146

yIV − 3y′′′ + 4y′ = − cosx+ 7 sinx+ 4.
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4.2.5 Problems about the method of variation of constants

Р-8.147

yIV + 3y′′′ + 3y′′ + y′ = 2(sinx− cosx) + 2x+ 6.

Р-8.148

yIV − 2y′′ + y = 8ex − 4 cosx.

Р-8.149

yIV − y′′′ − y′′ − y′ − 2y = −6e−x.

Р-8.150

yIV − y′′′ − 3y′′ + y′ + 2y = −5(cosx+ sinx)e−x.

4.2.5 Problems about the method of variation of constants
(152− 171):

Р-8.152

y′′ + y = 1
sin2 x

.

Р-8.153

y′′ − 3y′ + 2y = 1
1+ex .

Р-8.154

y′′ − 3y′ + 2y = ex

1+ex

Р-8.155

y′′ − y = ex−e−x

ex+e−x

Р-8.156
y′′ − 2y′ = 5(3− 4x)

√
x

Р-8.157

y′′ − 2y′ + 10y = 9ex

cos 3x .

Р-8.158

y′′ − 4y′ + 8y = 4
(
7− 21x+ 18x2

)
3
√
x.

Р-8.159
y′′ + y = − ctg2 x.

Р-8.160

y′′ − 4y =
(
15− 16x2

)√
x.

Р-8.161

y′′ + 4y′ + 4y = e−2x

x+1 .
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4.2.6 Problems about the operating method (?!!!)

Р-8.162

y′′ + 3y′ = 3x−1
x2

Р-8.163

y′′ − 4y′ + 4y = 2e2x

1+x2

Р-8.164
y′′ + y′ = 7(4 + 3x) 3

√
x.

Р-8.165

y′′ + 2y′ + 2y = e−x

sin x .

Р-8.166
y′′ + 2y = 2− 4x2 sinx2

Р-8.167

y′′ + 2y′ + 5y = 2e−x

cos 2x

Р-8.168

y′′ + 2y′ + y = (x+ 2)
(
lnx+ 1

x

)
Р-8.169

y′′ − 2y = −2− 4x2 cosx2.

Р-8.170

y′′ − y′ = −x+1
x2 .

Р-8.171

y′′ − 2y′ = 1
x − 2 ln(ex).

4.2.6 Problems about the operating method (?!!!)
при t ⩾ 0 задачу Коши (172-183):

Р-8.172
y′′ − 3y′ + 2y = e−t, y(0) = 0, y′(0) = 1.

Р-8.173
y′′ − y′ − 2y = 3tet, y(0) = y′(0) = 0.

Р-8.174
y′′ − 5y′ + 4y = (10t+ 1)e−t, y(0) = y′(0) = 0.

Р-8.175
y′′ + 5y′ + 6y = e−2t, y(0) = −1, y′(0) = 0.
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4.2.7 Problems about Euler’s equation

Р-8.176
y′′ − 2y′ + y = 2et, y(0) = y′(0) = 1.

Р-8.177
y′′ + 2y′ + y = (t+ 2)e−t, y(0) = 1, y′(0) = −1.

Р-8.178
y′′ − 2y′ − 3y = 4e3t − 4e−t, y(0) = 2, y′(0) = 0.

Р-8.179
y′′ + y = 4 cos t, y(0) = 1, y′(0) = −1.

Р-8.180
y′′ + y = 5te2t, y(0) = 0, y′(0) = 1.

Р-8.181
y′′ + 9y = 6 cos 3t+ 9 sin 3t, y(0) = 1, y′(0) = 0.

Р-8.182
y′′ + 4y = 4(cos 2t+ sin 2t), y(0) = 0, y′(0) = 1.

Р-8.183
y′′ + y = 2(cos t− sin t), y(0) = 1, y′(0) = 2.

4.2.7 Problems about Euler’s equation
Решить при x > 0 (184-207):

Р-8.184
x2y′′ + 2xy′ − 12y = 0.

Р-8.185
2x2y′′ − xy′ − 2y = 0.

Р-8.186
4x2y′′ − 3y = 0.

Р-8.187
x2y′′ − 2xy′ − 4y = 0.

Р-8.188
x2y′′ + 5xy′ + 8y = 0.

Р-8.189
2x2y′′ − 3xy′ + 3y = 0.
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4.2.8 Problems about arbitrary method for Cauchy problem

Р-8.190
x2y′′ − 6y = 0.

Р-8.191
2x2y′′ + 5xy′ − 2y = 0.

Р-8.204

x2y′′ + 3xy′ − 3y = − 3
x2

Р-8.205
x2y′′ − xy′ − 8y = 11x3 lnx.

Р-8.206

2x2y′′ + xy′ − y = − 6
x

Р-8.207

x2y′′ − 2y = 4
x2 .

4.2.8 Problems about arbitrary method for Cauchy problem
(208− 236):

Р-8.208
y′′ + y = −2 sinx, y(0) = 0, y′(0) = 1.

Р-8.209
y′′ − y′ − 2y = −18xe−x, y(1) = 5e−1, y′(1) = 3e−1.

Р-8.210
9y′′ + y = 6 sin x

3 , y(3π) = 0, y′(3π) = 1.

Р-8.211
y′′ + y = cos(x− 1), y(0) = y′(0) = 0.

Р-8.212
4y′′ + y = 4 cos x

2 , y(π) = 0, y′(π) = π
2 .

Р-8.213
y′′ + y = 2 sin(x+ 1), y(0) = y′(0) = 0.

Р-8.214
y′′ − 2y′ + y = 2ex, y(1) = 0, y′(1) = −e.

Р-8.215
y′′ − 3y′ + 2y = 2xex, y(1) = e, y′(1) = 5e.
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4.2.8 Problems about arbitrary method for Cauchy problem

Р-8.216
y′′ − 4y′ = −8e2x cos 2x− 8x+ 2, y(0) = 5, y′(0) = −6.

Р-8.217
y′′ + 3y′ + 2y = −2 cos 2x− 6 sin 2x− e−2x, y(0) = 3, y′(0) = −7.

Р-8.218
y′′ − 2y′ − 3y = 4 cosx− 2 sinx+ 4e3x, y(0) = 5, y′(0) = 7.

Р-8.219
y′′ + y = sin(x− 1), y(0) = y′(0) = 0.

Р-8.220

y′′ + y = 1
cos x , y(0) = 0, y′(0) = 1.

Р-8.227
4x2y′′ − 3y = 5x2, y(1) = 1, y′(1) = 2.

Р-8.228
x2y′′ + xy′ − y = 2x, y(1) = 0, y′(1) = 1.

Р-8.229
y′′′ + y′ = 2x, y(0) = 0, y′(0) = 1, y′′(0) = 2.

Р-8.230
y′′′ − y′ = 6− 3x2, y(1) = y′(1) = 0, y′′(1) = 3.

Р-8.231

yIV + 2y′′ + y = 0, y(0) = y′′(0) = 0, y′(0) = 2, y′′′(0) = −4.

Р-8.232
y′′′ + 6y′′ + 11y′ + 6y = x2 + x+ 1, y(0) = y′(0) = y′′(0) = 0.

Р-8.233
y′′′ − 6y′′ + 11y′ − 6y = 1, y(0) = y′(0) = y′′(0) = 0.

Р-8.234

yIV − 2y′′′ + 2y′′ − 2y′ + y = π
2 + 4 cosx, y(0) = π

2 , y
′(0) = 1, y′′(0) = 0, y′′′(0) = −3.

Р-8.235

y(8) + 2y(6) − 2y′′ − y = 0, y(0) = y′′(0) = y(4)(0) = y(6)(0) = 0, y′(0) = 2, y′′′(0) = 2, y(5)(0) =
−1, y(7)(0) = 11

Р-8.236

y(8) − y = 0, y(0) = 1, y′(0) = y′′(0) = y′′′(0) = y(4)(0) = y(5)(0) = y(6)(0) = y(7)(0) = 0.
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4.2.9 Problems about second-order linear equations with variable coefficients

Р-8.237
Найти решение уравнения y′′′ − 3y′ − 2y = xe−x, ограниченное при x → +∞ и удовлетворяющее

условиям y(0) = 1, y′(0) = 0.

Р-8.239
Доказать, что любое решение уравнения

yV − yIV − 9y′′′ + y′′ + 20y′ + 12 = 0

однозначно представимо в виде суммы решений уравнений y′′′ − y′′ - −5y′ − 3y = 0 и y′′ − 4y = 0.

Р-8.240
Верно ли, что каждое решение уравнения y′′ − y′ − 2y = 0 удовлетворяет уравнению

yV − 3yIV − y′′′ + 7y′′ − 4y = 0?

4.2.9 Problems about second-order linear equations with variable co-
efficients

Р-9.пр.1
Найти общее решение уравнения

xy′′ − (1 + x)y′ + 2(1− x)y = 9x2e2x, x > 0.

Рассмотрим однородное уравнение

xy′′ − (1 + x)y′ + 2(1− x)y = 0

и попробуем найти его решение вида eαx. Подставив eαx в это уравнение, находим α = 2. Следовательно,
e2x - решение. Запишем формулу Лиувилля-Остроградского для однородного уравнения:∣∣∣∣ e2x y

2e2x y′

∣∣∣∣ = Ce
∫

1+x
x dx = Cxex.

Отсюда e2xy′ − 2e2xy = Cxex. При делении обеих частей этого уравнения на e4x получаем уравнение( y

e2x

)′
= Cxe−3x.

Отсюда находим общее решение однородного уравнения

y = C1e
2x + C2(1 + 3x)e−x,

где C1 и C2 - произвольные постоянные. Чтобы найти общее решение заданного уравнения, применим
метод вариации постоянных. Ищем решение неоднородного уравнения в таком же виде, как общее
решение однородного уравнения, но считаем C1 и C2

не произвольными постоянными, а некоторыми непрерывно дифференцируемыми функциями. Для
их нахождения составляем линейную систему уравнений для C ′

1(x) и C ′
2(x) следующего вида:{

C ′
1(x)e

2x + C ′
2(x)(1 + 3x)e−x = 0

2C ′
1(x)e

2x + C ′
2(x)(2− 3x)e−x = 9xe2x

Из этой системы находим, что C ′
1(x) = 1+3x,C ′

2(x) = −e3x. Следовательно, C1(x) = A+x+ 3
2x

2, C2(x) =

B − 1
3e

3x, где A и B - произвольные постоянные. Таким образом, общее решение заданного уравнения
имеет вид

y = e2x
(
A+ x+

3

2
x2
)
+ (1 + 3x)e−x

(
B − 1

3
e3x
)

=

= Ae2x +B(1 + 3x)e−x +

(
3

2
x2 − 1

3

)
e2x.

Другим распространенным методом решения линейных уравнений с переменными коэффициентами
является метод замены переменных.
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4.2.9 Problems about second-order linear equations with variable coefficients

Р-9.пр.2
Найти общее решение уравнения

x4y′′ + 2x3y′ − y =
2e

1
x

e
1
x − 1

, x > 0,

с помощью замены x = − 1
t .

После замены уравнение принимает вид

y′′tt − y =
e−t

e−t − 1

Решая это уравнение методом вариации постоянных, находим, что

y(t) = et
(
A− 1

2
e−t +

1

2
ln

et

1− et

)
+ e−t

(
B +

1

2
ln
(
1− et

))
,

где A и B - произвольные постоянные. Полагая t = − 1
x , после приведения подобных членов отсюда

получаем общее решение заданного уравнения

y = Ae−
1
x +Be

1
x − 1

2
− 1

2x
e−

1
x + sh

(
1

x

)
ln
(
1− e−

1
x

)
.

Найти общее решение уравнений (1-66):

Р-9.1(
2x2 + 3x

)
y′′ − 6(x+ 1)y′ + 6y = x(2x+ 3)2, x > 0.

Р-9.2
x(x+ 4)y′′ − (2x+ 4)y′ + 2y = x+ 4, x > 0.

Р-9.3(
2x− x2

)
y′′ +

(
x2 − 2

)
y′ + (2− 2x) =

(
2x− x2

)2.
Р-9.4

ln x+1
2 ln x+3y

′′ − 1
xy

′ + 1
x2 y = (lnx+ 1)2.

Р-9.5
x(1 + 2x)y′′ + 2(1 + x)y′ − 2y = (1 + 2x)2 sinx, x > 0.

Р-9.6

(1− lnx)y′′ + 1
xy

′ − 1
x2 y = (1− lnx)2.

Р-9.7

xy′′ − (1 + x)y′ + y = x2

1+x , x > 0.

Р-9.8
x2y′′ − 2x(1 + x)y′ + 2(1 + x)y = 2x3e2x.

Р-9.9
(2x+ 1)y′′ + (4x− 2)y′ − 8y = 4(2x+ 1)3.
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4.2.9 Problems about second-order linear equations with variable coefficients

Р-9.10
2xy′′ + (4x+ 1)y′ + (2x+ 1)y = e−x, x > 0.

Р-9.11
xy′′ − (6x+ 2)y′ + (9x+ 6)y = 12x3e3x.

Р-9.12
(x− 1)y′′ − xy′ + y = (x− 1)2ex.

Р-9.13
xy′′ − (2x+ 1)y′ + 2y = 16x2e4x.

Р-9.14
x2y′′ − x(x+ 2)y′ + (x+ 2)y = x3ex.

Р-9.15(
x2 − 3x

)
y′′ +

(
6− x2

)
y′ + (3x− 6)y = (x− 3)2.

Р-9.16
xy′′ − (2x+ 1)y′ + (x+ 1)y = 2x2e2x.

Р-9.17
(x− 1)y′′ − (x+ 1)y′ + 2y = (x− 1)3ex.

Р-9.18

x(2x+ 1)y′′ + 2
(
1− 2x2

)
y′ − 4(x+ 1)y = (2x+ 1)2, x > 0.

Р-9.19

x(x+ 3)y′′ +
(
12− x2

)
y′ − 3(x+ 4)y = (x+ 3)2, x > 0.

Р-9.20

2x(x− 2)y′′ +
(
x2 − 8

)
y′ + (x− 4)y = (x− 2)2, x > 2.

Р-9.21

x(x− 2)y′′ +
(
x2 − 6

)
y′ + 2(x− 3)y = (x− 2)2, x > 2.

Р-9.22

x2y′′ − x
(
x2 + 3

)
y′ +

(
x2 + 3

)
y = 10x5 sinx2.

Р-9.23

(x− 1)y′′ + (1− 2x)y′ + xy = 1
2 (x− 1)2.

Р-9.24
x2(x− 1)y′′ + 2xy′ − 2y = x3ex.
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4.2.9 Problems about second-order linear equations with variable coefficients

Р-9.25
xy′′ + (2− 2x)y′ + (x− 2)y = e2x, x > 0.

Р-9.26(
1− x2

)
y′′ + 2y′ − 2

x+1y = (1− x)2(1 + x)e−x.

Р-9.27

x(x+ 1)y′′ + 2y′ − 2
x+1y = (x+ 1)2e2x, x > 0.

Р-9.28

x(3x+ 2)y′′ + 3
(
2− 3x2

)
y′ − 18(x+ 1)y = (3x+ 2)2 · x > 0.

Р-9.29

2x(x+ 2)y′′ +
(
8− x2

)
y′ − (x+ 4)y = (x+ 2)2, x > 0.

Р-9.30

x(3x− 2)y′′ + 3
(
3x2 − 2

)
y′ + 18(x− 1)y = (3x− 2)2, x > 2

3 .

Р-9.31

(lnx)y′′ − 1
xy

′ + 1
x2 y = ln2 x.

Р-9.32

2xy′′ − (x+ 2)y′ + y = x3

x+2 , x > 0.

Р-9.33
xy′′ − (4x− 2)y′ + 4(x− 1)y = e2x cosx.

Р-9.34
x2y′′ + x(−2 + x tg x)y′ + (2− x tg x)y = x3ex cosx, 0 < x < π

2 .

Р-9.35
(1− x)y′′ + (2− 4x)y′ − 4xy = e−2x sinx.

Р-9.36
(x+ 1)y′′ + (x− 1)y′ − 2y = e−x(x+ 1)3.

Р-9.37(
2x− x2

)
y′′ + 2y′ − 2

xy = (2− x)2xe−x.

Р-9.38

(x− 1)2y′′ −
(
x2 − 1

)
y′ + (x+ 1)y = (x− 1)3(3x− 2)ex.

Р-9.46
xy′′ − (4x+ 2)y′ + (4x+ 4)y = x2e2x, x > 0
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4.2.9 Problems about second-order linear equations with variable coefficients

Р-9.47

y′′ − 3y′ ctg x+
(

3
sin2 x

− 2
)
y = 2 sin2 x, 0 < x < π.

Р-9.48

(x lnx)y′′ + (lnx+ 1)y′ − y
x ln x = 2 ln x

x , x > 1.

Р-9.49(
1 + x2

)
y′′ + xy′ − y = x2

1+x2 .

Р-9.50
x2y′′ + x(x− 2)y′ + (2− x)y = x4e−x.

Р-9.51
xy′′ − 2(x+ 1)y′ + (x+ 2)y = 3xex.

Р-9.52
x(x− 1)y′′ + (4x− 2)y′ + 2y = e−x.

Р-9.53
x(x+ 1)y′′ + (4x+ 2)y′ + 2y = 6(x+ 1).

Р-9.54
(x− 1)y′′ − 2xy′ + (x+ 1)y = 3ex.

Р-9.55
xy′′ − 2(4x− 1)y′ + 8(2x− 1)y = 2e2x.

Р-9.56

(2x+ 3)y′′ − 2y′ − 6
x2 y = 3(2x+ 3)2.

Р-9.57

(2x+ 1)y′′ − 2y′ − (2x+ 3)y = 3(2x+ 1)2 · e x
2 .

Р-9.58

2xy′′ − (x+ 4)y′ +
(
1 + 4

x

)
y = x3.

Р-9.59
xy′′ + (2x− 1)y′ + (x− 1)y = 8x2ex, x > 0.

Р-9.60
x(x− 1)2y′′ − 2(x− 1)y′ + 2y = x(x− 1)3e−x, x > 1.

Р-9.61
(x− 2)y′′ − (4x− 7)y′ + (4x− 6)y = 4x(x− 2)2e2x, x > 2.
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4.2.9 Problems about second-order linear equations with variable coefficients

Р-9.64

x2(x− 3)y′′ − x2(x− 2)y′ + 2
(
x2 − 3x+ 3

)
y = (x− 3)2.

Р-9.65

x2(x− 1)y′′ + x
(
2− 4x+ x2

)
y′ − 2(x− 1)2y = x3(x− 1)2.

Р-9.66

x3(x− 4)y′′ − x2(x− 2)2y′ + 2x
(
x2 − 5x+ 8

)
y = (x− 4)2, x > 0.

Р-9.67
Найти общее решение уравнения, если известны два его решения y1(x) и y2(x):
a)y′′ − y′ tg x+ 2y = 2 tg x+ sin x

cos3 x , 0 < x < π
2 y1 = tg x, y2 = tg x+ 2 sinx.

б)y′′ + 4xy′ +
(
4x2 + 2

)
y =

(
4x2 + 4x+ 3

)
ex y1 = ex, y2 = ex + e−x2

.
в)xy′′ − (2x+ 1)y′ + (x+ 1)y = (x− 1)e2x, x > 0, y1 = e2x, y2 = e2x − ex.
г)xy′′ +2y′ − xy = 2− x2, x > 0, y1 = x, y2 = x+ ex

x д) x(2x+1)y′′ +2(x+1)y′ − 2y = 3x2 +3x+1, x > 0

y1 =
1

2
(x+ 1)2, y2 =

1

2

(
x2 − 1

)
Р-9.68

Составить и решить линейное дифференциальное уравнение второго порядка, если известны его
правая часть f(x) и фундаментальная система решений y1(x) и y2(x) соответствующего линейного
однородного уравнения:

a)f(x) = 1− x2, y1 = x, y2 = x2 + 1.
б)f(x) = 1, y1 = x, y2 = x2 − 1.
в)f(x) = cos 2x, y1 = sin2 x, y2 = cos2 x.

Р-9.69
Решить (

1− x2
)
y′′ − xy′ + y =

1

x

√
1− x2, 0 < x < 1,

с помощью замены x = cos t, 0 < t < π
2 .

Р-9.70
Решить

x4y′′ + 2x3y′ − y =
2e

1
x

e
1
x − 1

с помощью замены x = − 1
t .

Р-9.71
Решить

2xy′′ + y′ = 2(y + thx)

с помощью замены x = t2

4 , t > 0.

Р-9.72
Решить

y′′ + y′ tg x = 4
(
y + cos2 x

)
cos2 x, 0 < x <

π

2

с помощью замены t = sinx. Приведением к виду z′′ + a(x)z = f(x) решить уравнения (73− 76):

Р-9.73

x2y′′ + xy′ +
(
x2 − 1

4

)
y = 2x

5
2 ex
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4.2.9 Problems about second-order linear equations with variable coefficients

Р-9.74

y′′ + 2
xy

′ + y = 2.

Р-9.75(
1 + x2

)2
y′′ + 2x

(
1 + x2

)
y′ + y = 1 + x2.

Р-9.76

y′′ − 6
xy

′ +
(
12
x2 + 1

)
y = 0.

Р-9.77
Пусть функция p(x) определена и непрерывна при x ⩾ 0 и пусть y1(x), y2(x) - решения уравнения

y′′ + p(x)y = 0, причем limx→+∞ yi(x) = 0, производные y′i(x) ограничены при x ⩾ 0, i = 1, 2. Доказать,
что y1(x) и y2(x) линейно зависимы при x ⩾ 0.

Р-9.78

Пусть y1(x), y2(x) - два линейно независимые решения уравнения y(n) + p1(x)y
(n−1) + · · ·+ pn(x)y = 0.

Указать подстановку, приводящую к линейному уравнению порядка n− 2.

Р-9.79

Пусть решение y(x) уравнения x2y′′ + xy′ +
(
x2 − n2

)
y = 0, n > 0, x > 0, положительно при малых

x > 0 и y(+0) = 0, Доказать, что точка первого положительного максимума этого решения находится от
нуля на расстоянии, которое не меньше чем n.

Р-9.80
Пусть a(x) - непрерывная функция при x ⩾ 0. Доказать, что если уравнение y′′ + a(x)y = 0 имеет

решение y(x) такое, что limx→+∞ y′(x) = +∞, то оно имеет также нетривиальное решение, стремящееся
к нулю при x→ +∞.

Р-9.81
Пусть функции a(x) и b(x) непрерывны на всей оси, причем a(x) - нечетная, а b(x) - четная. Доказать,

что решение уравнения y′′+ +a(x)y′+b(x)y = 0, удовлетворяющее условию y′(0) = 0, есть четная функция.

Р-9.82
Пусть функция q(x) непрерывна на всей оси и периодична с периодом

Р-9.1
Доказать, что если нетривиальное решение уравнения y′′ + q(x)y = 0, удовлетворяет условиям y(0) =

y(1) = 0, то y(x+ 1) = Cy(x), C = const.

Р-9.83
Найти два линейно независимые решения в виде степенного ряда уравнения y′′ + 4xy = 0.

Р-9.84
а) Найти решение уравнения xy′′−y′−4x3y = 0 в виде стегенного ряда при условиях y(0) = 1, y′′(0) = 0.

Определить радиус сходимости ряда.
б)Решить y′′ − y′

x − 4x2y = 0. Указание. Найти сумму ряда в п. а).

Р-9.85
а) Найти решение уравнения xy′′−2y′+9x5y = 0 в виде степенного ряда при условиях y(0) = 0, y′′′(0) =

6. Определить радиус сходимости ряда.
б)Решить y′′ − 2

xy
′ + 9x4y = 0. Указание. Найти сумму ряда в п. а).

138



4.3 Tasks for systems of equations

Р-9.86
Проинтегрировать при x > 0 с помощью ряда по степеням x уравнение 4xy′′ + 2y′ + y = 0
Указание. Для отыскания решения уравнения, линейно независимого в решением, представимым

степенным рядом, сделать в уравнении замену y =
√
x · z.

Р-9.87
Найти при 0 < x < 1 общее решение уравнения 2x(1 − x)y′′ + (1 - −x)y′ + 3y = 0 в виде ряда по

степеням x. Указание. Воспользоваться Указанием к задаче 86.

Р-9.88

а) Найти при 0 < x <
√
2 решение уравнения(

2x+ x3
)
y′′ − y′ − 6xy = 0

в виде степенного ряда по x. Определить радиус сходимости ряда.
б)Найти общее решение заданного уравнения в виде ряда по степеням x.

4.3 Tasks for systems of equations

4.3.1 Problems about linear systems with constant coefficients

Р-11.пр.1
Найти общее решение линейной системы уравнений{

ẋ = x− 2y − 2tet,
ẏ = 5x− y − (2t+ 6)et.

Продифференцируем первое уравнение системы:

ẍ = ẋ− 2ẏ − 2(t+ 1)et.

В полученное выражение подставим выражение ẏ из второго уравнения системы:

ẍ = ẋ− 2(t+ 1)et − 10x+ 2y + 2(2t+ 6)et = ẋ− 10x+ 2y + (2t+ 10)et.

Подставив сюда выражение 2y из первого уравнения системы, получаем уравнение для x(t):

ẍ+ 9x = 10et.

Его решением является x(t) = C1 cos 3t+C2 sin 3t+e
t, где C1 и C2 - произвольные постоянные. Подставив

x(t) в первое уравнение системы, находим y(t) = 1
2 (C1 − 3C2) cos 3t+

1
2 (3C1 + C2) sin 3t− tet.

Таким образом, общее решение заданной системы уравнений имеет вид

x(t) = C1 cos 3t+ C2 sin 3t+ et,

y(t) =
1

2
(C1 − 3C2) cos 3t+

1

2
(3C1 + C2) sin 3t− tet.

Для решения линейных систем третьего порядка с постоянными коэффициентами удобным является
метод, использующий нахождение собственных значений, собственных и присоединенных векторов
матрицы системы.
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4.3.1 Problems about linear systems with constant coefficients

Р-11.пр.2
Найти общее решение линейной системы уравнений{

ẋ = x− z,
ẏ = −2x+ 3y − z,
ż = 4x+ 5z

Для матрицы системы

A =

(
1 0 −1

−2 3 −1
4 0 5

)
из уравнения det(A−λE) = 0, где E - единичная матрица третьего порядка, находим собственное значение
λ = 3 кратности три. Из линейной алгебраической системы уравнений (A − λE)h = 0, где вектор h ̸= 0
имеет три компоненты, находим два линейно независимые собственные векторы

h1 =

(
1
0

−2

)
, h2 =

(
1
1

−2

)
.

Из системы уравнений (A− λE)h3 = h2 находим присоединенный вектор h3 к вектору h2:

h3 =

(
0
0

−1

)
.

Следовательно, искомое общее решение имеет вид(
x
y
z

)
= C1e

3t

(
1
0
−2

)
+ C2e

3t

(
1
1
−2

)
+ C3e

3t

[
t

(
1
1
−2

)
+

(
0
0
−1

)]
,

где C1, C2, C3 - произвольные постоянные.
Линейные системы уравнений можно решать с помощью матричной экспоненты.

Р-11.пр.3
С помощью матричной экспоненты решить систему уравнений{

ẋ = x+ y,
ẏ = −x+ 3y.

Для матрицы системы A =

(
1 1
−1 3

)
находим собственное значение λ = 2 кратности два. Ему

соответствуют собственный вектор h1 =

(
1
1

)
и присоединенный вектор h2 =

(
0
1

)
. В базисе из

векторов h1, h2 матрица A принимает нормальную жорданову форму J =

(
2 1
0 2

)
. Из определения

матричной экспоненты находим, что

etJ = e2t
(

1 t
0 1

)
.

Если через H обозначить матрицу, у которой первый столбец h1 и второй столбец h2, то

etA = HetJH−1 = e2t
(

1− t t
−t 1 + t

)
.

Общее решение заданной системы имеет вид(
x
y

)
= e2t

(
1− t t
−t 1 + t

)(
C1
C2

)
,

где C1 и C2 - произвольные постоянные. Линейные неоднородные системы уравнений можно решать
методом вариации постоянных.
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4.3.1 Problems about linear systems with constant coefficients

Р-11.пр.4
Методом вариации постоянных решить систему уравнений{

ẋ = x− 2y,
ẏ = x− y + 1

2 sin t .

Линейную однородную систему
{
ẋ = x− 2y,
ẏ = x− y, решаем методом исключения. Ее решение имеет вид

{
x = C1 cos t+ C2 sin t,
y = 1

2 [(C1 − C2) cos t+ (C1 + C2) sin t] ,

где C1 и C2 - произвольные постоянные. Решение заданной линейной неоднородной системы уравнений
ищем в виде {

x = C1(t) cos t+ C2(t) sin t,
y = 1

2 [(C1(t)− C2(t)) cos t+ (C1(t) + C2(t)) sin t] ,

где C1(t) и C2(t) - некоторые непрерывно дифференцируемые функции, которые находятся подстановкой
x и y в заданную систему уравнений. Подстановка x и y в заданную систему уравнений дает следующую
линейную алгебраическую систему для ċ1(t) и ċ2(t):{

ċ1(t) cos t+ ċ2(t) sin t = 0,
ċ1(t) sin t− ċ2(t) cos t =

1
sin t .

Отсюда находим ċ1(t) = 1, ċ2(t) = − ctg t и, значит, C1(t) = t + C1, C2(t) = − ln | sin t| + C2, где C1 и
C2 - произвольные постоянные. Подставляя найденные значения C1(t) и C2(t), получим общее решение
заданной системы уравнений

x = C1 cos t+ C2 sin t+ t cos t− sin t ln | sin t|,

y =
1

2
[(C1 − C2) cos t+ (C1 + C2) sin t+ (t+ ln | sin t|) cos t+ (t− ln | sin t|) sin t] .

Линейные системы уравнений можно также решать операционным методом, т. е. методом, использующим
преобразование Лапласа.

Р-11.пр.5
Операционным методом решить задачу Коши при t ⩾ 0:{

ẋ = 3x− y + 4e3t,
ẏ = 4x− y − 8e3t, x(0) = 1, y(0) = 0.

Положим при t < 0 решение x(t), y(t) системы и свободные члены системы тождественно равными
нулю. Тогда так продолженные на всю числовую ось t ∈ (−∞,+∞) решение и свободные члены системы
являются оригиналами. Пусть x(t) ≓ X(p), y(t) ≓ Y (p). Тогда ẋ(t) ≓ pX(p)− 1, ẏ(t) ≓ pY (p).

Переходя в заданной системе уравнений к преобразованиям Лапласа, т. е. умножая каждое уравнение
системы на e−pt и интегрируя его по t от нуля до бесконечности, получаем линейную алгебраическую
систему уравнений для нахождения X(p) и Y (p){

(p− 3)X(p) + Y (p) = 1 + 4
p−3

−4X(p) + (p+ 1)Y (p) = − 8
p−3

Если считать комплексный параметр p таким, что Re p > 3, то из полученной системы уравнений
находим

X(p) =
(p+ 1)(p− 3) + 4(p+ 3)

(p− 3)(p− 1)2
, y(p) =

4(7− p)

(p− 3)(p− 1)2
.

Разлагая выражения для X(p) и Y (p) на простые дроби, имеем

X(p) =
6

p− 3
− 5

p− 1
− 6

(p− 1)2
, y(p) =

4

p− 3
− 4

p− 1
− 12

(p− 1)2
.

Переходя к оригиналам, получаем искомое решение

x(t) = 6e3t − (5 + 6t)et, y(t) = 4e3t − 4(1 + 3t)et.

Решить линейные однородные системы второго порядка (1-14):

141



4.3.1 Problems about linear systems with constant coefficients

Р-11.1{
ẋ = −5x− 6y,
ẏ = 8x+ 9y.

Р-11.2{
ẋ = 10x− 6y,
ẏ = 18x− 11y.

Р-11.3{
ẋ = −6x+ 8y
ẏ = −4x+ 6y

Р-11.4{
ẋ = −2x− 3y,
ẏ = 6x+ 7y

Р-11.5{
ẋ = −5x− 4y,
ẏ = 10x+ 7y.

Р-11.6{
ẋ = 5x− 6y,
ẏ = 3x− y

Р-11.7{
ẋ = −12x− 8y
ẏ = 20x+ 12y

Р-11.8{
ẋ = −5x− 10y,
ẏ = 5x+ 5y.

Р-11.9{
ẋ = −2x− 4y,
ẏ = 2x+ 2y.

Р-11.10{
ẋ = 5x+ 4y,
ẏ = −9x− 7y.

Р-11.11{
ẋ = 6x+ y,
ẏ = −16x− 2y.

Р-11.12{
ẋ = −5x+ 4y,
ẏ = −x− y.
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Р-11.13{
ẋ = −2x+ y,
ẏ = −4x+ 2y.

Р-11.14{
ẋ = −5x+ 4y,
ẏ = −9x+ 7y Решить линейные однородные системы уравнений третьего порядка (15116):

Р-11.15{
ẋ = −5x− 2y − 2z,
ẏ = 10x+ 4y + 2z,
ż = 2x+ y + 3z.

Р-11.16{
ẋ = −x+ 2y − 4z,
ẏ = −8x− 3y + 2z,
ż = −2x− 4y + 6z.

Р-11.17{
ẋ = −2x+ 6y − 4z,
ẏ = 9x− 5y + 6z,
ż = 15x− 18y + 15z.

Р-11.18{
ẋ = −2x+ 2y − z,
ẏ = −6x+ 2y − 2z,
ż = −6x− 2y − z,

Р-11.19{
ẋ = 5x+ y − z
ẏ = x+ 3y + z
ż = 7x+ 3y + z

Р-11.20{
ẋ = x− y − z,
ẏ = −2x+ 2y + z,
ż = 4x+ 2y + 3z.

Р-11.33{
ẋ = 2x+ y − 2z,
ẏ = −x+ z,
ż = 2x+ 2y − z.

Р-11.34{
ẋ = 2x− 4y,
ẏ = x+ 2y + z,
ż = 3y + 2z.

Р-11.35{
ẋ = 3x− 3y + z,
ẏ = 3x− 2y + 2z,
ż = −x+ 2y.
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Р-11.36{
ẋ = x+ 2y − z,
ẏ = −2x+ y − 2z,
ż = x+ 2y + z

Р-11.37{
ẋ = x− y,
ẏ = x+ z,
ż = x+ z.

Р-11.38{
ẋ = −x− y − z,
ẏ = 3x− 7y + z,
ż = 5x− 5y − 3z.

Р-11.39{
ẋ = x− 6y + 3z
ẏ = −8y + 6z
ż = 3x− 12y + 7z

Р-11.40{
ẋ = −2x− 3y + z
ẏ = x− 8y + 3z
ż = 3x− 7y

Р-11.47{
ẋ = 3x− 8y + z,
ẏ = x− 2y + z,
ż = 3x− 12y − 5z.

Р-11.48{
ẋ = 3x+ 2z,
ẏ = x+ 2y + z,
ż = −x− y.

Р-11.49{
ẋ = −x− 4y,
ẏ = x− y + z
ż = 3y − z

Р-11.50{
ẋ = 3x− 2y + 2z,
ẏ = 2x+ z,
ż = −2x+ 2y − 2z.

Р-11.51{
ẋ = −y − z,
ẏ = x+ y,
ż = 4x+ y + 2z.

Р-11.52{
ẋ = y − z,
ẏ = −y + z,
ż = x− z
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Р-11.53{
ẋ = −3x+ z,
ẏ = −3y + 2z,
ż = 3x− 2y − 3z

Р-11.54{
ẋ = −5x− 4y + 9z,
ẏ = 10x+ 9y − 10z,
ż = x+ y + 3z.

Р-11.55{
ẋ = x+ 2z,
ẏ = 2x− y + 2z,
ż = x− y + z

Р-11.56{
ẋ = 4x− 7y − z,
ẏ = 2x− 3y − z,
ż = −2x+ 2y + 3z.

Р-11.61{
ẋ = 7x− 10y − 4z
ẏ = 4x− 7y − 4z
ż = −6x+ 7y + z

Р-11.62{
ẋ = 7x+ 8y − 2z
ẏ = −5x− 7y + z
ż = 6x+ 8y − z

Р-11.63{
ẋ = 2x− 3y
ẏ = x− 2z
ż = −y + 2z

Р-11.64{
ẋ = −2x+ y
ẏ = 3x− z
ż = 4y − 2z

Р-11.65{
ẋ = −3x+ y
ẏ = 4x+ y
ż = 4x+ z

Р-11.66{
ẋ = 2x+ y
ẏ = 4x+ 2y + 4z
ż = −2x− y − z

Р-11.81{
ẋ = 3x− y + 3z,
ẏ = −6x+ y − 5z,
ż = −3x+ 2y − 4z.
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Р-11.82{
ẋ = −x+ 2y + z,
ẏ = x− y + z,
ż = −2x− 3y − 4z.

Р-11.83{
ẋ = −2x− y − z,
ẏ = −4x+ 2y − z,
ż = 16x+ 4y + 6z

Р-11.84{
ẋ = −2x+ y − z,
ẏ = 4x+ 2y − 2z,
ż = 6x+ 7y − 6z.

Р-11.85{
ẋ = 3x+ 2y − 4z,
ẏ = x+ 4y − z,
ż = 3x+ 6y − 4z.

Р-11.86{
ẋ = x+ 5y − 2z,
ẏ = −x+ 5y − 2z,
ż = −2x+ 15y − 6z.

Р-11.99{
ẋ = 4x+ 2y − z,
ẏ = −2x+ y + z,
ż = 2x+ 3y + z.

Р-11.100{
ẋ = 4x− y − 2z,
ẏ = 2x+ y − 3z,
ż = 2x− y + z

Р-11.101{
ẋ = x− 2y + 2z,
ẏ = −3x+ 2y − 3z,
ż = −6x+ 8y − 8z.

Р-11.102{
ẋ = −x− 2y + 2z,
ẏ = −4x− 2y − 3z,
ż = −3x+ 3y − 6z.

Р-11.103{
ẋ = 2x+ 3y − z,
ẏ = −6x− 6y + z,
ż = −4x− 2y − 2z.

Р-11.104{
ẋ = −3x− y − z,
ẏ = 5x+ 3y + z,
ż = 16x+ 4y + 5z.
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Р-11.105{
ẋ = −x− 5y + z,
ẏ = −x+ 3y − z,
ż = 4x+ 5y + 2z.

Р-11.106{
ẋ = −3x− 3y − 2z,
ẏ = 6x+ 6y + 2z,
ż = 7x+ 4y + 5z.

Р-11.113{
ẋ = −3x+ 2y − z,
ẏ = 8x+ 4y + 4z,
ż = 6x− 6y + 2z.

Р-11.114{
ẋ = 2x+ y + z,
ẏ = 3x− 6y + 3z,
ż = 4x− 16y + 5z.

Р-11.115{
ẋ = 2x+ 4y − 4z,
ẏ = 4x− 6y + 12z,
ż = −8x− 8y + 6z.

Р-11.116{
ẋ = 6x− 3y + 7z,
ẏ = −3x− 2y + z,
ż = −7x− y − 4z.

4.3.2 Problems about matrix exponent
С помощью матричной экспоненты решить линейные однородные системы уравнений (117-136):

Р-11.117{
ẋ = 2x+ y,
ẏ = x+ 2y

Р-11.118{
ẋ = x+ 2y
ẏ = 2x+ y

Р-11.119{
ẋ = −3x+ y
ẏ = x− 3y

Р-11.120{
ẋ = −x+ y
ẏ = 2x− 2y

Р-11.121{
ẋ = 2x− y
ẏ = −4x+ 2y
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Р-11.122{
ẋ = 3x+ y
ẏ = −x+ 5y

Р-11.123{
ẋ = 3x− y,
ẏ = x+ y.

Р-11.124{
ẋ = 2x− y
ẏ = x+ 4y

Р-11.125{
ẋ = x+ y
ẏ = −x− y

Р-11.126{
ẋ = x− 2y
ẏ = x− y

Р-11.129{
ẋ = −x+ y
ẏ = −5x+ 3y

Р-11.130{
ẋ = x+ y,
ẏ = −2x+ 3y.

Р-11.131{
ẋ = −x− 2y,
ẏ = x− 3y

Р-11.132{
ẋ = z,
ẏ = y,
ż = 0.

Р-11.133{
ẋ = x+ y,
ẏ = 2x+ 2y,
ż = 3z

Р-11.134{
ẋ = z + y,
ẏ = x− y,
ż = −x− z.

Р-11.135{
ẋ = z
ẏ = x+ y
ż = z
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Р-11.136{
ẋ = z,
ẏ = x− y + z,
ż = 0.

4.3.3 Problems about inhomogeneous systems of equations
Решить линейные неоднородные системы уравнений (137-168):

Р-11.137{
ẋ = −2x− y + 37 sin t
ẏ = −4x− 5y

Р-11.138{
ẋ = 3x− 5y − 2et

ẏ = x− y − et

Р-11.139{
ẋ = −2x− y + 36t
ẏ = −4x− 5y

Р-11.140{
ẋ = 11x− 8y + 4e7t

ẏ = 20x− 13y

Р-11.141{
ẋ = 6x− 3y + 30et

ẏ = 15x− 6y + 45t

Р-11.142{
ẋ = −5x− y
ẏ = x− 3y − 9e2t

Р-11.143{
ẋ = 5x+ 4y + 7e2t

ẏ = −9x− 7y + t2 + 1

Р-11.144{
ẋ = 3x+ 2y − e−t

ẏ = −2x− 2y − e−t

Р-11.145{
ẋ = y
ẏ = x+ et + e−t

Р-11.146{
ẋ = −4x− 4y + 2e2t

ẏ = 6x+ 6y + 2t
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4.3.3 Problems about inhomogeneous systems of equations

Р-11.147{
ẋ = −6x− 10y + 4 sin 2t
ẏ = 4x+ 6y

Р-11.148{
ẋ = −7x+ 2y + e−t

ẏ = −15x+ 4y

Р-11.149{
ẋ = −3x− 3y + t+ 1
ẏ = 6x+ 6y + 2t

Р-11.150{
ẋ = −3x+ y − e−t

ẏ = −4x+ y

Р-11.151{
ẋ = 3x+ 2y − 2et

ẏ = −3x− 2y − 2et

Р-11.152{
ẋ = 4x− y
ẏ = x+ 2y + 2e3t

Р-11.153{
ẋ = y + cos 2t− 2 sin 2t,
ẏ = −x+ 2y + 2 sin 2t+ 3 cos 2t.

Р-11.154{
ẋ = x− 2y − 2tet

ẏ = 5x− y − (2t+ 6)et.

Р-11.155{
ẋ = x+ y,
ẏ = 3y − 2x− 2(t+ 1)et.

Р-11.156{
ẋ = 5x− y + 5 sin t,
ẏ = 4x+ y + 3 sin t− cos t.

Р-11.157{
ẋ = 2x+ y + 5,
ẏ = x+ 2y + z,
ż = −2y + 2z

Р-11.158{
ẋ = 4x+ 3y − 3z,
ẏ = −3x− 2y + 3z,
ż = 3x+ 3y − 2z + 2e−t

150



4.3.4 Problems about the system of equations by the method of variation of constants

Р-11.161{
ẋ = 2x− y + z + cos t,
ẏ = 5x− 4y + 3z + sin t,
ż = 4x− 4y + 3z + 2 sin t− 2 cos t.

Р-11.162{
ẋ = x+ z − 2 ch t+ 3 sh t,
ẏ = −2x+ 2y + 2z + 4 sh t,
ż = 3x− 2y + z − sh t.

Р-11.163{
ẋ = 2x+ y − 3z + 2e2t

ẏ = 3x− 2y − 3z − 2e2t

ż = x+ y − 2z

Р-11.164{
ẋ = x− 2y − z − 2et

ẏ = −x+ y + z + 2et

ż = x− z − et

Р-11.165{
ẋ = −9x+ 3y + 7z + 2
ẏ = x+ y − z + 4
ż = −11x+ 3y + 9z

Р-11.166{
ẋ = 2x− y + z − 2e−t

ẏ = x+ 2y − z − e−t

ż = x− y + 2z − 3e−t

Р-11.167{
ẋ = −x− y + t2,
ẏ = −y − z + 2t,
ż = −z + t.

Р-11.168{
ẋ = 2x− 3y + t
ẏ = x− 2z − 3t2

ż = −y + 2z + 3t− 2

4.3.4 Problems about the system of equations by the method of vari-
ation of constants

Методом вариации постоянных решить линейные неоднородные системы уравнений (169− 186):

Р-11.169{
ẋ = −2x+ 4y + 1

1+et ,

ẏ = −2x+ 4y − 1
1+et .

Р-11.170{
ẋ = −x− y + et

1+et ,

ẏ = 2x+ 2y + et

1+et .
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4.3.4 Problems about the system of equations by the method of variation of constants

Р-11.171{
ẋ = 4x− 8y + tg 4t
ẏ = 4x− 4y

Р-11.172{
ẋ = 3x− 6y + 1

cos3 3t
ẏ = 3x− 3y

Р-11.173{
ẋ = 3x− 4y + et

sin 2t
ẏ = 2x− y

Р-11.174{
ẋ = −3x+ y,
ẏ = −4x+ y + 1

tet

Р-11.175{
ẋ = 3x+ y

ẏ = −4x− y + et

2
√
t

Р-11.176{
ẋ = 2x+ y − ln t
ẏ = −4x− 2y + ln t

Р-11.177{
ẋ = −x− 4y + e3t

1+e2t

ẏ = 2x+ 5y

Р-11.178{
ẋ = −3x− 2y + e2t

1+et

ẏ = 10x+ 6y

Р-11.179{
ẋ = −6x+ 8y,
ẏ = −4x+ 6y − 2

ch 2t .

Р-11.180{
ẋ = −7x+ 2y,

ẏ = −15x+ 4y + e−2t

1+e2t .

Р-11.181{
ẋ = 5x− 6y + 3e2t

cos3 3t
ẏ = 3x− y

Р-11.182{
ẋ = 10x− 6y

ẏ = 18x− 11y − 3et

ch 3t
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4.3.5 Problems about the system of equations by the operator method

Р-11.183{
ẋ = 3x+ 2y − 1

1+e−t

ẏ = −3x− 2y − 1
1+e−t

Р-11.184{
ẋ = −2x+ y + t ln t
ẏ = −4x+ 2y + 2t ln t

Р-11.185{
ẋ = −8x− 4y,
ẏ = 20x+ 8y − 4 ctg 4t.

Р-11.186{
ẋ = 4x− 2y,
ẏ = 8x− 4y +

√
t.

4.3.5 Problems about the system of equations by the operator
method

(!! потренирую потом)
Решить операционным методом задачу Коши при t ⩾ 0(187− 197):

Р-11.187{
ẋ = 2x− y,
ẏ = 3x− 2y,
x(0) = y(0) = 1.

Р-11.188{
ẋ = x+ y,
ẏ = −2x− y,
x(0) = 1, y(0) = −1.

Р-11.189{
ẋ = x+ y + e2t,
ẏ = −2x+ 4y + e2t,
x(0) = 1, y(0) = 2.

Р-11.190{
ẋ = −x− 2y + 2e−t,
ẏ = 3x+ 4y + e−t,
x(0) = y(0) = −1.

Р-11.191{
ẋ = 3x− 4y + e−t,
ẏ = x− 2y + e−t,

Р-11.192{
ẋ = 4x− y + et,
ẏ = x+ 2y + 3et,

x(0) = −1, y(0) = 1. x(0) = y(0) = 1.
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4.3.6 Problems about the system of diffusers by an arbitrary method

Р-11.193{
ẋ = x− 2y + t,
ẏ = x− y + 2,
x(0) = y(0) = 0.

Р-11.194{
ẋ = 4x+ 5y + 4,
ẏ = −4x− 4y + 4t,
x(0) = 0, y(0) = 3.

Р-11.195{
ẋ = x+ y + 3t+ 6,
ẏ = −10x− y + 6t+ 3,
x(0) = y(0) = 0.

Р-11.196{
ẋ = −x− y + e2t,
ẏ = 2x+ 2y + 2e2t,
x(0) = y(0) = 1.

Р-11.197{
ẋ = 3x+ y + et,
ẏ = −4x− 2y + tet,
x(0) = y(0) = 0.

x(0) = y(0) = 0.

4.3.6 Problems about the system of diffusers by an arbitrary method

Решить каким-либо методом задачу Коши (198-224):

Р-11.198{
ẋ = 3x+ y + et,
ẏ = −4x− 2y + tet,
x(0) = y(0) = 0.

Р-11.199 ẋ = 2x+ 1
2y,

ẏ = −18x− 4y + 18te2t,
x(0) = 1

3 , y(0) = 2.

Р-11.200{
ẋ = 7x− 2y + 8te−t,
ẏ = 8x− y,

Р-11.201{
ẋ = 5x+ 3y,
ẏ = −3x− y + 9te5t

x(0) = 0, y(0) = 1
2 . x(0) = 1

3 , y(0) = 0.

Р-11.202{
ẋ = 11x− 2y + 12te−t,
ẏ = 18x− y,
x(0) = − 2

3 , y(0) = 0.
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4.3.6 Problems about the system of diffusers by an arbitrary method

Р-11.203{
ẋ = −5x− 2y + 24et,
ẏ = −3x− 4y,
x(0) = 0, y(0) = 2.

Р-11.206{
ẋ = 4x− y,
ẏ = x+ 2y + 2e3t,
x(0) = 1, y(0) = 2.

Р-11.207{
ẋ = −2x− y + 37 sin t
ẏ = −4x− 5y
x(0) = 0, y(0) = −1

Р-11.208{
ẋ = 3x+ 2y + (1− 4t)e−t,
ẏ = −2x− 2y + 2te−t,
x(0) = y(0) = −1.

Р-11.209{
ẋ = 3x− 5y − 2et

ẏ = x− y − et

x(0) = 2, y(0) = 1

Р-11.210
ẋ = 2y − 2z,
ẏ = x− y − z,
ż = −x− y − z,
x(0) = 3, y(0) = 0, z(0) = 1.

Р-11.211
ẋ = x− y + z,
ẏ = y − x+ z,
ż = 3z − x− y,
x(0) = 3, y(0) = 0, z(0) = 1.

Р-11.212
ẋ = y − z,
ẏ = −y + z,
ż = x− z,
x(0) = y(0) = 0, z(0) = 1.

Р-11.213
ẋ = x− z,
ẏ = y + z,
ż = −x− y − z,
x(0) = y(0) = 1, z(0) = −1.

Р-11.214
ẋ = x− y,
ẏ = x+ z,
ż = x+ z,
x(0) = 0, y(0) = z(0) = 1.
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4.3.6 Problems about the system of diffusers by an arbitrary method

Р-11.215
ẋ = x− 2y + z,
ẏ = −y + z,
ż = x− y − z,
x(0) = y(0) = 0, z(0) = 1.

Р-11.222 
ẋ = 2x− y + 2z,
ẏ = x+ 2z,
ż = −2x+ y − z + 1,
x)0) = y)0) = z)0) = 0.

Р-11.?? 
ẋ = x− 2y − z + 1,
ẏ = −x+ y + z,
ż = x− z + 1,
x(0) = z(0) = 1, y(0) = 0.

Р-11.225
Найти все решения системы, стремящиеся к нулю при t→ −∞:{

ẋ = 3x+ y − 3z
ẏ = −7x− 2y + 9z
ż = −2x− y + 4z

Р-11.226
Найти все решения системы, ограниченные при t→ +∞:

ẋ1 = −x1 + 2x2 + x3 − x4
ẋ2 = −4x1 + 4x2 + 2x3 − x4
ẋ3 = −4x1 + 2x2 + 4x3 − x4
ẋ4 = −x1 + 2x2 + x3 − x4

Р-11.227
Показать, что решение системы уравнений ẋ1 = −a2x2, ẋ2 = x1 при каждом из граничных условий: 1)

x1(0) = 0, x1(T ) = b, 2)x1(0) = = 0, x2(T ) = b, 3)x2(0) = 0, x1(T ) = b, 4)x2(0) = 0, x2(T ) = b B зависимости
от выбора параметров a, b и T > 0 либо существует и единственно, либо существует и неединственно, либо
не существует.

Р-11.228
Найти решение системы {

ẍ− 8x+
√
6ẏ = 0,

ÿ −
√
6ẋ+ 2y = 0,

удовл. н. у. x(0) = 1, y(0) = ẏ(0) = ẋ(0) = 0.

Р-11.229
Найти решение системы {

ẍ− ẏ + ż − 4x− 2y − 2z = sin 2t,
2ẋ− ÿ + z̈ + 3y − 4z = 0,
ẋ+ z̈ − 2x− y − 4z = 0,

удовл. н. у. x(0) = ẋ(0) = y(0) = ẏ(0) = z(0) = ż(0) = 0

Р-11.230

Пусть A =

(
α β

−β α

)
. Доказать, что etA = eαt

(
cosβt sinβt

− sinβt cosβt

)
.
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4.3.7 Problems about linear systems of equations with variable coefficients

Р-11.231
Пусть квадратная матрица второго порядка А имеет собственные значения λ1, λ2 и λ1 ̸= λ2. Доказать,

что тогда

etA = eλ1t · E +
eλ2t − eλ1t

λ2 − λ1
(A− λ1E) ,

где E - единичная матрица второго порядка.

Р-11.232
Пусть квадратная порядка n матрица A имеет собственное значение λ0 кратности n. Доказать, что

тогда

etA = eλ0t

[
E +

t

1!
(A− λ0E) +

t2

2!
(A− λ0E)

2
+ · · ·

+
tn−1

(n− 1)!
(A− λ0E)

n−1

]
,

где E - единичная матрица порядка n.

Р-11.233
Пусть λ - собственное значение квадратной матрицы A и пусть h - соответствующий ему собственный

вектор A. Доказать, что тогда eλ - собственное значение матрицы eA, а h - соответствующий ему
собственный вектор eA.

Р-11.234
Пусть λ1, λ2, ..., λn - собственные значения квадратной матрицы A (с учетом их кратности). Доказать,

что определитель
∣∣etA∣∣ матрицы etA удовлетворяет равенству

∣∣etA∣∣ = e(λ1+λ2+···+λn)t.

Р-11.235
Доказать, что матричные ряды для sinA и cosA

sinA =

∞∑
k=0

(−1)k

(2k + 1)!
A2k+1, cosA =

∞∑
k=0

(−1)k

(2k)!
A2k

сходятся для любой квадратной матрицы A.

4.3.7 Problems about linear systems of equations with variable coef-
ficients

стр 150

Р-12.пр.1

По заданной фундаментальной матрице Φ(x) =

(
cosx sinx

− sinx cosx

)
составить линейную однородную

систему.
Неизвестная матрица A(x) находится из условия, что Φ(x) - решение матричного уравнения Y ′(x) =

A(x)Y (x). Отсюда A(x) = Φ′(x) · Φ−1(x) =

(
0 1

−1 0

)
. Искомая система имеет вид

y′1 = y2, y
′
2 = −y1.

Формула Лиувилля-Остроградского позволяет по заданному решению линейной однородной системы
найти общее решение этой системы.
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4.3.7 Problems about linear systems of equations with variable coefficients

Р-12.пр.2

Известно, что вектоР-12.функция
(
x
1

)
- решение системы

Пусть решением системы является вектоР-12.функция с компонентами y1 = φ(x), y2 = ψ(x), причем
φ(0) = 1, ψ(0) = 0. По формуле ЛиувилляОстроградского имеем:

∣∣∣∣ φ(x) x
ψ(x) 1

∣∣∣∣ = ∣∣∣∣ 1 0
0 1

∣∣∣∣ e
x∫
0

2ζdζ

1+ζ2

= 1 + x2.

Отсюда φ(x)−xψ(x) = 1+x2. Подставляя выражение для φ(x) во второе уравнение системы, получаем
задачу Коши для ψ(x)

ψ′(x) = −2, ψ(0) = 0.

Следовательно, ψ(x) = −2x, φ(x) = 1− x2. Тогда общее решение заданной системы имеет вид(
y1
y2

)
= C1

(
x
1

)
+ C2

(
1− x2

−2x

)
.

Р-12.пр.3

Может ли система
{
y′1 = −x3y1 + y2 sinx,
y′2 = x4y1 + exy2

иметь два ограниченных на (−∞,+∞) линейно

независимые решения?
Ответ на поставленный вопрос отрицательный, поскольку допустив противное, получаем, что

определитель Вронского этих решений является ограниченной на (−∞,+∞) функцией и отличен от
нуля. С другой стороны первообразная следа матрицы системы

x∫
0

(
−x3 + ex

)
dx = −x

4

4
+ ex − 1

является неограниченной на (−∞,+∞) функцией. Это противоречит формуле Лиувилля-Остроградского.

Р-12.1
Пусть задана линейная система y′(x) = φ(x)Ay(x), где φ(x) - непрерывная на промежутке I функция

и A - числовая квадратная матрица порядка n. Доказать, что замена t =
x∫

x0

φ(ζ)dζ дает линейную систему

y′(t) = Ay(t).

Р-12.2
Пусть Φ(x) - фундаментальная матрица линейной системы z′(x) = B(x)z(x), где B(x) - квадратная

порядка n и непрерывная на промежутке I матрица. Показать, что замена y(x) = Φ(x)z(x) в линейной
системе y′(x) = A(x)y(x) с квадратной порядка n и непрерывной на I матрицей A(x) дает линейную
систему вида z′(x) = Φ−1(x)[A(x) − B(x)]Φ(x)z(x). В задачах (3-9) исследовать линейную зависимость
вектоР-12.функций на (−∞,+∞):

Р-12.3(
shx
chx

)
,

(
chx
shx

)
.

Р-12.4(
x
x

)
,

(
2x
2x

)

Р-12.5

ex
(

cosx
sinx

)
, ex
(

− sinx
cosx

)
.
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4.3.7 Problems about linear systems of equations with variable coefficients

Р-12.6(
1
0
0

)
,

(
sin2 x
sin 2x
2 cos 2x

)
,

(
cos2 x
− sin 2x
−2 cos 2x

)
.

Р-12.7(
ex

ex

ex

)
,

(
shx
chx
shx

)
,

(
chx
shx
chx

)
.

Р-12.8(
1
1
1

)
,

(
x
x
x

)
,

 x2

x2

x2

 . 9.

(
x3

x2

x

)
,

(
x2|x|
x|x|
|x|

)
,

(
x
1
0

)
В задачах (10-18) по заданной

фундаментальной матрице Φ(x) найти матрицу A(x) линейной однородной системы y′(x) = A(x)y(x).

Р-12.10

Φ(x) =

(
1 −x
x 1

)
.

Р-12.11

Φ(x) =

(
1 x2

−x2 1

)
.

Р-12.12

Φ(x) =

(
ex 0
xex ex

)
.

Р-12.13

Φ(x) =

(
ex 0
xex e2x

)
.

Р-12.14

Φ(x) =

(
ex cosx − sinx
ex sinx cosx

)
.

Р-12.15

Φ(x) =

(
chx shx
shx chx

)
.

Р-12.16

Φ(x) =

(
x x2

1 2x

)
, x > 0

Р-12.17

Φ(x) =

(
x 1
x2 2x

)
, x > 0.
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4.3.7 Problems about linear systems of equations with variable coefficients

Р-12.18

Φ(x) =

(
e−x + x 1
xex ex

)
В задачах (19-23) по заданному решению ȳ(x) линейной однородной системы

найти фундаментальную матрицу Φ(x) этой системы:

Р-12.19

ȳ(x) =

(
1
x2

)
,

{
y′1 = 1

1+x4

(
2x3y1 − 2xy2

)
y′2 = 1

1+x4

(
2xy1 + 2x3y2

)
Р-12.20

ȳ(x) =

(
x
1

)
,

{
y′1 = 1

1+x2 (xy1 + y2)

y′2 = 1
1+x2 (−y1 + xy2) .

Р-12.22

ȳ(x) =

(
e−x

e−x(1− x)

)
,

{
y′1 = (1− 2x)y1 − 2y2,
y′2 =

(
2x2 − 2x− 1

)
y1 + (2x− 1)y2.

Р-12.23

ȳ(x) =

(
− sinx
cosx

)
,

{
y′1 = y1 cos

2 x+ (sinx cosx− 1)y2,
y′2 = (sinx cosx+ 1)y1 + y2 sin

2 x

Р-12.24
Пусть квадратная порядка n матрица A(x) непрерывна на промежутке I и при всех x ∈ I

перестановочна со своей первообразной, т. е. A(x) ·
x∫

x0

A(ζ)dζ =
x∫

x0

A(ζ)dζ ·A(x), где x0 ∈ I. Доказать, что

тогда фундаментальной матрицей Φ(x) линейной однородной системы y′(x) = A(x)y(x) является
матрица

Φ(x) = e

x∫
x

A(ζ)dζ

Р-12.25
Пусть квадратная порядка n и непрерывная на промежутке I матрица A(x) = HJ(x)H−1, где J(x)

- жорданова и непрерывна на I матрица, a H - числовая невырожденная порядка n матрица. Доказать,
что матрица A(x) перестановочна со своей первообразной на промежутке I и что на I фундаментальной
матрицей системы y′(x) = A(x)y(x) является матрица

Φ(x) = He

x∫
x0

J(ζ)dζ

H−1, x0 ∈ I.

Используя результат предыдущей задачи, в задачах (26-37) найти фундаментальные матрицы Φ(x)
линейных однородных систем.

Р-12.26{
y′1 = (2x− 1)y1 + y2,
y′2 = −y1 + (2x+ 1)y2.

Р-12.27{
y′1 = −(1 + 2x)y1 + y2,
y′2 = −y1 + (1− 2x)y2.

Р-12.28{
y′1 = (2x+ 1)y1 + y2,
y′2 = −y1 + (2x− 1)y2.
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4.3.7 Problems about linear systems of equations with variable coefficients

Р-12.29{
y′1 = (cosx− 2)y1 + 4y2
y′2 = (−3y1 + 5y2) cosx

Р-12.30{
y′1 = −(2 + sinx)y1 + 4y2
y′2 = −y1 − y2 sinx

Р-12.31{
y′1 = (2 + cosx)y1 + y2
y′2 = −y1 + (cosx− 1)y2.

Р-12.34{
y′1 = y1 cosx− y2 sinx,
y′2 = −y1 sinx+ y2 cosx.

Р-12.35{
y′1 = y1 sinx+ y2 cosx,
y′2 = y1 cosx+ y2 sinx.

Р-12.36{
y′1 = −2xy2,
y′2 = −2xy1.

Р-12.37{
y′1 = 3x2y2
y′2 = 3x2y1

Р-12.38
Может ли система y′1 = y1

1+x2 + (1 + x)3y2, y
′
2 = y1 ln |x| − 4y2 иметь два ограниченных на (−∞, 0)

линейно независимые решения?

Р-12.39
Может ли система y′1 = y1

1−x2 − xy2, y
′
2 = y1 tg x + 3y2 иметь два ограниченных на (−1, 1) линейно

независимые решения?

Р-12.40
Пусть Φ(x) - фундаментальная матрица линейной системы y′(x) = A(x)y(x), где A(x) - квадратная

порядка n матрица с непрерывными на (−∞,+∞) элементами aij(x), причем aij(x+ w) = aij(x),

w∫
0

aij(x)dx = αij , i, j = 1, n, w > 0. Доказать, что

limx→+∞
1
x ln |detΦ(x)| = 1

w

n∑
i=1

αii.
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Other types and tasks

5 Other types and tasks

5.1 Other challenges

5.1.1 Problems about Sturm’s theorem
(тут ничего сложного, но еще нужно собрать теорию)

Р-10.пр.1
Доказать, что любое нетривиальное решение уравнения y′′ + 2xy′ + 5y = 0 на интервале (−∞,+∞)

имеет не более 6 нулей.
Заменой y = e

−x2

2 · z заданное уравнение приводится к виду z′′ +
(
4− x2

)
z = 0. При |x| ⩾ 2 всякое

нетривиальное решение полученного уравнения имеет не более одного нуля. При |x| ⩽ 2 имеем 4−x2 ⩽ 4.
Поскольку любое нетривиальное решение уравнения z′′ + 4z = 0 на отрезке [−2, 2] имеет не более трех
нулей, то по теореме Штурма любое нетривиальное решение уравнения z′′+

(
4− x2

)
z = 0 имеет на [−2, 2]

тоже не более трех нулей. Так как число нулей любого нетривиального решения заданного уравнения в
силу замены совпадает с числом нулей нетривиальных решений уравнения z′′ +

(
4− x2

)
z = 0, то задача

решена. Решение граничной задачи, собственные значения и собственные функции граничной задачи
находятся подстановкой общего решения уравнения в заданные граничные условия.

Р-10.пр.2
Найти решение граничной задачи

y′′ + y = 3 cos 2x, y(0) = −1, y′(π) = 0.

Общим решением заданного уравнения является y = C1 cosx + C2 sinx - − cos 2x. Подставляя это
решение в граничные условия, получаем систему для нахождения постоянных C1 и C2:{

C1 − 1 = −1
−C2 = 0

Отсюда C1 = C2 = 0 и, значит, решением граничной задачи является y = − cos 2x.

Р-10.пр.3
Найти собственные значения и собственные функции граничной задачи y′′ = λy, x ∈ [0, 1], y(0) =

y(1) = 0.
Нетрудно видеть, что при λ ⩾ 0 граничная задача имеет лишь тривиальное решение, т. е. никакое

λ ⩾ 0 не может быть собственным значением граничной задачи. Пусть λ < 0. Тогда общим решением
уравнения является y = C1 cosx

√
−λ+C2 sinx

√
−λ и подстановка его в граничные условия дает уравнения

для нахождения постоянных C1 и C2:
C1 = C2 sin

√
−λ = 0.

Так как собственными функциями являются нетривиальные решения граничной задачи, то C2 ̸= 0.
Значит, sin

√
−λ = 0. Отсюда находим, что собственными значениями задачи являются числа λn = −n2π2,

а соответствующими им собственными функциями являются yn(x) = Cn sinnπx, где n = 1, 2, 3, ..., а Cn -
произвольная постоянная, отличная от нуля. Для нахождения функции Грина граничной задачи следует
воспользоваться ее определением.

Р-10.1

Доказать, что каждое нетривиальное решение уравнения y′′+ + 1
1+

√
x
y = 0 имеет на интервале (0,+∞)

бесконечное множество нулей.

Р-10.2

Доказать, что каждое нетривиальное решение уравнения y′′+ + 1
4(x2+1)y = 0 имеет на промежутке

[0,+∞) лишь конечное число нулей.
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5.1.2 Boundary value problems

Р-10.3

Доказать, что каждое нетривиальное решение уравнения y′′+ + 1
1+x2 y = 0 имеет на промежутке

[0,+∞) бесконечное число нулей.

Р-10.4
Доказать, что любое нетривиальное решение уравнения y′′−xy′+y = 0 на интервале (−∞,+∞) имеет

не более пяти нулей.

Р-10.5
Доказать, что любое нетривиальное решение уравнения y′′ − (x − 3)2y′+ +(x + 1)y = 0 на интервале

(−∞,+∞) имеет не более шести нулей.

Р-10.6
Доказать, что любое нетривиальное решение уравнения y′′ + x2y′+ +(x + 4)y = 0 на интервале

(−∞,+∞) имеет не более шести нулей.

Р-10.7
Доказать, что решение J0(x) уравнения Бесселя xy′′ + y′ + xy = 0 при 0.1 < x < 10 имеет не менее

трех нулей.

Р-10.8

Доказать, что нетривиальное решение yα(x) уравнения xy′′+ +
(
1
2 − x

)
y′−αy = 0 при любом значении

вещественного параметра α имеет на интервале (1,+∞) лишь конечное число нулей.

Р-10.9

Доказать, что решение J1(x) уравнения Бесселя x2y′′ + xy′ +
(
x2 − 1

)
y = 0 имеет один из нулей на

интервале (3, 7).

Р-10.10

Доказать, что каждое нетривиальное решение уравнения y′′ + 2
xy

′+ +exy = 0 на промежутке [1,+∞)
имеет бесконечно много нулей x1 < < x2 < ... < xn < ... и при этом limn→+∞ |xn − xn−1| = 0.

Р-10.11

Доказать, что каждое нетривиальное решение уравнения x2y′′+ +2x2y′+
(
1
2x

2 − 2
)
y = 0 на интервале

(0,+∞) имеет не более одного нуля.

5.1.2 Boundary value problems
Найти решение граничной задачи (12-24):

Р-10.12
y′′ − y′ = 2e2x, y′(0) = 2, y(1) = e2.

Р-10.13

y′′ − y = 2 sinx, y(0) = y
(
π
2

)
= 0.

Р-10.14
y′′ + y′ = 2, y(0) = 0, y(1) = 2.
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5.1.2 Boundary value problems

Р-10.15

x2y′′ + 2xy′ − 12y = 0, y(1) = 1, y(x) = O
(

1
x4

)
при x→ +∞.

Р-10.16

y′′ − y = e2x, y(0) = 1
3 , y(1) = 1

3e
2.

Р-10.17
y′′ − 4y = 4, y(0) = −1, y(1) = 0.

Р-10.18

y′′ + y = 0, y(0) = y′(0), y
(
π
2

)
+ y′

(
π
2

)
= 0.

Р-10.19

y′′ + y = 0, y(0) = y′(0), y
(
π
2

)
= y′

(
π
2

)
+ 2.

Р-10.20

x2y′′ + 2xy′ = 1
x , y(1) = 1, y(e) = 0.

Р-10.21

x2y′′ + 2xy′ − 6y = x3, y(x) = O
(
x2
)

при x→ 0, y(1) = 1.

Р-10.22
x2y′′ + xy′ − y = 2x, y(1) = 0, y(2) = 2 ln 2.

Р-10.23
y′′ + π2y = 1, y(0) = y(1) = 0.

Р-10.24
y′′ + π2y = 3π2 sin 2πx, y(0) = y(1) = 0. Найти собственные значения и собственные функции

граничной задачи (25− 34):

Р-10.25
y′′ = λy, y(0) = y′(1) = 0.

Р-10.26
y′′ = λy, y′(0) = y(1) = 0.

Р-10.27
y′′ = λy, y′(0) = y′(1) = 0.

Р-10.28
y′′ = λy, y(0) = y(1), y′(0) = y′(1).

Р-10.29
y′′ = λy, y(0) = 0, y(x) = O(1) при x→ +∞.
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5.1.2 Boundary value problems

Р-10.30
y′′ = λy, y(x) = O(1) при x→ −∞ и при x→ +∞.

Р-10.31
x2y′′ − xy′ + y = λy, y(1) = y(2) = 0.

Р-10.32
x2y′′ − xy′ + y = λy, y(x) → 0 при x→ 0, y(1) = 0.

Р-10.33
x2y′′ − xy′ + y = λy, y(1) = 0, y(x) = O(1) при x→ +∞.

Р-10.34
x2y′′ + 3xy′ + y = λy, y(1) = 0, y(x) → 0 при x→ +∞.

Р-10.35
Доказать, что всякое вещественное число λ является собственным значением граничной задачи y′′ =

λy, y(0) = y(1), y′(0) = −y′(1).

Р-10.36
При каких значениях вещественного параметра λ граничная задача y′′ + λ2y = 0, y(0) = 0, y′(1) =

λy(1) имеет нетривиальные решения? Найти эти решения.

Р-10.37
Рассматривается граничная задача на собственные значения

−y′′ + q(x)y = λy, y(x)�≡0,

y(0) cosα+ y′(0) sinα = y(1) cosβ + y′(1) sinβ = 0,

где q(x) - заданная непрерывная функция на [0, 1], α и β - заданные числа. Доказать, что: а) собственные
значения граничной задачи вещественны,

б)собственные функции y (x, λ1) и y (x, λ2) соответствующие различным собственным значениям λ1 и

λ2 ортогональны, т. е.
1∫
0

y (x, λ1) · y (x, λ2) dx = 0, λ1 ̸= λ2.

Р-10.38
Рассматривается граничная задача вида

−y′′ + q(x)y = λy + f(x),

y(0) cosα + y′(0) sinα = y(1) cosβ + y′(1) sinβ = 0, где q(x), f(x) - заданные непрерывные функции на
[0, 1], α и β - заданные числа. Доказать, что а) если параметр λ не совпадает ни с одним собственным
значением граничной задачи, то граничная задача имеет единственное решение,

б)если же λ - некоторое собственное
значение граничной задачи и ему соответствует собственная функция y(x, λ), то граничная задача

разрешима только в том случае, когда
1∫
0

f(x)y(x, λ)dx = 0.

Р-10.39
Показать, что все собственные функции граничной задачи −y′′ = λy, y′(0) = y′(π) = 0 обладают

следующими свойствами:
а) n-я собственная функция на [0, π] имеет ровно n нулей,
б)нули n-й и (n+ 1)-й собственных функций перемежаются.
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5.1.3 Problems about Green’s function G(x, ζ) of the boundary value problem (!!!!!)

5.1.3 Problems about Green’s function G(x, ζ) of the boundary value
problem (!!!!!)

(???? почему она в разделе про Штурма находится??? они же никак не связаны?)

Р-10.40
y′′ + y = f(x), y(0) = y′(1) = 0.

Р-10.41
y′′ + 4y = f(x), y′(0) = y(1) = 0.

Р-10.42
y′′ − 4y = f(x), y′(0) = 0, 2y(1) = y′(1).

Р-10.43
y′′ − y′ = f(x), y(0) = 0, y(1) = y′(1).

Р-10.44
y′′ − y = f(x), y(0) = y(1) = 0.

G(x, ζ) = − 1
sh 1

{
shx sh(1− ζ), 0 ⩽ x ⩽ ζ
sh ζ sh(1− x), ζ ⩽ x ⩽ 1

Р-10.45
x2y′′ + 3xy′ − 3y = f(x), y(1) = 0, y(2) = 2y′(2).

G(x, ζ) =

{
1
4ζ

2
(

1
x3 − x

)
, 1 ⩽ x ⩽ ζ

1
4x
(

1
ζ2 − ζ2

)
, ζ ⩽ x ⩽ 2

Р-10.46(
x2 + 1

)
y′′ + 2xy′ = f(x), y(0) = y′(1) = 0.

G(x, ζ) =

{
− arctg x, 0 ⩽ x ⩽ ζ
− arctg ζ, ζ ⩽ x ⩽ 1

Р-10.47
xy′′ + y′ = f(x), y(1) = y(2) = 0.

G(x, ζ) = 1
ln 2

{
lnx ln ζ

2 , 1 ⩽ x ⩽ ζ
ln ζ ln x

2 , ζ ⩽ x ⩽ 2

Р-10.48
x2y′′ + xy′ − y = f(x), y(1) = y′(2) = 0.

G(x, ζ) = − 1
10ζ2

{ (
x− 1

x

) (
ζ2 + 4

)
, 1 ⩽ x ⩽ ζ,(

ζ2 + 1
) (
x+ 4

x

)
, ζ ⩽ x ⩽ 2.

Р-10.49

x2y′′ − xy′ − 3y = f(x), y(0) = 0, y(x) = O
(
1
x

)
при x→ +∞.

G(x, ζ) = − 1
4

{
x3

ζ4 , 0 ⩽ x ⩽ ζ
1
x , ζ ⩽ x < +∞.
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5.2 Tasks for special methods (!?!?)

Р-10.50

x2y′′ + 2xy′ − 12y = f(x), y(0) = 0, y(x) = O(1) при x→ +∞. G(x, ζ) = − 1
7

{
x3

ζ4 , 0 ⩽ x ⩽ ζ
ζ3

x4 , ζ ⩽ x < +∞

Р-10.51
Пусть p(x) - непрерывная функция на [a, b] и p∗ = max p(x) > 0 при x ∈ [a, b]. Доказать, что граничная

задача y′′ + p(x)y = f(x), y(a) = A, y(b) = B имеет единственное решение при всех A и B и для любой
непрерывной f(x) на [a, b], если выполнено условие (b− a) < π√

p∗ .

Р-10.52
Пусть a(x) - непрерывно дифференцируемая положительная функция на всей оси и пусть y1(x), y2(x) -

линейно независимые решения уравнения y′′+a(x)y = 0. Доказать, что нули y′1(x) и y′2(x) перемежаются.
Указание. Показать, что y1 и y2 удовлетворяют соотношению y2y

′′
1 − y1y

′′
2 = 0.

Р-10.53

Пусть на множествеD = {0 ⩽ x ⩽ 1,−∞ < y < +∞} функции f(x, y), ∂f(x,y)∂y непрерывны и ∂f(x,y)
∂y ⩾ 0.

Доказать, что граничная задача y′′ = f(x, y), y(0) = y(1) = 0 может иметь только одно решение.
Указание. Рассмотреть какому уравнению удовлетворяет разность двух решений.

5.2 Tasks for special methods (!?!?)
(если стану умным, то тут много буду тренироваться!)

5.2.1 Problems about the iteration method
(уже решал, из механики соберу)
(????? откуда это, даже не помню???)

Мэтьюз-Уолкер-?

dy/dx = exp(−2xy).

Посмотрим на решение вблизи x → ∞. Предположим, что y > 0. Следовательно, dy/dx ≈ 0 и y ≈ a = =
const. Теперь подставим это предположительное решение снова в (1.77): dy/dx ≈ exp(−2ax). Тогда y ≈
≈ a− exp(−2ax)/2a. Выполним еще одну итерацию

dy

dx
≈ exp

[
−2x

(
a− exp(−2ax)

2a

)]
≈

≈ exp(−2ax)
(
1− x

a
exp(−2ax) + ...

)
;

y ≈ a− exp(−2ax)

2a
− 1

4a2

(
x+

1

4a

)
exp(−4ax) + ...

Если ряд (1.78) сходится, то, вероятно, он представляет собой решение. Вообще говоря, ряд расходится.

Мэтьюз-Уолкер-?

d2y/dx2 = x− y2

(см. графическое рассмотрение, рис. 1.3).. Попробуем подставить y ≈
√
x. Тогда y′′ ≈ 0, так что

y = ax+ b: Это не похоже на первую попытку, так как мы не очень искусно работали с «малым» членом
y′′. Выберем другой путь:

y2 = x− y′′ ≈ x− (
√
x)′′ = x

(
1 +

1

4
x−5/2

)
y ≈

√
x+

1−

8
x−2
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5.2.2 Problems about the averaging method

Следующая итерация дает

y =
√
x̄+

1

8
x−2 − 49

128
x−9/2 + ...

По указанной выше классификации әто решение типа 2. Можно искать решение другим методом.
Напишем

y =
√
x+ η(x), |η| ≪ |

√
x|

29

5.2.2 Problems about the averaging method
(уже решал, из механики соберу)

5.2.3 Problems about geometric methods (???)
(мб Арнольда почитаю, порешаю, пока хз, не буду этим заниматься.)

5.3 Tasks for autonomous systems of differential equations

5.3.1 Problems about the behavior of phase trajectories near gross
equilibrium positions

Р-пр.1
Найти положения равновесия, определить их характер и нарисовать фазовые траектории

линеаризованных систем в окрестности положений равновесия для автономной системы{
ẋ = x− y2

ẏ = x2 + y2 − 2

Приравнивая правые части системы нулю, находим положения равновесия (1, 1) и (1,−1).
Рассмотрим сначала точку (1, 1). Для дальнейшего удобно ее преобразовать в начало координат. С

этой целью сделаем замену переменных
x− 1 = u, y − 1 = v в заданной системе. Система примет вид{

u̇ = u− 2v − v2,
v̇ = 2u+ 2v + u2 + v2

для которой точка (0, 0) - положение равновесия. Линеаризованная в точке (0, 0) система имеет вид{
u̇ = u− 2v
v̇ = 2u+ 2v

Находим собственные значения матрицы этой системы(
1 −2
2 2

)
из уравнения ∣∣∣∣ 1− λ −2

2 2− λ

∣∣∣∣ = λ2 − 3λ+ 6 = 0.

Так как собственнье значения λ1,2 = 1
2 (3 ± i

√
15), то положение равновесия является неустойчивым

фокусом. Следовательно, кроме положения равновесия (0, 0), остальными траекториями являются
спирали. Для определения направления движения по спиралям при t → +∞ достаточно найти вектор
фазовой скорости a линеаризованной системы в какой-нибудь точке. Например, в точке (1, 0) вектор
скорости a имеет координаты (1, 2), Следовательно, при t → +∞ движение по спиралям направлено
против часовой стрелки. Поведение фазовых траекторий в этом случае схематически показано на
следующем рисунке.

(спираль вокруг нуля против часовой стрелки)
Для другого положения равновесия (1,−1) замена переменных x− 1 = u, y+ 1 = v дает систему вида{

u̇ = u+ 2v − v2,
v̇ = 2u− 2v + u2 + v2.
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Линеаризация этой системы в точке (0, 0) имеет вид{
u̇ = u+ 2v,
v̇ = 2u− 2v.

Собственные значения матрицы этой системы (
1 2
2 −2

)
находим из уравнения ∣∣∣∣ 1− λ 2

2 −2− λ

∣∣∣∣ = λ2 + λ− 6 = 0.

Получаем λ1 = −3, λ2 = 2. Так как λ1 и λ2 разных знаков, то положение равновесия (0, 0) является
седлом. Для того, чтобы нарисовать картину поведения фазовых траекторий, осталось найти линейно
независимые собственные векторы h1 и h2 для λ1 и λ2. Для λ1 = −3 собственный вектор

h1 =

(
1
−2

)
, а для λ2 = 2 собственный вектор h2 =

(
2
1

)
. Известно, что в случае седла

траекториями являются гиперболы, для которых прямые, определяемые векторами h1 и h2, служат
асимптотами. Лучи этих прямых тоже траектории.

Поведение фазовых траекторий в этом случае схематически показано на следующем рисунке, где
стрелки указывают направление движения по траекториям при t→ +∞.

Р-пр.2

Для уравнения ẍ+ x3 − e−
4ẋ
x = 0 найти положения равновесия, определить их характер и нарисовать

фазовые траектории линеаризованного уравнения в окрестности положений равновесия.
Введя обозначение ẋ = y, преобразуем уравнение к системе{

ẋ = y,

ẏ = −x3 + e−
4y
x .

По определению положениями равновесия и фазовыми траекториями заданного уравнения являются
соответственно положения равновесия и фазовые траектории этой системы. Приравнивая нулю правые
части системы, находим положение равновесия (1, 0). Перенося начало координат в положение равновесия
(1, 0) с помощью замены x = u+ 1, y = v, получаем автономную систему{

u̇ = v

v̇ = −(u+ 1)3 + e−
4v

v+1

Разлагая правую часть системы по формуле Тейлора в окрестности (0, 0) и ограничиваясь лишь
линейными членами разложения, получаем линеаризованную систему вида{

u̇ = v
v̇ = −3u− 4v

Матрица этой системы
(

0 1
−3 −4

)
имеет собственные значения λ1 = −1, λ2 = −3. Соответствующие

им линейно независимыми собственными векторами являются

h1 =

(
1
−1

)
, h2 =

(
1
−3

)
.

Положение равновесия (0, 0) линеаризованной системы - устойчивый узел. Поведение фазовых
траекторий схематически показано на следующем рисунке, где стрелки указывают направление
движения по траекториям при t→ +∞.

Найти положения равновесия, определить их характер и нарисовать фазовые траектории
линеаризованных систем в окрестности положений равновесия для автономных систем (1− 52):

Р-1{
ẋ = e2x+2y + x
ẏ = arccos

(
x− x3

)
− π

2
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Р-2{
ẋ = ln(1− y)
ẏ = 3

√
x− 4y + x− 2.

Р-3{
ẋ = ln

(
1 +

√
1 + 4y − y3

)
− ln 2,

ẏ = 2
π arctg(x+ 3y)π + 2− y.

Р-4{
ẋ = ln(5− 2x− 2y)
ẏ = exy − 1

Р-5{
ẋ = sh

(
y − x2 − x

)
ẏ = 3x− x2 − y

Р-6{
ẋ = 2x+ y2 − 1
ẏ = sinx− y2 + 1

Р-7{
ẋ = ln(x+ y)
ẏ = x3 + y3 − 1

Р-8{
ẋ = 3x2 − xy + 2
ẏ = x2 − x− 2

Р-9{
ẋ = x2 + x+ 2y2 − 2
ẏ = x+ y2

Р-11{
ẋ = ex

2−y − e2x

ẏ = −x− 2y − y2

Р-10{
ẋ = y2 − y − 2
ẏ = −xy − 3y2 − 2

Р-13{
ẋ = 1− 2x− y2

ẏ = e−4x − 1

Р-12{
ẋ = 2x− y − x2

ẏ =
√
1 + 4y −

√
1 + 2x+ 2y2
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Р-14{
ẋ = −3 + 2x+ y
ẏ = arctg(xy)

Р-23{
ẋ = arctg

(
x2 − x+ y

)
ẏ = ln

(
1 + x2 + 3x− y

)
Р-24{

ẋ = ex − y − 1
ẏ = x+ ln(1 + y)

Р-25{
ẋ = sh y
ẏ = ex − 1

Р-26{
ẋ = ln(1 + x+ 4y)

ẏ = arcsin
(
x+ y − x2

4

)
Р-27{

ẋ = sh(x− y)
ẏ = e(x+y+2xy) − 1

Р-28{
ẋ = e−x+4y

ẏ = arctg
(
4x− y − 5x2

4

)
.

Р-31{
ẋ = π + arctg

(
x3 − 8− tg y

)
− y,

ẏ = 2x+ 12 tg y − 4.

Р-32{
ẋ =

√
y3 − 1− 6x2 − x,

ẏ =
√
2y − 3−

√
2x2 − 1

Р-33{
ẋ = sh

(
2x+ y − x2

)
,

ẏ = ln
(
1 + 3x− x2

)
.

Р-34{
ẋ = arctg(x− y − 4),
ẏ = 2x− 2y − 4 3

√
x2 − 1.

Р-35{
ẋ = ln(2− x+ y),

ẏ = x− y − e4(x
2−1)
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Р-36{
ẋ = 1− 2x− y2

ẏ = −1− 6x+ y2
.

Р-37{
ẋ = 4x+ 2y − 4,
ẏ = −2x− xy.

Р-38{
ẋ = x2 − 4y2,
ẏ = 2− 2y.

Р-39{
ẋ = 8 + 4y − 2xy
ẏ = x2 − 4y2

Р-40{
ẋ = 3

√
7x+ y + y − 2,

ẏ = − ln(1 + x)

Р-41{
ẋ = e1−2x−3y + x
ẏ = arctg

(
x2 − 1

)
Р-42{

ẋ = 1
2

√
4− 6y − 4y3 − 1,

ẏ = ln
(
x3 − 7y

)
+ 2y.

Р-43{
ẋ = e−

y
x−1 − x

ẏ = arctg
(
x3 − x

)
Р-44{

ẋ = 1− ex
2−y

ẏ = th
(
2 + x− x2

)
.

Р-45{
ẋ =

√
1 + 2x− 5y − 1,

ẏ = arctg
(
x
2 + 3

5x
2 − 2y

)
.

Р-46{
ẋ = arctg(x− y − 1)

ẏ = 3
√
3x2 + 3y − 2− 1.

Найти положения равновесия, определить их характер и нарисовать фазовые траектории
линеаризованного уравнения в окрестности положений равновесия для уравнений (53-82):

Р-53

ẍ+ ẋ = ln
(
1− 3x+ x2 − ẋ

)
.
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Р-54

ẍ+ ẋ+ 1 = 3
√
1 + x+ x2 − ẋ.

Р-55

ẍ+ x3 = e−
4ẋ
x .

Р-56

ẍ+ 3ẋ = ln
(
ẋ+ x3

)
.

Р-57
ẍ+ 2ẋ+ x− 2x2 + 1 = 0.

Р-58
ẍ− 4ẋ+ 2x2 − x− 3 = 0.

Р-60

ẍ− e2ẋ − x3 = 0.

Р-59
ẍ− (1 + ẋ)2 + x5 = 0.

Р-61

2ẍ+ 5 sin ẋ+
√
1 + 4x− 1 = 0.

Р-62
ẍ− arcsin(x− 2ẋ) + 7 ln(1− x) = 0.

Р-63

ẍ cos ẋ− 4 tg ẋ
√
1− sinx+ 3x = 0.

Р-64

ẍ− e3x−4ẋ + 2 ln(1− x) + 1 = 0.

Р-65
ẍ+ tg(2x+ 6ẋ)− 3 ln(1− x) = 0.

Р-66
ẍ+ x5[1 + ln(1 + 2ẋ)] = (1 + 2ẋ)2.

Р-67

ẍ+ 2eẋ − x3 cos ẋ = 3.

Р-68
ẍ+ (2 + ẋ)2 arctg ẋ+ x3 = 1.
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Р-69

ẍ = 5arctg(x− 1) + 4eẋ sin ẋ.

Р-70

ẍ = (3ẋ− 2x)eẋ
2

.

Р-71

ẍ+ (4ẋ+ 3x)ex
2

= 0.

Р-72
ẍ− (ẋ+ 4x)3 + 2ẋ+ 1 = 0.

5.3.2 Problems about the behavior of phase trajectories near non-
coarse equilibrium positions and on the entire phase plane

Р-14.пр.1
Исследовать при всех значениях вещественного параметра a поведение фазовых траекторий в

окрестности положения равновесия (0, 0) для системы{
ẋ = −y + ax

(
x2 + y2

)
,

ẏ = x+ ay
(
x2 + y2

)
Точка (0, 0) является центром для линеаризованной системы в точке (0, 0) при a = 0{

ẋ = −y,
ẏ = x,

поскольку матрица линеаризации имеет собственные значения λ = ±i. Чтобы исследовать поведение
фазовых траекторий заданной системы при a ̸= 0, перейдем к полярным координатам
x(t) = r(t) cosφ(t), y(t) = = r(t) sinφ(t). Получаем систему вида{

ṙ cosφ− rφ̇ sinφ = −r sinφ+ ar3 cosφ,
ṙ sinφ+ rφ̇ cosφ = r cosφ+ ar3 sinφ,

откуда находим {
ṙ = ar3,
rφ̇ = r.

При r = 0 имеем положение равновесия. При r > 0φ = t+C и φ→ +∞ при t→ +∞, а ṙ < 0 при a < 0 и
ṙ > 0 при a > 0.

Отсюда следует, что при r > 0 траекториями системы служат спирали, движение по которым идет
против часовой стрелки, причем при a < 0 спирали закручииваются вокруг (0, 0) при t → +∞, а при
a > 0 спирали раскручиваются вокруг (0, 0) при t→ +∞.

При исследовании поведения фазовых траекторий на всей фазовой плоскости необходимо находить
не только положения равновесия системы, но и предельные циклы.

Р-14.пр.2
Исследовать при всех значениях вещественного параметра a поведение фазовых траекторий на всей

фазовой плоскости для системы {
ẋ = −y + ax

(
x2 + y2 − 1

)
ẏ = x+ ay

(
x2 + y2 − 1

)
При a = 0 имеем линейную систему, для которой начало координат является центром. Пусть a ̸=

0. После перехода к полярным координатам x(t) = r(t) cosφ(t), y(t) = r(t) sinφ(t) получаем систему
уравнений {

ṙ = ar
(
r2 − 1

)
,

rφ̇ = r
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r = 0 дает положение равновесия (0, 0), а r = 1 является решением. При r > 0, r ̸= 1, траекториями
являются спирали. Если a < 0, то ṙ > 0 при 0 < r < 1 и, значит спирали раскручиваются вокруг r = 0
против часовой стрелки при t→ +∞ и стремятся изнутри к окружности r = 1. При a < 0 и r > 1 имеем
ṙ < 0. Спирали против часовой стрелки извне накручиваются на окружность r = 1 при t → +∞. Таким
образом, при a < 0 окружность r = 1 является устойчивым предельным циклом.

Если a > 0, то при 0 < r < 1 спирали закручиваются вокруг r = 0 при t → +∞, а при r > 1 спирали
раскручиваются вокруг окружности при t→ +∞ против часовой стрелки, так как φ→ +∞ при t→ +∞.
В этом случае окружность r = 1 является неустойчивым предельным циклом системы.

Исследовать при всех значениях вещественного параметра поведение фазовых траекторий в
окрестности положения равновесия (0, 0) для систем (1-11):

Р-14.1{
ẋ = −2y + ax

√
x2 + y2

ẏ = 2x+ ay
√
x2 + y2

Р-14.2{
ẋ = y + ax

(
x2 + y2

)
ẏ = −x+ ay

(
x2 + y2

)
Р-14.3{

ẋ = 4y + ax
√
x2 + y2

ẏ = −4x+ ay
√
x2 + y2

Р-14.4{
ẋ = −3y + ax

(
x2 + y2

)2
ẏ = 3x+ ay

(
x2 + y2

)2
Р-14.5{

ẋ = 2y + ax
(
x2 + y2

)2
ẏ = −2x+ ay

(
x2 + y2

)2
Р-14.6{

ẋ = −ay + x
(
x2 + y2

)
ẏ = ax+ y

(
x2 + y2

)
Р-14.7{

ẋ = −y − axy2

ẏ = x+ ax2y

Р-14.8{
ẋ = y − axy2

ẏ = −x+ ax2y

Р-14.9{
ẋ = −y

(
x2 + y2 − a

)
ẏ = x

(
x2 + y2 − a

)
Р-14.10{

ẋ = y
(
−a+ x2 + y2

)
ẏ = −x

(
−a+ x2 + y2

)
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Р-14.11{
ẋ = −y

(
x2 + y2 + a2

)
ẏ = x

(
x2 + y2 + a2

) Исследовать при всех значениях вещественного параметра a поведение

фазовых траекторий на всей фазовой плоскости для систем (12− 21):

Р-14.12{
ẋ = y + ax

(
x2 + y2 − 2

)
,

ẏ = −x+ ay
(
x2 + y2 − 2

)
Р-14.13 ẋ = −2y + ax

(√
x2 + y2 − 1

)(
2−

√
x2 + y2

)
ẏ = 2x+ ay

(√
x2 + y2 − 1

)(
2−

√
x2 + y2

)
Р-14.15 ẋ = −ay + x

√
x2 + y2 · sin π√

x2+y2

ẏ = ax+ y
√
x2 + y2 · sin π√

x2+y2

Р-14.16{
ẋ =

[
−y + ax

(
x2 + y2 − 1

)] (
x2 + y2 − 1

)
ẏ =

[
x+ ay

(
x2 + y2 − 1

)] (
x2 + y2 − 1

)
Р-14.17 ẋ = 2y + ax

√
x2 + y2 · sin2 π√

x2+y2

ẏ = −2x+ ay
√
x2 + y2 · sin2 π√

x2+y2
.

Р-14.18{
ẋ =

[
y + ax

(
x2 + y2 − 2

)] (
x2 + y2 − 2

)
ẏ =

[
−x+ ay

(
x2 + y2 − 2

)] (
x2 + y2 − 2

)
Р-14.19{

ẋ = −ay + x
(
x2 + y2 − 2

)
ẏ = ax+ y

(
x2 + y2 − 2

)
Р-14.20 ẋ = −ay + x

(√
x2 + y2 − 1

)
ẏ = ax+ y

(√
x2 + y2 − 1

)
Р-14.21 ẋ = −y + ax

(√
x2 + y2 − 1

)2
,

ẏ = x+ ay
(√

x2 + y2 − 1
)2
.

На всей фазовой плоскости нарисовать схематически фазовые

траектории систем (22-45):

Р-14.22{
ẋ = x3

ẏ = y
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Р-14.23{
ẋ = x3

ẏ = −y

Р-14.32{
ẋ = y2,
ẏ = −xy.

Р-14.33{
ẋ = x+ 1,
ẏ = −xy.

Р-14.34{
ẋ = sinx,
ẏ = y cosx.

Р-14.35{
ẋ = x,
ẏ = y − y2.

Р-14.36{
ẋ = x2

ẏ = y2 − 2xy.

Р-14.37{
ẋ = xy2,
ẏ = x2 + y3.

Р-14.38{
ẋ = xy
ẏ = x+ y2.

Р-14.39{
ẋ = 2y,
ẏ = 3x2.

Р-14.40{
ẋ =

√
x

ẏ =
√
y

Р-14.41{
ẋ = y2 + 2xy − x2,
ẏ = x2 + 2xy − y2

Р-14.42{
ẋ = 3x2 − y4,
ẏ = xy.
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Р-14.43{
ẋ = 2xy,
ẏ = x+ 2y2.

Р-14.44{
ẋ = xey

ẏ = yey

Р-14.45{
ẋ = x

(
y − x2

)
,

ẏ = y
(
y − x2

)
.

5.3.3 Problems about the stability of equilibrium positions

Р-15.пр.1
Исследовать устойчивость положений равновесия с помощью системы первого приближения

автономной системы {
ẋ = 1− 2x− y2

ẏ = e−4x − 1

Найдем сначала положения равновесия системы. Для этого необходимо решить систему уравнений{
1− 2x− y2 = 0,
e−4x − 1 = 0.

Получаем два положения равновесия: (0, 1) и (0,−1). Исследуем устойчивость положения равновесия
(0, 1). С этой целью в автономной системе сделаем замену y− 1 = y1 и правые части полученной системы
разложим по формуле Тейлора в окрестности точки (0, 0), являющейся положением равновесия новой
системы. Имеем {

ẋ = 1− 2x− (1 + y1)
2
= −2x− 2y1 − y21 ,

ẏ1 = −4x+ o(x).

Матрица (
−2 −2
−4 0

)
имеет собственные значения λ1 = 2, λ2 = −4. Следовательно, положение равновесия (0, 1) является
неустойчивым.

Для исследования устойчивости второго положения равновесия (0,−1) в заданной системе сделаем
замену y + 1 = y1. Тогда точка (0,−1) перейдет в точку (0, 0) и можно в окрестности (0, 0) разложить по
формуле Тейлора правые части новой системы. Получаем{

ẋ = 1− 2x− (y1 − 1)
2
= −2x+ 2y1 − y21 ,

ẏ1 = −4x+ o(x)

Матрица (
−2 2
−4 0

)
имеет собственные значения λ1 = −1 + i

√
7, λ2 = −1 − i

√
7. Следовательно, положение равновесия

(0,−1) является асимптотически устойчивым. В тех случаях, когда вещественные части всех собственных
значений матрицы A неположительны, причем хотя бы одно собственное значение A имеет вещественную
часть равную нулю, исследование устойчивости положений равновесия нелинейной автономной системы с
помощью системы первого приближения, как правило невозможно, так как начинают влиять нелинейные
члены. В таких случаях используют метод функций Ляпунова (второй метод Ляпунова).
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Р-15.пр.2
Исследовать устойчивость положений равновесия автономной системы{

ẋ = −x+ y2

ẏ = −xy − y3

Единственным положением равновесия является точка (0, 0). В этом случае матрица(
−1 0
0 0

)
не позволяет воспользоваться теоремой Ляпунова об устойчивости по первому приближению. Применим
второй метод Ляпунова. Если взять в качестве функции Ляпунова функцию V (x, y) = x2 + y2, то ее
производная в силу автономной системы

V̇ (x, y) =
∂V

∂x

(
−x+ y2

)
+
∂V

∂y

(
−xy − y3

)
= 2x

(
−x+ y2

)
+ 2y

(
−xy − y3

)
=

= −2
(
x2 + y4

)
⩽ 0,

причем V̇ (x, y) = 0 лишь при x = y = 0. По теореме Ляпунова отсюда следует, что точка (0, 0) является
асимптотически устойчивым положением равновесия системы.

Исследовать устойчивость положений равновесия с помощью системы первого приближения (1-15):

Р-15.1{
ẋ = −3 + 2x+ y
ẏ = arctg(xy)

Р-15.2{
ẋ = x2 − y
ẏ = ln

(
3x2 − 1

)
− ln 2.

Р-15.3{
ẋ = 4− x(3y + 2)− 9y2

ẏ = ln 1+x
1−2x

Р-15.4{
ẋ = x3y + y2

ẏ = ln
(
x3 + y

)
− 3y

{
ẋ = sh(x− y)
ẏ = e2xy+x+y − 1

Р-15.6

ẍ+ ẋ = ln
(
1− 3x+ x2 − ẋ

)
.

Р-15.7{
ẋ = x− y2

ẏ = x2 + y2 − 2

Р-15.8{
ẋ = 5x− 8y + 3
ẏ = ln x

y

Р-15.9{
ẋ = e2x+2y + x,
ẏ = arccos

(
x− x3

)
− π

2 .
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5.3.3 Problems about the stability of equilibrium positions

Р-15.10{
ẋ = exy + y2 − 3,
ẏ = arctg x

y

Р-15.11{
ẋ = ln(x+ y)
ẏ = x3 + y3 − 1

Р-15.12{
ẋ = e

xy3

2 + y2 − 3
ẏ = 4arctg x

y5

Р-15.13{
ẋ = ex

2−2y − e2x

ẏ = −x− 2y − y2

Р-15.14

ẍ+ ẋ+ 1 = 3
√
1 + x+ x2 − ẋ.

Р-15.15{
ẋ = 2x− y − x2

ẏ =
√
1 + 4y −

√
1 + 2x+ 2y2.

Р-15.16
При каких значениях вещественного параметра a система{

ẋ = −x+ ay,
ẏ = x− y

Исследовать устойчивость положения равновесия (0, 0, 0) для линейных систем (18-27):

Р-15.18{
ẋ = 2x− 3y,
ẏ = x− 2z
ż = −y + 2z

Р-15.19{
ẋ = −2x+ y,
ẏ = 3x− z,
ż = 4y − 2z.

Р-15.20{
ẋ = 3x+ 2z,
ẏ = x+ 2y + z,
ż = −x− y

Р-15.21{
ẋ = −x− 4y,
ẏ = x− y + z,
ż = 3y − z.
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5.3.3 Problems about the stability of equilibrium positions

Р-15.22{
ẋ = y − z,
ẏ = −y + z,
ż = x− z.

Р-15.23{
ẋ = 3x− 8y + z,
ẏ = x− 2y + z
ż = 3x− 12y − 5z.

Р-15.24{
ẋ = 7x− 10y − 4z,
ẏ = 4x− 7y − 4z,
ż = −6x+ 7y + z.

Р-15.25{
ẋ = 7x− 4y + z
ẏ = 7x− 3y + z
ż = 4x− 2y + 2z

Р-15.26{
ẋ = −3x+ 2y + 2z
ẏ = −3x− y + z
ż = −x+ 2y

Р-15.27{
ẋ = −x+ z
ẏ = −y − z
ż = y − z

c помощью функции Ляпунова вида V (x, y) = ax2 + by2 исследовать устойчивость точки (0, 0) для
автономных систем (28− 36):

Р-15.28{
ẋ = −2y − x3,
ẏ = x− y3

Р-15.29{
ẋ = y − 2x3

ẏ = −2x− y3

Р-15.30{
ẋ = −x− y2

ẏ = xy − x2y

Р-15.31{
ẋ = −xy2,
ẏ = −y − 2x2y.

Р-15.32{
ẋ = −xy2
ẏ = −4xy2 − 2y3
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5.3.4 Problems about the first integrals

Р-15.33{
ẋ = x− y2,
ẏ = xy + y3

Р-15.34{
ẋ = 2y + x3

ẏ = −x+ y3

Р-15.35{
ẋ = −y + 2x3

ẏ = 2x+ y3

Р-15.36{
ẋ = −4x2y − 2x3,
ẏ = −x2y

Р-15.37
Рассмотрим уравнения ẋ = − gradV (x), описывающие движение некоторых механических систем.

Здесь x = (x1, ..., xn) и V (x) - потенциальная энергия механической системы, имеющая минимум при
x = 0. Взяв V (x) в качестве функции Ляпунова, показать, что x = 0 является устойчивым положением
равновесия системы.

Р-15.38
Показать, что если функция Ляпунова V (x), x = (x1, ..., xn) для автономной системы ẋ = f(x)

определяет асимптотически устойчивое положение равновесия x = 0, то V (x) для системы ẋ = −f(x)
определяет неустойчивое положение равновесия x = 0.

Р-15.39
Пусть A - матрица квадратичной формы в n-мерном вещественном евклидовом пространстве. С

помощью функции Ляпунова V (x) =
n∑

i=1

x2i показать, что x = 0 для системы ẋ = Ax является

асимптотически устойчивым положением равновесия, если квадратичная форма отрицательно
определенная, и x = 0 является неустойчивым положением равновесия, если квадратичная форма
положительно определенная.

5.3.4 Problems about the first integrals

ПРимеР 1. Проверить, что функция u(x, y, z) = 1
x

(
x2 + y2 + z2

)
при x ̸= 0 является первым

интегралом системы {
ẋ = 2xz
ẏ = 2yz
ż = z2 − x2 − y2

Достаточно установить, что u̇(x, y, z) = 0 при x ̸= 0. Имеем

u̇ = 2xz · x
2 − y2 − z2

x2
+ 2yz · 2y

x
+
(
z2 − x2 − y2

)
· 2z
x

=

=
2

x

[
z
(
x2 − y2 − z2

)
+ 2y2z + z

(
z2 − x2 − y2

)]
= 0

Р-16.пр.2

Показать что функции u1(x, y, z) = 1
x

(
x2 + y2 + z2

)
,

u2(x, y, z) = y
x являются независимыми первыми интегралами при x > 0, z > 0 для автономной

системы примера 1.
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5.3.4 Problems about the first integrals

Сначала проверим, что u2 - первый интеграл системы примера 1. ИмеeM

u̇2 = 2xz ·
(
− y

x2

)
+ 2yz

1

x
= 0.

Итак, u1, u2 - первые интегралы системы примера 1. Они являются независимыми при x > 0, z > 0, так
как матрица Якоби ∥∥∥∥ x2−y2−z2

x2
2y
x

2z
x

− y
x2

1
x 0

∥∥∥∥
имеет ранг 2 при x > 0, z > 0. В самом деле, при x > 0, z > 0 определитель из элементов второго и
третьего столбцов матрицы Якоби ∣∣∣∣ 2y

x
2z
x

1
x 0

∣∣∣∣ = −2z

x2
̸= 0.

Р-16.пр.3
Найдя первый интеграл, решить систему при x > 0, z > 0{

ẋ = −x2,
ẏ = xy − 2z2,
ż = xz.

Перемножая крест-накрест первое и третье уравнения, получаем zẋ = −xż. Отбрасывая dt, находим
отсюда, что xz = C1. Значит, u = xz− первый интеграл. Из третьего уравнения находим z = C1t + C2.
Тогда x = C1

C1t+C2
. Подставляя найденные x, z во второе уравнение системы, получаем уравнение для y:

ẏ =
C1y

C1t+ C2
− 2 (C1t+ C2)

2
.

Это линейное уравнение первого порядка, общим решением которого является

y = (C1t+ C2)
(
C3 − C1t

2 − 2C2t
)
.

Р-16.пр.4
Найдя два независимые первые интегралы системы, решить при x > z > 0, y > 0 систему{

ẋ = x2 + z2

ẏ = y(x− z)
ż = 2xz

получим уравнение
2xzdx =

(
x2 + z2

)
dz,

которое можно записать в виде d
(

x2

z

)
= dz. Отсюда x2

z − z = C1. Значит, u1 = x2

z − z - первый интеграл
системы. Вычтем из первого уравнения третье уравнение и рассмотрим полученное уравнение со вторым
уравнением системы. Имеем {

ẋ− ż = (x− z)2,
ẏ = y(x− z).

Перемножая крест-накрест эти два уравнения, сокращая на x−z ̸= 0 и отбрасывая dt, получаем yd(x−z) =
(x − z)dy. Отсюда x − z = C2y и, значит, u2 = x−z

y - первый интеграл системы. Можно проверить, что
при x > z > 0, y > 0 первые интегралы u1, u2 являются независимыми. Подставляя x− z = C2y во второе

уравнение исходной системы, получаем ẏ = C2y
2. Отсюда y(t) = 1

C3−C2t
. Из системы

{
x− z = C2y,
x2 − z2 = C1z

находим z =
C2

2y
2

C1−2C2y
, x = C2y +

C2
2y

2

C1−2C2y
. Подставляя в эти формулы выражение для y(t), получаем, что

z(t) =
C2

2

(C3 − C2t) (C1C3 − C1C2t− 2C2)
,

x(t) =
C2 (C1C3 − C1C2t− C2)

(C3 − C2t) (C1C3 − C1C2t− 2C2)
.

Найдя первый интеграл, решить системы (1− 17) в указанных областях:
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5.3.4 Problems about the first integrals

Р-16.1{
ẋ = x

(x+y)2 ,

ẏ = y
(x+y)2 , (x > 0, y > 0).

Р-16.2{
ẋ = x2y
ẏ = xy2, (x > 0, y > 0).

{
ẋ = x2

y

ẏ = x, (x > 0, y > 0)

Р-16.4
ẋ =

x

x− y

ẏ =
y

x− y
, (x > y > 0)

Р-16.5{
ẋ = −x

y

ẏ = y
x , (x > 0, y > 0)

Р-16.6{
ẋ = x− xy
ẏ = −x+ xy, (x > 0, x+ y > 1)

Р-16.7{
ẋ = y − xy,
ẏ = −y + xy, (y > 0, x+ y > 1).

Р-16.8{
ẋ = x

x2+y2 ,
ẏ = y

x2+y2 , (x > 0, y > 0)

Р-16.9{
ẋ = −y,
ẏ = y2

x , (x > 0, y > 0, xy < 2).

Р-16.10{
ẋ = 1

y

ẏ = y2

x , (x > 0, y > 0).

Р-16.11 ẋ = xy − x2

ẏ = y2

ż = z2 + 2yz, (x > 0, y > 0, z > 0)

Р-16.12{
ẋ = y2,
ẏ = yz,
ż = −z2, (y > 0, z > 0)
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5.3.4 Problems about the first integrals

Р-16.13{
ẋ = −x2
ẏ = xy − 2z2

ż = xz, (x > 0)

Р-16.14{
ẋ = 1 + z,
ẏ = y2e3x,
ż = (1 + z)2, (y > 0, z > −1).

Р-16.15 ẋ = (1− x)4,
ẏ = (x− 1)3,
ż = z3e−y, (x > 1, z > 0).

Р-16.16{
ẋ = x(2y + z),
ẏ = xez + y,
ż = −(2y + z), (x > 0).

Р-16.17{
ẋ = x− y2,
ẏ = y,
ż = x+ y2 + z, (y > 0).

Найдя два независимые первые интегралы системы, решить системы (18-

26) в указанных областях:

Р-16.20{
ẋ = x(x+ y)
ẏ = −y(x+ y)
ż = −z(x− y), (x > 0, y > 0, z > 0)

Р-16.21{
ẋ = x(y − z)
ẏ = −y(y + z)
ż = z(y + z), (x > 0, y > 0, z > 0)

Р-16.23{
ẋ = xy,
ẏ = y,
ż = xe−y + z, (y > 0).

Р-16.24{
ẋ = xz
ẏ = x+ yz
ż = −z2, (z > 0).

Р-16.25{
ẋ = x− 3x2z2,
ẏ = 3x2y2z,
ż = z, (x > 0, y > 0, z > 0).
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5.4 Problems of partial differential equations of the first order

Р-16.26 ẋ = x2,
ẏ = 2x3 − xy − z,
ż = xz − 2x4, (x > 0).

Р-16.27
С помощью первого интеграла убедиться в том, что положение равновесия (0, 0) является центром

для систем

a)
{
ẋ = −y − xy2

ẏ = x+ x2y

б)
{
ẋ = x2y + y3

ẏ = −xy2 − x3

5.4 Problems of partial differential equations of the first order
(??? мб тут олимпиадные задачи потом порешаю, посмотрим, пока все-таки не совсем до них)

5.4.1 Problems about Linear Homogeneous Equations
ПримеР 1. При x > 0, z > 0 найти общее решение уравнения

3xyz2
∂u

∂x
+ 3y2z2

∂u

∂y
−
(
2x2 + yz3

) ∂u
∂z

= 0

и решить для этого уравнения задачу Коши c начальным условием u = x4 + xz3 при y = 1
x .

Найдем независимые первые интегралы характеристической системы для заданного уравнения ẋ(t) = 3xyz2

ẏ(t) = 3y2z2

ż(t) = −
(
2x2 + yz3

)
.

Перемножив крест-накрест первых два уравнения этой системы, имеем

3y2z2ẋ(t) = 3xyz2ẏ(t).

Сократив на 3yz2 и отбросив dt, получаем
ydx = xdy.

Отсюда y = C1x и, значит, u1 = y
x - первый интеграл. Подставив найденное значение y = C1x в первое и

третье уравнения характеристической системы, имеем{
ẋ = 3C1x

2z2,
ż = −

(
2x2 + C1xz

3
)
.

Перемножая крест-накрест эти уравнения, сокращая на x и отбрасывая dt, получаем

−
(
2x+ C1z

3
)
dx = 3C1xz

2dz.

Полагая C1z
3 = t, отсюда для t находим линейное уравнение первого порядка

dt

dx
= − t

x
− 2,

общим решением которого служит t = C2

x − x. Подставляя C1z
3 вместо t и y

x вместо C1, находим еще
один первый интеграл u2 = x2 + yz3. Общим решением заданного уравнения является

u = F
(y
x
, x2 + yz3

)
,

где F (u1, u2) - произвольная непрерывно дифференцируемая функция. Чтобы решить задачу Коши,
рассматриваем систему уравнений  y = 1

x
u1 = y

x
u2 = x2 + yz3.
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5.4.1 Problems about Linear Homogeneous Equations

Из этой системы уравнений находим, что

x4 + xz3 =
u2
u1

Следовательно, решением задачи Коши является

u =
x

y

(
x2 + yz3

)
=
x3

y
+ xz3

Р-17.пр.2
При x < 0, z > 0 найти общее решение уравнения

xy
∂u

∂x
+
(
2x3y + y2

) ∂u
∂y

−
(
x+ 2x3z + yz

) ∂u
∂z

= 0

и решить для этого уравнения задачу Коши с начальным условием u = y
x при 2x+ yz = 0.

Составляем характеристическую систему ẋ(t) = xy
ẏ(t) = 2z3y + y2

ż(t) = −
(
x+ 2x3z + yz

)
Перемножая крест-накрест первые два уравнения системы, сокращая на y и отбрасывая dt, получаем для
y линейное уравнение первого порядка

xdy =
(
2x3 + y

)
dx

общим решением которого является y = C1x + x3. Значит, первым интегралом является u1 = y
x −

x2. Умножая первое уравнение характеристической системы на 1
y , второе уравнение на z

y и складывая
полученные выражения с третьим уравнением, находим, что

ẋ

y
+
z

y
ẏ + ż = 0.

Отбрасывая dt, отсюда dx + zdy + ydz = 0 или dx + d(yz) = 0. Следовательно, x + yz = C2, значит,
u2 = x + yz - первый интеграл характеристической системы. Общим решением заданного уравнения
является

u = F
(y
x
− x2, x+ yz

)
,

где F (u1, u2) - произвольная непрерывно дифференцируемая функция. Для решения задачи Коши
составляем систему уравнений {

2x+ yz = 0
u1 = y

x − x2

u2 = x+ yz

Из этой системы находим, что
y

x
= u1 + u22.

Следовательно, решением задачи Коши является

u =
y

x
− x2 + (x+ yz)2 =

y

x
+ 2xyz + y2z2

Найти общее решение уравнения и решить задачу Коши с указанным начальным условием (1-100):

Р-17.1

x∂u
∂x − 1

2y
∂u
∂y +

(
z + x4y2

)
∂u
∂z = 0, u = 2z−x2

2x2 при xy = −1.

Р-17.2

x∂u
∂x +

(
y + x4

z

)
∂u
∂y + 2z ∂u

∂z = 0, u = yz5−1
z7 при xz = 1.

187



5.4.1 Problems about Linear Homogeneous Equations

Р-17.3
z
y
∂u
∂x − 2yz ∂u

∂y +
(
z2 + 2xy − 1

)
∂u
∂z = 0, u = xy − 1

2 при xy + z2 = 1.

Р-17.4(
x2 + z2

)
∂u
∂x + 2

(
xy − xz3

)
∂u
∂y + 2xz ∂u

∂z = 0, u = y
z − z2

2 при x2 − z2 = 2.

Р-17.5

x∂u
∂x + y ∂u

∂y + z2(x− 3y)∂u∂z = 0, u = x2

y при 3yz = 1.

Р-17.6(
y + 2z2

)
∂u
∂x − 2x2z ∂u

∂y + x2 ∂u
∂z = 0, u = 4z3−x3

3 при y + z2 + yz = 0.

Р-17.7

xy3 ∂u
∂x + x2z2 ∂u

∂y + y3z ∂u
∂z = 0, u = y4 при xz3 = 1.

Р-17.8

x∂u
∂x + (xz + y)∂u∂y + z ∂u

∂z = 0, u = 1− x при x+ y − z = 0.

Р-17.9

x(x+ z)∂u∂x + y(x− z)∂u∂y − z(x+ z)∂u∂z = 0, u = x+ y при z = 1, x > 0

Р-17.10

2y
(
x− y2

)
∂u
∂x −

(
x− y2

)
∂u
∂y − 4yz ∂u

∂z = 0, u = xy2 при z = 1.

Р-17.11

x(x+ y)∂u∂x − y(x+ y)∂u∂y − z(x− y)∂u∂z = 0, u = x2 + y2 при z = 1.

Р-17.12

x(y − z)∂u∂x − y(y + z)∂u∂y + z(y + z)∂u∂z = 0, u = y2 − x при z = 1.

Р-17.13

2xz ∂u
∂x + 2yz ∂u

∂y +
(
2x2 + y′ ∂u∂z = 0, u = z2

y при y = x2.

Р-17.14

(z + 2x− 2y)∂u∂x + (z − 2x+ 2y)∂u∂y − 2z ∂u
∂z = 0, u = xz4 при x+ y = 0.

Р-17.15

xz ∂u
∂x − yz ∂u

∂y +
(
x3y + x2

)
∂u
∂z = 0, u =

(
z
y

)2
при y = x.

Р-17.16

(z − x+ 3y)∂u∂x + (z + x− 3y)∂u∂y − 2z ∂u
∂z = 0, u = 4y

z при x = 3y.

Р-17.17

x∂u
∂x + 2y ∂u

∂y +
(
x2y + z

)
∂u
∂z = 0, u = x3 при z = x.
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5.4.1 Problems about Linear Homogeneous Equations

Р-17.18

xy ∂u
∂x − x2 ∂u

∂y + yz ∂u
∂z = 0, u = x при z = x2 + y2

Р-17.19

2x∂u
∂x + (y + z)

(
∂u
∂y + ∂u

∂z

)
= 0, u =

(
y
z

)2 при x = z2.

Р-17.20(
x2 + y2

)
∂u
∂x + 2xy ∂u

∂y + xz ∂u
∂z = 0, u =

(
x
z

)2 при y = z.

Р-17.21

(2xz − x)∂u∂x + (2yz − y)∂u∂y +
(
3z2 − 3z − y2

)
∂u
∂z = 0, u = xz при y = z.

Р-17.22(
2x2z2 + x

)
∂u
∂x −

(
4xyz2 − y

)
∂u
∂y −

(
4xz3 − z

)
∂u
∂z = 0, u = yz2 при x = z.

Р-17.23(
x3y2 + x

)
∂u
∂x +

(
y − 3x2y3

)
∂u
∂y +

(
x2y2z + z

)
∂u
∂z = 0, u = x3z при y = x.

Р-17.24(
x2y + 2x

)
∂u
∂x +

(
2xy2 + y

)
∂u
∂y − (xyz + 2z)∂u∂z = 0, u = yz + y + 1

y при x = y.

Р-17.25

x2 ∂u
∂x +

(
2xy − y2

)
∂u
∂y + (2xz − yz)∂u∂z = 0, u = y2

z при x = 2y.

Р-17.26

2x∂u
∂x +

(
2y − 3xz2

)
∂u
∂y − 3z ∂u

∂z = 0, u = y − 2
x при xz = 2.

Р-17.27

x∂u
∂x +

(
x2 + y + z2

)
∂u
∂y + z ∂u

∂z = 0, u = y
x при x2 + z2 = z.

Р-17.28(
3x− y2

)
∂u
∂x + y ∂u

∂y +
(
z + x− y2

)
∂u
∂z = 0, u = z − y2 при x = 3y2.

Р-17.29

(x+ y + z)∂u∂x − 2y ∂u
∂y + (x− y + z)∂u∂z = 0, u = z

y при x = z.

Р-17.35

xz2 ∂u
∂x + 2

(
y − z2

)
y ∂u
∂y − z3 ∂u

∂z = 0, u = x2ez при y = z, z < 0.

Р-17.36

x2 ∂u
∂x + (2z − ey) ∂u

∂y + z2 ∂u
∂z = 0, u = (z−x)2

x2 при y = lnx.

Р-17.37

(x+ z)∂u∂x + (y + z)∂u∂y + (x+ y)∂u∂z = 0, u = (1 + z)(1− 2z)2 при x+ y = 1.
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Р-17.38

xy ∂u
∂x + (x− 2z)∂u∂y + yz ∂u

∂z = 0, u = x при y2 = 2x.

Р-17.39

x2z ∂u
∂x + y2z ∂u

∂y + (x+ y)∂u∂z = 0, u = e−
z2

2 при x = 2y.

Р-17.40

(1 + z)∂u∂x + y2e3x ∂u
∂y + (1 + z)2 ∂u

∂z = 0, u = e2x при y = 2(1 + z)e−3x.

Р-17.41

z
(
x+ y2 cos y

)
∂u
∂x + yz ∂u

∂y + y cos y ∂u
∂z = 0, u = 3z2

2 при x = 2y sin y + yz2
(
0 < y < π

2

)
Р-17.42

z cosx∂u
∂x + z(1− y sinx)∂u∂y + (1− z) sinx∂u

∂z = 0, u = ez(z − 1) при y = 1 + sinx
(
0 < x < π

2

)
Р-17.43

(1− x)4 ∂u
∂x + (1− x)3 ∂u

∂y + z3e−y ∂u
∂z = 0, u = 1

(x−1)2 при z = 1√
2
(x− 1)

3
2 e

y
2 , (x > 1).

Р-17.46(
xy − x2

)
∂u
∂x + y2 ∂u

∂y +
(
e

y
x + yz

)
∂u
∂z = 0, u = y

1+y при y = x ln z, y > 0.

Р-17.47

x∂u
∂x + (z − y)∂u∂y + xz ctg x∂u

∂z = 0, u = sinx+ cosx при z = xy,
(
0 < x < π

4

)
Р-17.48

(x+ 2zey) ∂u
∂x + (x− y)∂u∂y + z(x− y)∂u∂z = 0, u = ex при x = 2y, z > 0.

Р-17.49(
x+ y2 + 2z

)
∂u
∂x + y ∂u

∂y + y2 ∂u
∂z = 0, u = xy − y3 при z = y2.

Р-17.50

x(2y + z)∂u∂x + (xez + y) ∂u
∂y − (2y + z)∂u∂z = 0, u = z при y + z = 0, x > 0.

Р-17.51

(x+ y)∂u∂x + (2zex − y) ∂u
∂y + (x+ y)z ∂u

∂z = 0, u = z2 при 2x+ y = 0, z > 0.

Р-17.52

xy ∂u
∂x + y ∂u

∂y + (xe−y + z) ∂u
∂z = 0, u = x2 при z = (y − x)e−y

Р-17.53

x2(1 + xz)∂u∂x + xz
y

∂u
∂y + (1 + xz)∂u∂z = 0, u = xy2 при xz = 1, x > 0.

Р-17.54
1
y
∂u
∂x + 1

x
∂u
∂y + 1

x+yz
∂u
∂z = 0, u = x при z = 0.
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Р-17.55

xy ∂u
∂x + y2 ∂u

∂y +
(
x2 + y2z2

)
∂u
∂z = 0, u = y2 при z = 0.

Р-17.56

x(1− xy)∂u∂x + xy2 ∂u
∂y + z

(
xy2 + xy − 1

)
∂u
∂z = 0, u = xz(x− 1) при y = xz, x > 0, y < 0.

Р-17.60

2xe2z ∂u
∂x − 2e2z ∂u

∂y + x(1− y)∂u∂z = 0, u =
(
1
x + y

)
e−y при z = 0

Р-17.61

x cos z ∂u
∂x − tg y · cos z ∂u

∂y + x(tg y − y)∂u∂z = 0, u = x sinx
(
x2 + sin z

)
при y = x

(
0 < y < π

2 , 0 < z < π
2

)
.

Р-17.62

xz ∂u
∂x + (x+ yz)∂u∂y − z2 ∂u

∂z = 0, u = xy − x2 при z = 1.

Р-17.63(
x2 + y2

)
∂u
∂x + 2xy ∂u

∂y + e−z ∂u
∂z = 0, u = ez при x = 2y, x > y > 0.

Р-17.64

(x+ y − z)∂u∂x + (1 + z)∂u∂y + ∂u
∂z = 0, u = y(1 + x+ y) при z = 0.

Р-17.65

x2 ∂u
∂x +

(
2xy − y2

)
∂u
∂y + z2 ∂u

∂z = 0, u = yz − y − z при x = yz.

Р-17.66

(y − z)∂u∂x + (x− z)∂u∂y + (y − x)∂u∂z = 0, u = 2(x− y) при x− z = 2y.

Р-17.67

2y cos2 x∂u
∂x +

(
1 + y2 sin 2x

)
∂u
∂y + sin 2z

y
∂u
∂z = 0, u = x− 1 + ctg z при y2 cos2 x = 1,

(
0 < x < π

4 , 0 < z < π
4

)
.

Р-17.68(
x3 + y3

)
∂u
∂x + x2y ∂u

∂y + y3
√
1+z2

x
∂u
∂z = 0, u = z +

√
1 + z2 при x3 = 3y3 lnx.

Р-17.69(
2y2 + z

)
∂u
∂x + 2xy ∂u

∂y + 2xz ∂u
∂z = 0, u = x2

z при y2 = z

Р-17.74

z2(z − y)∂u∂x + y2(2z − y)∂u∂y + yz2 ∂u
∂z = 0, u = e

x
z при y = z

2 , z > 0.

Р-17.75

x(y − x)∂u∂x + y2 ∂u
∂y + yz2e

y
x
∂u
∂z = 0, u = y

(
1 + e−

y
x

)
при z = 1, y > 0.

Р-17.76(
x2 + z2

)
∂u
∂x + y(x− z)∂u∂y + 2xz ∂u

∂z = 0, u = x+ z при y = z.
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5.4.1 Problems about Linear Homogeneous Equations

Р-17.77
x
2
∂u
∂x − y

(
1 + x2yz

)
∂u
∂y − z ∂u

∂z = 0, u = z при x2y = 1.

Р-17.78

2z
(
x− y2

)
∂u
∂x + 2yz ∂u

∂y +
(
y2 + z2

)
∂u
∂z = 0, u = x+ z2 при y2 = 1− x.

Р-17.79

2xy ∂u
∂x +

(
1− y2 − 2xz

)
∂u
∂y − y

x
∂u
∂z = 0, u = 1

2 − y2 при y2 + xz = 1.

Р-17.80(
x+ z4

y

)
∂u
∂x + 2y ∂u

∂y + z ∂u
∂z = 0, u = xy при z = 1.

Р-17.81

x2z ∂u
∂x − y ∂u

∂y + (2y + z)∂u∂z = 0, u = 1 + 1
xy при y + z = 1.

Р-17.82(
y − z3

)
∂u
∂x +

(
x+ z3

)
∂u
∂y − z ∂u

∂z = 0, u = y2 − x2 при z = 1.

Р-17.83

2xy ∂u
∂x +

(
2x− y2

)
∂u
∂y + y3z ∂u

∂z = 0, u = x2z2 при y2 = 2x.

Р-17.84(
x− 2x2y

)
∂u
∂x + y ∂u

∂y + 2x2z2 ∂u
∂z = 0, u = y2z при x− y = 0.

Р-17.92

x(2z − x)∂u∂x + 2z2(z − x)∂u∂y + xz ∂u
∂z = 0, u = y

2−z2 при xz = 2, xz > 0.

Р-17.93

3xyz ∂u
∂x + y ∂u

∂y + z(2 + 3yz)∂u∂z = 0, u = xy3 при x = yz, xz < 0.

Р-17.94

2∂u
∂x + 2xz2 ∂u

∂y + xz3
(
2yz2 − 2− z2

)
∂u
∂z = 0, u = x2z2 при y = 0.

Р-17.95

x∂u
∂x + y(3 + 4xy)∂u∂y + 4xyz ∂u

∂z = 0, u = x7

y при z = xy, x > 0, y > 0, z > 0.

Р-17.96

yz ∂u
∂x + y2z(1− xy)∂u∂y + ∂u

∂z = 0, u = yz2 при x = 0.

Р-17.97(
x− y2

)
∂u
∂x + y ∂u

∂y +
(
x+ y2 + z

)
∂u
∂z = 0, u = z

2y2 при x = y2, y > 0.

Р-17.98(
2x+ y2 + z

)
∂u
∂x + ∂u

∂y +
(
z − 2y + y2

)
∂u
∂z = 0, u = x−ey

2 при z = x− y2.
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5.4.2 Problems about Quasilinear and Nonlinear Equations

Р-17.99

x2 ∂u
∂x + y(2z − y)∂u∂y + z2 ∂u

∂z = 0, u = 1− z
y при z = 2x.

Р-17.100[
(x+ y − z)2 + y − z − 2

]
∂u
∂x + (z + 1)∂u∂y + (y − 1)∂u∂z = 0, u = 1

x+y+1 при z = 1, y > 1.
Решить, преобразовав его к указанным новым независимым переменным (101-102):

Р-17.101
∂z
∂x + ∂z

∂y = 0, u = x+ y, v = x− y

Р-17.102
∂w
∂x = ∂w

∂y + ∂w
∂z = 0, u = x, v = x+ y, t = x+ z

5.4.2 Problems about Quasilinear and Nonlinear Equations
(??? как с интегрируемыми системами это связано??? вроде тут простейшие эти уравнения?)

Р-18.пр.1
Найти общее решение уравнения

(z − y)
∂z

∂x
+ (x− z)

∂z

∂y
= y − x

и ту интегральную поверхность этого уравнения, которая проходит через прямую x = 1, y = z.
Характеристическая система имеет вид {

ẋ(t) = z − y,
ẏ(t) = x− z,
ż(t) = y − x.

Сложив первые два уравнения, рассмотрим систему{
ẋ+ ẏ = x− y,
ż = y − x.

Отсюда ẋ+ ẏ + ż = 0 или dx+ dy + dz = 0, что дает первый интеграл

u1 = x+ y + z.

Если первое уравнение характеристической системы умножить на x, второе уравнение умножить на y,
третье уравнение умножить на z и сложить, то получаем xẋ+yẏ+zż = 0 или xdx+ydy+zdz = 0. Отсюда
находим еще один первый интеграл

u2 = x2 + y2 + z2

Общее решение уравнения задается формулой

F
(
x+ y + z, x2 + y2 + z2

)
= 0,

где F (u1, u2) - произвольная непрерывно дифференцируемая функция. Для решения задачи Коши,
исключая x, y, z из системы {

x = 1, y = z,
u1 = x+ y + z,
u2 = x2 + y2 + z2,

находим, что u2 = 1 + 1
2 (u1 − 1)

2. Следовательно, решение задачи Коши задает функция

x2 + y2 + z2 = 1 +
1

2
(x+ y + z − 1)2.
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5.4.2 Problems about Quasilinear and Nonlinear Equations

Если кривая γ задана параметрически

x = φ1(τ), y = φ2(τ), z = φ3(τ),

то из системы уравнений {
x = φ1(τ), y = φ2(τ), z = φ3(τ)
u1 = u1(x, y, z)
u2 = u2(x, y, z)

находим связь Φ (u1, u2) = 0. Тогда уравнение Φ [u1(x, y, z), u2(x, y, z)] = 0 задает искомую интегральную
поверхность, проходящую через кривую γ.

Р-18.пр.2
Найти интегральную поверхность уравнения

x
∂z

∂x
+ y

∂z

∂y
= z −

√
x2 + y2 + z2,

проходящую черех кривую x = τ, y = τ2, z = 0.
Составим характеристическую систему ẋ(t) = x,

ẏ(t) = y,

ż(t) = z −
√
x2 + y2 + z2.

Перемножая крест-накрест первые два уравнения системы и отбрасывая dt, находим, что ydx = xdy.
Отсюда u1 = y

x - первый интеграл. Умножая первое уравнение на x, второе - на y, третье - на z и
складывая, имеем

xẋ+ yẏ + zż = x2 + y2 + z2 − z
√
x2 + y2 + z2.

Перемножая крест-накрест это выражение с третьим уравнением системы, получаем после отбрасывания
dt (

z −
√
x2 + y2 + z2

)
(xdx+ ydy + zdz) =

(
x2 + y2 + z2 − z

√
x2 + y2 + z2

)
dz.

Отсюда Значит, u2 =
√
x2 + y2 + z2 + z. Из системы уравнений x = τ, y = τ2, z = 0,

u1 = y
x

u2 =
√
x2 + y2 + z2 + z

находим, что u22 = u21 + u41. Тогда искомая интегральная поверхность задается уравнением

(
z +

√
x2 + y2 + z2

)2
=
y2

x2
+
y4

x4
.

В задачах (1-33) найти интегральную поверхность уравнения, проходящую через заданную линию.

Р-18.1

x ∂z
∂x + y ∂z

∂y = z − x2 − y2, x2 + y2 = 1, z = x2 − 1.

Р-18.2(
x2 − y2

)
∂z
∂x + xy ∂z

∂y + xyz = 0, z = x, y = 1.

Р-18.3

xz4 ∂z
∂x + yz4 ∂z

∂y = x2y2, z = x2, y = 1
x .

Р-18.4(
x2y − x

)
∂z
∂x − xy2 ∂z

∂y = z, z = x, y = 1.
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5.4.2 Problems about Quasilinear and Nonlinear Equations

Р-18.5(
x2 + y2

)
∂z
∂x + 2xy ∂z

∂y = xz, y = 1, z = x.

Р-18.6

y ∂z
∂x − x ∂z

∂y = x+ y, x = 0, y = z.

Р-18.7(
y2 + z2 − x2

)
∂z
∂x − 2xy ∂z

∂y + 2xz = 0, x = 0, z = y2.

Р-18.8

(z − y) ∂z∂x + (x− z) ∂z∂y = y − x, x = y = z.

Р-18.9

xz ∂z
∂x + yz ∂z

∂y + x2 + y2 = 0, x = 1, y = z.

Р-18.10(
x2 − y2 − z2

)
∂z
∂x + 2xy ∂z

∂y − 2xz = 0, x = 0, y = sin τ, z = cos τ .

Р-18.11

(x− y) ∂z∂x + (x+ y) ∂z∂y − z = 0, x = cos τ, y = sin τ, z = τ .

Р-18.12

y4z ∂z
∂x − xy3z ∂z

∂y + x
(
x2 + y2

)
= 0, x =

√
τ , y = 1, z =

√
τ2 + τ .

Р-18.13(
x2 − y2 + z2

)
∂z
∂x + 2xy ∂z

∂y = 2xz, x = 1, y = ch τ, z = sh τ .

Р-18.14(
xy − x2

)
∂z
∂x + y2 ∂z

∂y = z2 + 2yz, y = 1, z = 2x.

Р-18.15

x
(
4− x2

)
∂z
∂x +

(
2x2y + 1

)
∂z
∂y = x, x = 1, y = −z.

Р-18.16

2x3 ∂z
∂x + y

(
2x2 − y2

)
∂z
∂y = 1 + z2, x = 1, y = arctg z.

Р-18.17

(2x+ y) ∂z∂x + (x+ 2y)
(

∂z
∂y − 1

)
= 0, x = 0, z = 2y.

Р-18.18

y2 ∂z
∂x + yz ∂z

∂y = −z2, x− y = 0, x− yz = 1.

Р-18.19

(z − y)2 ∂z
∂x + xz ∂z

∂y = xy, x = 0, y = 0.
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Р-18.20

y ∂z
∂x + z ∂z

∂y = y
x , x = 1, z = y2.

Р-18.21

(xz + y) ∂z∂x + (x+ yz) ∂z∂y = 1− z2, z = 2, 2x = 3y.

Р-18.22

(2y − z) ∂z∂x + y ∂z
∂y = z, y = 3z2, x+ z − 4y = 0.

Р-18.23

y ∂z
∂x + x ∂z

∂y = x+ y + z, x+ 2y = 0, z = 0.

Р-18.24

x ∂z
∂x + y ∂z

∂y = xy + z, y = x2, z = 2xy.

Р-18.25

−x2 ∂z
∂x +

(
xy − 2z2

)
∂z
∂y = xz, xy = 1, x+ z = 0.

Р-18.26(
2x+ y2 + z2

)
∂z
∂x + 2y ∂z

∂y = 2z, y − z + 1 = 0, z = 2x.

Р-18.27

−(x+ 3yz) ∂z∂x + y ∂z
∂y = z, x+ 2yz = 0, yz = 1.

Р-18.28(
2y3 − x2

)
∂z
∂x − 2xy ∂z

∂y + 2x3 = 0, y = z = 1.

Р-18.29(
z2 − y2

)
∂z
∂x + z ∂z

∂y + y = 0, x = 0, y = z.

Р-18.30(
x+ y2 + z2

)
∂z
∂x + y ∂z

∂y = z, x = y = 1

Р-18.31(
x2 − y2

)
∂z
∂x + xy ∂z

∂y + xyz = 0, z = x, y = 1.

Р-18.32

2x ∂z
∂x + (y + z) ∂z∂y = y + z, x = y3, z = 0

Р-18.33

3y ∂z
∂x + (x+ 2y) ∂z∂y = 3 cos2 z · tg z, x+ 3y = 1, z = π

4

(
0 < z < π

2

)
.

Р-18.34
Найти поверхность, проходящую через окружность x2 + y2 + z2 = a2, z = 1 и ортогональную к

семейству сфер x2 + y2 + z2 = bx.
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5.5 Variational Calculus Tasks

Р-18.35
Решить

−y ∂z
∂x

+ x
∂z

∂y
= yz2,

преобразовав его к новым независимым переменным u = x2 + y2. v = x.

Р-18.36
Решить

x2
∂z

∂x
+ y2

∂z

∂y
= z,

преобразовав его к новым независимым переменным u = 1
x − 1

y , v = y. В задачах (37-40) найти решение
нелинейного уравнения, удовлетворяющего указанному н. у..

Р-18.37

x+ y ∂u
∂y = ∂u

∂x · ∂u
∂y , u = x, y = 0

Р-18.38(
∂u
∂x

)2
+ y ∂u

∂y = 0, u = x, y = 1

Р-18.39

x∂u
∂x + y ∂u

∂y +
(
∂u
∂x

)2
= u, u = x, y = 1.

Р-18.40

x∂u
∂x +

(
∂u
∂x

)2
= ∂u

∂y , u = x, y = 1.

Р-18.41
Определить функцию z = z(x, y), удовлетворяющую одновременно двум уравнениям

x
∂z

∂x
+ y

∂z

∂y
= 0, x

∂z

∂x
+ 2y

∂z

∂y
=

2y2

x2 + y2
.

Р-18.42
Определить функцию u = u(x, y), удовлетворяющую одновременно двум уравнениям

∂u

∂x
+
∂u

∂y
= 0,

(
∂u

∂x

)3

−
(
∂u

∂y

)3

= 2(x− y)3.

5.5 Variational Calculus Tasks

5.5.1 Problems about the simplest variations

Р-пр.1
Решить простейшую вариационную задачу, если

J(y) =

1∫
0

[
xy2 + x2yy′ +

(
1 + x2

)
(y′)

2
]
dx, y(0) = 0, y(1) = 1.

Уравнение Эйлера имеет вид [(
1 + x2

)
y′
]′
= 0.
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5.5.1 Problems about the simplest variations

Экстремали задаются равенством y = C1 arctg x+C2, где C1 и C2 - произвольные постоянные. Используя
граничные условия, получаем допустимую экстремаль ŷ(x) = 4

π arctg x. Проверим, действительно ли на
ŷ(x) достигается экстремум J(y). Для любой η(x) ∈◦1 [0, 1] имеем

∆J(ŷ) = J(ŷ + η)− J(ŷ) =

1∫
0

{
x(ŷ + η)2 + x2(ŷ + η) (ŷ′ + η′)+

+
(
1 + x2

)
(ŷ′ + η′)

2 − xŷ2 − x2ŷŷ′ +
(
1 + x2

)
(ŷ′)

2
}
dx =

=

1∫
0

[
2xŷ + x2ŷ′

]
ηdx+

1∫
0

[
x2ŷ + x2η + 2

(
1 + x2

)
ŷ′
]
η′dx+

+

1∫
0

[
xη2 +

(
1 + x2

)
(η′)

2
]
dx

Во втором интеграле проинтегрируем по частям. Получаем

1∫
0

[
x2ŷ + x2η + 2

(
1 + x2

)
ŷ′
]
η′dx =

[
x2ŷ + 2

(
1 + x2

)
ŷ′
]
η(x)

∣∣1
x=0

+

+
1

2
x2η2(x)

∣∣∣∣1
x=0

−
1∫

0

{[
x2ŷ + 2

(
1 + x2

)
ŷ′
]′
η + xη2

}
dx =

= −
∫ {[

x2ŷ + 2
(
1 + x2

)
ŷ′
]′
η + xη2

}
dx

так как проинтегрированная часть обращается в нуль, поскольку η(x) обращается в нуль на концах [0, 1].
Подставляя найденное выражение второго слагаемого в ∆J(ŷ), находим

∆J(ŷ) =

1∫
0

{
2xŷ + x2ŷ′ −

[
x2ŷ + 2

(
1 + x2

)
ŷ′
]}
ηdx+

1∫
0

(
1 + x2

)
(η′)

2
dx =

= −
1∫

0

2
[(
1 + x2

)
ŷ′
]′
ηdx+

1∫
0

(
1 + x2

)
(η′)

2
dx =

1∫
0

(
1 + x2

)
(η′)

2
dx > 0.

Здесь был использован тот факт, что ŷ(x) - экстремаль и, значит,
1∫
0

[(
1 + x2

)
ŷ′
]′
ηdx = 0

Таким образом, допустимая экстремаль ŷ(x) дает абсолютный минимум в заданной простейшей
вариационной задаче.

Р-пр.2
Решить простейшую вариационную задачу, если

J(y) =

2∫
1

[
6y2 + x2 (y′)

2
+ 12x3y

]
dx, y(1) = 1, y(2) = 8

Уравнение Эйлера
x2y′′ + 2xy′ − 6y = 6x3

определяет семейство экстремалей

y =
C1

x3
+ C2x

2 + x3,

где C1 и C2 - произвольные постоянные. Используя граничные условия, находим допустимую экстремаль
ŷ(x) = x3. (???)
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5.5.1 Problems about the simplest variations

Для всякой η(x) ∈ C1[1, 2] имеем

∆J(ŷ) = J(ŷ + η)− J(ŷ) =

2∫
1

{
6(ŷ + η)2 + x2 (ŷ′ + η′)

2
+ 12x3(ŷ + η)− 6ŷ2 − x2 (ŷ′)

2 − 12x3ŷ
}
dx =

=

2∫
1

[
6η2 + x2 (η′)

2
]
dx+

2∫
1

(
12ŷ + 12x3

)
ηdx+ 2

2∫
1

x2(ŷ)′η′dx

Проинтегрируем по частям в последнем интеграле и воспользуемся тем, что η(1) = η(2) = 0. Тогда
получаем

∆J(ŷ) =

2∫
1

[
6η2 + x2 (η′)

2
]
dx+

2∫
1

[
12ŷ + 12x3 − d

dx

(
2x2ŷ′

)]
ηdx.

Но выражение в квадратных скобках во втором интеграле

12ŷ + 12x3 − d

dx

(
2x2ŷ′

)
= −2

(
x2ŷ′′ + 2x2ŷ′ − 6ŷ − 6x3

)
≡ 0

на [1, 2], так как ŷ(x) - решение уравнения Эйлера. Следовательно,

∆J(ŷ) =

2∫
1

[
6η2 + x2 (η′)

2
]
dx > 0.

Это значит, что ŷ(x) дает абсолютный минимум. ∆

Р-1 Решить вариационную задачу J(y) =
1∫
0

(y + y′)2 dx, y(0) = 0, y(1) = 1..

Р-2 Решить вариационную задачу

J(y) =
e∫
1

[
2y
x
+ yy′ + x2 (y′)2

]
dx, y(1) = 1, y(e) = 0.

Р-3

J(y) =
3∫ [

2y − yy′ + x (y′)
2
]
dx, y(1) = 1, y(3) = 4.

Р-4

J(y) =
π/4∫
0

[
4y2 + (y′)

2
+ 8y

]
dx, y(0) = −1, y

(
π
4

)
= 0.

Р-5

J(y) =
1∫
0

[
(y′)

2
+ y2 + 2e2xy

]
dx, y(0) = 1

3 , y(1) = 1
3e

2.

Р-6

J(y) =
π/2∫
0

[
(y′)

2
+ 4y2 + 2y cosx

]
dx, y(0) = 4

5 , y
(
π
2

)
= eπ.

Р-7

J(y) =
−1∫
−2

[
x2 (y′)

2
+ 12y2

]
dx, y(−2) = 1

16 , y(−1) = 1.
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5.5.1 Problems about the simplest variations

Р-8

J(y) =
2∫
1

[
2y + yy′ + x2 (y′)

2
]
dx, y(1) = 0, y(2) = 1 + ln 2.

Р-9

J(y) =
2∫
1

[xy′ + y]
2
dx, y(1) = 1, y(2) = 1

2

Р-10

J(y) =
π∫
0

[
(y′ + y)

2
+ 2y sinx

]
dx, y(0) = 0, y(π) = 1

Р-11

J(y) =
1∫
0

[
x3 + 1

2y
2 + 2 (y′)

2
]
dx, y(0) = 0, y(1) = 2.

Р-12

J(y) =
2∫
1

[
x (y′)

2
+ y2

x + 2y ln x
x

]
dx, y(1) = 0, y(2) = 1− ln 2

Р-13

J(y) =
2∫
1

[
3y2

x3 +
(y′)

2

x + 8y

]
dx, y(1) = 0, y(2) = 8 ln 2

Р-14

J(y) =
2∫
1

[
x (y′)

2
+ y2

x + 4y
]
dx, y(1) = 0, y(2) = 2 ln 2

Р-20

J(y) =
π/2∫
π/4

[
y − 1

2 (y
′)
2
]
sinxdx, y

(
π
4

)
= − ln

√
2, y

(
π
2

)
= 0.

Р-21

J(y) =
e∫
1

[
1
2x (y

′)
2
+ 2yy′

x − y2

x2

]
dx, y(1) = 1, y(e) = 2.

Р-22

J(y) =
1∫
0

[
(1 + x)exy + 1

2e
x (y′)

2
]
dx, y(0) = 1, y(1) = 3

2 .

Р-23

J(y) =
2∫
1

[
3y2

x3 + x2 +
(y′)

2

x

]
dx, y(1) = 2, y(2) = 81

2 .

Р-24

J(y) =
2∫
1

[
x (y′)

2
+ y2

x

]
dx, y(1) = 2, y(2) = 21

2 .
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5.5.1 Problems about the simplest variations

Р-25

J(y) =
4∫
1

[√
x (y′)

2
+ y2

2x
√
x

]
dx, y(1) = 2, y(4) = 41

2 .

Р-30

J(y) =
π/2∫
0

[
(y′)

2
+ 2yy′ + 4y2

]
dx, y(0) = 0, y

(
π
2

)
= shπ.

Р-31

J(y) =
1/2∫
1/4

[
(y′)

2

(x−1)2 − 2y2

x(x−1)3

]
dx, y

(
1
4

)
= 1, y

(
1
2

)
= 2.

Р-32

J(y) =
2∫
1

[
(y′)

2
+ 2y2

x2 + 8y
x4

]
dx, y(1) = 1, y(2) = 1

4

Р-33

J(y) =
1/2∫
0

[
(y′)

2

x2−1 − 2y2

(x2−1)2

]
dx, y(0) = 1, y

(
1
2

)
= 2.

Р-34

J(y) =
−1∫
−2

[
x3 (y′)

2
+ 3xy2 − 6y

x

]
dx, y(−2) = 1

4 , y(−1) = 1.

Р-40

J(y) =
2∫
1

[
(y′)

2
+ 2y2

x2

]
dx, y(1) = 0, y(2) = 7

2 .

Р-41

J(y) =
π/4∫
0

[
(y′)

2

cos x + y
cos2 x

]
dx, y(0) = 0, y

(
π
4

)
= 1

2 .

Р-42

J(y) =
2∫
1

[
(xy′ + y)

2
+
(
1 + x2

)
y′
]
dx, y(1) = − 1

2 , y(2) = 1.

Р-43

J(y) =
π/4∫
0

[
(y′)

2
cos2 x+ x2yy′ + xy2 − 2y′ cos3 x

]
dx, y(0) = 0, y

(
π
4

)
= 1√

2
.

Р-48

J(y) =
2∫
0

[
4 (y′)

2
+ y2 + 4xy

]
dx, y(0) = 1, y(2) = e− 4.

Р-49

J(y) =
π∫
0

[
(y′)

2
+ 8y′ sin2 x+ 4y

]
dx, y(0) = 0, y(π) = π2.
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5.5.1 Problems about the simplest variations

Р-50

J(y) =
1∫
0

[
(y′)

2
+ y2 + x2y′

]
dx, y(0) = 1, y(1) = 1 + e−1.

Р-51

J(y) =
π∫
0

[
(y′)

2
+ y2 − 4y sinx

]
dx, y(0) = 1, y(π) = eπ.

Р-52

J(y) =
π∫
0

[
(y′)

2
+ y2 + 10y′

(
x+ sin2 x

)]
dx, y(0) = 6, y(π) = 5 + e−π.

Р-53

J(y) =
1∫
0

[
4xyy′ − (y′)

2 − 4y2 +
(
12x2 − 4

)
y
]
dx, y(0) = 0, y(1) = 1.

Р-59

J(y) =

4∫
1

[(
1

x
− 3

x2

)
y2 + 2yy′ lnx− 4 (y′)

2 − 10y

]
dx, y(1) = −1

y(4) = 0

y(4) = 0.

Р-60

J(y) =
2∫
0

[
(y′)

2
+ xyy′ + 3

4y
2 +

(
x2

2 − 6
)
y
]
dx, y(0) = 5, y(2) = e.

Р-61

J(y) =
2∫
1

[
12xy − 12

x yy
′ − 3 (y′)

2
]
dx, y(1) = 1

2 , y(2) = 0.

Р-62

J(y) =
1∫
0

[
(y′)

2 − 2yy′ cosx+ (4 + sinx)y2 + 4
(
2x2 − 3

)
y
]
dx, y(0) = 2, y(1) = e2.

Р-63

J(y) =
2∫
0

e3x
[
(y′)

2
+ 4y2

]
dx, y(0) = e10 − 1, y(2) = 0.

Р-69

J(y) =
1∫

1/4

[
6xy′ −

√
xy2 − x2

√
x (y′)

2
]
dx, y

(
1
4

)
= −1, y(1) = 1.

Р-70

J(y) =
2∫
1

[
4
x (y′)

2
+ 5

x2 yy
′ − 8

√
x

x3 y
]
dx, y(1) = − 1

2 , y(2) = 0.
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Р-71

J(y) =
3∫
1

[
2
√
x (y′)

2
+ y2

x
√
x
− 8y′

x
√
x

]
dx, y(1) = −2, y(3) = 2.

Р-72

J(y) =
4∫
1

[
15
√
xy + 3x2yy′ − x3 (y′)

2
]
dx, y(1) = 1, y(4) = −3.

Р-79

J(y) =
3∫
1

[
8xy − x2 (y′)

2 − x2yy′ − (x+ 6)y2
]
dx, y(1) = 0, y(3) = −6

Р-80

J(y) =
3∫
1

[
x2 (y′)

2
+ x2yy′ + xy2 + 4xy

]
dx, y(1) = y(3) = 4

Р-81

J(y) =
4∫
2

[
x2yy′ + 8x2y − x2 (y′)

2
+ (x− 2)y2

]
dx, y(2) = 0, y(4) = −8.

Р-88

J(y) =
2∫
1

[
x3 (y′)

2 − 11x2yy′ − 3xy2 − 10x2y
]
dx, y(1) = 3, y(2) = 10.

Р-89

J(y) =
2∫
1

[
x2 (y′)

2 − 14xyy′ − y2 − 8xy
]
dx, y(1) = 2, y(2) = 6.

Р-90

J(y) =
4∫
1

[
(y′)

2
+ 3

4x2 y
2
]
dx, y(1) = 1, y(4) = 8. Найти значения вещественного параметра a, при

которых на допустимой экстремали достигается минимум (91-93):

Р-91

J(y) =
1∫
0

[
y − 2y′ + a (y′)

2
]
dx, y(0) = 0, y(1) = 1.

Р-92

J(y) =
1∫
0

[
(y′)

2
+ ax (y′)

2
]
dx, y(0) = 0, y(1) = ln |1 + a|. Найти допустимые экстремали (94-101):

Р-94

J(y) =
1∫
0

yn (y′)
2
dx, y(0) = 0, y(1) = 1.

Р-95

J(y) =
1∫
0

[
y2 (y′)

2
+ 9y2

]
dx, y(0) = 0, y(1) = −5.
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Р-96

J(y) =
π/2∫
π/4

[
(y′)

2
sinx+ 2y cosx

]
dx, y

(
π
4

)
= 0, y

(
π
2

)
= π

4 .

Р-97

J(y) =
1∫
0

[(
y′

y

)2
− xy′ − y

]
dx, y(0) = 1, y(1) = e−1.

Р-98

J(y) =
2∫
1

[ln y′ − 3yy′ − xy′] dx, y(1) = − ln 2, y(2) = 0.

Р-99

J(y) =
1/2∫
0

[
y + xy′ − 1

y (y′)
3
]
dx, y(0) = 2

3 , y
(
1
2

)
=
√

3
2 .

В задачах (102-105) показать, что допустимая экстремаль не дает экстремум функционала:

Р-102

J(y) =
π∫
0

[
(y′)

2 − 16
9 y

2 + 2y sinx
]
dx, y(0) = 0, y(π) = −

√
3
2 .

Р-103

J(y) =
π∫
0

[
(y′)

2 − 9
4y

2 + 18y
]
dx, y(0) = 4, y(π) = 0.

Р-104

J(y) =
π∫
0

[
(y′)

2 − 25
9 y

2 + 68exy
]
dx, y(0) = 9, y(π) = 9eπ.

Р-105

J(y) =
π∫
0

[
(y′)

2 − 25
16y

2 + 50xy
]
dx, y(0) = 0, y(π) = 16π. Показать, что простейшие вариационные

задачи (106–107) не имеют смысла:

Р-106

J(y) =
1∫
0

[
x2y′ + 2xy

]
dx, y(0) = 0, y(1) = 1.

Р-107

J(y) =
2∫
1

1
x2 [xy

′ − y] dx, y(1) = 0, y(2) = 2.
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5.5.2 Problems about the generalization of the simplest variational problem

5.5.2 Problems about the generalization of the simplest variational
problem

Р-пр.1 Решить задачу со свободным концом

J(y) =
2∫
1

[
6x−12
x

yy′ − (y′)2 + 8xy′
]
dx, y(1) = 0

(?? что-то пока не понял, как такое делать вообще?)
Уравнение Эйлера имеет вид

x2y′′ − 6y = 4x2.

Экстремали задаются формулой

y(x) =
C1

x2
+ C2x

3 − x2.

Граничное условие при x = 2 находим из уравнения

∂F

∂y′

∣∣∣∣
x=2

=

[
6x− 12

x
y − 2y′ + 8x

]∣∣∣∣
x=2

= −2y′(2) + 16 = 0.

Отсюда y′(2) = 8. Это условие вместе с условием y(1) = 0 определяют допустимую эксгремаль ŷ(x) =
x3 − x2.

Пусть η(x) - произвольная непрерывно дифференцируемая на [1, 2] функция, для которой η(1) = 0.
Тогда

∆J(ŷ) = J(ŷ + η)− J(ŷ) =

2∫
1

{
6x− 12

x
(ŷ + η) (ŷ′ + η′)− (ŷ′ + η′)

2
+ 8x (ŷ′ + η′)− 6x− 12

x
ŷŷ′ + (ŷ′)

2 − 8xŷ′
}
dx =

=

2∫
1

{
6x− 12

x
(ηŷ′ + ŷη′ + ηη′)− 2ŷ′η′ − (η′)

2
+ 8xη′

}
dx.

Если проинтегрировать по частям слагаемые в этом интеграле, содержащие η′, воспользоваться
уравнением Эйлера для ŷ(x) и условиями ŷ′(2) = 8, η(1) = 0, то получим

∆J(ŷ) = −
2∫

1

[
(η′)

2
+

6

x2
η2
]
dx < 0.

Значит, допустимая экстремаль ŷ(x) в рассматриваемой задаче дает абсолютный максимум.

Р-пр.2
Решить задачу без ограничений, если

J(y) =

1∫
0

[
(y′)

2
+ y2 + 2yex

]
dx.

Уравнение Эйлера y′′ − y = ex дает множество экстремалей задачи y(x) = C1e
−x + C2e

x + 1
2xe

x.
Граничными условиями для y(x) являются: y′(0) = y′(1) = 0. Определив C1 и C2 из этих граничных
условий, находим допустимую экстремаль

ŷ(x) =

(
1− 2e2

)
ex − e2−x

2 (e2 − 1)
+

1

2
xex.

Для всякой негтрерывно дифференцируемой на [0, 1] функции η(x) имеем

∆J(ŷ) = J(ŷ + η)− J(ŷ) =

1∫
0

[
2ŷ′η′ + (η′)

2
+ 2ŷη + η2 + 2exη

]
dx =

= 2ŷ′(x)η(x)|1x=0 +

1∫
0

η [2ŷ + 2ex − 2ŷ′′] dx+

1∫
0

[
(η′)

2
+ η2

]
=

=

1∫
0

[
(η′)

2
+ η2

]
dx
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5.5.2 Problems about the generalization of the simplest variational problem

так как проинтегрированная часть обращается в нуль в силу граничных условий ŷ′(0) = ŷ′(1) = 0 и первый
интеграл равен нулю в силу того, что ŷ(x) удовлетворяет уравнению Эйлера. Поскольку из полученного
равенства следует ∆J(ŷ) > 0 для всех рассматриваемых η(x), то ŷ(x) дает абсолютный минимум. Решить
задачу со свободным концом (1-10):

Р-1

J(y) =
2∫
0

[
2xy + (y′)

2
]
dx, y(0) = 0

Р-2

J(y) =
1∫
0

[
2y + 6y′ + (y′)

2
]
dx, y(0) = 0.

Р-3

J(y) =
2∫
1

[
x2 (y′)

2
+ 6y2 + 2x3y

]
dx, y(1) = 1

6

Р-4

J(y) =
1∫
0

[
y + xy′ + (y′)

2
]
dx, y(0) = 0.

Р-5

J(y) =
2∫
1

[
x2 (y′)

2
+ 12y2

]
dx, y(1) = 97

Р-6

J(y) =
2∫
1

[
(y′)

2

x + 3y2

x3

]
dx, y(2) = 19

2 .

Р-7

J(y) =
2∫
1

[
x3 (y′)

2
+ 3xy2

]
dx, y(2) = 49

24 .

Р-8

J(y) =
2∫
1

[
x3 (y′)

2 − 8
(
x2 − x

)
yy′ + 4y2 + 8x2y′

]
dx, y(2) = −7.

Р-9

J(y) =
∫
1

[
8yy′ lnx− x (y′)

2
+ 6xy′

]
dx, y(3) = 15.

Р-10

J(y) =
2∫
1

[
1
2 (y

′)
2 − 3(x2−1)

x2 yy′ − 8y′

x

]
dx, y(2) = 10. Решить задачу без ограничений (11-12):

Р-11

J(y) =
π/2∫
0

[
4y2 + (y′)

2
+ 2y cosx

]
dx.
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5.5.3 Problems about functions from two variables

Р-12

J(y) =
e∫
1

[
x (y′)

2
+ y2

x + 2y ln x
x

]
dx. Найти допустимые экстремали в задаче без ограничений (13-15):

Р-13

J(y) =
2∫
1

[
2y + yy′ + x2 (y′)

2
]
dx.

Р-14

J(y) =
2∫
1

[
2y − yy′ + x (y′)

2
]
dx

5.5.3 Problems about functions from two variables

Р-пример
Исследовать на экстремум функционал, если

J (y1, y2) =

2∫
1

[
6y21 + x2 (y′1)

2
+ (y′2)

2
]
dx, y1(1) = y2(1) = 1, y1(2) = 4, y2(2) = 2.

Система уравнений Эйлера имеет вид{
12y1 −

[
2x2y′1

]′
= 0

y′′2 = 0

Отсюда находим экстремали y1(x) = C1x
2 + C2

x3 , y2(x) = C1x + C2. Подставляя y1(x), y2(x) в заданные
граничные условия, получаем допустимую экстремаль ŷ1(x) = x2, ŷ2(x) = x.

Покажем, что на допустимой экстремали заданный функционал имеет абсолютный минимум. Пусть

(см. §1) η1(x) ∈
◦
1
1

[1, 2], η2(x) ∈◦1 [1, 2].
Тогда

∆J (ŷ1, ŷ2) = J (ŷ1 + η1, ŷ2 + η2)− J (ŷ1, ŷ2) =

=

2∫
1

[
6
(
2ŷ1η1 + η21

)
+ x2

(
2ŷ′1η

′
1 + (η′1)

2
)
+
(
2ŷ′2η

′
2 + (η′2)

2
)]
dx.

Интегрируя по частям слагаемые, содержащие η′1 и η′2, и учитывая, что η1(1) = η1(2) = η2(1) = η2(2) = 0,
отсюда находим

∆J (ŷ1, ŷ2) =

2∫
1

[
12ŷ1 −

(
2x2ŷ′1

)′]
η1dx− 2

2∫
1

ŷ′′2η2dx+

+

2∫
1

[
6η21 + x2 (η′1)

2
+ (η′2)

2
]
dx

Первые два интеграла равпы нулю, так как ŷ1(x) и ŷ2(x) удовлетворяют системе уравнений Эйлера.
Поскольку последний интеграл неотрицательный, то ∆J (ŷ1, ŷ2) > 0 при всех рассматриваемых η1(x)
и η2(x). Значит, пара функций ŷ1(x), ŷ2(x) дает абсолютный минимум функционала. Исследовать на
экстремум функционал. если:

Р-1

J (y1, y2) =
1∫
0

[
(y′1)

2
+ (y′2)

2
]
dx, y1(0) = y2(0) = 0, y1(1) = y2(1) = 1.

Р-2

J (y1, y2) =
1∫
0

[
y22 + (y′1)

2
+ (y′2)

2
]
dx, y1(0) = 0, y2(0) = 1, y1(1) = 1, y2(1) = e
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5.5.3 Problems about functions from two variables

Р-3

J (y1, y2) =
1∫
0

[
y21 + y22 + (y′1)

2
+ (y′2)

2
]
dx, y1(0) = y2(0) = 1, y1(1) = y2(1) = e.

Р-4

J (y1, y2) =
2∫
1

[
12y21 + y22 + x2 (y′1)

2
+ (y′2)

2
]
dx, y1(1) = 1, y2(1) = e, y1(2) = 8, y2(2) = e2 Найти

допустимые экстремали (5-11):

Р-5

J (y1, y2) =
π/2∫
0

[
(y′1)

2
+ (y′2)

2 − 2y1y2

]
dx, y1(0) = 1, y2(0) = −1, y1

(
π
2

)
= e

π
2 , y2

(
π
2

)
= −eπ

2

Р-6

J (y1, y2) =
1∫
0

[
2y1 + y22 + (y′1)

2
+ (y′2)

2
]
dx, y1(0) = 0, y2(0) = 1, y1(1) =

1
2 , y2(1) = e−1.

Р-7

J (y1, y2) =
π/2∫
0

[
2y1y2 + (y′1)

2
+ (y′2)

2
]
dx, y1(0) = y2(0) = 1, y1

(
π
2

)
=

= y2

(π
2

)
= e

π
2

Р-8

J (y1, y2) =
1∫
0

[y1y2 + y′1y
′
2] dx, y1(0) = y2(0) = 1, y1(1) = y2(1) = e.

Р-9

J (y1, y2) =
π/2∫
0

[y′1y
′
2 − y1y2] dx, y1(0) = y2(0) = 0, y1

(
π
2

)
= y2

(
π
2

)
= 1.

Р-10

J (y1, y2) =
1∫
0

[
2y21 + 2y1y2 + (y′1)

2 − (y′2)
2
]
dx, y1(0) = y2(0) = 0, y1(1) = 2 sh e, y2(1) = −2 sh e.

Р-11

J (y1, y2) =
π/2∫
0

[
2y1y2 − 2y21 + (y′1)

2 − (y′2)
2
]
dx, y1(0) = y2(0) = 0, y1

(
π
2

)
= 1, y2

(
π
2

)0
= −1.

Р-12
Показать, что задача на экстремум при

J (y1, y2) =

1∫
0

[y1y
′
2 + y2y

′
1] dx, y1(0) = y2(0) = 0, y1(1) = y2(1) = 1

не имеет смысла.
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5.5.4 Problems about second-order derivative functionals

5.5.4 Problems about second-order derivative functionals

Р-пример
Исследовать на экстремум функционал, если

J(y) =

1∫
0

[
(y′)

2
+ (y′′)

2
]
dx, y(0) = y′(0) = 0, y(1) = e− 2, y′(1) = e− 1.

Уравнение Эйлера-Пуассона имеет вид

−2y′′ + 2yIV = 0.

Экстремали задаются формулой
y = C1e

x + C2e
−x + C3x+ C4.

Используя граничные условия, получаем допустимую экстремаль

ŷ(x) = ex − x− 1.

Покажем, что ŷ(x) дает абсолютный мишимум функционала. Для всякой дважды непрерывно
дифференцируемой на [0, 1] функции η(x), удовлетворяющей граничным условиям

η(0) = η′(0) = η(1) = η′(1) = 0,

имеем

∆J(ŷ) = J(ŷ + η)− J(ŷ) =

1∫
0

[
2ŷ′η′ + (η′)

2
+ 2ŷ′′η′′ + (η′′)

2
]
dx

Проинтегрируем по частям первое слагаемое один раз, а третье слагаемое дважды. В силу граничных
условий для η(x) проинтегрированная часть обратится в нуль и получаем

∆J(ŷ) =

1∫
0

[
−2ŷ′′ + 2ŷIV

]
ηdx+

1∫
0

[
(η′)

2
+ (η′′)

2
]
dx.

Так как ŷ(x) удовлетворяет уравнению Эйлера-Пуассона, то первый интеграл равен нулю. Поэтому

∆J(ŷ) =

1∫
0

[
(η′)

2
+ (η′′)

2
]
dx > 0.

Значит, ŷ(x) дает абсолютный минимум функционала. Исследовать функционал на экстремум, если:

Р-1

J(y) =
1∫
0

[
−2xy + (y′′)

2
]
dx, y(0) = y′(0) = 0, y(1) = 1

5! , y
′(1) = 1

12

Р-2

J(y) =
1∫
0

[
2exy − (y′′)

2
]
dx, y(0) = y′(0) = 1, y(1) = e, y′(1) = 2e.

Р-3

J(y) =
π/2∫
0

[
2y sinx+ (y′′)

2
]
dx, y(0) = 0, y′(0) = −1, y

(
π
2

)
= −1, y′

(
π
2

)
= π2

4 .

Р-4

J(y) =
1∫
0

[
4 (y′)

2
+ (y′′)

2
]
dx, y(0) = y′(0) = 0, y(1) = 1

4

(
e2 − 3

)
, y′(1) = 1

2

(
e2 − 1

)
.
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5.5.5 Isoperimetric problems (?)

Р-5

J(y) =
1∫
0

[
y2 + 2 (y′)

2
+ (y′′)

2
]
dx, y(0) = y′(0) = 0, y(1) = 2 sh e, y′(1) = 2e.

Р-6

J(y) =
π/2

√
2∫

0

[
16y2 + (y′′)

2
]
dx, y(0) = y′(0) = y

(
π

2
√
2

)
= 0, y′

(
π

2
√
2

)
= −2

√
2 sh π

2 . Найти допустимые

экстремали (7− 9):

Р-7

J(y) =
π/2∫
0

[
(y′′)

2 − (y′)
2
]
dx, y(0) = y′(0) = y

(
π
2

)
= 0, y′

(
π
2

)
= 2− π

2 .

Р-8

J(y) =
π/4∫
0

[
(y′′)

2 − 4 (y′)
2
]
dx, y(0) = y′(0) = 0, y

(
π
4

)
= π

2 − 2, y′
(
π
4

)
= 0.

Р-9

J(y) =
π/2∫
0

[
y2 − 2 (y′)

2
+ (y′′)

2
]
dx, y(0) = y′(0) = 0, y

(
π
2

)
= π

2 , y
′ (π

2

)
= 1.

Р-10
Показать, что задача на экстремум при

J(y) =

1∫
0

[xy′′ + 2yy′ + y′] dx, y(0) = y′(0) = 0, y(1) = y′(1) = 1,

не имеет смысла.

5.5.5 Isoperimetric problems (?)
(что-то такое вообще давно не решал.)

Р-пр. Решить изопериметрическую задачу для

J(y) =
π∫
0

(y′)2 dx, y(0) = 1, y(π) = −1,
π∫
0

y cosxdx = π
2

Уравнение Эйлера для лагранжиана L = (y′)
2
+ λy cosx имеет вид

2y′′ = λ cosx.

Экстремали задаются формулой y(x) = C1x+C2− λ
2 cosx. Используя граничные условия и условия связи,

получаем допустимую экстремаль ŷ(x) = cosx. Покажем, что на ней изопериметрическая задача имеет
абсолютный минимум.

Возьмем любую η(x) ∈ 1[0, π], для которой
π∫
0

η cosxdx = 0. Тогда на ŷ(x)+η(x) определен функционал

J(y) и можно рассмотреть

∆J(ŷ) = J(ŷ + η)− J(ŷ) =

π∫
0

[
2ŷ′η′ + (η′)

2
]
dx.
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5.5.5 Isoperimetric problems (?)

Интегрируя по частям первое слагаемое и учитывая, что η(0) = η(π) = 0, получаем

∆J(ŷ) = −2

π∫
0

ŷ′′ηdx+

π∫
0

(η′)
2
dx.

B силу уравнения Эйлера и условия связи для η(x)

π∫
0

ŷ′′ηdx = λ

π∫
0

η cosxdx = 0.

Следовательно,

∆J(ŷ) =

π∫
0

(η′)
2
dx > 0

и, значит, ŷ(x) дает абсолютный минимум.
(??? ничего не понял, нужно все переучивать.)
Решить изопериметрическую задачу (1− 10):

Р-1

J(y) =
π∫
0

(y′)
2
dx, y(0) = 0, y(π) = π,

π∫
0

y sinxdx = 0.

Р-2

J(y) =
1∫
0

(y′)
2
dx, y(0) = 0, y(1) = e− 3,

1∫
0

yexdx = 0.

Р-3

J(y) =
1∫
0

(y′)
2
dx, y(0) = 2e+ 1, y(1) = 2,

1∫
0

e−xydx = e.

Р-4

J(y) =
1∫
0

(y′)
2
dx, y(0) = 0, y(1) = 2,

1∫
0

xydx = 1.

Р-5

J(y) =
1∫
0

[
y2 + (y′)

2
]
dx, y(0) = 0, y(1) = −1,

1∫
0

ye−xdx = 3e−1−e
4 .

Р-6

J(y) =
1∫
0

[
y2 + (y′)

2
]
dx, y(0) = 0, y(1) = 4e,

1∫
0

yexdx = 1 + e2.

Р-7

J(y) =
1∫
0

[
2xy + (y′)

2
]
dx, y(0) = 0, y(1) = 3,

1∫
0

xydx = 1.

Р-8

J(y) =
2∫
1

x (y′)
2
dx, y(1) = 0, y(2) = 12,

2∫
1

xydx = 9.
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5.5.6 Problems about Sufficient conditions of a strict weak local extremum in the simplest
variational problem

Р-9

J(y) =
π∫
0

[
2y + 3y′ + (y′)

2
]
dx, y(0) = 0, y(π) = π2,

π∫
0

y sinxdx = π2 − 1.

Р-10

J(y) =

π∫
0

[
(y′)

2
+ y2 + 2y cosx

]
dx, y(0) = 2, y(π) = −2,

π∫
0

y cosxdx =

= π

= π. Найти допустимые

экстремали изопериметрической задачи (11-14):

Р-11

J(y) =
1∫
0

[
2yy′ + (y′)

2
]
dx, y(0) = y(1) = 0,

1∫
0

[4xy′ + yy′] dx = 4.

Р-12

J(y) =
1∫
0

[yy′ + 4xy′] dx, y(0) = y(1) = 0,
1∫
0

[
2yy′ + (y′)

2
]
dx = 4.

Р-13

J(y) =
1∫
0

[
yy′ + 2 (y′)

2
]
dx, y(0) = y(1) = 0,

1∫
0

[yy′ − 8xy′] dx = 8.

Р-14

J(y) =
1∫
0

[yy′ − 8xy′] dx, y(0) = y(1) = 0,
1∫
0

[
yy′ + 2 (y′)

2
]
dx = 8.

Р-15

Найти минимум J(y) =
π∫
0

(y′)
2
dx, если y(0) = y(π) = 0,

π∫
0

y2dx = 1.

Р-16

Найти минимум J(y) =
1∫
0

[
y2 + (y′)

2
]
dx, если y(0) = y(1) = 0,

1∫
0

y2dx = 1

5.5.6 Problems about Sufficient conditions of a strict weak local ex-
tremum in the simplest variational problem

Исследовать на экстремум (1-9):

Р-1

J(y) =
π∫
0

(y′)
3
dx, y(0) = 0, y(π) = aπ, a ̸= 0.

Р-2

J(y) =
1∫
0

[
(y′)

3
+ 3 (y′)

2
+ y′

]
dx, y(0) = 0, y(1) = 1.
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5.6 Curve and trajectory problems

Р-3

J(y) =
1∫
0

dx
(y′)3

, y(0) = 0, y(1) = 1

Р-4

J(y) =
2∫
1

x4dx
(y′)3

, y(1) = 1
2 , y(2) = 2.

Р-5

J(y) =
2∫
1

(y′)
3
dx

x2 , y(1) = 1, y(2) = 4

Р-6

J(y) =
2∫
1

x2 (y′)
3
dx, y(1) = 0, y(2) = ln 2

Р-7

J(y) =
2∫
1

y3 (y′)
3
dx, y(1) = 2, y(2) = 2

√
2.

Р-8

J(y) =
1∫
0

(y′)
3

y3 dx, y(0) = 1, y(1) = e.

Р-9

J(y) =
2∫
1

e−2x
[
(y′)

2 − y2
]
dx, y(1) = e, y(2) = e2.

5.6 Curve and trajectory problems

5.6.1 Orthogonal Trajectory Problems
(?? зачем они вообще нужны??? пока просто лежат, а там посмотрим)

Р-2.пр.2
Найти ортогональные траектории семейства кривых

y = tg(lnCx).

Сначала составим дифференциальное уравнение заданного семейства кривых. Дифференцируя по x
уравнение заданного семейства и исключая параметр C, получаем уравнение

y′ =
1

x · cos2(lnCx)
=

1

x

[
1 + tg2(lnCx)

]
=

1 + y2

x
.

Заменяя в этом уравнении y′ на
(
− 1

y′

)
, находим дифференциальное уравнение ортогональных траекторий

−x =
(
1 + y2

)
y′.

Заменив y′ на dy
dx и решив полученное уравнение с разделенными переменными, находим уравнение

ортогональных траекторий 3x2 + 2y3 + 6y = C.
(???)
Найти ортогональные траектории для заданных семейств плоских кривых (40− 50):
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5.6.1 Orthogonal Trajectory Problems

Р-40
y = C(x+ 1)e−x

Р-41

y2 = Cex
2+y2

.

Р-42(
Ce−x2 − 1

)
y = 2.

Р-43
y = C sinx− 2.

Р-44
y (1 + Cex) = 1.

Р-45
y = C cosx+ 2.

Р-48

y2 = Ce−(x+y).

Р-49
xy = Cey.

Р-50
2x+ y − 1 = Ce2y−x.

Р-51
Найти ортогональные траектории семейства эллипсов, имеющих общую большую ось.

Р-52
Найти ортогональные траектории семейства гипербол, имеющих общую мнимую ось.

Р-53
Семейство кривых задано в полярных координатах уравнением r(φ) = Cf(φ), где f(φ) - непрерывно

дифференцируемая функция. Составить дифференциальное уравнение ортогональных траекторий.
Найти ортогональные траектории семейства кривых r = Ceφ.

Р-54
Семейство кривых в полярных координатах задается уравнением r′(φ) = rf(φ), где f(φ) -

непрерывная функция. Составить дифференциальное уравнение семейства ортогональных траекторий.
Найти ортогональные траектории семейства кривых r = C cosφ.

Р-89
Найти ортогональные траектории семейства окружностей, проходящих через начало координат,

центры которых лежат на оси абсцисс.
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5.6.2 Tasks on the approximate image of integral curves

Р-91
а) Составить дифференциальное уравнение ортогональных траекторий семейства кривых(

x2 + y2
)2

= a2xy.

б)Найти ортогональные траектории семейства кривых(
x2 + y2

)2
= a2xy.

Указание. Перейти к полярным координатам.

5.6.2 Tasks on the approximate image of integral curves
(займусь этим, когда понадобится, 1я глава Романко)
Составить дифференциальные уравнения семейства кривых (1− 18): 1. y = Cx2 − x. 2. y = x2 + Cx.

3. y = (x − C)2. 4. (y − C)2 = 2x. 5. (x − C)2 + y2 = 1. 6. x2 + (y − C)2 = 1. 7. 2x2 + Cy2 = 1. 8.
(y − C)2 = 1

x . 9. x2 + 2x − (y − C)2 = 2. 10. y = tg(x + C). 11. Cx = sinCy. 12. Cy = tgCx. 13.
x2 = (C + y)ey. 14. y2 +2Cxy+ x2 +2x = 0. 15. y = A cos(x+φ). 16. y = (C1 + C2x) e

x. 17. y = C1

x +C2x.
18. y2 = C1x

2 + C2x.
Построить приближенно интегральные кривые уравнений (19 − 38): 19. y′ = y−1

x−1 . 20. y′ = y
x+1 21.

y′ = 1−x
y−1 . 22. y′ = x+1

1−y . 23. y′ = 1−y
x . 24. y′ = y

1−x . 25. y′ = (x− 1)y. 26. y′ = x(y + 1). 27. y′ = 2x+y
x−2y . 28.

y′ = y−2x
2y+x 29. y′ = 2x + 2y + 1. 30. y′ = 2x − 2y − 1. 31. y′ = y − x2 − 2x − 2. 32. y′ = y − x2 + 2x. 33.

y′ = −x2 − y
x . 34. y′ = y

x + x2. 35. y′ = y − x3. 36. y′ = 2xy − 2. 37. y′ = x2 + y2 − 1. 38. y′ = x2 − y2 − 1.

Р-2.61

Найти интегральную кривую уравнения
(
1− x2y

)
dx+ x2(y − x)dy = 0, пересекающую прямую x = 1

2
под прямым углом.

5.6.3 Problems about applications in ecology
(хорошая подготовка для приложений могла бы быть.)

ФР. Задача про популяции при сборе урожая (??)
Исследовать решение уравнения

dx

dt
= c1x− a1x

2

1 + b1f
− f

Это уравнение о промысле (сборе урожая), оно описывает ситуацию, когда из популяционной системы,
описываемой логистическим уравнением отбирается биомасса со скоростью f . Наличие в знаменателе
второго слагаемого справа величины f определяет уменьшение конкуренции за счет отбора биомассы.
Определить условия устойчивого существования популяции.

(??? и как находить эту систему положений равновесия???? вот и слабая теория, приехали.)
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Part IV

—— Special Differential Equations in a
Nutshell ——
6 About another about Differential Equations

6.1 Other methods

(все классическое и менее популярное тут.)

6.1.1 phase trajectories and phase plane
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6.1.2 matrix exponent

Положения равновесия для диффура высшего порядка в окрестности грубых
положений равновесия

(тут типичное типирование их.)

Об узле

Об седле

О фокусе

Об узле

О дикритическом узле

6.1.2 matrix exponent

тут нюансов много

границы применимости

нюансы применения этого метода

чтобы быстро считать

связь с теорией групп

(см. Адлер гл. 8 или Олвер П., пока знаю, что они есть, но и не до них)

6.1.3 method of hackteristics

давно думал понять

6.2 Other typical diffuser-related tasks

6.2.1 On Equations in Differentials

Общего метода отыскания интегрирующего множителя не существует. Тут просто
нужно набраться опыта у преобразованиях.

Методы поиска интегрирующего множителя

Во всех типичных примерах алгоритм следующий:
0) смотрим, не является ли уравнение уравнением в полных дифференциалах
1) пробуем общие формулы. Для обозначений

M(x, y)dx+N(x, y)dy = 0

смотрим, не являются ли функции ниже функциями только функциями от x или y:

d lnµ

dx
=

1

N

(
∂M

∂y
− ∂N

∂x

)
d lnµ

dy
=

(
∂N

∂x
− ∂M

∂y

)
1

M

Если да, то интегрирующий множитель легко находится из этой формулы.
Если нет, то часто можно привести уравнение к уравнению в полных

дифференциалах, домножив его на функции подобные функциям 1
y
, x, y, также очень
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6.2.2 boundary value tasks

часто можно еще домножить на какие-то элементарные функции, которые есть в
исходном уравнении (типа ex, e−x, т.п.) Тогда интегрирующий множитель - как раз та
функция, которую мы подбором нашли.

О том, что не делать для решения уравнений в полных дифференциалах (???)

(?) Не сводить к обычным диффурам, потому что не решишь их. Пока такой опыт,
может быть, я ошибаюсь.

6.2.2 boundary value tasks

Доказательство наличия некоторого числа нулей на интервале (???)

(тут Теорема Штурма, а как конкретно - пока не помню.)

6.2.3 systems of linear diffusers with constant coefficients

Если функций 2 и система неоднородная, то перейти к диффуру высокого
порядка

Если система 3х3 с постоянными коэффициентами, то находим собственное
значение матрицы, дальше собственные и, если есть, присоединенные векторы,
дальше в общую формулу подставляем решение

присоединенные ищем как

(A− λE)hприс. = hсобств.

(?? укажу эти методы линала, которые я забыл уже.)
(укажу их количество, чтобы ориентироваться.)

Если система однородная и коэффициенты постоянные, то можно перейти к
матричной экспоненте (?)

(раскрою потом этот метод.)

Метод вариаций для систем (????)

(хз, много на это задач.)

Операционный метод для систем (???)

(еще очень много это отрабатывать, пока хз.)
(хз, много на это задач.)

6.2.4 systems of linear diffusers with variable coefficients

(?? тут жесть какая-то вообще я хз, вообще все забыл.)

6.2.5 Behavior of phase trajectories in the vicinity of noncoarse equi-
librium positions and on the entire phase plane

Исследование положения равновесия при параметре

(? тоже такие есть задачи, пока я хз)
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6.2.6 first integrals

6.2.6 first integrals

Поиск первых интегралов

6.2.7 simplest problems in partial derivatives

(?? в чем отличие от умф?)

6.2.8 Variational Methods: Basics

(тоже типичные задачи экзаменов!!)

Основные методы (!!!)

6.2.9 Other variation methods (??)

(это очень даже может понадобиться, так что будет раздел для этого.)

6.3 Some Oscillations

(see special note about them)

6.4 Methods of diffusers in other questions of physics

(по Мигдалу допишу, пока не думал про это)
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Part V

Other Topics
7 Oscillation Theory: Some Models and Methods

(see my special note about them for now)

8 Numerical Methods

(see special note about them)

8.0.1 Basic numerical methods of solution

8.0.2 Software implementation

(полезная глава, как прогать их?)

8.0.3 Network Visualization and Modeling

как рисовать траектории, как динамику на фазовом пространстве изображать, какие
свойства.

еще прогу подключу, конкретно коды вставлю, динамический хаос кстати запущу,
полюбуюсь на них.

8.0.4 visualization of trajectories

Соберем однажды методы, какими можно строить графики траекторий.

8.0.5 visualization of attractors and chaotic equations

тоже очень интересно.

8.0.6 wolfram simulation

9 Other Analytical Methods

9.1 Perturbation Theory for Differential Equations

(по идее тут всё о них и будет.)

9.1.1 Typical Perturbation Theory

Теория (?)

Как правило, решения дифференциальных уравнений не могут быть найдены в
аналитическом виде. В этом случае для их исследования следует при менять численные
методы. В то же время существует ограниченный набор "базисных" задач, решения
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9.1.1 Typical Perturbation Theory

которых могут быть н айдены ан алитически. Р ассмотри м случай, когда ди
фференциальное уравнение для величины уравнение сводится к виду

F (x, u, ∂xu, ...) + ϵG (x, u, ∂xu, ...) = 0.

Мы полагаем, что решение уравнения F = 0 известно ан алитически, а ϵ ≪ 1 - малый
п араметр. В этом случае решение уравнения (5.58) можно и скать в виде ряда по к
решению уравнения F = 0. Как правило, ряд по ϵ является асимптотическим.

Будем считать, что функция F линейна по старшей производной ∂nxu, а т акже
являет ся регулярной функцией своих переменных, не и меющей по ним особенностей в
интересующей нас области параметров. Этого всегда можно добиться преобр азов анием
ур авнения F = 0. Построение возмущенного решения уравнения (5.58) сводится к
следующему. Мы берем некоторое решение u0 уравнения F = 0 и подставляем его в
правую часть уравнения (5.58). После этого следует найти поправку u1 к u0, которую
можно найти, как решение уравнения

∂F

∂u
u1 +

∂F

∂ (∂xu)
∂xu1 + · · · = ϵG,

которое получ ает ся линеариз ацией левой части уравнения (5.58). В производные
∂F/∂u, ∂F/∂ (∂xu) здесь н адо подставлять u0. Приведенное линеаризованное уравнение
следует решать с учетом граничных условий. В результате решения получается
поправка u1 ∝ ϵ.

Задача

5.5.1. Найти нулевой и первый по ε членъ peшения ураєнения ∂xu + γu + ϵxu = 0 с
граничны.м условием u(0) = 1. Сравнитв его с точным решением этого уравнения.

Чтобы найти поправку второго порядка по ϵ, u2, следует подставить сумму u = u0 +
u1 + u2 в левую часть уравнения (5.58) и удержать в ней член, кв адратичный по ϵ. Для
этого F следует разложить до первого порядка по u2 и до второго порядка по u1, В правой
части уравнения (5.58) т акже следует найти вклад, кв адратичный по ϵ. Для этого в G
следует подставить u = u0+u1 и удержать член, линейный по u1. В результате получит ся
линейное уравнение на u2, решение которого (с учетом гр аничных условий) и даст вклад
второго по є порядка в u.

Обобщение этой процедуры на более высокие порядки очевидно. Мы должны каждый
раз аписывать u в виде u = u0 + u1 + u2 + ... и последов ательно находить u1, u2, ... решая
линейное ур авнение на очередную поправку, которое получ ает ся в результ ате удержив
ания в левой и правой части уравнения (5.58) членов соответствующего порядка по ϵ.
Несмотря на некоторую громоздкость, эта процедура позволяет прямым вычислением
найти разложение u по ϵ.

Одн ако прямая теория возмущений по ϵ оказывает ся неприменимой вблизи особых
точек, где коэффициент при старшей производной в функции F обращается в ноль. Она
также непри менима при анализе пограничных слоев, которые формируются в случае,
когда член со старшей производной отсутствует в F , но присутствует в G, то есть имеет
малость ϵ. Далее мы разбираем эти специ альные случаи.

Теория по МУ(?)

Изложенный выше формализм, хотя и непосредствен, но довольно сложен в высших
порядках. Рассмотрим кратко другой подход, который ведет к весьма элегантному
«преобразованию" предыдущего ряда.
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9.1.1 Typical Perturbation Theory

Требуется решить уравнение Lu = λu, (L0 +Q)u = λu. Запишем его в виде

L0u− λu = −Qu

В гл. 9 мы уже убедились в томi, что решiение уравнения (L0 − λ)u = f равно

u(x) =

∫
G (x,x′) f (x′) d3x′ =

∑
n

u0n
(
u0n · f

)
/
(
λ0n − λ

)
.

Следовательно, задача имеет формальное решение

u =
∑
n

u0n
(
u0n ·Qu

)
/
(
λ− λ0n

)
.

Конечно, пгериятность состоит в том, что в этом уравнении величина u встречается как
справа, так и слева: Предположим, что приQ→ 0u→ u0n, λ→ λ0n. Обозначим это решение
un и выделим из суммы (10.26) n-й член. Это дает

un = cu0n +
∑
m ̸=n

u0m
(
u0m ·Qun

)
/
(
λn − λ0m

)
,

где
c = u0n ·Qun/

(
λn − λ0n

)
.

Решим теперь методом итераций точное уравнение (10.27) для un:

un = cu0n +
∑
m ̸=n

u0m (u0m ·Qcu0n)
λn − λ0m

+

+
∑
m̸=n

∑
p ̸=n

u0m
(
u0m ·Qu0p

) (
u0p ·Qcu0n

)
(λn − λ0m)

(
λn − λ0p

) + ... =

= c

[
u0n +

∑
m̸=n

u0mQmn

λn − λ0m
+
∑
m ̸=n

∑
p ̸=n

u0mQmpQpn

(λm − λ0m)
(
λn − λ0p

) + ...

]
.

Таким образом, из (10.28) и (10.29). имеем

c
(
λn − λ0n

)
= u0n ·Qun =

= c

[
Qnn +

∑
m ̸=n

QnmQmn

λn − λ0m
+
∑
m ̸=n

∑
p ̸=n

QnmQmpQpn

(λn − λ0m)
(
λn − λ0p

) + ...

]
,

откуда получаем элегантный точный ряд для λn:

λn = λ0n +Qnn +
∑
m̸=n

QnmQmn

λn − λ0m
+

+
∑
m̸=n

∑
p ̸=n

QnmQmpQpn

(λn − λ0m) (λn − λp)
+ ...

Этот ряд лучiше, чем полученные ранее, так как можно сразу же написать член любого
порядка; но он обладает тем недостатком, что содержит λn как справа, так и слева;
возникающее уравнение для λn нужно решать либо итерациями, либо с помощью других
приближений.

(!?!?!?? отработаю потом в механике, пока так и не дотянулся нормально до этого.)
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9.1.2 Solution near the singular point of the basic equation

Теория возмущений с вырождением (!?!??)

(тут тоже большая теория, которой не занимался, нужно будте - займусь.)

9.1.2 Solution near the singular point of the basic equation

Теория (?)

Мы будем называть особыми те точки, где коэффи циент при старшей производной в F
обращается в ноль. Это является обобщением понятия особой точки, введенное в разделе
2.1.1. При наличии особой точки (которую мы без потери общности будем помещать в
x = 0) нулевое прибли жение уравнения (5.58) должно строиться следующим образом. Оно
задается решением уравнения F = 0 везде, за исключением узкой окрестности точки x = 0.
Чтобы найти поведение функции u в этой области, в функциях F и G следует сохранить
главные по x члены и решить получившееся уравнение. Его решение вне рассматривае
мой области выходит на решение уравнения F = 0, а вблизи особой точки регулярно по
x.

Продемон стрир уем сказанное н а при мере следующего уравнения первого порядка
(Лайтхилл)

(x+ ϵu)∂xu+ (2 + x)u = 0.

Пренебрегая здесь членом с ϵ, находим уравнение x∂xu+ (2 + x)u = 0, которое и меет
особую точку x = 0. Решение этого уравнения имеет вид

u =
C

x2
exp(−x)

где C - произвольная константа. Это решение обращается при x → 0 в бесконечность.
Чтобы исследовать поведение исходного уравнения (5.59) при малых x, слечлены по
малому x, что сводится к пренебрежению x в факторе 2 + x. В результате получае м
уравнение

(x+ ϵu)∂xu+ 2u = 0.

Сравнение факторов x и ϵ позволяет найти ширину области, где существенен член с ϵ, эта
ширина равна (Cϵ)1/3. Подстановка u = xη/ϵ приводит уравнение (5.61) к уравнению на
η с разделяющимися переменными. Его решение дает

u(x+ ϵu/3)2 = C,

что при x≫ (Cϵ)1/3 сводится к u = C/x2. Таким образом, решения (5.60) и (5.62) совп
адают в промежуточной области (Cϵ)1/3 ≪ x ≪ 1. При x ≪ (Cϵ)1/3 решение u выходит
на конст анту u0 = (9C/ϵ2)

1/3. Обращаем внимание нанеаналитическую зависи мость u0
от ϵ.

Задача

5.5.2. Построить нулевое приближение решения уравнения

(x+ ϵu)∂xu+ (3 + x)u = 0.

Рассмотрим следующее линейное уравнение второго порядка (ϵ > 0)[(
x2 + ϵ

)2
∂2x + 2

(
x2 + ϵ

)
x∂x + 1

]
u = 0,
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9.1.3 Boundary layer

при положительных x. Пренебрегая ϵ в (5.63), получаем уравнен ие, решения которого
cos(1/x), sin(1/x) ведут себя сингулярно при x → 0. Члены с ϵ в (5.63) становятся
существенными при x ∼

√
ϵ. При x≪ ϵ исходное уравнение (5.63) сводит ся к уравнению(

ϵ2∂2x + 1
)
u = 0

решения которого cos(x/ϵ), sin(x/ϵ) ведут себя регулярно при x → 0. Можно найти
решения и сходного уравнения (5.63)

cos

[
1√
ϵ
arctan

x√
ϵ

]
,

sin

[
1√
ϵ
arctan

x√
ϵ

]
,

которые покрывают обе асимптотические области. При x ≪
√
ϵ мы получаем из

(5.64) cos(x/ϵ), sin(x/ϵ), так как arctan(y) ≈ y при малых y. При x ≫
√
ϵ сит уация чуть

сложнее.

Задача

5.5.3. Проследить, как решения (5.64) переходят в решения cos(1/x), sin(1/x) при x≫√
ϵ.
В рассмотренных выше примерах удавалось аналитически найти выражения, которые

были справедливы сразу в двух асимптотических областях. Как правило, этого сделать не
удается, и в лучшем случае решение можно найти численно. Однако для общего анализа
решения достаточно исследовать его поведение в каждой аси мптотической области и
потребовать сшивки (то есть равен ства по порядку величины) найденных решений на
сшивать надо как сами функции, так и их производные (кроме старшей). Это дает
представление об общем характере решения и позволяет определить его изменения при
вариациях ϵ.

Задача

5.5.4. Построить асимптотические решения уравнения (x > 0, ϵ > 0)

(x+ ϵ)∂2x + 2∂xu+ xu = 0,

и проследить, как они переходят друг в друга.

9.1.3 Boundary layer

Теория (?)

Пограничный слой возникает в случае, когда дифференциальное уравнение,
которому подчиняется функция или поле, имеет малый коэффициент при старшей
производной. Пренебрежение членом со старшей производной упрощает уравнение, что
в ряде случаев позволяет решить его ан алитически. Но это ан алитическое решение не
может удовлетворить граничным у словиям, поскольку порядок усеченного уравнения
ниже, чем исходный. Поэтому задачу приходится решать отдельно для основной
области, где работает усеченное уравнение, и для узкого слоя вблизи границы
(пограничного слоя), где учет высшей производной обязателен. Общее решение
находится сшивкой найденных выражений на границе этих областей.
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9.1.3 Boundary layer

Подобная ситуация возникает, например, при анализе гидродинамических уравнений
при больших числах Рейнольдса. Тогда вязким членом в уравнении НавьеСтокса можно
пренебречь при ан ализе течения в объеме (исключая течения с очень малыми
масштабами), и мы приходим к уравнению Эйлера, которое имеет первый порядок по
градиенту. Однако решения уравнения Эйлера не могут удовлетворить граничным
условиям (нулевому значению скорости на границе). Поэтому вблизи границы имеется
вязкий пограничный слой, течение в котором может быть проан ализировано только в
рамках уравнения Навье-Стокса, содержащего вторую степень градиента.

Проиллюстрируем сказанное на простейшем примере уравнения

ϵ∂2xu+ ∂xu+ u = 0

где ϵ ≪ 1. Будем искать решение с граничными условия ми u = 0, ∂xu = 1 при x = 0.
Пренебрегая членом с ϵ в ур авнении (5.65), находим уравнение ∂xu+u = 0, общее решение
которого и меет вид u = a exp(−x). Очевидно, это решение не может удовлетворить
граничным условиям. Поэтому при малых x решение требует коррекции. Поскольку
u = 0 при x = 0, мы можем при малых x пренебречь членом с u в уравнении (5.65), что
дает ϵ∂2xu + ∂xu = 0. Решение этого уравнения с данными граничными условиями имеет
вид u = ϵ[1 − exp(−x/ϵ)]. Условие применимости этого приближения имеет вид ∂xu ≫ u,
что дает неравенство x≪ ϵ ln(1/ϵ), которое определяет толщину пограничного слоя. При
ϵ ln(1/ϵ) ≫ x ≫ ϵ най денное решение выходит на константу, равную є. Сравнивая эту
константу с u = a exp(−x), находим константу a = ϵ. Таким образом, мы находим решение
u = ϵ exp(−x), которое работает при условии x≫ ϵ.

Задача

5.5.5. Уравнение (5.65) решается точно. Найти его решение с граничными условиями
u = 0, ∂xu = 1 при x = 0 и сравнить его с найденнъм приближсенньм решен ием.

Переходим теперь к нелинейным уравнениям. В этом случ ае возможно существование
нескольких решений уравнения и даже построение решения, которое задается различными
выражения ми на разных интерв алах. На границах интервала должны быть выполнены
условия "склейки": непрерывность функции и ее производных вплоть до производной,
на единицу меньше порядка уравнения. Напри мер, для ур авнения первого порядка
достаточно потребовать непрерывности самой функции, а для уравнения второго порядка
должны быть непрерывны сама функция и ее первая производная. При этом возникает
"контринтуитивная" ситуация, когда, скажем, для уравнения первого порядка в точке
склейки производная функции может испытывать скачок. Понятие пограничного слоя
позволяет прояснить эту ситуацию.

Рассмотрим в качестве примера уравнение первого порядка (∂xu)
2 = 1. Оно имеет

решение u = |x|, которое удовлетворяет у словию неп рерывности, но имеет скачок
производной в точке x = 0. Спрашивается, как возможно возникновение такого
разрывного решения?

Для выяснения этого вопроса введе м в указанное уравнения вторую производную с
малым коэффициентом: ϵ∂2xu+ (∂xu)

2 = 1. Это уравнение легко решается ан алитически,
для чего следует ввести переменную w = ∂xu, для которой приведенное уравнение
является уравнением первого порядка с разделяющи мися переменными. Его решением
(с точностью до сдвига по x) является w = tanh(x/ϵ). Интегрирование этого выражения
дает u = ϵ ln cosh(x/ϵ).

Это решение бесконечно дифференцируемо и не имеет никаких особенностей на
действительной оси. В то же время мы сталкиваемся с пограничным слоем толщиной ϵ,
вне которого, то есть при |x| ≫ ϵ, функция u ≈ |x|. Понятно, что в пределе ϵ → 0 мы
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9.1.3 Boundary layer

получаем u = |x|, с разрывом производной. Обобщая это наблюдение, можно сказать,
что решения с разрывами в производных являются следствием наличия пограничных
слоев, толщина которых устремляет ся к нулю. Проан ализируем нелинейное уравнение

ϵ∂2xu+
(
1 + u2

)
∂xu− 2 = 0,

где ϵ ≪ 1. Снова будем искать решение с граничными условиями u = 0, ∂xu = 1
при x = 0. Пренебрегая членом с ϵ в уравнении (5.66), находим уравнение, решение
которого определяется соотношением u + u3/3 = 2 (x− x0), которое, очевидно, не может
удовлетворить обеим граничным условиям. В силу того, что u = 0 для x = 0, при малых
x членом с u2 в уравнении (5.66) можно пренебречь. В результате мы находим уравнение
ϵ∂2xu + ∂xu − 2 = 0, решение которого с принятыми граничными условиями находится из
соотношения ϵ∂xu+ u = 2x+ ϵ. Решение, удовлетворяющее данным граничным условиям,
имеет вид

u = 2x− ϵ+ ϵ exp(−x/ϵ).

Критерием при мени мости (5.67) является u ≪ 1, то есть x ≪ 1. В то же время уже
при x≫ ϵ решение (5.67) выходит на 2x− ϵ, откуда следует x0 = ϵ/2.

В рассмотренных примерах удавалось аналитически найти выражения, которые были
справедливы сразу в двух асимптотических областях. Как правило, этого сделать не
удается, и в лучшем случае решение можно найти численно. Однако для общего анализа
решения достаточно исследовать его поведение в каждой асимптотической области и
потребовать сшивки (то есть равенства по порядку величины) найденных решений на
границе областей. Эта процедура дает пре дставление об общем характере решения и
позволяет найти его изменения при вариациях ϵ.

Задача

5.5.6. Проанализировать решение уравнения ϵ∂2xu+ ∂xu+ xu = 0 при малых ϵ.
Пограничный слой может содержать несколько подслоев. Рассмотрим в качестве при

мера ур авнение
ϵ3∂2xu+ x3∂xu+

(
x2 − ϵ

)
u = 0,

где x > 0, ϵ > 0, ϵ ≪ 1. Полагая в (5.68) ϵ = 0, находим уравнение x∂xu + u = 0. Его
решение ∝ 1/x, оно реализуется в основной области x ≫ ϵ1/2. При ϵ2/3 ≪ x ≪ ϵ1/2 можно
пренебречь первым членом в (5.68) и x2 по сравнению с ϵ, что приводит к уравнению
x3∂xu− ϵu = 0, решение которого ∝ exp [−ϵ/ (2x2)]. При x≪ ϵ2/3 в (5.68) следует оставить
только члены с ϵ, что приводит к уравнению ϵ2∂2xu− u = 0, решения которого exp(±x/ϵ).
Таким образом, получаем

u = Dϵ1/2/x, x≫ ϵ1/2

u = C exp [−ϵ/ (2x2)] , ϵ2/3 ≪ x≪ ϵ1/2

u = A exp(x/ϵ) +B exp(−x/ϵ), x≪ ϵ2/3

Эти выражения должны по порядку величины совпадать на границах областей, что дает
два условия на константы A,B,C,D. Еще два соотношения дают граничные условия.
Если, скажем, u(0) ∼ 1u(1) ∼ 1, то A ∼ B ∼ 1, lnC ∼ ϵ−1/3, D ∼ C.

Задача

5.5.7. Проанализ ировать решение уравнения ϵ3∂2xu + ϵ sinhu∂xu + x∂xu + tanhu = 0
при малых ϵ. Рассмотреть случай граничного условия u = 0 при x = 0.
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9.2 Other Methods of Solving Equations

9.2 Other Methods of Solving Equations

9.2.1 Solutions Using Infinite Series (!?!??!)

(тоже типичная теория, пока тут, мб в раздел с основами помещу.)

9.3 Integrable Systems: Introduction

(тоже важно их указать, потому что это первый раздел, который вытекает из
диффуров.)

9.4 Stochastic Differential Equations: Introduction

(see special note about them, random processes. I’ll later write some basic topics about
them also here)

9.5 Averaging Method (?!)

9.5.1 Typical method

Снова обратимся к дифференциальному уравнению (5.58), которое мы будем
рассматривать в рамках временнОй эволюции. Поэтому независи мой переменной теперь
будет время t, а уравнение (5.58) перепишется в виде

F (t, x, ∂tx, ...) + ϵG (t, x, ∂tx, ...) = 0

Уравнение (6.11) можно решать по теории возмущений, которая заключается в
следующем. Сначала мы находим решение уравнения F = 0, затем подставляем это
нулевое решение в G и находим из уравнения (6.11) первую по поправку к нулевому
решению, и так далее. Тем самым решение будет найдено в виде ряда по є. эта
процедура может быть осуществлена аналитически, если функции F,G достаточно
просты. В противном случае ее можно осуществлять только численно. О днако в ряде
случаев разложение по ϵ может разрушаться на больших временах t. Это происходит,
если решение уравнения F = 0 имеет осцилляторный характер, а функция G приводит к
резонансу с этими осцилляция ми. В этом случае в решении уравнения (6.11) возникают
так называемые вековые (секулярные) члены, которые растут со временем быстрее, чем
нулевое решение, то есть решение уравнения F = 0. Это приводит к тому, что со
временем секулярные члены, несмотря на малость по є, могут стать сравнимыми с
нулевым решением, что и приводит к его разрушению. Роль секулярных членов в ди
фференциальных уравнениях исследовалась еще в 18 веке в работах Лагранжа и
Лапласа при расчете эволюции планетных орбит.

В качестве простейшей иллюстрации сказанного рассмотрим уравнение

∂2t x+ x = ϵx3.

При ϵ = 0 решение уравнения (6.12) имеет вид x0 = a cos(t − τ), где τ - произвольная
кон станта. Подставляя это выражение в правую часть уравнения (6.12), мы находим
уравнение для первой поправки x1 к x0:

∂2t x1 + x1 =
1

4
ϵa3[cos(3t− 3τ) + 3 cos(t− τ)].
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Второе слагаемое в правой части (6.13) имеет частоту основного решения, то есть
находится в резонансе с левой частью этого уравнения. Оно порождает следующий
секулярный вклад в x1:

x1 =
3

8
ϵa3(t− τ) sin(t− τ).

Очевидно, что на достаточно больших временах, когда t ∼ (ϵa2)
−1, приведенная

поправка становится порядка нулевого решения, что и означает нарушение
применимости разложения по ϵ.

Можно существенно усовершенствовать схему решения уравнения (6.12) по сравнению
с прямой теорией возмущени й, построив прибли женное решение, которое работает на
временах t много бОльших (ϵa2)

−1. Будем искать решение уравнения в виде x = a cos(t−
τ), где a и τ являются медленными функциями времени. Под- став ляя это выражение
в уравнение (6.12) и сохраняя только первые производные по времени от a, τ , находим
следующее уравнение

−∂ta sin(t− τ) + ∂tτa cos(t− τ) =
3

8
ϵa3 cos(t− τ)

где мы оставили в правой части только резонансный член. Опущенный (не резонансный)
член дает поправки, малые по ϵ, на всех временах. Приравнивая к нулю коэффициенты
при синусе и косинусе, находим си стему уравнений

∂ta = 0, ∂tτ =
3

8
ϵa2.

Очевидным решением системы (6.14) является a = const, τ = τ0 + (3/8)ϵa2t, где τ0 -
произвольная константа. Таким образом, мы приходим к решению

x = a cos
[
t− (3/8)ϵa2t− τ0

]
которое представляет собой осцилляции с частотой ω = 1− (3/8)ϵa2. Поправка к единице
называется нелинейным сдвигом частоты.

Установим критерий применимости выражения (6.15). При выводе уравнения (6.14)
мы отбросили члены с ∂2t τ и с ∂2t a. Малым параметром, по которо- му это можно
сделать, является ϵa2. Именно с этой относительной точностью найдено выражение для
∂tτ , поэтому поправка к этому выражению может быть оценена, как ϵ2a4. Таким
образом, поправка к аргумен- ту косинуса в выражении x = a cos(t − τ) может быть
оценена, как tϵ2a4, то есть решение (6.15) работает при условии t≪ (ϵ2a4)

−1.

Задача

6.2.1. Сравнить решение (6.15) с точным решением уравнения (6.12) и проверить
критерий применимости выражения (6.15).

Приведенную выше схему можно обобщить на случай произвольного малого
возмущения уравнения гармонического осциллятора. А именно, рассмотрим уравнение
осциллятора с частотой 1 и добавим в правую часть этого уравнения произвольный
малый член, зависящий от x и ∂tx:

∂2t x+ x = ϵG (x, ∂tx) .

Способ приближенного решения такого уравнения называется методом
Боголюбова-Крылова. Введем вспомогательную переменную z = x + i∂tx. В терминах
этой функци и уравнение (6.16) приобретает следующую форmy

∂tz = −iz + iϵG(Re z, Im z).
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Вводим абсолютное значение и фазу z : z = a exp(iφ). Тогда уравнение (6.17)
переписывается в виде

∂ta = ϵ sinφG(a cosφ, a sinφ),

∂tτ = ϵ
cosφ

a
G(a cosφ, a sinφ),

где φ = −t+ τ . До сих пор преобразования были точными. Чтобы продвинуться дальше,
заметим, что приращения a и τ за период малы в силу малости ϵ. Поэтому при вычислении
этих приращений в правой части (6.18) и τ можно считать константами, что дает

∆a = ϵ

2π∫
0

dφ sinφG(a cosφ, a sinφ)

∆τ = ϵ

2π∫
0

dφ
cosφ

a
G(a cosφ, a sinφ)

Обратим внимание нато, что τ выпадает из выражений для этих приращений (в силу
того, что начало отсчета периода произвольно). Таким образом, для медленной эволюции
(на больших временах) мы находим следующие эффективные уравнения

∂ta =
ϵ

2π

2π∫
0

dφ sinφG(a cosφ, a sinφ),

∂tτ =
ϵ

2π

2π∫
0

dφ
cosφ

a
G(a cosφ, a sinφ).

Легко проверить, что для проанализиров анной нами задачи (6.12), когда G = x3,
уравнения (6.19, 6.20) сводятся к уравнениям (6.14).

Задача

6.2.2. Найти поведение на больших временах амплитуды колебаний осуиллятора с
нелинейным затуханием ∂2t x+ x = −ϵ (∂tx)3 при малом ϵ.

Задача

6.2.3. Проанализ ировать поведение решения уравнения ∂2t x + x = −ϵ∂tx |∂tx| при
малом ϵ.

Рассмотрим уравнение Ван дер Поля с малым множителем в правой части, ϵ≪ 1:

∂2t x+ x = ϵ
(
1− x2

)
∂tx.

Уравнения (6.19, 6.20) для этого случая сводятся к

∂ta =
ϵ

2
a
(
1− a2/4

)
, ∂tτ = 0.

Yравнение (6.22) описывает приближение амплитуды a к устойчивой фиксированной точке
a = 2, которая соответствует асимптотическому режиму автоколебаний (предельному
циклу).
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Задача

6.2.4. Проанализ ировать поведение решения уравнения ∂2t x+ x = −ϵ (1− x2)
2
∂tx при

малом ϵ.

Задача

6.2.5. Проанализ ировать поведение решения уравнения ∂2t x + x = ϵ (1− x2) ∂tx +
ϵx3 при малом ϵ. Метод Боголюбова-Крылов а может быть обобщен на случай явной
зависимости функции G в уравнении (6.16) от времени при условии, что функция G
остается приблизительно периодической функцией времени с периодом 2π. Для решения
задачи в этом случае снова исходим из уравнений (6.18), где в правой части появляется
явная зависимость от времени:

∂ta = ϵ sinφG(t, a cosφ, a sinφ),

∂tτ = ϵ
cosφ

a
G(t, a cosφ, a sinφ),

где φ = −t + τ . Снова интегрируя по периоду и находя приращения a и τ , находим
эффективные уравнения

∂ta =
ϵ

2π

2π∫
0

dϕ sinφG(t− ϕ, a cosφ, a sinφ)

∂tτ =
ϵ

2π

2π∫
0

dϕ
cosφ

a
G(t− ϕ, a cosφ, a sinφ)

где φ = τ − t+ ϕ. Обратим внимание нато, что теперь τ явно входит в решение.

Задача

6.2.6. Найти решение уравнений (6.24,6.25) для резонансной накачки G = cos t.

Задача

6.2.7. Найти решение уравнений (6.24, 6.25) для резонансной параметрической накачки
G = x cos(2t).

Задача

6.2.8. Найmи решение уравнений (6.24, 6.25) для осиилятора Ван дер Поля с накачкой
G = (1− x2) ∂tx+ κ cos t

До сих пор мы приводили выражения для приближенных уравнений колебаний
возмущенного осциллятора с единичной частотой. Bce найденные выражения легко
обобщ аются на случай конечной частоты осциллятора ω. Приведем соответств ующие
выражения. Вместо уравнения (6.16) следует рассмотреть уравнение

∂2t x+ ω2x = ϵG,

где ω - собственная ч астота осциллятора. Будем искать решение этого уравнения в виде

x = a cos(−ωt+ θ),
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9.5.2 Averaged equations for wave motion

где a, θ - медленные функции времени. Уравнения на эти функции являются прямым
обобщением уравнений (6.19, 6.20)

∂ta =
ϵ

ω

2π∫
0

dφ

2π
sin(φ)G

∂tθ =
ϵ

ωa

2π∫
0

dφ

2π
cos(φ)G

При вычислении интегр алов в правых частях (6.28, 6.29) в функцию G следует подставить
u → a cosφ, ∂tu → ω sinφ. Уравнения (6.28, 6.29), очевидно, сводят ся к (6.19, 6.20) при
ω = 1.

В качестве тривиального примера рассмотрим линейный осциллятор с затуханием. В
этом случае G = −2∂tx, а ϵ является декрементом затухания. Подставляя это выражение в
соотношения (6.28, 6.29), находим ∂tθ = 0, ∂ta = −ϵa. Как и следует, амплитуда a затухает
co временем с декрементом ϵ.

9.5.2 Averaged equations for wave motion

Метод усре днения, развитый выше для колебательного движения, непосредст венно
обобщается и для волнового движения. Как и для колебательного движения, мы будем
считать, что в главном приближении волновое движение описывается линейными
волновыми уравнениями, и будем изучать роль малых поправок, связанных с
нелинейностью, внешни м воздей ствием, неоднородностью и так далее.

Р ассмотрим волновое движение, кот орое опи сывает ся полем u(t, r), уравнение на
которое имеет вид

∂2t u+ ω̂2u = ϵG.

Здесь оператор ϖ̂ = ϖ(−i∇) определяется законом дисперсииϖ(q) волнового движения, а
G - некоторая функция поля u, его производных, а также, возможно, времени и координат.
Параметр ϵ в правой части уравнения (6.30) считается малым. В нулевом приближении,
когда ϵ = 0, уравнение (6.30) сводится к чисто волновому линейному уравнению, которое,
в частности, и меет решение в виде бегущей плоской волны с волновым вектором q :
u = a cos(−ωt + qr + θ), где ω = ϖ(q), а θ - произвольная константа. Будем искать
решение уравнения (6.30) в том же виде u = a cos(−ωt + qr + θ), где теперь (с учетом
дополнительного члена с G) параметры a и θ являются медленными функциями времени
и коор динат.

Используем тот же прием, который позволил найти усредненные уравнения для
возмущенного гармонического осциллятора. Для этого вводим функции u1 и w:
∂tu1 = ω̂u, w = u + iu1. Тогда уравнение (6.30) перепишет ся в виде уравнения первого
порядка

∂tw = −iω̂w + iϵϖ̂−1G.

Подставляя сюда w = a exp(−iωt+ iqr + iθ), находи м

∂ta+ ia∂tθ + v∇a+ iav∇θ = iϵ

ω
G exp(−iφ),

где v = ∂ϖ/∂q - групповая скорость волны. При выводе мы использовали соотношение(
ψ = aeiθ

)
ϖ(−i∇)[exp(iqr)ψ] = exp(iqr)ϖ(q − i∇)ψ,
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9.5.2 Averaged equations for wave motion

и coxpa ϖ(q − i∇) нулевой и первый члены разложения по ∇/q. Мы также заменили в
правой части ω̂ → ω−1, что справедливо в главном порядке по ϵ. Выделяя в полученном
уравнении действительную и мни мую ч асти, находим

∂ta+ v∇a =
ϵ

ω
sin(φ)G

∂tθ + v∇θ = ϵ

ωa
cos(φ)G

Усредняя эти уравнения по периоду, мы находим уравнения для медленных
переменных

∂ta+ v∇a =
ϵ

ω

2π∫
0

dφ

2π
sin(φ)G

∂tθ + v∇θ = ϵ

ωa

2π∫
0

dφ

2π
cos(φ)G

В аргументе функции G в выражениях (6.33,6.34) следует подставлять u→ a cosφ,∇u→
−qa sinφ, ∂tu → ωa sinφ. Последние выражения получаются в главном приближении по
ϵ, что достаточно в силу того, что правая часть выражений (6.33, 6.34) уже содержит
малость по ϵ. Vравнения (6.33, 6.34) являются прямым обобщением уравнений (6.28, 6.29).
Единст венная разница заключается в наличии переносного члена с градиентом. Можно
сказать, что ур авнения (6.33, 6.34) совпадают с уравнениями (6.28, 6.29) в системе отсчета,
которая движется с групповой скоростью v. Следует, однако, помнить о том, что мы
имеем дело с полем, заданным в пространстве. И потому уравнения (6.33, 6.34) необходи
мо решать с учетом граничных условий.

В качестве тривиальной иллюстрации сказанного рассмотрим случай затухающей
волны. В этом случае G = −2∂tu, а ϵ является декрементом зат ухания волны.
Подстановка этого выражения в соотношения (6.33, 6.34) приводит к уравнениям

∂ta+ v∇a = −ϵa, ∂tθ + v∇θ = 0.

Решение уравнения для амплитуды a неоднозначно. Например, решениями этого
уравнения являются a ∝ exp(−ϵt) (a не зависит от координат), или a ∝ exp (−ϵvr/v2) (а
не зависит от времени). Найти и стинное решение уравнения для амплитуды можно
только с учетом граничных условий.

Перейдем теперь к уравнению на огибающую ψ = a exp(iθ). В этом случае уравнения
(6.33, 6.34) переписывают ся в виде

∂tψ + v∇ψ =
iϵ

ω
exp(iθ)

2π∫
0

dφ

2π
exp(−iφ)G.

Например, для G = u3 уравнение (6.35) сводится к

∂tψ + v∇ψ =
3iϵ

8ω
|ψ|2ψ.

Если перейти в систему отсчета, движущуюся с групповой скоростью v и учесть
следующий член разложения ϖ(q − i∇) по ∇/q в (6.32), то мы получим нелинейное
уравнение Шрёдингера.

Задача

6.2.9. Найти уравнение на огибающую ψ для G = u(∇u)2.
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9.5.3 Other about the averaging method

Задача

6.2.10. Найти уравнение на огибающую ψ для нелинейного затухания G = −∂tu(∇u)2.

9.5.3 Other about the averaging method

(мб тут, мб в каталоге напишу, пока хз)

Применения в механике (!?!?!?!?!?)

Об усреднении в маятнике Капицы (!?!?!?!?)

(?? зашарю уже это наконец-то???)

9.5.4 Introduction to Exotic Methods of Avergaings

(there are books about them, I don’t know them, maybe one day I’ll read something about
them...)

9.6 Dynamical Systems (???)

(write intro, see a special note about them also or mechanics)

9.7 Geometrical Methods for DE (???)

(потом по Арнольду мб пройду, пока не актуально.)

9.8 Exotic Differential Equations

9.8.1 Chaotic Trajectories

(тоже часто из всей теории только эта нужна, так что вот, заготовка про неё будет.)
(see that youtube video about them and write some theory)

9.8.2 Delayed differential equations

(такое тоже есть, потом пропишу)

Аналитические свойства

(пока по вики, я просто знаю, что такое есть, чуть что доучивать буду когда-то.)
- Continuous delay

d

dt
x(t) = f

t, x(t), 0∫
−∞

x(t+ τ)dµ(τ)


- Discrete delay

d

dt
x(t) = f (t, x(t), x (t− τ1) , ..., x (t− τm))

for τ1 > · · · > τm ≥ 0. - Linear with discrete delays

d

dt
x(t) = A0x(t) + A1x (t− τ1) + · · ·+ Amx (t− τm)
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9.8.2 Delayed differential equations

where A0, ..., Am ∈ Rn×n. - Pantograph equation

d

dt
x(t) = ax(t) + bx(λt)

where a, b and λ are constants and 0 < λ < 1. This equation and some more general forms are
named after the pantographs on trains.

Solving DDEs

DDEs are mostly solved in a stepwise fashion with a principle called the method of steps.
For instance, consider the DDE with a single delay

d

dt
x(t) = f(x(t), x(t− τ))

with given initial condition ϕ : [−τ, 0] → Rn. Then the solution on the interval [0, τ ] is given
by ψ(t) which is the solution to the inhomogeneous initial value problem

d

dt
ψ(t) = f(ψ(t), ϕ(t− τ))

with ψ(0) = ϕ(0). This can be continued for the successive intervals by using the solution to
the previous interval as inhomogeneous term. In practice, the initial value problem is often
solved numerically.

Example

Suppose f(x(t), x(t− τ)) = ax(t− τ) and ϕ(t) = 1. Then the initial value problem can be
solved with integration,

x(t) = x(0) +

t∫
s=0

d

dt
x(s)ds = 1 + a

t∫
s=0

ϕ(s− τ)ds

i.e., x(t) = at + 1, where the initial condition is given by x(0) = ϕ(0) = 1. Similarly, for the
interval t ∈ [τ, 2τ ] we integrate and fit the initial condition,

x(t) = x(τ) +

t∫
s=τ

d

dt
x(s)ds = (aτ + 1) + a

t∫
s=τ

(a(s− τ) + 1)ds

= (aτ + 1) + a

t−τ∫
s=0

(as+ 1)ds,

i.e., x(t) = (aτ + 1) + a(t− τ)
(
1
2
a(t− τ) + 1

)
.

Reduction to ODE (???)

In some cases, differential equations can be represented in a format that looks like delay
differential equations.
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9.9 Calculus of Variations: Basic Methods

Example 1

Consider an equation

d

dt
x(t) = f

t, x(t), 0∫
−∞

x(t+ τ)eλτdτ

 .

Introduce y(t) =
0∫

−∞
x(t+ τ)eλτdτ to get a system of ODEs

d

dt
x(t) = f(t, x, y),

d

dt
y(t) = x− λy.

Example 2

An equation

d

dt
x(t) = f

t, x(t), 0∫
−∞

x(t+ τ) cos(ατ + β)dτ


is equivalent to

(?????)

Программные вычисления

9.9 Calculus of Variations: Basic Methods

(put theory from typical textbook about them)

9.10 Calculus of Variations: Special Methods

(I know that they exists, but I never needed them. I’ll look maybe later, there are big books
about them)

9.11 Calculus of Variations: Special Methods for Applications in
Physics

(here, I’ll collect methods, that are used in articles in physics, which which I worked at least
a little)

10 Some Famous Equations (??)

(пока без структуры, не так она нужна.)

10.1 Bernoulli equation

(тут подробно, в начале коротко обсудили уже)

10.1.1 Theory

пока хз
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10.1.2 Attachments

10.1.2 Attachments

потом всё это просмотрю

10.2 Riccati equation

(просто помню такое, много про него инфы, мб потом что-то соберу)

10.2.1 Theory

пока хз

10.2.2 Attachments

потом всё это просмотрю

10.3 Others

(все важные остальные тут)

10.3.1 Airy equation

всё про него заготовлю тут.

11 Applications of differential equations

отсылки на то, что в статьях подробно я прошел и изучил.

11.1 Applications in mathematics and other sciences

(большая важная г лава, которую буду делать когда на мастерский уровень буду
выходить, пока нужно каталог решать!)

11.2 Applications in Physics

11.2.1 In mechanics

(уже скоро эту связку буду создавать, ибо механика уже супер развивается)

11.2.2 In quantum mechanics

(уже скоро эту связку буду создавать, ибо механика уже супер развивается)

11.2.3 On Applications in Other Physics

(уже скоро эту связку буду создавать, ибо механика уже супер развивается)

11.3 Life Applications

(??? I don’t know but they may be applicable)
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11.3.1 Economic applications

11.3.1 Economic applications

????

11.3.2 Environmental Applications (?)

(тоже касался там приложений.)
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Part VI

Appendix
A Introduction and Overview

A.1 Extra Motivation

(позже пропишу, пока хватает)

Многочисленные применения в физике

Просто это один из самых важных предметов для физики. Без него все будет супер
медленно и туго.

пролетим быстро по методам, потом усилим их профессиональными методами - потом
пойдем применять.

применений вышей крыши, для этого и развиваю эту сборку.

Очень часто физическая модель сводится именно к диффуру и основной
задачей становится только решить этот диффур

Поэтому с некоторой точки зрения для не таких заумных разделов физики диффуры
- основной предмет. Поэтому не лень подготовить методы на типичные задачи.

Сложные задачи часто сводятся к специфическим методам решения
диффуров, с которыми не разобраться, если не взята база

Так что знание диффуров отличит профессионала от новичка.
Теормин по механике мне четко указал, что без нормального понимания диффуров,

профессионально механикой не получится заняться. Думаю, часто аналогичная ситуация
будет.

Да, часто задачи сводятся к чему-то другому, но вероятность, что дело сведется к
диффуру, наибольшая.

Иногда нужно проанализировать свойства диффура

когда там решение одно, когда несколько?
Тут без подготовки не приступиться, так что не сложно собрать теоретическую базу в

20-60 страниц, с которой анализ будет без проблем делаться.

формируют представление о мире

там про связь с хаосом.
пропишу это в первой части
возможно, вообще все в мире ими описывается (?????)
потом подумаю про их важность отдельно.
что не описать диффурами?

Наиболее прикладные темы дифференциальных уравнений

обсудим, какие темы на самом деле самые важные тут.
(пока слишком слабый уровень, чтобы видеть, что на самом деле можно использовать.)
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A.2 The Mindset of Professionals

Удивительные факты

(тоже многое можно будет написать, пока не тот уровень.)

A.2 The Mindset of Professionals

Осудим, какое мышление наиболее эффективное для усвоение предмета.
(!! оч важный раздел, ибо особый подход к предмету нужен, ибо 100500 подводных

камней в нем!!)

A.2.1 Solving Effectively DE

С этими методами все быстро и решается, каждый день их и использую.

Проверки решений уравнений

Если задача важная, то всегда после решений идет проверка как ниже.

Проверяем, не потеряли ли мы какое-то константное решение.

(что-то очевидное)

Чаще всего просто по Вольфраму проверяем

Если нет ответов, то проверяем по вольфрмау! А также, не потеряли ли мы какие-то
решения при преобразованиях, если можно, подставить решения в уравнение и
посмотреть, такое ли оно? Это очень важно не забывать делать!

В помощь команды:
DSolve[eqn ,u,x]
Apart[fraction]
Simplify[eqn]

Об отличиях с ответами

Если сравниваем с ответами, помним, что константа может иметь разные знаки. Это
могло бы отнять время, потому что из-за разных знаков у констант вид решения может
отличается от того, который в ответах.

A.2.2 Attitude to the DE (!?)

Дифференциальные уравнения - это набор относительно простых задач с
небольшой для них теорией, а также специфических методов

Грубо говоря это так. Конечно, деталей везде полно, и многое есть сложного и
неочевидного, тем не менее, грубо говоря это так и боятся нечего, спокойно каждый день
можно по паре и прорешивать уравнений себе для разминки, главное только базовую
теорию на минимальном уровне написать.

Важность лишь пары отдельных методов

Тут раскрою мысль, что мы пользуемся лишь парой методов. И именно они нужны,
остальное - лишь общее образование, которое тоже полезно, но не настолько нужно, как
пара методов, которые могут где угодно применяться.

239



A.2.3 Ways to Guess Some Key Ideas

Внимательность и последовательность

Очень важно всегда внимательно каждый шаг преобразований делать, иначе засядешь!
(остальное такое же тут укажу с опытом.)

Смысл дифференциальных уравнений

О том, что с помощью них описать можно, а что нельзя

(потом такой обзор приведу. неужели абслютно всё и можно??)

О философии за дифференциальными уравнениями

(там что пути по жизни это тоже траектории, что есть устойчивость, а есть большая
зависимость от мелких начальных условиях. тоже важные общефилософские
соображения, однако они напрямую не применяются, потому что все равно все сводится
к тому, что сейчас конкретно происходит?)

заблуждение, что дифференциальные уравнения простые

как бы вроде и нет.
хотя кажутся и простыми.
тут подробнее напишу про тех, кто думает, что диффуры простые.
принципиально они их не начнут знать.

A.2.3 Ways to Guess Some Key Ideas

(overview how people guessed some key ideas for the first time)

не нужно думать, что все в жизни ими описывается (???)

пока хз.
но точно - циклиться на них это плохое дело.
в жизни слишком много парамтеров и слишком все сложно.

теоремы существования и типов решений очень важны в любой нестандартной
ситуации (???)

пока просто не встречалось, но я слышал, что это нужно.
под вопросом это.

A.3 Acknowledgements

Currently, no one except me has worked on the sections of this note (with the exception of
sections taken from books).

A.4 Literature

A.4.1 Main Literature

Минимальная

(пока хз, ни одну книгу я так и не прочитал, потому что лень.)
Диесперов Лекции по дифференциальным уравнениям
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A.4.2 Extra Literature

Базовый курс мфти, написан просто ужасно в плане верстки, в плане содержания,
наверное, неплохо.

Петровский
Может, потом добавлю, основной сделаю.
Мэтьюз Уолкер (МУ (так мб потом буду обозначать, пока слишком мало из него

выгрузок)
в некоторых курсах написано, что это хорошая книга, я почти не проверял, но если

буду к мастерству выводить запись, то может быть буду много смотреть ее.

Books With Many Solved Problems

Романко В. К. Сборник задач по дифференциальным уравнениям и вариационному
исчислению

Основной задачник
Филиппов А. Ф. Сборник задач по дифференциальным уравнениям.
Мб добавлю потом, пока не вижу смысла.

По теории колебаний и волн

М.И.Рабинович, Д.И.Трубечков Введение в теорию колебаний и волн
Хороший большой учебник по колебаниям и волнам, скорее всего посмотрю потом.
А.А. Андронов, А.А. Витт, С.Э. Хайкин. Теория колебаний
Книга про подробный анализ колебаний, уже в механике возникла потребность в этой

теории.

По теории устойчивости

A.4.2 Extra Literature

По другим методам

Арнольд В. И. Дополнительные главы теории обыкновенных дифференциальных
уравнений. M.: Наука, 1978.

Много отсылок, но неизвестно, есть ли настоящая польза от этой книги, так что не
буду заниматься вообще ей, пока стабильно типичные задачи не буду решать. Пока еще
неделя тренировок для этого уровня требуется.

О тех же темах, что основная

Поятрязия Л. C. Обыкновенные дифференциальные у равнения, - Ижевск: Регулярная
и хаотическая динамики, 2001.

пока почти не открывал, потом посмотрю.

А.Н. Тихонов, А.Б. Васильева, А.Г. Свешников Дифференциальные уравнения
Милая небольшая книга, где много полезной информации, есть физические примеры.

Для общего образования неплохая, просто редко есть время заниматься такого типа общим
образованием. Читал ее часа 5, когда мне было 19 лет.

Филиппов A. Φ. Введение в теорию дифференциальных ур авнений. - Москва: YpCC,
2004,2007; - Москва: КомКнига, 2007, 2010, http://bookfi.org/book /791964.

пока почти не открывал, потом посмотрю.

Степанов B. B. Курс дифференциальных уравнений. - Москва: ЛКИ, 2008.
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A.4.2 Extra Literature

пока почти не открывал, потом посмотрю мб.

Ромаяко B. K. Курс дифференциальных уравнений и вариационного исчисления.
Москва: Лаборатория базовых зн ан ий, 2000-2011.

пока не открывал, потом посмотрю мб.

Федорюк M.B. Обыкновенные дифференциальные уравнения. - Санкт-Петербург:
Лань, 2003.

пока не открывал, потом посмотрю мб.

Умяов A. E., Умяов E. A. Основы теории обыкновенных дифференциальных
уравнений. - Москва: МФТ И, 2016, http://www.umnov.ru.

пока не открывал, потом посмотрю мб.

Гелъфанд И. М., Фомия C.B. Вариационное исчисление, - Москва: Физматгиз, 1961,
http://techlibrary,ru/bookpage. htm.

пока не открывал, потом посмотрю мб.
Петровский И. Г. Лекции по теории обыкновенных дифференциальных уравнений.

Москва: Физматлит, 2009.
Наверное, когда-то я раз открыл, понял, что быстро не разобраться и закрыл, итак

есть куча другой хорошей литературы. Но, вроде, полезная книга.

Купцов. П., Николаев B.C. Курс лекций по теории обыкновенных дифференциальных
уравнений: учебное пособие. - Москва: МФТ И, 2003.

пока не открывал, потом посмотрю мб.

Ипатова B. М., Пыркова O. A., Седов B. H. Дифференци альные уравнения. Методы
решений. - Москва: МФТ И, 2007, 2012.

пока не открывал, потом посмотрю мб.

Эрроусмит, Плейс Обыкновенные дифференциальные уравнения. Качественная
теория с приложениями [1986]

какая-то хорошая мб книга, которой было в планах дополнить структуру.

О конкретных дифференциальных уравнениях

(если какой-то диффур буду долго изучать, сюда вставлю ссылку на книгу или статью.)

О численных решениях

Холодов Лобанов Евдокимов Разностные схемы для решения жестких ОДУ...
какие-то очень прямо интересные там примеры, потом добавлю некоторые вещи, когда

особенно вычматы буду нормально проходить.

Основные об интегрируемых системах

(там кстати много вообще их, ну и ладно.)

О моделях

Ильина Свешников дифференциальные уравнения
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что-то такое помню, там крутые модели, которыми потом дополню теорию, чисто
запросто, написать теорию сперва бы.

О приложениях

A.4.3 History of DE in a Nutshell

(there are many discoveries and many applications, but it is a topic for a special book)

A.4.4 Features of This Note

описание глав и разделов

описание записи в целом

первая часть

вторая часть

приложения

какие вообще приложения я разбирал?

обозначения и константы

Обозначение Диесперова (??)

Следующие связные множества (a, b) = {t : a < t < b}; [a, b) = {t : a ≤ t < b}, ... будем
называть промежутками и обозначать либо J , либо < a, b > .

Множество функций, непрерывных на промежутке J , обозначим C(J).
Множество функций, имеющих k непрерывных производных на J , обозначим Ck(J).
Через Ω ⊆ R2

t,x обозначим область.
Множество функций f(t, x), непрерывных в области Ω обозначим C(Ω).
Множество функций f(t, x) в области Ω, для которых все частные производные порядка

k существуют и непрерывны, обозначим Ck(Ω).
Окончание замечаний и примеров будет обозначаться символом ⋄.
Пусть функция F (t, x, p) определена и непрерывна в области G ⊆ ⊆ R3

A.5 Puzzles for Different Situations

A.5.1 Puzzles for Interesting Discussion

A.5.2 Selected Fun Typical Problems

(all this should also be in the problem-solution section!)
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