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Preface and main motivation

(morom Haruiy)

T'osnoBosnmomku auddypoB Jisi MOTUBATUNA



Part 1

—— Typical Differential Equations in a
Nutshell —

1 Solution of Typical Differential Equations

1.1 Basic Methods for Differential Equations

1.1.1 Classification and Typical Methods for 1st- and 2nd-Order
Equations

B nepsyio ouepesnn q1st perienns quddepeHnuaabHoro ypaBHEHUS CIeAYT OIPeIe/IUTh ero
THIL.

Tunuyunasa Kaaccudukamnus a1udPypoB

CrepBa 3amMedaeM TOPSIIOK ITPOU3BOJIHOIA. [anee ofHOpOJHBIE |/ HEOJHOPOJHBIE -
ompeJiesisieM 10 HAJUYIHUIO ITPABOUA YaCTH.

Knaccudukanuss THOUYHBIX ypaBHeHUil 1-ro mopsiaka

Ecsn ono sierko mpeobpasyercst K Buiy X (x)dr = Y (y)dy., TO OHO - ¢ pa3IeIAOIIUMIC
[ePEMEHHBIMH.

Eciu wet, cmorpum (7 mwim jajee cMOTPHM...) OfHOPOIHOCTE f(Ax, Ay) = A" f(x,y).

OHO MOXKeT OBITH OJTHOPOJIHBIM TIOC/IE KAKOH-TO 3aMenbl, Hampumep y = 2!l Banmareasno
moJicTaBysteM u nojaoupaem m!!!

Haee, oHO MOXKET OBbIThH JTUHEHHBIM, €C/IU [IePBble CTeleHn T, T, a KpOMe HUX HUIero HeT:

'+ p(y)r = q(y)
aJtee mpoBepsieM, MOXKHO JIU IIepeiiT B ypaBHEHUN K HA000POT (DYHKITUU U IOy IUTh JTUHEHHOE
1o y:
Y + p(x)y = q(x)
ECJII/I TaK - BCeE, 6OJH:>H_I6 HEe pOGIVICE{7 IIOHAT HO BCé.
[Iepenocum Bce ocTaBieecss B MPaBYIO YacTh, €CJU €CTh CTENeHb, Y & B Hell paBHa 2, TO
cJIeJlyeT MOCMOTPETH, HE YpaBHEHUE JIX 3TO TUIIA

2'(t) + p(t)a(t) = q(t)a® + £ (1),
ecJm Ja, TO 3TO ypaBHeHHe PukkaTu.

Crenenb B mpaBoit vactu Jjobas japobHas wjm nenas >0 wim <0 (passe 4ro Kpome
rpuBnaibHbix n = 0, 1), - 9170 ypasHenue Bepuysuin:

o'+ p(t)e = q(t)z",

9T0 MOKHO He YBUIETh, ecau n < 0 man apobras. Taxume gacrto BecTpevarorces, rjae n = 3,4, 5,
OHUM KazKyTCd CJIO2KHBIMH, HO €CThb Y€TKUE MHCTPYKIUU, KaK UX PEIIaTh.
Ecin Tak HE9IEro He MOJIyIn/IOCh, TO MOXKHO VIa9HBIMU 3aMeHaMU IPUITH K 3TUM Ke Thumam!
Ecin npejyrararorcss 3aMeHbI, TO KPOIOTJIMBO KaskKIylo 3ameHy mposepsem!  Wuorma
HECKOJIBKO 3aMeH j1atoT xoporrue ¢ipuru!l TyT camoe BaxKHOE - aKKypPaTHO CMOTPETh.

7



1.1.1 Classification and Typical Methods for 1st- and 2nd-Order Equations

Knaccudukanusa THNnYIHbIX ypaBHeHUi B quddepeHnuamiax

(7?7 moka Ipo MOC/IeI0BATEIbHOCTh aHAIN3a X3, HO 9TO He TaK BayKHO.)
Eciun y mac ypasuenume B juddepennmanax X(z,y)dr + Y(z,y)dy = 0, 1o cpa3sy:

pas3JIeIdoTCs JIM [epeMeHHble, TO ecTh Bbinosmgercs au X (z,y) = X(z),Y(x,y) = Y(y)?
€CJIN J1a - € PA3/IE/ISIONIMUCS [Ie€PEMEHHBIMU.
Ecau mer, cmorpum mposepsiem opHOpomHOCTh f(Az, Ay) = A'f(x,y). Tyr BaxHO He

3a0bITh, YTO TOJICTAB/IAEM TaKxKe U B JuddepeHimalibl.

Moker OBITH, MOYKHO NMPHUBECTU K OJHOPOJIHOMY, MOWCKAB CTEIeHb M, MPU KOTOPOHl y =
, TAK YTO HEOJHOPOJIHOCTb COKpaTuThcd! Yacto m apobuas. Haxommm, mnojcrabisem u
IIPOBEPSIEM.

Ecin mer, cmorpum “Hakpect’ POU3BOIHBIE an;y)d u Bng’y)d, €CcJII OHM PaBHBI - OHO B
MOJTHBIX JnbdepeHImaiax.

Ecmu wer - genmum Ha oauH miam BTOpoil juddepentma, nepexoauMm K juddypy 1-ro
MOpsiJIKa, KJIAacCHMUIMPYeM IO Pa3/lely BbINIe, IMOJIyYaTh TaM JIMHEHHOE 110 OJIHOMY WJIN
BTOpOMY aprymenty, bepuysum, Pukkarn, T.11.

Ecim e momoriio - ryryimMm, g He JIOTMUCAJT €IE 3TOT Pas3/iell.

Zm

Kaccudukanyus HETUITUYHBIX YPaBHEHUIT 1-TO IOpSIKa

Eciu Bce B j1eBoit 9acTu 1 Bce CTpaHHOE - Hepa3pelleHHbIe OTHOCUTEILHO ITPOU3BO/IHOIA.
(TyT M6 masibiie jobasio, TyT Jlarpanxka, Kiepo, eme Koro-to, moka He HyKHO OBLIO. )

O pemenun muddypos 1-ro nopsaka

CnocoObl pelrieHns MPOCTENINNX yPaBHEHU

B caMbIx TpOCTBIX cilydasx IIPOCTO Pas3jiesisgeM IepeMeHHbIe U HHTEIPUPYEM.

YacTo npuxoauTces /il THTEIPUPOBAHUS PA3/IeIUTh JIpOOb Ha HECKOJBKO JIPODEii.

Bazkno, npex;ie ueM pas/ienTh Ha (BYHKINHA, Hy?KHO ITPOBEPUTH, HE SIBJIAIOTCS JIU PaBHbIE
Hy/TI0 (DYHKIUU pereHusivu!

[IpuBos K OTBETY MOXKET He BCerjia ObITh ITPOCTHIM.

Crioco0bI pernieHus JUHEHHbIE YPAaBHEHUS

1) smneitnbie ypasuenust a(t)x’(t) + b(t)z(t) = c(t) pemaroTcst TPUXOIOM K OJHOPOIHOMY
(obuymenuto c(t)), masee BapbUpyeM HOCTOSHHYO.

C110co0BbI pelleHns O/THOPO/IHOE ypPaBHEHUE OJWHAKOBBIX CTeNeHeil

- YpaBHEHHE, TJie B KazKJIOM CJIaraeMOM CTelleHb CyMMapHO OJMHaKoBasd. Torga moJicTaHOBKa
y(e) = w2(x)

(moKa 9To JIJIs MEeHsl YANBUTEIBHO, 9TO TaKoe paboTaeT, HO IIPOCTO MOJIb3Y0Ch, TOTOM MOHMY,
oueMy UMEHHO Takoii X0 paboraer. )

CrrocobbI pelrieHus JIMHEHHOTO HEOJHOPOAHO ypaBHeHus 4 + a(z)y = f(x)

peniaeTcd € IIOMOIIBIO OTBE€Ta COOTBETCTBYIOIIEIO JIMHENHOTO O/IHOPOJAHOI'O ypaBHEHUA, U
JaJiee MeTola Bapuallun HOCTOSIHHOIA.



1.1.1 Classification and Typical Methods for 1st- and 2nd-Order Equations

Croco6bl perienuns ypaBHeHusi Bepuyinu y + a(z)y = b(z)y™

TyT camoe ritaBHOe yBueTh 910 ypasHenue!!! Tax 4To Bcermga Mbl BHUMATEIBHBIE 110 TTOBOLY
crenereit y!!! Eciu Beprysmm - cpasy perraem 1mo ajaropurmy.

Bamenoit z = y'™™ ypasnenne BepHy/M TPUBOIUTCA K JIMHEHHOMY HEOJHOPOHOMY
YDABHEHUIO.

CrniocoGsr perrennst Ypasaenne Pukkatn % = a(t)z? + b(t)z + c(t)

peraeTcss yrajblBaHUeM YacTHOTO pereHust xq(t), n mojcraHoBroil z(t) = xq(t) + z(t).

Takum criocobom mpuxoauM K ypaBHeHHo Beprysuin.

O pemenun qudpypoB MeTOIOM MOHUKEHUS MOPSIKA

Bo Bcex mpocThIX mpuMepax MbI CTapaeMcs IMOHU3UTh IOPSJIOK, MOTOMY YTO TakK Oyjer
peraTbcsi HarboJjiee MmMpocTo.

Baxkno uMeHHO Tak M jiej1aTh, a He WIATH K Oojiee oOIMM MeTO/[aMu, IIOTOMY YTO CKOPOCTH
perernst 6yaeT pasa B 4 60sbIie!

ITonm>xenue nopsiika Ipeobpa3oBaHmeM K IOJHONW mpon3BoaHO# (777)

Hanpumep, eciim cymma JByX (DyHKIMIL, TO MOXKET OBITb, 3TO PACKPBITas IO TPABUILY
JleitOHMIIA TPOM3BOIHAST OT OTHOM?

9TO0 OBl COKOHOMMJIO ITapy MUHYT PEIIeHHil.

(mocMoTpro 31u 3aja4u Jjrydire norom!!! TyT reHuasbHbBIE XOIbI)

Ecau Her y, To nonuxkaem BBesienueM p(y) =y’ (777)

To ecthb ypaBHeHUE UMeeT BUJI: MPOU3BOJIHBIE OT ¥, a TaKKe (PYHKIUU OT .

B cnyuae, Korjia ypaBHeHUE He COJIEPKUT ¥, TOPAJIOK YPpaBHEHUS ITOHUKAETCS, €CJIA CIe/IaTh
3aMeHy, B34B 3a HOBYIO HEU3BECTHYIO (DYHKIMIO ¥, a €C/IU €€ HEeT, TO IPOU3BOAHYIO0 HAUMEHBIIIEIO
NopsAJIKa, BXOJIAINIYIO B YpaBHEHUE.

Ecsm Her r, TO moHM>kaeMm BBeseHuem p(y) = 1

Koryma ypaBHenue He COJNEP:KUT I, IOPSJIOK YpPaBHEHHs [OHUMKAETCS, €CJIM 3a HOBYIO
HE3aBUCHMYIO [IEPEMEHHYIO B3ATh y 1 BBouM p(y) = y'. IIpu arom

Tyt BaxKHO cpa3y 9T0 cOOOPA3UTh U MPUMEHUTH ITOT MeTO1!

ITonurkeHme MopsijiKa, UCIOJIb3ysl HAYAJIbHbIE YCJIOBUS, €CJIin OHU ecTh (?77)

(TO’Ke ecTh 3ajauu Mpo ITO.)
(moka X3, Kak 9710)



1.1.1 Classification and Typical Methods for 1st- and 2nd-Order Equations

JImneitHoe oaHOpoaHOe uddepeHNUaIbHOE YpPaBHEHHE C IIOCTOAHHBIMU
Ko dunuenramu

Jluneitnoe nuddepenimaibHoe ypaBHEHHE ¢ TTOCTOSTHHBIME KO3 uImenTaMu 31o:

Z ary® () = any™ + a1y + - ary Fagy = f(t)
k=0

snech y = y(t) - uckomaa dynkmua, y* = y*) (1) - eé k-a npomssogmas, ag,ar,as, ..a, -
burcuposanubie uncia, f(t) - 3agannas GOyHKIHA.
YpaBHenue

-1 /
any™ + an_1y™ TV + -+ ay +agy =0
UHTETPUPYETCA  CJCAYIONUM  00pa30M: [Iycts  A1,..., A\ - BCe paz/indHble KOPHU
XapaKTEPUCTUIECKOTO MHOTOUJIEHA,
ap A" + A N a A+ ag =0
KPATHOCTE 1My, My, ..., Mk, COOTBETCTBEHHO, M1 + Mo + - - - + my, = n. Toryja dyukimun

treMt, 1<j<k, 0<v<m;—1

SIBJISIIOTCS  JIMHEHHO — He3aBUCHMBIME  (BOOOIE  TOBODsSI,  KOMIUIEKCHBIMHU)  DPEIICHUSME
OJTHOPOJTHOTO ypaBHEHHUs, OHM 00pa3yoT dyHIaMeHTaIbHYIO cucTteMmy pernerunii.  Obree
pellleHre ypaBHEHUS sBJIAETCS JIMHEHHON KOMOWHAIMEN € MPOU3BOJIBHBIMU ITOCTOSTHHBIMUI
(BOODIIIE TOBOPsI, KOMILIEKCHBIME ) KO urienTaMu (pyHJIaMEHTATIbHON CHCTEMbI PEIeHHIA.

[Tape KOMILIEKCHO CONpsKEHHBIX KOpHeH \; = o £ if;,1 < j < @OTEGTCTB}/IOT apbl
BerecTBeHHbIX GyHKIMI Buga t¥e®’ cos (B;t) u tVe%'sin (Gt), j € 1.k,0 < v < m; — 1
U TIOCTPOUTH OOIIlee perieHne ypaBHEHWd B BUJIE JUHEHHONH KOMOWHAIIMHM C ITPOU3BOJILHBIMU
BEITIECTBEHHBIMI TTOCTOSHHBIMU KO3 DUIIIEeHTaM.

OpHOpo/THOE ypaBHEHME 2-TO MOPSAKA:

(JacTHBIN corydait)

ary” + ary’ + agy =0

UHTErpupyercs cieyiomum oopasom: [lyctb Ai, Ay - KOpHE XapaKTePUCTUIECKOTO YPaBHEHUS
CLQ)\Q + al)\ + ag = O,

ABJIAIOMIETIOCA KBa/IpaTHBIM YPaBHEHHUEM. BI/I,ZL 0611161‘0 pemennd OJAHOPOJHOI'O ypaBHEHUA
3aBUCUT OT 3Ha4YC€HUA JUCKPpHUMHHaHTa A = (I% — 4&2&02 - [Ipu A >0 YpaBHEHUE UMEET JdBa
Pa3JIMYIHBIX BEHICCTBEHHbIX KOPHIAI

—(lli\/z

)\1,2 =012 =
2(1,2

O6mee penreaue nuMeeT BUJI:
y(t) = cre™’ + cpe™
-upu A = 0 - IBa COBIAJAIONINX BEIeCTBEHHBIX KOPHS

AM=X=a=—-.
1 2 =« 201y
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1.1.1 Classification and Typical Methods for 1st- and 2nd-Order Equations

OObiriee perrenne nMeeT BUI:
y(t) = cre™ + cote™

- pu A < 0 CyIIEeCTBYIOT JiBa KOMILJIEKCHO COIPSIZKEHHBIX KOPHSI

- VA
)\ngaiiﬁzﬂii | |

2&2 2@2

Ob1mee pereHne nMeer BT

y(t) = c1e® cos(Bt) + cpe® sin(Bt)
OO61mme MeToabI pellleHnusi YPAaBHEHU BBICIIIETO IIPSIKa

Ecym Tak IIPOCTO IOPLAJOK HE ITOHM2KACTCA, TO IIOJIL3YyEMCA 3TUMU boJtee O6HII/IMI/I MeTOJaMM.

ITepexon k xapaKTepUCTUYECKUM UHNCJIAMU JJid yPaBHEHUil C MMOCTOSSHHBIMU
Ko3d dunuenramn

[Ipocto cocraBisieM Xap ypaBHEHUe, peliaeM, JaJjbllle OTBET, MOAPOOHee HAIUIIY ITOTOM
yKe.
Ecmm y nac neomHopoiHoe ypaBHeHue, TO eIlle HAXO/IMM YaCTHOe €ro PereHue.

Meron, ~ Bapuanmum  NOCTOSIHHBIX  JIJId  ypPaBHEHUS C  MOCTOSHHBIMU
Ko dburnuenramu

(HAIUIITY 9Ty MaTPHUILy, TOXKe TaK MOYKHO JIeJIaTh. BPOJE 9TO TO ¥Ke, U4TO U JIJI IePEMEHHBIX
k03D buIeHToB?)

OnepannoHHbIi MeTO/, /ISl yPaBHEHUS C IOCTOSHHBIMU Kodd durmentamu (7777)

(roka He MOHUMATO, TPOKATUT OH WK HET??? MO PUJI 9TO He CJIOKHO?? TOKa He 0TpaboTall. )

O pemenun muddypoB 2-ro nopsigka ¢ rnmepeMeHHbIMU Ko3dd duiimeHTamMmn

0) Mo>KeT GBITH, MOXKHO CAEJIaTh KaKyIO-TO 3aMeHy?!

Ja, Bo-IIepBBIX CMOTPHUM, He PElIaeTcst JIM ypaBHEHHE KaK-TO IIPOCTO.

Bo-BTOpBIX TPOOYyeM KaKylO-TO 3aMeHy CIeJaThb X WU Yy, Ha (QYHKIHMIO OT KAKOIr0-TO
napamerpa, MOTOMY YTO 3TO MOXKET IIPOCTO Ha HOPSIO0K YIPOCUTH ypaBHEHHe.

(TyT yKaxKy, Kakue MOTyT ObITh 3aMEHBbI )

1) IepeiiTun K 0OITHOPOAHOMY, TOAOOPATH OJHO €ro pelleHne, a jJajee 1o popmysie
JInyBunnsa-OcTporpagckoro HaXoAUM BTOPOE JIMHEIHO HE3aBUCUMOE

(mamuiny Tyt opmyity 3Ty.)
ag(x)y" + a1(x)y’ + ax(x)y = 0, tae (ap(z),ai(x),as(xr)) - HenmpepwiBHBIE DYHKIUE HA
HEKOTOpOM uHTepBaJe (a,b).

yl('r) y(il?) _ CeffP(m)dz e
ay ()

ao()’
yly/ . y/ly _ Ce—fP(a;)d:L’

nJIn

P(z) =

11



1.1.1 Classification and Typical Methods for 1st- and 2nd-Order Equations

a 9TO yKe ypaBHEHHe 1ro mopsijika OTHOCHTEIbHO y X). [lasee, mesist JieByIo U mpaByIO 4acTu

Ha y12(x), umeem
!/
(g) _ C«e—fP(x)da:
(1

2) Meton Bapuamuu nocrosHHbx (!!!!)

CocraBiseM BCE Ty 2Ke CHCTEMYy YpaBHEHUII HA IPOU3BOJIHLIE OT BaPbUPOBAHHBIX
MTOCTOSTHHBIX.

§j=Ax>+ B’ +Czx+ D

[Tocste mpaBUIbHO BHIOPAHHOIO I0I0OPA aJITOPUTM HMOHJIET 110 HaKaTaHHOM KoJiee. Vcmob3yem
MeTOJ1, HeolpejieieHHbIX KodddurmenTos. Kro e 3nakom - y3unaer. Haiijiém mepByo u BTOpyio
[IPOU3BOJIHYIO:

7 = (A2® + Ba® + Cx + D) = 3A2* + 2Bz + C

7" = (3A2% + 2Bz + C)' = 6Az + 2B

[ToacTraBum ¢ u y® B JIEBYIO YaCTh HEOTHOPOIHOTO YpaBHEHUS:

J" — 4§ = 6Az + 2B — 4 (Az® + Ba® + Cz + D) 2

— 6Az + 2B — 4A2% — 4Ba? — 4Cx — 4D @ 843

(1) PackpeiBaem ckobku. (2) CraBuM 3HAK = W NPHUIKCHIBAEM MPABYI0 YaCTh HUCXOHOIO

Y. Jlajee paboTaem ¢ IOCJEIHUM PABEHCTBOM - HEOOXOJIUMO IMPHUPABHATH KOI(DDUIIUEHTHI

DU COOTBETCTBYIOIIUX CTEHEHAX W COCTABUTL CHUCTEMY JIMHEHHBLIX ypaBHeHmil. B kaprmnkax

Hporece BLINIAIAT Tak: 6Ax + 2B — 4Ax® — 4Bx? — 4Cx —4D =823 +0-22+0-2 +0
CraneM ucKaTh pelleHne ypaBHeHHsT

an ()2 (1) 4 a1 (1) 2"V () + o+ ar (8)2() + ao(t)2(t) = f(t)
roJiarasi, 9To Jisi COOTBETCTBYIOIIEIO €My OJHOPOJHOIO yDABHEHHsI
()2 (t) 4y (1) 2"V (E) + o+ ar(8)2'() + ao(t)2(t) =0
M3BECTHO DEIlleHre, KOTOPOe 3alliieM Kak
2(t) = c121(t) + ca22(t) + .. + cpzn(t)

Meros cOCTOMT B 3aMeHe IIPOM3BOJIBHBIX IOCTOSHHBIX ¢ B OOIIEM PEHICHUd Ha
BeroMoraresibble GyHKIwn ¢ (t). Ilpomssomnas mis z = ci(t)z; + co(t)ze + . + cu(t)zn
3alUIIeTCH

Z=da+ otz o+ .tz

Ho mbI moTrpebyem J1omotHUTeIbHO (HIKe TTOKA3aHO, ITO MPOOJIEM 9TO HE BBI3OBET), UTOOBI
/ / /
121+ Cyzo + o+ 2 =0

Taxum o6pasom, 2’ = ¢12] + ...+ ¢, 2], BBoms cxoxue TpeboBaHus [T ¢}, IPU ITOCTIEI0BATETLHOM
muddepennupoBanun z(t) 1o (n-1) mopsIKa, MOy IHM

2D 4 2D =0 = W = 2P e, ®

n

12



1.1.1 Classification and Typical Methods for 1st- and 2nd-Order Equations

A ny1a craprimeit TpOU3BOIHON, COOTBETCTBEHHO

2 =D 20D 4 2™+ L+ 2™

ITocie IIOJICTAHOBKH B HMCXO/JHOE ypaBHEHUE U COKDPaAIlleHUA B HEM OJJHOPO/IHOT'O PEIIECHUA (1),
OCTaHeTCA

an() [0 + .+ (02000 = F()
B pesymnbrare, mpuxoumM K

21 () () + 22(t)ch(t) + .. + 2 (), (t) =0

A0k (1) + DO + -+ AP O() =0
ATV E) + 25V (t) + o+ 2V () () = F(t)/an(t)

OmnpenenurenieM cucTeMbl (2) CIyKUT BPOHCKUAH (DYHKIWNA 27, 29, ..., 2, 9TO O0ECIEINBAET €€
OJIHOBHAYHYIO Pa3PEIIMOCTh OTHOCUTEIBHO C)..

[Ipumeps! 10 BUKK

1) VYpaBHeHue, B 4aCTHOCTH BO3HHUKAIOIEE B 3aKOHE PAMOAKTUBHOIO PaCIajia

T+ vz = f(t)
Obree pelerre 3/1IeMEHTapHO UHTEIPUPYETCH:
r=c-e "
[Ipumenum meros Jlarpamxka:
de " = f(t)
OTKy/ia NCKOMOE pelleHne
r = /f(t)e”tdt e
2) YpaBHEeHHe rapMOHIYECKOTO OCIUILISITOPA
i+ wir = f(t)
Perenne ofHOPOIHOTO YpaBHEHWs 3allUIEM B BHJIE
x = asinwt + bcoswt

Cormacuo cucreme (2) mosydaeM:

a’ sinwt + b cos wt = 0,
a’ coswt — U sinwt = f(t)/w;

, —=elf(t)  coswt

o = = O pr)

—1 w
sin wt .
S £ (1) sin wt
V= = =— t
— — f(1)

Boccranosum perrenne:

o(t) = ( / dtcozm f(t)) sinwt — ( / dtSir;m f(t)> cos wit

13




1.1.1 Classification and Typical Methods for 1st- and 2nd-Order Equations

O pemtenuu auddypoB 0OJHOPOAHOTO B 000OOIMIEHHOM CMbICJIE

[TycTh Tenepnb ypaBHEHHUE ABJISETCA OJHOPOIHBIM B 0OOOIIEHHOM CMBICJIE, T. €. CYIIECTBYeT
TAaKOE THCJIO S, YTO YPABHEHUE He MEHSETCS IIPH OJHOBPEMEHHOMN 3aMene © Ha Az, y Ha A°y, y*)
ma N> Fy®) e A #£ 0,k =1,2,...,n. IIpu £ > 0 BBOAUM HOBYIO HE3aBHCHUMYIO IEPEMEHHYIO ¢ I
HOBYIO HEM3BECTHYIO (DYHKIHNIO Z(t) ¢ MOMOIIBIO 3aMEHBI

r=c¢e, y=zes

Torna ypaBHeHme NPUBOIUTCA K BHUIY, B KOTOpbI He BxommT t. CremoBaTenbHO, TMOPSIOK

yPaBHEHMs MOHMXKAETCs 110 IpaBHILy, u3joxkennomy B 1. 1. IIpu z < 0 nogaraem x = —e'.

JIuneiiHoe HeomHOposHOe auddepeHInaIbHOEe YPaBHEHHE C IMOCTOAHHBIMU
Ko3d dunuenramun

Heonmopozmoe ypaBHeHIe HHTEIPUPYETCST METOIOM BapHAIUN [TPOU3BOJIBHBIX MOCTOSHHBIX
(Metop Jlarpanzka).
obIee pereHne ypaBHEHUs 3a/aeTcst POPMYJIOit

y(t) = a1y (t) + - + cuyn(t) + yo(?),

rJe Ci, ..., Cp, - IPOU3BOJIbHBIE IIOCTOAHHBIE.

Kak B ofOmeMm ciaydyae JMHEHHBIX ypaBHEHU, WMeEET MECTO IIPUHIIUAI CyHEPIO3UITUH,
UCIIOJIb3YEMBINl B PA3HBIX (POPMYJIUPOBKAX IPUHIMIA Cylepro3unuu B dusuke. B ciydae,
Koryia (DyHKITNS B MPAaBOil 9aCTU COCTOUT M3 CyMMBI IBYX (OYHKIINN

f@t) = [i(t) + fa1),

YaCTHOE pelleHrne HEeOITHOPOJIHOTO YPaBHEHUA TOYXKE COCTOUT U3 CYMMBI JIBYX (PYHKITUI

Yo(t) = yo1(t) + yoa(t),

rae Yoj(t),7 € 1,2 ABIAOTCH pEIIeHUsSMH HEOJHOPOJHOIO YDABHEHHS C IIPABBIMH TACTSIMH
fi(t),j € 1,2, coorBercrBenno. Yacrublil cirydail: kKBasumHorowieH B ciaydae, xorma f(t) -
KBa3UMHOTOUJICH, TO €CTh

f(t) = p(t)e cos(Bt) + q(t)e sin(6t)
re p(t), q(t) - MHOrOWIEHBI, YaCTHOE pellleHre YPABHEeHUsI UIETCS B BUJIE
yo(t) = (P(t)e™ cos(Bt) + Q(t)e™ sin(Bt)) t°

rae - P(t),Q(t) muorowrensr, deg(P) = deg(Q)) = Max(deg(p),deg(q)), xoadbdunnents:
KOTOPBIX — HAXOJATCS — IOJICTAHOBKOH  4o(f) B ypaBHEHHEe U  BBIUYUCJIECHHE METOJIOM
HEOIIPEJIEJICHHBIX KO MUIINEHTOB. - § sBISIETCS KPATHOCTBHIO KOMILJIEKCHOIO —JHCJIA
w = a + i/ KaK KOPH$ XapaKTePUCTUYECKOrO yDPaBHEHHsI OJHOPOJIHOIO ypaBHeHus. B
JaCTHOCTHU, KOI'ZIa

f(t) = p(t)e™
rje p(t) - MHOTOUJIEH, 9aCTHOE PEIICHNe yPABHEHWsI UIIETCS B BUJIE

yo(t) = P(t)e™'t*

Baecy P(t) - muorowren, deg(P) = deg(p), ¢ HeonpeseneHHbIMU KOIDDUIMEHTAME, KOTOPbIE
HAXOJATCA HOJCTAHOBKOW Yo(t) B ypaBHEHHE. § BJSETCSI KPATHOCTBIO (v, KaK KOpHS
XapaKTEePUCTUIECKOTO YPaBHEHUs OJIHOPOJIHOIO ypaBHeHus. Korja ke

f(t) = p(t)

14



1.1.2 Overview of Equations that Are Solved By Special Functions

rie p(t) - MHOTOUIEH, 9aCTHOE PellleHre YPABHEHMsI UIEeTCs B BHJIE

Bnecs P(t) - muorowren, deg(P) = deg(p), a s fBIfETCA KPATHOCTHIO HY/IsA, KaK KODHS
XapaKTEPUCTHICCKOrO yPABHEHHUsI OJJHOPOIHOIO yPABHEHNS.
VYpasuenue Diisepa (77?)

Vpasuenune Ditnepa agx®y” + ayxy’ + azy = f(x),z > 0, 3amenoit © = e’ cBoauTCa K

JIMTHEHOMY yPaBHEHUIO C MTOCTOTHHBIMU KO DUITMEHTAMH.

O apyrux MeTofax pelleHus: npocreiimmx 3aja4 u ypaBHenii (7)

(3TO MOKA HE 0COO0 MPUMEHSL)

Ypasuenue Buna (a1 + b1y + ¢1) dx + (agx + boy + ¢2) dy = 0 B TOM ciydae, KOrjia mpsiMble
a1+ b1y +cp = 0 u asw + boy + co = 0 mepecekaroTCst, TPUBOIUTCS K OTHOPOTHOMY YPaBHEHUIO
C HOMOIIBIO IIEPEHOCA HaYaIa KOOPAUHAT B TOYKY MEPECCUCHUS IIPIMbBIX.

(77?7 MO TPUTOAUTCS TOTOM, TOCMOTPHM. )

1.1.2 Overview of Equations that Are Solved By Special Functions

(HAMMIITy TTOTOM, BCe-TaKW OYEHb YaCTO MPOCTO Yepe3 cledyHKIMIO 9TO U PEIIAeTCs. 3TO
ke B ymd B lit yactu, HO TaM HOAPOOHEE. ITO ¥Ke CYyTh 3AUCH 1O CrendyHKIUAM. )

1.1.3 Green’s Function Method for Diff. Equations (7777)

(1o uzee TYT ee CyTh HAIMUIIY. TOKA STOT METOJ] He YCBOEH)

ob630p

BPO/Ie IJIaBHBIIT MeTOJI pellleHus JTUHEHHbIX ypaBHeHU
27

Dyukiuga 'puHa ajiss TpaHUYHON 33a1a9u

10 OIIPEJIE/IEHUIO TOBOPAT UCKATH €€, TIOTOM OTpadoTalo.

1.1.4 Laplace Method

(Ipyrue odeHb XOpOIME METOJbI TOXKe YKaKy TYT, MOKa He 3HAI0, KaKhe 3T07 He caMble
JIyUIIHe - CJieflytormast 1s 9acThb)

Pemaem ypaBuenune

dxm

N m
Z A + ) - Y =
m=0

15



1.1.4 Laplace Method

Niem perenue B BUjie

Y(x) = /dtZ(t)ext

c
(M6 CTPOUKY yKaxKy, HOYeMYy TO, 9TO JAJbIIeE, TTOKa OIYCTU)
Henre. Perenne 9Toro ypaBHeHUsT 3alMCHIBACTCA TPUBHATBHO Z (1) = ﬁ exp ( 1l %dt).

Takum 06pa30M, MbI TIOJIy9IaeM CJIEIYIONUNA «PerenTs

1. Cmorpum Ha muddepernuanibaoe ypaBHenue, crponM byskimn P(t), Q(t); Berancisem
dbyukmo Z(t).

2. Uccreayem BO3MOXKHBIE KOHTYpa B KOMILIEKCHON IIJIOCKOCTH, Ha KOHIAX KOTOPOTO
dbyukust Z(t)Q(t)e™ = exp (xt + [ %dt) 3aHyJsercsd. Kak npasuiio, 310 b0 3aMKHYyTbIE
KOHTYpPa, 0OXOJIsIIIne KaKie-TO OCOOEHHOCTH IMOJIbIHTEIrPAIHLHOIO BbhIpayKeHUsT; JIMH60 KOHTYPA,
yXOJIdIpe Ha GECKOHETHOCTh BJIOJIb KAKOTO-HUOY b U3 HAIIPaBJIEHMUI.

3. Hanbmie Tpebyercs BbIOpaTh KaKOW-HUOY/Ib OJIMH KOHTYP MHTEIPUPOBAHUS, KOTOPBIi
O0OBIYHO (PUKCHUPYETCS BBIOOPOM T'paHUYHBIX ycjaoBuit. [IpwuéMm B KBaHTOBOW MeXaHUKe, Kak
[PABUJIO, I'PAHUYHbBIE YCIOBUSA (DUKCUPYIOTCA IPU X Ha BEIIECTBEHHON ocu, mpu r — +00.
[TosTomy jiy1st BBIOOpa KOHTYpa WHTEIPUPOBAHIUSA, CIIEPBa TPEOYETCsT BHIYUCTUTH aCUMIITOTHKA
peleHnii, KOTopble MOJIYYaloTCs, eCIU 0-PA3HOMY BBIIEJISATH KOHTYPA.

4. Haxkower, 1/isijisd Ha pa3/IMdHble aCUMIITOTUKE, MbI JOJIZKHbBI BLIOPATh HHTEPECYIOIINI HAC
KOHTYP.

Tabauma obpa3oB U n3006pa>keHuit

(1) > X (p)

() pX(p) - x(0)

(1) p X (p) - p-x(0) ~ X'(0)

L
t"—

n!

n+l
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1.2 Important Methods and Properties in a Nutshell

Tadnunoa 7.1
Ne
14 Opurasan f(£) Haobpaenne F(p)
o
A
1 A = const E
) 1
2 e P-Dy
T
3 el l0t+g) ¢ .
P-jo
; o
-0t
! i-e pip+a)
3 sin i it
pZ + ®2
6 COs of p
?92 .o
; sin( ot + @) psin @+ ®eos ¢
P+
& cos( et + @) P Cos czp— co'zsin(p
P+ @
W
9 e ™! sin wt (p+ a)z e
P+
10 e cos ot (p+a) + o
A
11 At —
B
4
12 Ate™™? (p+ oa)z

1.2 Important Methods and Properties in a Nutshell
1.2.1 Cauchy Problem, Initial Conditions, Sturm’s Theorem

(TyT caMoe BasKHOe U3 TEOPETHYECKON YaCcTh. TTOTOM MO GOJIbINE PA3/IesT CIeJIAI0 TIe-TO PO
9T0, TOKa TaK, W60 s He OYeHb TeOpUell 3aHUMAIOCh MOKA YTo. )

O nocranoBka 3ajaun Kormm
npumenenus (!7)
0030p IPUMEHEHMIA.

caMoe IJIaBHOE, YTO TYT HYZKHO.
Ha caMOM Jiejie TeopeMbl Tud@ypoB 04eHb U BazKHBI TEM, YTO BO BCAKUX HIOAHCAX OHU YaCTO

IIPOABJIAIOTCA.

06 ocobbix pertenusx (7777)

(7?7 ecThb PO 9TO 33J1a9M, ITO TIOKA HE YCBOWJI, M 9TO BasKHO HaBepHoe!!)

(@) TeopeMe O CyneCTBOBaHUM M €INHCTBEHHOCTHA

CM CBEITHUKOB UM DYPHI, TOTOMY UTO g COBCEM 3a0bLII O TTPUIOXKEHUAX K MOJIEIAM PA3HBIM.

17



1.2.2 WKB Method, Iterations (?!)

JI0Ka3aTeJIbCTBO TE€OPEMBI
npumenenus (!7)

0030p IpUMEHEHMUI].

caMoe TJIaBHOE, ITO TYT HYZKHO.

Ha CaMOM Jiejie TeopeMbl 1uddypoB 09eHb 1 BazKHBI TEM, YTO BO BCIKUX HIOAHCAX OHU 9aCTO
HPOSABJISIIOTCA.

3aBUCHUMOCTDb OT Ha4YaJIbHBIX yCJIOBI/Iﬁ

npumenenus (!7)

0030p IpUMEHEeHMUI].

caMoe TJIaBHOE, ITO TYT HYZKHO.

Ha CaMOM Jiejie TeopeMbl JuddypoB 0UeHb U BazKHBI TEM, YTO BO BCIKUX HIOAHCAX OHU 9aCTO
HPOABJISIIOTCA.

O Teopeme IlITypma

dopmyupoBKa
HIOAHCHI
[IPUMEHEHU T

1.2.2 WKB Method, Iterations (?!

(o uzee B naparpadax u CMOI'y yKa3aTh UX)

O merone WKB (777)

(7?7 mporecTupyio ero xorsi ObI HA KAKUX-TO ypaBHEHUsX!?? IOKa He YCBOUJI HOPMAJBLHO.
HeyZKeJIl BCe TakK MPoCTo, ojiHa (hbopMyJia - U BCE perrmaercs?)
Ykaxkem camoe ocHOBHOe T1po MeTos, WKB.

WKB B npocreiiniem cirydae

Paccmorpum ypasnenme
d2
dx?
[IpenooxKuM, 9To BeiuduHa p = v/ U MeHseTcs JoCTaTO4HO MeJJIeHHO Ha Maciirabe p~ ', 4ro
O3HavYaeT BHINOJIHeHHE HepaBeHcTBa dp/dr < p®. Torma minsa GyHKIUM f MOXKHO MOCTPOUTDH
cJIeIytonee MpuOINyKeHHOe PelleHne

f-Uf=0.

c, i

f= ﬁexp(S)Jr%exp(—S), rie  S(z) Z/dyp(yL

rje Cp, Cy - HEKOTOPbIE KOHCTAHTHI.

[Moncrasisia soipazkenne (3.107) B ypasuerue (3.106), MOXKHO yOeUTHCS, UTO OHO SIBJISET
csl peleHneM, ecii npenebpedn B HeM dienamu ¢ (dp/dx)? u d*p/dz?. Tlepsoe npenebpezkenue
BO3MOYKHO B CHJIy IIPEJIIojIaraeMoro Hepaeencrsa dp/dr < p*, a Bropoe B CHJIy HepaBEHCTBA
d*p/dx?* < pdp/dz, kKoTopoe NoJyY aeTcs U3 NpebLIyIero uddepeHnupoBanuem 1o .
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1.2.3 Averaging and Slow Evolution (!7)

®akrop U B ypaBaennu (3.106) MoxKeT ObITH KAK IOJOKUTEILHBIM, TaK U OTPUIATETHHBIM,
K 000MM 3TUM ciydasiM ojuHakoBo npumenuM meton, WKB. B nepBom ciydae Besumdnna p
SIBJISIETCsI JIEHICTBUTEILHON, U JiBa cJaraeMbix B Bbipaxkenuu (3.107) sBisiorcst pacryinei u
yOBbIBalOIIeil 10 o dKCIoHeHTaMu. Bo BTOpOM ciiydae BeJIMYMHA P SBJISETCS 9M CTO MHUMOIM, 1
MBI UMEEM JIeJIO C SKCIIOHEHTAaMH OT MHUMBIX Bejudud S. [Ipyrumu cioBaMu, Mbl ©MeEM €710
¢ OCHMJLTUPYIOMUMU (DYHKITUSIME, €CJIA PEeUb HJIET O JEeHCTBUTEIbHBIX PEIICHUSIX.

Torta MBI MOXKEM 3aITHCATH

f= " |1/2 cos(A + @)

e S = 1A, C - nefictBuTeIbHAg KOHCTAHTA U (o-HEKOTOpas da3a.

WKB B obmiem ciydae

[IpuBeiennasi cxema Jierko o0o0OIaeTcd Ha CjIydaiil mpousBoJsibHOTO omneparopa IlITypma-
Jlnysuns (2.6)

d? df B
@f—FQ%—Uf—O.

B srom ciryuae Bmecro (3.107,3.108) maxogum

x

f= % exp (S7) + 72 exp (S2), rie Sia(z) = /dypl,g(y),

i€ P1,2 ABJIAIOTCA KOPHAMU KBaJIPaTHOI'O ypPaBHCHUA

P+ Qp—U=0,

KOTOpPbIE MOI'YT OBLITHL KaK ,ZLGIZCTBHTGHBHBIMH, TaK 1 KOMIIJIEKCHBIMM.

O npumenenusix (77)

O merone urepanuii (1111777)

(TOXKe YacTO MCIOJIL3YI0, TaK BCE €Ié He MPOIHCall. )

1.2.3 Averaging and Slow Evolution (!7?)

CyTb MeTona

F(t,z,0x,..) + €G (t,z,0x,..) =0

Ofx + v = ex®.

xo :=x(e =0) = acos(t — 7), T =const,

1
Olxy + a1 = Zea?’[ 3cos(t — 7)]

xr = gea3(t — 1) sin(t — 1)

19



1.2.3 Averaging and Slow Evolution (!7)

-1

Ha nocrarouno Gonbimx Bpemenax, korjga t ~ (ea?)”, monpaska cranosutcs O(xg), 1 nMeem
HapyIIeHne IPUMEHIMOCTH Pa3/IOKEHHs 110 €.

YcoBepirencrsyem: uimeM T = acos(t — T), @ U T ABIAIOTCH MeJICHHBIMU (DYHKIUSIME

BpeEMEHNn:

3

3
—Owasin(t — 1) + Oyracos(t — 1) = 3€4 cos(t — 7)

3
Oia=0, Ot = geaQ
a = const, T = 15 + (3/8)ea’t, e To=const,

x =acos [t — (3/8)ea’t — 70|,

OCIMJLISIIMY ¢ HEJIMHEHBIM CIBUTOM K dactore w = 1 - (3/8) ea?.

YeraHoBUM KpuUTepuii IIPUMEHUMOCTH pe3yJibrara. 11pu BeiBojie ypaBHeHUi HA Jya, 04T MbI
oT6pocun wienbl ¢ 027 u ¢ 2a. MaJjibiM IapaMeTpoM, 10 KOTOPOMY 3TO MOKHO CJeJIaTh,
apygerca ea’. VIMEHHO ¢ 9TOH OTHOCHTENBHON TOYHOCTHIO HAMJICHO BBIpaykeHwe i O;T,
I0STOMY TIONIPABKa K 3TOMY BBIPAXKEHHIO MOXKeT ObITh oleHeHa, Kak €2a’. Takum obpaszowm,
IIOIIPaBKa K apryMEeHTY KOCHHYCA B BbIpakeHun r = a cos(f — 7) MoxKeT ObITh OIeHeHa, Kak

~1
te?a*, To ectb pesymbrar paboraer npu yciaosuu ¢ < (e2at) .

Meton Borosobosa-KpbuioBa

Olr +x = G (v,0,1) .

z =z + 10,
Oz = —iz + ieG(Re z,Im z2).

z = aexp(ip),

Ora = esin pG(a cos p, asin p),
oS

OT =€ gOG(acoscp,ozsingo),

p=—t+T.
[Ipupamenns ¢ u 7 3a 1MepPUOJ] MaJIbl B CUIIy MAaJOCTH €. [loaToMy mpm BBIYMCIEHUN STUX
IpUpaIleHuii B IpaBoit YacTH @ U T MOYKHO CUYUTATh KOHCTAHTaAMU, YTO JlaeT

27

Aa = e/dgpsinng(acos Y, asin)

0
27

AT = e/d@COSSOG(aCOS @, asin )
a

0

27
Oa = Qi /d(psingoG(acos @, asin @)
s
0
2
ot = - dngOS SOG(a Cos p, asin @)
2m a

0
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1.3 Methods of Differential Equations in Typical Physics Problems

[Tpumep:
Rr+z=e(l—2") 0 e 1

oya = %a (1 — a2/4), o, =0

O6obmienne ma caydail  gsuoif 3aBucumoctn  dynknmn  G(t) (ecoim G ocraercs
IPUOJIN3UTENIBHO [IepUOIIecKoii dbyHKImeli Bpemern ¢ ' = 27):

Oya = esin pG(t, acos p, asin )

ot = 22 G(t,acos p,asin @)
p=—t+T.
2
Oa = QL /dqﬁsinng(t — ¢,acos @, asiny)
T
0
27
T = < /dgbCOS(pG(t — ¢,acosp,asiny)
2T a
0
p=T7—1+ .

O6obmmenne Ha cirydail 4acTOThI W:

Olr + w?zr = €G
x = acos(—wt + ),

2

Oa = < / d—(psin(gp)G

w 2T
0

2

G dy
00 = wa/ o cos(p)G
0

u — acos @, Oyu — wsin .

1.3 Methods of Differential Equations in Typical Physics Problems

(mo Murasy jgonurry, ToKa He JLyMaJl IIpo 3TO)
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Part 11
Fundamentals of Differential Equations

O6¢cyum caMble aKTyaJIbHBIE TEOPEMbI, METOJIbI PEIIeHUil U IpuMephl T depeHITnaTbHBIX
YPaBHEHUN.
(I! ynasmio moToM BesiKyto HEHYKHYTO Boiy!!)

2 Main Types of Differential Equations

(o JImectieposy)

2.0.1 Basic Concepts and Definitions

Omnpenenenune

VYpaBHenue
F(t,z,2")=0

rae t - HesaBucuMas nepeMenHas, x(t) - HemsBecTHast dbyHKIms, a z'(t) - eé Mpom3BojHAs,
HasbiBaeTca uddepennuaabHbIM ypaBHeHneM 1-To Mops/IKa, Hepa3pernieHHbIM OTHOCHTEIHHO
IPOMU3BOJTHOM.

Onpenenenne

Oyukuusa = (t), ompeleséHHas Ha wuHTepBaje J, Ha3bBIBAET CA PeIIEHUEM
mudbdepenmmanpaoro  ypasuenns  (1.1), ecm 1) ¢(t) €  C!YJ) (menpepbiHO
jnuddepernupyemas GyHKIMS):

2) (t,0(t),¢'(t)) € G ma moboro t € J

3) F (t,o(t), ¢ (t)) = 0 ans moboro t € J oupesiesieHo pelieHnst Ha MHTEPBAJIe €CTeCTBEHHBIM
obpazoM 00600IaeTcsd Ha CIydail JII000Tro TPOMEXKYTKA.

[Tycrb MBI mMeeM HeKOTOpOe perienue x = ¢(t),t € J, ypasrenus (1.1).

Ipacduk 3TOro perienus Ha3bIBAETCsl WHTErDAIbHON KpUBOi (MHTerpajibHas KpUBas B
JlaIbHERIeM OyIeT OTOXKIECTBIATHCA ¢ pernlenreM JudbepeHInaabHOro ypasHenus ). Jacto
muddepennuanbioe ypasaerne (1.1) MOXKHO IPEJICTABATH B BUJIE

dx
— = f(t,z), QCR?
o =lt), ac
YpaBuenue % = f(t,x) Ha3bIBaeTcd auddepeHnnaabHbIM ypaBHEHUEM 1-T0 IMOpsJIKa,

pa3peNIEHHBIM OTHOCUTEILHO HPOU3BOIHOIL.
Himzke npesmonaraercs, aro f(t, z) € C(€2).
Anajiormano ypashenuto (1.1) omnpegenserca perrenne auddepeHInaabHOrO ypaBHEeHHsT

L — f(t,x).

Takum obpazom, guddepeHnnaaIbHOE ypaBHEHUE ‘fl—f = f(t,x) wmeer perienne, ecsu
CYIIECTBYIOT ~HPOMEXYTOK J u HemnpepbiBO juddepennupyemast dyukims (1),
olpejie/IEHHAs HA HEM, [PHU IOJCTAHOBKE KOTOPOWl B ypaBHEHUE ‘fl—f = f(t,x) nocieruee

obpaliaeTcsi B TOXKJIECTBO.

Ecin kakoe-Hubyib perienne 3aj1aHo HessBHO B Bujie ypasrenus P (t,x) = 0, To mocie/nee
HOCHT Ha3BaHWE MHTErpaJia YPaBHEHUS.

OcHoBHOIT 3aj1adeil Teopun OOBIKHOBEHHBIX JudpepeHraIbHbIX YPaBHEHUH sBJISETCS
OTBICKaHWE Bcex pemreHnit muddepeHnuaabiHoro ypaBHEHUs W U3yUYEHHE CBOHCTB 3ITHX
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2.0.2 Isoclines (?)

pemennii. [Iporecc naxoxjaenusa perrenuii uddepeHImaIbHOrO ypaBHEeHUsT HA3BIBACTCA €0
UHTETPUPOBAHUEM.

Nsy4enne reopun juddepeHImabHbIX YPaBHEHN HATHEM ¢ ypaBHEHU fl—f = f(t,x).

EMmy MOXKHO JaTh IPOCTYIO T€OMETPUYIECKYI0 HHTEPIIPETAIUIO.

YpaBHeHHe ompejienger B Kaxkoil Touke (t,x) € () mHTerpasJbHOIl KPHUBON 3HAUYEHHE
pou3BOHON 2'(t), KOTOpOe paBHO TAaHIEHCY yIya «, 0OpPa30BAHHOTO KAacaTeIbHOW B 3TOM
TOYKe C TOJIOKUTEbHBIM Hamnpasaerunem ocu Ot.

Ecmu B Kaxk10it Touke obactu () 3a/1aHO 3HAYEHUE HEKOTOPON BEJIMIUHBI, TO TOBOPAT, UTO
B Hell OIpeesIeHo 0JIe 9TOM BeJIUINHBI.

Tpu ancia (t,x,2") onpenessror HAIIPABJICHUE MIPSIMOM, IPOXOAIIEH depe3 KazK Iy TOUKY
(t,z) B obmacru 2.

Takum obpazom, auddepeHImaIbHoe ypaBHeHUEe Cfl—f = f(t,z) 3amaér B obmactu ) moJe
HAIPABJIECHUIA.

[IpoBenaém B KaxK 101 TOUKE MaJICHBKUI OTPE30K, YKA3bIBAIOIINI HAIpaBJICHIE KacaTeIbHOI.

Torma COBOKYITHOCTD OTPE3KOB STHX IMPSAMBIX AT TeOMETPUUIECKYIO KAPTUHY IIOJIs
HampaBjeHuit B obyactu ().

Oynknus x(t) Gyaer pereHreM TOrIa U TOJIBKO TOT/a, KO KacaTeabHash B KayKI0i TOUKe
ee rpaduKa COBIIAIAeT C II0JIEM HAIIPABJIEHUI B 9TOI TOYKE.

2.0.2 Isoclines (?)

O6cyaumM moaApoOHO M30K/INHBL.
(moka He aKTyaJbHO, TOTOM. )

Onpenenenve M30KJINH

MHOXKECTBO TOYEK, B KasKIoil M3 KOTOPHIX muddepennuanbioe ypapHenue %2 = f(t, x)

ONpEJIENISIeT OJTHO U TO YK€ HAIPABJIEHUE C YTJIOM (v, HA3BIBAETCA M30KIMHOIL. "

BHaHMe W30KJUH YacTO MO3BOJIIET MHOCTPOUTH KAYECTBEHHYIO KAPTUHY IOBEJECHUS
MHTerpasbHBIX KPUBbIX ypapHeHus % = f(t, ).

W3okinabl 3371 al0T ¢ ypaBHeHueM tg o = f(t, ).

IIpumep

[TocTpouTh METOJOM M30KJIUH KAYECTBEHHYIO KapPTUHY IOBEJIEHUA WHTETPAJIHHBIX KPUBBIX
ypaBHEHUA, KOTOPOE HE MHTEIPUPYETCS B 9JIEMEHTAPHBIX (PYHKITHAX:

dx
7 =24+ RP=t*+22>0
R?* > 0 — okpyxkHocTh , R? = 0 — ToukKa.
PaccMmoTpuM mipuMep IIpocTeiinero ypaBHeHust ‘é—f = f(t,x), Korga ero npasas
JacThb HE 3aBUCUT OT X
@ e
a7

Bee pemenns guddepennuanbaoro ypasaerust (1.3) OMUCBIBAIOTCS OJHOMAPAMETPUYECKIM
ceMeiicTBOM (DyHKITHIL:

x(t) = /f(T)dT+C, C € (—o0,00), to,te€J

ryie C' - pou3BOJIbHAs TIOCTOSTHHAS, UTPAIOIIas POJIb apaMeTpa.
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2.0.2 Isoclines (?)

Ecan MBI XOTHUM BBIIEINTD KaKOe-JI100 pelreHne, To MOKHO IOTpeboBaTh YacTh HE 3aBUCHUT
OT Z:

dx
— =ft).teJ
n f(t),te

Bce pemennst auddepentmanbaoro ypasHenus (1.3) OMUCBIBAIOTCS OJHOMAPAMETPUIECKIM
ceMeiicTBOM (DyHKITHIL:

x(t) = /f(T)dT+C, C € (—o0,00), to,t€J

rjie C' - poOu3BOJIbHAs TTOCTOSTHHASI, UTPAIOIIAas POJIb apaMeTpa.
Ecii MBI XOTUM BBIIEIUTH KaKoe-ubo pereHre, To MOXKHO moTpeboBarh « (ty) = xo.
DTO yCI0BUE HA3BIBACTCS HATAIHHBIM.
N3 nero cienyer, aro C' = xg.
Wurerpasbaast Kpubasi, IPOXOJAIas Yepe3 TOUKy ¢ KoopjauHaTamu (tg, Tg), IPUHUMAET BHL

Mﬂij@ﬁ+xo

MBI mpunum K OJHOMY U3 OCHOBHBIX HOHSTHIT B Teopun guddepeHnnajbHbIX YPaBHEHHI,
a UMeHHO: 3ajiade Korn.

3agauya Koinm

[Iycrs (to, o) € . Haitru unrepsan J, comepzkammii ToUKy to, u perenne @(t),t € J,

ypasrenusi 2 = f(t, ), onpesenénnoe na ném C = .

Uurerpanbhast KpuBasi, IPOXOJsIIas depe3 TOUKY ¢ KoopauHatami (tg, To), IPUHAMAET BUJL

ww—jfww+x@

MBI IpHUIIM K OJHOMY U3 OCHOBHBIX IIOHATHI B Teopuu auddepeHnuaabHbIX ypaBHeHNiA,
a uMmenHo: 3anade Komm. 3agada Komm.

[IycTb (to, .2?0) e Q.

Haiitu uarepsas J, cofepzaiiuii ToUKy to, u pernerne ¢(t),t € J, ypaBHeHUst ‘fl—f = f(t,z),
ONpeJIeIEHHOe HA HEM U YJIOBJIETBODPSIONIee HAYAJIbHOMY YCJIOBHIO ¢ (tg) — To. 3amada Kormm

0003HAYAETCA CJIEIYIONIUM 00pa30M:

dx
E = f(t,l'), (t,l’) € Q,:C (tO) = Ty, (t07x0) € Q
Yucna ty, ro Ha3bIBAIOTCS HAYAJIBHBIMU JTAHHBIMI.

Bagauay Ko gacto HasbBaioT 3a/1adeil Ha HadaIbHbIE 3HAYEHUS.

Taxum obpasom, pemenne 3amauan Komm (1.5) cymmectyer, ecu cyiecTByeT uarepsas J >

to u pemenue x = ¢(t) ypasuenns % = f(t,x), onpegenennoe Ha J, TAKOE, UTO BBIIOIHACTCH

dt
zo = ¢ (to).

Teopema Kormm

JlocTaTroumble yCJIOBUS CYIIECTBOBAHUS M €JUHCTBEHHOCTH pelenus 3a1adu Kormn
af(t
Iycrs f(t, x), 2b2) ¢ ().

oz
Torma misa mo6oit Touku (tg, o) € 2 MoxkuO ykasarb unTepBan J = J(tg,z9) O to, Ka
KOTOPOM CyIIECTBYeT e[MHCTBEHHOe pemenne = = ¢(t) ypasmenma % = f(t, ),

YZOBJIETBOPSIIOIIEE HAYATBHOMY YCIOBUIO To = ¢ (to).
Ha ochnoBanum onpejenennii, JaHHbIX Bblle, Teope My 1.1 KpaTKo MOXKHO

chOpPMyYIMPOBATDL CJIELYIONUM OOPa30M:  €C/Iu f(t,:n),%i’m) € C(Q), To mist 11060i TOUKH
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2.0.2 Isoclines (?)

(to,z0) € € pemenne 3amaum Komm (1.5) cymecrByer u emuncrBenno.  Teopemy 1.1
CYIIECTBOBAHUS M €IMHCTBEHHOCTH pelleHust 3ajaun Komm B cuiy €€ BayKHOCTH OyjeMm
HA3bIBATH OCHOBH Ofi.

Bameuanne 1.1.1.

Teopema 1.1 HasbiBaer cs1 Teopemoii Ko [5,6,7,13] u B ob1ieM cirydae HOCUT JIOKATBHBII
XapaxkTep.

Bameuanne 1.1.2.

Tpebosanue wenpepsiBHOCTH f(t, 7) 0becriedanBaeT cyniecTBoBanue perienns 3agaqu Korm

(1.5) (reopema Ileamo [2,10]), a tTpeGoBamme HEIPEPLIBHOCTU %ﬁjm) obecrieunBaeT
eJIMHCTBEHHOCTD perenns 3ajaqu Kommm (1.5).
Onpenenenue
1.1.4.
CoBOKYIIHOCTb Beex pelnenuil ypapaennst % = f(¢, ) HasbBaeTCst OGLIMM pelIeHHeM.
dr __
B paze ciydaes Bee pemenns ypasuenna % = f(, 2) MOKHO OIICATH ¢ HOMOIIHIO (DY HKIIHI

©(t,C) mepemennoro t u napamerpa C'.

Hagum nongTue oOOINEro perieHust U OOINEro mHTerpaJia B Toi ¢dopme, B KaKOil OHU
FICIIOJIB3YIOTCST OOBIMHO IPH PENIeHUHN CTyJeHTaMi 3aad (cM. Takxke [5, 6]).

Huke npu ux onpemesienun OyJaeM Mpeaoaararb, 9To B 00acTu ) BBIOTHEHBI yCIOBUS
Teopembl 1.1.

OO011ee pelnieHue

OyHKIMA
x=p(t,C)

sABJIIeTCs o0IUM perrteHneM JuddepeHnuaibHOro ypaBHEeHN s fl—f = f(t,z) B obmactu D C €,
ecJIu
1) auist siro6oro pomycrumoro 3uadenus: C dyukims ¢(t, C') aBageTcs pereHneM ypaBHeHNs;
dx

2) moboe pemenue ypasnenns &7 = f(t,r), rpaduK KOTOPOro mpoxXomuT depes obmacts D,

MOZKeT OBbITh OMUCAHO ¢ OMOIIBI0 hyHKImE (¢, C') Ipu COOTBETCTBYIOIIEM BBIGOPE apaMeTpa
C.

[Tpu durcuposannom C' = Cy dbyukuus x = ¢ (¢, Cy) onpejiessier YacTHOE PeIleHue.

MuoxkecTBo 3HadeHuii mapamerpa (', KOTOpbIE COOTBETCTBYIOT BCEM HHTEIPAIbHBIM
KPUBBIM, [IPOXOJSAIIIM depe3 obractb D, 6yier obosHadarbest (C)p.

[Tox cioBamu mpomsBosibHasi nocrognnad C' mojgpasymeBaercs, uTo napamerp C MOxKeT
IpUHUMATH JI06oe 3HadeHue u3 MuoxkecTB a(C)p.

Takoe 3nauenne C' OyJeT HA3BIBATHCS JIOMYCTHMBIM.

Huxxe B npumepe 1.2.2 (paszen 1.2.2) ypasrenue onpeseneno B £ = R? u ero 1npasast qacThb
- HempepbIBHO auddepennupyeMasa QyHKIIAA.

Cortacho ompe jesennio 1.1.5 obiue pererust ypaBHeHNsT fl—f = f(t,z) B obmactax z > 0 u
r < 0 onmcwBaorest byukuumeit ¥ = —1/(t + C).

Ho omucarh ¢ eé momomnipbio oblee pelleHue ypaBHeHHd Bo B ceil maockoctu R? cornmacHo
onpesiesieHnio 1.1.5 HEBO3MOXKHO.

OO6mmit maTerpan

Omnpenenenmue:
YpaBuenue

O(t,z,C) =0
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2.1 The Simplest Types of Equations and Methods of Their Solution

HA3BIBAET CsA OOIIMM MHTErpajoM g depeHIualbHoro ypapHenus 2 = f (t,z) B obmactu

dt
D CQ, ecan

1. aus o6oro jorycrumoro 3uadenus C ypashenue (1.7) ompejiesisieT HEsIBHO pellleHUe
de __
ypapuenusa 5 = f(t,x). )
X

2. moboe pemenue ypasaenns 57 = f(t,r), rpaduk KOTOPOro mpoXoauT depes obracts D,

MOZKeT OBITH OIICAHO HessBHO ypaBHerueM (1.7) mpu cooTBeTcTByoOMmeM Bbibope mocTosiHaoi C.
W3 onpejienienus ciiejiyeT, 9To OOIMIMit MHTErPaJl Olpe/ie/ideT B HESIBHOM BHUJIE€ BCE PEIEHUsT
dx

ypasnenna % = f(t,r) B obmactu D.

Teopema

[Iycts B 0b61acTu ) BBIIOJIHAIOTCS yC/I0BUus TeopeMbl 1.1.
Torma ms mro6oit Toukn (tg, o) € ) MOXKHO yKa3aTh TaKyko €€ OKPECTHOCTh, B KOTODPOIi

BCe pelennst ypasHeHus: 2 = f(¢, ) MOKHO onmcaTh ¢ moMompio obmero pemtenns (1.6) (wm
¢ momorpio obrero narerpasa suda A(t, z) = C)[5, 10]
Cltei0BaTeIIbHO, IIPH ycJI0BHAX TeopeMsl 1.1 Bee pemenns ypastenns % = f(t, x) JoKaJIbHO

OIMCBHIB AI0TCs OHOIAPAMETPUIeCKIM ceMeiictBoMm dyuknuit © = ¢(t,C),C € (C)p

NnTerpupyeMocTb B KOHEYHOM BU/JIE

loopst, uro juddepenimaibHoe ypaBHEHIE HHTETPUPYEMO B KOHEYHOM BHU/JIE, €CJIH BCE €0
peleHnst MOr'yT OBbITH IIPEJICTAB/IEHBI B BHJIE dJIeMEeHTAPHBIX (DYHKINI 1 KBaIpaTyp C IIOMOIIHIO
KOHETHOI'0 YHCJIa aJIredpanvIecKuX OIepalyil 1 CyHnepIo3uInii.

2.1 The Simplest Types of Equations and Methods of Their Solution

Hwxe paccmarpuBarorcs Huddypor Cé—f = f(t,x) ¢ TaKUME TPABBIMHU YACTSMHU, KOTOPBIE
[IO3BOJISIIOT [TPOMHTEIPUPOBATh ypaBHEHHE B KOHEYHOM BHJI€ W JIOKA3aTh CYIECTBOBAHUE W
eINHCTBEHHOCTD periennst 3agauan Komm (1.5) mpu Gostee cabbIx yCJIOBHSIX, HAJOXKEHHBIX Ha

dbyukuumio f(t, z), vem B Teopeme 1.1.

2.1.1 Equations in Total Differentials

YpaBHenue ‘fi—f = f(t,x) MOYXKHO TIPEJICTABUTDH B BUJIE

dx — f(t,z)dt =0, (t,x) € Q

Ypasuenue (1.8) HasbiBaeTcs ypaBHenueM B juddepenimaiax.
B 60.1ee ob1meit hopme ero MOKHO 3aIlUCATDH CJASAYIONUM 00Pa30M:

P(t,z)dt + Q(t,x)de =0, (t,x)€ Q

Oynknun P(t, x), Q(t, x) upeamnoaaraloTcst HEIPEPbIBHBL MU.
[lepemennbie t u x BxogaT B ypasaenue P(t, x)dt + Q(t, x)dx = 0 paBHOIPABHO.

[TosTomy ero pereHue MOXKHO UCKATh 00 B Buje x = (t),t € J, mbo t = ¢ (z),x € I; B

P(t
IIEPBOM CJIydae MHTEIPUPYyeTCs ypaBHEHUE ‘Cil—f = —Qgt’zg,

5—; = —gg:g,P(i,[L’) # 0 Oyukuus r = @(t),t € J Ha3bIBaeTCs pEIICHHEM YpPABHEHUSI

P(t,z)dt + Q(t, z)dx = 0, ecrm

P(t, o(t) + Q(t,0(1)¢' (1) =0,t € J

Q(t,z) # 0, BO-BrOpoM - ypaBHeHUe
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2.1.1 Equations in Total Differentials

Anamormano s t = ¢(z),x € I.
dl’ _ P(t xT
dt T T Qi)

P(t,x) # 0 Oyukius v = ¢(t),t € J Ha3bIBa€TCs PEIICHHEM yDaBHEHHsI P(t,x)dt +

dt
Q(t,z) # 0, Bo-BTOpPOM - ypaBHenue -

cJlydae MHTErPUPYET Cs yPaBHEHHeE
_Qta) p
P(t,z)’
Q(t,z)dr = 0, ecrm

P(t,o(t) + Q(t,0(1)¢' (1) = 0,t € J

Anasornano s t = (x),x € I. Bamaua Komw nas ypasuenus P(t,z)dt + Q(t,x)dz = 0
CTaBUTCS CJIEIYIOMUM obpa3om: HaiiTu perenue ypasuenus P(t, x)dt + Q(t, z)dx = 0, rpaduxk
KOTOPOT'O TIPOXOJIUT 1epe3 TOUKY (tg, Tg) € 2

Omnpenenenue

1.2.1.
Ypasuenne P(t, x)dt+Q(t, z)dxr = 0 HasbIBaeTCS ypaBHEHHEM B HOJIHBIX IuddepeHnnaiax,
ecn cymectyer dyuknus U(t, z) € CH(Q) rakas, uto

P(t,z)dt + Q(t, z)dx = dU(t,x), (t,x) €
U3 onpenenenns muddepentmana dyuknuu U(t, x) ciaemyer

ou ou

Ea Q(tax) = .

P(t,x) = e

Teopema 1.

3.

Ecmm P,Q € C(2),Q # 0 u ypasuenue P(t,x)dt + Q(t,x)dx = 0 sgBisieTcss ypaBHEHHEM
B nosiHbIX juddepennnanax, to 1) dyuknusa (t),t € J, ABIgeTcs pereHneM ypaBHEHUS
P(t,x)dt + Q(t,z)dx = 0 B.

no/HbIX ud hepennuaiax Toraa U TOJIbKO TOTJA, KOTJIa BBIIIOJHIETCST TOICIECTBO
Ult,pt) =C,te J

2) 4epes 00y TOUKY 00sacTH {2 MPOXOJUT €IMHCTBEHHAs] HHTErDAIbHAsT KPUBASI.
JoxazarenbcTso.

1) Ilycre (), t € J, - pemmenne ypaBHeHUsT B HOJTHBIX Juddepenimaiax.

Toryma u3 dopmya (1.10) u (1.11) crenyer

U ¢ onat+ 2

i (el delt) = 0 = Ult p(t) = Crt € J

ObparHo.

Besikag dyuknus x = ¢(t),t € J, onpenensiemas nesisao ypasuenuem U (t, x) = C, e C -
JIOIIYCTHMAasl TOCTOsIHHAS, OyjieT Tak:Ke perienueM ypasuernus (1.10).

eiictBurensno, muddepeHnupysd ToxiecTBo 16

U(t,p(t) = C,t € J, no t, noayanm

%lt]dt + a—Udgo( t) =0= P(t,p(t)dt + Q(t, o(t))dp(t) =0 =

oz
= P(t, ¢(t) + Qt, 0(t)'(t) = 0,1 € J

2) g moboit Toukn (to, xg) € 2 nmeem U (to, zo) = C.
Tax kak Q (to, xog) = %—g (to, o) # 0, TO U3 TEOPEMBI O HESBHOW (DYHKIUU CJIEJYeT, ITO B
HEKOTOPOI OKPeCTHOCTH TOUKH (tg, xo) ypasuenue U(t, x) =
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2.1.1 Equations in Total Differentials

= U (to, zo) 3a186T €MHCTBEHHBIM OOpa3oM perieHre B Buie dyHKIimu © = @(t), t €

‘]7 ¥ (tO) = Zo.
Oua, oueBuIHO, Oyer perenueM 3aaun Kommu (1.5).
Bnecy ypasuenue U(t,x) = C,t € J saBisiercs TpuMepoM OOINEro WHTErpajia, oIpe

JIEJIEHHOT'O BEIIIIE.

[Mocrostrnast C' nmpurnmaer 3Hadenust u3 MHOxkectBa {U (to, xo) : (to, zo) € 2}, KoTOpOE
SIBJISIETCS MHOYKECTBOM €€ JIOIYyCTUMBIX 3HAYCHUIA.

st kaxkoro permenns © = ¢(t),t € J, nocrostunas C' CBOsI.

Takum obpasom, pemenne x = (t),t € J, upuHEMaOIee 3aJaHHOE 3HAYECHUE
xo = ¢ (to), (xo, to) € , nHaxomgures uz obmiero uarerpasa U(t, x) = U (to, xp).

Ecmu Q (tg,z0) = 0, a %—? (to,z0) = P (to,z0) # 0 mo pemenne ypapuenusi P(t,x)dt +
Q(t, z)dxr = 0, rpaduK KOTOPOro IMPOXOAUT Yepes3 TOUKY (o, g), Oyaer umersb Buj t = (z), z €
1.

VckmouenneM B CMBICIe TeopeMbl 1.1 cyIecTBOBaHMS M €IMHCTBEHHOCTH CJIy?KAT TOYKH
(to, zo), I KOTOPBIX ofHOBpeMenHo P (tg, xo) = @ (to, zo) = 0.

Ecyiu cymecTByeT Takast OKpecTHOCTB TouKH (tg, Tg), B Kotopoit P2(t,z) + Q*(t,z) > 0, To
TouKa (to, o) HA3BIBAETCS M30JMPOBAHHON 0CO00i TOUKOI.

Orcroza ciemyer, 9To JjId W30JMPOB aHHON HEocoDOH TOYKM (to, xo) € () perenne 3aj1a4n
Kommu cymecTByer u e MHCTBEHHO.

Ono MoxkeT 6bITh HpejcTaBIeHo Jinbo B Buje T = ¢(t), mbo B Buje t = 1(x)

IIpn3nak ypaBHeHUs B NMOJHBIX auddepeHnmasax

Ecimu P, Q, %, %—? € C(92) u obacts €2 onHoCcBsA3HAsA, TO ypauenue P(t, z)dt+Q(t, x)dx = 0
Oyzer ypaBHEHHEM B IOJIHBIX AuddepeHnuasax Torga U TOJALKO Torda, Korjga B obsactu §)

BBIIIOJIHAETCA PaBEHCTBO
oP  0Q
ox ot
Teopema j10Ka3bIBaeTCSI B KypCe MAaTeMaTHIeCKOIO aHAJIN3a.
(777 u rye xe??)
Perenne ypashenusi B nosHbix uddepennuanax, BbipaxkenHoe depe3 dbyukiun P(t, )
u Q(t, ), MOXKHO MOJyYUTh B BUJe OOIIEro MHTErpaja, Kak MOKA3bIBAeT NPUBEJEHHAS HUZXKe
TeopeMma.

Teopema o Buae nosiHoro jauddepeHnuaia

[Iycrs B obnactu Q = (ag,az) X (by, by) BbIIONHSAIOTCS yea0BUs TeopeMbl 1.4, ypaBHeHHe
P(t,x)dt + Q(t, x)dx = 0 siBasieTcst ypaBHEHHEM B TOJHBIX Juddepenimanax u Q(t, x) # 0.
Torma dyukimio U(t, x) ays moboit Touku (tg, o) € ) MOXKHO IPEJICTABUTH B BUJIE

t

Ut z) :/P(T,x)dT—i-/Q(to,z) =, (L) €Q

to

[Tpu srom pemtenue 3a1aun Koru (1.5) e IMHCTBEHHO U B HEKOTOPOIT OKPECTHOCTH TOYKY (tg, )
npejicraBuMo B Bujie = p(t),t € J.

Jlok a3at esb Cc T Bo.

> Cormacto coornomenusm (1.11) nmeem

oU
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2.1.2 Equations with Separable Variables

[TpounTerpupyem 3T0 ypaBHEHHE 110 ¢, CINTAA T HOCTOSHHDBIM:

t
Ult,z) = /P(T, x)dT + ¢(x)

to

Oyukims ¢(r) 3/1ech Ipejnoaraer cs HelpepbIBHO Jud GepeHIupyeMoi.
Huddepennupys waiiaennyo Gyuknuio U(t, x) o x n ucnoassys (1.11) u (1.12), momyanm
U [oP [ 00
ta)=——= | —dt+¢(x)= | ==
atr) =2 = [Pt g = [ %

= Q(t,r) — Q (to,z) + ¢'(2)

Orcrona ciejyer, 9To oJHUM U3 3HadeHuit byHKImn ¢(x) Gyaer

dt + ¢'(x) =

¢(x) = ]Q (to, 2) dz

B pesysbrare nosydaem dhopmyiy (1.13).
Tax kak @ (to, o) # 0, TO U3 Teopembl 1.3 ciieyer CymeCTBOBAHUE W €JIUHCTBEHHOCTD
pemenus 3aa4dn Komm. 18
Bameuanne 1.2.1.
Ecmu Q (to, xg) = 0, a P (tg,z9) # 0, To dyskimo U(t, ) MOXKHO IpPEJCTABUTb B BHJE
t T
U(t,z) = [P(r,x0)dT + [ Q(t,z)dz. Cornacuo Teope Me 0 HesBHOII (YHKIMM pelleHne
to xo
P(t,x)dt + Q(t, x)dx = 0, rpacduk KOTOPOro MPOXOJUT depe3 TOUKY (tg, o) € 1, cyliecTByer u
enurcTBeHHO. OHO MOXKeT ObITH MpejicTaBieHo B Bujie t = Y (x),x € 1.
Ecmn dynknnsa Q(t,x) # 0,(t,z) € Q, to obmacrb ) GyJaer 067IaCTHIO €UMHCTBEHHOCTH

pelieHuns.

O npumenenusx (77)

(7777 x37777)

2.1.2 Equations with Separable Variables

Pacemorpum  ypasuenwe — P(t,z)dt + Q(t,x)dx = 0, B KOTOPOM
P(t,z) = Ti(1) X1(2), Q(t, x) = To(t) Xa(z)

T () X1 (z)dt + To(t) Xo(z)dz = 0, (t,z) € Q2

OHO Ha3bIBAETCHA yPABHEHUEM C Pa3JIeISONUMUCS IePEMEHHBIMU B CHMMETPUIHOi hopMme.

Bynem cumrars, uro Q = {(t,x):a1 <t < ag,by <z <by} u byukuuu P(t,x),Q(t, )
HellpepbIBaHbl B HEM.

O6osmaunm  wepes S wmuokectso: S = {(t,z) € Q: Tr(t)X1(x) =0}, a depes
D = {(t,x):an<t<cy dy<xz<dy} - m00yI0 KOMIOHEHTY CBS3HOCTH OTKPBITOIO
muoxecra \S

Paznennm ypasnenne (1.14) ma Ty (t) X1 (z).

B pesynbrare B obsactu D mostyunm ypasrenue

Ti(t) ., Xo(z)

—=dt +

o X @@ =0
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2.1.2 Equations with Separable Variables

KOTOPOe Ha3bIBAET Cs YPABHEHNEM C PAa3/eJIEHHBIMU IIEPEMEHHBI M.
Ero koaddunmenTs! yaoBIeTBOPAIOT YCJIOBUAM TeopeMbl 1.4.
Oyukimst (1.13) u obmmit naTerpas ypasuenus (1.15) npuaumaror Buj

t t

[T, [ Xa(x) (), [ Xo(z),
U(t,x)/mdth Xl(m)dmj/TQ(t)dt—i_ X1<x)dxfC

to o to o

u T X
[Tocnennsss dopmysia MOKa3bIBAET, YTO CyMMa IIePBOOOPA3HBIX (DYHKITUI 7. U %5, upup

aBHEHHAs K JOIyCTUMOI nocrosunoii C, onpeensaer o0muili nHTerpadl.
EFO MO2KHO 3allliCaTb B BHJE
T'(t) Xo(x)

/mdt—i— mdl’zc

19 Jleknuu 1o auddepeHnuajibHbIM YPABHEHIAM 3aMeTHM, 9TO OTPE3KU IPSIMbBIX T = const,
t = const, npuHaIeKAIIIE MHOXKECTBY S, SIBJIAIOT Cs perieHusivu ypasHenus (1.14).

Ecmn Ty(t)Xs(x) # 0, mo ypasHenume (1.16) moKHO TpencTaBuTh B BHje (ypaBHEHUS
Pa3peIéHHOr0 OTHOCUTEIHHO TPOU3BOTHON ):

dz T (t) X1 (2)

n D)%) = f(t)g(z)

2
IIpumep ocoboro periieHusi: ypaBHeHUE Ccll—f = |z|3 (1)

(a BOT 9TO BayKHO, TIOKA HE MOHSLI Kak cjeryer!)
Paccmorpum ypaBHeHme ¢ pas3/ie/IionnMUCcs IIepeMEHHbIMU:

dx 2
E:L’L’\B, (t,r) € R?
Permenne.
2
Herpynno Bugers, uro x(t) = 0,t € R, - pererue ypasHeHust fl—f = |x|5.

Tak Kak npaBad 4acTh ypaBHEHHs HelpepbiBHas (DYHKIMs, TO pelienue sajgadan Komm c
HadaIbHBIM yeaoBueM  (tg) = 0,ty € R, cymecrByer (Teopema Ileano).

Opnako oma ne muddepentupyemas npu r = (0 QyHKIUs, TOITOMY €JINHCTBEHHOCTD
pemienns 3aga4un Komm He rapaHTHpyeTc.

1. Ilycts z > 0.

Torna x = (%){t—l—A >0,AeR

2. Ecm x < 0, To x = (%){t—i—B <0,B€eR. Ectu A =B, To dyHKIUI = = (%)3
dx

2
— |3 2
ABJIAETCA PellenneM ypasHenns 57 = |z]5 B R

Eciu A # B, 1o mjist 00bIxX t1 < to IMEIOTCS TaKKe PEIeHus] BUJIa

()" i<

w(t) =4 0/t € [t ty

(52)% ¢ > t

KOTOPbI€ Ha3bIBAIOTCA COCTABHBIMU MJIM KOMIIO3UITMOHHBIMU.
2
Takum obpa3oM, WMHTErPAJbHBIMA KPUBBIMU — YpaBHEHUsI % = |z|5 Oymyr Bce
nuddepeHIupyeMbie KPUBbIE, COCTaBJIEHHbIE U3 IPA(UKOB PENIeHUil, OMMCAHHBIX B ITYHKTaX

1),2), u pemenus x(t) = 0,t € R.
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2.1.2 Equations with Separable Variables

Onpenenenne ocoboro pertenus (!)

Yepes NpousBoIbHYI0 TOUKY (tg, ) € R? Bo Beeil MIIOCKOCTH MPOXOIUT GECKOHEMHO MHOTO
(KOHTHHYYM) HHTErpaJIbHbIX KPUBBIX, Kacarommuxcs ocu Ot.

JlokasibHo vepes J1obyio Touky (tg, 7o) € R?, xy # 0, IPOXOJUT OjlHA MHTErPaJIbHAs KPUBA.

Takast cuTyarysi BO3HUKaeT motoMmy, dro perenne z(t) = 0,t € R, saBisiercss ocobbiM (puc.

1.1).
Pemenme ¢(t),t € J mucdbdepennuansnoro ypapuenusa % = f(¢, z) (Tak»Ke Kak U ypaBHEHI

dt
(1.1)) maspiBaeTCH 0COOBIM, €Cyiu B JIIO0OH OKPECTHOCTH KazKIoi ero Touku (tg, ¢ (to)),to € J
IPOXOJUT JIpyTas MHTerpaJbHas KPUBasi, UMEIOIIas ¢ HIM B 9TOH TOYKe OOIIYI0 KaCATEIbHYIO.
D10 ompeiesieHne MOXKHO TepedpasupoBaTh CIeAyIONmM obpasom: perienne ¢(t),t € J,
HA3BIBACT Cs1 OCOOBIM, €Ccad B J1000f OKPECTHOCTH KayKJIOH ero TOYKM HApYIIAeTCs

eJINHCTBEHHOCTD perenns 3aaaun Komm. Ecim gepes Touky (tg, xg) mpoxoasT jase uin 6oJiee

UHTerpasbHble KpUBble ypaBHeHus 4L = f(t,x), To oHa HasblBaercs TouKoil [leano nyst sToro
ypaBHEHUS.

loBopsT, uTO B 3TOi#1 TOUKe MMeeT MecTO sABjeHue [leano.

Bee roukn ocn Ot siBisores Toukamu Ileano ypabhenns 4 = |z|5.

(7?7 smnenue [eano??7?)
: dr _ 22 (111
ITpumep ocoboro pemenusi: ypasuenne <& = x> (!!!!)
(kazasioch Obl, IpocTeiiliiee ypaBHEHHE, a yXKe eCThb 0c000e pelleHHe. 3aueM 3TO TYT

Paccmorpum emé onHO ypaBHEHHE € pas3/e/soNIUIMUACS TepeMeHHBIME, [paBasl YacTh
KOTOPOT'O siBJIIETCS HEIpepbhIiBHO qud depeHnupyeMoii (pyHKIreii:

d
d—f =27, (t,r) € R?

Pemenne.
Bamernm, aro dbyukiws x(t) = 0,t € R, aBiagercs pemenuem.
[Tycrs « # 0. Torna ypasaenue (1.19) SKBUBAJIEHTHO ypPABHEHWIO

dz
Oyuknus ¢ = —1/(t + C) 6yner pemtennem ypasHenust, rje C' - IPOU3BOJIbHAs TOCTOSTHHASL.
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2.1.3 Homogeneous Equations

-

Bompoc: B kakux obsacrsax dyuknus r = —1/(t + C) aBisiercs obum periieHrneM? DTOT
[IpUMeEp TTOKA3bIBaeT, 94TO Teopema 1.1 HOCHT JIOKaJIbHBII XapaKTep.

Hecmorpst Ha TO, 49ro mnpaBas dacTh ypaHenust (1.19) sBisiercsi HeIpepbIBHO
muddepennupyemoii Gynkimeit B k2, moboe ero HeTPUBHAILHOE pPeIleHne IPH CTPeMICHNH
K HEKOTOPOMY KOHEYHOMY 3HAUEHUIO CTPeMUTCs K GeckoHeunocTu (puc. 1.2).

(777)

Corytacuo onpegesieanto 5 yukius © = —1/(t + C') sBisercst obmuM perrieHrneM b0 B
obstactu x > 0, 1mubo B obactu x < 0.

2.1.3 Homogeneous Equations

YpaBHeHue BuIA
dx x
—=f(=),t#0
i)
HA3BIBAETCS OJTHOPOIHBIM T hEpPEeHITNATBLHBIM YPaBHEHTEM.
[Tpu sToM mpejnonaraercst, uro dbyHkiums f(z) onpejeieHa U HempepbiBHA Ha MHTEpPBaJe
I =(a,b).
[Tpousseném 3ameny x(t) = tz(t), rue z(t) - HoBasi Hem3BeCTHAs (DYHKITHSI.
Eciu dynknus f(z) onpenesnena Ha naTepsase I, To byskims f (%) OyzeT ompejiesieHa Ipu
a < % < b, To ectb B 0bnacTAx 4 u (2.
Onnm npescraBiensl Ha puc. 1.3 B npeanooxennn a < 0 u b > 0.

O6ozuaanm 2 = €2y U .
Muoxkectso 2 He cuepxkut Touky (0,0).

Teopema

Ecmu f(2) € C(I), f(2) # 2,2z € I, T0 4epe3 KaxIyIo TOUKY (tg, Tg) € §) IPOXOIUT OHA W
TOJIKO OJ[HA MHTerpaJibHasi KpuBas ypasaenus (1.20).

(o x a3 ar eyb cr BO.

> [losmoxkum x(t) = tz(t).

Torya ypasuenue (1.20) mocienoBaTe/IbHO IPUHUMAET B 2 + t% =f(z) = % = %

B pesyabrare nosydaercss ypaBHEHHE ¢ PasAeISIONIIMUCA MEPEMEHHBIMUI, sl KOTOPOTO
cripaBejjinBa TeopeMa 1.5.

Ecmu f(2) — 2z # 0, To perennst ypasaenusi (1.20) 6yyT oMUCBIBATHCS OOIIMM HHTETDATIOM

d
/—f(z)z—z =Inl|t|+C

[TycTs Ternepsb npu HEKOTOPOM z = zo, f (20) = 0.
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2.2 Fundamentals of First-Order Linear Equations

Torma dyskimn © = zpt,t < 0 u © = zot,t > 0 Gyayr pemenuamu ypasaenusi (1.20) B
obnacrax €2 u €.

[Tpu 9TOM OHE MOI'YT OBITH KaK OCOOBIMHU, TAK U YACTHBIM.

Y106bI TPOMLITIOCTPUPOBATE 9TO YTBEPKIECHIE, DACCMOTPUM yPABHEHUE

dx T
— =2/—=.t

pelmenusaMI KoToporo OyayT dyukmma: x1(t) = 4(v/t — C)%,t > C?,C > > 0,2 = 0; x =
4t,t > 0.

Pemenne x = 0,t > 0 aBisiercst 0cOObIM,

a perenue x = 4t,t > 0 - 9aCTHBIM.

[Tpu stom x4 (t) < 4t,t > 0, eciu C' > 0.

Ecmu ke C' < 0, 10 x1(t) > 4t,t >0

Ypasuenue B quddepentmanax P(t, z)dt + Q(t, z)dxr = 0 6yaer ogHopogubiM, ecin P u
- OHOPOAHDIE (DYHKIUU OJHOI'O U TOIO JKE IHOPAIKA.

Owno mojicTaHOBKON *© = tz(t) NPUBOAUTCS K YPABHEHUIO C PA3JIEIAIONIUME Cs I€PEMEHHbBI
Mu. K ogHOpOIHOMY ypaBHEHUIO NPUBOAUTCI U ypaBHeHHEe Oojiee OOIIero BHUIa, a NMEHHO:

@—f at + Bx 4+
dt at +bx +c¢

Ecmu ab — af # 0, To npousseiém 3aMeHy 1€pe MEHHbBIX:

t:T+t0
r =Y+ T

Ompenenum ty u g, peras CUCTEMY YpPaBHEHUIL:

Oéto—i‘ﬁ.’lio—F’}/:O
ato—i—bxo—i—c:o

B pesysbraTe mostyanm oiHOPOJIHOE ypaBHEHHE OTHOCUTE/IHHO MEPEMEHHbBIX Y U T.
[Iycrs Teneps ab — af = 0,5 # 0, Torma mojcranoBka y = at + o NPUBOAUT ypaBHEHHE
(1.21) K ypaBHEHUIO C PA3JIEIAIOIIUMEICS IEPEMEHHBI M.

2.2 Fundamentals of First-Order Linear Equations

(Ba}KHaH TEMa, HallUIly KaK CJIeAyeT JIydlie 3TO.)

2.2.1 Basic Definitions

OnpeniesieHre NpUBEJeHHBIM JIMHENHBIM ypaBHEeHUEM 1-ro mopsigka

Juddepennnanbioe ypaBHeHUE BUJIA
'(t) +p(t)r = q(t),t € J

Ha3bIBACTCs [IPUBEJICHHBIM JIMHEHBIM ypaBHEHHEeM 1-T0 Hopsijika. ByzeMm mpejiosarars, 4To
p(t),q(t) € C(J), rue J - HEKOTOPBIN TPOMEXKYTOK.

Ecim ¢ = 0, To ypaBHeHHEe HAa3bIBAETCsl OJHOPOJHBIM. B IIPOTHBHOM Ciydae -
HEOIHOPOJIHBIM.

Yepes Qpp obo3Haunm MHOKeCTBO Todek: i = {(t,z) : t € J, |x| < oo}

33



2.2.1 Basic Definitions

Teopema 1.

7.

Ilyers p(t), q(t) € C(J).

Toryma depes mobyio ToUKy (fo, xg) € €2 I[Ipoxomur eauHCTBeHHAs] MHTErpabHAsT KPUBAa,
ONpEJICTEHHAs Ha BCEM MPOMEXKYTKE J.

ok a3at esab ¢ T BO.
PaccmoTpum ojitHoposiHOE ypaBHEHNE
() +p(t)x(t) =0,t € J
Bce ero pemenus onuchiBaioTcs pyHKIUEH

~ —ftp(T)dT
zo(t) = Ce " ot e J

rie C' - IpOU3BOMIbHAS [OCTOSHHAS. SaJaHMe: HOIYUNTh CAMOCTOATENLHO hOPMYITy OBIIEro
pellleHns: OJJHOPOIHOIO yPABHEHMUS.
Haiinem obmiee pemenne ypashenus (1.22) MeToj0M Bapuamuu mocTo- sHHOi Jlarpanka.
Bynem nckathb ero B Bujie

2(t) = C(t)e o

ryie nenssecrnas gynkuus C(t) € CH(J).
[Moncrapnsts dbyukmuo z(t), ¢ € J(1.23) B ypasaenue (1.22), mns ompenenenns C(t)

t
p(T)dr

HOJTyIMM yDABHEHHE: % = q(t)eto
VurerpupoBanue mocaeIHero Jaér

fp(T)dT
C(t) = /q(w)efo dw+D,D eR

to

[MoncraBnss naiinennoe suadenne C(t) B (1.23), momydnm obimee pereHne HEOIHOPOIHOTO
ypasrenus (1.22) :

t t t
J p(r)dr

t
x(t) = Dexp —/p(T)dT + exp —/p(T)d’T /q(w)eﬁo dw
to to to
Ob6miee pemenne (1.24) cocronT U3 JBYX CJIaraeMbIX, [IEPBOE M3 KOTOPBIX SIBJISETCH OOIIIM
pereHneM JIMHERHOTO OJTHOPOJIHOTO YpaBHEHUS, & BTOPOE - YAaCTHBIM PelIeHUeM JIMHEHHOTrO
HEOJIHOPOJ/IHOTO YPABHEHUS.
U3 sroit popmyJibl Jierko moydnTh pertenne 3aaadn Korm (1.5).

W3 maganbHoro ycsosus (1.5) mHaxomum D = xg.
B pesynbrare nmeem

t

: jp(T)dT
x(t) = aso+/q(w)et0 dw | exp —/p(T)dT

to to

JlokazkeM eMHCTBEHHOCTD perntenus 3azadu Kommm (1.5).
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2.2.2 Bernoulli Equation

[IpemoaoKM, 9To CYIIEeCTBYIOT JIB a eé pemtenus: xq(t) u xo(t).

CocraBum pasHoctb X = T1 — Zo.

Dynkimst X () yIoBIETBOPSET Y2KE OJHOPOJHOMY YPABHEHUIO C OJJHOPOJHBIM HAYAJbHBIM
YCJIOBHEM:

¢
=—pX = X =Cexp —/p(T)dT
to

X(to):l'l(to)—l‘g(to):0:>C:O:>X(t)50,t€<]:>$1EZL‘Q,tGJ

=g dX
TP =q dt

Sameuanne 1.2.2.

[Ipeamonaranock, arto (tg, o) - GPUKCHPOBAHHAST TOUKA.

Dopmymna (1.25) mokassB aeT 3aBucHMOCTD pernernst 3agadu Komm (1.5) oT Hava bHBIX
JIQHHBIX.

Eé moxuo 3anucars B Bujge: x = ¢ (t;to, o).

Oyuknust x = ¢ (t;to, ¥9) HA3BIB aercs obuw M pererneM B dhop me Kormn.

[TpeAmoaoKuM, 9TO MOKHO YCTAHOBHUTH TaKylO0 3aBUCHMOCTD MEXKJy to,Zg ¥ HEKOTODHIM
apaMeTpoM T :

to = to(T),ZEO = ZL’()(T)

YTO IPU U3MEHEHUU T TOYKA (tg, ) IpoderaeT Bce HHTErpasbHble KPUBBIE W [IPH 9TOM DA3HBIM
3HAYEHUSIM T COOTBETCTBYIOT pa3Hble KPUBbIE.

Toryma obmee perenne B dhopme Komm z = ¢ (;ty, ) npeBpammaercss B oblee pereHne
x = ¢ (t;to(7), 2o(T)) = $(t; 7).

BocrionbayeMes 9TuM 3aMedaHreM W IMOCTPOUM (PYHKIUIO, KOTopasi OyJ/IeT OIUCHIBATH BCe
pemenns ypasnenus (1.19) Bo B ceii miockoctn R2.

JLy1st 9TOTO TOJIOKUM Tog = T U tg = —T.

Tora obriee perenne OyJIeT ONMKUCHIBATHCs (DYHKIIEH, 3aBUCAIIEH OT OJHOIO IapamMeTrpa T:

-
= -7

Tt+71)—1
Hanpumep, eciin 3aduKcUpoOBaTh 3HAYEHUE T U HOJOKUTL £y = T, TO BeJIMYUHA ty UTPAET POJIb
napaMeTpa UM IPOU3BOJILHOI IOCTOSHHOI.

Huzke »10 3aMedanme OyJeT MCIOJIB30BAHO IIPU MCCJIEJIOB AaHUU PEIIEHU ypaBHEHUS
Pukkaru.

€ (—o0,400)

Bompoc: Moxer jin perieHre JIMHEHHOTO OJHOPOJHOrO ypasHeHusi (1.22) kacarbes wim
nepecekaTh och © = 07 26

2.2.2 Bernoulli Equation

Onpenenenue

1.2.4.
YpaBHuenue Buja
4+ pt)r=q(t)z",n#£0,1;t e J

HA3bIB aeTCd ypaBHEeHUeM bBepnysuim.

[Ipeamonaraercs, aro q(t),p(t) € € C(J) Ypasuenne Bepryum Bcerjia HHTErpupyeTcs: B
KOHEYHOM BUJE.

HeiicrBuTenbHo, paszaeaum obe JacTu ypaBHenus Ha ", cunras T 7 0.

Torma
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2.2.3 Riccati

jfn + fét) =q(1)

1—-n

Ecin mpomssecTn MOJCTAHOBKY 2z = x' ", TO B pe3yJbrare Jyisi onpe jeieHus z(t) moydnm

JMHEHOe ypaBHEeHUE
Z(t) + (1 =n)p(t)z = (1 —n)q(t)

Corytaco dopmyste (1.24) obiriee perienne JIMHERHOTO ypaBHEHUE UMEET BT
' = CA(t) + B(t)

rie C' - IPOU3BOJIbHASI HOCTOSTHHA.

Eciu n > 0, To npu jejiennn Ha 2" Mbl MOTJIM IOTEPATH HYJIEBOE DEIICHHE.

[TpoBepka mokaseiBaet, uto x(t) = 0,t € J, - perierne ypasHeHusi BepHysuim.

Perum Teneps ypasHenue BepHysum 0HOMMEHHBIM METOJIOM.

[Tpouseeném nogcranosry x(t) = wu(t)v(t), rae u(t) m v(t) - HemsBecTHBbIE HENPEPHIBHO
g depeniupyembie (pyHKITHH.

B pesynbrare mosmydaum ypaBHeHUE
vu' + u (V' + p(t)v) = q(t)v"u"
st onipe nmesternst yHKIWN v(t) MOTOKIM

V'(t) +pt)v(t) =0

HerpuBnasbHble pelieHns 3TOro ypaBHeHHst onuchiBaorcs dbop mysoit (1.23) ¢ mocrosHHOM
C #0.

Cpemu HuX BBIOMpaeTcs caMoe TpocToe (Hampumep, mocrosiaHas C' mosiaraercst paBHOI
eJIMHUIIE).

Ypasuenue (1.27) craHOBUTCS ypAHEHUEM C D a3/IeJISTIONMMUCS IEPEMEHHBIME OTHOCUTEIHHO
byukim u(t)

2.2.3 Riccati

Onpenenenne

1.2.5.
YpaBHeHue BUjIA
() + p(t)a(t) = q(t)a® + f(t),t € J

HaA3bIB a€T Cd ypaBHeHI/IeM PHKK&TI/I.
[Ipeanonaraercs, aro p(t), q(t), f(t) € € C(J)
Vpasaenne Pukkaru B o0ieM ciydae He HHTETPUPYETCH.
Ecyin uzBecTHO Kakoe-ymbo ero perenue 1 (t), TO MPOU3BEJIsl MOJCTAHOBKY

y(t) = =(t) — (1)

MBI TIOJTy9YUM ypaBHeHue beprysuim.
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2.2.3 Riccati

IIpumep ypaBuenuss Pukkaru (?777)

Pemurs ypaBuenne Pukkarn
t?x’ — btx +t’2* +8 =0, t>0

(7?7 ger XKecTKoe KaKOe-TO OHO, OYEMYy?)

Pemennue.

U3 ocHOBHOI TeopeMbl (T€OpeMbl CYIIECTBOBAHUS U €JMHCTBEHHOCTH DEIeHUs 3a/adn
Komm) cremyer, uro mpu ¢t > 0 depe3 KaxK/Jyl0 TOUKY MOJIYIIOCKOCTH ¢ > ( IPOXOIHUT
e/IMHCTBEHHAA MHTErPajIbHas KPUBAs.

Haiiem gacTHBIE peleHust ypaBHeHUs PUKKaTH.

Byzem uckarh nx B Buje ¢(t) = 4.

t
Yro6b! HaliTi 3HaUeHnss A, mojgctaBuM GyHKIUIO ¢(t) = % B ypasuenue (P) :

—A—BA4+A*4+8=0=>A2-6A+8=0=>4A,=2,A,=4

_ 4 _ 2
B pesynbrare Mbl MOTyIHIM JIB & TaCTHBIX DEIICHHs, & UMEHHO ¢ = § U (g = %.
Bynem nckath perrenns: ypaBHeHns: PUKKATH B BUE

4
x(t) = n + u(t)
[MoncraBus ero B ypasuenue (P), st onpeenenns yHKimn u(t) HOIydnM ypaBHEHHe
bepnynnnu:

3
u’—|—¥u+u2:0

[IpousBeaém 1OJICTAHOBKY W = %
Oyuxius w(t) yI0BIETBOPSeT JIMHEHHOMY yDPaBHEHHIO, HHTEIPUDYsS KOTOPOE HaIEM

perienusi ypasaenus (P) :

3 ¢ 2
el w=DP -ty ——
R T I T O NE R B
()= 2
xt)= -+ ————
t @D — 1)

Bce pemienns ypasuenusi (P) mpu ¢ > 0 onmceiBatorcst OyHKITHAMEI

Kapruna nosejienus pemienuit ypasuenus Pukkaru (P) npu ¢ > 0 npeacrasiena Ha puc. 1.4.
Oyuxkius z(t) = % + m, D, € (—00,0], aBisiercst obmuM perierneM B obsactu Qg =
{(t,z):2 < at <4,t > 0}.

[To 3amamuoii Touke (to,xo) B mosmymmockocTn t > 0 mocrostHHast Dj ompejenseTcs 1o

dopmyie
.Z'ot(] -2

B 2t(2) (.Totg — 4)

Ecim nckars peeHnsd ypaBHEHU A Pukkaru B 153491 (§]

1

mw:%+mn
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2.2.4 Integrating Factor

To B ce perennsi ypasaenusi (P) mpu ¢ > 0 6yayT omuceiBarbes OyHKIMST MU

¢2:%7t>0
o(t) = 2 + 72

t2+ Do
[Ipu Dy = 0 MBI TOTyYUM pelenHne ¢ = %, a upu Dy = 00 — ¢s.
Eciin nponssecru 3 ameny Dy = 55-, To MHOKecTBO petnennit z1(t) U ¢1(t) nepeitaér
BO MHOZKECTBO DeIIeHuil o (t) U o (1).
Paccmorpum pemenne ypauenusi Pukkaru B popme Koru, nmostoxkus xg = 1,69 = 7 > 0.
B pesynbrare npu 7 € (2,4) Mbl mosyunm (DYHKIHMIO, ONUCHIBAIOILYIO BCE DEIEHUs
ypasHenus Pukkatu B obactu {); B 3aBUCUMOCTHU OT HapaMeTpa T:

B 2(r —2)t
T g—i_ (r—=2)24+712(4—1)

[TocTpoennas pyHKIHMS YIOBJIET BOPS€T B CEM YCJIOBHSAM orpejesnerus 1.1.5 obmero perrenus
ypaBHeHUdA 1-r0 mopsijika B obsactu 2.

Bompoc: mosicHO 1 TOCTPOUTD (DYHKITUH, ONUCHIBAIOIINE BCE pellleHns ypaBuenns PukkaTu
B obsacTsax 2qufls?

\

|

]
$()==-(D=-c)| |

N \ \

2
;@=0

O apyrowm mipo ypaBuenue Pukkaru

(TaM KHUTH [IPO HErO BPOJIE HAIUCAHBI, YKAXKy, 4TO BOOOIIE ecTh?)

2.2.4 Integrating Factor

Ecaun nesas wacth ypashenus P(t,z)dt + Q(t,x)dr = (0 He sBIseTCs MTOTHBIM
muddepennuansoM, TO BO3HUKAET BOIPOC:  HEJb3d JIM HalTH Takylo (YHKIMIO, NpU
YMHOXKEHUU Ha KOTopyto ypasuenne P(t,x)dt + Q(t,x)dr = 0 craner ypaBHEHHEM B HOJIHBIX

nuddepeniuaiax?

Onpenenenne

1.2.6.

Oynriws p(t,z) € C(Q),u(t,z) # 0, Ha3bIBaeTCS HHTETPUPYIOMUM MHOXKHTEIEM
ypasuenus P(t,xz)dt + Q(t,x)dxr = 0, ecau UpH YMHOXKEHHM HA Hee IIOCJIEIHEe CTAHOBUTCS
ypaBHEHHEM B TOJHbIX uddepernuanax.  DTO O3HAYAECT, YTO CYIIECTBYeT QYHKIHsI

U e CYQ), (t,z) € Q Takas, aro u(Pdt + Qdx) = dU :
p(Pdt + Qdx) = dU,U € C*(Q), (t,x) € Q

Ecmu u(t,z) € CYQ), a dynxkuun pP, u@ u obnacts € yJI0BIETBOPAIOT YCJIOBUAM TEOPEMbI
1.4, To
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2.2.4 Integrating Factor

OpuP) _ 0(pQ)
ox Ot (tz) e

HOCHG,ILHGG YpaBHEHNE MO2KHO IIepeIlucaTb B BUJE

ol o oP 0Q

JIj1s1 onpe JIeIeHnsl MHTErPUPYIONIEr0 MHOKUTES (T, 2) MbI MOy YU/IN yPABHEHUE B TACTHBIX
IPOU3BOJIHBIX 1-T'0 IOPSIKA.

Ero pemenne 30

sIBJIIETCsI DOJIee CIIOXKHOI 3a/1aueil, uem 3aj1ada perenus ypasaenus: P(t, x)dt + Q(t, r)dxr =

0.

O amako HaM TPeOYIOTCs He BCe pelieHns ypaHenus (1.28), a Tob KO OJHO.

Ha mpakTuke mHTErpupyomuii MHOXKUTETb YacTO UIIYT JUO0 KaK (PYHKIINIO TOJHKO OT ¢,
Jibo oT .

OcranoBuMcs Ha TIEPBOM CJIydae.

_ o _
ycrs p = p(t) = 3£ = 0.
U3 ypasuenns (1.28) morygaem
oP o0Q d oP o0Q

d or _ Y% or _ Y«
_M_ ox ot ’:>_/J/: ox ot dt, (t,x) EQ

dt Q t Q

Ecnu npaBasi 4acTh mocjeHero ypaBHeHUs siBJISeTCsS TOJIbKO (MYHKIUEi oT t, T.e.
2Q

op

2t = w(t), TO MBI HIOJTYHUM f1 = Celwdt

Kak nokasbiBaer Teopema, JOKa3aHHas HHUXKe, UUCIO0 MHTEIPUPYIONMX MHOKUTEEH JIjist
JIAHHOTO YPABHEHUS GECKOHETHO.

Teopema 1.

8.

Ecmu p(t, x) - mnrerpupyiontuit Muoscuress ypasaeuns P(t, x)dt + Q(t, x)dx = 0, m.e.

p(Pdt + Qdx) = dU, o mrrerpupyomunM MuoxcuresaeM oOyner dyakuus up(U), ne ¢
- HEKOTOpas HempepbiBHas (yHKIWsA, orandHas or Hyas. > Uwmeem ¢(U)u(Pdt + Qdzr) =
o(U)dU = F'(U)dU = dF(U).

B kauecrse dyukumn F(U) moxuo B3ars F(U) = [ ¢(U)dU.

Caenosaresbho, f11 = ¢(U)p TakKe siBIISIeTCsl MHTEIPUPYIONIMM MHOXKHUTEJIEM ypPABHEHUS
P(t,z)dt + Q(t, z)dz = 0.

MozKkHO MOKa3aTh, 4TO MOJIyYeHHas: (hOPMYJIa OIUCHIBAET B C& MHOXKECTBO MHTEIPUPYIONIHAX
muOKuTeNel ypasuenus P(t, z)dt + Q(t, z)dz = 0 [9].

Teopema 1.8 Ha IPAaKTHKE OKA3BIBACTCS OYEHD ITOJIE3HOIL.

[TokaxkeM 9TO Ha IIPUMEPE.

IIpumep

1.2.4.
Pemuts ypaBuenue
z3dt + (6_% — x2) dr =0,z >0

¢t-lnz) o 3
——— OyJleT MHTerpupyOIIM MHOKATEIEM ypaBHeHus 1°dt —

B cuny Teopemsbr 1.8 dyukms
2?dz = 0.
[leiticTBUTENIBHO, YMHOXKasi ypaBHEHHE HA WHTErPUPYIONIUI MHOXKHUTEIb,  OJIyIUM

¢(t;:1))n$) (z%dt — 2%dx) = ¢(t — Inz) (dt — <) = ¢(t — Inz)d(t — Inz).
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2.2.5 Methods for Solving First-Order Equations Not Solved for the Derivative

Oyukius 1 (x)e? GyaeT UHTErpUpPyIOUM MHOKHATe/IeM ypasHenus e~ 2dx = 0.
[Tonbepem dyHKIUU ¢ 1 1 TaKUM 0OPA30M, ITOOLI w = e?p(x) = u(t, x).
[Tonoxxum x = 1.

Torna mosryunm

O(t) = Ce*,C =(1) £0 = ¢(t —Inz) = CTM?) = Oz~ 2% =
2t 2e2t 1

x5 2 x4

Jluneiinoe ypasuenue (1.22), Kak HeTpyHO BuIeTh U3 myHKTa 1.2.4 (JluHeitHble ypaBHeHus),
UMeeT UHTeIPUPYIOMINI MHOXKUTEIb

t

ft=rexp | — / p(r)dr

to

yPaBHEHUeE ¢ pas3jessonuMucs nepemenabiv (1.14), kak ciaeayer u3 mynkra 1.2.2 (VpaBHeHus
C Pa3/IE/IAIONMIMICS IIEPEMEHHBIMH ), UMECT HUHTEIPUPYIONIHH MHOKHUTEIb =

13 sToro pesyabrara BBITEKAET CJIEJAYIONMNA:  e€CIU ypaBHEHHE B aﬂ(b(f)epeHuHanaX
P(t,z)dt + Q(t,z)dr = 0 aBisieTcsi OJHOPOJHBIM C IMOKA3aTeJeM OJHOPOJHOCTU 1M, TO OHO
UMEeT MHTEIPUPYIOMINI MHOKUTED [ = m.
JeiicTBUTEIBHO, TPOU3BE/IS MOJCTAHOBKY & = tu(t), HAXOAUM

P(t, tu)dt + Q(t, tu)(udt + tdu) = 0 =
t"[P(1,u)dt + Q(1,u)(udt + tdu)] = 0 =
= t"[P(1,u) + Q(1,w)uldt + " Q(1,u)du = 0

[Tocne ymHOXKeHUsT ypaBHEHUsT HA

1
tmHHP(1,u) + Q(1, u)u]

MBI IIOJIYYHUM ypaBHEHHE C Pa3de/IdIoNUMU IIepeMEeHHbl MU.
OTCIO,ZLa cjeAyeT CIIpaBeIJIMBOCTb HaIIE€ro YTBEP2KIACHU .

(?7)

M:

2.2.5 Methods for Solving First-Order Equations Not Solved for the
Derivative

(o uzee oyIKHA OBITH KOMIIAKTHAsI Teopus oT [lnecrneposa, moroM M6 CBOIO J006aBIIIO. )

Teopus

Paccmorpum nuddepeniuaibiaoe ypaBueHue 1-ro mopsijika, Hepa3pereHHoe OTHOCUTETBHO
IIPOU3BOJIHOI:

F(t,z,2)=0

B KOTOPOM t - He3aBHCHMasl llepeMenHast, a x(t) - uckomas GyHKIUSI.

[Mosoxkum &' = p.

Byzem npeanonarars, uro dbyukuusa F(t,x,p) oupenenena B obmactu G C R}
CHG),|V(F)| #0

[Iycrs ypasuenue F' (t,z,x') = 0 paspermmmo oTHOCHTETBHO &' (1).

F e

t,x,p?
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2.2.5 Methods for Solving First-Order Equations Not Solved for the Derivative

B pesynbrare ero perenusi Mbl OJIydaeM OJIHO MJIM HECKOJILKO yPaBHEHUI, Pa3penieHHbIX
OTHOCUTEJIbHO ITPOU3BOIHOIA:

dx
— = t kE>1
dt fk( 7x)7 -

Eciu Bemecrennble dbynkiuun f(t,x) onpeienensl B HeKoTopoit obmactu D C ]Rix n
YZOBJIETBOPSIIOT YCJIOBHsIM TeopeMbl 1.1, To uepes Jiiobyto Touky (tg, o) € D npoxouT ojHa U
TOJIBKO OJ[HA MHTerpasbHast KpuBas & = Xy (t) Kaxkgoro n3 ypasuennit (1.30).

OTU MHTErpaJibHble KPHUBBIE TAKXKe HABJIAIOTCS HMHTErPAJbLHBIMU KPHUBLIMHU YPABHEHUS

N —
F(t,z,a") = 0.
HakJion kacaTe/ibHO# K MHTErpaJibHON KpuBoil © = xk(t) B TouKe (g, o) OUpeensercs
0,0
sHavenueM por = fi (to, To)-

Ormerum, uro wmcria (tg, To,Pox) YIAOBIETBOpsitor ypashenuio F (t,z,2') = 0, Te.
F (to, o, por) = 0.

[TycTb 3HAYEHUS Poj, PA3IUIHBI, U UX YHUCIO PABHO M.

Toryma 4epes Touky (to,Zp) MPOXOAUT M PA3JIUYHBIX MHTEIDAJbHBIX KDPUBBIX yDaBHEHUS
F(t,z,a") = 0.

[TosTomy ecm TpebyeTcs BBLICINTD OJHY M3 HAX, TO HEOOXOAMMO 3a1aTh

He TOJIBKO HadasbHBIE JaHHbIE (tg, To), HO U 3HaYeHHE Por = T (o).

IIpumep

PaccmoTpum ypasnenne 222 4 txa’ — 222 = 0,t > 0.

Paspermag ero ornocurensuo o', momyunm o’ = 7, 1" = —

Pemennsaymu 3TUX ypaBHEHUi ABISIOTCH (DYHKIUU X
IIPOM3BOJILHBIE OCTOSHHEIE.

Or ciofa BHHO, 9TO Uepes KaxIyio TouKy (to,Zo),to > 0 mrockocrnm R}, mpoxomsar jise

Cit,x = %.3 necs Ch,Cy -

UHTErpaabHbIe KPUBDIE.
Yr1o6bl  BBIEJUTH OJHY W3 HUX (HAIpUMEpP, TEPBYI0), HYXKHO MOTPeGOBATH
T (to) = Xy, x’ (to) = :g_g.
Eciu ypasuenne F (t,z,x') = 0 He ymaercss pa3penuTh OTHOCUTEIBHO TPOU3BOIHOM &/ (t),
TO €r0 PelIeHrsl 9aCTO HAXOAATCs B lapaMeTPUIecKoii (popme.

Onpenenenune

[Mapa dyukmmit < ¢(7),9¥(7), 7 € T >, Ha3biBaeTcs perierneM ypastaerust F (¢, z,2') =0 B
napameTpuueckoil popme, ecin
1) bynxmmn ¢(7), ¢ () € CHT); ¢ () # 0,7 € T}

2) <¢(7')7 U(T), :ﬁ:g:?) € G mst moboro T € T

3) F (gb(T),w(T), %) = 0 jyra qoboro 7 € T 3paech upemnosaraercd, 4to 1 sBiseTcs

MHTEPBAJIOM.

Unrerpasnbroit kpusoit ypasuenus F (t,x,z") = 0 Oyzner kpusas t = ¢(7),x = (1), 7 € T,
Ha TI0cKoCTH R .

B cuty onpenenenns oHa ABIAETCS TIAIKOIL.

[Mosnoxkum x' = p u 3anumiem ypasaenue F (¢, z,2') = 0 B Bune F(t,z,p) = 0.

Bynem pacemarpuBarh ¢, 2, p Kak JeKapTOBbIE KOOPJINHATHI.

Vpasuenne F(t,z,p) = 0 3azaer B obmactu G C R}, | HekoTopoe MHOKECTBO S.
Eciu oHO He mycTo, TO S - IIajKas IOBEPXHOCTD, 3a/IaHHast HesIBHO.
Kaxgomy perennio (t),t € .J, B npocrpanctse R}, oTBedaer Kpusas
I'={(t,z,p):x=9(t),p=¢(t),t € J}

HazoséM eé nnTerpaabHoOll KpUBOil ypasHenus B R}

t7m?p.
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2.2.5 Methods for Solving First-Order Equations Not Solved for the Derivative

Tak kax F' (t,¢(t),¢'(t)) = 0, To ona jexut Ha nosepxuoct S : I' C S.

Ho He B cskas riajikast KpuBasi, JieXKalllasl Ha TTOBEPXHOCTH S, sIBJISIeTCsl MHTErPaJIbHOI
KpuBoit ypasuenust F'(t,x,p) = 0, T.K. B KaKJI0il €€ TOUKE JIOJIZKHO BBIIOJHIATHCS COOTHOIICHUE
dx — pdt = 0.

[Tycrb HekoTOpas KpuBas ' Ha MOBEPXHOCTH S YJOBJIETBOPSAET JAHHOMY COOTHOIIECHHUIO 1
ormchiB aetcst pyukiwamu t = ¢(7), z = (1), p = x(7).

[lepBble aBe DYHKIUU ONPEIEIAIOT KPUBYIO 7Y B ILJIOCKOCTH R?}x

Byznem npeanonarars, uro ¢'(1) # 0, u, ciaegosaresnbho, dyukinusa ¢(7) obparuma u T
MOYKHO BbIPa3UTh 4yepes t.

B pesynbrare KpuBast v OymeT OMECBIBATHCA HEKOTOPOii dbyHKImed © = ¢(t).

Baosb kpusoii I' Mbr, o npeinosioxkennto, umeem dx — pdt = 0 = p = ¢/(t).

Tak kak kpusas ' sexkur na nosepxuocru S, To F (t, (), ¢'(t)) = 0.

CuteioBaTe/IbHO, OHA - WHTErpaJibHas KpUBasdi.

Kpusas v aBisier cs npoeknueii I' ma miockoers RY, u sBisieTcst HHTErpabHON KPHBOM
ypasuenusi F'(t,z,2") = 0 B mwiockocTu R?@.

[majkasi MOBEPXHOCTH, 3aJaHHasl HEesABHO, ONKUCHLIB aeT €A JIOKAJILHO C IIOMOIIBIO JIBYX

apaMeTpOB.
Ob6o3HaIUM UX U, V.
[Tycte ypasuenwe F(t,x,p) = 0 pgomyckaer B Hekoropoii obmactu D C wa
napamerpuueckoe mpejcrasienue: t = ¢(u,v),xr = Y(u,v),p = x(u,v),(u,v) € D, tue

x(1,v) € C(D), a ¢(u,v), 1(u,v) € C}(D).

[Tox sTum ciegyer mornmath: 1) orobpaxenue (u,v) — (P(u,v), ¥ (u, v), x(u, v)) aBisercs
B3aMMHO OJIHO3HAYHBI M oTobpaxkenueMm D ua S; 2) F(¢(u,v), ¥ (u,v), x(u,v)) = 0 ps 106bx
(u,v) € D IlokaxeM, 9T0 B 9TOM CJIydae HHTEIPUPOB aHue ypaBHeHus F (t, z,x') = 0 cBojuTCS
K MHTEIPUPOBAHUIO YPABHEHMUsI, PA3PEIIEHHOI0 OTHOCUTEIHHO TPOU3BOJIHOIL.

Cumrast mapaMeTrpbl ¥ W U HE3ABUCHUMBIMU MEPEMEHHBIMU, BBIYUCIUM JTuddepeHtmaib
byukimit t = ¢(u,v) u x = P(u,v).

Uneen dt = 2du + 2dv, dv = 2du + % dv.

MBI 1oJTy9u M HEKOTOPYIO KPUBYIO Ha IIOBEPXHOCTH .S, €CJIM YCTAHOBUM COOTBETCTBYIOIIIM
00pa30M CBSA3b MEXKILY U U V.

Opaako oHa OyleT MHTErpaJbHON KpPHUBOIM TOIJa M TOJBKO TOTJIA, KOIAA BBIIOJIHSIETCS
cootHotenue dr — pdt = 0.

N3 nero Ml nostyunm jiudpdepeHimaibioe ypaBHeHHE

gi/:du—l—a—l/}dv— X (u, )(agbdu—i—?f >:O:>

a9\, [ D
j(av Xav) (a—u‘a—) !
34

KOTOPOE CBSI?KET MEKJLy COOOM 1 1 v Hy>KHBIM 0Opa3oM.

Ypasuenue (1.31) siBagercs ypaBaerueM B quddepenipaiax.

[IpesmonokumM, 9T0 OHO B HEKOTOPOii obsactu umeer obinee pemenune v = w(u,C),C =
const.

Torna upu I0/ICTAHOBKE dbyuxmii
t = o(u,w(u,C)),z = P(u,w(u,C)), 2’ =p = x(u,w(u,C)) B ypaBuerne F (t,x,z') = 0 oHoO
oOpaTuTcs B TOXKJIECTBO.

CrenoBaTesibHO, MbI HOJIydnmian obiee perieHwe ypauenus F (t,z,2’) = 0 B
napamMeTpudeckoit popme.
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2.2.5 Methods for Solving First-Order Equations Not Solved for the Derivative

YacTHble ciiyvuan Hepa3pelleHHbIX OTHOCUTEJILHO IMPOnu3BOAHON ypaBHeHuii (!!)

Ecmu ypasuenwe F' (t,z,2') = 0 MOXKHO pa3pemuTb OTHOCUTEJbHO T WA t, TO €ro
MHTErPUPOBAHUE HE MPEJCTABIISET CIOKHOCTH.

1.

[Tycts ypasuenue F (t,z,x’) = 0 paspereno orHocutesbho = @ x = f (¢, 2).
[Monoxkus ' = p, moayaum = = f(t,p).

B kauectBe mapameTpoB (u,v) BO3bMEM t U p.

Bynem cuntars, uyro dbyHknusa [ HenpepbBHO quddepeHnupyemMas.

W3 coornomenust dr = pdt moyIuM ypaBHEHHE

af of

KOTOPOE CJIYKUT JIJIsi OIIPe JICJICHUS CBA3U MEXKJy P U t.
Ypasuenue (1.32) Tak:ke MOKHO MOJTyduTh U3 ypasaenus (1.31).
[Mpeanonoxkum, aro ypasaerue (1.32) B HEKOTOPOii 0bJ1acTH UMeeT 00IIee pereHue Juoo B
sugzie p = p(t, C'), mbo B Buse t = t(p, C).
Toryma Mbl mosyanM obtee pererne ypasHenus (1.32) qm6o B Buge x = x(t, p(t, C)), mmbo
B IIapaMeTpuIeckoii (popme
{wzmﬁnCMﬁ

t=t(p,C)

2.

I[TIycth Tenepnb ypaphenue (1.1) MOXKHO TIpeJICTABUTL B BUJIE
t=f(z,2")

[Mosnoxkus ' = p, 6yjaem umers t = f(x, p).
B kagecrBe napamMerpoB BO3LMEM X U .
Oyukiuio f(x,p) OyaeMm caurarh HellpepbiBHO JuddepeHnupye Moii.
Torna u3 ypasuenwuit (1.33) u dz = pdt ciemyer ypaBHeHue

0 of
(p% — 1) dx+pa—pdp— 0

[IpemonozkmM, 9T0 OHO B HEKOTOPOIt obsracTi uMeet obiiee perierne 6o B Buje p = p(z, C),
6o B Buge x = z(p, C).

Torna ypasuenme (1.33) (a smaunt, u ypasmenne F (t,x,2') = 0) Oymer wumernb
COOTBETCTBEHHO 00miee perenue oo B Buge t = f(z,p(x,C)), mubo B mapaMeTpudecKoii
dopwme:

{ t=f(z(p,C),p)
z=z(p,C)

Pacemorpum JsinaeiiHOe oTHOCHTEIBHO & U t ypaBHenue: x = ¢(p)t+ +1(p), B KoTopom ¢(p)

u Y (p) - HenpepbiBHO juddepeHnupyeMbie DyHKIIH.
Ecmu ¢(p)=p, To 910 ypaBHEHNE HA3BIBAETCs ypaBHEHWEM Jlarpanika.
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2.2.6 Method of Reducing the Order of Differential Equations (77)

N3 coornomenus dx = pdt nonydaeM juddepeHimajibHoe ypaBHeHne

P(p)dt + ¢'(p)tdp + V' (p)dp = pdt = (p — ¢(p))dt = (t¢'(p) +¢'(p)) dp

KOTOPOE CJIYZKUT JIJId OIIPEICJICHUS CBA3U MEXKJY ¢ U p.
9T0 ypaBHEHHE OTHOCUTEIHLHO IIEPEMEHHO ¢ sIBJISIeT Cs JIMHEHHBIM:

e _ _t¢'(p) . _¥(p)
dp p—9(p) p—op)

Nurerpupysd ero, nojiydaeM perieHust B mapaMeTPpUIecKOM BUJIE:

{ t = B(p)-C+ Ap)
z=¢(p)t +¢(p),C = const

3/ech MbI BOCIIOJIb30BaUCh op MyJnoit (1.24) jist 06Iero pemienust JTUHEHHOTO yPABHEHMUSI.
[Iycrs ypasaenue ¢(p) — p = 0 umeer pereHus p = p;.
Torna dyskmun = pit + 1 (p;), TpadUKE KOTOPHIX SIBISIOTCS MPSIMBIMU JIHHUS MU, MOI'YT
OBITh KaK YaCTHBIMU DeIleHnsIMA ypaBHeHUd JlarpaHrka, Tak M OCOOBIMI.

Eciu ¢(p) = p, 10 MBI Oyziem umers ypasaerne Kiepo:

z :pt+¢(p)>t € (Oé,ﬁ)

JIJ1s1 ero pereHns UCIoJb3yeM CXeMy pellleHusl ypaBHeHus! Jlarpanxka.
U3 coornomenust dz = pdt naxomum pdt = tdp+pdt-+1)'(p)dp, aro naér wam (t + ' (p)) dp =

0.
Orciona creayer: a) dp=0=p=C.
SHaunT, HallJIEHHOE OJIHOTIApAMETPUIECKOe CEMENCTBO pelteHuil mMeeT BT
r=Ct+9y(C)
36

a COOTBETCTBYIOIINE WM HHTErDAbHbIE KPUBBIE SIBIISIIOTCA MPIMBIME JIHHUSMEU, b) t =
—1'(p). B sTom ciyuae ypasaenune Kiepo nmeer perenne B mapaMeTpudeckoii dopme:

{ t=—4'(p)
x = —py'(p) +¥(p)

Ecin ¥ (p) 18 axk bl HenpepsiBHO uddepenimpyemast (DYHKIIUS U BBIIOJIHSET Cs1 HEDABEHCTBO
Y"(p) # 0, To pemenne t = —¢'(p), x = pt+ P(p) ABiasgeTcst 0COOBIM.
Hwxke B pazmerne 2.4 ryiaBbl 2 9TO yTBEpXKIeHUE OyJIeT JTOKA3aHO.

2.2.6 Method of Reducing the Order of Differential Equations (77)

(7?7 x3, 0 uem TyT [dnecriepos, M6 1 HOpMAaJIBHBII MeTO, MO BasKHBII, IIPOCTO HE JIO HETO
[IOKa 9TO, HY M CKOP€ee BCEro IMOTOM JIaJjIbIle Oy/1eT Bce MOAPOOHO PO HEro, a TYT KaK pa3 TaKoe
yKasaHue. )

Aunddypsl BeICIIUX MTOPSAIKOB

[Tycrs dyukims F (¢, x, 1, ..., T,) OUpe/iesieHa U HeIPepbiBHA B HeKoTopoil obimactu G C
R""2(n > 1).
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2.2.6 Method of Reducing the Order of Differential Equations (77)

Onpenenenne

YpaBHeHue BUIA
F (t,x,x', ...,x(")) =0

B KOTOpPOM f - He3aBHCHMad TiepeMennas, x(t) - memssecTHas dynkmms, a o', .., z™ - eé
IPOU3BOIHLIC, HA3LIB aeTcs MndOepeHIualIbHbIM YPABHEHAEM 11-TO HOPSIIKA.

(Iopsimok ~ crapieit  MPOM3BOAHON, BXOJAIIEll B ypaBHEHHE, HA3bIBAETCS IOPSIKOM
ypaBHEHHSI. )

Ompenenenune

1.4.2.

Oyukuusa © = ¢(t), onpejenennag ua uwarepsate J; C R! masbiBaer ca pemennem
ypasrenus (1.34), ecau 1) ¢(t) € C™ (J) 2) (¢,6(t), ..., 9™ (t)) € G mna moboro t € J; 3)
F (t, B(t), ..., p™ (t)) = 0 g moboro t € J;. Huke OyayT paccMOTPEHBI HEKOTOPBIE TaCTHBIE
ciaydan ypapuenus (1.34), Korja ero MHTErpupOBaHUE WJIM MOHUMZKEHHUE TOPSAIKA BO3MOYKHO
OCYIIECTBUTH HA OCHOBAHUM TEOPUH OJHOIIAPAMETPUYECKUX IPYIII IPeodpa3soBaHMil.

OpaHomnapamMeTpuvecKne rpynibl Ipeoopa3oBaHUil HA MJIOCKOCTU

B mockocru R? Touexk (¢, z) pacemorpum cemeiicto {71, € J} 06p aT MbIX Ipeobp a3oB
aHNN

T.: 7=09¢(,z;0),n=10( 1)

3aBUCAIINX OT OJHOrO Hapamerpa « € J, rae J - uaTepsat u3 R

OyHKIUKA ¢ U 1P, TaK Ke KaK U BCE BCTpeYaloNuecsd HUXKe (DYHKIMH, TPEIoIaraloTcs
JIOCTATOYHO TVIQJIKUMHU MO COBOKYITHOCTH apTyMEHTOB.

Kaxnomy dukcupoBannomy 3HavdeHUIO Mapamerpa « € J COOTBETCTBYeT KOHKDPETHOE
npeobpazosanue T, KOTOpoe IepeBoJuT TouKnu (t, ) B HOBble TOUKH (T,7) mIockocT R2,

Ob6oznaunm vepes 13T, mnpomsselenue AByx mpeobpasosanuit 1, u Tp, depes [ -
TOK leCTBeHHOe TIpeobpazoBanue, a yepes 1, ' - obparnoe k T, npeobpasoBanue.

ITo onpesenenuto umeem T, T =TT, = 1.

[Ipexie yem MpoJOIKUTE M3JIOXKEHNEe, HATTOMHUM OIpeJIeIeHIe TDYIIIIbI.

Omnpenenenue

1.4.3.
Omneparyeii yMHOXKEHUS HAa MHOYXKECTBE § HA3BIBAETCS MPABUJIO, TI0 KOTOPOMY JIIOOBIM JIBYM
9JIeMeHTaM &,y € G CTaBUTCS B COOTBETCTBUE HEKOTODBI sjieMenT Y(z,y) € G.

Onpenenenne

1.4.4.

Cemeiicteo G = {T,,a € J} mupeobpazosanuii (1.35) obpasyer oaHOIApPAMETPHYECKYIO
rpyIny mpeobpa3oB aHuii, ecau 1) st J00bIX o, f € J cyliecTByeT eJIMHCTBEHHBIN apaMeTp
(o, B) € € J rakoit, uro TgTy = Ty(a,p) € G 2) cymecTByer o € J Takoii, 4ro

T.,.=1€g

3) aust moboro « € J cymecrByer a_y € J Taxkoii, uro T, 1 = T, , € € G llepoe ycioBue
O3HadYaeT, YTO TOCJe JIoBaTeJIbHOe INpHUMEHeHne JByX IpeobpasoBanmii cHadasia 1, € G, a
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2.2.6 Method of Reducing the Order of Differential Equations (77)

sareM T € G paBHOCHIIBHO IIPUMEHeHHIO mpeobpasosanus 1., € G ¢ mapamerpom (o, §) € J,
KOTOPBIi OJJHO3HAYHO ONPEIe/IsIeTcsl 3HaYeHsAMI o 1 [3.

Oyukuusa v = (o, ) 3ajJaer 3aKOH yMHOXkKeHUs Opeobpa3oBaHuii HAa MHOXKecTBe § =
{T.,a € J} u HIKe mpeIoaraeTcst JOCTATOYHOE TUCIO0 pas JuddepeHIpyeMoii.

BameTum, 9TO B Cilydae IPYIIIbl IPeoOPa30B aHUil CBOWCTBO aCCOMMATUBHOCTH 38

BCEIJIa IMEET MECTO (JIOKA3aTh CAMEM).

Tak kak npeobpasosanue T, = I, 10 T, T, = Ty, a 3Haunt, v (@, ap) = a.

C apyroit cropoust, 13T, = T3 u v (ao, B) = B.

B pesysnbrare jis ob6bix a, € J umeem

g (aaao) =, 7 (O‘076) =p

Bameuanue 1.4.1.

[IpeobpazoBanusi, obpa3yloliue oJHOIIapaMeTPUIECKYI0 IPYIILYy, MOTYT OBITh 3a/JaHbl KaK
Ha Beeit mrockoetn R?, Tak u B HekoTopoit obmactn X C R2.

Bo Bropom ciyuae mpeobpasosanue (1.35) mpu sobom « € J mepeBomuT TOUKy (t, ),
IpuHaIeKAIY0 X, B TOUKY (7,7), TaKKe MPUHAJJIEKANLYI0 X .

Ompenenenue

[TapameTp o Ha3bIBaeT cs KaHOHWYIeCKHM, eciau dyHKIws Y(a, ) umeer Bug: y(«, f) =
a—+ 6.

Torpa B Tepyunax dyuxmuit (1.35) dopmyna ymuoxenus npeobp azos aunit 71T, = T,ip
BAITUIIETCST CJIEJYIONUM O0OPA30M:

(oL, z; ), (t, x5 a); B)
,Tya); B

= ¢(t, z;00+ B)
Y(o(t, z; ), 9(t, ;00); B) =

Y(t, x50+ B)

Bameuanue 1.4.2.

Ecin BBecTu noBblil mapamerp 6 = 6(«), rue 6(a) - crporo MoHOTOHHAA (DYHKIHUHA, TO,
BOOOIIE TOBOPH, (DYHKIMA Y U UHTEPBaJ J U3MEHSITCS.

[Ipm 5TOM € cTaHeT HOBBIM ITAPAMETPOM T'PYIIIIHL.

Huxe Oymer mokasaHO, 9TO BCerja CYIIECTBYET 3aMeHa, IPUBOIAIIA K KAHOHHIECKOMY
apamMeTpy.

it TOSICHEHWST BBIMIENTPUBEICHHBIX  OIPEJIEICHI TPOU3BEIEM HECKOJIBKO ITPUMEPOB
npeobpazosanuii (1.35).

1.

['pynma meperocoB G B JI0JIb OCH & COCTOUT U3 IIPEOOPA30BaHU

T,: 7=tn=z+a, (a€eR

OIpe/Je/IeHHbIX Ha BCell IJIOCKOCTHU RZ.
B pe3ysibTaTe ABYX ITOCJI€10BaTEC/IbHBIX IIEPEHOCOB I10JIYYUM

mn=tm=x+(a+p)

Buauut, (o, ) = o+ [ 1 mapamMerp « siBJIAETCsT KAHOHUIECKUM.

Hanee a1 = —a un ag = 0.

Herpyano Bugers, uro mpeobpaszoBanus, o0pasylolmiye I'PYIILY II€PEHOCOB BJIOJIbL OCH I,
MOT'YT OBITH TaKKe 3aJIaHbl Ha JI000M

nosioce X = {a <t <b,|z| < oo}.

Anajiornuno onpeJiesisiercsi rpyIia IIepeHoCcoB B J0JIb OCH t.
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2.2.6 Method of Reducing the Order of Differential Equations (77)

2.
CewmeiicTBO TTpeobpa3oBaHMil

T,: T=oat,n=ac’z, (ac(0,4+00))

JIeHiCTBYIONTAX Ha Beell mockocTH R2, 06pa3yloT ofHOIapaMeTPHIecKyIo IPYTIY PAaCTAKeHTI.

3aecw Mbl umeeM (o, ) = af,ap = 1, = é

910  cemeiictBO  Oyaer  TakxKe  O0OpPa30BBIBATH  OMHOIAPAMETPUUYECKYIO  I'PYIIILY
npeoGpazosanuii, eciu ux 3agarb B noiymwiockocrn RE = {(t,z) €} € R%t >0} wm
R? = {(t,z) € R?,t < 0}, 6o, HApUMeED, B JIOGOM U3 YeTHIPEX KBaPaHTOB.

B srom mpumepe mapamerp 6 = In o Oys1eT KAHOHIIECKNM.

3) Cuestyer OT METHTBH, YTO HE BCsiKasl COBOKYITHOCTBL peobpasosanmii (1.35) obpasyer
OJIHOIIAPAMETPUIECKYIO IPYIIITY.

Bosbmem

r=t+an=x+a® «ac(—oo0,+c0)

Tor na 1 =t+ (a+ B),m =z + (a® + %), 8 € (—00, +0).
OHAaKO 3 JIECh He BBINOJIHAETCS YCIOBHE | ONpeJIesIeHns OJHOMApAMEeTPUIECKON IPYIIIBI,
K. (a+ 3)* # a? + B2

Ompenenenue

1.4.6.

Oyukiust  U(t,r)  Has3biBaeTcs — MHBAPUAHTOM  OJHONAPAMETPUYECKON  TPYIIIbI
npeobpazoBarnii (1.35), eciam ;g Bcex jomycTuMbiX (t,z) m BceXx o € J BBINOJHACTCS
PABEHCTBO

U(r,n) =Ul(t,x)

Beiirie B myHkTe 1 HHBApHAHTOM I'PYIIIBI TIEPEHOCOB siBsgercs dbyukius U(t, x) = t.

B nynkre 2 - dynknusa U = xt~2( upu t # 0).

Teopust ojHOMApAMETPUUICCKUX TIPYII IMUPOKO HIPUMEHSETCS I[PU PEIICHUU MHOTUX
HEJTMHEIHBIX 38/1a9 MEXaHUKU 1 (DUSUKH.

Ucrnob3yemMble TIpu UX UCCJIEI0OBAHUN TPE0OPA30BAHIS TacTO PACCMATPUBAIOTCS HE HA BCEM
OTKpPBITOM MHOXKecTBe X X .J, Ha KOTOPOM OHU OIIpPeJIeJIEHbI, & Ha HEKOTOPOM €ro Cy KeHUN
X1 X Ju, TaxoM, uro X; C X, J,, C J, 111€e J,, - HEKOTOPask OKPECTHOCTb TOUKH (.

OsHonapamerpudecKue IpyIibl MOI'YT TaKyKe PACCMAaTPUBATLC Ha MHOXKeCTBE X X Jgu .

Onpenenenne

1.4.7.

[Iycts ycnoBust 1 — 3 B omnpejieieHnn OHONAPAMETPUIECKON IPYIIILI Ipeodp a30B anuit §
BBIIOJIHSIIOTCSI He JJIsI Bcex 3HadeHuii 40

(t,z) € X u Bcex 3HAYEHMII TapamMeTpa M3 HEKOTOPOro (pUKCUPOB aHHOTO WHTepBasa .J, a
TosIbKO Jyist (t, ) € X u 3HaYeHuit mapamerpoB «,  u y(q, ) B HEKOTOPOii JTOCTATOYHO MAJION
OKPECTHOCTU 3HAYEHUS (V.

Torna G HA3BIBAIOT JIOKAJILHON OJIHOIIAPAMETPUUIECKOH IPYIIION TPeoOpPa30BaHUI.

Ecim paccmarpuBarh 311 npeobpasoBanus cpasy Ha MHOxKecTBe XiX X.J,,, To rpynny G
MOKHO Ha3bIBaTh IIPOCTO OJHOIIAPAMETPUYCCKON I'DYIIION.

DTO CBA3AHO € Te€M, UTO e€ IIpeodpa3oBaHus YI0BIETBOPAIOT TpeboBanusaM 1 —3 orpe/iesienns
OJTHOTIAPAMETPUIECKOI IPYTIIIHI.

BoJtee nosipobHO ¢ Teopueit ojHONApaMETPUUECKUX T'PYIIT MOXKHO O3HAKOMUTBLCS B pabore
[3], B KOTODOIt OHA JTOBOJIBHO TIPOCTO U3JIOZKEHA.
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CdopmynupyeM 1 TIOKaXKeM JIEMMY U TEOPEeMY, ITO ITO3BOJIAT JIydIlle TOHNMATh U3/IaraeMblit
HUXKE MaTepuaJl.

Jlemma

1.1.
Bo Bcgkoit J1oKaJbHOW OJIHOIAPAMETPUYECKON T'pyIIie MOXKHO BBECTH KaHOHUYECKUIL
rapamMerp.

Teopema

1.9.
Begkasg tokasibHas — ojHONApaMeTpuyecKkas TI'Pylia IpeoOpa30BaHUil  IPU  TOMOIIU
NOAXOJdIIEe 3aMeHbl IIePEMEeHHBIX

(t,x) = (u(t, z),v(t, 2))
1 3aMeHbl Tlapamerpa « — 0(«) mpuBoauTCs K JIoKasIbHO#T Tpyiie nepeHocos
Ty:u=u,v=0v+0

[lepemenHble u u v, TpeacTaBIeHHBIE B TeopeMe 1.9 (Tak ke Kak u mapamerp 6), Ha3bIBAIOTCS
KaHOHUY €CKUMU.

st oKa3aTebCTBa BBICKA3AHHBIX YTBEDPXKJEHWH 3alliilieM TPYIIOBOe CBOHCTBO 1)
onpenenennd 1.18 B Buae

71 = (7, m; 8) = ¢(t, 7;7(e, B))
= w(T7 n; B) = w(ta Z; ’7(047 ﬁ))
Oynknus y(«, 5) nomxaunsercs ycaosusam (1.36).

Huddepennupyst obe gacTn 9TUX paBeHCTB 1O [ M moJyaras 5 = (g, MOJyIAM COIJIACHO
(1.36) ypaBuenus

z—gﬁ,n;m\m = 5@, t0) (g—gm,ﬁ))\m
%(T,n;ﬁ)‘ﬂao = Ga(@.1:0) <§—g(a,5)>)ﬁao

Ecin BBecTn ob6o3naueHIA

1 oy 06 )

LoDl et = —(T,n;ﬁ)‘ = L)

A 85 B=w0 aﬁ B=ap 8ﬁ f=ao
TO HOﬂyquHaH CUCTEMa BMeCTe C HadYaJIbHBI MU YCHOBHHIWI/I HpI/IHI/I MaeT BI/I,ZL

CT — M@)e(rm), 51 = M) (r,m)

T=1,1=2Ipu & = Q
Pemennem 3amaun Komu (1.38) mpu 3azanubix & u ( U PUKCUPOBAHHBIX | U T SIBJISIIOTCS
dbyukim (1.35), onpeesonie NCXOHY 0 OTHONAPAMETPHIECKY IO TPYIILY TPeodpa30BaHMIii.

(0%
Baduxcupyem ¢ u x u BBejeM HOBbIH napamerp 0 = [ A(o)do.
aQ
B pesynbrare 3amaua Kommm (1.38) mpeobpasyercst K KAHOHIYE CKOMY BUJLY:

dr @ B
E - 5(7-7 77)7 do — C(Ta 77)

T=t,n=xupu =0, (0= )
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2.2.6 Method of Reducing the Order of Differential Equations (77)

Ypasuenus (1.39) naswiBatorcs ypasHeHusivu JIu.

Onu Jj1eskaT B OCHOBE UCIIOJB30BAHUS TEOPUU OJHONAPAMETPUIECKUX TPYII IPU PeIleHIn
JuddepernuaibHbIX ypasHeHuit [3].

[Tpeanonaraercs, 9To B 06J1aCTH, B KOTOPO#i paccmarpusatorcs ypasaenust (1.39), dyukiun
&(r,m), C(r,n) nenpepsieno nuddepennupyembie, a seuanna £2 + (2 # 0.

Toukn, B xKoropeix &2 + n?2 = 0, HasLIBAIOTCA CTAIMOHAPHBIMH — TOYKAMH
OJIHOTIAPAMETPUIECKON I'PYIIIIbI.

[TpemnoaokumM, 9T0 B OKPECTHOCTH TOYKHU (t, ), B KOTOPOi cucrema ypasHenuit JIu (1.39)
onpejesena, seanania & > 0.

[TosToMy €€ MOXKHO TIPeICTaBUTh B CJICIYIONIEN SKBUBAJICHTHONH (hopMe:

dy _((r.m)  dr
dr &(r,m)" &(m,n)

13 reopembr 1.2[5,10] cienyer, uro Bce perienusi 1-ro ypaBHeHHsl CHCTEMbI B HEKOTODPOI
OKPECTHOCTU TOYKH (t, ) MOTYT ObITH Onucanbl 42

obrmum uaTerpasom Aq(1,n) = Ch.

Hcnonb3yst ero nmpu MHTErPUPOBAHUN BTOPOI'O YPABHEHUS CHUCTEMbI, Oy INM

=db

AQ(T,?]) :CQ+6

[Mocrostaabie C1 1 Cy ONpeedoTcs U3 HadadbHbIX yeaosuit (1.40).
B pesynbrate nmeem

Al(T,T]) :Al(t7I), AQ(T,T]) :Ag(t,l’)+9

DTu cooTHOIIEHNs MaoT pertenne 3anadun Komm (1.39) A (1.40).
Eciin npousBecTu HEBBIPOXKIEHHYO 3aMeHY TlepeMeHHbIX (310 cienyer u3 Teopem 10.2 u 10.3
B ruase 10):

u=A(t,z), v=~2Ax)

To coriacao dopmyaam (1.41) gokadbHas oHONApaMeTpUdecKas TPYIIa peodpasoBaHuii,
opoKIEHHas pererneM 3a1aun Kommu (1.39), (1.40), npu JocTarodHo MaJibix § IpuBoanTCs K
I'pyIIIe IePEeHOCOB:

Uy =u, vi=v-+80

[Toguepkném, 9TO O/HA U3 EPEMEHHDBIX, & UMEHHO U, ABJIAET Csl MHBAPUAHTOM T'DYIIIILL.

Ob6parnM TakkKe B HU MaHWe, YTO TeOpeMa HOCUT, BOOOIIE TOBOPsI, JIOKAJIBHBIN XapakTep
(samevanue 1.4.1).

B meit mokazano, YTO B OKPECTHOCTU JIIOOON TOYKH, HE SBJIAIONIENCH CTAIMOHAPHOIN,
JIOKaJIbHasl OJIHOTIApAMETPUYIecKast IPyIIa IPUBOJINUT Cs K JIOKaabHo# rpytie nepenoCOB.

Sameuanne 1.4.3.

[IpaBblie gacTu cucrembl ypasHenuii (1.39) He 3aBHCAT OT TIEpEMEHHOI 6.

Takwne cucTeMbl Ha3BIBAIOTCS ABTOHOMHBIMU.

JIEMEHTBI TEOPUN aBTOHOMHBIX CHCTEM M3JIOZKEHBI B IJIaBe 8.

Bajgaua Komm i BedKOil  aBTOHOMHOM — CHCTEMBI  TOPOXKJIAET  JIOKAJBHYTIO
OJTHOTIAPAMETPUYECKYIO TPYIILYy IPeoOpa3oBaHMil, I KOTOPOl He3aBUCHMas IepeMeHHas
cucreMbl (B HaIeM ciydae () siBiIsieTcsi KAHOHHYECKUM MapaMeTPOM.

DTO yTBepK/IeHIE Oy/IeT J0Ka3aHO B Iiase 8.

CrarnuonapHble TOYKH OJTHOIIAPAMETPUYECKIX IPYIII JIJIsi ABTOHOMHBIX CUCTEM B 3TOI TJIaBe
HOCAT Ha3BaHUE TOYEK PABHOBECHSI.
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2.2.6 Method of Reducing the Order of Differential Equations (77)

®as30Bble TPAEKTOPUH ABTOHOMHOH CHCTEMBI B HEKOTOPOH OKPECTHOCTH TOYKH, He
SIBJIATOINENCS CTAIMOHAPHO, BeIyT cebst KaK MpsiMble JIMHUN. >

Bameuanue 1.4.4.

Bynem cunrars 31ech, uto B (1.35) mapaMerp «v siBJIsieTCsl KAHOHUIECKUM.

BosbMméMm o = oy u paccMoTpuM Ipeodpa3oBaHue

T=0¢(t,z00 +Aa), n=v(t,z;00 +Aa), ap+AacJ

Ecm Aa — 0, To upeobpasopanme OygeT OTIMYATHCS OT TOXKIECTBEHHOIO Ha OGECKOHEYHO
MAaJIyI0 BEeJIMYUHY U 110 3TOH NPUYUHE HA3BIBATHLCS MH(MDUHUTE3UMANbHBI M (MM GECKOHETHO
MaJIbIM) TTpeobpa3oBaHUEM.

Paznoxxum  dyukium  ¢(t, x; ), (t,x;) mo dopmyne Teitopa mo mapamerpy « B
OKPECTHOCTH TOYKH (v U 3aluiieM HHDUHATE3NMAILHOE IIpeobpa3oBaHue B BH/IE

T=¢(t,r;00 + A) zqﬁ(t,x;aO)Jr%zW%)

=t+&(t,z)Aa + o(Aa)

n:¢(t,$;ao+Aa):q/;(t’x;ao)_l_w

=z + ((t,z)Aa + o( Aa)

Aa+o(Aa) =

Aa+o(Aa) =

[Ipu BBIBOJIE 3TUX (DOPMYJI UCIIOJIB30BAINCH COOTHOIIEHUA, Olpe jJesdromniue dyuknun & u (.

Bekrop (,() sBiser cg KacaTesJbHBIM B TOUYKe (t, ) K KPHUBOH, KOTOpas OIMKCHIBAET Cs
toukamu (7,7) B R? npu usmenennu napamerpa « coriacuo dgopmyaam (1.35).

Takue KpuBble Ha3bIBaIOTC OpouTaMu TOUKH (1, T).

Opnonapamerpudeckas Tpyla Ipeodpa3oBaHUNl  OHO3HAYHO OIPEJENIAETCS  CBOUM
KacaTeJIbHbIM BeKTopHbIM nojieM (€,(), ecmm €2 + (2 # 0 Ckasannoe BbIle DPE3IOMUDYET
Teopema JIu.

Teopema 1.

10.

Ecmu dynkunn ¢(t, x; «), 1(t, z; ) B 6opmyrnax (1.35) ya0BI€TBOPSIIOT IPYIOBOMY CBOHCTBY
(1.37) u mmeror passoxkcenns (1.42), To onu siByistiorcs pererneM 3a1aqu Kommu (1.39), (1.40).

Ecin xce 3amano jaakoe sexropaoe noje (€,¢) (€2 +¢? #0), o pemenne 3agaun Komm
(1.39), (1.40) omHO3HAYHO OIIpe/IeJisieT OJHONAPAMETPUIECKYIO I'pyIily mpeodbpasosanuii (1.35)
(cBOiiCTBO 6 ABTOHOMHBIX CHCTEM B IVIaBe 8), /Il KOTOPOii 9TO MOJIe SIBISETCS KACATeTbHBIM.

Onpenenenue

1.4.8.

[IBe omHOIIApamMeTprYecKne IPYIIbl TPpeoOpa30BaHmil HA3bIBAIOTCA TMOJOOHBIME, €CJIU OJIHY
MOYKHO TIPUBECTH K JIPYTOil MPU TIOMOIIM HEBBIPOXKJIEHHONH 3aMEHbl IE€PEMEHHBIX U
HEBBIPOXKIEHHON 3aMeHbI TapaMmeTpa. 44

Paccmorpum  cemeiicTBO 1mipeoOpasoBaHMii M3 IIyHKTa 2, KOTOpble JIEHCTBYIOT Ha
nosaymiockoern RT.Ouu 06pasyor ogHonapaMeTpuyecKyio IPYIILY IIpeoOpa3oB aHuii.

B srom ciryuae ypasaenusi (1.38) npuHuMaooT B

or 1  0On

n
—_— = 2—, t>0
oo o O« o’

Ypasuenud JIu n HavaIbHBIE YCJIOBUA 3aIUIIEM CJIEYIONUM 0Opa30M:
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2.2.6 Method of Reducing the Order of Differential Equations (77)

dr _dn _da_
T 2n o
[d
T=tm=xupuf =0 0:/—a:lna
a

apg=1

Pemenne s7oit 3amaun Komu nipu ¢ > 0 HeTpyiHo mpejcTaBUTh B BUJEC
1-¢, mr-0=cC
PR Y n7T—v==0y

YuurbiBag HadaJIbHBIE yci0oBudd, HaXOAUM

Ui

- T
.

2’

CrenoBaTe/ibHO, MBI MOXKEM IIepeiTH K KAHOHUYIECKUM ITePEeMEHHbIM
x
u=—, v=Int, t>0

cpasy BO BCell mostymockocru R .

BamMeHa [EPEMEHHBIX SIB/ISIETCSl HEBBIPOXKJIECHHOM, M B Pe3ysbraTe HEE HONYIIOCKOCTb R
B3al MHO OJIHOZHATHO OTOOpayKaeTcsi Ha B CIO IJIOCKOCTH (u, ).

CrenoBarenbio, opHonapamerpudeckas rpynna G = {T,,a € (0, +00)}, meiicrByiomas na
nosryiockocrr R, moxoGHa rpylie MEpeHoCoB ¢ KaHOHHYe CKUM mapamerpoM § = Ina,
JleficTByoIEeil Ha Beeil rockocTH (u, v).

WNuBapuaHTHOCTB nnd depeHaIbHOTO YpPaBHEHUS OTHOCHUTEJIbHO
oJHOMIapaMeTPUYeCcKOi rpynnbl npeobpa3oBaHUit

Mpsr1 OyjieM TOBOPUTB, 9TO JiBa i depeHITuaIbHbIX YPaBHEHUsT 1-I'0 TIOPSIKa PABHOCUILHBI,
eCJIN KaXKJ0€ PeIlleHre OJHOTO YPABHEHUS SIBJIAETCH TaKzKe PelIeHneM JIpyroro, u Haobopor. 45

Omnpenenenue

1.4.9.

Ypasuenre (1.34) Ha3blBaeT € MHBAPUAHTHBIM OTHOCHUTEJBHO OJHOIAPAMETPHIECKOIT
IpYIIBI IpeobpasoBannii G, ecyu IIpU 3aMeHe repeMeHHBIX (t, x) B HéM mo dopmyaam (1.35)
MBI MOJYYIMM B HOBBIX HEPEMeHHbIX (7,7)) Jyisi onpejiesieHus perienus = 1)(7) ypaBHeHue,
PABHOCUJIBHOE MCXOTHOMY IIPH BCeX « € J.

B sTom ciryuae Takzke roBopsT, 4To ypashenue (1.34) jpomyckaer rpynimy G.

Bosb Mé M n = 1.

dn

Toria HOBBIE TIEpE l\l/ileHHbIe (7,m) 1 mpousBOHA 7, BBIPAKAIOTCs Yepe3 CTapble KOOPUHATDL
X

(t,z) m mpomsBOAHYIO %7 CIIEIYIONIIM 00p a30M:

dn G+ (55)
T=¢(t,z;0), n=v(twa), — =L
dr G+ (5

2
AHAJIOrTIHO HAXOJATCS BEJIMINHBI (7’, n, 3—2, %), ectu n = 2, u .. [Ipumep 1.4.1.

VYpaBHuenue
tex” +tz? — 222 =0
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2.2.6 Method of Reducing the Order of Differential Equations (77)

MHBAPUAHTHO OTHOCUTEJILHO TPYIIILI PACTAZKCHUN
G: 7=t, n=axr, a>0

[eiicTBUTE/IHHO,
o (ron" 4+ %) —wan* =0
Orcroma nmeem
a—2 (77777” + 777/2 o 2772) =0
st onipeiesienusi perterust 7(7) HOJIyYUIOCh YpaBHEHNE, DABHOCUIBHOE UCXOJHOMY.
[Mopsiyiok ypashenus (1.34) 3aBeloMO MOXKHO MOHU3UTD, €CJIH OHO UMEET BH/I,

F(t, ...,x(")) =0

TaK Kak (PYHKIINA & He BXOJIUT SIBHO B yYpaBHEHUE.
JleficTBUTEIEHO, TPOU3BEIEM 3aMEHY

y=2a

B pesynabrare ypasuenne (1.34) cranoBurcst ypaBHenueM (n — 1)-ro mopsijika OTHOCHTEIBHO
byHKIUT Y.

Teopema 1.

11.

[Iyctb B mepemenubix (u,v) ypasHeHue (1.34) WHBapHAHTHO OTHOCHTEIHHO I'PYIIIIBI
[IEPEHOCOB.

Torya ypasuenue (1.34) B nepeMeHHBIX (U, V) UMeeT BUJL

dv d™
d —..— ] =0
<u, du’ du”)
ok azat ejib ¢T BO.

ypasuenue (1.34) npeobpasyer cst K BUILY

dv d"v
0] — e, — | =
(UJU7 du’ 7dun)

[To yciioBuio TEOpEMBI IMeEEM, YTO YpaBHEHUE

dv d™
P 0,—,..— | =0
(u,v 0w du”)

npu J11060M 6 SKBHBaTIeHTHO ypaBHeHno (1.45).

Crnenosaresibo, ¢ He 3aBUCHT SBHO OT ¥, U Mbl IPUXOUM K ypashenuto (1.44).

[Mpunss dv/du 3a HOBYIO Hen3BeCTHYIO (DYHKIIUIO, IIOHU3UM MTOPSAJIOK YPABHEHHUS.

Pesziome.

[Iycrb ypashenue (1.34) momyckaer ofHOIAPAMETPUYECKYIO TPYIILY mpeobpa3oB aHuii G u
u3 ypaBHeHuil JIu MbI MOXKeM HafiTu KaHOHWYeCKue repeMeHHbie (u,v) (HampuMep, B Buje
3JIeMEHTApHbIX (DYHKINUiT) 1 KaHOHUYIecKuii mapamerp 6.

[Ipu nepexojie K HUM OJiHOTIApAMETpUYEcKas rpynna G IpuBOJUTCA K IPYIIIIE TIEPEHOCOB.

CBoiiCTBO MHBAPUAHTHOCTH yPaBHEHUS OTHOCUTE/ILHO KAaKOH-JUOO0 I'PYIIIbI HE 3aBUCUT OT
BBIOOpA TMEPEMEHHBbIX, 1odToMy ypaBuenune (1.34) mocsie mepexofa K KAHOHHIECKUM
nepeMeHHbIM (u,v) TepeifiiéT B ypaBHEHHE, B KOTOPO€ $BHO HE BXOJUT OJIHA WX 3TUX
nepemenubix. (CiieoBaTe/bHO, OHO MHTEIPUPYEMO B KBaJIpATypax B cjydae ypaBHeHus 1-ro
MOPsIJIKA UJIU JIOIYCKAeT MOHMKEeHUEe B CJIydae ypaBHEeHHs 00Jiee BBICOKOT'O TOPSIIKA.

(J1ayIbIe OUeHb MOIIHAST U KPyTas TeOpusi, Ha KOTOPYIO s 3a0UJI IIPOCTO 1 BCE.)
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2.3 Study of the Cauchy Problem

2.3 Study of the Cauchy Problem
2.3.1 Essence

Teopus

OcHoBHBIE OlpeJie/IeHUsT W PEJIBAPUTEIbHBIE CBEJIEHUsT )i HOPMAJIBHBIX CHCTEM
OOBIKHOBEHHBIX N PEepeHITHATBHBIX YpaBHEHU I

2.3.2 Theorem on Existence and Uniqueness of the Solution of the
Cauchy Problem for a Normal System of Equations

Teopus
HoxkazareabctBo (!!!)
O nroancax (!!)

(nx MHOTO, 3HAIO.)

2.3.3 Domain of Existence of the Solution

Teopus

2.3.4 First-Order Differential Equations Not Solved for the Derivative

Teopus
2.3.5 Dependence of Solutions on Initial Data and Parameters

Teopus

2.3.6 Cauchy Problem for an nth-Order Equation Solved for the High-
est Derivative

Teopus

Bagaga Ko, Teopema CyIecTBOBaHUSA U €INHCTBEHHOCTH €€ PeIleHuns
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2.4 Linear Differential Equations with Variable Coefficients

2.4 Linear Differential Equations with Variable Coefficients
2.4.1 Normal Systems of Linear Differential Equations

Teopus

2.4.2 Basic definitions, Cauchy problem, theorem of existence and
uniqueness of the Cauchy problem solution

Teopus

2.4.3 Existence of a fundamental system of solutions for a linear ho-
mogeneous system of differential equations

Teopus
2.4.4 Liouville-Ostrogradsky formula for systems with ¢ =const

Teopus

Teopema 3.3. Ilycmsn #;(t) = colon (zs,- - ,2ip),t € J,i = 1,n, - pelieHus cucTeMbl
JIMHEHBIX OIHOPOAHBIX Juddepenimanbubix ypasuenuii (3.2). Torma s mobwix t,ty € J
umeer Mecto dpopmyia Jlnysuiis OcTporpaickoro:

Hoxkazarenscrso. 13 (3.7) maxoaum

AW AT It T o T u

- - — ... o« .. PRI PR o e == W,

i dt don 2 W
k=1| Tp1 --- d_;fl o Ton k=1

CorytacHO OJTHOPOJIHOlI cucTeMe ypaBHenuit (3.2) mist GyHkimit Ty, [, k = 1, n umeem

dxy, .
= 1Ll
dt ;pk l

[ToscraBngas B onpenenurens Wy, omydaem

L1 Zpkﬂli o Tip

i=1

Wk —_— =
i=1

i1 o PekTik ccc Tin
S . e | = pa W,
t n

dW - I X pri(r)dr

_— = W = W t — 060 k=1 .

o ;pkk (t)

U3 magampabix yeaosuit Haxomum: C = W (ty). Caencrsue 3.3.1. Ecoum W (ty) = 0 mia

HekoToporo ty € J, ro W (t) = 0 mus moboro t € J. Ecam W (ty) # 0 m1s nekoroporo ty € J,
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2.4.5 Structure of solutions of a linear homogeneous system of differential equations

To W (t) # 0 ayst sioboro t € J Bameuanue 3.1.2. Pesynbrar uHTErpupoBaHus ypaBHEHUS JJIsI
W (t) MOXKHO IIpeJICTABUTH B BUJIE

S per(t)dt
W(t):(Jef &

Bameuanne 3.1.3. PaccmoTpuM ypaBHEHIE BTOPOTO MTOPSIIKA
aox” + arx’ + asx = f(t),a9 #0,t € J.

[TpousBe/is 3aMeHy y = &', TOJIYUUM CHCTEMY, SIBJISIIOILYIOCS cucTeMoit (2.46) mpu n = 2:

L=
r— _az, _ar, _ f()
Yy = aix afl)y ap

U3 cucremsr (3.11) coemyer

2.4.5 Structure of solutions of a linear homogeneous system of differ-
ential equations

Teopus

Teopema 3.4. Ilycre Gi(t), -, Gn(t),t € J - ®CP JjuHeiiHONW OIXHOPOIHON CHCTEMBI
nuddepenimaabubix ypasuennit. Torma st moboro eé pemenust T(t),t € J, cymecrByer
takoit Habop nocroguubXx C;, i = 1,71, 4T0

Z(t) = Z Cigi(t).

Hoka3z arenbctBo. BosbMeMm kakoe-mbo 3HadeHme mepemenuoit ty € J. Bekropsr J; (o)
o6pas3ytor 6asuc, Mo3TOMY BEKTOD T () MOXKeT ObITh Pa3JIoKeH 10 3TOMY Gas3ucy.

T (to) = Z Cig; (to) -

Paccmorpum perenne
E(t) =) Cigilt).
i=1

[Ipu t = ty mo mocrpoenuto mmeeM T (tg) = @y (tp). Torma mo Teopeme cyiecTBOBaHUS 1

eJIMHCTBEHHOCTH TostydaeM T (t) = Z,(t) = > C;pi(t) nst aroboro t € J.
i=1

n —
Ot ciona cienyer, aro dyukiusa T(t) = > C;Fi(t), tme Cy,i = 1,n, - UpoU3BOJIbLHbBIE
i=1

HOCTOSTHHBIE, ABJIIETCA ~ OOIMMM  pelIeHueM  CHUCTEMbl  JIMHEHHBIX  OJIHOPOJIHBIX

b depeHnuaabHbIX ypaBHEHUI: JTI000€ PelieHrne MOKET OBITh IPEJICTAaBICHO B TAKOM BUJIE U
n

mobas smHefinag KomOuuarws yukimit Y C;f;(t) Takxke spiagercsa permenneMm.  Orcrona

=1
BbITE€KaeT, 9TO Pa3MEPHOCTL IIPOCTPaHCTBa peIHeHI/Iﬁ JUHENHOM! O,HHOpO,ILHOI'/JI CHUCTEMBI (32)

paBHA N.
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2.4.6 Solving the Cauchy problem for a linear system of differential equations by the method
of variation of constants

Teopema 3.5. Iycrs X (t),t € J, - kakoe-MHO YaCTHOE PEIleHne JIMHEHON HeOTHOPOHOMN
cucrembl ypasenuit (3.1), a @(t),i = 1,n, - dyHIaMeHTalbHAA CHCTeMa peIeHuit
COOTBETCTBYIOIIECH JIMHEHHOU OJHOPOJHON CHUCTEMBI (3.2). Torma st 1106010 perreHust
Z(t),t € J, nuueitHo#t HeomHOPOMHON cucrembl (3.1) cymecTByer Takoit HAOOP MOCTOSIHHBIX,
4T0

Toxasarenscrso. [poussenem sameny Z(t) = &(t) — X (t) B cucreme (3.1):

dz  dX

— — P74+ PX —:P*.
dt+dt Z+ +ﬁ=> Z

dt

W3 npeapiayieii TeopeMbl BHITEKAET

_ Z Cigi(t) = Z(t) = X () + Z CiBi(t)

Taxkum obpaszom, pemtenue x(t),t € J HEOTHOPOJIHOW JMHEHHON cucrembl ypasHenuii (3.1)
COCTOUT W3 JIBYX CJaraeMbIX, OJHO M3 KOTOPBLIX ABJSETCS OOIMIMM peIleHHeM OJHOPOIHOM
CHCTEMBI, a JIpYTroe - YaCTHBIM PEHIeHUeM HEeOQHOPOIHOM cucreMmbl. OnpeseaéHHas B TeopeMe
3.5 dyukima x(t),t € J gaBiasgercda OOMMM DEIIEHHEM HEOJIHOPOTHON JTHMHEHHONH CHCTEMBI
ypasrenuii (3.1).

2.4.6 Solving the Cauchy problem for a linear system of differential
equations by the method of variation of constants

Teopus

[ycts Fi(t),t € J,i = 1,n, - dyHIaMenTaIbHAS CHCTEMa PEIIeHUi OIHOPOIHON CHCTEMbI
(3.2). Pemmum zagaay Komm (3.1), (3.3). Marpuma ®(t), crosbuamu KOTOPOI SIBIAIOTCS
KOODJIMHATHI BeKTOP-DyHKIWA J;(t), Has3bB aercs dbyHmamMeHT ajbHOi. 13 Teopembr 3.4
Ceiyer, uTo juoboe pelrenue cucreMbl (3.2) MOxKHO npejcrasuth B Buge Z(t) = D(t)C.
Bosbmém dyrIamMeHTaNbHYI0 MaTpuily Takoit, urobst P (tg) = E, tae ty € J. Bymem u ckarb
peleHre HeoTHOPOAHOl cucTeMsl (3.1) B Bue

Z(t) = d(1) C (1), C (1) € C'(J).

[Moncrasnss dyaknuio (3.12) B cucremy (3.1), mosryamm

%
[Moncrasissa naiinennoe snaderne C(t) B dopmyiy (3.12), Haxomum

t

(o) + B(1) / O (r) F(r)dr

to

s}

Z(t) = O(t)
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2.4.7 Complex amplitude method (7)

—

[lpu t = ty nmeem Z(ty) = C(ty) = #. B pesymbrare pemenne 3amadn Kommm MOXKHO

IIPEICTAaBUTH B BUE
¢

—

() = DT, + D(t) / O (r) f(r)dr.

to
[Mocnenusast dopmysra wHOcuT Hasaunme dopmyasl Komm.  Ona ObLta mOTydYeHa METOIOM
Bapualuy MOCTOSIHHBIX.

2.4.7 Complex amplitude method (?)

(ToKe MHOI/IA MpeJIaraioT PerruTh TaKUM METOJOM, MpopaboTai, pa3dbepy MOTOM. ITOKa
JIPYTUX METOJIOB TOXKe XBATAeT. )

2.5 Linear equations of nth order with variable coefficients

Teopus

2.5.1 Theorem of existence and uniqueness of the solution of the
Cauchy problem

Teopus

2.5.2 Liouville-Ostrogradsky formula for systems with variable coef-
ficients

Teopus

Beeném onpesenmress Bponckoro aina dynknuit 2;(t), i = 1,n,t € J,

xl .. xn
:E/ ... $;L
W)= Wn(), - e.®]=| . "
x&nfl) . x%nfl)
Ompenenenne 3.2.1. Oyuxiuu xq1(t), -+ ,x,(t),t € J, HA3BIB alOTCsl JUHEHHO HE3ABUCHMBIMU

Ha IPOMEXKYTKE .J, eC/li PABEHCTBO
n
E C;xi(t) = 0(C; — mocrosHHDIE )
i=1

BO3 MOKHO J1JTs1 Jitoboro t € J, ecim u Tosibko ecn C; = 0,4 = 1, n. Jlemma 3.4. Eciu dyukimn
x1(t), -, x,(t) AuHEHO 3aBUCHMBIE HA IPOMEKYTKE J, TO

Wxi(t), -+ ,x,(t)] =0,t € J.

ObparHoe yrBepxaenne HepepHo! [leficTBUTE/NBHO, JOCTATOYHO B3ATH (PYHKIIAN

0,t <0, 0,t >0,
n(t) = g0 20=9 30

Hokazath jgemmy camum. Jlokaxem ¢dop myiny JlnysBumis-OcTporpajickoro u Teopemy o
CyIIECTBOBAHUH (PYHIAMEHTAJIBHON CUCTEMBI PEIIeHUIA.
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2.5.3 Structure of solutions of linear equations of the nth order

[t 9TOro paccMOTpUM JIMHEHHOe OJIHOpOJiHOe ypasHenue (3.14). B stom ciaydae B

coorsercrByromeil emy cucreme (2.46) dynknua f(t,7) = Pz — Bzn m
n
> Pre = — 5, po(t) # 0. 3aech ncnonbsos anbl obosHadenns (2.45) © & = 2y, - - - , 2 = 2,
i=1

Orciona u u3 dopmysst (3.9) noxyanm dbop myiy Jlnysmiag-Octporp ajckoro st pereHuii
JIMHEHHOTO OJTHOPOJIHOTO ypaBHeHwust (3.14):

W (t) =W (ty) e T m po(r) # 0.

st ypaBHenust Broporo mopsijika (3.10) ona Oblta mostydena panee B nojnaparpade 3.1.3. U3
dbop myset JTnysuisg-Ocrporpajickoro ciemayer: 1) Eciu cymecrsyer ¢ Takoit, uro W (tg) = 0,
ro W (t) = 0 mia soboro t € J 2) Ecau cymecrsyer tg takoii, uro W (tg) # 0, ro W (t) # 0
1t Jioooro t € J.

Jlemma 3.5. Ilycrb xq(t), - ,x,(t),t € J, - pemneHusi JIUHEHHOIO OJHOPOJHOIO yPABHEHUS
(3.14). Torma ciesyrorue yTBepK/IeHUsT SKBUBAJIEHTHBL: 1) dyHKImn x1(t), -, z,(t),t € J,
- qmHeiiHo HesaBucuMble; 2) W (t) # 0,Vt € J; 3) cymectsyer ty € J Takoit, uro W (ty) # 0.
ok a3 aresib b T Bo. Jlemma 3.5 cjie jiyer u3 jeMMbl 3.3 COIVIACHO CBSI3U MEXKJIy ypaBHEHUEM
(3.14) u cucremoii (2.46), a Takxke dopmyist Jluysusis-Ocrporp ajckoro (3.17).

Onpenenenne 3.2.2. JIoOble n IUHEHO HE3aBUCUMbBIE PEIIEHUs] JIMTHEIHONO OTHOPOIHOIO Y
asHenwus (3.14) HaspiBarorcs dyHIaMeHTanIbHO cucremoii pemennii (OCP).

Teopema 3.7. ljist 1106010 JIMHEHHOTO OJHOPOAHOTO ypaBHeHust (3.14) ¢ HempepbIBHBIMU
ko3 dunmenramu u po(t) # 0 cymecrByer dyHIaMEHTAIbHAST CHCTEMA, DEIeHUi.

Hokaz arenbctBo. Bozbmewm ty € J. U3 Teopembl 3.6 ciemyer, 9TO CYMIECTBYIOT PEIIEHUS
CO CJIeJLyIONMME HAYAIbHBIMU YCJIOBUSIMMU:

27V () = O 1 < Lk < .

Corytacuo jemme 3.5 MOCTPOEHHBIE PEIEHUST SIBISIOTCA JIMHEHHO HE3aBUCUMBIMEU U, CJIEJIOB
aTeJlbHO, 00pa3yoT (OYHIAMEHTATbHYIO CHCTEMY peIleHwHil. Mbl momydmMm HOB  yIO
dbyHaMeHTaTBHYIO CHCTEMY peIleHnil, ecju BO3b MEM JIpyrue HadaJbHblE JaHHbIE IIPU
yeosuu W (tg) # 0.

HpI/IMeHeHI/ISI BPOHCKHAHOB

(mepekuHy B pasjiest mpo HUX, 9TO HE TYT.)

(TyT TiIyGOKO MOXKHO HAIUCATH TIOTOM)

(kak pa3 PO MHOTNOCOJIMTOHHbBIE DPEIIeHUs HEMJIOXO MOrOBOPUTH, si TOKa X3, KaK TaM
paboTraeT Ta MOJIEb. )

2.5.3 Structure of solutions of linear equations of the nth order

Teopus

Teopema 3.8. Ecimm pi(t), -+ ,0n(t),t € J, - dyHrameHTadbHasg CcUCTEMa DeIIeHui
JIMHEHHOTO OJTHOPOJIHOTO ypasHeHwust (3.14), To s moboro ero pertenns x(t),t € J, Haiigéres

Takoit Habop nocrosuubix C;, i = 1,n, urox z(t) = > Cipi(t)
i=1
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2.5.4 The method of variation of constants for a linear inhomogeneous equation

2.5.4 The method of variation of constants for a linear inhomogeneous

equation
Teopus
[Iycts p1(t), -, on(t) - dyHmaMeHTAIbHAST CHCTEMa PeIeHuii JIMHEHHOIO OJHOPOJHOTO
YpaBHEHUS. Bynem HUCKATh pelieHne YpaBHEHU (3.13) B BU/JIE

z(t) = 3 Ci(t)pi(t), t € J,Ci(t) € C*(J),t € J. PaccMOTpEM COOTBETCTBYIONLYIO YPABHEHUIO
i=1

N = —Pay ... B 9()
(3.13) cucremy (2.46) ¢ f(t,2) = =52z B+ S0

CorytacHo 0003Ha4YeHUsIM, TPUHATBHIM B cu creme (3.1), dyHmamenranbhas marpura ¢ u
BeKTOP-QYHKINSA §(t) COOTBETCTBYIOIIEH CHCTEMBI UMEIOT BUJL

801 e (pn 0
/ !
. 0
o=| T T lam=| .
n—1 n—1 t
A 0

OTcrofia osTydaeM CHCTeMy YpaBHEHHUIT JiJ1s onpeieieHnst Tpon3BoAHbIX oT dyHKIiwit C;(t), 1 =
1,n:
, M

_>
dC
d— = (¢
= gt) =
e1CL () + -+ O (t) = 0,
=0,

PO + -+ @)

n—1 n—1
AL+ + VO () = 5.

Cucrema paspemmnma, ubo det ® = W(t) # 0. Onpenemus C.(t),i = 1,n, uerpyauo Haiitu
obree perienre ypapHenus (3.13).

2.6 Linear homogeneous equations of the second order with variable
coefficients

Teopusi
2.6.1 Preliminaries

Teopus

2.6.2 Assault Comparison Theorem

Teopus

CrnencrBusi, BeITeKalolue u3 treopeMbl cpaBHeHnus llITtypma
2.6.3 Sturm’s theorem on the separation of zeros

Teopus

IIpumepsbl ncnosb3oBanus Teopembl IITypma
2.6.4 Knezer criterion

Teopus
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2.6.5 The Bessel equation and some properties of its solutions

2.6.5 The Bessel equation and some properties of its solutions
Teopus

2.7 Linear diffusers and linear diffuser systems with ¢; =const, € R

Jluneitnbie Iuddypbl ¢ TOCTOSHHBIME BEIECTBEHHBIMU KO pUiimenTamm

Jluneitnsre Heonmoponmsie ypasuenus (JIHY) ¢ kBasnmmorowenom B mpasoif dacTu

Jluneitnbie cucreMbl JuddepeHnua bHbIX YpaBHEHU I

Cucrembl JIMHEHHBIX OJHOPOJHBIX yPABHEHWII C MOCTOAHHBI MU BeIle CTBEHHBIMU
koddburmenTaMm

JIuHeitHble HEOTHOPO/IHBIE CUCTEMbBI ¢ KBA3UMHOI'OYJIEHOM B ITPABOIl YacTh

[Ipumep periennst TUHERHON HEOHOPOIHON CUCTEMBI

2.7.1 Exhibitor matrix (?77)

(7?7 xBaTHT 9TOrO pas/iesia WK HET? TYT 10 Hjee Bce 00 9T0)

Paccmorpum marpuny P(t) = (pij(t)),i,7 = 1,n, B KoTOpoii p;;(t) - BelecTBeHHBIE MM
KOMILTeKCHbIe (byHKIun ot t. Ecin p;;(t) yIoBIeTBOPSIOT COOTBETCTBYIONAM YCIOBHUAM, TO IO
OIIPE/IeJICHUIO

P1= a0 50 = (o)) [ o= { [mterae) g =T

to to

Hwmxke kBaJipaTHble MaTPUIBI PA3MEPHOCTH 1 X N, IJIEMEHTAMHU KOTOPBIX SBJISIOTCI YHUCTIA,
obozHavIaroTCa A, a MaTPHIBI, 3I€MEHTAMHU KOTOPBIX ABJISIOTCA (DYHKIINNA, ODO3HAYAIOTCS

A(t), Ax(t).

Ompenenenne 4.3.1. Pan > Ag(t), rme Ag(t) = (a;kj) (t)), HA3bIBAETCSI CXOJAIIUMCS [IPU
k=0
(k)

dbukcuposansoMm t € R x marpune A(t) = (a; ;) (t), ecou npu STOM ¢ psiIbI kz—oai’j (t) cxomsares

— o0 —
K a;;(t) npu Beex i,j = 1,n. Ecanm panpr ) a;kj) (t) cxomsgTcst abCOMOTHO IPU BCeX 4,] = 1,1
-0

ut € R, To MaTpuaHbBIi psiji Ha3biBaeTCst abCcoIOTHO cxoadamumces. Oupenenenne 4.3.2. Mol

o0
roBopum, 4to psaix y . Ag(t), tae Ag(t) = (ag})(t) (t)), CXOJIUTCsT paBHOMEPHO K MaTpuiie A(t) =
k=0
[e.¢]
(a;j(t)) Ha KOHEYHOM IPOMEXKYTKe J, €C/IH HA 9TOM IIPOMEXKYTKE PAILL Y @
k=0

5’3) (t) cxomarcs
paBHOMEpHO K a; ;(t) npu Beex i, 7 = 1,n.

ZLH?[ beHKHI/IOHaﬂbeX PAJI0B MaTpPHUIL OCTaTCA CIIpaBeIJINBbIMUA TEeOPEMBI,
copMyIMpOBaHHbIe JIA paAgoB (QYHKIMIA. DTo claeayeT U3 olpelefeHuil, TPUBEICHHBIX
BBIIE, W TeM, 4TO PsAJbI, COCTABJICHHBbIE U3 1] — X 3JEMEHTOB MaTpHIl, STHM TeopeMaM
10 TYMHSIOTCS.

Hopwma marpunet A = (a; ;) ,4,j = 1,n OIpPeIeISIOTCs CIeLyOMIM 00pa3oM:

1Al =

I3 sroro ompenenenns cremyer, 410 ecan |[Al| =0, 10 a;; = 0 <= A = (0)xn-

60



2.7.1 Exhibitor matrix (?77)

Jemma 4.7. Ecim || Ax(t)]] < ax, k € {0} UN,t € J, 4 quciaoBoit pag > ap CXOIUTCS, TO
k=0

psist Y Ag(t) cxomures, mpu 3ToM abGCOIOTHO U PABHOMEDPHO HA JIIOOOM KOHEYHOM [POMEXKYTKE
J.

k L. _—
ok a3 aTenbctTBo. Jag smemeHToB agj)(t) marpuibl Ay (t) upu 0bsix i, = 1,n
CIIPABEIIMBO HEPABEHCTBO

o (6] < 140 < o

Orcrofia ciiejyer, 9To psijibl, COCTOAIINE U3 4, j - 9JIeMEeHTOB MaTpHIl A (t) CXOIATCs, U IPH 3TOM
abCOJIIOTHO ¥ PAaBHOMEPHO Ha JIIOOOM KOoHeuHOM mpoMexkyTke J. CrenoBaTesbHO, PsJi MaTPUIL
CXOJIUTCS aHAJIOTMIHBIM 00Pa30M.

Jlemma 4.8. Jlns sroboit kBajipaTHoit MaTpuiibl A u joboro t € R psi

> t t2 2, by
ZAk(t):E+ﬁA+5A +k'A

CXOJIUTCS, MPHU TOM abCOJIOTHO W PaBHOMEPHO Ha JIIOOOM KOHEYHOM IpoMe:kKyTKe J. 3jech
k
Ao(t) = E, A(t) = SA* k> 0.

Hokazarenscto. CymecTByer Takoe aucso b, uto |a;;| < b mig mobwix i, j = 1,n. Beeném
obo3HaYeHUsT
2 2 k k
A° = (az(»j)) o, AY = (az(»j)) k=34, ..

Torma s saeMenToB MaTpunbl A2 = A - A = <a§]2.)) OyIeM UMeThb OIEHKY

n
E Qs

s=1

a, < Z laisasi] < nb?i,j=1,n

ij

(2)‘ —

. k .
Herpyano mokazaTh METOIOM MaTeMaTUIECKON WHIYKIIUKA, ITO ’a(.)’ < < nk- 1b’7C =1,n

”¢>0Twmaw=nma\<W"bk>>owam=¢ﬁ

coryIacHO HaiigeHHBbIM orenKaM. CremoBaTebHO, M Kaxkjaoro t € R MOXKHO B3SITh ayp =
|t‘k kbk

Tak kax agﬁ)(t) = k,a

oo

k> 0;a9 = /n. Torma pan Y. ap cxomures 1o npusHaky lamambGepa npu s1ro60M
k=0

Bbl60pe but. Tlo memme 4.7 psaj (4.32) cxopurest K HeKOTOPOii Marputie. Kazxk bt s1eMeHT 5Toii

MAaTPUILI ABJISETCA CXOJAIIMMCA PAJIOM IIPH JII0O0OM BbIOOpe b 1 t. V3 jJoKasaTebeTBa JIeMMbI
Takke cieqyer, aro psij (4.32) cxomurcs abcosrorno. Ecom ¢t € J, 1o pan (4.32) cxomurest
Ha JIIOOOM KOHEeYHOM TpomexkyTke J = (c¢,d) paBHOMepHO. [leficTBUTEIBHO, IIpE/IIOIaras,

d k kbk
HanpuMmep, ¢, d > 0, 9ucja qj MOXKHO BBIOPATDH CJIELYIONIUM 00Pa3oM: «p = HT, k> 0.

Omupegenenne 4.3.3. Psiyt (4.32) HasbiBaeTCs SKCIOHEHITUATLHON (DyHKIMEH 0T MATPUIILL tA
1 obo3Hauaercs et
CeoiicrBa: 1. Ecau marpunpsr A u B xommyTupyior, t.e. [A, Bl = AB — BA =0, TO

oHAtB — HA+B)

Ecmu [A, B] # 0, To dopmyna (4.32) MOKeT He BBHITOTHATHCs. [IpOMJIT rocTpUpyeM 3To Ha

puMepe
01 10
=(00) #=(00)-

t t t
A _ [ € e € \ _ 4A+B)
= e —(01>7é(0 0>—e .
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2.7.1 Exhibitor matrix (?77)

2. Jst Yy, ts € R, u VA nmeer Mecto pasencrso: eftdet?4 = eltitt2)A.
3. Marpuna e gpisercs obparroit kK Marpuie et : e et = =04 = ¢Onxn = B 4,

tA - -
de” — Aet = e A; JleficTBUTEIBHO, N3 PABHOMEPHON CXOIMMOCTH PSIA (4.32) umeem

dt

t ) tk—l .
=A+-A"+. .+ —-A _—
L TR s TR

d etA
dt

— A (E + %AJF ) = Aett = (E+ %A+ ) A=A,

Paccemorpum citeryromyto 3aga4ay Korm:

dz . o
d_”t“" = AT+ f(t); f(t) € C(]), Z(to) =70, to€.

Teopema 4.7. BekTop-dyukims

—

Z(t) = e(t-to)Az 4+ /e(t_T)Af(T)d’T

SIBJIACTCS €TUHCTBEHHBIM perntenneM 3aa41u Kormn (4.34), ope/ie/IeHHBIM Ha BCEM [IPOMEXKYTKE
J. Jloka3s 3 TeJLCTBO.
Cymecreosanue. [Ipoussesem B ypasnenuu (4.34) nojcranopky T(t) = e4i(t). Torma

d tA N
(edt U) :AetAU(t)+ (t)’
A T(t) + etA—d@C‘lit) = Aei(t) + f(t) = di;i” = e M f(t).

VuTerpupyst 970 ypaBHEHHE, HAXOIUM
t
i(t) = C + / e ™A f(7)dr.
to
3iech C - IPOUBBOIILHDIL N-MepHDIil UICI0BON BeKTOp. B pesy/brare Gyiem HMeTh
t
Z(t) = e C + /e(tT)Af(T)dT.
to
Ipu t = ty, Tp = e*2C = C = e 04%,. oucrasus C B (4.36), mostyaum dopmyity (4.35):
t
Z(t) = etto) Az 4 /e(tT)Af(T)dT.
to

Enuucreennocts. IlycTs MbI mMeeM jBa perenust I, Zp 3amadan Komm (4.34). O6osHaunm
y = T — To. Torma mjs onpeesieHnst §f MOJIyvIaeM OTHOPOIHYIO 3aady Kormm

dy —
_— = A_’ Tl t = U = O
o =A% g(to) =1

N3 neé cpazy naxoaum

_>
j(t) = e = 0, Vteld
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2.7.1 Exhibitor matrix (?77)

[eit cTBUTENBHO,

dii(t)
dt

7(t) = eta(t) = — T =it)=C=C=0=g0t)=0,te
O6parum BHEMaHHe Ha TO, 4TO dopmyia (4.35) mosydeHa MeTOJOM BapHalldl MOCTOSTHHBIX
Jlarpamxa.

Pacemorpum @CP - Gy (t), ..., Gn(t) ommopommoii cucremsl ypasaenmit (4.16). CocraBum
marpuity ¢ = (F1..8,), KoTopasi HasbiBaeTcst GyHIaMeHTaIbHO. Eé croabramu sBsiroTCs
KOODJIMHATBl BeKTOpoB {@;},i = 1,n. U3 neeauncreennoctu bwibopa DOCP  cremyer

HEeeIMHCTBEHHOCTh BbIOOpa dyHIaMeHTabHON MaTpuibl. Tak Kak % = Ag;, 1= 1,n, 10

d)YH,ILaMeHTaJIbHI)IG MaTPpHIIbI P VAOBJIETBOPAIOT MaTPUYIHOMY YpPaBHEHUIO

dd
— = Ad
dt
Martpura e yaoBieTBOpgeT MATPHYHOMY yPaBHEHHIO (4.37). E€ onpenesurens det et £ 0
g Vi € R. Tlosromy ona TakxKe siBjigeTcs (pyHIaMEHTAJILHON 1 00IIee pelieHne oIHOPO/IHOI
cucrembl ypasHenuii (4.16) moxHo npejcraButh B Buge: Z(t) = ®C, rne C - mpousBOJIBHBII

qpcI0Boi BekTop. OJIHAKO BCTAET BOIPOC: KaK BeIYMCINTL Marpuiy e4? Jlemma 4.9. Ecin
A=TBT™ ' 10 4 = Te!BT~!. Jlokazarens creo. Nmeem

t

t2
UTBT‘l + 5TBT-lTBT—1 +..=

et =F+
t2
2!

t t?
=T (E + FB + 5B2 + ) T = TetBr—1,

t
=TET '+ FTBT*1 + —TB*T '+ .. =

B xopranosom Gasuce marpuna A npummmaer ciemytommuit s J = T 'AT. Marpuna J
Ha3bIBaeTCA sKopaanoBoil. 3Haunt, A = TJT~' u u3 nemmsr 4.9 mveen: et = Te T~ U3
dbopmyutsr (4.36) maa oxsoponmoit cu cremsl (4.16) (f(t) = 0,t € J) moaygaem, dro eé obiiee
pelIeHne MOKHO IIPEJICTABUTEL B BUJIE

#(t) = e"C =T T-'C = Te T,

rne CT = T~'C - nossrit mponssosbHbI BekTop. CiesloBaTensno, MaTpuna T’ Tak e, Kak

u et apigerca dyHIaMeHTaAIBHOM. PaccMOTpHM ciIydail, Korua

M 0 ¥ 0
j: . ’j2: . ,
0 A 0 A2
A 0
J" =
0 A
Or cioma wHaxomu M e = E + 4£J + g] 2 4+ =
A 0 A2 0
= E + 4 : + & : + =
0 A 0 A2
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2.7.1 Exhibitor matrix (?77)

k! At
k=0 0
= = . Ecnu ucnons3oBath (byHaMeHTaTIbHY IO
00 Ant
th Ak 0 e
0 >
k=0
Tetv I 4.16 0
MaTpHUILy e, TO BCe peHicHudA OJHOPOJHOU CUCTEMBI . B KOHEYHOM HTOre OyJAyT OIIn
CBIBATBCSA TPAJUITUOHHON (HOPMYJIOi:

) . ) 6)\1t 0 C;r
#(t) = TeV 1710 = (hl, hn> -] =
0 et Ct
= C'Iﬁle’\lt + ..+ C'll_l’ne)‘”t.

IIycts Teneps J umeer umeet sut: J = [Ty, -, Ji,|. Herpyano ybenurnesa (1okasars camMuM),

qTO
el 0

T =T, T me = .
0 etjkl

Pacemorpum ciyyaii, korga J = T, vie Jo, - XKOpJaHoBa KjaeTka (cM. onpejesenue 4.7).
Nmeem

o 1 O --- 0

Im = AE,, + N,,, tne N, = : 0
0 1

0 0

Tak kak matpuibl AF,, u N,, KOMMyTUDYIOT, TO

tIm et/\EnetNm — et)\EmetNm — e)xtetNm —

e
t t2 tm—l
At 2 m—1
E+—N,,+ =N>..+ — N,
e TR TR e T
e
0 -+ --- 0
Npr= | | iz
0 - 0
3H a4nr,
t7, M t A
evm = E+—=Ny+ ..+ ——N,
1! (m —1)!
2 m—1
1 % % (;1—1)1
0
_ oM 2
2
: . t
: : 1l
0 -+ - 0 1

[TokazkeM, HCIOB3ys dyHIaMeHTaIbHyIo Marpuiy 1’| 4ro obmiee pemeHne oJHOPOHOIR
cucrembl ypasHeruii (4.16) Tak ke, Kak U BBIIIe, MOYKHO [PEJICTABUTH B TPAJUIIMOHHON (opme:

Z(t) = TeImCt =
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2.7.1 Exhibitor matrix (?77)

0 . .. .. :
= (ﬁla H27 77Lm> 1;_2' BAtC_:T =
) 1!
0 0 1
5 m—1 . t - N CI
=M hyy oy —————h o+ —hue1 + i : =
(m—1)! !
ch,
tT (= Lo S\
== C’lhle + ..+ C hm + —hm_l + ..+ —hl €
m 1! (m—1)!

JList ydiero MmoHUMaHus Oy YEHHBIX BBIIIE PEe3Y/IbTATOB HAMIEM HEIIOCPEICTBEHHO MATPUILY
et na NPUBENEHHON HUXKE CUCTEMBI.

IIpn mep 4.3.1

-1 1 =2
‘fi—f = 4 1 0 Z. CobcTBeHHDbIE 3HAYECHHMS MATPHIIBI CUCTEMbI, KOTOpas HU K€
2 1 -1
oymer obosnadarbesas A, mmeror Bug: A\ = 1, A9 = A3 = —1. Onpegenum cobCTBEHHBIE BEKTOPBI

MaTpuiibl A n )KopaaHoBy Marpuily J:

0 3\
A1:1:>(A—E)Elzﬁ - Elz 2
1
1
. . . 1
/\3:—1: (A—|—E)h3:h2 — h3: -1
0

Taxum oOpa3oM, KOPJAHOBBII 0Aa3MC COCTOUT U3 JIBYX YKOPJIAHOBBIX IerodeK. Marpuribl
e 1 2 pmeror BuT
tJ1 t tJ2 1 t —t
et = (e e? = e ",
@ =y

Ecin Bocrosb3oBarest hopmyioit (4.39), To MOXKHO €pa3y HAIMCATH:

¢
v e 0 0
T — € 0 = 0 et te?
0 et
0 0 et

DTOT pe3y/ibTaT MOXKHO IMOJIYIUTh HEIOCPEJICTBEHHO, MIPE/ICTABUB MaTpuily J B BUJIE

1 0 O 000
J=|0 -1 0 +1 001 |]|=A+8B
0 0 -1 0 00
Marpuret A, B kommyTupytot. leit cTBuTeibHO
1 0 0 000 0 0 O
0 -1 0 001 |]=100 -1
0 0 -1 0 00 0 0 O



2.7.1 Exhibitor matrix (?77)

000 1 0 0 0 0 O

0 01 0 -1 0 =10 0 -1

000 0 0 -1 0 0 O

Taxum obpasom, AB = BA. Orcioia BeITEKAET, ITO
1 0 0 0 00
el =eleB —exp [t 0 =1 0 cexp [t 0 0 1 =

0 0 -1 000

e 0 0 100 e 0 0

=1 0 et 0 01 ¢t =10 et tet
0 0 e 0 01 0 0 et

OmnpeiesmM o6IIee peleHne CH CTeMbl, HCIOoIb3yd (MDYyHIAMEHTAILH YIo MaTpuiry ef4:

Z(t) = eC =TeT7'C =

0 -1 1 e 0 0 1 1 -1 Ch
=12 2 -1 0 et tet -1 -1 2 Cy | =
1 1 0 0 0 et 0 -1 2 Cs

et te~t —2te™t o
=| 2(e"—e) 2" —(142t)et —2e" +2(1+ 2t)e? Cy
el —et el —(1+tet —e'+2(1+t)e Cs

IIpumep HaxoOKJIeHUsT MATPUYHO SKCIIOHEHTHI.

Paccmorpum matpumy A:

3 —4 0 —1
A:(4 3):3E+402, 0'2:<1 O)

3nech 0y - marpuria [laysm. Berau ciimv maTpuunyio skcnonenty. me- em

At _ 3Bt 4

— 3 _ —
=—-F 0,=—09,0,=F,.

o3t = (~1)"oy, 08" = (-1)'E

e

640’2t; 0_3

*)

Orcrona HAXOIUM

(40)*  (4t)°

doot _ _ e —
e =K +409t — F 5 09 i + =

5 (1 = @+...> + 0 (4t— e +> - ( cosdl —sin df )

2! 3! sin4t cos4t

B pesysnbrare Oyiem umeTnb

At 3Et doot 3t [ cosdt —sindt ‘
cTec —¢ (Sin4t cos 4t

66



Other diffuser bases

MaTrpuyHblii MeTo[ pelieHusi CUCTeMbl JMHENHBIX ypaBHEHUII BTOPOro MOPSAIKA C
MOCTOSTHHBIMU KO3 UIMeHTaMU.

1. Cnyuait pa3jmmmaabIx cCOOCTBEHHBIX 3HadeHuil. Paccmorpum 3a1aty Korn:
dz z(0)

— =Az, 2(0)= :

dt © ( y(0)

Byiem nckars Marpuiy e B Buje

et = AjeMt + Ayt € R

rje Ay, A - Hem3BeCTHBIE YU CJIOBBIE MATPUITEI. BBIOOP hOPMBI, B KOTOPOIi UITIETCS MATPHIIA

e, BoiTekaeT 3 opMyIT

At O
tA o tTp—1 g [ €
et =TeYT " e = < 0 et ) .

HpOI/I3BO,H,HaH OT MaTpPUIIbI etA paBHa
AetA = )\1A1€A1t + )\2A2€)\2t.
ITosio:xkuB B VP aBHEHHAX t= 0, JJId OoIIpeIe/IeHd MaTPHUIL Al, A2 II0JIy9YUM CHCTEMY':

E:A1+A2 )\QE—A A—AlE
s A =TT g, =TT
{A:A¢h+&A2$'1 YD VD W W

Eciit cobeTBeHHbIe 3HAUCHUS SIBJIAIOTCS KOMILIEKCHO-COLPAKEHHBIME A1 2 = « £ i3, To 3a1aua
OIIPEJIe/IeHIs MATPUYHOI 9KCIIOHEHTHI yIIpornaeTcs. Herpy/Ho 1oKka3aTh, 4To eé MOKHO HCKATh
B BHJIE

et = e [A) cos Bt + Aysin Bt].

2. Cay4ait orcyTcrBus 0asuca n3 COOCTBEHHBIX BEKTOPOB: A1 = Ay = A. Tak kak

1t

tJ __ At
© _(0 1)6’
A

TO MaTpHUILy et MoXKHO HCKaTh B BUIE
etA = Ale/\t + A2t€/\t,
rjie Aj, Ay - Hem3BecTHBIE YNCI0BbIe MaTpullbl. [IpousBojnas ot Heé umeer Bu/l
AetA = )\A1€>\t + AQ@M + )\Agte)\t

s onpenentennst marput, A;, A mosyuanm tipu t = 0 cucremy
E = A17
A= )MA; + As.
Pemas eé, naxomum: A; = E, Ay = A — \E. B pesyibrare OyjieM u MeTb

e = FEeM + (A - AE)teM = (E +t(A— \E))eM - o

3 Other diffuser bases

(moToOM TPOJIOJIKY U3y9aTh W HPOMUCHIBATH CTPYKTYPY, MOKA IIPOCTO TYT OCTABJIO TO, 9TO
KOIJIa-TO OBLIO Y7K€ BBIIHUCAHO. )
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3.1 Boundary value problems for 2nd order linear diffusers with ¢;=const,€ R and small
parameter

3.1 Boundary value problems for 2nd order linear diffusers with
c;=const,c€ R and small parameter

3.1.1 Boundary value problems for a second-order linear differential
equation with c¢;=const,c R

52 KpaeBass 3ajiada 1-ro poja INpH HAJMIUU MaJIOTO IapaMmeTpa Iepejl crapiiei
MIPOU3BOJIHOMN
53 Ilpumep permrenns KpaeBoit 3a1a4u 1-r1o pojia

3.2 Laplace transform

61 OcHoBHBIE OTPEJIE/IEHNsT U TEOPEMbI

62 IIpocreiimue cBoiicTBa mpeodbpazoBanus Jlammaca

63 Boranciienne npeobpasosanus Jlamnaca, ecin f(t) kBasuMHOrOWICH
[Ipumenenue npeobpazoanus Jlammaca

3.3 Autonomous Systems

81 OcuoBnble nonsgTud U onpejesnenns 882 (CBoiicTBa peleHuil ABTOHOMHBIX CUCTEM U
TeopeMa O ToBejeHUN (Ha3oBbIX TpaekTopuit 83 Paz0BbIli TMOPTPET pelIeHnil aBTOHOMHOI
JIMHEHOW CUCTEMBI C JIEHCTBUTEIbHBI MU KO3 dUImenTaMu Ha, IJI0CKOCTH

84 IloBenenne $HazoBBIX TPAeKTOPHiT B OKPECTHOCTHU IOJIOYKEHWS PABHOBECHs HEJIMHEWHOI
aBTOHOMHOI CHUCTEMBbI Ha IIJIOCKOCTHU

3.4 Fundamentals of the theory of stability of ODM solutions

(y JAUeCIiepOoBa HallUCaHO Ky4Ya CJIOB, a IIO0JIb3bI OT HUX COBCEM HE MHOFO.)

3.4.1 Theory according to Ivanov A.P. MIPT (?)

1. YcroliuuBocCcTh JUHEHHBIX CUCTEM

Paccmorpum stmHeiinyio cucteMmy OOBIKHOBEHHBIX T DepeHInaaIbHbIX YPaBHEHHH IePBOTO
MOPSITKA
z=Ax, xze€R"

Kak N3BE€CTHO, YaCTHbIC DpeEIIeHud CUCTEMBDI (1) MO2KHO IIOJIY9UTb aﬂre6pa1/1quKI/I, peitad
XapaKTepUCTu4IeCKoe ypaBHeHHE

det ||[A—AE,|| =0
)E,, - elMHIYIHAs MaTPUIA COOTBETCTBYIONIErO HOPA/IKA) U HoJIaras
x(t) = exp (Agt)
IIpUYeM MHHUMasi SKCIIOHEHTa PACKJIa/[piBaeTcs 10 dhopmyste Diliepa
exp(a + bi) = exp(a)(cosb + isinb)

Ob6ee perterne cucreMbl (1) - 970 cymMMa KBA3UMHOIOWIEHOB, T.e. IMPOM3BEJIEHUl YaCTHBIX
perennii  (3) Ha MHOTOYJIEH, CTElNEHb KOTOPOIO Ha EJUHUIYy MEHbIIe KPATHOCTH
COOTBETCTBYIOIIETO KOPHS:

w(t) = Pult) exp (Axt)
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3.4.1 Theory according to Ivanov A.P. MIPT (7)

Onpenenenne. Tosnoxenune paaosecust = 0 cuCTEMbBI
t=f(x), ze€R" f(0)=0

Ha3bIBaeTCs  ycroiunebiM (o JIsmyHOBY), ecim BCsKOe pellleHue, CTapTrykonee u3
JIOCTATOYHO MaJjioit ero okpecrHoctu Us, He MOKUIaeT TPOU3BOJIBHO 3aJaHHOW OKPECTHOCTHU
U., Te.

Ve > 0,30 > 0: Voo = 2 (ty) € Ug, ¥t > to,2(t) € U,
[TonsiTHEe acCUMIITOTHYECKOH YCTONINBOCTH 00bEIMHAECT CBOMCTBA YCTOWIMBOCTU U TPUTAZKEHUA.

[Iocnenunee o3navaer, 4To
Vag =z (tp) € Us: lim z(t) =0
t—o0

B ciyuae JmHeitHOW cumcTeMbl (1) TpHUTsKeHWe JOCTATOYHO IS ACHMIITOTHYECKOM
yeroitunBoctu. CripaBeiiinBo cieyoriee yreepKienne. [Ipemioxenne 1. 1) Ecau Bce KopHu
ypaBHeHusi (2) JiekaT B JIEBO# MOJIYIUIOCKOCTH KOMILIEKCHO# miockoctu C' (T.e.  9TO -
OTpUIlATe/IbHbIE  JEHCTBUTE/NbHbIE  YUCAAa WA  MHUMbBIE YHUCA& € OTPUIATETLHOIM
JIEHCTBUTEILHON  9aCcThiO), TO MOJIOKEHWEe paBHOBecus cucreMbl (1) acuMmToTHdIecKn
yeroitanpo. 2) Ecim XoTst 661 OMH U3 9TUX KOPHE JIEXKUT B MPABOIl MOIYILIOCKOCTH, TO OHO
HEyCTOUYUBO.

HoxkazarenscrBo. st dbysxium (3) yTBepkKjeHHe CJIeyeT U3 IPEJEIbHBIX CBOHCTB
SKCroHeHThl. Jj1s1 KBasumMHOrOUwIeHa (4) aHAJOMMYHBINA BBIBOJ MOYKHO IOJIYUIUTH, IIPUMEHUB
npaswio Jlomuransg-Bepnymim. Sameuanue. s BBIICHEHUsI PACIOJIOKEHUsT KOPHEi
aJreOpamvIecKoro ypaBHEHHsSI C JIEHCTBUTEIBbHBIME KO3 UIMeHTaMn OOBIYHO HCIOIB3YIOT
kputepuii Payca-['ypsuna. Ilpm permennn mpukiaJgHbIX 3a7a9 BBICOKOI Pa3MEPHOCTH MOXKHO
TaKyKe  pelaTb  XapaKTepUCTUYeCKOe  ypaBHEHHWE IpU  I[IOMOIM  MaTeMaTHYeCKUX
KOMIIBIOTEPHBIX TIAKETOB. Heobxonumoe  ycjioBue  yCcTONYIUBOCTH. Ecim Bce xkopHmI
aIreOpamvIeckKoro ypaBHEHHs C JIeHCTBUTEIbHBIMI KoM pUIIHEeHTaMI JieXKaT B  JIEBOIA
MOJIYIIJIOCKOCTH, TO €ro KO3(@PUIIMEHTH UMEIOT OJIMHAKOBLIE 3HAKH. Kpurepunii
Payca-I'ypsura. [Ijag Toro, 4ToObI Bce KOPHU XapaKTEPUCTHIECKOTO yPABHEHUS

AN 4y NP FadFag=0, a €R,a9>0

numMeJin orpunare/ibHble rILeI‘/JICTBI/ITeJ'II:»HbIe qJacCTu, H606XO,ILI/IMO n JOCTaTOYHO, 4TOOBI BCE IVIaBHDIE
JAruaroHaJibHble MUHOPBI MaTPHUIIbI (COCT&BHGH& JJId CJIydad N = 4 ¢ gCHBIM O606IH€HI/IGM)

ay Qo 0 0
as ag a1 Qo
0 as az amg
0 0 0 1

ObLTH TToJT0KUTE/IBHBL. [IpuMmepnl. 1. McceienoBaTh yeTORIUBOCTD CUCTEMBI

G:

T+ 6% + 262 + 467 + 65x = 0

CocTaBuM XapaKTepUCTUYECKOE YpaBHEHUE CONOCTABJIsAs IIPOU3BOJIHBIM COOTBETCTBYIOIINE
CTEIEHU TIEPEMEHHO \:

A4 602 + 2602 + 461 +65 =0
:>a4:1,a3:6,a2:26,a1 :467(10:65

Cocrasisiem maTpuily ['ypBuiia u BBIUHC/IAEM €€ YIJIOBbIe MIUHOPBI:

ar ay 0 0 46 65 0 O
G| @& @ a a | _ 6 26 46 65

0 ay, az ao 0 1 6 26

0 0 0 ay 0O 0 0 1

A =46>0,A2 =46 %26 — 65 %6 =806 > 0, A3 = Ay = 6A5 — 2116 > 0
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3.4.1 Theory according to Ivanov A.P. MIPT (7)

Bce MUHODBI TTOJIOKUTETBHBI, TIO9TOMY ITOJIOYKEHIEe PABHOBECHS aCUMIITOTHIECKN YCTONINBO.
TH+37 -2 +42+2x =0

2. M 30 —2X2 440 +2=0

= Ay = 1,@3 :376L2 = —2,CL1 :47(10 =2
anee,
4 2 0 0
3 —2 4 2
G = 0O 1 3 =2
0O 0 0 1

A1:4>0,A2:—14<0

Bropoit MuHOp OKazajcs OTpUIIATETBbHBIM, U MOXKHO CJeJIaTh BBIBOJ O HEYCTONYIMBOCTH 0Oe3
JaJdbHeRmnuX Berauciennit. 3. £+t +x —ay =0, y+y+y — Pz =0 B npunrune, nanmyio
CHUCTEMY HECJIOKHO CBECTH K yPaBHEHHUIO YeTBEPTOr'O IOPSJIKa JijIs OJHOI U3 IepEeMEHHBIX, a
3aTeM CTPOUTH MATpHUILly ['ypBuiia 1mo aHajoruu ¢ upeapprynmmn npuMepamu. OHaKO B 3TOM
HET HEOOXOJIMMOCTH: IIPOIE BBIYUCIUTEL OIMPEJIETUTETb BTOPOrO TOPSJIKA, CTPOKH KOTOPOTO
COOTBETCTBYIOT YPABHEHUSIM, a CTOJIOIBI - TIe€PEMEHHbBIM ([O-IIPEKHEMY KazKJ0# MPOU3BOIHOM
OTBEYAeT YMHOXKEHUE Ha \):

AN+ A+1 —«

-8 REBWE

PacKkpbIBasg 9TOT OIpPeJeIUTe b, OTydaeM
A4A+1) —af =X +23 432+ 20+ (1-aB) =0

Heobxoumoe yeosue yeroitausoctu jaer aff < 1. g marpuiier I'ypBuiia nmeem BbIparkenue

2 v 00
23 24 L
G=|o1 23| 1=1-0f
000 1

A1:2>O,A2:6—2’}/,A3:A4:8—4’)/

B urore mosydaem o61acTb acuMIIToTHaeckoii yeroitausoctu vy € (0,2) = |af < 1. Unarepecuo
[IPOBEPUTH CUTYAIWIO Ha TpaHuile 3Toi objgactu. B ciydae af = 1 mmeem Ay = 0, a ecin
aff = —1, 10 A\j 2 = £i. Oba 9THX CIydas OTHOCATCS K IUCIY KPUTHYECKUX (CM. HIZKE).

Teopewmbl niepBoro merona JIsmyHoBa

31ech pedb uieT o JByX cucTeMax: HeqauHeitnoit (5) u smueiinoii (1), npudem marpuia A -
510 Marpuia Akobu st Gyakun f(z):

a5
8.1'j

n

ij=1

YVeTraHABIMBAETCS CBSI3b MEXK/Iy YCTOWYHMBOCTBIO JIBYX CHCTeM. BayKHO pa3jndarTh pa3HUILY
MEXKJTY JBYMSI MOHATUAMU. TepMHUH «yCTONYIMBOCTD B MEPBOM HMPHUOJINKEHUN» O3HATACT JIUIITH
YCTOHYIMBOCTD JinHeltHO# cucrembr (1). Bosee cuibHOE CBOWCTBO «yCTONYMBOCTD 10 MIEPBOMY
HPUOJIMZKEHUIO» O3HAYAET, UTO 00€ CUCTEMbl YCTOHUIUBLI Jinbo 0be HeycrToitunsbl. Teopema 1.
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3.4.1 Theory according to Ivanov A.P. MIPT (7)

Ecau ypasaenue (2) nmeeT TOJBKO KOPDHU € OTPHUIATEJBHBIME BEIIECTBEHHBIMU YACTSIMU, TO
OJIOYKEHNE PABHOBECHS CHCTEMBI (5) aCMMITOTHYECKH YCTONIUBO.

Teopema 2. Eciau ypashenne (2) umeer xorss Obl OJUH KOPEHb C IIOJIOXKUTEILHOM
BEIECTBEHHON YaCThIO, TO TIOJIOYKEHIEe paBHOBecHsl cucTeMbl (5) HeycroitunBo. [Tpumep

T = sin (ax + yz) + /4 — arcsin 2y — 2¢”
g = arctg (z° + By) +In(1+3z), «,B€R

UccnemoBarh yCcTONYMBOCTE HYJIEBOTO TOJIOXKEHUST PaBHOBeCUs. PasjIoyKuM IIpaBble 9acTU T10
dopmysie Teityiopa u oTOpocHM B IMOJIYYEHHBIX BBIPAKCHHUAX HEJIMHEHHbIE “ieHbl. B mrore
MIOJIyYUM JIMHEHHYIO CUCTEMY

t=(a—-2)x—y, y=3x+pSy

st marpuier (6) mosrydaem
a—2 -1
3 p

Kpurepuit acuMnToTnydeckoit yCcTONIMBOCTH: cien, marpurpl  (7) orpuraresien, a ee

A=

JeTepMUHaHT I1I0JIO2KUTEJICH, T.C.

a+p <2, (a—2)>-3

Ocobbie cayydau

CdopmystpoBaHHBIC B IIPE/IBLLYIIEM Pa3Jiesie TeOPEMbI He OXBATBIBAIOT BCEX BO3MOYKHOCTEI!:
K 0COOBIM CJIydasiM OTHECEeM HAJIM9Hie KOPHei

XapaKTEPUCTHICCKOTO YPABHEHUS C HYJIEBOIl BEIECTBEHHOW YACTHIO (HYIM WM 9GHCTO
MHIMBIe Tapel). Ilpm sTom smHeitHas cucrema (1) Gyger ycroifunpoii (He acHMIITOTHIECKH)
OO0 HEYCTONYMBA B 3aBUCHMOCTH OT OTCYTCTBHsI WJIM HaJUdus B HOpMaJsbHOH dopme (9)
KOpJIaHOBBIX Kierok Buaa (12) wmmm (13).  Takme cayvam Ha3bIBAIOT OCOOBIMH, I
KPUTUYECKUME, TaK KaK Jyisi HUX [OJIHag cucreMa (D) MOKerT ObITh M aCHMITOTUYECKH
yCTONUMBOii, u HeycToiiumBoil. Jljisi perieHusl UCIOJIBb3YIOT CJIEYIONIHE TEOPEMbl BTOPOIO
Merojyia Jlamynosa. Teopema Jlamynoa o6 ycroitumsoctu. IlycTh cymecrByer yHKImA
V(z) > 0,V(0) = 0, nenpepsiBHO JuddepenimpyeMasi B OKPECTHOCTH HYJIs, JIJIs KOTOPOii

av

—— = (gradV, f) <0

dt
TO TI0JIOXKeHHe paBHOBecHsi cucteMbl (5) ycroitunso. Teopema JIsmyHoBa 06 acHMITOTHIECKOIT
YCTOWYINBOCTH. [Iycrs cymecrByer dyukmus V(z) > 0,V(0) = 0, HenpepbBHO
nuddepennupyeMas B OKPeCTHOCTH HYJIA, I KOTOPOil

av

— = (gradV, f) <0

dt
TO TOJIO’KEHNE DaBHOBeCHs cHCTeMbl (5) acmmrrormdecku ycroitumpo. Teopema Yeraesa o
HeycroiauBocTu. IlycTh cyrecTByeT QyHKIIHASA V(O) = 0 gy KOTOpOit 00J1acTh V(aﬂ) > 0
MPUMBIKAET K HaYay KOOPJMHAT M BO BCEX TOYKAX ITOH 0OIacTh

dVv

— = (gradV, f) >0

dt
TO TIOJIO’KEHHE paBHOBecHsi cucreMbl (5) meycroitumso. Teopema Bapbammna - Kpacosckoro.
Ecin B ycnoBusix Teopemsl JIsiiyHOBa 06 acHMITOTHYECKO# ycroiiunBocT HepaBeHCTBO (9) -
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3.4.1 Theory according to Ivanov A.P. MIPT (7)

HECTPOroe, MpUYeM MHOYKECTBO TOUYeK (hasoBOrO MPOCTPAHCTBA, Jisi KoTopeix dV/dt = 0, He
COJIEPKUT TIEJBIX TPAEKTOPUI CHCTEMBI, 3a WCKJIIOYEeHNEM W30JIMPOBAHHOTO ITOJIOKEHUS
PaBHOBECHS, TO IOC/I€THEE ACUMIITOTUYECKN yCcTONunBO. [Ipumephr.

1. & = axz? rorma A = 0, npudem JjmHeiiHas cucrema & = ( ycroifumpa. HecsoxHo
ybeuThCd, 9To B ciaydae a > () 9Ta cucreMa 1epBOro mnopsjka HeycToi4uuBa, a B ciydae a < 0 -
ACUMIITOTHYeCKN ycroidmBa. 2. JluHeiiHas cucrema @ = xq, &9 = 0 HeycroiamBa (A = Ay = 0
C JKOPJIAHOBO#H KJIeTKOIM ), T.K. obmiee perterne x1 = Cot + Cp, 29 = Cy  BO3pacraer B ciydae

Cy # 0 1o 6eckoneunoctu. g crabummsanuu 106aBUM HEJUHEHHDBIE ClIaracMble:

. 3 3 3
QOyuKIma
4 2
r] + 2% .
V:%>O, V:xi’(xQ—x‘z’)%—mQ(—xg—xi’):—x?—x§<0

VJIOBJIETBOPSIET YCJIOBUsIM TeopeMbl JIdmyHoBa 00 acuMIToTHYecKoi ycroifumBoctu. 3. B
CJICJIYIOIIER cucreme

. 3 . 3
T1 = T +axry,x2 = —T1 + axy
KOPHHU XapaKTePHUCTUYECKOIO yDaBHEHHd JJIA JIMHEIHONW 4YacTH YHCTO MHHMBIE: Ajo = =i.
OyuKIIA
2 + 3

V= > 0, V:a(x;l—i—xil)

2
VJIOBJIETBOPSIET YCJIOBUSAM TeopeMbl JIdmyHoBa 00 acHMITOTUYECKOW YCTONYMBOCTH B CJIydae
a < 0 m ycsoBusM TeopeMbl HeTaeBa 0 HeycroitumBocTn B ciydae a > (. Baxkno ormeTnTs,
9TO KPATHYECKHE CIydal He CJIeAyeT pPacCMaTpUBaTh KaK HEKOE HMCKJIOYCHHE: B PeasIbHBIX
cHACTeMaXx, BKJIOYAIONIMX HEKOTOPble KOHCTPYKIIMOHHBIE ITapaMeTpbl, OHA YacTO BO3HUKAIOT
IIpU  WU3MEHEHUW ITUX I[apaMeTpoB, dYTO KpOMe TOro, B KOHCEPBATUBHBIX U
00O0OITIEHHO-KOHCEPBATUBHBIX ~ MEXaHMYECKUX CHCTEMaX aCUMITOTHYEeCKasd YCTOWIHMBOCTD
HEBO3MOYKHA, & YCTONYINBOCTD 110 JIAIyHOBY BO3MOXKHA JIMIb B KPUTHYECKHUX CJIydasdX.

IlocTrpoenmne dbyukumit JIsamyHoBa

B ormmaue ot obiriero cirydasi, KOra it BIBOJA 00 yCTORYINBOCTU JOCTATOYHO PACCMOTPETH
JINHETHOe MPUOJIMKEeHNe, YHUBEPCAJbHOIO aJropurMa nocrpoenns (gyukmun Jlgmynosa V' B
KPUTUYIECKUX CJIydadgxX He CYIIEeCTBYET, U MOYKHO JIaTh JIUIIb HEKOTOpPbIe peKoMenanuu. /[l
cucreMbl (5) B KPUTUIECKOM CJIydae MPEeK/Ie BCEro MOXKHO MHOMBITATHCSA MOCTPOUTD MOJ00PAThH
V' B Buje kBaspaTruunoit dopmbl. Kak mpaBmiio, STOro JOCTATOYHO I PEIIeHUs yIeOHBIX
zajad. [Ipumepsnr. 1.

b= —ay—g [:1:2020 i y2020]

?) =ar—vy [.TQOQO + y2020]

Y

3mech  JMHeapum30BaHHAA ~ CHCTeMa  OIHMCBhIBAeT TapMOHMYECKHe  KojebaHus,  KOPHU
XapaKTePUCTHYECKOr0 ypaBHenua uucto MuuMele. Iomoxum V = 22 4+ 42 > 0, Torma

V =22 (—ay - [xmzo + y2020]) + 2y (ax —y [xQOQO + y2020]) _
= -2 (xQ + y2) [x2020 + y2020} <0

Taxum 0O6pa30M, BLITTOJTHEHDBI YCJIOBUS T€OPEMBI JIAmyHoBa 00 aCHMITOTHYECKON yCTOMIUBOCTH.
2. & = 2xy,y = v + 2y? B mannoit 3a7a4e JIUHEHHLIX 9WIEHOB HeT, T.e. \; = \p = 0. IlycTn

V = ax® + bxy + cy?, Toraa
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3.4.1 Theory according to Ivanov A.P. MIPT (7)

V = (2ax + by)2zy + (bx + 2cy) (2” +2¢%) =
= ba® 4 2(c + 2a)z%y + 4bry® + dey?

Hannast ¢opMa TpeTbero TMOpsiJiKa 3HAKOIEpEMEHHA, YTO CJIYKUT IPEJIIOChLIKON I
npumenenus Teopembl Yeraesa. Ilomoxum b = 0, Torma

V = 2(c+ 2a)z’y + dcy® = 2y (2cy® + (¢ + 2a)2?)

Ecm B3gath @ = —1,¢ = 3, TO BTOPOIl COMHOXKUTEIb B 3TOM BBIPAXKEHHH OY/IeT
nonoskuTenbibiM. Cama dynkuusa V = —a2 + 3y? nonoxurensna B obmactu y > |z|/v/3, aro
[O3BOJISIET CJeJIaTh BBIBOJ O HeycTOHumBocTH. K TakoMy »Ke 3aKJIIOYEHHIO HPUBOJHAT
pacemorpenne GyHKIMU V' = xy, HOJOKUTEIbHOI B IEPBOM KBaJIpaHTe, TaK KaK [PU ITOM
V=x@®+4%) >0 3. i =—-a+y+r®y=x—y+ry’, k€ER 3uech omun u3 KopHEit
XapaKTePUCTHIECKOTO0  yDABHEHUs JIMHEAPU30BAHHON — CHCTEMBI paBEeH HYJIO,  BTOPOIi
orpunareser. Ciie/0BATEIBHO, B 3aBHCHMOCTH OT HEJMHEHHBIX WICHOB MOXKET HUMETh MECTO
KaK HEYCTONYMBOCTD, TAK U ACHUMIITOTHYECKast yeToiunBocThb. [lostoknm

V =az? +bry +cy? =V = (2ax + by) (—z +y + ka®) + (b +2cy) (x — y + ky®) =
(x — ) (—(2a + b)x + (2¢ + b)y) + Kk(2az + by)z* + K(bx + 2cy)y?

Ksajparuunasi 1actb V B o6uem cJiydae 3HaKoIepeMeHHa, HO €CJid @ = ¢, TO
V = —(2a+b)(z —y)*+ &(2ax + by)x® + r(bz + 2ay)y®

T.e. OHA 3HAKOIIOCTOsIHHA. YCJOBUS TeopeMbl JIdamyHoBa 00 acMMITOTUYECKO# YCTONYIMBOCTH
MOZKHO YJIOBJIETBOPUTH B ciydae k < 0, momarasta = ¢ = 1,b = 0. B cayqae k > 0 mosoxxum a =
c=1,b=—-2rormaV = (z—9)?> >0,V = 2r(x — y)2* + 26(—z + 3)y® = 2cV (2 + zy + ),
U BBITIOJIHEHBI YCJIOBHUS TeopeMbl UeTaeBa o HeycroitunBocTu. [Ipumep 4

T = —x3—y3+xy3
g=a3—y®— 2t

JlokazaTh aCUMITOTHYECKYIO YCTOWYMBOCTb. B jTaHHOll cucTeMe JIMHEHHBbIC WICHBI B IPaBOil
JaCTH OTCYTCTBYIOT. Byzem crpouth dyHkImio JlamyHoBa B Buge omHoponoit V = Vo + Vi +
v + Vi + ..., Tne Vi - ogHOpoaHas gopMa COOTBETCTBYIONIEro Mopsjka. V3ydnM moodepe o
IIPOU3BOJHBIE STUX (DOPM B CUJIy YPABHEHUI JTBUKEHUS.

Vo = az’® + bry + cy* = Vi = (2ax + by) (=2 —y® + 29°) + (bx + 2cy) (2 —y° — zt) =
(b —2a)z* + (2c — b)z*y — (b+ 2a)xy® — (b +2c)y* + ... =
z* ((b—2a) + (2c = b)z — (b+2a)2° — (b+20)z") + .., z=y/x

Ananus 3HaKa IIOJIyYEHHOIO BBIPAsKEHUs JIAJIEKO He MpocT. MoxKeT II0MOYb KOMIIBIOTEp:
nosarast a = 1, b = 0, crpoum rpaduk f(z) mia pazmraasx > 0. omydaaem, aro npu c=1.1
BBITIOJTHEHBI YCJIOBUSI T€OPEMbI JIsImyHOBa 00 aCHMITOTHIECKON YCTONYIMBOCTH, MTPUIEM UI€HbBI
YeTBEPTOro MOPsAJIKA B YPABHEHUAX JIBUYKeHHUS He urpatoT posu. C JIpyroil CTOPOHBI, UMEETCS
6oJiee 1pocToe perenue: mojaraeM Vo = 0, Torga Vi He MoKeT OBbITH 3HAKOOINPEJIEICHHOM, 1

Hano cumtath V3 = 0. g ciemyiomeit hbOpMBI MOXKHO B3ATH HPOCTEHINEe BBIPAYKCHHE
Vi = x? + v > 0. [Ipu 9TOM
Vi = 423 (=23 — P +ay?) + 43 (23 — oy —2t) = —4 (2 +9°) < 0 Tee. ycioBus Teopembl

JIamynoBa 00 aCHMITOTHYECKON YCTONYMBOCTH BBITIOJHEHBI.  3aMeTHM, YTO 3/IeCh UJIEHbI
CeJIbMOTO  TIOPSJKA B3AUMHO YHUYTOXKUJIACH OJarofiapsi CIelraJbHOMY BBIOODY HJIEHOB
YETBEPTOro TOpsIKa B HMCXOAHON cucteme. Ha camom jejie, BbIBOJ, 00 aCUMIITOTUYECKON
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3.4.2 Overview

YCTOMYMBOCTH BOBCE OT HUX HE 3aBHCHT. B HEKOTOPBLIX 3ajladax BuJ pyHKImu JIgmynosa
nojiGupaeTcs UCXo/d U3 ocobeHHocTell nannoil 3ajaun. [lpumep 5. @ =y, 9 = —y> —x (y*> + 1)
B JinHeiiHOM —npUOIVZKEHMH —UMeeM Iapy 9MCTO MHHMBIX KOpHell  (ycroiiumBocTb
HeaCHMIITOTHYeCKas ). YMHOXKHUM IlepBoe ypaBHeHue Ha X, Bropoe - Ha ¥/ (1 + 4?) u cioxum,

B urore mosyuaum
4

G () = -
dt I+y

Bripaxkenue 101 3HAKOM TTPOU3BOJIHON TOJIOKUTEIBLHO; TIPUMEM ero 3a (pyHKINo JIgmyHoBa.
[IpaBas gacTh oTpuaTebHA BHE MHOXKeCTBa y = (), HA KOTOPOM OHA obpaIaercs B Hy/Ib. ey
[IOJICTABUTH 9TO 3HAYEHUE B UCXOAHYIO cucTemy, To oy4unm & = 0,0 = —x, aro o3uadaet x = 0.
Acumnrorrdeckast yCTORIMBOCTD CjiejryeT u3 Teopembl bapbaruaa - KpacoBckoro.

O zabayxkjaenusax mpo meron JIsmyHosa

(KOPOTKO yKasKy. s JyMaJ, 9TO TYIO MOXKHO TIPaBYyI0 9acTh ypaBHEHHs OGpaTh, 3TO OblLia
Gosbiag ommbKa!l yKarXKy 3T0 TOTOM, 4TOObI HE MOBTOPSTH OMubKu!)

3.4.2 Overview

OcHoBHBIE IOHATUA U ornpeaeJjieHnd

—

Bo Bropoit riase 610 MOKazaHo, 4TO eciau f(t, ) yIOBJIETBOPSIET YCJIOBUSM TEOPEMBI
CYIIECTBOBAHUS W €IMHCTBEHHOCTH, TO pererne 3K s cucreMbr

dz >

HEIIPEPBIBHO 3aBUCAT OT HAYaJbHBIX YCJIOBHiM, ecim t € [a,b] (t MeHsiercss HA KOHEYHOM
npomexkyTke). B 910ii ruaBe Gyier MCCIeI0BaThC 3aBUCHMOCTH pellieHust 3a1aun Komm or
HaYaJIbHBIX YCJIOBUI, KOOI ¢ U3MEHsSEeTCs Ha 110JyOEeCKOHETHOM TIPOMEXKYTKe [tg, +00). Bymem
npe/osararh, 1to cucrema (9.1) oupenesena B mummnaape D = § X [tg, +00), tne Q@ C RZ, u
cylecTByer eé perenne ¥ = (i) ¢ HAYAIBHBIMU JAHHBIMU to, T (T € 1), KOTOpOe MOKHO
IPOJIOJIZKUTh Ha OJTyOECKOHEUHBIH MPOMEXKYTOK (to, +00) B mmimsgpe D. Ilpasas dactb
cucremsr (9.1)f(t,7) € CYD). Omupenenenne 9.1.1. Pemenne cucremsr  (9.1)
T = J(t),t € [to,+00), Ha3BIBaeTCA yCTOHIUBBIM 110 JIdmyHOBY, eciau g Jjoboro € > 0
HafineTcs Takoe § > 0, 4T0 /15 OGO APYroro pemenns ¥ = th(t), HauaATbHOE 3HAMCHIC
KOTOPOT'O YJIOBJIETBOPSIIOT HEPABEHCTBY

Bto) = ¥ (1) <&
pelenne ¥ = 1E () onpemesneno tpu Beex ¢ >ty u npu t > to CrpaBeInBO HEPABEHCTBO
|B(t) — (t)]| < & ams moboro t > g

Pemenne ¥ = J(t) HasblBaeTCH ACUMIOTOTHYECKH YCTONYUBBIM, €CJM OHO YCTOWYIHMBO IO
JIAImyHOBY 1, KpoMe TOro,

lim [|(t) — $(1)]) = 0

n
31ech, Kak u paHee, B Kadecte HOpMbI B3aTa || Z]| = /3 |2(t)]>. Usyuenne ycroiiumsocTn
i=1

permennst G(t),t € [to, +00), cucrembl ypaBaeruii (9.1) MoxkeT ObITH CBEJECHO K H3YUCHUIO
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3.4.3 Sufficient conditions for the stability of solutions for a linear system of equations with
c;=const,€ R

YCTOMYUBOCTH PEIIeHNUs, TOXKIECTBEHHO PABHOTO HYJO 1pu t € [tg, +00), HEKOTOPOIl Apyroii
HOPMAJIbHON crucTeMbl. [leficTBUTEIbHO, BBEEM HOBYIO HEM3BECTHYIO (DYHKITHIO

y(t) = z(t) = 4(1t)

Torna ona OyJeT YI0BIETBOPATH CJEAYIONIEH cucTeMe ypaBHEHMIA:

dg ) — — Y — - —»
o = JLy+d) = f(t.5) = g(t.y)
e g(t,ﬁ) = 6),25 € [to,+00). Tax kak ||g(t) — 6)|| = ||Z(t) — g(t)]|, To nccrenopanme

ycroitamBoctn permenus @(t),t € [tg,+00), cucrembl (9.1) paBHOCHIBHO HCCIIETOBAHUIO

ycroitunBoctu Hysesoro pemtennst §(t) = 0,t € € [ty,+00) cucremsr ypasuenuii (9.3). B
JasbHedieM OyeM cauTaTh, 9To 3aMeHa (9.2) yrKe MpOHM3BEJCHA, T.e. CHCTEMa yDaBHEHH

(9.1) umeer mysesoe pemenue T(t) = 0 € Q,t € € [ty, +00), flt,0) = 0 Oupenenenne 9.1.2.

- .
Eciu f(t, 0) = 0 gz moboro t € [ty, +00), 1o Touka & = 0,t € [tg,+00) B dazoBom
IIPOCTPAHCTBE HA3BIBAETCS MOJIOKEHIEM DABHOBECHs CHCTeMbl ypasHeHuit (9.1).

3.4.3 Sufficient conditions for the stability of solutions for a linear
system of equations with ¢;—=const,c R

[Iycrs matpuna A ¢ TOCTOSIHHBIME BEIIECTBEHHBIMHU SJIEMEHTAMH HMEET 01l apHO
pa3/IMdHble COOCTBEHHDbIE 3HAYEHUS A1, ..., A (A; # Aj), 1 < m < n. Hmxe Oyner usyu arbcs
ycToitauBocTh pemienuii cucrembl (9.4) H a npomexyTie [0, +00).

CrieKTpayibHBIN NPU3HAK yCTOWYNBOCTH

Teopema 9.1. (CrnekTpasbHbINi MPU3HAK YCTONYUBOCTH. )

1) Ecu Bce cobecrBennbe 3HadYeHuss MarTpuilbl A yIOBJIETBOPSIOT HepaBeHCTBaM Re); <
0,7 = 1,m, To Hy/JIeBOoe peMeHHe aCUMITOTHECKH ycroitso. 2) Ecim coberbenmble sHaveHns
MaTpunbsl A ynosiaersopsior KepasencTsaM Re); < 0,4 = 1,m u juig Tex \;, 11 KOTOPBIX
Re \; = 0, Bce cooTBeTCTBYyIOIIHIE KOPAAHOBBI MEMOYKNA UMEIOT JIJIMHY, PaBHYIO 1, TO HyjeBoe
pemterne ycroitunso mo Jlsamynosy. 3) Ecim mmeerca ), mas koroporo Re); > 0 mmm jyis
koroporo Re A; = 0, HO cooTBeTCTBYIOIINE YKOPIAHOBEI IIEIIOYKN UMEIO JITTHHY > 2, TO HyJIeBOe
pelreHe HeyCTOUINBO.

okas arenbctBo. Bee permenns cucremst (9.4) omuceiBaiorcst GopMyIioit

Z(t) = Pi(t)eMt + - + P (t)eM!

re é(t) - MHOI'OYJIEHBI CTelleHM He Bbimie k; — 1, a k; - HanbOOJbINad JIMHA >KOPIAHOBOIT
IEMOYKHU, cOOTBeTcTBYyIoNEeil \;. Kosdurnumenrsr B MHorowenax ﬁi(t),i = 1,m, B BeK TOpHOM
kBasumHorodaere (9.5) - Bekropsl u3 R™. Ecim Ay = pp + i, TO JJIsi COOTBETCTBYIOIIETO
pelenus: nMeem

P(t)e™t = Py(t)e!t (cos vt + isinvt) , [cos vt + i sinvgt| = 1.

Ecmm py, < 0, 10 ‘ﬁk(t)e“kt — 0 npun t — +oo. Paccmorpum cmavana caydqait 1). Opmoit

u3 yHIaMEHTATLHLIX MaTpuIl cucteMbl (9.4) apiager ca e, Onenum eé mosenenue npu ¢ —
oo. DynIaMeHTaIbHAS MATPHUIA COCTOUT W3 CTOJOIOB 1y (1), ..., 1, (t), KOTOpBIE ABIAIOT Cs
perenusimu cucreMbl (9.4). Kaxoe perienne ¢y, (t), k = 1, n onu cbiB aer cst BeKTop- dbyHKIHedH

(9.5):

—

Jk(t) = Plk(t)e/\n 4+ 4 ﬁmk(t)e’\mt, L — L_n
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3.4.3 Sufficient conditions for the stability of solutions for a linear system of equations with
c;=const,€ R

[Iycts Re \; < —f < 0. Torma Re\; + 5 < 0,7 = 1, m. Tak kaxk upu ¢t — 00 cjraraembie B
ReAi+8)t|| «

—

(9.6) Py (t)eM — 0, To cipaseymBa omenka Hﬁik(t)e(

< Ci, t € 10, +00), tae Cy, - HeKoTOpbIe TIocTosiHEbBIe. CIle/IOB aTesIbHO, BCe caraeMble B
(9.6) orpaHuYeHBI, T aK Kak

Hék<t>6)\it S Oike_ﬂtai = 17m7 k - ]-7n

U CyIIecTByeT Takasl moctosiaHas C', 91o H@Ek(t)H < Ce Pt >0,k =1,n. Orciona, HCIIONB3YH

orrpeieIeHue HOPMbI BEKTOP-(DYHKITHHI, HAXO UM

A1k (t)

i ={ - | |a0]=
ank(t)
[Tosy4eHHbIE HEPABEHCTBA, IO3BOJISIOT OLCHUTH HOPMY (DyHIAMEHTAJIbHON MaTpuIpb et
n 2
2 —
HetA” = E |a k] < Ke™?' K =nC.
kj=1
Jioboe pemenne 3amaun Komm ommceiBaerca dymkmumeit 7(t) = 47y, rme ¥, = #(0) -
Hava/IbHOE 3HaveHuwe, npuHuMaemoe upu ¢t = 0. Ecm |7 < 6 = &, 1o

1Z(t)]| < ||e™|| 1 Zoll < ee™® < e,t € [0,+00). Tak kax [|Z(t)|| — 0 npu ¢ — 400, T0 pemennue
Z(t) = 0,t € [0,400), acumnroruuecku ycroiunso. Ciy4vaii 2) t € [0, +00), Kak B caydae 1).
[To ycnosuio, ciaraembie ¢ Re\; = 0 comepkar TOJBKO MHOTOYJIEHBI HYJIEBOIl CTEleHU U
O3TOMY TOzKe orpanudeHbl. CIle0B aTesbHO, HyJeBOe pelleHue yCTONYMBO 110 JIAIyHOBY.
Cayuait 3) pu; > 0, To cucrema ypapHenuii nmeer pemenue ¢;(t) = e'h;, rtne h; -

cobcTBeHHbIl BekTOp. Ecim v; = 0, 1o

qﬁj(t)H — 00,t — 00. CienoBaTesbHO, PEIIeHne He

orpanmieno. Ecmm xe v; # 0, TO pemenue é‘j(t) KoMILiekcHoe.  OHO TMOpOXKIaeT JBa
BEIIECTBEHHBIX pelieHns Re (Ej (t) mu Im gj (t), KoTopble Tak)ke He orpaHudeHsl npu t > 0. 13
HEOTPAHUYEHHOCTH PEIIeHUs CJIEJIyeT €ro HEyCTONINBOCTD.

[IycTs He cymiecTByeT 00OCTBEHHOTO 3HAYEHUS C TOJIO2KUTEILHOM TefiCTBUILHON 9acThIO, HO
umeercd \; ¢ Re \; = 0, KOTOpoMy COOTBETCTBYeT

KOpJjaHoBa lelouKa Jyuubl > 2. Torga Hysesoe peimienne Takzxe OyleT HEyCTOXYUBBIM.

- _ p At
HeiicrBuTesbho, cymectByer pemtenue ¢; = Pj(t)e™*, B koropom MHOrowien P; mmeer
crenieHb OoJibIy0 i paBHyto 1. Tak kak |e)‘ft| = 1, To peleHne He OrpaHUYIEHO, & 3HAYUUT,
peleHne  HeyCTONYUBO. JlokazaHHasi TeopeMa IIOKa3bIBaeT, dYTO IS HUCCJIeOBAHUS

YCTOMYNUBOCTH PEIIEHUs JIMHEHHBIX ypaBHEHUI WM CHCTEM JOCTaTOYHO HAfTH COOCTBEHHBIE
sHadeHusd. Jljasg MHOro4IeHOB cTeneHd N > 5 B 00IIEM CJIyd ae KOPHU He IPEeJICTaBUMBbI ITPU
oMot pajukaios (treopema AbGensPyddunn). OnHako Ha MOMOIL TPUXOIUT KPUTEPUil
Payca-I"ypsurma. Kpurepuit Payca-I'ypsuna /Ijist Toro 4Todnl y MHOTOUIEHA

N+ a N a N+ a,

C ,H‘efICTBI/ITeJIbeIMH KO9(1)(1)I/IHI/I8HT aMM BCE€ KOPpHU HUMeEJIM OTpUIlaTE/IbHbIE rILeI‘/JICTBI/I’I‘eJII)HI:;Ie
qacCTH, H606XO,ZLI/IMO u J0CTaTO4YHO, 4TOOBI BCE TUIABHLIC MHHODPBI M aTPHUIIbI

aq 1 0 0 0
as as ay 1 0
as ay as (¢5) s 0
Q2n—1 A2p—2 QA2n-3 d2n—4 .. Qn
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3.4.3 Sufficient conditions for the stability of solutions for a linear system of equations with
c;=const,€ R

(rze a,, = 0, eciu m < 0 wam m > n) GbLIN HOJOKUTETbHBIMI, T.€.

a; 1
A1:G1>O,A2: ! >0,...,
az asg
aq 1 . 0
a a . 0
A,=| 7 2 = A, 1a, > 0.
Qg2p—-1 QA2p—2 ... dpn

[Tocnenee ycjioBrue MOYXKHO 3aMEHUTH yCJIOBHEM a, > 0. IIpu n = 4 umeem

<a1 1 0 0) >0 | @ 1 -0,
as as a; 1 as Qs

aq 1 0
=las ay a; | >0, ag4>0.

0 a4 as

Teopema 9.2. Eciin Hy/I€BOe pellieHne OJITHOPOJIHOM JIMHEYHON CUCTEeMbl ypaBHEH

dzr .
— = A7
dt
obsasaer ofHUM U3 cBoiicT: 1) ycromumBo mo JIgmyHOBY, 2) acuMIOTOTUYECKH YCTOUHBO, 3)
€yCTOUBO, TO BCE PEeIIeHNd HEOHOPOAHON JIMHENA0N CUCTEeMbl YypaBHEHUN
dzr >
— = AT+ f(t
p (t)
06J1a/1a10T TeM 2Ke cBoiicTBOM HeszaBucuMo or f(t). Jlokasarb Teopemy camum. 9.3. Yer oiivaus
OCTb TI0 TepBoMmy mpubamkenuio B Teopeme 9.1 Obutm  chOpMYyIUPOBAHbI  YCJIOBUA
ycroitumBocTn  Jytsi  JqwHeiHONW  cucreMbl  (9.4) ¢ HOCTOSHHBIME — BEIECTBEHHBIMU
Ko dUIMeHTaM. TH PE3yJIbTaThl OYIYyT O0OOIEHbI Ha Caydail HeJUHEHHOW aBTOHOMHOI
cucremsl (8.1)[8], [13]:
dr -
— = f(@),7CQ,QCR"
dt
2 2 L = > =
Otrrocuresnbro f(Z) u obmactu €2 npeanonaraercs, aro f () € C1(Q), 0 e € Q, f(0)= 0. Or
crozia ciepyer, ato by £ = 0, ¢ > 0 spisiercs perenneM cucreMbl (8.1). Kak Mbr 3HaEM,
cucremy (8.1) mpu ycaosun f(Z) € C'(Q) MOXKHO NpeACTaBUTHL B HEKOTOPOH OKPECTHOCTH
%

Z= 0 B BUIE

g . — B/ - . -
Be on A = ((0)) i = T F(@) € CHQ)IF@] = of|Z) mpu 7] — 0. Byaew

paccemarpuBaTh cucreMy (9.8) B IuIHH/IpE
D ={(t,%): 2 €Q,te0,+00)}.

'paduk HyJeBOro perieHusi IPUHAJJIEKUT ITOMY HUIUHIpY. Huzke Gyjer u cciepoBan
BOIIPOC O TOM, KaK BJIMSIOT Ha YCTOHYMBOCTH DEIeHHsl JUHEHHON CuCTeMbl BO3MYIIECHHUS,
obycsiosiennbie wienom F(Z). Pacemorpum samaay Ko

dz

= AT+ F(Z), 2(0) = 74, 5 € Q.

77



3.4.3 Sufficient conditions for the stability of solutions for a linear system of equations with
c;=const,€ R

Teopema 9.3. Ilycrs B cucreme (9.8) byukmus F(Z) € C1(€) u yI0BIeTBOPACT HEPABEHCTBY
1F(@)]| < w(@)]|Z]

e w(Z) — 0 mpu ||Z]] — 0. Torma 1) ecam Bce coberBenHble 3HAadYeHHsT MaTpuibl A
VJIOBJIETBOPAIOT HepaBeHcTBaM Re); < 0,4 = 1,n, TO HyJeBoe peWeHHE CHCTEMBI (9.8)
ACMIITOTUYECKH YCTOBO; 2) ecji MaTpuna A umeer XoTs Obl 0aHO A; Takoe, 910 Re A; > 0, To
HyJIeBOe peneHre cucteMbl (9.8) HeyCcTOINBO; 3) ecym cpein COOCTBEHHBIX 3HAMECHUIT MATPHIIBI
A mverorcea takme, uto Re\; = 0, a q1a octanBueix cobcTBennbix s3nadennit Re\; < 0, To

YCTOYYMBOCTD HYJIEBOIO DeIleHHsl 3aBUCUT He TOJIBKO OT MaTpuilbl A, HO u OT (byHKm/m F(Z).
Jokas arenb ¢rBo. Hajio M0Ka3 aTh, 4T0 IIPH JOCTATOYHO MAJIOM 3Hadenun || Z4|| u ycaosmn,

aro Benmauna || F(7)|| Takske siasercs manoi, permenne 3agaan Komm (9.9)7 = ¢(t) Moxer
ObITh TIpOJIONIZKeHO Juist B cex t > 0. Ha mpomexytke [0, h], HaA KOTOpOM OHO CyIIecTBYyer,
ypasHenue (9.8) cornmacHo dopmyiie (4.34) 9KBUB aJ€HTHO MHTEIPAJTBHOMY COOTHOIIEHIIO

¢

B(t) = Ty + / e AF(B(s))ds
0

Tak xak 10 YCJI0BHUIO T€OPEMBIL cOOCTBEHHbIE 3HAYECHUS MaTpUIbL A nmeror OoTpUulaTe/JIbHbIE aeit
CTBUTEJIbHbIE YaCTH, TO JJId B cex t > () cupaBe/ijinBa OIleHKA (9.7), U3 KOTOPOI cJiejiyeT HepaBeH
CTBO

e < Ke ™ K. =K +1>1

B KoTOopoM [ > 0, a BeJM4YMHA IIOCTOSTHHON [ oIpejesseTcss cBOfcTBaMU MaTpHIbl A.
Ucnonp3ys 910 HepaBeHcTBo, n3 (9.10) H axoam M

Ide n<wmmmm+/w#@ﬂwF Dlids =

t

= (6] < Koe ™ ||Zo]| + K*/6‘5(t‘5)llﬁ(5(8))|ld8-
0

HepagencrBo (9.11) se2kuT B OCHOBE JIOKA3aTeIbCTBA TOTO, UTO PEIICHHE 5(25) zajtaun Kot
(9.9), s koToporo mau amsnoe suadenue ||G(0)| = ||Zo|| mocr arouno mano ormra aerca or
HyJIsT, MOXKHO IIPOJOJIKATH Ha HPOMEXKYTOK [h, +00) npu yeosuu, uro semmunna ||¢(t)]| ocr
alT cs1 Takke Masioft. Jlelt cTBUTENLHO, COIIACHO TPEOOB MO, I AJIOKEHHOMY B Teopeme Ha
Pynkmio w(F), s moboro € > 0 cymecrsyer § > 0 Takoe, uro ||[F(Z)| < elZl l' KaK TOJIBKO
|Z]| < 6. Taxum o6pasom, 10 Tex nop noka ||¢(t)|| < &, cupaBesBo HEPABCHCTEO

¢

e%@@n<Kumm+;/wﬂ&@ws
0

[Tpumensisi kK Hemy Jiemmy ['poryosiia (OHa JOKA3bIBAETCS HUXKE) MMeeM
o) < K. || e

nJjm N

lo()]] < K[|l e
Ecau nonoxuts & < 3, 1o cornacuo nepasenctsy (9.12) semranna ||¢(t)]| yOBIBaeT € POCTOM £,
13 nero raxzke caeayer, aro ||¢(t)|| < K, ||Zol|. Bossméu || T, < —(< 8), Torma ||¢(t)|| < 6. B

pe3yJibTaTe Mbl MOJIYUUIN yTBEPKJIEHNE, KOTOPOEe HUXKE C(bopMyﬂpreM CJIEJIYIOIUM 0Opa30M.
Yreepxaenue: KepaBeHCTBO (9.12) BBIIOIAHAETCS JJist BCeX ¢, IPH KOTOPBIX DeIleHre 3a/1a49u

Koun (9.9) cymecrsyer, u npu atoM ||¢(t)|| < < 8, ecan ||| < Ki*.
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3.4.4 First approximation stability

3.4.4 First approximation stability

3.4.5 Gronwall lemma

(moka X3, 4TO 3a.)

[Tokazkem Terepb, YTO OHO MHPOJOJZKAEMO H a MHPOMEXKYTOK [k, 4+00). Bozbmém
npousBosibioe 7' > h u mumuanap @ = {(t,z) : 0 < ¢t < T,||z|| = J}. Hau ampubie ganmbie
NpUHAJJIE’)KAT OCHOB anmio Immuapa npu ¢t = 0.  Ilostomy wuHTerpaibHas KpuBad,

cooTBeTCTBYIOMAst perrernio 3aja4du Kommu (9.9), coryiacHo Teopeme MPOJIOJIXKEHUsT JIOJIZKHA,
JIOCTUTHYTH TpaHuisl nuauaap a (). Ho ona He Moxker mepecedb ero GOKOBYIO ITOBEPXHOCTD,
noromy uro emunna ||¢()]| He Moker npnHsTH 3HAucHue, paHoe 0. JleficTBUTENLHO, TAK
Kak B numape ||z|| < 4, To Bce MpoOBe/IeHHbBIE BBIIE BBIKJIAIKA OCTAHYT Csl CIPABEJIHBBIMU
U IPOAOJIKEHHOe pelreHne 3ajadn Ko gz?(t) Oyzmer BecTH cebsl COTJIACHO YTBEPIKIEHMUIO.
ITosTomy wmHTerpaJibHass KpuBas I[PU LPOMOJZKEHUU MOXKET IOIIacTh TOJILKO Ha OCHOBAHUE
JIMHIPA, pacioyioxkenHoe npu ¢t = T'. U3 nponsBoJbHOCTH BBIOOpPA BEJIMIUHBI 1’ BBITEKAET,
4TO pelIeHue gg(t) IPOJIOJIZKAEMO Ha MPOMEKYTOK [h, +00) U, cleJoBaTesbHO, /it B X t > 0
cripaseymBa dopmyia (9.12). OHa MOKa3bIBAET, UTO HYJIEBOE PEIIEeHNE SBJSETCS YCTONINBBIM
1o JIsnyHoBy m acuMmmnTorrdeckKu ycroitunsbiM. OcTajbHble IyHKTBI TEOPEMbI JIaloTcs 6e3 0K
a3 aTeJib CTBA.

Bameu anu e 9.3.1. PesyiabraThl TEOPEMbI OCTAHYT Csi BEPHBIMU JIjIsi HEABTOHOMHOMN CHCTEMBI

dx = - = =
d—“: = AF+ F(t,7),F(t,0) = 0,7 € Q,t >0,
npu yeaosui, ato ||F(t, Z)|| = o(||Z]|) pasromepno 1o ¢, (t > 0) upu | Z] = — 0 9.4. Jlemma

t
Iponyosna Jlemma. Ilycrs kempepwiBHas dynknusg w(t) > 0 va npomexyrke J C R
VJIOBJIETBOPSET HEPABEHCTBY
¢

w(t) < B+ /w(T)U(T)dT :
to

rje KenpepbiBHas (yukus v(t) > 0,¢ € J, a nocrostanast B > 0. Tomua npu Beex ¢ty € J

t

[ v(r)dr

w(t) < Be'o
Hokaz arenscrrBo. Ilycte B > 0,t > ty. Pazgemum mepaserctso (9.13) Ha mpaByio 4acTb

1 yMHOKUM Ha dyHKmo v(t) > 0:

t)u(t d
Lj( Jul®) <uwv(r) & 7 In| B+ /w(r)v(r)dr < wu(t).
B+ [w(r)v(r)dr to
to
UH TerpupoB aH ue MOCJIeIHEr0 HEPABEH CTBa, JaeT

t t

In B—l—/w(T)v(T)dT —InB < /U(T)dT

to to
Ot crona mosydaem dpopmyiy (9.14):
/ f’v(T)dT
w(t) < B+ /w(T)v(T)dT < Beo
to

[Tpu t < ty 1OKA3ATETHLCTBO TPOBOAUTCS aH ajorudno. Ecmm v(t) = 0, € € J, To HepaBeHCTBO
(9.13) Boimosiasier csa apromarudecku. Coydait B = 0 p accMOTpETh CAMUM.
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(TaM OYEHb MHOIOE €CTh, IPOCTO YKaxKy M Bce. MO yKaxKy moroM B lit wacru, a B
npeJoceiHeii 6y/y paciuchiBaTh MOIPOOHO. )

3.4.7 On the Applications of Stability Theory

O IIpuMEHEeHnAX B MeXaHHnKe

(OTIEIBHO TIOCMOTPIO, OTOM IPOIIHIILY, € X0y JIydIlle He MICATh 9TO.)

3.5 The first integrals of normal ODM systems

101 IlepBble nHTErpabLI ABTOHOMHBIX CUCTEM U KpUTepuil 1-ro mHTErpaIa
102 Teopema o0 4mncjie HE3aBUCUMBIX TIEPBBIX MHTETPAJIOB

103 Pemykimst aBTOHO MHBIX CHCTEM C ITOMOIIBIO MEPBBIX UHTEI'PAJIOB

104 TlepBble nHTErpaIbl MPOM3BOJIBHBIX HOPMATBHBIX CHCTEM

3.6 Linear homogeneous partial differential equations of the 1st order

111 OcHOBHBIE TIOHATUS U OIPEIE/ICHUs

112 XapakTepuCTUKU W WHTErpaJibHbIE MOBEPXHOCTU JIMHEHHOIO ypaBHEHUSA C YACTHBIMU
MIPOU3BOJIHBI MU 1-T0

113 3anaqva Ko s muneitHoro ypaBHeHUS ¢ YaCTHBIMUA ITPOU3BOIHBIMU 1-TO MOPSIKA 1
TeopeMa CYIIeCTBOBaHUSA U €JIMHCTBEHHOCTHU €€ PeIIeHUs

114 ITpumep pemenns 3aa4un Korm jij15 JIMHEITHOTO ypaBHEHUS ¢ YACTHBIMU ITPOU3BOIHBIMA
1-ro mopsaka

3.7 Creation of models of DE from Physical Ideas (!!!)

100 3TUM MBI U 3aHUMa€eMCd, IIOTOM y2Ke JyMaeM Ha/l pelieHrueM

3.8 Other
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Part 111
Problems

4 Typical differential equations

Ob6cymuM npuMepsbl pellennii pasHbIX MM QepPeHITnAIbHBIX YPABHEHUIA.

4.1 1. First-order equations.
4.1.1 Problems about Linear Equations with Constant Coefficients

M®TU-T.1 Pemutb 22(y/z + 1)y +y> +V/x =0

DTO HETPUBUAJBHOE YPABHEHUE HA MEPBYIO IIPOU3BOIHYIO, CJIEIOBATEIHHO OHO MOXKET ObITh UMEHHBIM - 1A,
9TO TUNMYHOE ypaBHeHHe PUKKaTH.

VragaeM, 9To pernenue MoxKeT uMeTh Bui y = C\/x, IOACTABUM, IIOJYyYUM KBaJpaTHoe ypasHenue Ha C,
perum, nogyanm C' = —1.

Mopcrasum y = —/x + z(x), noaydum ypasaenue Beprysuim:

20(Vx +1)2 (2) + 2V/xz = —2°

[TogcraBum z = %, TIOJTy IWM:

—2z(vVr + Du' + 2v/zu = —1

pemaem oHOpoHOe, IosydaeM u = C(y/x + 1)2, nopcrassem ¢ C' = C(x), momydaem

C + const / du
nst = [ ———
2z(v/x +1)3

BBESA t = /T + 1, pazmoxus m =-1_-1_ 14 ﬁ, HAXOJIM

w= g+ a1 I + (VE+ 1P In(VE + 1) 4V + 14 const(va + 1)

y=—vr+ (% + (Vz+1)2In(vz) + (Vz +1)?In(vz + 1) + V& + 1 + const(y/z + 1)2)‘1

M®THN-T.2

Pemuts 3amaay Komm: o + 2y = nyQl + % In (9;1) oy =1, y(1)=2

(moroM mopemiao, YeT MOKa He IMOILIA. )

OP. 2+ +ay— 2% =0, yle)=0

Pemaem nmeiienneM, a fajiee 3JIeMEHTAPHBIM IPEOOPa30BAHIEM
2, 2 2
y = LYY +Zz+xy =1+ (%) + (Y Bamena: vy, =v—o>y=v(z) 2z, moyyy =v+ :cg—z; y(ee) =v(e) =
v(e)=0v+arZ =14+’ +v—oa@ =14+0v?== [;L; = [L 3 arcty v=Inz + ¢, marsa v(l) = 0 wa

1402
tar yas > arcty y/x =Ilnxz —1 Umb.

@P. y =2y + 55, v>1

Vpasuenne Bepryiuin, permaercs 6e3 mpobeM o ajropuTMaM Jjis ypaBHEHUs bepHysn.

DP. (21:6“’”2_92 — sin 1:) dr — (2ye$2_92 + sin y> dy =20

Tunuynoe ypasHeHune B HOJHBIX audddepeHInamax, 3TO JIETKO MPOBEPSETCH, MAJbIIe JIEMEHTAPHO BCE
CUHUTAETCS.
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4.1.2 Problems about equations with separating variables and homogeneous equations

@P. y' =2(y — Deotw, y(5)=m+13, ¥ (5)=3

Pemaercst 1o anropurny Jyist ypasHenuii 6e3 y: [ % =2-f d(s%n;) Inlp—1|=2In|sinz|+InCy p—1=
Cysin®x g—‘z =Cysinfa+1 [dy=c [sin’z-de+ [dry=c;- [F582drt [doy =% (z— B2) 42+
3 3=c1+1 ¢1=2 7+13=C4T4¢cCy=13 y=2r+13 8128y — 93 _cosz-sinz+ 13 2
2 T3 2
BaxkHO Kax Beerja JIs TaKHUX: He JeJaTh HUKAKHUX CIOKHBIX XOJIOB, & PEelaTh TPOCTHLIMIL.

®P.2(y) =y'(y—1), y(1)=2, y(1)=-1

PemaeM061)111H01713aMeH01712(y’)2:y”(yfl) y1)=2 y(1)=-1y =p y”:% 2p2:p.%(yf
1) (p#0y #0 y#Const%2p:%(yfl)f%p:2f% 1n|p>:2~1n(y71)+1nC’1g—z:p:
a-(y-12 —1=C-2-12=c £ =-@y-1)? [P =-[dei=2+C ;5 =1+Cy C;=0
y—lzl y:L-H

4.1.2 Problems about equations with separating variables and homo-
geneous equations

Tyt Bce mpocTo, AOCOMIOTHO HUYIErO CJIOXKHOTO.

P-2.np.3. Pemmts 2rydr = (22 + 4?) dy

[lepesr mamMu THUOHIYHOE OJHOPOIHOE ypaBHEHHME, KOTOpPOe pelraercs 3amenoit y = xz. [lpuxommm
YPABHEHUIO C Pa3JIe/IIONUMUCS TePEMEHHBIMMU:

z(1+2%)dz+2z (2> —1)dz =0.

3amerum, uTo z = 0, £1 - pemrenust 3Toro ypasHeHusi. 1oria u3 3aMeHbl cjeyer, 9to iy = 0 u y = +x - penieHust
ucxoaHoro ypastaenusi. [Ipu z # 0, +1 ypaBHeHue ¢ pa3uessiioNUMUCs TIEPEMEHHBIMI MOYKHO 3aIlUCATh B BUJIE

dx 2z 1

Pemms 3T0 ypaBHEHHE U UCIOIB30BAB 3aMEHY 2z = <, MOJIy9aeM pelleHus 3aJaHHOrO ypABHEHU:
x

xz—yQZC’y, y=0.

TyT BCe MPOCTO, BAYXKHO TOJBKO HE MOTEPSATH PEIeHus.
Orser: 22 — 2 =Cy,y =0,y = +2.

P-2.1. Pemutsb 3 = 3> —y.

Pazsensiem mnepemennble, He 3abbiBaeM perierune y = 0. B npasoii dacTu npeobpazoBbiBaeM ﬁ =
1/(-14y) — 1/y, upuxoqum k Ce® = 1In 9771, orciofa otger: y = (1 —ce®)™1 y = 0.

BamMeTnM, 9To TyT MOXKHO 6b1T0 ObI 6bI HarmcaTh oTeT: y = (1+ce®) ™!y = 0, x0T u3HAYATIBHO KOHCTAHTA
ObL1a TOJBKO TOJIOXKATENbHAA. DTO MOTOMY UTO IPOCTO MOXKHO MEHATH KOHCTAHTHI Ha APYTYIO CO 3HAKOM, ITOKA
TaK O0bSICHSIO TO.

P-2.2. Pemuts (22 + )y — (22 + 1)y = 0.

dx

_ L dy _ dx
3ameuaem, uro y = 0 pemenue. PasjessieM nepeMeHHbIE: 3= Tt

nosiygaeM oreer: y = Cx(z+1),y =

P-2.3. Pemutb 27/ cosy + siny = siny
Bameuaem, uro sin(y) = 1 pemenne, pasjessieM IepeMeHHBbIE, BBIUUCIAEM WHTErPaJ, 3aMeHss sin(y) = ¢,

npuxoauM K orBery: Cr = “;g;l,sin(y) =1.

P-2.4. Pemuth
y' cosz+y(1l+y)sinz =0.
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4.1.2 Problems about equations with separating variables and homogeneous equations

P-2.5. Pemurn
2xydr = (1 — xz) dy.

P-2.6. Pemuts
w3ydy = (v — 1)dz.

P-2.7. Pemnro
yy cosz = (1 — y)sinz.
P-2.8. Peuurn
z(1-92)y =y (1+y?).
P-2.9. Peminto

(332 — 1) ydr = (a:2 + 1) dy.

P-2.10. Pemiurn
z(y+ 1)dy = (1 —y?) da.

P-2.11. Pemurs xy’ + 1° (1 — 3x) =0

T

+

CIHOKOWHO TIepeMEeHHBIE PAa3JIe/IAIoTCst, Ipu 3ToM y = (0 ecThb pellleHne, UHTErPUPYeM, MOJIyIaeM OTBET:
L=-C—-3z,y=0.
x

1

y

P-2.12. Pemmurs
(1- x2)2yy’ +z=0.

P-2.13. Peuurs
(x+ 1)y +yly+1)=0.

P-2.14. Pemntn
(1 + y2) yder = x (1 + 2y2) dy.

P-2.15. Peumurs
2% (z? +4) y' = cos?y.
P-2.16. Pemurn

y'tg?x —ctgy = 0.

P-2.17. Pemiuto

(1+ cosz)yy = (14 y*)sinz.

P-2.18. Pemnro

ye*dy + ze¥’ dx = 0.

P-2.19. Pemutn

z(1+y)y + (Vz+Inz) (1+y?) =0.
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4.1.3 Problems about variable substitution method

P-2.20. Pemurn
(z—Dyy' + (2> +1) (y+1)? =0.

P-2.21. Pemmurs
z?dz + (14 2°) T =2ydy = 0.

P-2.22. Pemiutnb
yYV1i—zt+z(1+e¥)=0.

P-2.23. Pemurs
e | ov T el = 0.

4.1.3 Problems about variable substitution method

P-2.24
2z +y+2)dx — (4x 4+ 2y + 9)dy = 0.

P-2.25 Peumts (4 —x — 2y)dx — 2(1 + x + 2y)dy = 0.

P-2.2 Pemuts (2y — z + 1)dx + (dy — 22 + 6)dy = 0.

P-2.27 Peumts (y — 3z + 2)dz + (3z —y — 1)dy = 0.

P-2.28. Haiitu pemenne, yoBi. H.. y.: 2y (1 +y?)dr+z (3> +y+3)dy =0, y(1)=1
Bes mpobiem pasmensiem mepemMeHHbIE, PACKJIAAbIBAEM (DYHKIIUIO OT Y HA JAPOOU, MHTErPUPYEM, HAXOIMM

KOHCTAHTY M3 HAYAJIBHBIX yCJIoBHiA, momydaem: Inz? + 3Iny + arctgy = 7

P-2.29. Haiitu perenue, yJoBji. H.. Y.:

x(2y — 1)y +4y* =0, y(-1)=-1.

P-2.30. HaiiTu perenue, yJoBj. H.. Y.:

c(1+y)y =y* y(1)=1

P-2.31. HaiitTu permenue, yJoBj. H.. Y.:

3e(x+ 1)y =(z+2)y, y()=-1.

P-2.32. Haiitu perieHue, yJaoBJ. H.. Y.:

(y +2)y’ =sin2z, y(0)=1.

P-2.33. HaiitTu pernenue, yJoBja. H.. y.:

(e + 1%y + (- 1)y=0, y(0)=1

P-2.34. HaiiTu pelieHue, yJoBJ. H.. Y.:

(®+a)y — (2 +2+1)y=0, y()=¢.

P-2.35. HaiiTu perienue, yoBJ. H.. Y.:

(®+2)y — (322 —1)y=0, y(-1)=—4.
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4.1.3 Problems about variable substitution method

P-2.36. HaiiTu perenue, yJoBj. H.. Y.:

Yy +3y° =3y, y(0) = 3.

P-2.37. HaiiTu perieHue, yJoBJ. H.. Y.:

Yy =(y+y*) the, y0)=1

P-2.38. HaiiTu pelienue, yJoBJ. H.. Y.:

2y +y(l+y)sinz =0, y(0)=1.
P-2.39. Haiitu perenue, yJoBj. H.. Y.:
2 = (1 —2y) e, y(0) =1.

P-2.55

Jokazarh, 4To pemieHne 3aja4du Kormm cymecrByeT M eUHCTBEHHO NPH JIFOObIX HAYAJBHBIX JAHHBIX JJIsI
ypasuerns y' = a(x)-b(y), rme a(x), b(y) 3a1aHABIE N HEMPEPBIBHBIE COOTBETCTBEHHO Ha MHTEpBaiax (a, (), (7, )
dyukuuu, npuuem b(y) # 0

P-2.56

ITycrs dynkuun f(x),g(y) HEIPEPHIBHBI Ha BCel YUCIOBON OCH, IPUIEM

P-2.56
ITycrs dynkuun f(x),g(y) HenpepblBHBL HA BCEil YUCIIOBOI OCH, IPUIEM
@) € e, 0< 0(0) < B+ Jy)
x X 75, N1 ~ )
C+fapes S ’

rne A, B, - NOJIOKHTEIbHBIE MOCTOsIHHBIE. Jl0Ka3aTh, YTO NpH JIIOOBIX Xg,Yo CYIIECTBYET €IMHCTBEHHOE,
onpeJeaeHHoe Ipu —o0 < r < +00 pelleHne ypaBHEeHNs

y = f(x)-g(y),

YZIOBJIETBODSIIOIIEe YCIOBUIO Y (Tg) = Yo W UMeroIee KOHeIHbIE limy, o y(), limg— oo y().

P-2.57

:z:y’:y(lJrln%).

P-2.58
zy = Iiizz
P-2.59

xdy = (y + \/m) dx.

P-2.60
rydr = (1’2 — y2) dy.

P-2.61
xdy = (y - \/W) dx.

P-2.62
(z + 2y)dx + ydy = 0.
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4.1.3 Problems about variable substitution method

P-2.63

(zy +y2) v = y2
P-2.64

2z +y)y =z +2y.
P-2.65

(@® +9°) o = 22y.
P-2.66

(z+2y)y +y=0.

P-2.71. (3xdy — ydz) (2* + y?) + 2*ydy — xy*dz = 0.
NmeeMm ofiHOPOHOE ypaBHEHHUE, TaK 4To pemaeM y(x) = z(x)z, mosyuaeM mocie COKpaIieHuii:
dzx*(3(1 + 22) + 2) = —2232(1 + 2%)dx.

3aMevaeM, uTo pertennd y = 0,x = 0, pa3genasgeM nepeMeHHble, IPUXOANM Y K YPaBHEHHIO:

3 1 dz
AT ) ol
z+1+22) T

dz)

)

3
[IOJIy4aeM ypaBHEHHE, U3 KOTOPOI'0 MOXKHO JIEFKO BBIPA3UTh OTBET: In ‘y?‘ + arctg% =C

Otser: In %’—I—arctg% =C,y=0,2=0.

P-2.72
(x+y+1)de+ (x—y+3)dy =0.

P-2.73
(2e—y—2)de+ (r+y—4)dy =0.

P-2.74
(x+2y—>5)de+ (y—x—4)dy = 0.

P-2.75
(r—1)y +3x+2y+3=0.

P-2.76
(x+y—-2)y+xz—y=0.

P-2.77
2z4+y—3)y +y+1=0.

P-2.78

(x4 2y)y’ + 2z + 5y — 1 = 0. Haiitu perenust ypaBHeHUH, yI0BJIeTBOpsIfONe 3a1aHHOMy H. y. (79-83):

P-2.79

y =325 y(1) =0.
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4.1.4 Problems about the simplest Bernoulli and Riccati equations

P-2.80

y =55 y(1) =0

P-2.81

(v —32)y' +ay =0, y(1) =6

P-2.82
zyy = (z—2y)% y(1)=2.
P-2.83
(x —y)*y' = 4oy, y(—1) = 2. Pemmrh ypaBHeHHUs, MPUBEIS WX C MOMOIIBIO 3aMeHB BHJa y = 2™ K

OJTHOPOAHBIM ypaBHeHusM (84-87):

P-2.84
(4:1:2 + y4) dy — 2xydx = 0.

P-2.85
(3z%y* + 1)y + 3zy® = 0.

P-2.86

P-2.88

Haittu HNHTEerpaJibHbIe KPHUBbIE YPaBHEHUSA
xy/:2<y+,/y2_x4>7

[IPOXOJIsIIIe Yepes a) TouKy (2,5),
6)rouky (1,1).

P-2.90

I _m
Cocraputh uddepennuanbioe ypaBHeHHe TPACKTOPHI, MepeceKaroluX MoJ| yIJIoM ¢ = 7 mapabosbl ¢
0011Iel BEpIMIHOM 1 00IIeit 0ChIO.

P-2.92

CocraButh jquddepeHnuaabHoe ypaBHEHUE CeMeRCTBa OKPYKHOCTEH, NMEIOINX [IEHTD Ha MPSIMOR y = & U
IIPOXOJAIIUX Yepe3 Havaslo KOOPJAUHAT.

4.1.4 Problems about the simplest Bernoulli and Riccati equations

P-3.up.1. Haiitu obmee pemenne xy =y — 2x°

VMeeM TUIMYHOE HEOMHOPOAHOE ypasHeHme. Mimem obmiee pertenue omaopoanoro ry = y. IIpeobpasosas,

TIOJLy YUM dy—y = df, a takxke pemteane y = 0. IToxyaaem obmee pemrenne ogHOpomHOoro ypasuenus: y = Cz, e

C - npou3BOJIbHAST TIOCTOSTHHASI.
Jajiee BapbUpyeM MOCTOSIHHYIO, T. €. WINEM PEeIleHue 3aJJaHHOro ypasuenus B sujie y = C(x) - x, mojcraBum,
IIOJIY YUM

Clz)=-2x+A
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4.1.4 Problems about the simplest Bernoulli and Riccati equations

rie A - IIPOU3BOJIbHAsA ITOCTOAHHAA. CJIB,ELOB&TQJII)HO7 o6mee penienue 3a/laHHOI'0 YpaBHEHUA UMeEeT BU/L

y = Azr — 22

P-3.up.2. Pemuts zy + 4y = 3zy?

Pemaem kax Tunuunoe ypasHenue Bepnysiun. OueBupgno, uro y = 0 - pemenue. Ilpu y # 0, moxcraBum

z = %7 noJIy9aeM JuHeitHoe ypasuenue rz' —4z+ 3z = 0. Pemms 3170 ypaBHeHEE METOIOM BapUAIAN TOCTOSHHOIM,

naxomuM z = Cx*+x, rie C - npoussosbnas nocrosunas. Cienosarenbno, y = 0 u % = C2* 41 - Bce MHOXKECTBO
peIlleHunii 33/ IAHHOTO yPABHEHUSI.

P-3.1p.3. Pemurs 2%y + 22%y? — Sxy +4 =0

Pemaem kak Tunuunoe ypasnenne Pukkaru. Yragpisaem, 910 yo(x) = % SABJIAETCA PEIIeHUEM 33/ IaHHOTO

ypasHenus. [logcraBum y = z + %, nojtyauM ypasuenne Bepmymmm 2/ = £ — 222, Bamena u = % upu z # 0 jgaer

JMHelHOe ypasHenne u’ 4+ % = 2. u = % + z, rie C' - npousBosbHas nocrosgaaast. OTCI0/a IOIydaeM pelleHue
3a/IAHHOTO yPABHEHUS

T 1
+7

y:C’+x2 T

Haiitu obmee pemenune ypasaenuit (1-31):

P-3.1. Pemurs 4 + y = 2¢”

Pemtaem ogHOpOMHOE, TOTOM BapbUpyeM IMOCTOsHHYIO, oTBeT: y = Ce™ ™ + e”.

P-3.2
xy =1y — 222,

P-3.3

y2dr + (zy — 1)dy = 0.
P-34

2ydx + (3 - a:) dy = 0.

P-3.5
z(4—2%)y =227y + 1.

P-3.6
xy =22 +y.
P-3.7
y=~4-z
P-3.8

(x4 y)dx = zdy.

P-3.9
23y’ = 2%y — 3.

P-3.10
ydz — (z+ y?) dy = 0.
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4.1.4 Problems about the simplest Bernoulli and Riccati equations

P-3.11. ydr = 3z — y*) dy

Pemaem otHocuTebuo z(y) : yz' — 3x = —y?, pemaem oHOPOIHOE, BAPBUPYeM MOCTOSHHYIO, He 3a0bIBaeM
KOHCTAQHTHOE pellienue, B urore oret: ¢ = y2 + Cy>,y = 0.

P-3.12
Yy =y + 2xe®.

P-3.13

(:1: + 92 cos y) dy = ydx.
P-3.14

vy =2t 4+y—1
P-3.15

y =Y — 222
P-3.16

atdy = (2 — 23y) da.
P-3.17

ydr = (2y — z)dy.

P-3.18
dx = 2z + €¥) dy.

P-3.19

23y + 22%y = 2In .
P-3.20

(sinz — 1)y’ + ycosz = sinz.
P-3.21

Y +2zy =2 (1+ 227).
P-3.22

zy — 2y = 2z%.

P-3.23
zty' + 223y = 1.

P-3.24

22y + 22y = 1.
P-3.25

xy — 3y = 422,
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4.1.4 Problems about the simplest Bernoulli and Riccati equations

P-3.26
23y + 2%y =22 — 1.

P-3.27
4y + 1222y = 322
P-3.28
vy + (1+2%)y+a=0.
P-3.29
z(y—V1+a?)de+ (1+2%)dy=0.

P-3.30
y +ytgr = e cosw.
P-3.31

(1+y?) dz + (zy — ) dy = 0.

P-3.32
2

xy —y = 2°.

Vpasuenus (32-35) UCKYCCTBEHHBIM IIPUEMOM PEIIAIOTCA KOPOUe,

P-3.33
(y + 23 cosz) do — zdy = 0.

Vpasuenus (32-35) UCKYCCTBEHHBIM IIPHEMOM PEIIAIOTCs KOPoUe,

P-3.34
22y +xy+1=0.

Ypasrenust (32-35) UCKyCCTBEHHBIM IIPUEMOM DEIIAIOTCS KOPOUe,

P-3.35
(1+y?) dz + (2zy — 1)dy = 0.

Vpasuenus (32-35) UCKYCCTBEHHBIM IIPHEMOM PEIIAIOTCA KOPOUe,

YeM MEeTO/I0M Bapuallin TOCTOSHHOM.

9eM METOJOM BapHallN HOCTOSTHHOIA.

9eM MEeTO/JI0M Bapualiuu IOCTOAHHOM.

9eM MeTOJ0M BapHUAITUM ITOCTOSTHHOM.

P-3.36 HaiiTu pemieHusi ypaBHeHUIl, YJOBJIETBOPAIOIINE H. Y.

xy' +2y =3z, y(-1)=1.

P-3.37
2%y =bxy+6, y(l)=1.

P-3.38

vy =Ty+at, y(1)=-1.

P-3.39
xy =5y +32%, y(-1)=—1.

P-3.40
(1+2%)y =22y —2z, y(0)=2.
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4.1.4 Problems about the simplest Bernoulli and Riccati equations

P-3.41
y —ytgx =sinz, y(0)=0.

P-3.42
(2 +a)y — (2 +a+1)y+2®=0, y(1)=1

P-3.43
vy =3y +22°, y(-1)=1.

P-3.44
vy —2y=22* y(1)=1.

P-3.45
?y +y=4, y(-1)=5.

P-3.46

Haiitu oproroHajibHbIEe TPAEKTOPHUH CeMelcTBa KpUBbIX Yy + = Ce™ % + 1.

P-3.47 Peuiurn
4y’ + (4o + 1)y? — 4y = 0.

P-3.48
2xy’ + 2y = 224>

P-3.49
Yy =ay? + L.

P-3.50
2y’ = 3y — day>.

P-3.51
xy —y+2zxy*Inz = 0.

P-3.52
2xy’ + 2xy® = v.

P-3.53
222y + zy = 245,

P-3.54
xy + 4y = 3xy°.

P-3.54

y =y

8 ke

P-3.56
xy =2y — 4%y
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4.1.4 Problems about the simplest Bernoulli and Riccati equations

P-3.57
y’—y—|—2xy3 =0.

P-3.58

zy' + 3xy? = 2y.
P-3.59

xy —y+4y® = 0.
P-3.60

Y +ytgx + 4y’ sinz = 0.
P-3.61

xy + 3y = 4x2y2.
P-3.62

xy + 2zy? = 3y.

P-3.63
y(y + Ddz + (x + 1)dy = 0.

P-3.64

y' cosx + ysinx + 3y% cosz = 0.

P-3.64
Sryty’ = y° + 4.

P-3.66
y (42y? — 3) dz + 2zdy = 0.

P-3.67
8y’ + 3%y (y* —4) = 0.

P-3.68
ydx + (2x2y — 395) dy = 0.

P-3.69
3z?de — (2® +y+1)dy = 0.

P-3.70
y3dx + (x3 Iny — xyz) dy = 0.

P-3.71
ydx + (43:3 — x) dy = 0.

P-3.72
(2 —1)de —y[z+ (4> — 1) Vz] dy = 0.
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4.1.4 Problems about the simplest Bernoulli and Riccati equations

P-3.73

Haittn pemenue ypasnenns 4xyy’ — 3y? + 22 =0, yaosn. n. y. y(1) = 1.

P-3.74

Haittu nunrerpasbpuyio KpuByio ypaBuenus ydr — 4 (x +y? \/5) dy = 0, npoxozsiuryio depe3 Touky (0,1).

P-3.74

Haittu waTErpa/ibHy0 KPUBYIO ypaBHeHUs dr — TY (1 + ny) dy = 0, mepeceKarony OUCCEKTPUCH 00OUX
KOOD/IMHATHBIX yTJIOB Iipu = = 1.

Vpasuenus 3aga4 (76-81) HCKYyCCTBEHHBIM NPUEMOM PENIAIOTCA KOPOYEe, YeM METOIOM CBEJIEHUS K
JIMHEHOMY YPaBHEHUIO.

P-3.76
zy —y+azy? =0.

P-3.77
w3y’ — 2%y — P = 0.
P-3.78

ydx—x(ng + 1) dy = 0.

P-3.79
dxy’ + dxy? = 4y — 3>

P-3.80

o 2 /o — 22 T\ —
Haiitu perenue ypasaenus sin“ x (y' sinz — y cosx) = y* cos , yJIOBJIETBOPSIOINIEe YCJIOBUIO Y (5) =1.

P-3.81

Haiiti pemenne ypasrenns cos? x (y' cosx + ysinz) + y? sinz = 0, ymosrersopstoniee yenopuio y(0) = 1.
C moMompo moAdopa Kakoro-mbo pelienus HailTu obiiee pernenue ypasaenuii (82 — 95):

2

P-3.82
222y + 2%y? + 4 = 2xy.

P-3.83
22y + 2%y% 4 22y = 2.

P-3.84

P-3.84
vy =y +2(x+ Dy + 2% + .

P-3.86
22y’ = 2%y? + 32y + 3.

P-3.87
22y’ = y? + 2zy — 222,
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4.1.5 Problems about first-order equations not solved with respect to the derivative, special
solutions

P-3.88
y' = y? — 2zy + 22

P-3.89
Y =y? —2xy + 22— 3.

P-3.90
Y + e Ty? +y = 3e”.

P-3.91

T

y —ey? +3y=e".

P-3.92

y = y? — 2ysinz + cos z + sin® x.

P-3.93
y +y? —2ycosz + sinz + cos? z = 0.

P-3.94
2%y’ — 5xy + 2%y? + 8 = 0.

P-3.94
(32% 4+ 2y) (1 + y)dz + (22 — 2®) dy = 0.

P-3.96

Joxkazarh, uro ypasuenue y' = ky + f(x), rme k = const # 0, f(x) - HenpepbiBHAs U NEPUOAUIECKAS
byHKIINA, IMeeT TOIBKO OHO IepHoIrdecKoe permenue. Haittu ero.

Eme nmapa 3amau

97. Jokazarb, uro y ypasaenus xy’ + ay = f(x),x > 0, tme a = const # 0, f(x) - HeupepbiBHAS
orpaHuveHHast (PYHKIMsI, CYIECTBYET TOJBKO OJIHO DEIeHne, OrpaHudeHHoe npu & > 0.

98. Jlokasarsb, uro y ypasuenus zy + ay = f(x),0 < x < a, rtne o = const > 0,a > 0, f(x) - HenpepbiBHAS
dyukuus npu 0 < & < a u lim,—, 1 f(x) = B, cymecrByer ToIbKO O/1HO pelierre, orpanudenHoe npu 0 < & < a
u umemoree npejgen nupu r — +0. Haiitu ator npejet.

99. Jlokasarb, uro y ypashenus y = a(z)y + b(z),0 < = < +oo, the a(z), b(x) - HenmpepbIBHBIE TIpH
0 < z < +oo dynruun, b(z) - orpannvena, a(x) = ag = const > 0, CylmecTByeT TOJBKO OJIHO DellleHue,
orparmidenHoe npu 0 < x < 400.

100. ITycre a(x),b(x) - mHenpepbisable pu 0 < © < 400 bYHKIUY, UMEOIIMe KOHEIHbIE lim, o0 a(x) =
A > 0,lim,_, 4 b(x) = B. lokazarh, 4T0 CyIIECTBYeT €IMHCTBEHHOE pelienue yo(x) ypasuenus y' = a(x)y +
b(x), 0 < & < 400, UMerOIIee KOHEYHBIA peen upu & — +o0o. Haiitu lim, s o0 yo().

Vkazanme. PaccMOTpeTh OrpaHUYIeHHOE PEIEHNE W JOKA3aTh, YTO OHO MMEET KOHEYHBIN Ipees IpH T —
+00. MoxHo BOcmob30BaThest npasmwioM Jlommrans. 101. Ilycrs a(a), b(x) - HenpepsiBHbIe pn 0 < 2 < +00
dyukImu, npudyem cymecrByer KOHeuHbi lim, 1 a(x) = A > 0 u lim, 1 o 2b(x) = 1. Iycrs yo(x) - pernenne
ypasrenus ' = a(z)y + b(x),0 < & < 400, UMeoIIee KOHEYHbI 11pejiest upu € — +o0o. Haiiru lim, oo yo ().

4.1.5 Problems about first-order equations not solved with respect to
the derivative, special solutions

TYT WX OU€Hb MHOTO, JIUIIb APy BHIIPY3HI)
77?77 uro 3a ocoboe pemenne???)

P-6.1
v — dxyy + 8y? = 0.
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4.1.5 Problems about first-order equations not solved with respect to the derivative, special
solutions

P-6.3
Szy3 =y (12yr2 — 9).

P-6.5
23y + 22yy’ +1=0.

P-6.7
y'"® — 322y + dxy = 0.

P-6.9

y =In 2

y'—=1°

P-6.11
23y? — d4x?yy + 4y + 4y’ =0

P-6.13
Sry? +1=yy (1+yy).

P-6.15

12—y +y=2z-3.

P-6.17

y/2 + nyy/ + y3 =0.
P-6.19

y'? —2yy + 4e>* = 0.
P-6.21

4y + 325y = 9xty.

P-6.23

y=y + 3 (x—Iny).

P-6.2
y'? + 223y — 42y = 0.

P-6.4
22y? — dx(y +2)y' + dy(y +2) = 0.

P-6.6

Y2 — 3ayiy +9yF = 0.

P-6.8
v2y'? + 2zyy’ —y* +1=0.
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4.1.5 Problems about first-order equations not solved with respect to the derivative, special
solutions

P-6.10
xy’? — 2yy + 2y = 0.

P-6.12
8y%y"3 — 3y + 6(x — 2)y’ = 0.

P-6.14

x3y2y/2 _ 2x2y3y/ + .'L'y4 + 2yy/ =0.

P-6.16

y'? — 8xy’ + 8x2 + 4y = 0.
P-6.18

2y%y"? — 2xy? + 4yy' +1 = 0.
P-6.20

zty? + zy' +y = 0.
P-6.22

(1—2%) y? 4 2zyy’ + 2> = 0.

P-6.24

yy' (yy' —1) =z —y*

P-6.51

4y'3 — 322y + day = 0.
P-6.52

dyy'? — 2y — 22 = 0.
P-6.53

dryy’? — 8x2y"? = 1.
P-6.54

2wyy? = 42® + (2% + 1) y3.
P-6.55

2uy’ + 2y — 3z = xy'?.
P-6.56

4y +y? =2z (2> +1)y.

P-6.57

L+ Iny = 1.

zy’

P-6.58
vy’ =y(1+Iny').

96



4.1.6 Problems Exact Differential Equations

P-6.60
428y — 27y + %ya =0.

P-6.61

%y'3 — 3zty’ 4 623y = 0.
P-6.62

(zy' + y)2 + 2022y’ = 0.

P-6.63
28 4+ 5y’ +y'? = by + 425 4 224y,

P-6.64
zyty’ + 3y5 +yt = 0.

P-6.65
zy"® + 3yy? + 27yt = 0.

P-6.66
xt + 3xy + % = 3y + 223 + 222y,

4.1.6 Problems Exact Differential Equations
Pemmtaercsa Tyt Bce mim 3amMeHO# epeMEHHDBIX WM UHTETPUPYIONIAM MHOKUATEIEM.

(moka JieHb pemnaTh, He aKTyaJbHbIE 3aJa4H, 110 Ujiee TIpobJIeM ¢ HUMU He JO0JRKHO OBbITh, IPOCTO BOUTHCS
LPUXOJUTCS, [IPEKJIE YeM MONMY, KaK IPUBECTU K HOJIHBIM auddepeHimaiam. )

P-4.up.1 Pemnrs (322 +y — 1)dz + (v + 3y* — 1) dy = 0.

3aJlaHHOE ypaBHEHUE sIBJISIETCS] YPaBHEHUEM B IOJIHBIX uddepeHinaiax, IOCKOJbKY OHO 3aJlaHO Ha Beeil

wiockoctu (x,y) u % = %—5 = 1. Oyuxmio u(x,y) HAXOAUM U3 CUCTEMbI yPABHEHUH
%—z =32 +y—1
8—; =z+3y> -1
U3 mepsoro ypasaenms momydaeM u(r,y) = 3 + x(y — 1) + o(y), rae ¢(y) - TPOU3BOMbHAS HETPEPBIBHO

ubdepenrupyemas bynxnust y. [ojgcTaiss ero Bo BTopoe ypasHeHHe cucTeMbl, noaydaem ¢ (y) = 3y? — 1.

Orciona naxomam ¢(y), a, sHaunt, n dynknmo u(x,y).B gaHHOM HpUMepe MOXKHO B3aTh u(T,y) = o + y° +
2y — x — y. ClenoBaTeIbHO, peIleHus 3aJaHHOTO yPAaBHEHUs 331a10Tcst (pOpMyJIoil

B ray+yd—z—y=0C.

P-4.np.2 Peumts (y — 42y3) dv = (22%y? + z) dy.

3amerum cHadaga, ato y = 0 - pemenue ypaaenus. Ilycts y # 0. YpaBHeHHe 3aIUIIEM B CJIELyIONIEM
BUIE
yde — xdy = 2> ($2dy + Qxyda:) .

Eciu pasmesuTh ypaBHEHHIE Ha Y2, TO ypaBHeHHe IIPUMET BH

d (Z) = 2d (z%y) .
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4.1.6 Problems Exact Differential Equations

Iosryunn ypaBHEHHE B HOJHBLIX auddepeHuaiax, 03 KOTOPoro HaxomuM, uro oreer: y = 0,z = 2z2y? + Cy,
rae C' - TpOu3BOJIbHAS TOCTOSHHAS.
1

I{CTaTI/I7 UHTEIpUpPpYyOmuM MHOXKHUTEJIEM 3a/IaHHOT'O YPaBHEHUSA CJIY2KUT (byHKI_II/IH F

P-4.up.3 Pemnrs (22 + 2y?)dzr + (z%y + y*) dy = 0

3nech %—]‘y/[ = 22y, %—g = 2xy, Tak 4ro ycsaoBue (2) BBIIOJIHEHO U, CJIEJOBATEJILHO, JAHHOE yDABHEHUE €CTh

ypaBHeHHe B TOJIHBIX jauddepeHiuaiax. JTO ypaBHEHUE JIETKO nNpuBecTu K Buay du = ( HEmocpeIcTBEHHOM
rpynnupoBKoii ero 4ienoB. C 3Toit nesbio nepenuieM ero tak: O4YeBUIHO, 9TO

23dr + xy(yde + zdy) + y>dy = 0

4

2 4
23dr =d (Z) ,  xy(yde + zdy) = zyd(zy) = d ((:E;;/) ) . yldy=d (y4>

HOSTOMy N3HavYaJ/JIbHOE€ yYpaBHEHNE MOXKHO 3alliCaTb B BUJE

d(f) +d<(x32/)2> +d(?f> :()mud(f:Jr (?2 +Zf> —0.

Cnenosarensuo, vt + 2(xy)? + y* = C ecTb 06muit MATErPAT UCXOTHOTO YPABHEHUS.

OP. y?dr + (e —y)dy =0

. B J B
ITogbopoM HaxomuM, UTO CJAEAyeT JOMHOXKHUTL Ha 67’ nonyanm ye~ Tdxr + ?y — e ®dy = 0, To ecTb

—x

x e

d(ye ™ —Iny) = 0. T.0. ye~* — Iny = ¢ VHTerpupyomumii MHOXKUTEIb (4 =

P-4.1 Pemutb
(1 — 322 — y) dx = (x — 3y2) dy.

P-4.2
(y2 — 23:3) dx + 2zydy = 0.
P-4.3

[(x—y)Qfx}der[y—(a:fy)z]dy:O.

P-4.4
(y —sinz)dx + (x + e¥)dy = 0.

P-4.5
(y — z)dz + (z + 2¢*¥) dy = 0.
P-4.13

(1+322Iny) dz + (3y2 + %) dy = 0.

P-4.14
(Qx— S‘g#) dx + (2y+%) dy = 0.
P-4.15

(+1)de—(&H+1+2)dy=0.

,'lj2
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4.1.6 Problems Exact Differential Equations

P-4.16
er (1= %)dr+ (L+ex)dy=0

P-4.17
Zdx + [1 + In(zy)]dy = 0,2 > 0,y > 0.

P-4.18
(1+§—§)dm+(y%—%)dy:0.

P-4.19
2zydz + (y* — 2?) dy = 0.

P-4.20
2zydxr = (x2 — 2y3) dy.

P-4.21
8V —y —2z)de = (3y/xr —y — 2y)dy.

P-4.22
(y — 3x2y3) dx — (m + x3y2) dy = 0.

P-4.23
(2zy* + y) do — (2%y + 2z) dy = 0.

P-4.24
ydr = (x — 2y3) dy.

P-4.25
?dy + 2 (y — 2?) ydz = 0.

P-4.33
(l — y) dr = %dy.

x

P-4.34

(2z3y + 2?y*) dz + (2* + 23y®) dy = 0.

P-4.35
(Sa:Qy + 7y2) dx — (2:(;3 + 5xy) dy = 0.
P-4.36

(2y — x2y2) dr = (msy — x) dy.

P-4.37
(4x3y + 3y2) dx — (2954 + ch) dy = 0.
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4.1.6 Problems Exact Differential Equations

P-4.38
(3zdy — ydz) (2% + y?) + 2?ydy — xy?dx = 0.

P-4.39
(322 4 2y) (1 + y)do + (22 — 2%) dy = 0.

P-4.40

(zy® + 2y) dz + (z — 2%y?) dy = 0.
P-4.41

3zdy + ydx + vy (xdy + ydz) = 0.
P-4.42

ry?dr + (a:zy — x) dy = 0.
P-4.43

z (2% 4+ y?) dy + y(yda — zdy) = 0.
P-4.44

(zy® +y) do + (2z + 2%y?) dy = 0.
P-4.45

2zt (zdz + ydy) + (2* + 312)2 (xdy — 3ydx) = 0.

P-4.46
y(2ydz — xdy) + 22 (ydx + 2xdy) = 0.

P-4.47
(y? — 32?) dy + zydz = 0.

P-4.48
zdy — ydr = /22 + y2 - dx.
P-4.49

xdy — 2ydx + xy?(2xdy + ydz) = 0.

P-4.53
2zdy + ydx + xy?(xdy + 2ydz) = 0.

P-4.54

(y2+y)dx+<xy+2x+%>dy:0.

P-4.55
[(33:2 + 2) Y+ 3m] dx + (23: — x3) dy = 0.
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4.1.7 Problems about researching the Cauchy problem (7!)

P-4.56

zy —y =213 %,

P-4.57
2zyPdr + 2?y?dy = (1 — y?) dy.

P-4.58
(2xy2 — y) dx + (yzlny—l—aﬁ — y) dy = 0.

P-4.59

yy' + 2’ = (a® + y2)2.

P-4.60
4x2y?dx + 22 (2y — 1)dy = 0.

4.1.7 Problems about researching the Cauchy problem (7!

(HY?KHO 3aroTOBUTH TEOpHIO!)

P-5.mp.1

Hoxkazars, uro eciu byukiuu f(z,y) u %ﬁ;’y) HeIpepbIBHBI B 001actu G IJIOCKOCTH R%fuy)’ o f(z,y)

VIIOBJIETBOPSIET yCIoBUIO Jlumimuma mo y paBHOMEPHO O * Ha KaxkaoM kKommakTe K C G.

lokazaTebCcTBO

Paccyxmaem or mporusHoro. Ilycrh yTeepkienne uesepHo. Torma maiimyres xommakt Ko C G m
nocienosarensuoctu {Ly}, >, Ly, > 0,Yn € N, {(zn,y,)} ey C Ko, {(zn, ) }oo, C Ko Takue, uto

n=1>"

| @nsn) = f (@, yi)| > L [y, — ynl -

Tak kak K( - KOMIIAKT, TO U3 [OCJIEIOBATEILHOCTEN TOYEK (Lp,Yl) U (Zn, Yl ) MOXKHO BBIODATH CXOJSIIUECS
OUIOCIEAOBATENLHOCTH (0, , s, ) — — (Z0,9)) € Ko, (2n,,yn,) = (zo,y() € Ko mpn k — oco. Pacemorpum

bYHKITHIO
f2y) = [z y")
F(zyy') = — T
y—-y
B JIOCTATOYHO MAJIOH OKPECTHOCTH TOUKM (Zo, Yo, Yy ). Eeam yy # y{, To u3 HenpepbiBHOCTH f(2,Yy) ciemyer

orpannyenHocth dysxmmu F (x,y',y") B 9100 0okpectHOcTH. Ecim ke y) = y{ = Yo, TO U3 HENPEPHIBHOCTH

of(z,y)
=5y~ CJIelyeT BBIIOJHEHHE YC/IOBHUs Jlummuna no y paBHOMEPHO 110 & B OKPECTHOCTU TOYKH (Zg,Yo), UTO

osnauaer orpanumdennocts F (x,y',y") u B stom ciyuae. Ho orpanumgennocrs F (x,%y’,y") nporusBopeunt
HAIlIeMy [PEJITOJIOKEHNI0O O KOMIakTe K HPH JIOCTATOYHO OOJBIIUX Nj. IDTO JOKA3BIBAET YTBEPKICHUE
mpumepa 1.

P-5.1p.2

BoinosiHeno s yejiopue Jlummuma 1o y paBHOMepHO 1o x jyig dbyuximun f(x,y) B nonykpyre z2 + y? <
R%2,y>0,R >0, ecmu:

a)f x,yg =22sinx + y3,
6)f(z,y) =z + |y,
B)f(z,y) =+ /y? AB ciayuae a) s 106bIxX AByX TOUeK (z,y1) u (T, y2) U3 HOTYKpPyTa HMEEM:

|f (2, 91) = f (2, 92)| = |ui — 95| = [y — vl - |yf +vav2 +u3]| <

3
< 3 (v +93) lyr — y2| <3R*|y1 — yol.

Suauur B ciaydae a) yeiaosue Jlunmuna BeinojiHeno. B ciaydae
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4.1.7 Problems about researching the Cauchy problem (7!)

6)ycioBue JInmmmuna Toxke BBIIOJIHEHO, TaK Kak

\f (x,91) = £z, 92)] = lya| = |2l < |y — vzl

[Tokaxkem, 9TO B CiIydae
B)ycsoBue Jlunmmna He BBIIOJHsIETCA. PaccykpaeM OT MPOTHBHOrO. IlycTb 3TO yCIOBUE BBINOJHEHO B
HOJIYKpyTe ¢ HeKoTopoil nocrosuuoil JIummmna L > 0. Torga nys Touek (0,1) u (0,y), rne 0 <y <e,e >0mu

JOCTaTOYHO MaJo, UMeeM
[£(0,y) = FO, D) = Vy = 1] < Lly — 1.

Orcrona L(/y + 1) > 1, 410 HEBO3MOXKHO IIpU J0CTaTOYHO Maybix y > 0. IIporusopeune. Ycmosue Jlummmia
HE UMeeT MeCTa.

P-5.1p.3

VkaszaTh Kakoli-mubo 0Tpe30K, Ha KOTOPOM CyINECTByeT penieHue sagadun Komm, ecom:

a)y’:y2—|—z2, y(O) =0, |1‘| <1 |y‘ <1,

6)y' = +sin(2? +y), 9(0)=0, |z < L,

B)y = |z| +siny? + cosy?, y(0) = 0.

UsgectHo, uro pemenne 3amaun Komm y' = f(z,y),y (o) = o, tne f(z,y) m %‘Z’y) HEIIPEPLIBHLL B
npsimoyrosbHuke 11 = {(z,y) : |2 — 20| < o, l[y— —yo| < B}, Bcerma cymecrsyer Ha [zg — 0,29 + 0], Tae § =
min (a, %) , M = max |f(z,y)| upn (z,y) € IL.

B ciryuae a) umeem o = 8 =1, M = 2 u, 3HauuT, peleHue CyliecTsyeT npu |z| < 1.

B ciayuae

6)umeem o = 1, 8 = 0o, M = 2 u, 3uaqur, pemenue cyiecrsyer upu || < 1.

B ciy4gae

B) s Beex || < a upu aobom a > 0 umeem o = a, 8 = oo, M = 2. CilezioBaTeibHO, PelIeHre CYIIEeCTBYeT
st |x| < a npu arobom a > 0, T. e. st Beex & € (—00, +00).

P-5.n1p.4 MetoaomM 1ociiegoBaTeJbHbIX HNPHUOJJNXKEHUI HaliTH! pellneHne 3aJadu
Komm: v +y=z+1, y(0)=0.
B mamem cirygae mocieoBaTebHbIE TTPUOIUKEHUST 38,1a10TCsT (POPMYIAMUI
x
(@) = 0u(e) = [[I6+1-pr(O]de k=123,

0

MetooM MaTeMaTHIeCKON WHAYKIIMH MOYXKHO TPOBEPUTDH, 9TO Yi(x) = = + (—1 kﬁ,k = 1,2,3,.. Orcioma
Ay poBep Y Al

caepyer, uro upu |x| < a g goboro a > Oyg(z) upu k — 00 PABHOMEPHO CTPEMHUTCA K X. SHAYMT, Y = &
sBJisgeTcs pellenneM 3a1aan Ko,

P-5.1p.5
JlokazaTh, 9T0 HOC/IEI0BATEILHOCTD (DYHKIM Yy, (), olpeessgeMast COOTHOIEHUIMI

1—o 1
z - §/y727.71(t)dt7n: 172737 0y
1

Yo(r) =0, yn(x) = 2

CXOIUTCs PABHOMEPHO Ha [1,2] u He cxoaurcest paBHOMepHO Ha |1, 8.
3a/laHHast TOCIIEeI0BATEIBHOCTD (DYHKIMH CIIY?KUT MOCJIEI0BATEbHBIMU IPUOINKEHUSIME PEIIeHUsT 38,1891
Komu Buma

2
y = f% - %, y(1) =0.

Paccmorpum cravasa sty 3azady B obmactn G = {(z,y) : = € [1,2],|y| < < b,b > 0}. B sroii obiactu
Gmax‘—x% — y—;‘ =M<2+ % U max ‘%ﬂ = max ’—%y‘ =N < %b. U3 TeopeMbl CYIECTBOBAHUS PEIICHUS
samaan Komm ciemyer, 9To mocsiemoBaTesbHble TPUOINKEHNs CXOIATC paBHOMepHO Ha [1,1 + 4], Tiae umcmo
0 > 0 OHOBPEMEHHO YJIOBJIETBOPSIET JIBYM OIEHKaM: § < % = ﬁ, 0 < % = %. Bribupas uncio b Taxk,
4TO6BI 06€ OIEHKN COBIAJIN, HOTydaeM b = 3v/2,6 < % dcHo, uro § = 1 yOoBIETBOPSIET 9TOMY HEPABEHCTBY.
Pemas na [1, 8] ypasHenne Pukkaru, mogydaem y = % + ﬁ W3 nagamsroro ycenosust C' = —2. Ilpu x — 8

IOJIy4aeM Y — 0O, YTO IPOTUBOPEYUT PABHOMEPHON CXOJIUMOCTH.
IIpu wuccienoBanum 3aBUCHMOCTH peleHus 3aga4dn  Komm oT napaMeTpoB M HAYaJbHBIX JAHHBIX
HUCHOJIB3YIOTCA YPaBHEHHUS B BapUalldgX.
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4.1.7 Problems about researching the Cauchy problem (7!)

P-5.1p.6

Haiitu ot pemtenust y = ¢ (v, 1,10) 3amaun Kommu y' = 2y + 23y — 2293,  y(1) = yo
OueBnIHO, YTO PElIeHNeM 33JaHHOTO ypaBHeHust pu H. y. y(1) = 0 asasercs y = ¢(x,1,0) = 0.
NzBectHO, uT0 HICKOMast (DyHKIUS U = g—;) JIOJI2KHA OBITH PEIleHHeM yPABHEHUSI B BAPUAIUIX IO Yo

9¢(x,1,0)
Oy

ou
— = [24 223y — 32%y?] u,
Ox [ 4 4 ]
e y = ¢(z,1,0) = 0, npu u. y. wul, _, = 1. Jpyrnvnm crosamm, 1yis HaxoxKAenns QyHKIum u = ng;
HEOOXOIMMO PemuTh 3aaaay Komm Buma
ou
— =2u, u(l)=1
e (1)
VckoMeiM permrenneM sBisiercs u = e2( 1),
P-5.1p.7
Haiitn %’3’0) or pemenus y = ¢ (z, %o, 1) samaun Komm y' =y — 1+ 2zy (y*> — 1),y (zo) = 1.
OueBuiHO, YTO penieHueM 3aJaHHOro ypasaenus npu H. y. y(0) = 1 asuserca y = p(z,0,1) = 1.
WzBecTrO, 9TO McKOMas (byHKIHS v = g—ai JIOJKHA OBITH PENIEHNEM YPABHEHMs B BapUAIAAX TI0 T
v
— = [14 8xy® — 4xy| v
57 = | y yl v,
rae koddduiment npu v 6epercs Ipu 3HAYEHUN Y = 1 u npu H. y. v|,_, = — [y — 1+ 2292 (y2 — 1)] |I:0 =0.

y=1
CitenoBarebHO, 171 HAaXOXKAEHUA DYHKINN v Hy2KHO PEIINTh 3amady Komm Buma

ov
i (1+44z)v, v(0)=0.

Orcrona uckomoe pemenue v = 0.

P-5.1

Boiosieno s yesosue Jlunmuna juis dyakuuun f(y), ecou:

a)fgy) =% |yl <a,a>0,
6)f(y) =lyl, |yl <a,a>0,
B)f(y) = Iyl Iyl < o, > 07

P-5.2

Jokazarh, 910 U3 BbinoJHeHus ycjobus Jlunmuna mia dbyakiuun f(y) #Ha [, 8] ciemyer HenpepbIBHOCTD

fy) ma [a, f]

P-5.3

Boimosieno jin yenosue Jlunmuna 1o y paBHoMepHO 1o & Ayt dyukiuu f(z,y) B Kpyre 224+y2 < R2, R >0,
ecJim

a)f%ﬂf, y; =a? 437

6)f(z,y) =2yl
B)f(x,y) = z+/|y|?

P-5.4

Joxkazarh, uro ecau dyukius f(x,y) HenpepbiBHA 10 & B objgactu G u ynosjersopsier B G yCJIOBUIO
Jlunmmna mo y pasHomepHo 1o x, To f(z,y) - HenpepbiBHA B G.

P-5.5

ITokazare, uro He muddepenrupyembie o y upu y = 0 byukiuu fi(z,y) = |y[(1 + sinz) u fo(z,y) =
|y|(1 + cos x) ynosaersopsitor ycaoBuio JIummmia o y paBHOMEDHO 110 & Ha BCEH [UIOCKOCTH R(Ql, )"
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4.1.7 Problems about researching the Cauchy problem (7!)

P-5.6

IMokasars, aro dyukiws f(z,y) = a(z)y + b(z) yaosmersopsier yeaosuto JIummmi@a 0o y paBHOMEPHO TI0 &
B moJsioce |z| < o, a > 0, econ ToabKo a(x) u b(x) - HenpepsiBHble GyHKIWK 1pHu |z| < «.

P-5.7

Iokasars, uro Gynxmus f(z,y) = [1+ a*(z)] y?, rae a(z) - nenpepbibHas dynkuus npu |z| < o, > 0,
He yJIOBJIETBOPSIET YCJIOBHIO JIMIIUNA 110 ¢ PABHOMEPHO 10 & B 1mosioce |z| < a.

P-5.9

Hoxkazars, uro dyukuus f(z,y) = x -y He yJOBJIETBOPsET YCJIOBHUIO JIMIIIKIEA 110 y PABHOMEDHO 110 & Ha
BCeil IJIOCKOCTH R%x "y
;

P-5.10

MetooM TOC/IEI0BATEIBHBIX MTPUOIMKEHN HaiiTh pernrenne 3aga4u Kormu, ecn:
a)y’ +y=x+1, y(0)=1,
6)y' +y=2e", y(0)=1,
By —y=1—=, y(0)=1,
r)y —y=e**, y0)=1
P-5.11

Meto1oM mocIie1oBaTeNIbHBIX NPUOIMKeHUH HafiTn npubikerns Yo (), y1(z),y2(x) K pemernro 3anauu
Ko, ecn:

a)y =y* -z, y(0)=1

P-5.12

OneHUTh MOrpeNIHOCTh, MOJIyYaeMyo IpH 3aMeHe pemnieHust y(r) 3ajadn Komm ero mocieoBaTebHbIM
npubikenueM ys (), ecom:

a)y' =y?+22, y(0)=0|z[ <1,y <1,
6y =y*+a% y(0)=0,lz[ <Lyl <L
P-5.13
JlokazaTh, 9TO MOCIEI0BATEIBHOCTD DYHKIMWH Y, (x), onpeaensiemas cooTHOmenusMu yo(x) = 0, y,(z) =
x
e "+ 1e7® — 3 4 [[2y,q(t)e ! —y2_\(t)] dt,n = 1,2,3, ... cxonuTest paHoMepHo Ha [0,0.2] 1 He cxomuTCs
0

paBHOMepHO Ha [0, 1].

P-5.14
ﬂomBaTb 9TO TOCJIENOBATENBLHOCTE DYHKIMA Y, (), onpenensemas cooTHomerusaMu Yo(z) = 0 yp(z) =
1(1-2) + f (2t + 1)yp—1(t) —y2_1(t)] dt,n = 1,2,3, .. cxonures paroMepHo Ha [1,1.1] u He cxozurcs

paBHOMEpHO Ha [1, 2].

P-5.15

JlokazaTk, 9TO IOCIIEN0BATENLHOCTL (DYHKIMWH ¥y, (1), OIpenessemMast COOTHOIEHUSIMU
yo(z) = 0,

yn(z) = cosx — 2 — /sint [Yn—1(t) — cost]2 dt,n=1,2,3, ..
0

cxomurces paBaoMepHo Ha [0,0.1] u He cxoaUTCs PABHOMEPHO Ha [O, g]
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P-5.16

JlokazaTh, 9TO IOCJIENO0BATENLHOCTL (DYHKIMWH ¥y, (1), ONpenessemMast COOTHOIEHUSIMU

yn(x) =2 + 2/005(1‘ — t)Yn—1(t)dt,n =1,2,3, ...
0

CXOJINTCSI PABHOMEPHO HA JIIOOOM OTPE3Ke W HAWTHU ee IPeedr.

P-5.18
JlokazaTh, 4TO MOCIIEI0BATEIBHOCTD DYHKIMH Yy, (), onpesesnsieMast cooTHOImeHUsAME Yo(x) = 0, y,(z) =

xT
445 [sin(z — t)yn—1(t)dt,n = 1,2,3, ... cxoquTCsi PABHOMEPHO Ha JI00OM OTPE3Ke U HAliTH ee Hpesed.
0

P-5.19

JokazaTh, 4r0 mocjienoBaTe bHOCTh MYHKIME Yy, (), onpenensemas cooTHomenuamu yo(x) = 0, y,(z) =
x

5(cosx + sinz) + [[1 + 2(z — t)]y,—1(t)dt,n = 1,2,3, ... cxoouTCcsi pABHOMEPHO Ha JIOGOM OTPE3KE U HAHTH ee
0

npejeJl.

P-5.20

Wcnonn3yst Kakoe-m1b0 JOCTATOYHOE yCJIOBUE €IMHCTBEHHOCTH peleHns 3aja4du Korum, yka3arh 00/1acTH,
qepe3 KaXKIylo0 TOYKY KOTOPBIX IIPOXO- JIUT €IMHCTBEHHAS WHTErPAJIbHAST KPUBAS yDABHEHUS:

a)y' =y +a?,

6)y =z + y— =,

B)y = y® + T T,

r)(z +y)y' =xny,

n) xy' =e® +ctgy,e)y =y +\y — 2,
®)y' = (y+1)(y—1)3

P-5.21

Haiitn 3HavYeHMs BEIIECTBEHHBIX MAPAMETPOB (v, 3 W JIMHUM Ha TUIOCKOCTH, B KAaXKJO# TOYKE KOTOPBIX
HapyIIaeTcs eIUHHCTBEHHOCTD permenns ypapHenus: a) y' = y*(1 — )P,

6)y =y~ In” 1

By’ Iny =y*(1 - y)”.

P-5.22

ITpu KaKWX HAYAJIBHBIX JAHHBIX X0, Yo, Y1 3amada Komwm vy’ = f(z,v,9), vy (x0) = yo,y (x0) = y1 umeer
€JIMHCTBEHHOE PENICHNUE, eC/TH:

a)f (v,y.y) = 3 (y’+\/ 1),

6)f (z.y.y) = 5 In(zy - 1),

B)f (z,y,y) = %{/ =z, v)f(z,9,9") = ; (cosy’ +a°Iny/),
m) flayy) = (2= Yy —y),

e) f(z,y,y) =a% +sin (y —a?)°.

u\w

P-5.23

2
IMokazare, uro ypasuenue ¥y’ = 3 (y')3 npu naganbubix yeiaosusax y(0) = y'(0) = 0 umeer aBa pemienus.
ITouemy 9TO HE IPOTHBOPEYUT TeOpPEMe CYIIECTBOBAHUSI M €MHCTBEHHOCTH perenust 3amaan Komm?

P-5.24

IMokasars, uto ypasuenue y” = 2/|y’| npu Hauampubx yemosusix y(0) = y'(0) = 0 umeer aBa pemeHwust.
IToyemy 9TO He IPOTUBOPEYUT TeOpeMe CYIIeCTBOBAHUS W €IMHCTBEHHOCTU peleHus 3aiadu Kormm?
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P-5.28

Ipu kaxux n € N ypasuenne y™ = f(x,y), rae f(z,y) u %@’y) - HelpepbIBHBI Ha BCEil TIIOCKOCTH R?‘T’y)a
MOTYT HMETh CPEIH CBOUX PeIleHuii aBe (byHKINH:

a)yr = x,yp = x + %7

6)y1 =1 —coszx,ys = %x2?
P-5.29

Haiitu npoussommyio 1o napamerpy A upu A = 0 or pemtenus y = @(x, \) 3agaun Komm:

a)y' =y +X(2* +9%), y(0)=0,

6)y' = —y+A(z+y°), y(0) =0,

By = 2 + A(yP-2?), y0) = 0, v )y = -3y + Ay -=z), y0) = 0, x
v = y -y + A@+y’), w0 = 0, ¢ ¥ = ¥ -y + Ay —2z), y0) = 0, x)
y =2zy+A(y*+22), y(0)=0,3)y =—-2zy+(y*—2z), y(0)=0.
P-5.30

Haiitn %;?yo) npu yg = 0 ot pemennst y = ¢ (x, g, Yo) 3amaam Komn y' = f(x,y),y (zo) = yo, ecmm:

a)y =2y + 2%y’ — ¢, y(0) = yo,

6)y =y +2xy* +y°  y(0) = yo,

By = =2y +22%° + 4% y(0) =yo, v )y =~y —y* — 2%, y(0) = yo.
P-5.31

ITokazaTh, 9TO %,00,0) = 0 s pemtenns y = ¢ (x, o, 0) 3amaun Komn y' = f(z,y),y (x9) = 0, ecan:

a)y =y+a(y’+y*), y(0)=0,

6)y' =—y+2x(y’—y*), y(0)=0,

By =2y—x(y>+y'), y(0)=0,)y =-2y—2y(y’+2y), y(0)=0.
P-5.32

Haittu ¢ Tounocteio g0 O (m, )\2) pemenne 3amaan Kormrm:

a)y’ =2xy+ X (2z+y%), y(0)=0,

6)y = —2zy+ A (y* —2z), y(0)=0,

By =y’ +y+AMl+z), y(0)=0,

Ny =y*—y+x, y(0)=0,1)y =-y*+y+Air, y0)=0e) ¢ =-y>—y+Ax, y(0)=0.
P-5.33

Iyers y = p(z, \) pemenne 3anaun Komm 3y’ = y 4+ siny, y(0) = X. Haiitn 8¢é§,0) u 825&%’0).
P-5.34

I — /o 2 _ . d¢(z,0) 8% p(x,0)

yerb y = p(x, \) pemenne sagaun Ko i = A(1 — ) +y —y*, y(0) = 0. Haiitn =57~ u =55

P-5.35

Iycts y = o(x,a, ) pemenne 3amaun Komu 3"’ = ay — 3%, y(0) = 1, y/(0) = 3. Haiitu w u
O¢(x,1,0)

o8 -
P-5.36

Iyers y = ¢(z, @, B) pemenne 3amaun Komm y” = y + 3siny, y(0) = «, ¥'(0) = 4. Haiitu W u

d¢(x,0,0)
28
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4.2 Higher-order equations

P-5.37

ITycrs y(z) npu a2 > 0 ynosnersopsier ypasaernto y' = 1+ x + 100siny u 1. y. y(0) = 0. Jokaszars, 9T0
y(x) > 0 s Beex x > 0.

P-5.38

Oyukuus y(x) upu = > 0 yuosiersopsier ypasuennio y' = 2 + x2 +sin®y u 1. y. y(0) = 0. Unmeer au mymm
y(z) upu x > 07

P-5.39

@ynknus y(z) npu & > 0 ymosiersopsier ypaBHeHntoo y' = x + cosy. Hmeer su y(x) acuMOToTy mnpu
T — +o0?
P-5.40

®Oynkuust y(z) npu x > 0 yuosierBopsier ypaBHeHuwo y' = x + ﬁ CymecTByer i KOHEUYHBIH

limg 400 y(2)?

P-5.41

JlokazaTh, 9TO KaxKJ0€ pelIleHne ypasHeHus y =
KOHEYHbIe IIpeJie/ibl IIpU & — —00 U IIpU & — +00

m onpeneleHo npu —oo < r < +00 U UMeeT

4.2 Higher-order equations

4.2.1 Problems about the main types of equations that allow lowering
the order

P-7.p.1

Pemmre
/

vy =yy” — 2y

Bamernm, uro y = C - pemenne ypasaenns. Ilycrs nanee y # C. Ilepenecs yy'? B 1eByIo 4acTh ypaBHEHHH,
paszmesnnM obe ero gactu Ha y°. Ilomydaem

w' -y _ % <y> _ (1)
y? Y3’ Yy y?

1
=5 +C gy =1+Cy
y

Orcrona

B caygae C = 0 mmeem

2/ 2 ~
yy =1, (y):Z, Y- =2x+¢C.

B ciyuae C' # 0 nosryuaem

/
vy 1 2

=1, —In|l+Cy°|= Co.
15 Cy? , 2Cn| + y‘ z+ Co

ITocsrenmiorn hopMysly MOXKHO NPeobpa30oBaTh K BUILY

y? = Oy +0267é711., C1 # 0.

2x
Otser. y = C,y? =2z + C,y?> = Cy + Coe” 1, rae C, Cy, Cy - NpOU3BOJILHbIE TTOCTOAHHELIE, Ipu 3ToM C # 0.
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4.2.1 Problems about the main types of equations that allow lowering the order

P-7.p.2
Pemurn
x4y/// 4 2x3y” -1
Cuenaem 3ameny y” = z. Torma y” = 2/ u ypasuenne npeobpasyercst K suty v°z' + 22z = 5. Orciona
(.IQZ)I = (—%)/,l‘QZ = —% +C,z= —m% + -%. Bosspamasce k y, umeem
c 1 C 1 1
y//: 3~ T3 y/:71+72+02, y2011n|x|—f+02m+03.
T T T 2x 2x

Otser. y = Cy In|z| + Cox + C5 — ﬁ, rae C1, Co, C3 - IPON3BOJIbHbBIE TOCTOAHHBIE.

P-7.1p.3
Pemmre
v'y—-1)+y'(y—1)7% =y

3amerum, uto y = C' - pemenne ypapuenusi. [lycrs nanee y # C. Tlonoxus y — 1 = u, TOIyINM ypaBHEHUE

w4+ vt =2
BosbMeM u 38 HOBYIO HE3ABUCUMYIO TIepeMeHHY0 1 moaoxkuM ' (x) = z(u). Torga u”(x) = z-2'(u) n ypaBHeHue

npuMer Buj uz - 2 +u?z = z2. Bamerun, uro z # 0, Tax Kak ciydait z = 0 maer y = C.
CokpaTuB ypaBHEHHE Ha, Z, [IOJIyIaeM

uz' — 2 2\’
uz —z = —u?, o = -1, (a) =-1, z=-u?+Cu.
Orciona u' (1) = —u?+Cu. B caygae C = Ou = ﬁ, a B ciaydae C # 0% In } C’iu’ =x+Cy. Ilonarag u =y—1
U YIIPOCTHB II0JIyYE€HHOE BBIPAXKEHUE, TI0JIydaeM OTBET:
1 010260230
y=C y=1+ = y=l4 7 o

rme C, C1, Cs - mpon3BOIbHBIE TTOCTOSTHHBIE.

P-7.7.p.4

Pemute 3amaay Komnu

2y + )y’ +y% + 2y + m =0, y(vV2)=1-v2, y(V2)=v2-1

[Tonoxkus u = y + x, npeobpasyemM ypaBHEHUE K BUILY

1
2uu” +u? —14+ = =0.
)
Tak Kak 9TO ypaBHeHHe He comepkutT x, To nosoxuM u'(z) = z(u). Ipm stom u” = z - 2'(u) u ypaBHeHue
nopuMer Bux 2uzz’ + 22 — 1+ 1712 =0.
1o ypasnenune Bepuymm. Ilonoxus w = 2%, nomyuaem ww’ + w = 1 — %, (ww) =1 - L uw =

u—l—%—l—C,w:u'Q:lﬁ—u—g—kﬁ.
VunreiBas HauaIbHBIE JaHHBIE U paBeHCTBO U = % + 1, Haxommm, uro u'(v2) = v/2,u(v/2) = 1. Torma
C=0u?=1+ %,u’ = @, V1+u2 =z + C. Us yeaosus u(v/2) = 1 cnenyer, uro C = 0. Torma
1+ (y + x)? = . YunrbiBas HAUAJIbHbIE JAHHBIE JUIS Y, II0Jy9aeM OTCIOa OTBeT. y = Va2 — 1 — .

P-7.7.np.5

Pemurs 3amaay Kommm

vy = (y°+y?) thy, y0)=1, ¢ (0)=-1

Pemurs ypasrenus (1 — 17):
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4.2.1 Problems about the main types of equations that allow lowering the order

P-7.1
vy +ay?+y =0,2#£0

P-7.2

y//S + y/5 — (y// + y/) y//y/2.
P-7.3

Yy = % In % + y;,
P-74

4"y = 1.
P-7.5

yy// _ y/2 — y/y2'
P-7.6

3yy/y// — y/S + 2.
pP-7.7

5yy/3y// — y/5 + 4.
P-7.8

yy// — 7y/2 4 y4y/'
P-7.9

yy// — 2y/2 _ 4y2y/3.
P-7.10

(y?) + y) y// _ (3y2 _ 1) y/2 =0.
P-7.11

yy/// _ y/y// =0.
P-7.12

yy// — 2y/ + 2y/2.
P-7.13

(1 + y2) y// + 2yy/2 — y/.
P-7.14

(1 + yz) y// =y (y/2 _ 1).
P-7.15

4xy// _ y//2 — (y/ + 1).
P-7.16

20 —y)y" =y*+ 1.
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4.2.1 Problems about the main types of equations that allow lowering the order

P-7.17
"2 13

2yy'y"” — y"? = y’°. Haiitu pemienue ypaBHeHUs, yJOBJETBODSIOIIEE 3aJAHHBIM HAYAJIBHBIM YCIOBUAM

(18 — 38):
P-7.18

y"sin’z — (y'sin® 2 +y?) cosz =0,y (%) =0,y (%) = 1.
P-7.19

y" cos®z + (y cos?z +y?)sinz =0, y(0)=0,y'(0) = 1.

P-7.20
(z+ 1)y =y 50 > 2 y=2=0)(0) = (n -2~ k), k=0,1,..,n — 2, y»~(0) = 0.

P-7.21
zy™ =y > 2 y=2=R () = (n -2 - k), k=0,1,...,n — 2, y™D(0) = 0.

P-7.22

y" =5yy, y(0)=19(0)= -2
P-7.23

y' =y?+ 1 -y, y1)=y'(1)=1
P-7.24

y'+y?=y'ev, y(0)=0,y(0)=1.
P-7.25

yy" —y?+2=0, y(0)=14'(0)=0.
P-7.26

yy" =y*y"® +y”?,  y(0)=1,4(0) = -3.
P-7.27

Yy =e¥, y(=3)=0,y(-3) =1
P-7.28

2y =y? (3—4dyy?), y()=1y(4)=-1.
P-7.29

yy" —y? =y, y(1) =2,y(1) = -4
P-7.30

yy" =5y%+3y%y, y(1)=1,y(1) =-1.

P-7.31

vy = (Wt —y?)er, y(0)=1,9(0) = —

N[ =
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4.2.2 Problems about homogeneous and homogeneous in the generalized sense of the equation

P-7.32

20%y" =2y —yy?, y(1) =y (1)=1.

P-7.33
2%y +y? =4, y(0)=1,4(0) = —2.

P-7.34
3y -y —y+2=0, y(0)=0,y(0)=1.

P-7.35

2+ y)y — (VP +y+ D)y +y2 =0, y(@2)=14(2)=-1

P-7.36

2V +1)%y" + (¥ = 1)y +1=0, y(1)=0,y'(1) = 3.

4.2.2 Problems about homogeneous and homogeneous in the gener-
alized sense of the equation

P-7.1p.6

Pemnrs
22yy’ — bxyy — 2?y’? = 6y%, = #0.

3amernm cHavaia, 9o y = 0 - pemenne ypasaenus. [lycrs masee y # # 0. Y6eUBIIUCH B OJTHOPOJHOCTH IO
¥,y ,y" 3amaHHOrO ypaBHeHusl, BBOJUM HOBYIO0 (PYHKIIMIO 2 C IOMOIIBIO paBeHcTBa 3y’ = yz. Ilocie cokparienus
Ha y # 0 mosrydaem ypasuenue 2z’ — 5rz = 6.

O6IIIM pelnTeHneM 3TOro JIMHEHHOro ypaBHeHHs HepBOro MopsaiKa apigerca z = Cz® — % Orcioma u u3
3aMEeHBI HAXOJIUM, ITO

Y
LA PN P
Yy T
Pemmas aTo ypaBuenune, mosgyuaemM OTBET:
Ch 6
Yy= 76023: )
xT

rae C1 n Cy - NIpOU3BOJILHBIE IIOCTOSTHHBIE.

P-7.p.7

Pemurs
zyy” +xy? =3y, x#0.

JlanHOE ypaBHEHUSI SIBJISETCA OJHOPOJIHBIM 110 ¥, Y, 4y’ M €ro MOXKHO PENNTh, TOHU3UB MOPSI0K yPABHEHUS
C TTOMOITIBIO PEKOMEH IyeMOl 3aMEHbI.

OpHako ypaBHEHHE MOXKHO DPENIUTh W MO-IpyromMy. 3amerum, 9ro y = C - pemnenune ypaBHenus. llycTb
nasee y # C. Ecin umers BBUY, ITO

(zyy) = ayy” + 2y + yy/,
TO 3a,,Z[aHHOe ypaBHeHI/Ie MOXKHO 3allucaThb B BI/Iﬂe
! !
(zyy) = (29°)".

Orciona zyy = 2y? +C nm (myQ)l = 4y? +2C. Tonaras y? = u, IOJIy4aeM yPABHEHHE C PA3/Ie/IAIONIIMICT
HepEMEHHBIMI
zu = 4u + 2C.

Nurerpupys ero, moyuaem orBeT. y2 = Chz* 4+ Cy, Tiae C; u Cy - IPOU3BOIBHBIE TOCTOSIHHBIE.
b b
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4.2.2 Problems about homogeneous and homogeneous in the generalized sense of the equation

P-7.1p.8
Pemmurs 3amaay Kommm
2/, 1 / 2 _ _ ! —
(' +2yy) +22y" -2y =0, y(1)=3, ¢ (1)=-3.

IoncraBuBs B ypaBHeHne A2 BMecTo Z, A*y BMecTo y, A~ 1y’ BmecTo v’ m A° 2y BMecTo 3y, moTpebyeM, IT06EI
napaMeTp A BXOJUJI B OJMHAKOBOI CTEIleH: BO Bece claraeMble. ECIM 3TO BO3MOXKHO, TO HOCJIe COKPAIIEHNs Ha,
MHOKHATEJH ¢ TAKON CTEIIEHBIO A IOJIYYUM OIATh TO YK€ ypaBHeHue. I olpee/IeHns YUCIa § IMeeM PABEHCTBA,

245s—2=24+s+s5s—1=1+42s=3s
KOTOpBIe BhIOJHsAIOTCA Tipu s = —1. Tosaras x = ef,y = 2(t)e™ !, maxoaum, 1To
/ _ e —2t
y(z) = [2(t)e”"] e = (2 —2)e
_9t/ _
y//(x) _ [(Z/iz)e Qt] e t__ (Z//—3ZI+22)6 3t

ITocsie moACTANOBKY B ypaBHEeHHe BLIPazKeHHil Juid X, Y, Y’y 1 cOKpallenus Ha e~ ', IojaydaeM ypaBHEHHe

2" =32 4222 =0
c

B KOTOpOe He BXxomuT t. 3amerum, uro z = C' - pemenue storo ypasHenud. U3 samensr ciemyer, uto y = = -

perierne ucxomuoro ypasuenusi. [Ipu C' = 3 Takoe pelnenne yI0BJI€TBOPSET 33aHHBIM HAIAIbHBIM yCJIOBUSIM.

B CHJIy TeOpeMbl €IUHCTBEHHOCTHU PEIICHUA 3a/1a49U I{OH_II/I7 KOTOpasl B HallleM CJiy4da€ BbIIIOJHIACTCH IIPU T # 0,

JNPYTUX pelenui 3agannas 3aaa4a Komn ne nmeer. OTBer. y = % Pemwnre ypasuenus (39-53):

P-7.39

zyy” — (x4 Dyy' =y, z #0.

P-7.40

1!

yy"” —y? +y?sinz = 0.
P-7.41

yy' + vy _y/2 —0.
P-7.42

vyy” +yy' =2y? + %z #£0.

P-7.43

yQy/// _ 3yy/y// + 2y3 + y3 sine = 0.

P-7.44

22yy" = (zy’ +y)°,x #0.

P-7.45
wyy” —yy' = 2ay?,x #0.
P-7.46

yy" +yy' tgw +2y% = 0.

P-7.47

yy" +yy tgx = 2y
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4.2.2 Problems about homogeneous and homogeneous in the generalized sense of the equation

P-7.48

yy// o ;;73'{1 — 2y/2.

P-7.49
vyy” +2zy? =2y, x # 0.

P-7.50
zyy” + 2y +yy =0,z #0.

P-7.51
y2y// _ yy/ (y/ 4 %) + %y/?; =0.

P-7.52

2
Yy 13— 13,3
z Y =Y

yy/y// _

P-7.53

(x+ Vyy” +yy' = xy'?,x # —1. HaiiTu permenue ypaBHeHIs TIPU 33IaHHBIX HAYAIBHBIX ycaosusx (54-67):

P-7.54

yy" =1 —-2)y? y1)=19(1)=2

P-7.55

(yy" —y'*)sinz + y? = (sinz — cosz)yy',y () =y (3) = 1.

P-7.56
wyy” —ay? +y (v +y)sine =0, y(1)=1y'(1) =L

P-7.57
daeyy” —dyy' +y? =0, y(-1)=1,y/(-1) = -4

P-7.58
zyy” —dzy? +4yy’ =0, y(1)=1,9/(1) =2.

P-7.59
2zy’y" = 2xyy? + 22y = y'y?, y(1) =y'(1) = -L

P-7.60
(1 —sina)yy” +yy' cosz =42, y(0)=2,9'(0) =1.

P-7.61

VW —y)=y?y—22y), y1)=y'(1)=e.

P-7.62
zyy” +x2nz - 1)y? =gy, y(1) =1,9/(1) = -2
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4.2.3 Problems solved by different methods

P-7.63
oyy” + (1+2°) yy' +ay® =2y, y(1)=1y'(1) = L

P-7.64

YRy’ — Say?y + 3%y —yy? =0, y(1)=1,9/(1) = -2.
P-7.65

22y + 22%yy’ + 2xy? — 2y = 0,

a)y(l) =2,y'(1) =0,

6)y(l) =—-1,9(1) =1
P-7.66

aty’ —zyy +2(y—2?)y=0, y(1)=19(1)=3.

4.2.3 Problems solved by different methods

Bce 3a/[a91 9TOr'0O IIYHKTa MO2KHO pemaThb MeTO/aMU, N3JIO2KEHHBIMU B II. 1w 2.

P-7.68

C moMOIIbIO TTOJCTAHOBKY Y = 22 Pemutn

20%yy” + 4y® = 2%y + 2zy (v + V), x#0.

Pemurs ypasrenus (69 — 87):

P-7.69
yy// _ 2y/2 =0.

P-7.70

(1 +y)y" — (2y+1y? =0.

P-7.71
3yy” — 5y'? = 0.

P-7.72
4yy/2y// _ y/4 + 3.

P-7.73

2y =2y (y —x),z # 0.

P-7.74

zy" =y +22%yy’,x # 0.

P-7.75

yy// + 4y/ — y/2'

P-7.76
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4.2.3 Problems solved by different methods

P-7.77

2y (zy" +y') = x(x +2)y",x #0.
P-7.78

vy’ = (vy —2y)°,x #0.
P-7.79

vy =’ +v)y.
P-7.80

yy" + 29" = 3yy'.
P-7.81

(y+1y" + 745 =9~
P-7.82

2x2yy" + 4y? = 2%y’? + 22yy’, x # 0.

P-7.83
x2yy”" + 2%y’? — Sryy’ +4y? = 0,2 # 0.

P-7.84

3
oty — 22 (zy' —y) — (zy' —y)” = 0,2 # 0.
HaiiTu pernenue ypasHeHus IPH 33 [AHHBIX HAYAJBHBIX ycsoBusx (88 — 95):

P-7.88

ayy” +y? =ay?+ (- Dyy, y(1)=y'(1)=2.

P-7.89
(I+yy +zy? =0, y(1)=0,y(1)=3.

P-7.90

YW +y) =y (e 1), y0) =)= 1.

P-7.91
(y+2)y" +y? =cos2z, y(0)=-2,9'(0) = 1.

P-7.92

2(yy" —y?) = (W*—2yy)e”, y(0)=1,9(0)=2.

P-7.93

v (yy" —y?) =y Inl, y(1)=y (1) =1

P-7.94

ry" —y' =atcoswy (5) =0,y (3) = Ly" (3) = 5.
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4.2.4 Problems about linear equations with constant coefficients

P-7.95

3y'y" — 29" =16, y(1) = 2,9/(1) = 0,y”(1) = —2. HaiiTu unTerpagbHble KPUBbIE, a) KACAIOIAECST
apsaMoit y = 1,
6)nepecekaomue upsMyio y = 1 oz yriom ¢ = = wm ¢ = 35 nnst ypasuenuii (96 — 97):

P-7.96

9 (yy// _ y/2) + 31/3//4 =0.

P-7.97
y(1—Iny)y” 4+ (1+1Iny)y? = 0.

P-7.98

ISt BHEHIS = HaWTH HHTerpajbHLIC KPHBEHIE, II KAIOIIIe OCh UHAT II
aBHe 1+y?)y" = 3y'y'"? na erpa. e e, IlepeceKalomue och O aT 110

HPSMBIM YIVIOM M MMEIOIIUE B TOUKe [epecedeHrs] KPUBU3HY, PABHYIO a) HyJIIO,
6)eauuue.
HaiiTu perenue ypaBHeHUs IpH 33J@HHBIX ycaoBuax (99 — 102):

P-7.99
y'+2(1—y)y' =0,y (x) >0 B(z,1).

P-7.100
yy" =2y =20y, y(2) =y (2) #0.

P-7.101

2uy” —y? +2yy’* =0, y(1) y?(1) =1

P-7.102
2

yy" +yy'tgx = (1 —sinz)y?, (0)-y'(0) <0.

4.2.4 Problems about linear equations with constant coefficients

P-8.mp.1
Pentuts cieayromue auHeitHbIe OHOPOIHBIE YDABHEHUSA:
a)yIV _ 6y/// 4 8y// 4 6y’ _ 9y — O,
6 yIV + 6y//l + 13y// + 12yl + 4y — 0’
Yy

)
B) v _ 3y/// + 5y// _ y/ _ 10y = 0.
a) CocrasJisiem XapaKTEePpUCTUYIECKOE YpaBHEHNE

A —6A% +8A% + 61 —9=0.
Jlerko BuzETH, YTO €ro KOPHAMHU ABIASIOTCT A1 = —1, Ay = 1. UTo0bI HaiiTH OCTA/JBPHBIE KOPHU, TOCTATOTHO

Pas3/ieIuTh JIeBYI0 4acTh XapaKTePUCTUYECKOI'0 ypaBHEHUdA Ha ()\2 - 1). Torpa ypaBHEHHE MOXKHO Pa3JIOKUTh
Ha MHOXKHUTEJIU CJIeTYIOMEero BUIa

(P=1) (A =6x+9)=(N-1)(A-3)*=0.
Takum 06pa3oM MmoJrydaeM erne OfiuH KOpeHb A3 = 3 KparHocTu ABa. CjieoBare/ibHO, 0bIlee pereHne 33, [aHHOTO

ypaBHeHI/IH nMeeT BU
y=Cre " + Coe® + (C3 + Cyz) 37,

rae C1,Cs, C3, Cy - IpOU3BOJILHBIE TIOCTOSHHEIE.
6)Herpyauo npoBepurb, 9ro A\ = —1 u Ay = —2 ABJISIOTCH KOPHIMU XaPAKTEPUCTUIECKOIO YPABHEHUS

M 46X3+ 1302+ 120 +4 = 0.
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4.2.4 Problems about linear equations with constant coefficients

B Takom CJIy4dae 9TO YypaBHEHUE MO2KHO IIPEJICTaBUTH B BUJIE
A+ 1)*(A+2)2=0.

Orcroma BUgHO, 4TO 00a KOpHS A1 = —1,\o = —2 KparHOCTH JBa. J3HAYNUT, OOIlee pelleHue 33 aHHOIO
YPaABHEHUS] UMEEeT BU]

y = (Cp+ Cox)e™® 4 (C3 + Cyx) e 27,

rae Cp,Cs, C3,Cy - NpoU3BOJIbHBIE TIOCTOSIHHBIE.
B) XapaKTepUCTHIECKOE yPABHEHUE

M3 4+502-2A—-10=0

umeeT KOpHU A1 = —1, Ao = 2. Pasuenus seByio yacTb 3roro ypasaenus Ha (A+1)(A—2), noxygaem cieyiomee
IIpeJICTaBIeHNe XapaKTePUCTUIECKOTO yPaBHEHHUS

A+1)(A=2) (\> =2Xx+5) =0.

DTO JIaeT ele JBa KOMILJIEKCHO COIPsi2KeHHbIe KOpHU A3 = 1 — 24, \y = 1 + 2¢. CuenoBaresbHo, 00IIee penieHue
3aJIAHHOTO yPABHEHUS MMeeT BUJT

y=Chre % 4 Cre® + e (C3 cos 2z + Cy sin 2x)

JLJ1st perieHust JIMHEHHBIX HEOIHOPOIHBIX yPABHEHMIA C IIOCTOSIHHBIMU KO3 DUIMeHTaMU UCIIOJIb3YOTCs dallle
BCEr0 MEeTOJ HEOIIPEIEJIEHHBIX KOI(DMUIINEHTOB U IPUHIIAI CYIIEPIIO3UIIIH.

P-8.11p.2

Pemmth uHeitHOE Me0THOPOIHOE ypaBHEeHNe
y" —y" — 4y + 4y = —8(cos 2z + 2sin 2x) — 3e”.
Crauasia cOCTaB/ISEM XapaKTePUCTHUECKOe yPaBHeHHe
A=A —4X+4=0.

Ero kopusimu siByisitorcst Ay = —2, Ao = 1, A3 = 2. IlosTomy o0OIriee perieHre COOTBETCTBYIOIIETO JIMHEHHOTO
OJIHOPOJTHOTO YPABHEHUsI NMEET BUJ

yo(x) = Cre 2 + Che” + C3e*®

rne C1,C5,C3 - TPOM3BOJIbHBIE MOCTOSHHBIE.  UTOOBI MOJYYATH OOINEe peIleHrne 3aJaHHOTO yDABHEHWS,
HeoOXOMMO HalTh Kakoe-jmbo ero pemieHne yp(r) n IpubAaBUTH K y¥Ke HalJeHHOMY OBIIeMy perneHuo yo(x)
JIMHEHHOrO 0JHOPOAHOrO ypaBHeHus. COIIacHO NPUHIMIY cynepro3unuu pemienue yi(x) = yo(x) + ys(x), vae
y2(2) - KaKoe-IMbo peleHne ypaBHEHUsT

y" —y" — 4y + 4y = —8(cos 2z + 2sin 2z),

a y3(x) - Kakoe-1ubO pelleHne ypaBHeHHs]

"

y" —y" — 4y + 4y = —3€".

Pemmenne ys(z) nmem B Buje
ya(x) = acos 2z + bsin 2z

a perenne ys(r) UIeM B BUJIE
ys(z) = cxe”,

rie kKoo durmenTs! a, b, ¢ HaX0UM TOJCTAHOBKOM Y2 (2) U y3(z) B cooTBeTCTBYOMNE ypaBHeHus. 11ojcTaHOBKa
ya(z) u ys3(x) B ypasuenus maer a = —1,b = 0,¢ = 1. Takum obpazom, yi(z) = — cos2x + xe® - penienue
ucxonHoro ypasHenust. OOmiee pemienne 3ananHoro ypasaenust y(z) = yo(z) + yi(x). Ipyrum merogom
pelieHusl JIUHEHHBIX HEOJHOPOIHBIX YPABHEHUH C OCTOAHHBIMU KOI(DMUIMEHTAMU SBJISETCH METO]] BAPUAIN
HOCTOSTHHBIX.
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4.2.4 Problems about linear equations with constant coefficients

1

P-8.1p.3 Pemuth MeTo/ oM Bapuanuu MOCTOSIHHBIX ' +y = —5—

(M Hamumy JIydine MeToJ| BApMAIMN MOCTOSIHHBIX!! IMOKa HyKHYIO CHCTEMY TOJIYyUAr0 MeJJIeHHee, UeM MOT
6Obl.)

Pemmurs METO/IOM BapHuallN IIOCTOAHHBIX

y”—f—y:T
COS“ X

XapaxTepucTuieckoe ypasaenne umeeT Bug A2 + 1 = 0. Ero xopuum A\, = —i, Ay = i, u obIlee pereHue
JINHEHOTO OJTHOPOJIHOTO YPAaBHEHUsT NMEET BUJT

y=Cjcosx + Cysinz,
rae Cp u Cy - npousBosibHbIe 1TocTosiHHbIe. OOIIee pellieHre HEOIHOPOIHOI'O UIEM B BHJIE
y = Ci(x)cosx + Cy(z) sinwz,

rue Cq(z) u Co(x) - HensBecTHBIE T0KA HeNPePbIBHO Auddepennupyembie GyHKuu. COrsiacHO METOJY BapUAIIN
MTOCTOSTHHBIX COCTABUM CUCTEMY ypPaBHEHUIA

Ci(z)cosx + Ch(x)sinx = 0,

1
— Cj(x)sinz + Cy(r) cosz = ——.
1(z) + C3(x) oz
Orciona naxomum, aro Cf(z) = ——, Ch(z) = — 8L Jnrerpupys, Horyuaem
dx cos xdx dsinx 1 sinx + 1
Cy(z) = = = = In|l——|+A4,
1(@) /cos:z: / cos? /l—sin2x 2 sinx1‘+

in xzd d 1
Cz(w):_/smxx:/ cosT _ + B

cos? x cos? x cos T

rne A u B - npoussosibHBIE TIOCTOsiHHEBIE. [osicTaBisst Hafinennble sHaderns Cp(x) u Co(r) B BIpaXkeHue Jist
Y, HaiizeM o0Imee perteHne 33/ IaHHOTO yPABHEHMS

1 i 1
y=Acosz+ Bsinz + - In szt b

cosr —tgx.
D) g

sinx — 1

(?? ¢ aruM Bpose ObLIU TPOGIIEMBI, HY?KHO IIOTPEHUPOBATLCH erre!)

P-8.ip.4. vy’ — 4y’ + 3y = 2 (e' + %) ma meron Jlannaca

(77?7 HyKHBI 9T TAGIUIBI U METO/IbI B TEOPUH, MOKa cJ1abo Tam!)
OrneparioHHBIM METOJIOM PentuTh 3aa4dy Ko

y'— 4y +3y=2(e"+¢e*), t>0, y0)=-1, y'(0)=1.

(7?77 3auem Kak HUXKE Mbl TaK CIMTAEM, 4TO HOJIb??? HOACTABHIU OPOCTO Obl U BCE??)
Bynem cuanrath, uro npu t < 0 permenue y(t) = 0 u npaBasg 4acTb ypaBHEHUs TOXKJICCTBEHHBIN Hysb. Torma
TaK HPOJOJIKEHHBIE HA BCIO YHCIOBYIO OChb ¢ € (—00,+400) pellleHne U IpaBas 4acTb yDaBHEHUS SBJISIOTCS
opurunanamu. Eciu y(t) = Y (p), To B cuity cpoiicT npeobpasosanusi Jlamaca n HadanbHbIX ycaosuit y' (t) =

pY (p) + 1,y"(t) = p?Y(p) + p — 1. Tlponomkennas mynem npu ¢ < 0 TpaBas YaCTh YPABHEHHS WMEET CBOWM
npeobpazoBannem Jlamnaca dyHKIuO 2 ﬁ + 1)%3) [Tepexomst B MCXOMHOM ypaBHEHUH K IIPEOOPa30BAHUIO

Jlamnaca, T. e. yMHOXKasl ero Ha €~ P! u uHTerpupys 1o t oT HyJs J0 GECKOHEUHOCTH, TI0TydaeM ajrebpandecKoe
ypaBHeHue Jyist HaxoxaeHus Y (p)

PY (p) +p—1—A[pY (p) +1] + 3V (p) = 2 (1 . 1) ,

p—1 p=3
Eciu canrarh KOMIUIEKCHBINH TapaMeTp p TaKuM, 970 Rep > 3, To u3 ajrebpandeckoro ypaBHEHUs] HAXOIUM
1 2 2
Y(p) = [ + —p+#-
p-D-3)p-1 p-3
Paznoxxum mpaBy1o 4acTh Ha IpoCThIe Ipodn
A B c D
Y(p) = + + +

Cp—1 (p-12% p-3 (p-3)?%
[TpupasuuBas Bbipazkenus g Y (p), Haxomum

A= -2 B=-1,C=1,D=1.
[Tepexons k opurmHAIaM, TOJTyIaeM UCKOMOE DEIIeHre

y(t) = (t+1)e’ — (t+2)e".
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4.2.4 Problems about linear equations with constant coefficients

P-8.11ip.5 ypaBHeHue itjepa

Pemurs npu > 0 ypaBuenue ditjgepa
22y — xy — 3y = 423,

CranjapTHo, ypaBHenue Ditiepa pemaercs samenoit v = ef, y = e~tyl v = e~ (y, — y,). Homcrasum,
HOJTY <IHM:
y// _ 2y/ _ 3y — 463t.

XapaxTepucTuieckoe ypasHerne A2 — 2\ — 3 = 0 mmeer xopHm A\; = —1, Ay = 3. CienoparesnHo, obmee
pellleHne MOy IEHHOTO YPABHEHUsI C MOCTOSTHHBIME KOI(MDUITMEHTAMA UMEET B,

y(t) = Cre ™ + Coe® + ate®

rne C; u Co - IpOUM3BOJIbHBIE IIOCTOSHHBIE, & KO(D@MUIMEHT ¢ HAXOJUTCH IOJCTAHOBKOW (DyHKIUU atedt B
ypasuenue. llojacranoBka B ypasHenue maer ¢ = 1. CremaB obparHyo 3ameny t = Inx, moaydaem obiiee
pellleHne 3a/JaHHOr0 ypaBHEHHsT Dijiepa

C
y(z) = = + Coa® + 2° Inw.
x
Pemure snneitnbie onHopoauble ypasuenus (1-38):

P-8.1
y" — 4y + 3y =0.

P-8.2
Yy’ — 6y’ + 8y =0.

P-8.3
y" + 3y +2y=0.

P-8.4

y' —1y —2y=0.

P-8.5
y" + 5y + 6y = 0.

P-8.6
y' — 4y +8y=0.

P-8.7
Yy’ — 6y + 18y = 0.

P-8.8
y' —2y + 10y = 0.

P-8.9
Yy 4+ 2y + 5y = 0.

P-8.10
Yy’ + 2y +2y = 0.
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4.2.4 Problems about linear equations with constant coefficients

P-8.11
y' — 4y +4y = 0.

P-8.12
y"' — 6y + 9y = 0.

P-8.13
y"' — 8y + 16y = 0.

P-8.14
y/// + 4y// _ y/ — 4y = 0.

P-8.15
y/// + 3y// _ y/ _ 3y — O

P-8.16
y/// _ 7y/I + 14y/ _ 8y — 0

P-8.17
y/// + 4y// _|_ 5y/ _|_ 2y — 0

P-8.18
y/// + 3y// — 4y =0.

P-8.19
y" =3y’ + Ty — 5y =0.

P-8.20
y/// + y// + 4y/ + 4y — O

P-8.21
y/// + 3y/l + 4yl + 2y — O

P-8.22

"o n

y"' =y +y —y=0.

P-8.23
yIV _ y/// + 2y/ =0.

P-8.24
yIV _ 7y/// + 14y// _ 8y’ =0.

P-8.25
yIV _ 5y/// + 7y// _ 32// =0.

P-8.26
yIV _ Gy/// + 9y// 4 4y/ _ 12y = 0.
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4.2.4 Problems about linear equations with constant coefficients

P-8.27
yIV + 5y/// + 9y// 4 7y/ 4 2y =0.

P-8.28
yIV + 2y/// + 2y// 4 2:1/’ + Y= 0.

P-8.29
yIV _ 2y/// + 2y// _ 2@/’ + Y= 0.

P-8.30

yIV—Zy”+y:0.

P-8.31
yIV + Gy/// + 121,/” + 8y’ =0.

P-8.32
yIV + 2y/// _ 2y” 4 2y/ _ Sy =0.

P-8.33
A% n " / _
y' ' —=5y"" +5y" + 5y — 6y =0.

P-8.34
yIV + 5y// _|_4y =0.

P-8.35
y'V + 8y"” + 16y = 0.

P-8.36
y" +3y" + 2y = 0.

P-8.37
y™V +18y" + 81y = 0.

P-8.38
y" 4+ 3y" 4+ 3y’ + y = 0. Pemurs juneiinbie Heoguopoanbie ypasuenus (39 — 151):

P-8.39
v =3y + 2y = (1 + z)e®.

P-8.40
y// + 2y/ + Y= 332€_I.

P-8.41
y' —y — 2y =—9xe %,
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4.2.4 Problems about linear equations with constant coefficients

P-8.42
y' +y — 6y = —1822e~ 7.

P-8.43

y' —y=e*cos.
P-8.44

y' =y + %y = e%sinzx.
P-8.45

y" — 4y + 4y = x? + 2e3°.
P-8.46

y" +1y — 2y =2ze % + 5sinx.

P-8.47
y" 4+ 4y = dze >* — sin 2z.

P-8.48

€T

y" +2y — 3y = 2cosx — 8xe 37,

P-8.49
y" 4+ 9y = 6xe 3% — 3 cos 3.

P-8.50
y" + 6y’ + 9y = 36xe37,

P-8.51
y" — 4y + 4y = 32xe 27,

P-8.52
v +y' = (5—2x)e”™ — 10sin 2.

P-8.53
y' —y = (4o + 3)e” — 2cos x.

P-8.54
y" — 4y’ = —8e%® cos 2z — 8x + 2.

P-8.55
y" — 4y + 13y = —9 cos 2x — 8sin 2z.

P-8.56
y// + 4y/ + 4y — 2672$.

P-8.57
y" — 2y + 5y =4cosx + 2sinz.
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4.2.4 Problems about linear equations with constant coefficients

P-8.58
y" — 8y + 20y = —2e3%(2cosx + sin ).

P-8.59
y" 4+ vy — 6y = —5e 3%,

P-8.60
y// _ 2y/ +y — 261

P-8.61
Yy — Ty + 12y = —€37,

P-8.62
y" — 2y + 3y =4cosx — 2sinx + 4e3*.

P-8.63
y" +2y — 3y = (2 —8x)e 3.

P-8.64

2ZE< 39:.

y' —y — 12y = e **(Tcosz — bsinz) — Te™

P-8.65
y" + 4y = 2 cos 2x — 8z sin 2.

P-8.66
y" + 4y = 2cos? z.

P-8.67
y" + 16y = 2sin® z.

P-8.68
y" — 5y’ + 6y = 10sinx + e2*.

P-8.69
y' + 2y +y=uxe "

P-8.70
Yy — Ty + 6y = sinx + ze®.

P-8.71

y' +y = 2sinx - sin 2z.

P-8.72

"

Yy =2y

" / —2z

3y =e

P-8.73
y/// _ Qy// _ Sy’ =z 4+1.
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4.2.4 Problems about linear equations with constant coefficients

P-8.74

/.

y" -y +y —y=2cosz.

P-8.75
y" —2y" 4+ 2y’ = 5cosx + 2.

P-8.76

y" + 4y = ch®z.

P-8.77
2

y" — 4y’ = cos® x.

P-8.78
y" + 16y’ = sh? 2x.

P-8.96
y/// o 3y// + 4y — 6629’7.

P-8.97

"

y" —y" —y +y=e"(3sinz —4cosx)
P-8.98

y" —8y" + 19y’ — 12y = 2e3* — 8cosx — 36sin .

P-8.99
y" +y’' =e "+ 2cosz.

P-8.100

y" —2y" =sinx.

P-8.101
y/// _ 2y/1 — o2z

P-8.102

y/// + y// _ 2]/ — 631.

P-8.103
y/// +y// _ 2]/ =9 _ 1.

P-8.104
y" 4+ 2y" = cos .

P-8.105
y" —2y" 4+ 2y’ = 4x + cos .

P-8.106
y" — 16y’ = 4822 + 2 cos? 2x.
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4.2.4 Problems about linear equations with constant coefficients

P-8.107
.2
y"" —2y" + 2y = 20sin" 3.

P-8.108
Y 4y = e%® — 8sin 2z.

P-8.109

y" +y” + 4y + 4y = 40 sin’ z.

P-8.110
y,/, + 2y// _ 26721.

P-8.111
Y — Ay + By = 1522 — 42 + 8sin x.

P-8.112
y" —2y" + 2y = 622 + 2 + 20 cos 2x.

P-8.113
y" —6y"’ + 10y’ = 13 cosx + 10x.

P-8.114
y/// + 2y/' 4 5y’ =21 — 17sin 2z

P-8.115
y" —2y" +y =22+ 2cosz.

P-8.116
y" —2y" = 16sin 2z — 12z.

P-8.117
y/// _ y// + y/ -y = 4l‘€m +4

P-8.118
y" 4y +y +y=4dxe ™ + 4.

P-8.119
y" —y" + 4y’ — 4y = 40 cos® z.

P-8.120
vV — 2y +y =1+ 22

P-8.121

yIV —y=e"cosx

P-8.122
yIV + 2y// _|_y = Qj2 —|—9$1n256
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4.2.4 Problems about linear equations with constant coefficients

P-8.132
4y —y" =122sh* § +3 (8 — ze ™).

P-8.133
y!V — 4y” =16ch®z — 8

P-8.134
y'V — 2y 4+ 2" = 10cos? x + 5 (ze® — 1).

P-8.135
y!V' — 2y — 3y" = 8sha + 10xe®.

P-8.136
y'V + 2" +y = 18sin? z + 3sin 2z + 2°.

P-8.137
y"V =2y +y=8ch?§ +a? - 27"

P-8.138
y'V 4y — 2y = 3e* + 32e27.

P-8.139
yV +y" = 8 cos?

N

P-8.140
yIV — 3y" — 4y = 24 cos 2z + 20?7

P-8.141
y'V 4+ 3y" — 4y" = 5sha.

P-8.142

y'V —y = —8(cosx + 3sinx)e?® — e~ 7.

P-8.143

y!V' —y" =4z cosx + 12sinx — 2e”.

P-8.144
y!V —4y" 4+ 3y" = 4dcosx + 8sinx + 6.

P-8.145
yIV + 7y/// + 16y” + 10y’ — —He T,

P-8.146
y”/ —3y" +4y = —cosx + 7sinx + 4.
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4.2.5 Problems about the method of variation of constants

P-8.147
y'V +3y" + 3y +y' = 2(sinx — cosz) + 2x + 6.

P-8.148
y'V —2y" 4+ y = 8e” — 4cos .

P-8.149
yIV _ y/// _ y// _ y/ _ 2y = —6e 7.

P-8.150
yV —y" =3y +y +2y = —5(cosx + sinz)e 7.

4.2.5 Problems about the method of variation of constants

(152 — 171):
P-8.152

vty = g
P-8.153

y// _ 3y/ + 2y = H’%'
P-8.154
y//_gy/+2y: %

P-8.155

P-8.157
y// _ 2y/ 4 loy _ _9e”

cos 3z’

P-8.158
y' — 4y +8y =4 (7 — 21z + 182%) Y.

P-8.159
Yy +y=—ctg?z.

P-8.160
y" — 4y = (15 — 1627) /.

P-8.161

—2x

Yy Ay dy = oo
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4.2.6 Problems about the operating method (?!!!)

P-8.162
y// + 3y/ _ 3z—1

2

P-8.163

22
y// _ 4y/ +4y = fsz

P-8.164
y'+y =7(4+ 3z) Y.

P-8.165

y// + 2y/ + 2y _ e "

sinx*

P-8.166

y" + 2y = 2 — 422 sin 22

P-8.167

y// + 2y/ + 5y — 27"

cos 2x

P-8.168
' +2y +y=(z+2) (Inz+ 1)

P-8.169
y" — 2y = —2 — 42? cos 2.

P-8.170
y// _ y/ — _z;;l'
P-8.171

y' =2y =1 —2In(ex).
4.2.6 Problems about the operating method (7!!!)
upu ¢t > 0 sazaay Komm (172-183):

P-8.172
y' =3y +2y=et y(0)=0,9(0) =1

P-8.173

y' —y —2y=3te’, y(0)=1y'(0)=0.

P-8.174
y" =5y +4y = (10t + 1)e~t, y(0) =y'(0) =0.

P-8.175
y' +5y +6y=e? y(0)=-1,9(0)=0.
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4.2.7 Problems about Euler’s equation

P-8.176
y' =2y +y =2, y(0)=y(0)=1.

P-8.177
y' +2) +y=(t+2)e", y0)=1,y(0)=-1
P-8.178

y" =2y — 3y =4e’ —4de”t, y(0) =2,¢/(0) = 0.

P-8.179
y' +y=4cost, y(0)=1,y(0)=-1.

P-8.180
y' +y=>5te*, y(0)=0,y(0)=1.

P-8.181
y" +9y =6cos3t+9sin3t, y(0)=1,4'(0) =0.

P-8.182
y" + 4y = 4(cos 2t +sin2t), y(0) =0,y'(0) = 1.

P-8.183
y" 4+ vy =2(cost —sint), y(0)=1,y'(0)=2.
4.2.7 Problems about Euler’s equation

Pemurs npu « > 0 (184-207):

P-8.184
2y + 22y’ — 12y = 0.

P-8.185

222y — a2y — 2y = 0.
P-8.186

422y" — 3y = 0.
P-8.187

2y — 22y’ — 4y = 0.

P-8.188
z%y" + 5xy’ + 8y = 0.

P-8.189
222y — 3xy’ + 3y = 0.
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4.2.8 Problems about arbitrary method for Cauchy problem

P-8.190
2%y’ — 6y = 0.

P-8.191
222y" + 5xy’ — 2y = 0.

P-8.204

22y +3xy — 3y =—=

P-8.205

22y" —xy — 8y = 1123 Inz.

P-8.206

6
T

2352?/’ ery/ —y=—
P-8.207

2y’ -2y =%

4.2.8 Problems about arbitrary method for Cauchy problem

(208 — 236):

P-8.208
y'+y=—2sinz, y(0)=0,y(0)=1.

P-8.209
y' —y —2y=—18ze %, y(1)=5e",y/(1) =3e L.

P-8.210
9y" +y=06sing, y@Br)=0,9(37)=1

P-8.211
y'4+y =cos(x—1), y(0)=1y'(0)=0.

P-8.212
4y’ +y=4cosg, y(m)=0,y(r)=7.

P-8.213
y'+y=2sin(z+1), y(0)=1y(0)=0.

P-8.214
y' =2y +y=2", y(1)=0,y(1)=—e.

P-8.215
y" =3y +2y =2ze®, y(l) =e,y' (1) = 5e.
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4.2.8 Problems about arbitrary method for Cauchy problem

y// - 4y/ — _8e2% cos 21 — 8 + 2, y(O) — 5)y’(0) = —06.

P-8.217
y" + 3y +2y =—2cos2z — 6sin2z — e~ 2, y(0) =3,y (0) = 7.

P-8.218
y" — 2y — 3y =4cosx — 2sinx +4e3*,  y(0) =5,y'(0) =T.

P-8.219
y" +y=sin(z—1), y(0)=1y'(0)=0.

P-8.220
y'+y=_—, y(0)=0,y(0) =1
P-8.227

4r%y" — 3y =522, y(1)=1,9(1) = 2.

P-8.228

2y’ +ay —y =2z, y(1)=0,y(1)=1

P-8.229
y" +y =2z, y(0)=0,9(0)=1,9"(0) =2.

P-8.230

y" —y =6-32%, y(1)=1y'(1)=0,y"(1) =3.

P-8.231
y'V+2y" +y=0, y(0)=y"(0)=0,4(0)=24y"(0)=—4.

P-8.232
y" +6y"+ 11y + 6y =2 +z+1, y(0) =y (0)=1y"(0)=0.

P-8.233
y" —6y" + 11y —6y =1, y(0)=1y'(0) =y"(0)=0.

P-8.234
yV =2y +2y" =2y +y=Z +4cosz, y(0)=2%,y(0)=1,9"(0) =0, y"(0) = -3.

P-8.235

y® + 290 — 297 — =0, y(0) = y’(0) = y@(0) = y@(0) = 0,4(0) = 2, ¥y(0) = 2,4(0) =
1y (0) = 11

P-8.236
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4.2.9 Problems about second-order linear equations with variable coefficients

P-8.237

Haiitn pemenue ypasnenusi iy — 3y’ — 2y = ze™*, orpaHMYeHHOe IIpU T — +00 W YJIOBJIETBOPSIOIIEE
yeosusm y(0) = 1,4/(0) = 0.

P-8.239

Jokazarb, 910 JI0060€ peIrleHne ypaBHeHUs
yV _ yIV _ 9y/// +y// +20y/ +12=0

OJJHO3HAYHO IPEJCTABUMO B BHJE CyMMBbI pernenuil ypasuenuii y”"' —y” - =5y’ — 3y =0u y"” — 4y = 0.

P-8.240

Bepno s, uto Kaxkjoe pemenue ypapaenus 3y — ' — 2y = 0 yaoBjaeTBopsieT ypaBHEHUIO

yV o 3yIV . y/// + 7y// o 4y =07

4.2.9 Problems about second-order linear equations with variable co-
efficients

P-9.mp.1
Haiitu obiriee pernrenne ypaBHEHU
oy’ — (1 + )y +2(1 — )y = 92%e**, x> 0.
PaceMorpuM oHOpOIHOE ypaBHEHUE
vy —(1+2z)y +21—-2)y=0

u orpobyeM HaiiTu ero pernenue Buga e, [logcraBus e*? B 310 ypaBHenue, naxoguMm a = 2. CiresioBaTesbHO,
e?* - pemenne. 3amumem dbopmyy JInysunasa-OcTporpajicKoro Jis OJHOPOJHOTO YPABHEHHS:

14x

= Cel =5 = Oge®.

€ Y
Y

2x
2629:

Orciona 2y’ — 2e?*y = Cxe®. Ilpu neenun obenx gacTeil 3TOro ypaBHeHHs Ha et HojydaeM ypaBHEHHE

(i)l = Cze .

e2x
Orcrofia Haxo MM 00ITee PEIieHne OIHOPOIHOTO YPaBHEHUsT
y = C1e** + Ca(1 + 3z)e™ 7,

riae C; u Cy - NPOU3BOJIBHBIE MOCTOsIHABIE. ITOOBI HafiTH OOIIEe PelIeHne 3aJaHHOT0 yPABHEHUsI, TPUMEHUM
METOJl BAPUAIIUM HOCTOSHHBIX. VIIeM pemeHne HEeOMHOPOJHOrO yDABHEHMs B TAKOM 2Ke BHJE, Kak ofree
pellieHre OIHOPOAHOrO ypapHeHus, HO cuutaeM C; u Co

HE TIPOM3BOJIBHBIMA IIOCTOSHHBIMHU, & HEKOTOPBIME HenpepbiBHO muddepenmupyeMbivu dbyHKusMu. st
UX HAXOXKJIEHUSI COCTABJIsEM JIMHEHHY0 cucteMy ypasHenuit quist Cf () u Ch(z) caemyrormero Buia:

Ci(z)e** + Ch(z)(1 +3x)e =0
201 (z)e*® + Ch(z)(2 — 3z)e % = 9re?®

s sroit cucremst naxonum, aro Cf(z) = 1+ 3z, Cy(z) = —e3*. Cnemosarenso, C1(z) = A+ + 322, Cs(z) =

B — %e?’w, rie A u B - npousBoJIbHBIE [TOCTOsIHHBIE. TakuMm 06pa3oM, oDllee pelleHre 3aJaHHOIO YpPaBHEHUS

nuMeeT BUJT
3 1
y = eQz (A + xr + 23:2) + (1 + 31‘)8_z <B - 3€3m> =
3, 1

= Ae** + B(1 + 32)e " + (235 - 3) e,

JlpyruMm pacupoCTPaHEHHBIM METOJOM DeIeHUs JIMHEWHBIX YPaBHEHUI C IepeMeHHBbIMH KO3 dUIeHTaMu
ABJIAETCS METOJ], 3aMEHbI ITIePEMEHHBIX.
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4.2.9 Problems about second-order linear equations with variable coefficients

P-9.ip.2

Haiitu obimee perrenne ypaBHeHUsT

41 3.7 v
2y 2%y —y=— , x>0,
er —1
C TIOMOIIBIO 3aMEHbI T = f%.
ITocse 3aMeHbl ypaBHEHNE IPUHUMAET BUJL
—t
Y —y = ———
t e7t—1

Permmast sto yYpaBHEHNE METOJIOM Bapualnuu IMMOCTOAHHBIX, HAXOJINUM, ITO

y(t) =€’ A—Left—i—}lnei)5 +et B—i—lln(l—et)
2 2 1-—¢t 2 ’

rnme A u B - npousBoJibHBIE MOCTOsiHHBIE. [losarast ¢ = —%, TOCJIe TTPUBEIEHUS TTOMOOHBIX WJIEHOB OTCIONA
MoJTyaeM oOIIee perenne 3aJaHHOT0 YPABHEHUS

1 1 1
yerfi + Ber —5—%67% + sh <x>ln (l—e*%).

Haiitu ofiee pemienue ypasaenuit (1-66):

P-9.1
(222 + 3z) y"" — 6(z + 1)y’ + 6y = z(2z + 3)%, 2 > 0.

P-9.2
z(x+4)y" — 2z +4)y +2y=x+4,2>0.

P-9.3

(22 —2?)y" + (22 = 2) ¥ + (2 — 22) = (2z — x2)2.

P-9.4

atnray — Y Yy = (e + 1)

P-9.5
r(1+22)y" +2(1 +2)y — 2y = (1 + 22)?sinx, z > 0.

P-9.6
(1-Inz)y" + 1y — Ly=(1-Inz)?

P-9.7

a:y”—(1+a:)y’+y:%,x>0.

P-9.8
22y —2z(1+ z)y + 2(1 + z)y = 223",

P-9.9
2z + 1)y" + (4o — 2)y’ — 8y = 4(2x + 1)3.
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4.2.9 Problems about second-order linear equations with variable coefficients

P-9.10
20y + (dz+ 1)y + 2z + )y =e ", 2> 0.

P-9.11
xy” — (62 +2)y' + (92 + 6)y = 12233".

P-9.12
(x—=1)y" —ay +y= (v —1)%"

P-9.13
zy” — (2x + 1)y + 2y = 1622%e**.

P-9.14
22y — x(x +2)y + (x + 2)y = 23e”.

P-9.15
(22 =3z)y" + (6 —2?) y' + Bz — 6)y = (z — 3)2.

P-9.16
vy’ — 2z + 1)y + (z + 1)y = 22%e?®.

P-9.17
(x = 1)y — (x+ L)y +2y = (& — 1),

P-9.18
ez +1)y" +2(1-222)y —4(z+ 1)y = 2z +1)%,z > 0.

P-9.19
z(z+3)y 4+ (12—2%)y —3(x+4)y = (z+3)%,z > 0.

P-9.20
20(z —2)y" + (2> = 8)y + (z —4)y = (z — 2)*,z > 2.

P-9.21
z(x—2)y" + (22— 6)y + 2z —3)y = (z — 2)%, 2 > 2.

P-9.22
$2y” . (.%'2 + 3) Y + (x2 + 3) y= 102° sin z2.

P-9.23
(2= 1)y + (1= 2)y +ay = Lz — 1)

P-9.24
22 (x — 1)y + 22y — 2y = 23e”.
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4.2.9 Problems about second-order linear equations with variable coefficients

P-9.25
Yy’ + (2 - 22)y + (z — 2)y = **, 2 > 0.

P-9.26
(1—2?)y" +2y — %ﬂy =(1—-2)%(1+xz)e "
P-9.27

x(x+ 1)y + 2y — %_Hy = (z+1)%e*,2 > 0.

P-9.28
3z +2)y" +3(2-32?)y —18(x+ 1)y = Bz +2)? -z > 0.

P-9.29
2e(z+2)y" + (8 =2y — (z+4)y = (z+2)%,2>0.

P-9.30
3z —2)y" +3 (32 - 2)y +18(x — 1)y = 3z — 2)%,z > 2.

P-9.31

(Inz)y” — %y’ + 5y = In® .

P-9.32

2ey’ — (x +2)y +y = f—;,x>0.

P-9.33
zy” — (4o — 2)y' + 4(z — 1)y = e** cos z.

P-9.34

2y’ +a(-2+wtgr)y + (2 - wtgr)y = %" cosz,0 <z < F.

P-9.35
(1—2)y" + (2 —4x)y — 4oy = e **sinx.

P-9.36
(x4 1)y + (= 1)y =2y = e~ (a + 1)%,

P-9.37
(20 —2%)y" +2y — 2y = (2 — 2)%we™ ™.

P-9.38
(z=1)2%y" = (22 =1)y + (z+ 1)y = (z — 1)3(3z — 2)e”.

P-9.46
zy” — (4o + 2)y' + (4o + 4)y = 22e**,2 > 0
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4.2.9 Problems about second-order linear equations with variable coefficients

P-9.47

Yy’ — 3y ctgx + (ﬁ —2)y:251n2x,0 <z <.
P-9.48

(zlnz)y” + (Inz+ 1)y — L =2z 5>
P-9.49

2
(L+a?)y" +oy —y = 1.

P-9.50
22y’ + x(x —2)y' + (2 — 2)y = 2te".

P-9.51
zy" —2(x + 1)y + (x + 2)y = 3ze”.

P-9.52
x(x—1)y" + (4o —2)y +2y =€ 7.

P-9.53
z(z+ 1)y + (dz+2)y +2y =6(z + 1).

P-9.54
(x —1)y" —2zy + (x 4+ 1)y = 3e”.

P-9.55
zy” — 2(dx — 1)y + 8(2x — 1)y = 2¢%*.

P-9.56
(2z 4 3)y" — 2y — Sy =3(2z + 3)2

P-9.57
(2z+ 1)y’ — 2y — 2z +3)y =32z + 1) - e2.

P-9.58
2y — (z+4)y + (1+2)y =2

P-9.59
zy” + (22 — 1)y + (x — 1)y = 8z%e*, 2 > 0.

P-9.60
z(z— 1%y =2z - 1)y +2y =az(z —1)%e 2,2 > 1.

P-9.61
(x —2)y" — 4z — 7)Yy + (4o — 6)y = dx(z — 2)%e*®, 2 > 2.
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4.2.9 Problems about second-order linear equations with variable coefficients

P-9.64
2 (z —3)y" —2?(z —2)y' +2 (2% — 3z + 3) y = (z — 3)°.

P-9.65
a—-1y +x(2—4z+2?)y —2@x—1)%y =23z - 1)%

P-9.66
2z —4)y" —2?(xz —2)%y' + 2z (22 — 5z +8)y = (z — 4)%,z > 0.

P-9.67

Haiitn ofree pelieHne ypaBHEHUs!, €CJIM H3BECTHBI J1Ba €ro pereHus Y1 (x) u yz(x):
a)y" —y'tgr + 2y =2tgr+ 25%,0<x < § y1 =tgw,yp = tgx + 2sinw.
6)y" + dxy’ + (4:r +2)y* (4x +4:c+3)e yp = €* ,yg =T 4 e,
Jry" = 2z + 1)y + (z+ Dy = (= 1)e, 2> 0, y1 = €, yp = € — e
Ny’ +2y —zy=2-222>0, =2, 2=+ % 1) 22+ 1)y’ +2(x+ 1)y —2y =32 +3z+ 1,2 >0

o

(a* = 1)

M\H

1
Y1 = 5(1' + 1)27

P-9.68

CocraBuTh U pemuTh JmHelinoe nuddepennuaglbHOe ypaBHEeHHe BTOPOrO IOPsAKa, €CJIU H3BECTHBI ero
npaBag 4actb f(z) u dynmamenrasbHasg cucrema pemienuii yi(z) u y2(r) COOTBETCTBYIOMIErO JIMHEHHOrO
OJIHOPOJIHOTO ypaBHEHHUS:

_ 2, _ _ .2

a)f(z)=1—-a*y1 =2,yp =2° + L

_ _ _ 2
6)f(.’£) - Lyl =T,Y2 =7 — 1.

B) f(x) = cos 2z, y, = sin® x,yy = cos? x.

P-9.69

Pemmurs

(1—2?)y” xy+y—1\/1—:z:2 0<z<l,

C TIOMOIIBIO 3aMeHbl T = cost, 0 <t < 7.

P-9.70

Pemmurs

21
4"+2xy—y* 61

C IIOMOIIIBIO 3aMEHbI X — —%.

P-9.71

Pemnrn
2zy" +y' = 2(y + thz)

2
C TIOMOIIBIO 3aMeHBI T = &, ¢ > 0.

4

P-9.72

Pemurs

y" +y' tgz =4 (y + cos® z) cos® z, 0<x<g

¢ oMoIpIo 3aMenbl t = sin x. Ipusenenuem K Bugy 2" + a(x)z = f(x) pemnts ypasaenus (73 — 76):

P-9.73

2y + xy’ + (22 i)yzngez
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4.2.9 Problems about second-order linear equations with variable coefficients

P-9.74
v+ 3y ty =2

P-9.75

(1+x2)2y”+2z(1+x2)y’—|—y:1—|—x2.

P-9.76
y' =Sy + (B +1)y=0.

T

P-9.77

IMycrs dyuknus p(x) onpenesnena u HenpepbiBHa npu & > 0 u nyerb y1(x), yo2(x) - perienus ypaBHeHMsI
y" + p(x)y = 0, npuaem lim, 1 o y;(z) = 0, nuponssonusie y;(z) orpanmvenst upu x > 0,i = 1,2. Jokasars,
qar0 Y1 (x) 1 y2(x) auHeitHO 3aBUCHMBL ipH T > 0.

P-9.78

ycrs yi1(2), yo(x) - aBa umeiino nezasucumeie pemenus ypasuenus y(™ + py (x)y™=D + - +p, (z)y = 0.
VYka3arh MOCTAHOBKY, TPUBOIAIILYIO K JUHEHHOMY YPABHEHHUIO MOPAIKA 12 — 2.

P-9.79

Iycrs pemenne y(z) ypasrenns z2y” + zy’ + (22 —n?)y = 0,n > 0, z > 0, IOJOKATEIBHO IPH MAJIbIX

x>0 u y(+0) = 0, Jokazarb, 4T0O TOYKA [IEPBOrO MOJOKUTEILHOIO MAKCUMYMa 3TOIO DEIIEHUs HAXOIUTCS OT
HYJI HA PACCTOSHUHM, KOTOPOE HE MEHbIIIE YeM 7.

P-9.80

ITycrs a(x) - HenpepwiBHas dyrkms npu & > 0. Jokasars, uro ecsm ypaprenue y” + a(x)y = 0 umeer
pemenue y(x) takoe, 9ro lim,_, 1o 4’ () = +00, TO OHO UMeeT TaKyKe HETPUBHUAJILHOE PEIICHUE, CTPEMSAIIEECs
K HYJIIO IIpU & — +00.

P-9.81

[Tycrs dyskiun a(x) u b(x) HenpepbIBHBI HA Beeil ocu, npuydeM a(z) - HeueTHas, a b(z) - yernas. Jlokazars,
uTO pernenne ypasaerust y”' + +a(x)y’+b(x)y = 0, ynosrersopsitoiiee yeaosuio y' (0) = 0, ecTb ueTHast GyHKIHSL.

P-9.82

IMycrs dynkuus ¢(x) HenpepbiBHa Ha BCEil OCH U IEPUOIUYHA, ¢ IEPUOIOM

P-9.1

JokazaTh, 9TO ecsiu HeTpUBHAJIbHOE pelenue ypasHerus y” + q(x)y = 0, ynosnerBopsier ycaosusm y(0) =
y(1) =0, ro y(x + 1) = Cy(x), C = const.

P-9.83

HaiiTu aBa MUHeiHO HE3aBUCHMBIE PENICHHUs B BHJE CTEIEHHOrO psAja ypasHenus y” + dxy = 0.

P-9.84

a) Haiitu pemenue ypasuenus 2y —y' —4x3y = 0 B Buie crerennoro paja npu yciosusx y(0) = 1,y”(0) = 0.
OrupesesuTs pajuyc CXOAUMOCTH DLIA.

6)Permuts y” — y;/ — 422y = 0. Ykazanme. Haifti cymmMmy psja B I a).

P-9.85

a) Haiitu pernenne ypasnenus zy” —2y'+92%y = 0 B Buje crenennoro psa npu yeaosusx y(0) = 0,y (0) =
6. OnpenesnTh paauyc CXOAUMOCTH DSIIIA.
6)Pemurs y” — %y’ + 9x%y = 0. Yrazamne. Haiitu cymmy paga B 1. a).
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4.3 Tasks for systems of equations

P-9.86

ITpounrerpuposars npu 2 > 0 ¢ TOMONIBIO Psijia O crenensaM x ypasaenue 4xy”’ + 2y +y =0
Vkazanme. /[l OTHICKAHUS pelleHUs ypABHEHMs, JMHEHHO HE3aBUCUMOIO B pelIeHHEM, IIPeICTaBHMbIM
CTEIEHHBIM PsJIOM, ¢leaTh B YPABHEHUH 3aMeHy Y = /T - 2.

P-9.87

Haiitn npu 0 < z < 1 obmee pemenne ypasuenust 2x(1 — x)y” + (1 - —x)y’ + 3y = 0 B BUOe pama 1o
cTelleHdaM r. YKaszaHue. Boclosb3oBaTrbes Y Ka3aHueM K 3ajade 86.

P-9.88

a) Haiitu npu 0 < z < /2 pemenne ypasHeHnst
(2(E +:E3) y// o y/ _ ny =0

B BHJIe CTeIIeHHOro psija 1o x. OpenenTs pajuyc CXOMUMOCTH Psia.
6)HaiiTu obIee perieHne 3aJlaHHONO yPABHEHUs B BUJIE Psijia 110 CTEICHSIM .

4.3 Tasks for systems of equations

4.3.1 Problems about linear systems with constant coefficients

P-11.mmp.1

Haiitu obimee pemrenne MHEHHON crCcTeMbl yPaBHEHUM

i=x— 2y — 2te,
§=>5x—y— (2t +6)e’.

ITpomuddbepennupyemM mepBoe ypaBHEHHE CUCTEMBIL:
F=a—2y—2(t+1)e".
B mostydenHoe BbIpayKeHHE [OJICTABAM BBIPAsKEHUE Y U3 BTOPOIO YPABHEHUS CHCTEMBIL:
F=2—2(t+1)e" — 10z + 2y + 2(2t + 6)e’ = & — 10z + 2y + (2t + 10)e".
IMojcraBus cro/ia BHIpayKeHHe 2y M3 [ePBOTrO ypaBHEHHsI CUCTEMBI, IIOJIy9IaeM ypaBHeHue Juist x(t):
# 4 92 = 10¢’.

Ero pemenuem sisiisierca z(t) = C4 cos 3t + Ca sin 3t + et ryie C1 u Ca - TPOU3BOJIBHBIE NOCTOAHHbBIE. 110/ICTABUB
#(t) B mepBoe ypapHenne cucremsl, HaxoguM y(t) = 3 (Cy — 3C3) cos 3t + 1 (3C + C3) sin 3t — te'.

Takum obpazom, obIIIEe pereHne 33 IaHHOf CUCTEeMbI ypaBHEHN UMeeT BUT,

x(t) = Cy cos 3t + Cosin 3t + €,

1 1
y(t) = 3 (Cy — 3C3) cos 3t + 3 (3C) + Cy)sin 3t — te'.

st perieHnst JTUHEHHBIX CUCTEM TPETHETO TOPAIKA C MOCTOAHHBIMU KOd(hpuitmeHTaMu yaIoO0HbIM SABJISIETCS
METOJ, WCIOJb3YIOMUI HAXOXKICHNE COOCTBEHHBIX 3HAYEHUI, COOCTBEHHBIX W IIPUCOEIMHEHHBIX BEKTODPOB
MaTPHUIIbI CUCTEMBL.
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4.3.1 Problems about linear systems with constant coefficients

P-11.1p.2
Haiitu obimee perrenne JMHEHHOM CHCTEMBI YPABHEHUI
T=x— 2,
y=—2x4+3y — 2,
z=4x+ 5z

J1s1 MaTpuIbl CUCTEMBbI

1 0 -1
A= -2 3 -1
4 0 )

u3 ypasuenus det(A—\E) = 0, rae F - equaudHas MaTPUIA TPETHEro MOPSIKA, HAXOIUM COOCTBEHHOE 3HAYEHUE
A = 3 kparaoctu tpu. V3 smneiinoil anrebpandeckoii cucremsl ypasuenuit (A — AE)h = 0, rae Bekrop h # 0
“MeeT TPU KOMIIOHEHTHI, HAXOIUM JIBa JIMHEHO HE3aBUCHMbIE COOCTBEHHBIE BEKTODBI

(4 e (3)

U3 cucrembr ypasuenuit (A — AE)hs = hy HAXOAUM IPUCOEIMHEHHBIR BEKTOP h3 K BeKTOPY ho:

(1)

CiiefioBaTe/ibHO, ICKOMOE ODIIllee pellleHre UMeeT BUJL

T 1 1
Yy = C1€3t 0 + 0263t 1 + Cg@gt
z -2 —2

1 0
t 1 + 0 ,
-2 -1
rae C1,Cs, Cs - IPOU3BOJILHBIE TIOCTOSIHHBIE.

Jluneitnple cuCTEMBbl ypaBHEHUIT MOXKHO PEIIATh C IIOMOIIBI0 MATPUIHON SKCIIOHEHTHI.

P-11.op.3
C moMoIb0 MaTPUYHOMN IKCIIOHEHTHI PEIIUTh CUCTEMY ypPaBHEHMI
"? =z+y,
y=—x+3y.
1 1
Hast marpunpt cucremer A = (74 3 | Haxoaum coOCTBEHHOE 3HadeHWe A = 2 KpPaTHOCTH JiBa. EMy
. 1 . 0
COOTBETCTBYIOT COOCTBEHHBIN BEKTOp hi = 1 U TNPUCOEIVMHEHHBI BEKTOP ho = L B 6azuce us
2 1
BEKTOPOB h1, ho MaTpuna A TpUHUMAET HOPMAJIBHYIO YKOPJIAHOBY dopmy J = 0 2 ) W3 onpenenenns

I\’IanI/I‘IHOI;'I 9KCIIOHEHThI HAXOAUM, ITO

etJ:€2t<(1) i)

Eciin wepes H 0603Ha9uTh MaTpUILy, ¥ KOTOPOIi EPBLII cToJOer by 1 BTOPO# cTosidery ha, TO

tA _ protdp—1_ 2t 1—t t
e =He'H —e(_t 1—|—t>'

OOiriee perieHre 3aJJaHHON CUCTEMbI UMEET BUJL

x o €2t 1-—1t t C 1

y )~ —t 14+t Cy |
riae Cl u 02 - IIPOU3BOJIBHBIEC IIOCTOdHHBIC. Jluneitubie HEOJHOPOJHBIE CHCTEMbI ypaBHeHI/IfI MO2KHO peniaThb
METOJOM BapHalUN IIOCTOAHHDBIX.
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4.3.1 Problems about linear systems with constant coefficients

P-11.tip.4

Meromom Bapuaiuu MOCTOAHHBIX PEIIUTh CUCTEMY yDaBHEHUN

T =x— 2y,
y:x_y+2silnt'

T =x— 2y,

y =z—y penraeM MeTO/I0M NCKJIFOYCHMA. Ee pelirenue nMeeT BU/JT
- ’

JIMHEIHYIO OJTHOPOJIHYIO CHCTEMY {

x = Cycost + Cysint,
y =3 [(C1 — Ca)cost + (Cy + Cy)sint],

rae C7 u Cy - IPOU3BOJIBLHBIE TIOCTOAHHBIE. PellleHne 3a/1aHHOl JIMHEHHON HEOIHOPOIHON CHCTEMBI ypaBHEHU
HUIIEeM B BHUJIE

y = 2[(Ci(t) — Ca(t)) cost + (C1(t) + Ca(t)) sint]

rae C(t) m Cy(t) - HekoTOpBIe HenpepbIBHO auddepenupyemble HbyHKIMN, KOTOPbIE HAXOATCS TIOJCTAHOBKOM
T Uy B 38JaHAYIO CUCTeMy ypaBHeHnil. [1ofCTaHOBKa T 1 y B 3aJaHHYIO CHCTeMY YPaBHEHHI JaeT CJeTyIoNnTyio
JIMHEHHYO aJrebpandeckyro cucreMy Juist ¢1(t) u éo(t):

{ x = Cy(t) cost + Co(t) sint,

1
¢1(t)sint — éo(t) cost =

{ ¢1(t) cost + éo(t) sint = 0,
sint”
Orcrona HaxomuM ¢1(t) = 1,¢9(t) = —ctgt u, snaunt, C1(t) = t + Cp, Ca(t) = —In|sint| + Co, tne C1 n

Cy - upousBosibHbIe ocTOsiHEBIE. [lozcraBiss Haiinennsie snadenus Cq(t) u Co(t), momayuum obree pererne
3aJIaHHOI CHCTeMbl ypaBHEHHI

x = Cycost+ Cysint + tcost —sintln|sint,

y = % [(C1 — Cy)cost+ (C1 + Ca)sint + (¢t + In|sint|) cost + (¢t — In|sin¢|) sint].

JIuHeitHbIe CHCTEMBI yPABHEHUIT MOXKHO TAKKE PEIIATH OMEPAIIMOHHBIM METOIOM, T. €. METOIOM, UCIIOJIb3YIOIIIM
npeobpazosanue Jlammaca.

P-11.1p.5

OrmepanoHHBIM METOIOM peruTh 3agady Kormu npu ¢ > 0:

& =31 —y + 4e3t,
y=4dr —y—8e, x(0) =1, y(0)=0.

IMonoxknm npu ¢ < 0 pemenne z(t), y(t) cucreMsl U CBOOOJHBIE WIEHBI CUCTEMBI TOXKIECTBEHHO PABHBIMU
Hyso. Torja Tak IPOJIOJIZKEHHBIE Ha BCIO YHCJIOBYIO OCh ¢ € (—00, +00) pellleHne u CBOOOHbIE WIEHBI CHCTEMBI
apysiorcs opuruanamu. Ilyers z(t) = X(p), y(t) =Y (p). Torma @(t) = pX(p) — 1, y(t) = pY (p).

ITepexosst B 3a/JaHHOl cucreMe ypaBHeHHI K npeobpasoBanusaM Jlamiaca, T. €. yMHOXKasi KasKJ10€ ypaBHEHHE
cucreMbl Ha e P! u uHTErpUpys €ro mo t OT Hyid A0 GECKOHEYHOCTH, MOJIydYaeM JIMHEHHYIO alrebpamdecKyro
cucreMy ypaBHeHnit juist Haxoxaerus X (p) u Y (p)

{(pr@»+Y@>1+g¥
~4X(p) + (p+ )Y (p) = —55%

Eciu cyntarh KOMILIEKCHBIH mapaMerp p TakuM, 9To Rep > 3, TO u3 MOIyYeHHON CHCTEMBI ypaBHEHUI

HAXOJIUM
p+1(p—3)+4(p+3 407 —p
Xy PRI A4y AT
r=3)p-1 r=3)p-1
Passaras Boipaxkenus i X (p) u Y (p) na upocrsle apobu, umeem
6 5 6 4 4 12

X(p)

= - - » yp) = - - :
p—=3 p-1 (p-1) ( p—3 p-1 (p-1)?

[Tepexomns K opurmHAIaM, TOJTyIaeM UCKOMOE DEIIeHue

x(t) = 6e3 — (5 +6t)et, y(t) = 43 —4(1 + 3t)e’.

Penurs JinHeiinbie OMHOPOIHBIE CUCTEMBI BTOPOro mopsaika (1-14):
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4.3.1 Problems about linear systems with constant coefficients

P-11.1

T = —bdx — 6y,

y =8z + 9y.
P-11.2

z = 10z — 6y,

y =18z — 11y.
P-11.3

= —6x + 8y

y = —4x + 6y
P-11.4

T = —2x — 3y,

y==6z+ 7y
P-11.5

T = —br — 4y,

y =10z + 7y.
P-11.6

T = dx — 6y,

y=3zr—y
P-11.7

T=—12x — 8y

y = 20x + 12y
P-11.8

T = —bx — 10y,

Yy = dx + 5y.
P-11.9

T = -2z —4y,

Y =2z + 2y.
P-11.10

T = dx + 4y,

gy =—9x — Ty.
P-11.11

T = 6x + v,

y = —16x — 2y.
P-11.12

T = —bxr + 4y,

y=—-—y.
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4.3.1 Problems about linear systems with constant coefficients

P-11.13
T = —2x+vy,
y = —4x + 2y.
P-11.14
&= —sw+dy, Pemuth smHeiHBIE OHOPOHBIE CUCTEMBI YpaBHEHUH TpeThero mopsiaka (15116):
y=—-9z+ Ty JTHODOJL, yp P P, :
P-11.15
T =—br—2y— 2z,
y = 10z + 4y + 2z,
Z=2x+y+3z.
P-11.16
T=—x+2y—4z,
y = —8x — 3y + 2z,
z=—2x —4y + 62.
P-11.17

y=9x — 5y + 62,

T = —2x + 6y — 4z,
z = 15z — 18y + 15z.

P-11.18
T =—-2x+2y— z,
y = —6x + 2y — 2z,
z=—bx — 2y — z,
P-11.19
T=dr+y—=z
y=x+3y+=z
z=Tr+3y+=z2

P-11.20

T=x—Yy— 2,
Y= —2x+ 2y + 2,
z=4x + 2y + 3z.

P-11.33

T=2x+y—2z,
y':*SCﬁ“Z,
z=2r4+2y—z.

P-11.34

T =2z — 4y,
y=2z+2y+z,
z2=3y+2z.

P-11.35
T=3x—3y+ =z,
y=3x—2y+ 2z,
Z=—x+2y.
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4.3.1 Problems about linear systems with constant coefficients

P-11.36
T=x4+2y—z,
y=—2ax+y—2z,
z=x+4+2y+z

P-11.37
T=x- Y,
y=a+z,
t=z+z.

P-11.38

T=—T—Y—2,
y=3x—Ty+z,
z=bdx — by — 3z.

P-11.39
T=x—6y+3z
y=—8y+ 62
z=3rz— 12y + 7z

P-11.40
T=-2rx—3y+=z
y=z—8y—+ 3z
z=3x— Ty

P-11.47
T =3r—8y+ z,
z =3z — 12y — 5z.

P-11.48
T =3z + 2z,
y=x+2y+z,
z=—-x—y.

P-11.49
T =—x— 4y,
Y=z —y+=z
z=3y—=z

P-11.50
T =3x — 2y + 2z,
y=2x+ 2z,
z=—2x+42y—2z.

P-11.51
T=-y—z,
y=z+y,
=4 +y+2z

P-11.52
iliyiz@
y:_y+z7
=T —Z
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4.3.1 Problems about linear systems with constant coefficients

P-11.53

T =-3x+ z,
y= -3y +2z,
z=3x—2y—3z

P-11.54
T =—5r — 4y + 9z,
y =10z + 9y — 10z,
z=x+y+3z.
P-11.55
T =x+4 2z,
y=2x—1y+ 2z,
z=x—y+=z
P-11.56

T =4 - Ty — z,
y=2x—3y—z,
z=—-2x+4+2y+ 3z.

P-11.61

T="Tr— 10y — 4z
y=4xr — Ty — 4z
z=—6x+Ty+z2

P-11.62
{ T ="Tr+8y—2z

y=-dbr—Ty+=z
z=06x+8y—=z

P-11.63
T =2xr — 3y
y=z—2z
Z=-y+2z
P-11.64
T=-2z+4+vy
y=3r—=z
z=4y — 2z
P-11.65
T=-3x+y
{ y=4x+vy
z=4x+z
P-11.66
T=2x+y
Uy =4z + 2y + 4z
i=-2r—y—=z
P-11.81

y=—6x+y—>5z,
z =3+ 2y —4z.
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4.3.1 Problems about linear systems with constant coefficients

P-11.82
T=—-x+2y+z,
y=z-y+2
2= —2x— 3y —4z.

P-11.83

T=—2x—-y—z,
y=—4x+ 2y — z,
z = 16x + 4y + 62

P-11.84

T=—-2r+y—z
y=4x + 2y — 2z,
z=6x+ Ty —62.

P-11.85
T =3z + 2y — 4z,
z =3z + 6y —4z.

P-11.86

T =ux+ 5y — 2z,
y=—x+ 5y — 2z,
—2x + 15y — 62.

z

P-11.99

T=4r + 2y — z,
y=-"2z+y+z,
z=2x4+3y+z.

P-11.100
T=4x —y— 2z,
y=2z+y— 3z,
z=2r—y—+z

P-11.101

{ T=u1x—2y+ 2z,

Y= —3x+ 2y — 3z,
z = —6x + 8y — 8z.

P-11.102

z
Y
z

P-11.103
{ T =2x+3y—z,

—r —2y+ 2z,
—4dx — 2y — 3z,
—3x + 3y — 62.

y = —06x — 6y + z,
z=—4dx — 2y — 2z.

P-11.104
T=-3rx—y— %,
y=>5x+3y+z,

z = 16x + 4y + 5z.
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4.3.2 Problems about matrix exponent

P-11.105

T
Y
z

P-11.106
{ T =—-3r— 3y — 2z,

—x — 5y + 2,
—x + 3y — z,
4x + 5y + 2z.

y = 6x + 6y + 2z,
z="Tx+ 4y + 5z.

P-11.113
T=—-3z+2y— z,
y=8x+4y+4z,
z = 6x — 6y + 2z.

P-11.114
T=2x+y+z,

Yy =3x — 6y + 3z,

z =4z — 16y + 5z.
P-11.115

{ T =2x+ 4y — 4z,

y =4z — 6y + 122,
2z =—8x — 8y + 62.

P-11.116
T =6x —3y+ 7z,
y=—-3r—2y+z,
z=—Tr —y—4z.

4.3.2 Problems about matrix exponent

C mOMOIIBI0 MATPUYHON SKCIIOHEHTHI PEIIUTH JIMHEHHbBIE OJHOPOJHbIE cucTeMbl ypasuenuii (117-136):

P-11.117
T =2z +vy,
y=x+2y
P-11.118
T=x+2y
y=2zr+y
P-11.119
T=-3x+y
y=x—3y
P-11.120
T=-z+y
Yy =2z —2y
P-11.121

T=2r—y
Y= —4dx + 2y
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4.3.2 Problems about matrix exponent

P-11.122

T=3r+y
y=—x+5y

P-11.123

T =3z —v,
y=x+y.

P-11.124
T=2r—y
y=x+4y

P-11.125

T=x+Yy
y=-r-y

P-11.126
T=x—2y
y=x—-y

P-11.129

{ T=-xT+Yy

Yy = —bx + 3y

P-11.130

{ T =+,

Y= —2x + 3y.

P-11.131

T =—x— 2y,
y=z-3y

P-11.132
{ T =z,
y=1y,
z=0.

P-11.133

P-11.134

T=z4y,
y=x-y,

i=-—x— 2z
P-11.135

T =z
y=r+y

=2z
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4.3.3 Problems about inhomogeneous systems of equations

P-11.136
T
{y
z

4.3.3 Problems about inhomogeneous systems of equations

2,
=Y+ 2z,
0.

Pemurs sinneitabie HeomHOPOAHBIE cucTeMbl ypasHeHuil (137-168):

P-11.137
T =—2x —y+37sint
y = —4x — by
P-11.138
& = 3x — by — 2¢t
j=w -y
P-11.139
T =—2x —y+ 36t
y = —4x — by
P-11.140
=11z — 8y + 4e™
y = 20x — 13y
P-11.141

i = 6x — 3y + 30¢
i = 15z — Gy + 45¢

P-11.142
T=-5r—y
y=x— 3y — 9e?

P-11.143

& = bx + 4y + Te?!
y=-9z—Ty+t2+1

P-11.144

t=3c+2y—e’
y=—20—2y—e"

t
P-11.145

=y

y=x+e +et
P-11.146

&= —dx — 4y + 2%
y = 6x + 6y + 2t
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4.3.3 Problems about inhomogeneous systems of equations

P-11.147
= —6z — 10y +4sin 2¢
y = 4x + 6y
P-11.148
t=—-Te+2y+e?
y=—1bx + 4y
P-11.149

t=-3r—-3y+t+1
i = 6z + 6y + 2t
P-11.150
T=-3x+y—et
y=—4x+y
P-11.151
& =3z + 2y — 2¢!
Y= —3x — 2y — 2’
P-11.152
T=4r —vy
y=x+ 2y + 23
P-11.153
T =y + cos 2t — 2sin 2¢,
= —x + 2y + 2sin 2t + 3 cos 2t.
P-11.154

& =1x— 2y — 2te’
y=>5x—y— (2t +6)e’.

P-11.155
T=z+y,
§ =3y — 2z —2(t + 1)e’.

P-11.156
T =dx —y+ 5sint,
1 =4z + 1y + 3sint — cost.
P-11.157
T=2x+y+5,
{y=x+%+z
z=—-2y+2z
P-11.158
{ =4z + 3y — 3z,

y=—3z — 2y + 3z,
2=3x+3y —2z+ 2t
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4.3.4 Problems about the system of equations by the method of variation of constants

P-11.161

T =2r—y+ 2+ cost,
Yy =bxr — 4y + 3z + sint,
z2=4dx — 4y + 3z + 2sint — 2 cost.

P-11.162

T=x+z—2cht+ 3sht,
y=—2x+2y+2z+4sht,
Z2=3x —2y+ z —sht.

P-11.163

& =2x+y— 3z + 2%
y =3z — 2y — 3z — 2%
z=x+y—2z

P-11.164

T=x—2y—z— 2
y=-x+y+2z+2t
i=x—2z— ¢

P-11.165

T=-9r+3y+72+2
y=x+y—z2+4
z=—1lx+ 3y + 9z

P-11.166

T=2r—y+z—2e!
y=x+2y—z—e!

i=x—y+2z—3e"!

P-11.167
{ i=—x—y+t2
z=—z+t.
P-11.168

g =x—2z— 3t

T=2x—-3y+t
z=—-y+224+3t—2

4.3.4 Problems about the system of equations by the method of vari-
ation of constants

MeTomoM Bapualuy MOCTOSHHBIX PEIIUTH JUHEHHBIE HEOJHOPOIHbIE cucTeMbl ypasuenuii (169 — 186):

P-11.169

d7:—2m+4y+ﬁ,
y:—2m+4y——1+1€,,.

P-11.170

. t
xzfaz—y+—1j_et,
. t
y:2$+2y+ﬁ
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4.3.4 Problems about the system of equations by the method of variation of constants

P-11.171

T =4z — 8y +tg4dt

y=4z —4y
P-11.172

T =3r— 6y + ﬁggt

y=3x — 3y
P-11.173

=3z — 4y + siretht

y=2r-y
P-11.174

T =-3x+vy,

g=—dz+y+
P-11.175

T=3x+y

{ y=-—dr—y+ 26\/5

P-11.176

T=2x+y—Int
y=—4r — 2y +Int

P-11.177
T=—c—4y+ %
y =2z + 5y
P-11.178
b= -3z -2+ 1oy
y = 10x + 6y
P-11.179

T = —6z + 8y,
y=—4z + 6y — ;.

P-11.180

T =—Tx + 2y,
—2t
y=—15z 4+ 4y + ﬁ

P-11.181
& = bx — 6y + S
y=3r—y
P-11.182
z = 10z — 6y
y =18z — 11y — Ci’f;t
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4.3.5 Problems about the system of equations by the operator method

P-11.183
& =31 42y — o=
§ =31 -2y — 17e=r
P-11.184

T=-2x+y+tlnt

y=—4z+2y+2tint
P-11.185

T = —8x — 4y,

y = 20x + 8y — 4 ctgdt.
P-11.186

T = 4x — 2y,
Y = 8z — 4y + V.

4.3.5 Problems about the system of equations by the operator
method

(! morpenupyio oTom)
Penure onepanuonnbiv MerogoM 3aaady Komm npu ¢ > 0(187 — 197):

P-11.187

T =2z —y,
y = 3w -2y,
z(0) = y(0) = 1.

P-11.188

T=x+y,
y: 721’7%’7
HO) =1, p(0)= -1
P-11.189
T=x+y+e*,
{ § = —2x + 4y + 2,
z(0)=1, y(0)=2.
P-11.190
&= —x—2y+2e
{ =3z +4y +et,
z(0) = y(0) = —1.
P-11.191
=3z —4y+et,
y:l‘—2y+6_t,
P-11.192

& =4x —y+ e,
y =z + 2y + 3et,
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4.3.6 Problems about the system of diffusers by an arbitrary method

P-11.193

T=x—2y+t,
2(0) = y(0) = 0.

P-11.194
{ @ =4z + 5y + 4,

y = —4dx — 4y + 4t,
xz(0) =0, y(0)=3.

P-11.195
i=z4y+3t+6,
{ g = 10z —y + 6t + 3,
x(0) = y(0) = 0.
P-11.196
i =—x—y+e*
{ Y = 2x + 2y + 2%,
z(0) = y(0) = 1.
P-11.197

= —4z — 2y +tet, x(0) =y(0) =0.

{ =3z +y+el,
x(0) = y(0) = 0.

4.3.6 Problems about the system of diffusers by an arbitrary method

Pemurs kakuMm-mm60 MerogoM 3agady Kormn (198-224):

P-11.198
{ T =3z+y+e,

§ = —dx — 2y + tet,
z(0) = y(0) =0.

P-11.199

T =2x + %y,
7 = —18z — 4y + 18te?,

x(0) = %, y(0) = 2.

P-11.200

i =Tx — 2y + Ste ¥,

y =8r — Y,
P-11.201

T = dx + 3y, 1 1
P-11.202

T = 1lx — 2y + 12te™?,

{ y =18z —y,

154



4.3.6 Problems about the system of diffusers by an arbitrary method

P-11.203
& = —5x — 2y + 24et,
Y= —3r—4y,
xz(0) =0, y(0)=2.

P-11.206

T =4 -y,
{ g =x+ 2y + 2e3,
z(0) =1, y(0)=2.

P-11.207
T =—2x—y+37sint
y = —4x — 5y
2(0) =0, y(0)=—1

P-11.208

& =3z +2y+(1—4t)e?,
= —2x — 2y + 2te~t,
z(0) = y(0) = -1

P-11.209
{ i = 3z — 5y — 2¢t

j=z—y-c

z(0)=2, y(0)=1

P-11.210

T =2y — 2z,
yzx—y—z,
Z=—-c—yY—2z

z(0) =3, y(0)=0,2(0)=1.

P-11.211

T=z—y+2,
y:y_l'—’_zv
z=3z—x—v,
z(0) =3, y(0)=0,2(0)=1.

P-11.212

T=Y— 2,
y:_y+2,
z=x— 2z,

2(0) = y(0) =0, 2(0) = 1.

P-11.213

T=x— 2z,

y=y+z,
Z=—x—y— 2,

z(0) =y(0) =1,2(0) = 1.

P-11.214

J.?:Jf—y,
y=z+z,
z=x+ 2,
2(0) =0, y(0) = 2(0) = 1.
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4.3.6 Problems about the system of diffusers by an arbitrary method

P-11.215
T=x—2y+z,
y =Y + 2,

z=x—YyY—z,
z(0) = y(0) =0, 2(0) = 1.

P-11.222
T =2x—y+ 2z,
Y=+ 2z,
z=-2c+y—z+1,
x)0) = y)0) = 2)0) = 0.
P-11.77
rT=x—2y—z+1,
z=x—2z+1,
z(0) =2(0)=1, y(0)=0.
P-11.225

Haiitu Bce pemrenusi cucTeMbl, CTPEMAIINECH K HYJIO IIpu ¢ — —0o0:

T=3x+y—32
y=—Tx—2y+9z
z=-2x—y+4z

P-11.226

HaiiTi Bce pereHunst cucTeMbl, OrpaHTIeHHbIe TIPH t — 400:

Ty = —x1+ 220+ 23 — 24
To = —4x1 + 49 + 203 — T4
T3 = —4x1 + 229 + 4T3 — T4
Ty = —x1 + 200+ 23 — T4
P-11.227
IToka3aTh, YTO pelleHne CUCTEMBI YPABHEHHUI ©7 = —a?Ty, 9 = X1 IPH KAXKJIOM U3 IPAHUYHBIX yCIIOBHIL: 1)

21(0) =0,21(T) = b,2) 21(0) = = 0,25(T) = b,3) 22(0) = 0,21(T) = b,4) 22(0) = 0, 22(T) = b B 3aBucumocru
oT BbIOOpa napaMeTpoB a,b u T > 0 yimbo CymecTByeT U eIMHCTBEHHO, JTUOO CYIIECTBYET U HEEeJUHCTBEHHO, JIMOO
HE CYyIIECTBYET.

P-11.228

Haiitu perenne cucreMbr

& — 8z + /6y =0,
i — V6@ + 2y = 0,

yoosi. u. y. £(0) =1, y(0)=1y(0) =xz(0)=0.

P-11.229

Haiitu permenune cucreMsr

2 — §j+ 3+ 3y — 4z =0,

T—y+2—4r — 2y — 2z = sin 2¢,
T+ Z—2x—y—42=0,

yaosi. H. y. £(0) = £(0) = y(0) = (0) = z(0) = 2(0) =0
P-11.230

ycts A = ( 7% g ) Jlokazath, uro et = e ( 7(;?51% sg;gi )
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4.3.7 Problems about linear systems of equations with variable coefficients

P-11.231

[Tycth KBaJIpaTHAs MATPUIIA BTOPOTO MOPSIIKA A MMeeT COOCTBEHHBIE 3HAYEHUST A1, Ao U A1 7# Ag. Jlokazars,

9TO TOT/a

e/\gt _ 6)\1t

tA: )\lt'E
e e +7)\2_)\1

(Ai A1E‘)7

rie E - equHUYHAsT MaTPUIA BTOPOI'O IMOPSIKA.

P-11.232

[IycTb xBagpaTHas mopsiaka n marpuna A uMeer coOCTBEHHOe 3HaUeHME Ay KparHOCTH n. Jlokasarh, 9TO
TOTJIA
tA _ Aot t t* 2
e =e° E—FF(A—)\[)E)—F?(A—)\QE) —+ .-
tn—l

=1 (A=XE)"H,

+

rie E - equHnYHAasT MaTPUIA MOPSIKA 7.

P-11.233

[TycTb A - cobcTBEHHOE 3HAYEHME KBAIPATHOM MATPHUIBI A U IycTh /i - COOTBETCTBYIONIHIT €My COOCTBEHHBIH
BekTop A. Jlokazarh, 4ro TOrga e’ - COOGCTBEHHOE 3HAYEHHE MATPHILI €, a h - COOTBETCTBYIONIMH eMy
COBCTBEHHBIH BEKTOp e”.

P-11.234

IIycThb A1, Ag, ..y Ay - COGCTBEHHbIE 3HAUEHUs KBaJIpaTHO# MaTputisl A (¢ yuerom ux kparnocru). JlokazaTb,
aro onpesesurens || marpuipt e ynosiersopsier pasencrsy |ef4| = M At AL,

P-11.235

JokazaTh, 4TO MaTpU4HbIe psiabl Ajisd sin A u cos A

sin A = i 7(_1)}9 APRHL cos A = i (_1)16142’c
= (2k+1)! ’ = (2k)!

CXOJISITCS [Tt JII00OI KBaApaTHON Marpunpbl A.

4.3.7 Problems about linear systems of equations with variable coef-
ficients

ctp 150

P-12.1p.1

( cosx sinx

_sinz  cosa > COCTaBUTDb JIMHEMHYIO OJIHOPOJIHYIO

ITo 3amannoii dpynnamenranbuoit marpune P(x)

cucremy.
Hensgsectras matpura A(x) nHaxomurcest us yeaosusi, 9to P(x) - pemenne MaTpuvHOro ypasHenus Y'(x) =

A(z)Y (z). Orcroma A(z) = @' (x) - &~ 1(z) = ( 7(1) (1) ) Vckomast cucreMa nMeeT BHJL

! !
Y1 =Y2,Y2 = —Y1-

Qopmyina JInyBuias-OcTporpaJiCKoro mo3BoJIseT [0 33AHHOMY DPENICHUIO JIMHEHHO OJTHOPOJTHON CHCTEMBbI
HaWTH 00IIee perreHne STOi CUCTEMBI.
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4.3.7 Problems about linear systems of equations with variable coefficients

P-12.1p.2

x
N3BectHO, TO BeKTOP-12.yHKITNS ( 1 | - pemenne cucrembl

ITycre pemenuem cucreMsl siByisiercst BekToP-12.dbyHKImst ¢ KoMmnorerTamu 41 = (), y2 = ¥(x), npudem
©(0) = 1,9(0) = 0. ITo dopmyse JInyBrnigOcTporpajicKoro uMeeM:

2¢d¢

1 2
A

o) =« 0
1 1

|1
10

Orcrona o(z)—x1p(x) = 1+22. Tlogcrasnss Bepazkenne Jyist () BO BTOpoe ypaBHEHUe CHCTeMbI, MOJTy aeM
zanady Komm mis ¢ (x)
¥ (x) = —2,4(0) = 0.

Cnenosarenbuo, ¥(r) = —2z, p(x) = 1 — 2. Torma obiee perieHne 3aJaHHOM CUCTEMBI UMEET B/
1 =C X + C 1-— 1'2
Yo ! 2 —2x ‘

! 3 3
=—x sinx
Mozker s cucrema Y1 e +Iy2 ’
Yo =2"y1+€7Y2

P-12.0p.3

UMETh JIBA OTPAHMYEHHBIX Ha (—00,+00) JuHEeHHO

HE3ABUCUMbBIE DEIICHUA !

OrBer Ha ITOCTABJIEHHBIN BOIPOC OTPHIATE/bHbBIN, IIOCKOJBKY JOIYCTHB IIPOTUBHOE, IIOJYYaeM, 9TO
ompejiesuTesib BPOHCKOrO 9TUX pelleHuii sBJgeTCs OrpaHudeHHoil Ha (—00,400) dbyHKIMell u oTindeH oT
Hysisg. C Apyroit cTOPOHBI IepBOOOpa3Hasl CJieJla MATPUIILI CUCTEMbI

SIBJISIETCSI HEOTPAHUIEHHOM Ha (—00, +00) dyHKImeit. 1o nporusopeunt dbopmysie Jlnysmiisa-OcTporpackoro.

P-12.1

[Tycrs 3amana auneiinasa cucrema y' (x) = p(x)Ay(z), rue ¢(z) - HenpepbiBHag Ha npoMmexyTKe I dyHKIMs
x

u A - qucsoBas KBaJpaTHasi MaTpUIa mopsiaka n. Jlokaszars, 9ro 3amena t = f ©(¢)d¢ naer auHeliHyIO cuCcTEMY

y'(t) = Ay(t).

Zo

P-12.2

ITycrs ®(x) - dbyHgamenTambHAST MATPUIA JUHEHHON cucrembl 2’ (x) = B(x)z(x), rme B(z) - KBagpaTHast
[OPsIJIKa N ¥ HelpepbiBHas Ha npoMmexyTke I marpuna. Ilokasars, uro 3ameHa y(z) = ®(x)z(r) B JuHelHOM
cucreme y'(z) = A(z)y(x) ¢ xBaapaTHON NOpsAAKa n U HenpepblBHOW Ha I marpuuein A(z) maer muHeiiHyIO
cucremy Buna 2'(z) = ®1(z)[A(z) — B(z)]®(z)z(x). B 3amauax (3-9) uccienoBaTh JUHEHHYIO 3aBUCHMOCTD
BekTOP-12.dyukiwmii Ha (—00, 4+00):

P-12.3
shx chx
<chx)’<shx )
P-12.4
T 2
(2)-(%)
P-12.5

= [ cosx «[ —sinx
€ : € .
sinz /° cos T
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4.3.7 Problems about linear systems of equations with variable coefficients

P-12.6
1 sin? x cos’x
0 |, sin 2z , —sin2z |.
0 2cos 2z —2cos 2z
P-12.7
e’ shz chz
e* |, chx |, sha |.
e’ shz chz
P-12.8

1 T z? 3 x?|z] x
L), = |, 22 ). 9( 22 |, = 01 B  samagax (10-18) mo  3ajaHHON
1 x 22 x |z| 0

dbyunamentanpaoit Marpune ®(x) Hajitn marpuiy A(x) auHeitHON onHOpPOAHON cucremsl Y (z) = A(x)y(z).

P-12.10

" .
efcosx —sinx
P = . .
() e’sinxr cosx
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4.3.7 Problems about linear systems of equations with variable coefficients

P-12.18

—T
O(z) = ( € xej”_ r elm ) B zamauax (19-23) 1o 3aganHoMy perieHuio §(x) JMHENHHON OHOPOIHOI CHCTEMBI

HafiTn dyHmaMeHTaIBHY0 MaTpuiy P(x) 9T0i cucTeMbI:

P-12.19
(1), 7

Yy = ﬁ (2zy; + 223y,)

(1) = sen

Y2 = 1522 (=y1 +2y2) .

P-12.22

—(‘,E) _ e " yll = (]— - 2$)y1 - 2?/27

YW= er1—2) )2 vh= (202 — 2z — 1) y1 + (22 — 1)y,.
P-12.23

i) = —sinx Yy = y1cos? x + (sinz cosz — 1)y,
v\ = "1 vh = (sinzcosz + 1)y, + yasin’ x

P-12.24

ITycrs kBajparHas mopsizka n Marpuna A(x) HenpepblBHa Ha npomexkyTke I uw mpu Beex @ € [

IIepeCTaHOBOYHA €O CBOEH mepBoobpasHoii, T. e. A(z)- [ A(¢)d¢ = [ A(¢)d¢ - A(z), tue xo € I. [Tokasars, 4ro
xo o

rtorma dyHmaMenTanbHoil Mmarpuneit P (z) mmHeitHol onmHOpomHON cuctembr y'(z) = A(x)y(z) sasasercs
MAaTpHIIA
JA©dc
O(x) =ex
P-12.25

I[lycTh KBajipaTHas MOPSIKa N U HempepbiBHasA Ha mpomeskyTke | marpuna A(z) = HJ(x)H ™', rae J(x)
- JKOpJIaHOBa U HernpepbiBHA Ha I Marpuia, a H - 4ucjioBas HEBBIPOXKJICHHAS MOPsiKa 1 MaTpuia. Jlokasarh,
uyro mMarpuna A(z) mepecraHoBoYHa €O CBOEl 1mepBooOpa3Hoii Ha npoMmexkyTke I u uro na I dbyHmaMeHTaIbHON
marpuneii cucremsr y' (x) = A(z)y(x) saBaserca marpuia

fooa
®(x) = Heo H " zy el

Ucnonb3ysi pesynbraT npeapluyieil 3axaun, B 3agadax (26-37) Hafitn dyHmamenTanbHble MaTpuibl P(x)
JIMHEHHBIX OJHOPOIHBIX CHCTEM.

P-12.26
Y1 = (22 — Dy1 + 9o,
Yy = —y1 + (22 + 1)ya.
P-12.27
Yy = —(1+422)y1 + 2,
Yy = —y1 + (1 — 22)ys.
P-12.28

(2{E + l)yl + Y2,
—y1 + (22 — D)ya.

Y
Y2
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4.3.7 Problems about linear systems of equations with variable coefficients

P-12.29

Yy = (cosz — 2)y1 + 4yo
vy = (—=3y1 + bya) cos x

P-12.30

Yy = —(2+sinz)y; + dyo
Yp = —y1 — Yo sinx

P-12.31

Y1 = (2+cosz)yr + v
—y1 + (cosz — 1)ys.

~)

P-12.34

Yy =y1cosx — yasinz,
Yy = —y18inx + ya cos x.

P-12.35

Yy = y1sinz + yo cos z,
Y5 = y1 o8 + Yo sin z.

P-12.36
yi = _2$y27
Yo = =2y
P-12.37
Y, = 3%y,
yé = 3w2y1
P-12.38

Mower ym cucrema Y = 17

JINHEHO HE3aBUCUMbBIE DEIeHusI?

+ (1 + 2)%y2, 95 = y1In|z| — 4y umers mBa orpammvenHbx Ha (—00,0)

P-12.39

Moxer mr cucrema y; = 125 — Ty, y5 = Y1tgx + 3yo WMeTh JBa orpaHmueHHBX Ha (—1,1) mmmefino

HE3aBUCHUMbIE DEIIeHN !

P-12.40

ITycrs ®(x) - dysmamenTanbHast MaTpuila JuHeliHo# cucremsl y' () = A(z)y(z), rae A(x) - kBagpaTHast
HOpsZKA 7 MATPUIA ¢ HENPEPBIBHBIMI Ha (—00, +00) IeMeHTaME a;;(X), mpudeM a;;(x + w) = a;;(z),

w
[ a;j(z)dz = ;4,7 = 1,n,w > 0. Jokaszars, 4ro
0

lim, 400 = In|det ®(z)| = = 3 ay;.
=1
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Other types and tasks

5 Other types and tasks

5.1 Other challenges

5.1.1 Problems about Sturm’s theorem

(TyT HHYEro CIOXKHOIO, HO €ellle Hy?KHO coOpaTh TEOPHIO)

P-10.m1p.1

Hoxkazarh, uro Jyoboe HerpuBuajbHoe pemenue ypasuenus y” + 2xy’ + by = 0 na unrepnase (—oo,+00)
umeer He Gosiee 6 nyzeit.

BaneHol y = €2 - z 3aJAHHOE ypABHEHIE IIPUBOJUTCS K BUIY 2" + (4—2?)z = 0. Ilpu |z| > 2 Besikoe
HeTpUBHATbHOE PermeHne Moy 9eHHOr0 YPaBHeH s IMeeT He Goee oHoro myts. Ipn |z| < 2 mveem 4 — 22 < 4.
IMockoubKy JH060e HeTpUBHAJBLHOE DellieHune ypabHenust 2z + 4z = 0 Ha orpeske [—2, 2] umeer He Gosiee Tpex
HyJ1eit, To o Teopeme IIITypma mo6oe HeTpUBUAIBHOE pellleHne ypapHenns 2/ + (4 — xz) z = 0 umeer Ha [—2, 2]
ToXKe He Ooslee Tpex Hyseil. Tak Kak 9uCyI0 Hysteil JIo00ro HETPUBHAJILHOTO PENICHHUS 3aJaHHOTO yPABHEHUSA B
CHJTy 3aMeHBI COBIAJIACT € HNCIOM HyJlefl HeTPHBHAJIBHBIX pernenuil ypasuenns 2 + (4 — 2%) z = 0, To 3a1a4a

pemrena. Permenme rpaHutHON 3aa9n, COOCTBEHHBbIE 3HAYMEHUsT U COOCTBEHHBIE (DYHKIMH TDAHWTHON 38189l
HaXO/ISITCsI TIOJCTAHOBKOI ODIIEro pellieHusl ypaBHEHUsI B 3aJ[aHHbIE TPAHUYHBIE YCJIOBUSI.

P-10.1ip.2
Haiitu permenune rpannTHOM 330390
y" +y=3cos2z, y(0)=—1,9'(m)=0.

O6muM perieHneM 3aJaHHOTO ypaBHeHus spjsiercs y = Cjcosx + Cosinx - —cos2z. Ilogcrasiisist 310
pelieHne B rpaHuIHbBIE YCJIOBUS, TOJydIaeM CUCTEMY JJis HaxXOxKIeHus: TocTossHHbIX C1 u Cy:

{01—1:—1

—Cy=0
Orciona C7 = Cy = 0 u, 3HAYNT, pellleHNeM IPAHNIHON 3a/[a9d SABJISETCS i = — COS 2.
P-10.1ip.3
Haiitu cobGcTBeHHBIE 3HAUeHUsT U cobcTBeHHBIe DYHKINM rpaHnvHoil 3amaan ¥’ = Ay, x € [0,1], y(0) =
y(1) = 0.

Herpymuo Buzmersb, wro nmpu A > 0 rpanuvHas 3aja4da UMeeT JIUIIb TPUBUAJILHOE PeIllleHre, T. €. HUKAKOoe
A > 0 #He MOXKeT OBITh COOCTBEHHBIM 3HadeHHeM TpanndHoi 3amadn. Ilycrs A < 0. Torma obrmmM perennem

ypaBuenus sipjisiercst y = Cp cos £/ — A+ Cs sin 24/ — )\ U TI0JICTAHOBKA €ro B TPAHUYHbIE YCJIOBUS JIACT YPABHEHUS
s Haxoxkieaus nocrogaubix C7 n Cy:

Cl = CQ sin vV -A=0.

Tak kak cOOCTBEHHBIMU (DYHKIUSMU SBJISIOTCS HETPUBHUAJbHBIE PEIIeHUsi TpaHuvHO 3amadn, 1o Co # 0.

3Ha‘{I/IT, sin vV -A=0. OTCIO,ZLa HaXOoJIuM, 9TO COOCTBEHHBIMU 3HAYCHUSIMU 3aa49U ABJIAIOTCHA YUCJ/Ia )‘n = —n27r2,

a COOTBETCTBYIOIIUMU MM COOCTBEHHBIMU (DYHKIMIAMHU ABJSOTCH Yy (2) = Cp sinnrx, e n = 1,2,3, ..., a Cy, -
[IPOM3BOJIbHASI IOCTOSIHHAS, OTJINYHAst OT HyJisi. J[jisi HaxoxkneHusi pyHKImn |'prHa rPaHUYHON 3a/1a9M CJIeIyeT
BOCIIOJI30BATHCS €€ OTPEICTICHUEM.

P-10.1

JToKa3aTh, 9TO KazK0e HETPHBHAJIBHOE PelieHne ypasaeHns '+ +—1

1+

y = 0 nmeer Ha unTepBade (0, +00)
OeCKOHETHOE MHOXKECTBO HYJIEH.

P-10.2

JlokazaTh, 9TO KaxKJ0€ HETPHBHAJILHOE DEIleHue ypasHenus Yy’ + +++1)y = 0 mMeeT Ha TPOMEKYTKE

4(x
[0, 4+00) JIHIIb KOHEYHOE YUCJIO HYJIEH.
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5.1.2 Boundary value problems

P-10.3

Jlokazarh, |TO Kaz/0e HeTpUBHAJBbHOE DemieHue ypapHenus Y+ 41y = 0 MMeer Ha IPOMEXKyTKe
[0, 4+00) GeckoneuHOE YMCIIO HYIIETH.

P-10.4

Joxkazarh, 4ro a1060e HeTpUBUAILHOE pertenue ypaBuenus y' —xy’ +y = 0 Ha unreppase (—oo, +00) umMeer
He OoJiee IIATU HYyJEH.

P-10.5

JlokazaThb, uTo Jmoboe HeTpuBHaIbHOe pemenue ypapuenus y” — (v — 3)%y'+ +(z + 1)y = 0 na unreppae
(—00, +00) nmeer He Gosee MeCTH HyJeH.

P-10.6

Jokazarb, 4ro jmoboe HeTpuBHagbHOe pemenne ypasuenus y” + x%y'+ +(x + 4)y = 0 ma unTepBase
(—00, +00) umeer e Gosee meCTH HyJeH.

P-10.7

Hoxkazars, uro pemenue Jo(x) ypasuenust Beccens xy” + ¢y’ + xy = 0 upu 0.1 < z < 10 umeer ne menee
Tpex HyJei.

P-10.8

JokazaTh, 4TO HETPUBUAJILHOE pellienue Y, () ypasuenus xy’ + + (% — :1:) y' —ay = 0 npn moboM 3HAYECHUN
BEIECTBEHHOTO TTAPAMETPA (v UMeeT Ha mHTepBase (1, +00) JUIb KOHETHOE TUCIIO HYJIEH.

P-10.9
2,1

Hokazark, uro pemenue Jp(z) ypasaenus Beccenst z2y” + xy’ + (x2 — 1) y = 0 umeer oIuH U3 HyJeil Ha
unrepsaie (3,7).

P-10.10

JlokazaTh, 94TO Kaskj0e HeTpuBUaJIbLHOe pellenue ypasHenus iy + %y’ + +e”y = 0 Ha npomexyTKe [1,+00)
umeeT GECKOHEIHO MHOIO Hyleil £1 < < g < ... < Ty < ... u upu 3roM lim, o [Ty — p—1| = 0.

P-10.11

JlokazaTh, 4TO KazKJ10e HeTpUBHaJIbHOE pemenne ypashenus z2y”+ +2x2y’ + (2% — 2) y = 0 na unrepsae
(0, +00) umeeT He GoJiee OJHOTO HYIISL.

5.1.2 Boundary value problems

Haiitu pernenne rpanuasoi 3agaun (12-24):

P-10.13

/.

y' —y=2sinz, y(0)=y (%) =0.

P-10.14
y'+y =2, y(0)=0, y(1)=2.
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5.1.2 Boundary value problems

P-10.15
2wy’ + 20y — 12y =0, y(1) =1, y(z) =0 (gr) npmz = +oo.

P-10.16

P-10.17

y' —dy=4, y0)=-1, y(1)=0
P-10.18

y' +y=0, y0)=90),y(3)+v (5)=0.
P-10.19

y' +y=0, y0)=y(0),y(%)=vy(3)+2
P-10.20

2y’ +2zy =1 y(1)=1, y(e) =0.

P-10.21
v’y + 22y — by =2°, y(@)=0(2%) mpuz—0, y(1)=1

P-10.22

ey’ +ay —y=2z, y(1)=0, y(2)=2mh2

P-10.23
vty =1, y(0)=y(1) =0.

P-10.24

y" + m?y = 3r?sin27rz, y(0) = y(1) = 0. Haijitu cobeTBeHHble 3HAUEHUs U COOCTBEHHBbIE (DYHKIUH
IpaHI4HOMN 3agaun (25 — 34):

P-10.25
y' =Xy, y(0)=1y'(1)=0.

P-10.26
y" = y,y'(0) = y(1) = 0.

P-10.27
y" = Ay, y'(0) = ¢'(1) = 0.

P-10.28
y' =Xy, y(0)=y(1),y'(0) =y'(1).

P-10.29
y' =Xy, y(0)=0, y(x)=O0(1)upux— +oo.
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5.1.2 Boundary value problems

P-10.30
y" =Xy, y(x)=0(1) nupu x = —oo0 u pu & — +00.

P-10.31

22y —ay' +y =Xy, y(1)=y(2) =0.

P-10.32
2y’ —ay' +y =Xy, y(r) = 0mpnz—0, y()=0

P-10.33
2%y’ —zy' +y =2y, y(1)=0, y(x)=0(1) npn z — +oo.

P-10.34
$2y” + 3xy’ +y= )\y7 y(]_) =0, y((E) —0 opu r — +00.

P-10.35
Jloka3aTh, 9TO BCAKOE BEIMECTBEHHOE YHCI0 A SABJISETCA COOCTBEHHBIM 3HAYeHUEM T'PDAHMIHON 3amaun iy =

Ay, y(0) = y(1),y'(0) = —y'(1).

P-10.36

[Ipu KaKuxX 3HAYEHUX BENECTBEHHOTO TapaMeTpa A rpanmuanas 3amada y” + A2y = 0, y(0) = 0,¢'(1) =
Ay(1) mmeer merpuBmasbubie pemenus? Hafitn 31w permenus.

P-10.37

PaccmarpuBaercst rpanndHas 3a1ada Ha COOCTBEHHbBIE 3HATCHIUS
!
=y +q(x)y =Ny, y(x)=0,

y(0) cosa + 3/ (0) sinaw = y(1) cos B+ ¢’ (1) sin 8 = 0,

rie g(x) - 3ananHas HenpepbiBHas dyHKMs Ha [0, 1], u [ - 3amannble uncaa. Jlokaszarhb, 9T0: a) COGCTBEHHBIE
3HAMEHWS TPAHUTHON 3aJ1a91 BEINECTBEHHDI,
6)coberBennble GyHKIWH Y (T, A1) 1 y (2, A2) COOTBETCTBYIONIHME PA3JIMYHBIM COOCTBEHHBIM 3HAYEHUAM A1 U
1

A2 oproroHasibHbL, T. €. [y (x, A1) -y (@, A2) dz = 0, A1 # Aa.
0

P-10.38

Pa,CCN[anI/IBa,eTCH FpaHH‘{HaH 3a,/1a‘{a BHU 1A
—y" 4+ q(x)y = My + f(z),

y(0)cosa + ¢’ (0)sina = y(1)cos B + y/'(1)sin S = 0, tme q(z), f(z) - 3amanHBIe HENpephIBHbIE (DYHKINN HA
[0,1],« u 3 - 3amanHble uncaa. JloKas3aTh, YTO a) €CJH IapaMeTp A He COBIAJAeT HU C OJIHUM COOCTBEHHBIM
3HAMEHWEM TPAHUTHON 3aJ1a9K, TO TPAHUIHAS 331898 UMEeT €JMHCTBEHHOE DEIEHNE,
6)ecsiu e A - HEKOTOpOe COOCTBEHHOE
3HAYCHUE TPAHUYHON 3aJa4U U €My COOTBeTCTBYeT cobcrBeHHas dyHKIMs Y(z,A), TO rpaHUYHAL 3a7a49a
1

paspelInMa TOJIBKO B ToM CiIy4ae, korga [ f(z)y(z, A)dz = 0.
0

P-10.39

IMTokazarb, uTo Bce coberBenHble dbyHKIMU rpanndaoii 3anauaun —y” = Ay, y'(0) = y'(7) = 0 obnanaor
CJIEIYIONIMMU CBOHCTBAMU:

a) n-g cobcreennas (yukuus ua [0, 7] uMeeT POBHO n HyJIei,

6)uysu n-it u (n + 1)-it cobecTBeHHBIX (DYHKIMI TEPEMEKAIOTCS.
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5.1.3 Problems about Green’s function G(z,() of the boundary value
problem (!!!!!

(77?77 mouemy ona B pasuese npo [IIrypma HaxomuTesi??? OHM 2Ke HUKAK HE CBSI3QHBI?)

P-10.40
y'+y=f(x), y0)=1y'(1)=0.

P-10.41

y' +4y = f(x),y'(0) =y(1) =0.
P-10.42

y" —dy = f(z),y'(0) = 0,2y(1) = y'(1).
P-10.43

y' =y = f(z), y0)=0, y(1)=y(1).

P-10.44
y'—y=f(x), y(0)=y(1)=0.

shzsh(l—¢), 0<x <
G, Q) = hl{sh(sh(lx) (<z<1
P-10.45
22y +3xy -3y = f(z), y(1)=0, y(2) =2y(2)
(L), 1<e<d
G(z,¢) = ix(c%_gﬁ)’ (<r<2

P-10.46
(2% +1) y" + 22y’ = f(z), y(0)=y'(1) =0.

_ [—arctgz, 0<2<(
G(x’o{—arctgcv (<z<1
P-10.47
zy" +y' = f(2), y(lc):y(Q)ZO'
Inzlnz, 1<z<(
G@.0) = 3 1n<1n§, (<r<2
P-10.48
2y +ay —y= f(x), ly(%); y'(2) =0.
r—3)(C*+4), 1<z,
G(z,¢) = 1042{ C+1)(z+2), (<z<2
P-10.49
2’y —ay =3y = f(z), y(0)=0, y(x)=0(3)mpnz—+oo
o 0<e<
G(I,C):*% i C<i<§_00
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5.2 Tasks for special methods (1717)

P-10.50

w B w

Hp‘d\n‘&z
T O

22y’ +2zy’ — 12y = f(x), y(0)=0, y(z)=O0(1) mpuz — +oo. G(z,() = —3 {

NN
VANIIV/AN

P-10.51

ITycrs p(z) - HenpepsiBHas dbyHKIus Ha [a, b] 1 p* = max p(x) > 0 npu = € [a,b]. Jokaszarb, 9T0 rpAHUIHASI
zajada ¥’ + p(xgy = f(z), yl(a) = A, y(b) = B umeer exuncTBeHHOE pelnenue npu Bcex A u B u jyist jiro6oit

HenpepbiBHOi f(x) Ha [a, b], ecam BbImOIHEHO yeuoBue (b — a) < T

P-10.52

ITycrs a(z) - HenpepsbiBHO HuddepeHnupyeMast HOJIOKHUTeIbHAs (DYHKIM Ha Beeil ocu 1 mycTb Y1 (), Y2 () -
JIMHENHO He3aBuCHMBbIe perieHns ypasaenus y” +a(x)y = 0. Jokasarb, aro Hymu yj (x) u y5(x) nepemerkarorcst.
Vkazanue. [Tokazarb, 4To Y1 U Yo YAOBJIETBOPSIOT COOTHOMIEHUIO Yoy] — Y1y = 0.

P-10.53
ITycrs na maoKecTBe D = {0 < 2 < 1, —00 < y < 00} dynkuun f(x,y), %ﬁ’y) HEIPEPBHIBHBI U %zy) > 0.
Hokazath, uro rpanmuHas 3amada vy’ = f(z,y), y(0) = y(l) = 0 MOXKET MMeThb TOJBKO OJHO DEIEHNE.

Ykazanue. PaccMOTpeTh KaKOMY YPaBHEHHIO YAOBJIETBOPSET PA3HOCTH JBYX PEIICHUI.

5.2 Tasks for special methods (!7!7)

(ecsn cTaHy YMHBIM, TO TyT MHOrO Oy/ly TPEHUPOBATHCsI!)

5.2.1 Problems about the iteration method

y2Ke pellajl, U3 MeXaHWKH cobepy)
77777 orkyna 910, Jaxke He noMHIO??7?)

Mbs1br03-Yoikep-7

dy/dx = exp(—2zy).

ITocmorpum Ha pemienue BOsm3u & — co. IIpennomnoxum, uro y > 0. Cuenosaresnsho, dy/de ~0uy ~a = =
const. Temeppb mojCTABIM 3TO NPEJNIOIOKUTEbHOE pentenre cHosa B (1.77): dy/dx = exp(—2ax). Torma y ~
~ a — exp(—2ax)/2a. BoimosHuM ere ofHy UTEpAIIO

dx 2a

~ exp(—2ax) (1 i exp(—2azx) + ) ;
a
—2 1
~a_ exp(—2az) (

1
o 2 \et ) exp(—4az) + ..

4da

Econ psag (1.78) cxomurcest, TO, BEPOATHO, OH IIpejcTaBiseT coboil perrenue. Boobiie roBopsi, psjl pacxOJuTCs.

Mb>Tbhi03-Youkep-?

d?y/dx? = x — o>

(cm. rpaduueckoe pacemorperme, puc. 1.3).. TlompoGyem moncrasuth y =~ /z. Torma y” ~ 0, tax 4ro
Yy = ax + b: DTo He IMOXOXKe Ha MEePBYIO HOMIBITKY, TAK KAK MBI HE OY9€Hb MCKYCHO pabOTAIH ¢ «MAJBIM» WICHOM
y”. BoibepeMm JApyroif myThb:

1
yQ—x—y”%x—(\/:E)"_z(1+4x5/2)

1
y%\/i—&—?a:”
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5.2.2 Problems about the averaging method

Ciemyromast uTeparys JaeT
49

-, 1 5 —9/2
=VIi+-z"°— —=x
y=vrtg 128 +
ITo ykasamnoit BbIlle KjaacCHPUKAIUN OTO perieHwe Tuma 2. MOXKHO HCKATH PENIeHre JAPYTUM METOIOM.
Hanumewm
y=Vr+n(x), <Vl
29

5.2.2 Problems about the averaging method

(y2ke permas, u3 MexaHUKHU coBePY )

5.2.3 Problems about geometric methods (777)

(M6 ApHoOJIbIIa TTOYUTAIO, IOPENIalo, OKa X3, He Oy/Ly 9TUM 3aHUMATHCH. )

5.3 Tasks for autonomous systems of differential equations

5.3.1 Problems about the behavior of phase trajectories near gross
equilibrium positions

P-nop.1

Haittu monioxkeHusi paBHOBecHsi, OIPENEJAThH HUX XapPaKTEeP U HApPUCOBATbh (DAa30Bble TPAECKTOPUH
JIMHEAPU30BAHHBIX CUCTEM B OKPECTHOCTH IIOJIOYKEHUIT PABHOBECHUS JIjIsI aBTOHOMHOI CHUCTEMBI

i=x—y>
g=a2+y* -2

[TpupaBHuBas MpaBble YACTU CUCTEMbI HYJIIO, HAXOAUM IOJIoxKeHus pasHoBecus (1,1) u (1, —1).

Pacecmorpum cHavasa Touky (1,1). g nanbHeiimero yuno6HO ee npeobpa3oBarb B Hadaso KoopauHat. C
ITOM TENBIO CIEJIAEM 3aMEHY ePEMEHHBIX

x—1=uwu,y—1=wv B 3aganHoii cucreme. CucreMa IpuUMeT BU],

U=u—2v—v2
0 = 2u+ 2v + u? + v?

nuig koropoit Touka (0,0) - mosioxkenue pasnosecus. Jluneapusosannag B Touke (0,0) cucrema umeer Bui

uU=u-—2v
v =2u+ 2v

HaXOILPIM COOCTBEHHbBIC 3HAYCHUSI MaTpUIIbI 3TOUW CUCTEMBI

U3 ypaBHEHUs
1-X =2 | 9 _
’ 9 2_)\‘)\ —-3X+6=0.

Tax KaK COOCTBEHHBE 3HAUCHNS \j o = %(3 + Z\/ﬁ), TO IIOJIO?KEHHE DABHOBECUS SABJIAETCH HEYCTONYUBBIM
doxycom.  CuenoBarensro, kpome mosoxkenns papHosecusi (0,0), OCTAIBHBIMA TPAEKTOPUSIMHA SIBJISIEOTCSI
crimpasu. s onpesieieHns HaIpaBJIeHUS JIBUYKEHUS IO CIUPAJIAM MPHU ¢ — 400 JOCTATOYHO HAUTU BEKTOD
dazoBoil CKOPOCTH @ JIMHEAPU30BAHHOI CHCTEMBbI B Kakoii-HuOyap Touke. Hampumep, B Touke (1,0) BeKTOp
ckopocru a umeer kKoopauuarel (1,2), CuenosaresbHo, npu ¢ — +00 JBUMKEHUE O CHUPAJIAM HAIPABIEHO
npoTuB YacoBoit crpenku. lloBenenne a30BBIX TPAEKTOPHIl B ITOM Clydae CXeMATHYEeCKH II0KA3aHO Ha
CJIeTYIOIEM PUCYHKE.

(ctimpaJib BOKPYT HyJIsl TIPOTHB YaCOBOW CTPEJIKH)

s apyroro nosoxkenus pasaoBecusi (1, —1) 3amena nepemennnix ¢ — 1 = u,y + 1 = v gaer cucremy Buga

U =u-+2v— 02
O = 2u — 20 + u? + V2.
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5.3.1 Problems about the behavior of phase trajectories near gross equilibrium positions

Jluneapusarus sroit cucremsl B Touke (0,0) numeer Buj

U= u—+ 2v,
v = 2u — 2v.

CobCcTBeHHbIe 3HAUCHUS MaTPHUIIbI 3TON CUCTEMBI

(2 -3)

1—A 2 2

HaXOJ/IUM U3 YpaBHEHUS

IMonygaem Ay = —3, 2 = 2. Tak Kak A\; u A2 pasHbIX 3HAKOB, TO nojiokenue pasHoecusd (0,0) saBiszercs
ceggioM. JIjist Toro, 4robbl HAPUCOBATH KAPTUHY IOBeIeHMsT (pa30BBIX TPAEKTOPUil, OCTAJOCH HANTHU JIMHEWHO
HE3aBUCUMBbIE COOCTBEHHBIE BEKTOPBI h1 1 ho Jist A1 m Ao, Jlmsa Ay = —3 coOCTBEHHBIIT BEKTOP

hy = ( }2 >, a I Ao = 2 COOCTBEHHBI BeKTOp ho = ( % ) W3BectHO, 4UTO B Ciydae cejyia

TPAEKTOPUSMU SIBJISIOTCS TUIEPOOIBbI, JJIs KOTOPBIX IIPSAMBIE, OIpejesisemMble BeKTopamu hy; u hg, ciayxar
acuMOToTaMu. JIydn 3THX MPSIMBIX TOXKE TPACKTOPUH.

[ToBesienne daz30BBIX TPAEKTOPHUI B 9TOM CJIydae CXEMATHYECKM IIOKA3aHO HA CJIEIYIONIEM DPHUCYHKE, TJe
CTPEJIKN YKa3bIBAIOT HAIIPpABJICHUE JIBUKEHUS 110 TPAEKTOPHUAM IIpU ¢ — +00.

P-np.2

4

st ypaBuenns i + 22 — e~ % = () HaliTH HOJIOKEHNSA PABHOBECHH, OIPEJICIUTh X XapaKTep U HAPUCOBATH
¢da30BbIe TPAEKTOPUN JINHEAPU30BAHHOTO YPABHEHUsI B OKPECTHOCTH ITOJIOYKEHU PABHOBECHSI.
Bsena oboznauenune & = gy, mpeobpasyeM ypaBHEHHE K CHCTEME

T =y, \
g=—a>+e .

ITo omnpemeneHno MOJIOXKEHUSIMUA PABHOBeCUsI W (Pa30BBIMU TPACKTOPUAMY 33JIaHHOIO YPABHEHUs SIBJISTIOTCS
COOTBETCTBEHHO IIOJIOKEHUS PaBHOBecusi n (ha30Bble TPAEKTOPUHU ITOH cucrembl. IIpupaBHUBas HYJIIO IIpaBble
YACTH CUCTEMbI, HAXOUM Tosioxkenue pasuosecust (1,0). Ilepenocs Haga 0 KOOPAMHAT B OJIOKEHIE DABHOBECHUS
(1,0) ¢ nmomorpio 3aMeHbl & = u + 1,y = v, HOJIyYaeM aBTOHOMHYIO CHCTEMY

U=v
4v
O=—(u+1)%+e v+

Pazjiaras npasyio uactb cucrembl 110 Gopmyie Teitsopa B okpecrHocru (0,0) u OrpaHUYMBasCh JIUIIb
JIMHEMHBIMH YJIEHAMU Pa3JI02KEHUs, [10JIydaeM JIUHEapU30BaHHYIO CUCTEMY BHJIA

U="v
v =—3u—4v

. 0 1
Marpura 3Toi crucTeMbl 3 _4 nMeeT cOOCTBeHHBbIE 3HadYeHuss A1 = —1, Ay = —3. CoorBercrByforiue

UM JINHEITHO He3aBUCUMBIMU COOCTBEHHBIMI BEKTOPpaMU ABJIAIOTCHA

m=( )= (1)

IMosnoxkenne pasHobecusi (0,0) JIMHEAPH30BAHHONW CHCTEMBI - YCTOWYMBBIA y3eul. IloBenenne dazoBbIx
TPAaeKTOPUN cXxeMaTHU4YeCKM IIOKa3aHO Ha CJEAYIONeM pPHUCYHKe, IJie CTPEJIKHd YKa3blBalOT HallpaBJIeHUe
JIBUZKEHUS 10 TPAEKTOPUAM 1pu ¢ — +00.

Haittu monoxkenusi paBHOBecHs, OIPENEJUTh UX XapaKTep U HAPUCOBAThH (HA30Bble TPAEKTOPHUH
JINHEAPU30BAHHBIX CHCTEM B OKPECTHOCTH TIOJIOXKEHU PABHOBECHS JIJIsi AaBTOHOMHBIX cucreM (1 — 52):

P-1

&= et 4 g
J = arccos (:v — x3) -z
Yy 2

169



5.3.1 Problems about the behavior of phase trajectories near gross equilibrium positions

P-2

z=1In(l—y)

Y= Vr—4y+zx—2.
P-3

{ m_ln(1+\/m) n2,

y = 2 arctg(x + 3y)m + 2 —

P-4
{izm@—2x—%)
g=e"—1
P-5

{m:dmy—ﬂ—x)

y=3r—a°—y

P-6
t=2r+y? -1
y=sinz—y2+1
P-7
z = 1In(x + y)
y=a>4+y3 -1
P-8

& =3x2—zy+2
y:w2—x—2

P-9
t=a%+x+2y% -2
j=a+y’
P-11
T = e‘”2’y — e
y=-—r—-2y—y°
P-10

i‘:yQ—y—Z
y=—xy—3y> -2

P-13
T=1-2x—1y>2
y=e 4 -1
P-12

{m—2x— —x2

y=+1+4y —/1+ 2z + 2y?
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5.3.1 Problems about the behavior of phase trajectories near gross equilibrium positions

P-14
T=-3+2r+y
j = arctg(wy)
P-23
T = arctg (x2 —x+ y)
y':ln(1+x2+3x—y)
P-24
r=e"—y—1
g=z+In(l+y)
P-25

T =shy
y=e*—1

P-26

& =In(l+z+4y)
y:aurcsin(ac—i—y—9”7‘2

P-27
& =sh(z —y)
g = eletyt2zy) _q
P-28
& =e T
{ y':arctg<4x—y—%).
P-31

i‘:W+arctg(x3—8—tgy)—y,
y=2zr+12tgy — 4.

P-32
T=+y?—1—6x2—uz,
Y T B
P-33
i:sh(2z+y—:p2),
yzln(1+3x—x2).
P-34
i = arctg(x —y — 4),
§=2x— 2y —4vz2 — 1.
P-35

=1In(2 -z +y),
j=z _y_e4(12—1)

171



5.3.1 Problems about the behavior of phase trajectories near gross equilibrium positions

P-36

T =1-21—y>
g=—1—6x+y*> "

P-37
T =4x + 2y — 4,
y=—2x —xy.
P-38
T =% — 492,
y=2-2y.
P-39
T =844y — 2zy
j=a?—dy?
P-40
t=Te+y+y—2,
g=—1In(l+2x)
P-41

T = 6172z73y +x
y = arctg (z? — 1)

P-42
{ i=3\4—6y—4y3 -1,

) = In (Jc3 — 7y) + 2y.

P-43

P-44
P=1—er Y
y:th(2+xf:172).
P-45
{ i=/T+2z—5y—1,

y = arctg (£ + %zQ —2y).
P-46

& =arctg(z —y — 1)

y=+322+3y—2-1.

Haiitu mo/io>KeHUsT paBHOBECHUsI, OIPEJEJINTh WX XapaKTep ¥ HapucoBaTb (Da30Bble TPAEKTOPUH
JIMHEAPU30BAHHOIO YPABHEHUSI B OKPECTHOCTH IOJIOKEHUI paBHOBecus 11 ypasaenuit (53-82):

P-53
i+di=1In(l-3z+2>—i).
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5.3.1 Problems about the behavior of phase trajectories near gross equilibrium positions

P-54
F+i+1l=vV1+z+22—1.

P-55

. : _di
it+ad=e"%.

P-56
i+ 3% =1In (& + 2°).
P-57

F4+24+x—2224+1=0.

P-58
F—4i+222 -z —-3=0.

P-60
& —e® — g3 =0.
P-59
i—(1+2)2+25=0.
P-61

28+ bsinz ++v1+4x—1=0.

P-62
¥ — arcsin(x — 24) + 7In(1 —z) = 0.

P-63
rcosx —4tgay/1 —sinx 4+ 3z = 0.

P-64
i—e3 4 4 2In(l —2) +1=0.

P-65
Z+tg(2z + 62) —3In(l —z) = 0.

P-66
i+ 2°[1+1In(1 + 22)] = (1 + 24)%

P-67

¥+ 2e* — 3 cosd = 3.

P-68
i+ (2+4)%arctgd + 23 = 1.
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5.3.2 Problems about the behavior of phase trajectories near noncoarse equilibrium positions
and on the entire phase plane

P-69

i = barctg(z — 1) + 4e? sin 4.

P-70

i = (3@ — 2x)et".

P-71

i+ (4 + 3z)e”” = 0.

P-72
i—(t+4x)3+2i+1=0.

5.3.2 Problems about the behavior of phase trajectories near non-
coarse equilibrium positions and on the entire phase plane

P-14.1p.1

HccnenoBaTh IpM BCeX 3HAYCHUSX BEIIECTBEHHOIO IapaMeTpa a IOBeJeHue (Pa30BbIX TPACKTOPHl B
okpecTHOCTHU HOJI0XKeHus paHoBecus (0,0) st cucreMbl

j::—y+ax(a:2+y2),
y':x—|—ay(m2+y2)

Touka (0,0) gBJISETCS EHTPOM IS JIMHeapu30BaHHO# crucreMsl B Touke (0,0) mpu a =0

i:_yv
y =,

MTOCKOJIBKY MATPUIA JIMTHEApU3aIud nMeeT coOCTBeHHbIe 3HadeHus A = +¢. YUToObl mccieoBaTh MOBEIEHUE
da30BbIX TpaekTOpWii 3aJ@HHOW cucTeMbl Tpu a F# 0, mepeilieM K TMOJAPHBIM  KOOPJAUHATAM
x(t) = r(t)cosp(t), y(t) ==r(t)sinp(t). [Hoxyuaem cucremy BuIA

7 cos p — rpsin g = —rsin e + ars cos ¢,
7 sin @ + 1 cos @ = rcos ¢ + ar® sin @,

OTKY/Ia, HAXOJUM
7= ars,
rO="r.
IIpu r = 0 umeem nonoxkenune pasuoBecus. [lpur > 0p =t+Cup - +oomput — 400, a7 <0npua <0u
7> 0 npu a > 0.
Orcioma caemyer, uto nipu r > 0 TPAEKTOPHUSIMU CHCTEMbBI CJIYXKAT CIIMPAJIA, JBUXKEHUE 110 KOTOPBIM UJET
[IPOTHUB YacoBOi cTpesku, npudeM npu ¢ < 0 cnupasu 3axkpyunusaiorcs Bokpyr (0,0) upu ¢ — 400, a npu
a > 0 cumpasu packpyuusaiorcs Bokpyr (0,0) mpu t — +00.

[Ipu uccnenoBanuu moeeeHnst (Pa30BLIX TPAEKTOPHil Ha Bceil (a30BOil IJIOCKOCTH HEODXOINMO HAXOIUTH
HE TOJIbKO I10JIO?KEHUA PAaBHOBECHUS CHUCTEMBbI, HO U IIpeJieJIbHbIE ITUKJIbI.

P-14.up.2

UccremoBars npu BeeX 3HAYEHUSAX BEIIECTBEHHOIO IIapaMeTpa a HoBejeHnne (a30BbIX TPACKTOPUIl HA BCeil
¢a30BOIl MJIOCKOCTHU JjIsi CUCTEMBI

i=—y+ax(z®+y?—1)
y=z+ay(z? +y?—1)

ITpn a = 0 uMeeM JIMHEHHYIO CHCTEMY, JIJIsi KOTOPOHl HAYAJ0 KOODJMHAT sIBJISleTCs IeHTpoM. Ilycrs a #
0. ITocne mepexoga K mossApHbIM KoopaumHataMm z(t) = r(f) cosp(t), y(t) = r(f)sinp(t) nomydaem cucremy

ypaBHeHU
r=ar (7"2 — 1) ,
ro=r
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5.3.2 Problems about the behavior of phase trajectories near noncoarse equilibrium positions
and on the entire phase plane

r = 0 maer nosoxkenne pasHosecust (0,0), a r = 1 sBasercs pemenneMm. Ilpu r > 0,7 # 1, Tpaekropusmu
apasgroTcsa cnupasn. Eean a < 0, o 7 > 0 mpu 0 < 7 < 1 u, 3HAYUT COUPATU PACKPYIUBAIOTCH BOKPYT 7 = 0
[IPOTUB YACOBOM CTPEJIKU TIPU t — +00 M CTPEMATCS U3HYTPHU K OKpyxkHOCcTU 7 = 1. Ilpm a < 0 u r > 1 umeem
7 < 0. Coumpasin mpOTUB YaCOBOM CTPEJIKM M3BHE HAKPYUMBAKOTCS HA OKPYKHOCTH 7 = 1 mpu t — 400. Takum
obpazom, ipu a < 0 OKPYKHOCTB 7 = 1 ABJSIETCS YCTOWIUBLIM MIPEIETbHBIM ITHKJIOM.

Ecm a > 0, To pu 0 < r < 1 cnupanun 3akpyduBaiorcs BoKpyr r = 0 mpu ¢ — 400, a ipu r > 1 cnupaan
PaCKPYy4YUBAIOTCH BOKPYT' OKPY2KHOCTH IIpU ¢ — 400 IIPOTHUB YaCOBOl CTPEJIKHU, TaK KaK ¢ — +00 npu t — +00.
B srom ciryaae okpyKHOCTD 7 = 1 SBJISIeTCH HEYCTONYIUBBIM MPEIETBHBIM ITUKJIOM CHCTEMBI.

UccieoBars mpu BCeX 3HAYEHUAX BEIIECTBEHHOI'O IIapaMeTpa  IoBejeHre (Da30BbIX TPAEKTOPHil B
okpectHOCcTH TosioKkeHust papHoecus (0,0) mst cucrem (1-11):

P-14.1

T = =2y + ax/x? + 92
§ =2z + ay/x? + y?

P-14.2
a'c:y—&—ax(xz—i—yz)
Y= —x—|—ay(3:2+y2)
P-14.3

T =4y + ax\/22 + 32
y = —4x + ay/x2 + y?

P-14.4

T = -3y +azx (x2 + y2)2
y=3x+ay (:E2 +y2)2

P-14.5
T =2y+ax (m2 +y2)2
y=-—-2x+ay (x2 + y2)2
P-14.6

;ic:—ay+x(m2+y2)
g =ax+y(z®+y?)

P-14.7
i = —y — axy?
U =x+azy
P-14.8

=1y — axy?
Uy =—x+ az’y

P-14.9
T = —y(m2+y2—a)
y=x (2 +y% - a)
P-14.10

i::y(—a+x2+y2)
y:—x(—a+x2—|—y2)
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5.3.2 Problems about the behavior of phase trajectories near noncoarse equilibrium positions
and on the entire phase plane

P-14.11

i=—y (2> +y*+d?)
y:m(xQ—I—yQ—l—ag)
azoBeIxX TpaekTopHil Ha Beeil hazoBoil mwiIocKocTH JIs cucTeM (12 — 21):

I/ICC.HG,B;OB&TI: Opnu BCeX 3HAYECHUAX BEHIECTBEHHOI'O IlapaMeTpa a IIOBeJIeHNe

P-14.12
:k:y+ax(:v2+y272),
y:—x+ay(x2+y2—2)

P-14.13

i =-2y+ax (\/1‘2 +y2 — 1) (2— \/x2—|—y2)
y=2x+ay (\/z2+y2 71) (2— \/x2+y2)

P-14.15
T = —ay + x\/x? + y? - sin —=Z

z2+y?

CQ:ax—i—yvsﬂ4—?;2-sin\/g£Ty2

P-14.16

T = fy+az(x2+y2—l) (:z:2+y271)
y=lz+ay(@?+y?-1)] (2 +¢*-1)

P-14.17
& =2y + ax/x2 + 32 - sin? —=

x2 +y2

o 2 2 . w2 s
Yy = —2x 4+ ay\/x* + y* - sin T

P-14.18

{ ;; - Fii iﬁl.?(f(fﬁjf y;—Q)Q])Y(I;Fi y;—Q)Q)

P-14.19

i =—ay+z (2 +y* - 2)
y:az+y(x2+y2—2)

P-14.20

g'c:—ay—&—x(\/x?—&—yz—l)
y:ax+y(\/w2+y2—1)

P-14.21
T =-—y+az («/x2+y2 -1

2
b
) Ha Bceit dazoBoil miIockocTn HapUCOBaTH CXEMATUYIECKH (a30BbIE
— 2 2
y—eray(\/x +y 71)

TpaekTopun cucreM (22-45):

P-14.22
i=2x3
U=y
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5.3.2 Problems about the behavior of phase trajectories near noncoarse equilibrium positions
and on the entire phase plane

P-14.23

T =z3

y=-y
P-14.32

&=y

Y= —zy.
P-14.33

r=x+1,

Y= —xy.
P-14.34

T =sinx,

Y = Yy Ccoszx.
P-14.35

T =ux,

g=y-y>
P-14.36

& = x?

y =1y —2uxy.
P-14.37

&= xy?,

g=a>+y
P-14.38

T =1y

j=z+y°
P-14.39

T =2y,

y = 322,
P-14.40

&=z

Y=y
P-14.41

= y? + 22y — 22,
j=a®+ 2y —y°

P-14.42
{ & = 3z2 — y?,
Y=y
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5.3.3 Problems about the stability of equilibrium positions

P-14.43

T = 2zy,

¥ =z + 2y
P-14.44

T = xeY

y =yeY
P-14.45

= (y — x2) ,

{ p=y(y—2?).

5.3.3 Problems about the stability of equilibrium positions

P-15.0p.1

WccnenoBaTh yCTONIMBOCTD TIOJIOXKEHUI pABHOBECUSA C TIOMOIIBIO CHUCTEMBI TIEPBOTO TPUOIUKEHUST
aBTOHOMHOI CHUCTEMBI
{ E=1-—2z— 1>

g=e 1

Haitnem cragasa mosioxkeHusi paBHOBeCUs CUCTEMBI. JIjist 9TOr0 HEOOXOMMMO PENIUTh CUCTEMY ypPABHEHUIA

1—2x—19y%=0,
e 4 —1=0.

IMony4aem nBa nosoxkenus pasuosecusi: (0,1) u (0, —1). Hcciemyem ycToiiuMBOCTD IIOJIOKEHUsT PABHOBECHSI
(0,1). C 2710ii 11eJIbI0 B ABTOHOMHOIi CHCTEME CJIeJIaeM 3aMeny y — 1 = y; U IpaBble 9aCTH II0JIy9€HHON CUCTEMBI
paznoxkuMm 1o opmyse Teitmopa B okpectHoctrn Touku (0,0), SBISIOMEHCS MOTOKEHNEM DABHOBECHST HOBOM
cucrembl. Mmeem

i=1-22—(1+y1)* = -2z — 2y — 12,

i = —4z + o(x).

Matpura

-2 =2

—4 0
umeer coOCTBeHHBbIE 3HadeHHs A1 = 2, o = —4. CueznoBaresbno, nosioxkenue pasuosecus (0,1) sBisiercs
HEYCTONYUBBIM.

st wccseoBanust yecroiauBocTH BTOporo mosioxkenust pasuosecus (0, —1) B 3aJaHHON cHCTEME Cles1aeM
zameny y + 1 = y;. Torua rouka (0, —1) nepeitner B Touxy (0,0) u moxkuo B okpecraoctu (0,0) pasjIoKUThL 10
dopwmyite Teitmopa mpaBble YacTu HOBOH cucTeMbl. [lomyaaem

j3=1—2x—(y1—1)2=—2$+2y1—y%,
i = —4x + o(x)

(23)

uMeeT coOCTBeHHBIE 3HaueHHs A\ = —1 + iv/7,A\y = —1 — iy/7. CiieoBaTeIbHO, MOIOXKEHIE DABHOBECHSI
(0, —1) siBiIsTeTCH ACUMIITOTUYECKU YCTOWYIMBBIM. B Tex cilydasix, KOrjia BEIECTBEHHbIE YaCTH BCeX COBCTBEHHBIX
3HAYEHUN MaTpPUIBl A HElOJIOKUTE/IbHBI, IIPUYEM XOTs ObI OJITHO COOCTBEHHOE 3HaUYeHrne A MMeeT BEIleCTBEHHYIO
YacTh PaBHYIO HYJIIO, UCCJIEJOBAHAE YCTOMYNBOCTHU IIOJOXKEHUIT PABHOBECUS HEJIMHEUHON aBTOHOMHOI CUCTEMBI C
TIOMOIITBIO CUCTEMBI TIEPBOTO TTPUOJIMKEHN, KaK IIPABUJIO HEBO3MOXKHO, TaK KaK HAMUHAIOT BJIUATH HEJIMHEHHbIE
wieHbl. B Takux ciydasx ucnosnssyior Meros dyukuumit Jlsanynosa (Bropoii merox Jlsmynosa).

Matpuria
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5.3.3 Problems about the stability of equilibrium positions

P-15.0p.2
WccnenoBaTh yCTONYINBOCTD MOJIOKEHUIT PABHOBECHST ABTOHOMHOI CHCTEMBI
T=—x+y°
o 3
Yy=-—-ry—y

EnuHcTBEHHBIM MOJIOZKEeHNEM paBHOBecHus siByisiercst Touka (0,0). B arom cayuae marpuna

-1 0
0 0
He II03BOJIsSIeT BOCIIOJIb30BaThCsl TeopeMoii JIsimyHoBa 06 ycTofauBOCTH 110 ITepBOMY NpubnKkenno. [Ipumernm

BTOpOit MeTos Jlamynosa. Ecim B3aTh B Kauectse dynkmun Jlamyrosa dbynkmmo V(x,y) = 22 + 32, To ee
NIPOU3BOJHAsA B CUJIy aBTOHOMHOI CHCTEeMBbI

. oV ov
V(z,y) = o (—z+y%) + o (—zy —v*) =2z (—z+y?) + 2y (—2y — ¢*) =

=-2(2 +y") <0,

upuueM V(z,y) = 0 qumb upn x = y = 0. Io Teopeme JlsmyHosa orcroga cieayer, uro Touka (0,0) siisiercst
ACHMITOTHYIECKH yCTOWINBEIM ITOJIOKEHUEM DABHOBECUS CUCTEMHBI.
HNccmenoBarh yCTORIMBOCTD TOJOXKEHUH PABHOBECHS! € TIOMOIIBIO CUCTEMBI T1€pBOro npubmamxenust (1-15):

P-15.1
T=-3+2x+y
y = arctg(zy)

P-15.2

T=x%—y
yzln(3x271)—1n2.

P-15.3
t=4—-2By+2)—9y?
y=In {5
P-15.4
jg:x3y—|—y2 j::sh(a:—y)
g=In(2®+y) -3y | g=e>vtetv 1

P-15.6
i+d=In(l-3z+a2%—i).

P-15.7
t=x—y°
y=a’+y% -2
P-15.8
i=5z—8y+3
{ Y= ln%
P-15.9

&= et L g,
Y — 3 3 s
y = arccos (x — 2%) — .
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5.3.3 Problems about the stability of equilibrium positions

P-15.10
i =e" +y? -3,
Y= arctg%
P-15.11
& =In(x + y)
y=a3+9> -1
P-15.12

P
P=e" +y2 -3
y = 4darctg %
y
P-15.13
T = e$2—2y _ €2r
y=-—r—-2y—y°
P-15.14
i+i+l=vV1+zx+a2—1

P-15.15
{ T=2c—y—22

§=I+4dy —/1+2z+ 242

P-15.16

HpI/I KaKNX 3HaYCHUAX BEIIECTBEHHOI'O ITapaMeTpa a CUCTeMa

T =—x+ ay,
y=zr-y

HUccnenosars ycrofiunpocTs nosoxkenust papaosecusi (0,0, 0) s smHelinbx cucrem (18-27):

P-15.18
T =2z — 3y,
y=z—2z
Z=—-y+2z
P-15.19
T = -2z +vy,
y=3x— 2z,
z =4y — 2z.
P-15.20
T =3x+ 2z,
y=x+2y+z,
i=—-T—y
P-15.21
T = —x — 4y,
y:$—y+2,
z=3y—=z

180



5.3.3 Problems about the stability of equilibrium positions

P-15.22
T=9Y— 2,
y:7y+za
Z=x—Z.

P-15.23
T=3x—8y+ =z,
y=x—2y+z
z=3xr — 12y — 5z.

P-15.24

T="Tr— 10y — 4z,
y=4x — Ty —4z,
z=—b6x+ Ty + z.

P-15.25
{ T="Tr —4dy+z

y=Tr—3y+=z
z=4x —2y+2z

P-15.26
T=—-3r+2y+2z
y=-3r—y+=z
z=—-x+2y

P-15.27
T=—-xT+z
F=y—z

¢ nomompio dynkiuu Jlamynosa suaa V(z,y) = ax? + by? uccnenosars ycroitausoets Touku (0,0) st
ABTOHOMHBIX cucTeM (28 — 36):

P-15.28
&= —2y — 23,
j=z-y°
P-15.29
&=y 223
y=—2x—y>
P-15.30
T=—-xz—1>2
j=ay—a%y
P-15.31
= —xy?,
j=—y— 22’y
P-15.32

&= —xy?
y = —day® — 2y°
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5.3.4 Problems about the first integrals

P-15.33
T=x— yza
y=ay+y’
P-15.34
=2y + a3
j=-z+y’
P-15.35
= —y+223
y=2x+y3
P-15.36
T = —da?y — 223,
§=—a’y
P-15.37
Paccmorpum ypasaenust & = — grad V (), omuceiBaronye JBUKEHAEe HEKOTOPBIX MEXAHUUECKHUX CHCTEM.
Baecs * = (21,..,2,) U V(z) - HOTEHIHANbHASA SHEPIHsl MEXaHHIECKON CHCTEMBI, MMEIONas MUHUMYM OpH

x = 0. Basas V(z) B kauectBe dyHkimn JlamnyHosa, nokaszarb, 9ro & = 0 sBJIsIeTCs] yCTOHIMBBIM TI0JIOXKEHIEM
PaBHOBECHUS CHUCTEMBI.

IMokazars, uyro eciu dbyuxius Janyunosa V(z),z = (x1,..,T,) g aBTOHOMHON cucrembl & = f(x
olpeJieJisIeT aCUMITOTUYECKU yCTORYnBoe HojioxKeHue pasHoBecus © = 0, to V(x) miua cucremsl & = —f(x

orpenaejdeTr HeyCTOfI‘II/IBOQ IIOJIOZKEHUE DAaBHOBECUA T = 0.

P-15.39

Hych A - MaTpuia KBaﬂpaTI/I‘{HOIU/I (i)OpI\/IbI B N-MEPpHOM BeIIeCTBEHHOM €BKJIMJOBOM IIPOCTPAaHCTBE. (@

n
nomomipio dbyukiuu Jlsmynosa V(z) = > 22 nokasats, uto x = 0 jia cuctempl i = Az sasnsmercs
i=1
ACHMOTOTUYECKN yCTONYMBBIM IOJIOZKEHUEM DABHOBECHS, €CJIM  KB3JpaTHIHAA (HOPMaA OTPHIATEIHHO
oupenenennas, u ¢ = ( sABIAETCS HEYCTOWYMBBIM IIOJOKEHHEM DABHOBECHS, €CIM KBajaparnuHad (opma
LOJIOKUTEJILHO OIIPe e IeHHASL.

5.3.4 Problems about the first integrals

I[TPumeP 1. Ilposepurs, uro dyuxuus u(zr,y,z) = % (x2 +y? + 22) nupu x # 0 sBIgeTCS TEPBBIM
WHTErpajioM CUCTEMBbI
T =2xz
y=2yz
R s R

Hocrarouno ycranoButh, uto u(x,y, z) = 0 upu x # 0. meem

a? —y? — 22 9

2
U =2xz- 5 : —|—2yz-f—|—(z2—x2—y2)-—=
x x

P-16.1p.2

IMokazare uro dyakuuu uq(x,y, z) = % (acQ + %+ 22),
uz(z,y,2) = L ABIAIOTCA HE3ABUCHMBIMU TIEPBBIMI HHTerpatamu mpu © > 0, z > 0 11 aBTOHOMHOI

CUCTeMBI IIpuMepa 1.
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5.3.4 Problems about the first integrals

CHadaJia IpoBepuM, 9TO Ug - NEPBBIA HHTErpas cucreMbl npumMepa 1. VmeeM
1
af:mz(fﬂ)+2wf:0
x

Wrak, uy,us - mepBble HHTErpaJibl cucreMbl pumMepa 1. OHu sBjsitoTcst HesaBucuMbiMu 1ipy & > 0,z > 0, Tak
Kak mMaTpura xobu

umeer panr 2 upu x > 0,z > 0. B camom geme, mpu x > 0,z > 0 ompeaenuTensb U3 JIEMEHTOB BTOPOTO U
TPETHEro CTOJIOIOB MATPUIlLl SIKOOHU

P-16.up.3
Haitna nmepBeIit mHTErpas, pemuTs cucreMy mpu x > 0,z > 0

2

T = -z,
y = ay — 227,
z =2xz.
[TepemHOXKasT KpeCcT-HAKPECT MEPBOE U TPEThE yYpaBHEHUs, mojydaeM z& = —xz. OrbOpackiBas dt, HAXOMUM

orcionia, aro xz = Cy. 3HaqunT, u = xz— nepBbIiil nHTErpas. U3 Tperbero ypasuenus: HaxoguMm z = Cit + Cs.

Torna = = % IloxcraBnsas Haiimennble @, 2z BO BTOPOE YpPaBHEHHWE CHCTEMBI, TOJIyIaeM ypaBHEHUE I -
Cry 2
)= —"— —2(Ci1t + Cq
y Cit + Cy ( )

1o JmHelHoe YpaBHEHUE II€PBOI'O IIOPsAJIKa, O6L[LPII\1 perrenueM KOTOPOro ABJIdeTCHd

Y= (Clt + CZ) (C3 — Clt2 — QCQt) .

P-16.up.4
Haiing nBa He3aBUCHMBIE IEPBbIE UHTEIPAJIBI CUCTEMBI, PEMUThL pu > z > 0,y > 0 cucremy
= 2% 4 22
y=ylr—=z)
z =2xz

[IOJIyIUM ypaABHEHUE
2xzdr = (3:2 + 22) dz,

2 2 2
KOTOpPO€e MOKHO 3anucarh B Bujie d [ £ ) = dz. Orcioga & — z = (7. 3Hayut, u; = £ — z - IepBBIil UHTErpaJ
z z ? z

cucreMbl. BbrareM U3 mepBoro ypaBHEHUS TPETbE YDABHEHUE M PACCMOTDHM IIOJTy9€HHOE yPABHEHUE CO BTOPBIM
ypaBHeHHeM cucreMbl. Vmeem
{ i—2=(r—2)2?

y=yx—2).

[TepemuoOXKast KpeCT-HAKPECT ITH JBa yPABHEHUs, COKpalas Ha £ —z # 0 u orbpaceiBas dt, mosydaem yd(x—z) =
(z — 2z)dy. Orciona x — z = Coy u, 3Ha9UT, ug = =2 - nepBbIi uHTErpaJs cucTeMbl. MOKHO IPOBEPHUTH, YTO

npu x > z > 0,y > 0 mepBble HHTEIPAJIBL U1, U SIBJISIIOTCs He3aBucuMbIMU. 1lojacrasiss x — z = Cay BO BrOpoe
x — z = Coy,

U3 cucrembr
2 22=0C12

ypaBHeHIe UCXOHOM crueteMbl, momydaem § = Coy?. Orciona y(t) = v

03 Ct

CZ 2 02 2
HAXOJIUM 2 = & 2Y x = Chy+ leizycw IMoxcrasiss B stu Gopmyiisl Beipaxkenue st y(t), mosydaem, ITo

1—2C2y”

_ c3
T (C5 — Cat) (C1C5 — C1Cat — 2C5)
L G (Ci05 = GGt — Cy)

(C3 — Cat) (C1C5 — C1Cat — 2C5)

Haiinsg nepsbiii uaTerpast, pemurs cucreMbl (1 — 17) B yKasaHHBIX 00JIACTSIX:
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5.3.4 Problems about the first integrals

P-16.1

L= Gy
U= iye (@ >0,y>0).

P-16.2
{ i = a2y { T = %2

¥ =azy? (x> 0,y > 0). =, (x>0y>0)
P-16.4

. x

xr =

-y

y=_—,@>y>0)

P-16.5

==y

j="2% (z>0,y>0)
P-16.6

T=x—xY

y=—-x+ay, (z>0,z+y>1)
P-16.7

T =y -y,
y=—-y+uzy,(y>0,z+y>1).

P-16.8

A T

I_ac2+y2’

J=—=L>,(x>0y>0)
24y ’

P-16.9

j“:_y7
2
g=% (z>0,y>0zy<2).

x ?

P-16.10
T =
y =

P-16.11

i =axy— a2
Va2
y=y

2=2242yz (x> 0,y >0,2>0)

,(x >0,y >0).

8 ‘detd |=

P-16.12

&=y
9y =yz,

i=-22(y>0,2>0)
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5.3.4 Problems about the first integrals

P-16.13
&= —x?
{ y = xy — 222
z=uxz, (x> 0)

P-16.14

T=1+4 2z,
j =y,

= (1+2)2(y>0,2>-1).

P-16.15

——
I
N~
8 =
— 8
N—
S

P-16.16
& =2y +2),
Y =we® +y,
2=—2y+2),(x>0).
P-16.17
T=x— y27
=1y, Haiinig 1Ba He3aBUCHMBbIE TIEPBbIE HHTErPAJIBI CUCTEMBI, PEITUTH cUCTeMbl (18-
i=x+y?+2z(y>0).

26) B yKa3aHHBIX OBJIACTIX:

P-16.20
t=xz(x+vy)
y=-ylr+y)
2=—z(x—vy),(xr >0,y >02z>0)

P-16.21

i=ua(y—2)
{y=—My+@
Z=2z2(y+2),(x>0,y>0,z>0)

P-16.23
T = xy,
Y=y,
{ Z=xze ¥ +2z(y>0).

P-16.24

T =uxz
y=x+yz

Z=—22,(2>0).
P-16.25

&=z — 32222,
y = 32%y°2,

Z=2z,(x>0,y>02z>0).
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5.4 Problems of partial differential equations of the first order

P-16.26

&= a2,
=223 — 2y — 2,
i=uxz—22% (x> 0).

P-16.27

C noMoIpIo TepBOro MHTErpaja yoeauTbcsd B TOM, 4To moJoxenue pasHosecus (0,0) sBisiercs HEHTPOM
JUUISL CUCTEM

; 2

r=—-Yy—xy
a‘) y:z+x2y
of 1Zrviy

j=—wy? —a?

5.4 Problems of partial differential equations of the first order

(77?7 MO TYT OJIMMIIMAIHBIE 33J[@9N [TOTOM MOPEIIai0, MOCMOTPUM, TIOKA BCE-TAKK HE COBCEM J0 HUX )

5.4.1 Problems about Linear Homogeneous Equations

IIpumeP 1. Ilpu = > 0,z > 0 HaiiTu obImee pelnreHne ypaBHEHUS

du

ox =0

+ 3y222% — (22 +y2?) 4

u
3zyz’ —
Ty y 0z

U PelIuTh JJIA 3TOr0 ypaBHeHus 3ajady Komm ¢ HavaabHbIM yeaosueM v = x# + x23 mpn y = %
Haiinem He3aBUCHMBIE IT€PBBIE MHTEIPAJIBI XAPAKTEPUCTHIECKONW CUCTEMBI /IS 33/JAHHOTO YPaBHEHUs

[TepeMHOXKUB KPECT-HAKPECT MEPBLIX JBA YPABHEHUS ITONH CHCTEMbI, HMEEM
3y? 2% (t) = 3wy22g(t).
Coxparus Ha 3yz? u orbpocus dt, mosydaem
ydr = xdy.
Y

Orciona y = Cix u, 3uaunt, u; = £ - nepsbiit uarerpas. [loncrasus naitiennoe snavenne y = C1x B nepsoe u
TpeThe YpaBHEHHUsI XapaKTePUCTUIECKOU CHUCTEMBI, IMeeM

& = 3C 12222,
= (2902 + Clxz3) .

[Tepemuoxkass KpecT-HAKpPECT 9TH YPaBHEHMSI, COKpAIas Ha T U OTOpachbiBas dt, mOJydaeM
3 _ 2
— (233 + Ciz ) dr = 3C1zz%dz.

ITosraras Cy 23 = t, OTCI0a JIJ1d { HAXOJAUM JIMHEHOe ypaBHEHHUE IIePBOI0 IIOPsIKa

dt t
@_ Ly
dz x ’

C

OOIIUM peleHreM KOTOPOTO CIIYXKUT t = =2 -z Ioncrasisas Cyz° Bmecro t u % BMecto (7, HaXOOUM eIre

OJIMH TIEPBBIN MHTErpas Uy = x2 + yz>. O6IEM pelleHneM 3aIaHHOIO YPABHEHNS SBJIACTCA
Y
u:F(f,:::2 +y2?),
T

rue F (u1,u2) - upoussBosbHast HenpepbiBHo guddepennupyeMas dyukius. Urobbl pemmrs 3agady Kormm,
paccMaTpuBaeM CUCTEMY YpPaBHEHUI



5.4.1 Problems about Linear Homogeneous Equations

U3 sroit cucreMbr ypaBHeHI/Iﬁ HaXO/IuM, 9TO

U2
a? + xzd = =
Uy

CiesioBaresibHO, perneHneM 3aja4du Koy siBiisieTcst

3
uzf(x2+yz3)=x—+mz3
Y Y

P-17.op.2

[Ipu z < 0, z > 0 HaiiTu obIIEEe pelleHne yPABHEHUS

ou 3 o Ou 3 ou
xy— + (220°y + — —(r+22°2+yz) — =0
yax ( yry ) dy ( 4 ) 0z
U PEIUTD JJIsi 9TOr0 ypaBHEHUs 3324y Kol ¢ HaYaJ bHbIM yCJIOBUEM U = % npu 2x + yz = 0.
CocrapjisieM XapaKTEPUCTUIECKYIO CUCTEMY

x(t) = xy
y(t) =22°y +y°
#t) = — (z+ 2232 + yz)

Ilepemuoxkast KpecT-HAKPECT IEPBbIE B YPABHEHUs CUCTEMBI, COKPAIlasd Ha § U OTOpAchIBasd dt, OIydaeM st
Yy JUHEITHOe ypaBHEHUE IIePBOTr0 MOPS KA

xdy = (Zx?’ + y) dz
ofmuM permenneM Koroporo siBsiercs y = Ciaz 4+ 2. 3HaunT, IEPBBIM HHTErPAJOM sBJsCTCH Uy = 2 —
2. YMHOXKas TIepBoe ypaBHEHHE XapaKTePUCTHUECKON CHCTeMBI HA %, BTOpOC yPABHCHIE Ha = M CKJIAbIBasT
IOJIy YE€HHBIE BBIPAXKEHUsI ¢ TPETHUM yPaBHEHUEM, HAXOIUM, UTO ‘

—+-y+z=0.

y vy
Or6paceiBag dt, orciona dx + zdy + ydz = 0 wm dx + d(yz) = 0. Caenosarenvho, x + yz = Cy, 3Hauur,
U = T + Yz - TEepPBBI UHTErpaj XapaKTepUCTUIeCKoil cucreMbl. OOIMM peleHneM 3aJaHHOTO ypPaBHEHUsT
SIBJISIETCST

u:F<g—m2,x+yz),
x

rae F(u1,us) - npoussosbHas HenpepbiBHO auddepeniupyemas dbyukiua. s pemenus 3anadn Korm
COCTaBJISIEM CHCTEMY ypPaBHEHMUIA

20 +yz =0

up = 4 — g2

x
Uy = T + Yz

U3 sroit cucreMbr HaXOJIUM, 9ITO

) 2
= = U + u3.
T

CiretoBaTe/IbHO, PelleHreM 3aaa9u Ko aBisteTcst

u:%—xQ—l—(x—&-yz)Q:%—l—Qxyz—l—yzzQ

Haiitu ofiee peiienne ypaBHeHus U pemuTh 3a1ady Ko ¢ yKazaHHbIM HaYaIbHbIM yeiaosueM (1-100):

P-17.1
xg—f; — %yg—z + (z + x4y2) % =0,u= 222;2?”2 npu zy = —1.
P-17.2

du z*) Ou Qu _ _ yz°-1 -
x8m+(y+z)8y+2282_0’u_ —— 1pu xz = 1.

187



5.4.1 Problems about Linear Homogeneous Equations

P-17.3
%%nyzg—ZJr (z2+29:y71)% :0,u:1’yfénpn xy+ 22 =1.
P-17.4

(:v2+22)g—g+2(wy—xz3)g—"y‘+2xz%:0,u:g—§npnx2—22:2.

P-17.5

2
xg—g—&-yg—z +22(x—3y)% =0,u =% upu 3yz = 1.

P-17.6
(y—|—2z2) %—21‘22%:4-3?2% =0,u= # npu y + 22 +yz = 0.
P-17.7
2P 2,200 4 g3,0u — (0 g =y npn 22® =1
ox dy 0z 4 :
P-17.8

xg—g—&—(xz—i—y)g—:—i—z%:0,u:1—xnpmw+y—z:o.

P-17.9

;v(x-l—z)%%—y(m—z)%—z(x—i—z)g—g:O,u:x+ynpnz:17x>0

P-17.10
2y(m—y2)%—(m—yz)g—Z—élyz‘g—::O,u:ny upu 2 = 1.
P-17.11

x(x+y)%fy(m+y)g—;fz(xfy)g—z:0,u:12+y2 upu z = 1.

P-17.12

:z:(yfz)g—zf (erz)g—ZJrz(erz)%:0,u:y27xnpnz:1.

P-17.13
20228 + Qng—Z + (23:2 +y % =0,u= % npu y = x>
P-17.14
(z+2x—2y)g—z+(z—2x+2y)g—;—2z% =0,u=xz* npuz+y = 0.
P-17.15
a:zg—;f — yz%; + (x3y+562) %Z =0,u= (5)2 upny = x.
P-17.16

(z—z+3y)g—z+(z+zf3y)g—:—22‘g—::O,u:%Hpnz:?)y.

P-17.17

z%+2yg—:+(z2y+z)g—z:(),u:x3 pH z = .
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5.4.1 Problems about Linear Homogeneous Equations

P-17.18

20u

fz:y%fx 8y+yz%:0,u:xnpﬂz:x2+y2

P-17.19
288+ (e 2) (G + ) =0u= (1) oo =22

P-17.20

(z2+y2) % JFQIFZ/% +9:zg—’z‘ =0,u= (2)2 npu y = 2.

P-17.21

(sz—x)%—i—(Qyz—y)g—Z—f— (322 -32—y?) X =0, u=zazmpn y = z.

P-17.22
(2x2z2 + x) % — (4acy22 — y) %Z - (43:23 — z) %: =0,u=yz’mpu x = 2.
P-17.23

(a:3y2 + x) % + (y - 3x2y3) %Z + (a:2y2z + z) % =0,u=2a32 upu y = z.

P-17.24

(x2y+2x)%+(2xy2+y)%—(xyz+2z)%:O,u:yz—i—y—l—%npnm:y.

P-17.25

2
xz%Jr (Qxyny) %Z+(2xz—yz)g—z =0,u =% npum z = 2y.

z

P-17.26

2058 + (29— 32%) 8 ~ 329 = =y~ % mpu oz = 2.
P-17.27
oGt (4 y+ ) Pk 2B = Ou=Lapna? 422 =z

P-17.28

(Sx—yQ)g—Z—&—yg—Z—i—(z—l—x—f)%zO,uzz—yQ npu = = 3y2.

P-17.29
(a:+y+z)%—2yg—;+(m—y+z)% =0,u= i npu & = 2.
P-17.35

20 2 o 30 2
Tz 3*;+2(y*2)y£72 5 =0, u=a%e” mpu y = z,z <0.

P-17.36

2
xQ% + (22—69)%: —l—ng—Z =0,u= (z;f) npu y = Inz.

P-17.37

(x—l—z)%—k(y—&—z)%‘—&—(x—!—y)%:O,u:(1+z)(1—22)2 mpu z +y = 1.
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5.4.1 Problems about Linear Homogeneous Equations

P-17.38

xy%+(a:—22)g—z +yzg—: =0,u =2 upn y> = 2x.

P-17.39

22
a:QZ% + yQZ% + (x4 y)% =0,u=e "z upu x = 2y.

P-17.40

(1 +2)% +y263zg—g +(1 +z)23—: =0,u =€ mpu y = 2(1 + 2)e 3%

P-17.41

322

z(m+y2cosy) % —|—yzg—1y‘ +ycosyg—7; =0,u==5-mpu z = 2y siny + yz2 (0 <y< g)

P-17.42

zeosz % +2(1— ysinx)g—z +(1—2)sinz%% =0,u=e*(z— 1) npuy=1+sinz (0 <z < %)

P-17.43

(1—2)*9% + (1 —x)B% +23e v = 0,u = ﬁ npu z = %(x— 1)zed, (z > 1).

P-17.46
(zy — 2?) %+y2(%+ (e¥ +yz) 24 =0,u= T mpn y = xlnzy > 0.
P-17.47

x% + (z—y)g—z —&—xzctgx% =0,u=sinz+cosznpu z=xy, (0 <z < %)

P-17.48

(m+226y)%+($—y)%+z(as—y)g—g=O,u:e‘"” npu z = 2y, z > 0.

P-17.49
(z+y2+2z)%+yg—z+y2% =0,u=xy —y> upn z = y>.
P-17.50

x(2y+z)%+(xez+y)g—5—(2y+z)g—g:O,u:znpny+z:0,x>0.

P-17.51

(;v—l—y)%—&—(?ze’”—y)g—;—i—(az—i—y)zg—g:O7u:,22 upu 2z +y =0, z > 0.

P-17.52

xy%—&-y%—l—(me‘y—l—z)% =0,u=2%npu z = (y —x)e ¥

P-17.53
a:%l—kxz)%—k%%—&-(l—kmz)%=O,u:my2npnxz:1,x>0.
P-17.54
1ou | 19 L du _ _ _
§£+;£+x+yZ£—O,U—IHpHZ—O.
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5.4.1 Problems about Linear Homogeneous Equations

P-17.55

ry+ G (5 407 B = 0w = 7 2 =0

P-17.56

(1—xy)am+xy2‘gz+z(xy + zy — 1)%20,112302(30—1) npu y =xz, x> 0,y < 0.

P-17.60
2erzau 22z8u+m(1_ )@:0,”_( +y)e Yapu z =0

0z

P-17.61

xcoszg——tgy cosz —l—x(tgy y) =0,u=asinz (¢ +sinz) npny =2 (0<y<3,0<z<3%).

P-17.62

a:zgg—l—(x—l—yz)g ngZ—O,u:xy—a:Z upu z = 1.

P-17.63

(;z;2+y) +2zyay+efzauf0ufe npu x = 2y,x >y > 0.

P-17.64

(x—l—y—z)ax (14 2) Z—i—g—;‘:O,u:y(l—i—m—i—y) upu z = 0.

P-17.65

x2g;+(2my_y)ay+22au_Oauzyz—y—znpﬂx:yz.

P-17.66

(y—2)2 + (r—2) 2 + (y—2) 9 = 0,u=2(x — ) npu & — 2 = 2.

P-17.67

2y cos? x +(1—|—y bln2m) +S”;228“—0 u=2x—1+ctgz mpu y%cos?x = 1, (0<x<%,0<z<§).

P-17.68

(a8 +4?) 9t + a2y G + LY B0 — 0y = 2 4+ T+ 22 npn 2® = 3% I

P-17.69

(2y% + z) 9v —|—2xy8“ + 22234 = 0,u = "”—; npu y? = 2z

P-17.74

zz(zfy)%+y2(227 )31 +y22212‘ =0,u=e* mpuy=%,2>0.

P-17.75
"E(y ) +y2d“_~_y22 7@:07u:y(1+6_%) HpI/IZ:].,y>0

P-17.76

(a:2+z2)g—Z—i—y(Jc—z)g—Z—i—Qa?zg—Z:O,u:x—i—znpﬂy:z.
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5.4.1 Problems about Linear Homogeneous Equations

P-17.77

%g—x (1+myz)——zazf()ufznpnxyfl

P-17.78
22(:10—3/2)g—g—}—Qng—Z—1—(1/2—1—,22)%:(),u:ac—i—z2 mpu y? =1 — .

P-17.79
2gcy8“ + (1—y —2xz) az %% =0,u= % —y? mpu y? + xz = 1.
P-17.80

(x—l— )8“—|—2ng+ng—O,u:xynpuz:l.

P-17.81

POy (4 2) B = 0=y 2= 1

P-17.82

(y—2%) 3¢ + (a:—i—z)—u—z%zo,u:gf—x?npnzzl.

P-17.83

2$y% + (2£E — yz) + ygzgz =0,u = 222% mpu y? = 22.

P-17.84

(m—?m y) 3z+y3y+2x2228“—0 u=y?zupux —y=0.

P-17.92

(22—36)8“4—22 (z—x)a“—&—mzaz =0,u = 525 upu xz = 2,22 > 0.

P-17.93

S.Z‘yzaz +y8y +z(2+ 3yz)% =0,u=xy® upu r = yz,rz < 0.
P-17.94

291 4 237222—5 + 2% (2y2? —2— 2%) 24 = 0,u = 2222 upu y = 0.
P-17.95

e
xg—g+y(3+4xy)g—z+4xyzg—: =0,u= % upu z = zy,xz > 0,y > 0, 2 > 0.

P-17.96

S +y z(l—azy) —l—gZ—O u=1yz% upu z = 0.

P-17.97

(x—y2)%+y%+(x+y +Z) =0u=g3 npn x =y, y > 0.

P-17.98

(2x+y2+Z)%+?TZ+(z—2y+y2)%207u=7x_§y npu 2 =z — y°.
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5.4.2 Problems about Quasilinear and Nonlinear Equations

P-17.99
w25 +y(22 —y) Gy + 225 = 0u=1— 5 mpn 2 = 2.
P-17.100

[(E+y—2’+y—2-2] P+ e+ D)5+ - DG =0u=gupnz=1Ly>1
Pemutb, npeobpa3oBas ero K yKa3aHHBIM HOBBIM HE3aBUCUMBIM IiepeMeHHbIM (101-102):

P-17.101

%+g—Z:0,u:x+y,v:x—y

P-17.102
%:%—Z—f—%:&u:x,v:x—i—%t:x—i—z

5.4.2 Problems about Quasilinear and Nonlinear Equations
(77?7 KaK c MHTErpUPYEMBIME CUCTEMAaMU ITO CBsi3aH0??? BpOje TYT HPOCTeiilne 3TH ypaBHeHus ! )

P-18.op.1

Haiitu ob1riee perrenne ypaBHEHNUA

U Ty MHTErPAJIbHYIO OBEPXHOCTDH 3TOI'O ypaBHEHUHA, KOTOPasd IIPOXOJIUT depe3 IpaMyio & = 1,y = 2.
XapakTepucTU4yecKas CUCTEMA UMeeT BH/L

y(t) =z — z,
2(t) =y — .

{ x(t):z—y,

CJ102kUB TIEpBBIE JIBA YPABHEHUsI, PACCMOTPUM CHCTEMY

TH+y=x—y,
Z=y—x.

Orciona & 4+ ¢y + 2 = 0 wm dx + dy + dz = 0, 94T0 j1aeT UepBbIil HHTErpaJI
U =r+y+=z.

Ecnn mepsoe ypaBHEHME XapaKTEPUCTUYIECKON CHCTEMBI yMHOXKUTBH Ha I, BTOPOE yPABHEHHE YMHOXKUTbH HA ¥,
TpeTbe ypaBHEHNE YMHOXKWUTD Ha Z U CJIOXKUTh, TO MojrydaeM x& +yy + 2z = 0 wim xdx +ydy + zdz = 0. Orcroma
HAXOJIUM €IIEe OJIMH TIePBbIil HHTErpaJI

up = 2 4+ 42 + 22

Ob1riee pereHne ypaBHEHHs 3a1aeTCsl (DOPMYJION
F(az+y+z,x2+y2+22) =0,

rae F (uy,us) - upousBosbHas HenpepbiBHO auddepeniupyemas Gynkuus. g pemenus 3anaun Kormm,
WCKJItOYasl T, Y, 2 U3 CUCTEMBI

r=1y=2,

U =r+y-+z,

uy = 2% + 9% + 2%,

2
HAXOIUM, 4TO Uy = 1 + % (u; — 1)°. Ciienosareibno, pemienne 3aaa4u Kormn 3a1aeT HKITAS
’ 2 ’ Yy

1
x2+y2+22:1+§(x+y+z—1)2.
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5.4.2 Problems about Quasilinear and Nonlinear Equations

Ecim KpuBasd 7y 3a/laHa IIapaMeTPpUiIeCKn

r = 1(7),y = p2(7), 2 = @3(7),
TO U3 CHUCTEMBI ypaBHeHI/Iﬁ

uy = u (@, y, 2)

{ z=p1(7),y = a(7), 2 = p3(7)
ug = uz(z,y, )

HaxomuM cBsa3b D (u,us) = 0. Torma ypasaenne @ [u(z,y, 2), ua(z,y, 2)] = 0 3a/18eT UCKOMYIO HHTEIPAILHYTO
HOBEPXHOCTD, IIPOXOSAIIYIO Yepe3 KPUBYIO 7.

P-18.0p.2
Haitrui HNHTErpaJibHYIO IIOBEPXHOCTDb YPaBHEHUA

0 0
xi+y7z22_,/x2+y2+22,
Ay

or

HPOXOJIAIIYIO Yepex KpuByio = = 7,1y = 72,z = 0.

CocraBum XapaKTEPUCTUIECCKYIO CUCTEMY

IlIepemuoxKast KpecT-HaKpeCT TEPBbIe JIBA YpaBHEHUsI CUCTEMBbI W OTOpachbiBas dt, HaxXoauM, 4To ydr = xdy.
Orcioma u; = % - mEPBBI WHTErpaj. ¥YMHOXKas IIepBOe ypaBHEHWE Ha X, BTOPOE - HA Y, TPEThbe - HA Z U

CKJIQIbIBas, IMeEM
xi:+yy'+z,é=x2+y2+22—z\/m.

[TepemuOXKast KpeCT-HAKPECT STO BHIPAXKEHUE C TPETHUM YPABHEHNEM CHCTEMBbI, IOy 9IaeM IOCje OTOPACHIBAHUS

dt
(z — Va2 +y?+ z2) (xdx 4+ ydy + zdz) = (332 + 2+ 22 — 222 +y2 + z2) dz.

Orciona Bnauur, us = y/x2 + y2 + 22 + 2. 3 cucreMnbl ypasHenuii

x:T,yy=7'27z:0,

Uy = -
up = /2% +y? + 22 + 2
HaXOAUM, ITO u% = u% + u‘ll. Torna mckomas MHTerpaJIbHas IIOBEPXHOCTh 33 a€TCs YPABHEHHEM
2 y2 4
(Z-‘r x2+y2+z2) ==+t
x x

B zagauax (1-33) maiiTu MHTErpasbHYIO MOBEPXHOCTH YPABHEHUSI, IIPOXOJSINYIO YepPe3 3aJaHHY0 JIMHUIO.

P-18.1

x%—i—yg—;:z—xQ—y?,xQ—i—gf:1,z:x2—1.
P-18.2
(mQ—yQ)%—&-xyg—Z +ayz=0,z=x,y=1.

P-18.3

40z 40z __ 2,2 _ .2 _
T2 5 T Yz oy =Ty Ez=ahy =

8 =

P-18.4

2 oz 20z __ _ —
(a: y—x)%—xy a—y—z,z—x,y—l.
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5.4.2 Problems about Quasilinear and Nonlinear Equations

P-18.5

(:z:2+y) +2xydyfxzy:1,z:x.

P-18.6

yar —xg; =x+y,rz=0y==z

P-18.7
(y + 22 —xQ) 2xy +2xz—0 x=0,z=1y>

P-18.8

C-peE+@-LE=y-za=y==

P-18.9

a:z8$+yzay+x +y?P=0,r=1y=2.

P-18.10

(132 -y’ *22) % +2xyg—; — 22z =0,z =0,y =sinT,z = cosT.

P-18.11

(x—y)$+(x+y) —z=0,z =cosT,y =sin7,z =T.

P-18.12

y'egt —ayta G +a (P 4y?) =0 =Ty =1z2=Vrl 41,

P-18.13
(CE2 _ y2 + 22) % —|—2xy%; = 2‘%27:5 = ]_’y = Ch’T,Z —=shrT.

P-18.14
(my—x ) o —|—y2az =224+ 2z,y=1,2 = 2.

P-18.15

$(4—$2) +(2xy+1) —x,le,y:—z.
P-18.16

2x382+y(2x -y )——14—2 x =1,y = arctg 2.
P-18.17

P-18.18

y2§§+yzdy 22 r—y=0,x—yz=1.

P-18.19

(z —y)? % +a:zay =zy,x =0,y =0.
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5.4.2 Problems about Quasilinear and Nonlinear Equations

P-18.20

9z 9z _ Yy
y8x+28y -

P-18.21
(02 + )% + (2 +y2)% = 1— 22,5 = 2,20 = 3y,
P-18.22
(2y_z)%+y%; :Zay=3z2a$+2_4y:0-
P-18.23

y%—l—xg—;:w—i—y—i-z,x—&—Zy:O,z:O.

P-18.24
x% —|—yg—; =y + 2,y =22 2=2xy.
P-18.25
20z

—x gz +(xy—2zz)g—;:zz,xy:1,x+z:0.

P-18.26
(2 +y* +2%) G +2yF =22y —2+1=0,2=2z.
P-18.27
—(+3y2) 92 +y3E =z, 0+ 292 =0,yz = 1.
P-18.28
(2y° —2?) G2 —20y32 + 2208 =0,y =z = L.
P-18.29
(=) 42 +y=00=0y=2z
P-18.30
(z+y2+22)%+y%§:2’7$:y:1
P-18.31
(2* =) Z+ayf +ayz=0,2=z,y =L
P-18.32
2x%+(y+z)g—; =y+za=9%2=0

P-18.33

3y%+(az+2y>% =3coszz-tgz,x+3y:1,z:%(O<z< g)

P-18.34
HaiiTi IIOBEPXHOCTDb, IPOXOIANIYIO Uepe3 OKPy:KHOCTh 2 + y2 + 22 = a?, 2
ceMelicTBy cdep 2+ y2 + 22 = b

1 m oproronajpHyIO K
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5.5 Variational Calculus Tasks

P-18.35

Pemnrn

Hpeo6pa30BaB €ro K HOBBIM HE€3aBUCHUMBIM II€PEMEHHBIM U — J}Q + y2. v=2.

P-18.36

Pemnrs 9 9
z z
222 20%

or Y 8y:Z’

8=

Hpeo6pa3013aB €r'0 K HOBBIM HE€3aBHCHUMDBIM II€EPEMEHHBIM U =
HeJIMHENHOTO YpaBHEHUs, YJIOBJIETBOPAIONICI'O YKa3aHHOMY H. Y..

1
57

P-18.37

du _ du  Ju ., _ —
a:—&—ya—y—aw 8y,u—x,y—O

P-18.38

(g—Z)Q—Fyg—Z:O,u:x,y:l

P-18.39

, 2
x%—}—yg—;—i—(%) =u,u=2x,y=1.

P-18.40

oge (34" = B

ox

P-18.41

Oupegnenuts GyHKIMO 2 = (2, y), YAOBIETBOPSIOILYIO OJHOBPEMEHHO JIBYM YDABHEHUSIM

m%-i- %—Ox%+2%— 2°
Oz y@y_ " ox yo"’y_a:2+y2'

P-18.42

Oupenenurs GyHKIMO U = u(,y), YIOBIETBOPSIOILYIO OJHOBPEMEHHO JIBYM yDaBHEHUSIM
ou Ou ou\?® ou\?®
—_— —_— = 0’ —_— — —_ = 2 - 3.
ox + oy (8:6) (8y> (@ =y)
5.5 Variational Calculus Tasks

5.5.1 Problems about the simplest variations

P-nop.1

Pemute npocreiinnyio BapuanuoHHYIO 33129y, €CJIN

J(y) = / [zyz + 2%yy’ + (1 + 51:2) (y')z} dr, y(0)=0, y(1)=1.
0

VpasHenue Ditepa uMeeT BUJ,

[(1+2?) y']/ =0.
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5.5.1 Problems about the simplest variations

DkcTpemMalin 3aat0Tcst paBeHcTBoM y = C arctg x 4+ Cs, tie C u Cs - IpOM3BOJIbHBIE TIOCTOsIHHEBIE. VcoJib3yst

IDAHUYHBIE YCJIOBUS, LOJLydaeM JOIYCTUMYIO 9KCTpeMailb §(x) = %arctg x. IlpoBepum, neficTBATEILHO JIX HA

9(z) nocruraercs skerpemym J(y). st mo6oit n(z) €°! [0, 1] umeem

1
AJ(G) = J(§ + 1) — T(G) = / (a(g+ ) + 22 +0) @+ o)+
0

+(L+a?) (7 + ) = o = 2% + (1+0%) ()} do =

St — - oY—

1
[2z3 + 27 ndx+/ [2%9 + 2®n +2 (1 + 2°) §'] v/ da+
0

+ {xnz + (1+2%) (77’)2] dx

Bo Bropom nnTerpase npouHTerpupyeM o dactam. [lomygaem

1
/[w2@+x2n+2(1+x2)@’} e = [225+2 (1 +22) ] n(x)],_, +
0

1
2z /{[x y+2(1+z)g)’]/n+xn2}dz:
x=0 0

TaK KaK [IPOMHTErPHPOBAHHAS YaCTh O0pAIAeTcst B HyJlb, TOCKOJIbKY 7)(2) obpainaercs B Hyslb Ha KoHnax [0, 1].
[Moxpcrasissa HaiijileHHOE BbIpaXKeHue BTOporo ciaraemoro B AJ(§), Haxomum

1 1

AJ(D) :/{2$Q+x2g’— [3:23)+2(1+x2) A’]}ndaz+/(1—|—x2) (T]')2 dz =
0
1 1 1
/2 1+:17 77d33+/ 1+;z: /1+x *dz > 0.
0 0 0

1
~ N
Bnech GbL1 HCLOIB30BaH TOT baKT, 9To J() - SKCTpeMaslb U, 3HauuT, [ [(1 + JCZ) y’] ndr =0
0
Takum 06paszom, mpomycTuMas SKcTpeMasb §(z) zaer abCOMOTHBIE MUHUMYM B 3aJaHHOI Ipocrefimieit
BapUAIMOHHON 3ajia4e.
P-np.2

Pemure mpocreiinyo BapuamoHHy0 3a/1a9y, eCJIn
2
/ 6y +a22 () + 12x3y} de, y(1)=1, y(2)=8
1

VpaBHeHue Ditepa

22y 4 2y — 6y = 623

oIpejesdeT ceMefCTBO 3KCTpeMaJseil
Ch
2 3
Yy=—3 + Cox” + 7,
T

rie C1 u Cy - IpON3BOJIbHBIE IIOCTOSHHBIE. VICIIOIb3yst FPAHIYHbIE YCJIOBUSA, HAXOAUM JIOIYCTHMYIO 9KCTPEMAJIb
g(z) =23, (777)
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5.5.1 Problems about the simplest variations

s Besikoit n(z) € C1, 2] mmeem

2
AJ(G) = I+ 1) = I@) = [ {60+ 07 +a @ +4)° + 120 + 1) = 677 — a* ()7 ~ 120°9} do =
1
2 2 2
/ 61> + 2* dx—!—/ 129 + 122°) ndm+2/x2(g))’n’dx
1 1 1
[TpounTerpupyemM Mo 4acTgM B IIOCIEIHEM HMHTErpajie W Bocuosbdyemcs teM, uro 7(1) = n(2) = 0. Torma
HOJTy 9aeM

AJ()) = [677 + 22 (n )}dm—l—/ [12@+12x3— % (22°9") | ndz.

b—‘\w

Ho BoIpazkenne B KBaJIpaTHBIX CKOOKAaX BO BTOPOM HHTErpAJIe

12g+12x3—%(2ng’):—2( 29" + 2279 — 69— 62°) =0

a [1,2], rak kak §(x) - pemenne ypapHeHus Jiinepa. CiesoBaTesbHO,

2
/617 + 22 }dx>0
1

Do 3Ha4uT, 94T §(T) Jaer abCOTIOTHBIA MUHAMYM. A

1
P-1 Pemurs Bapuanuonuyo 3agady J(y) = [(y+y') dz, y(0)=0, y(1)=1.
0
P-2 Pemuts BapUAaIlMOHHY IO 3aa4y

- lfe[%+yy’+w2(y’)2}dw7 y(1) =1, yle) =0.

J(y) = f {2y —yy +x (y’)ﬂ dr, y(1)=1, y(3)=4.

J) = | 42+ () +8y|de, y(0) = ~1,y(F) =0.
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5.5.1 Problems about the simplest variations

P-12

J(y)=f[w(y’>2+f+2y}fﬂdw, y(1)=0, y(2)=1-1In2

P-20
/2
J(y) = { [y— % (v) } sin zdx, y (g) =—Inv2,y (%) =0.
/4
P-21
Tw)=J 32 )"+ 2~ Gde, y)=1, y(e) =2
P-22

I = [+ e+ e o) do w0 =1 w0 =3

P-23
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5.5.1 Problems about the simplest variations

P-30
w/2 9
J(y) = g [(y’) + 29y’ —|—4y2} dz, y(0)=0,y (%) =shw
P-31
_ Py 22 1y — 1 0 (1) —
J(y) —1/f4 @—02 ~ z(a—1)? dr,y(3) =1y (3) =2
P-32

P-41
"y 1
1) = |85+ | e 0 =00 () = 5
P-42
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5.5.1 Problems about the simplest variations

J(y) = JE [(y’)2 +y*+10y (z + sin? m)} dr, y(0)=6, y(r)=5+e .

I) = [ [t = /) = 497 + (120 = )] s, 0) =0, y(1) =1

P-59
" :1/4 (G- v me a0 e =1
y(4) =0

P-60

J(y) = Ofl [(y’)2 —2yy’ cosw + (4 +sinz)y® + 4 (2x2 - 3) y} dr, y(0) =2, y(1) = €2
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5.5.1 Problems about the simplest variations

P-71

J(y) =

=
—
[N
B
—~
<
—
(™)
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¢ <
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P-72

I) = ] [13vEy+ 3ty =20 /)] de, y() =1, o(4) = =3

P-79

P-80

I) = [ 00+t 4 4 e, y(2) = ()~

P-81

I) = [ [P0+ 2% =0 () + - 2] e, @) =0, u() = 5.
J(y) = f {x?’ (y)* — 11a2yy — 3ay® — IOny} dz, y(1)=3, y(2)=10.

J(y) = f {wQ (v)° — ldayy —y* — 8393/] dz, y(1)=2, y(2)=6.

P-90

4
Jy) = [ [(y’)2 + &yﬂ dz, y(1) =1, y(4) = 8. HaiiTu 3HaUeHNs BEMIECTBEHHOTO TAPAMETPA @, MPH
1

KOTODPBIX HA JIOIyCTHMON SKCTPEMaJsH JocTuraercs MunuMym (91-93):

P-91



5.5.1 Problems about the simplest variations

P-96
/2 )
Jy)= [ [(y/) sinx + 2ycosx} de,y (3) =0,y (%) = 2.
/4
P-97
1 N 2
J(y) =J [(?’;) —my’—y] dr, y(0)=1, y(l)=e"
P-98

2
J(y) = [[Iny = 3yy’ —ay'ldx, y(1)=-In2, y(2)=0.
1

P-99

1/2
T = I [ty =3 @) dr, w0 =3 (3) =\/3

B zagauax (102-105) mokasarh, 49To JOMYCTHMas SKCTPEMaJb HE JAeT SKCTPeMyM (DYHKIUOHAJIA:

P-102

J(y) = Of [(y’)"’ — 22 4 686%/] de, y(0)=9, y(r)=9e".

P-105

J(y) = [ [(y')2 — By 4 50xy] dz, y(0) =0, y(r)= 167. IokazaTs, 9TO MpOCTEHINE BAPUATIMOHHBIE
0

saza4n (106-107) He UMEIOT CMBICIIA:
P-106

J(y) = [ [2%y + 2zy] dw, y(0)=0, y(1)=1.

Ot — =

P-107
2

J(y) = 1] & ley —ylde, y(1)=0, y(2)=2.
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5.5.2 Problems about the generalization of the simplest variational problem

5.5.2 Problems about the generalization of the simplest variational
problem

P-nop.1 Pemutp 3aga4y co CBOOOIHBIM KOHIIOM
2
= [[*5 2y — () + 8ay/] dz,  y(1) =0
1

(?? gTO-TO IOKA HE IIOHSII, KAK TaKoe JieJaTh BoooIe?)
VpasHenue Ditepa uMeeT BUJ,
22y — 6y = 422
DKCTpEeMAIIN 331a10TCst (hOPMYJIOit
&
3 2
y(a:)zﬁ—i—CQx —z°.

I'panuynoe ycsioBre npu T = 2 HAXOIUM U3 yPABHEHUS

OF 6x — 12

= = [ e y—2y'—|—8x} = —2y/(2) + 16 = 0.

ay r=2 r=2
Orciona y'(2) = 8. 1o ycaoBue Bmecre ¢ yejosueM y(1) = 0 onpeesisior JOMycTUMYIO SKCrpeMasb §(x) =
% — 22,

ITycrs n(x) - upoussosbHas HenpepbiBao auddepennupyemas Ha [1,2] dyuxnus, mia koropoii (1) = 0.
Torua

2
—12 6x — 12
890) = 3+ 1) = 36) = [ {200 @ ) = @) 480 o) = g ) s o
1

2
—12
/ { a (g + 90’ +m') — 29" — ()" + an'} dz.
1

Ecan mpomHTErpMpoBaTh MO WACTSM CJaraeMble B 3TOM HHTErpaJe, cojep:kKamume 7, BOCIIOJIb30BATHCS
ypasHeHueM Diinepa mus §(x) u yerosuamu §'(2) = 8,n(1) = 0, To nmosyanm

lj{ 8] aa <o

3uauuT, gonycruMas KcrpeMasib §(x) B paccMaTrpuBaeMoil 3aja4e 1aeT abCOMIOTHBIA MAKCUMYM.

P-np.2
Pemutsb 3aa9y 663 orpaHUteHuil, eciu
1
/ 2102 4 2pe” ] da.
0
Vpaprenne Diinepa y”’ —y = €” jgaer MHOXKecTBO 9KCTpemaneit sanaan y(z) = Cre™® + Coe® + fxe”.

Ipaamaneivu yenosuamu st y(z) seasmorest: y'(0) = y/'(1) = 0. Onpenenus C; n Cy W3 3THX TDAHUTHBIX
YCJIOBHUil, HAXOIUM JIOIYCTUMYIO 9KCTPEMaJlb

(1 — 262) et —e? T

W) ==y Ty
Hust Besikoit HerrpepwisHO auddepennupyemoit Ha [0, 1] dyrkmu n(x) nveem
1
AJ(@G) =J(G+n) —JG) :/ 29'n" + (n +2yn+n2+26wn}dm:
0
1 1
= 25/ @@)liy + [ nl2g+ 26— 2 do+ [ o) +o7] =
0 0

Z/l[(n’)Qﬂﬂ da
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5.5.2 Problems about the generalization of the simplest variational problem

TaK KakK [POMHTErPUPOBaHHAs YaCTh OOPAINAETCs B HYJIb B CHIIy IpaHndHbIx yesosuii §'(0) = ¢/(1) = 0 u nepsbrii
HHTErpaJl PABEeH HYJIO B CUJLy TOrO, 9TO §(Z) yAOBJIETBOpseT ypaBHeHHIO Diljiepa. [I0CKOIbKY U3 MOy YeHHOrO
pasencTsa caexyer AJ(§) > 0 st Bcex paccMarpuBaeMbix 7)(x), To §(x) maeT abCoMOTHBIN MUHUMYM. PernmTs
3a/1a9y co cBoGOAHBIM KoHIIOM (1-10):

P-1

Jy) = 0f2 [2fvy+ (y’)ﬂ dz, y(0)=0

P-2

J(y) =

Of—

{Zy + 6y’ + (y’)z} dz, y(0)=0.

P-8
2
Jy)=[ {x?’ (y')* -8 (22 —z)yy' + 4y + 8x2y'} dr, y(2)=-T.
1

P-9

J(y) = { [Syy’ Inz—z(y)*+ 6my’} dr, y(3)=15.

P-10

2 2_ ,
Jy) =/ {é (') — 3(2721)%/, - 8;’} dz, y(2) =10. Pemwmrs 3anady 6e3 orpanudennii (11-12):
1

P-11

J(y) = { [43/2 + (y)? + 2y cos x} dz.
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5.5.3 Problems about functions from two variables

€
Jy) =/ [m )+ y; + zyl%] dz. Haiitm nomycrumMble skcTpemann B 3agade 6e3 orpanmdennii (13-15):
1

2
=/ {2y+yy’+x2 (y’)ﬂ dz.
1
P-14

= 1f2 [2y —yy +x (1/)2} du

5.5.3 Problems about functions from two variables

P-npumep

UccemoBars Ha 3KCTpeMyM (DYHKIIMOHAI, €CJIN

2
Tnve) = [ [oF +02 01 + 00" do. () =) = 1 (2) = d,1a(2) =2
1

Cucrema ypaBHeHHiT Dilslepa IMeeT BU/T
{ 12y — [2x2y'1]/ =0
ys =0

Orciona maxonum sxcrpemanu yi(z) = Cra? + md 2 ya(x) = Cra + Cy. Toacrasnss yi(x), y2(z) B 3a7aHHBIE

IpaHUYHBIE YCIOBHS, TIOIy¥aeM JOMyCTHMYIO SKeTpeMassb §1 (1) = 22, §o(x) = .
ITokazkeM, 9TO Ha JOIMYCTHMOI SKCTpEMAJH 3aJaHHbIH (yHKIMOHAT UMeeT abCOMIOTHBIN MUHUMYM. 1lycTh
1

(ex. §1) m(2) €1 [1,2],m2(2) € [1,2):
Torna
AT (1,92) = J (1 + 01,92 +n2) — J (91, 92) =

— [ [ Canm +) +a2 (20505 + (0)°) + (2085 + ()7

Nurerpupysi o 4acTsiM cjiaraeMble, CoJepiKaliue 1) u 15, 1 yaureiBast, aro 11 (1) = 71(2) = n2(1) = n2(2) = 0,
OTCIOA HAXOIUM

2
AJ (1, 72) = [12@1 — (21;2@3)’} mdx — 2/gg’n2dx+
1

+ [ [+ 22 ) + ()*] de

H\I\D H\w

ITepBble fBa MHTErpaja pPaBlbl HYIO, Tak Kak §1(x) u §2(x) yHOBIETBODSIOT cucTeMe ypaBHeHHH iijepa.
ITockoubKy mocJieHuil nHTErpas HeoTpunareibHbiil, 10 AJ (§1,J2) > 0 npm Beex paccmaTpuBaeMbix 71 (x)
u n2(x). 3uauur, napa dbyuxuuit §;(x),J2(z) gaer abcomorabii MunumyM dyHkimonasa. Vceciemnosars Ha
3KCTpeMyM (PYHKIMOHAJ. €CJIM:

P-1
T ne) = (047 + 607 do. 10 =10) =0, (1) =1(1) =1
P-2
Tne) = [ [18+ G0+ 0] doc 10) =000 =1, 10(1) = Lin(1) = ¢
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5.5.3 Problems about functions from two variables

P-3

Ju

T(ns) = [ s+ 03+ W0+ @) e 30 =10 =1 w(1) =)=

P-4

2
J(y1,y2) = f[129%+y%+w2 (yi)2+(y’2)2} dr, yi1(1) = Lya(1) = e, y1(2) = 8,12(2) = €* Haiirn
1

JorycruMble sKeTpemasu (5-11):

P-5
J (Y1, 92) ﬂf[(y’l)zﬂy) —2y1y2} dr, y1(0)=1,42(0) = =Ly (3) =e%,yp (§) = —e?

P-6
T nm) = J 2+ 38+ 00+ 5] e, 10 (0) =0320) =1, (1) = b 1a(1) =7,

P-7

w/2

J (y1,92) = ({ {2y1y2 + ()" + (yé)z} de, y1(0) =y2(0) = 1,51 (3) =

P-8

P-9
/2

J (y1,y2) = ({ [Wivh — iyl dz,  y1(0) = 12(0) = 0,41 (3) =12 (3) = L.

P-10

—

J(yy2) = [ [211% + 2y1ys + (¥7)° — (yé)ﬂ dr, y1(0) =y2(0) =0, wi(1)=2she,y2(1) = —2she.
0

P-11

m/2

T = [ [ =28+ )" = 08)°]do, 32(0) =920 =01 (5) =Ly (5)" = 1.

P-12

HOKaSaTb, 9TO 3aJla9a Ha IKCTPEMYM IIpU

1
J (y1,92) /y1y2+yzy1 z, y1(0) =y2(0) =0, yi(1)=y(1) =1
0

HEe mMeeT CMBbICJIa.
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5.5.4 Problems about second-order derivative functionals

5.5.4 Problems about second-order derivative functionals

P-npumep

UccnenoBatsh Ha sKCTpeMyM (DYHKITHOHAJ, €CIN

I = [ [0+ ]do. 50 =y/©0) =0, ) =e-25/0) =e-1
0

Vpasuenue Diiepa-Ilyaccona umeer Bu
-2y +2y'V =0.

DKCTpeMaIn 3a1a10TCsE (hOPMYJTOH
Yy = Chre” + Cye™ + O3z + Cy.

Ncnonb3ys rpaHUdIHbIE yCIOBUS, MOIYyYaeM JIOIYCTHMYIO SKCTpeMaJlb
g(z) =e" —x — 1.

IMTokaxkem, uro ¢(x) maer abcosoTHBII MumumyM ¢yHKnuoHama. g BegKoil aBasKIbl HEIPEPBHIBHO
nuddepentupyemoii Ha [0, 1] dyrkuum 1(z), ya0BIeTBOPSIONIEdl TPAHUIHBIM YCIOBUSAM

7(0) =7'(0) =n(1) =7'(1) =0,

AJ@) = I+ = 1) = [ [2itof + ) 20+ )] e
0

[IpouuTerpupyeM mo 94acTsM MEpPBOE CaraeMoe OJIWH Pa3, a TPEeThe CJIaraeMoe IBaXKJbl. B cuiy rpaHudHbBIX
ycqosuii st 1(2) TPOUHTErPUPOBAHHAS YACTh OOPATUTCS B HYJIb U TI0JyIaeM

1 1
AJ(G) = / [—29" + 29"V ] ndx + / {(n’)2 + (n”ﬂ dx.
0 0
Tak kak §(z) yJoBrerBopsier ypaBHeHUO Diinepa-IlyaccoHa, To nepsbiil HHTErpaJ paBeH Hy/wo. [losToMy
1
ag@) = [ [0+ 6] do > 0
0

Buaunr, §(x) naer abeosorTHbIl MuHUMYM dyHKIMOHANA. VIccaea0BaTh (DyHKIMOHAI HA SKCTPEMYM, €CJIU:

P-1

<
—
NS
N
I
o3
o
[SIE
SN—
|
|
—_
QQ\
—
ol
SN—
Il
ISk

2ysine + ()| e, y(0) =0,5/(0) = —1,y (



5.5.5 Isoperimetric problems (7)

P-6

7r/2\/§ )
Jy) = [ [16y2 + (v") ] dr, y(0)=49¢'(0)=y (%) =0,y (2—\”@) = —2v/2sh Z. Haiitu sonycrumbre

0
srcrpemasn (7 —9):

P-7

P-10

[Tokazarh, 4TO 3a/1a49a HaA SKCTPEMYM IIPU

1
J(y) = / [2y" +2yy" + o] dz, y(0)=9'(0)=0, y(1)=9'(1)=1,
0

HE nMeeT CMBICJIa.

5.5.5 Isoperimetric problems (?7)

(aTo-To Takoe BOOOIIE JABHO HE pEmIaJl. )

P-np. Pemutp N30MEPUMETPUIECKY O 3a/1a9y JJIsT
J(y) = f(y’)2 de, y(0)=1, y(m)=-1, fycosmdx =2
0 0
VYpasuenue Ditnepa mis garpankuana L = (y’ )2 + Ay cos T uMeeT BHI
2y"” = Acosz.

Dkerpeman 3aaa0rcs hopmyioit y(z) = Crax+Ca — 2 cos . VIcmonn3ys IpAHIIHBIE YCIOBHS U YCIOBHS CBSI3N
2 )

HOJIyYaeM JIONMYCTUMYTO 9KeTpeMadib §(x) = cosz. IlokaxkeM, 9To Ha Hell M30IEPUMETPHUYECKAs 33,1498 UMeeT
a0COJTIOTHBI MUHUMYM.

™
Bosbmewm st06yto n(z) € 10, 7], st koropoit [ 7 cos zdx = 0. Torna na §(z)+n(z) onpenenen dbyHKIHOHAT
0

J(y) 1 MOXKHO paccMOTpeThb
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5.5.5 Isoperimetric problems (7)

Nurerpupyst mo gactsiM mepBoe cjiaraemoe un yaurtbisas, 9o 7(0) = n(r) = 0, moaygaem

s ™

AJ(§) = —Q/g)"nd:c+/(n’)2dx.

0 0

B custy ypasuenus Dilsiepa u ycsoBus cBasu s 1)(x)

™ s

/@"ndazz/\/ncosxdxzo.

0 0

CireroBaTelIbHO,
AJ@) = [ ) de>0
0

u, 3Ha4UT, §(x) AaeT abGCOMIOTHBI MUHIMYM.
(77?7 HMYero He MOHsLI, HY?KHO BCE MePeyInBaTh. )
Pemurs uzonepumerpudeckyio 3amady (1 — 10):

J(y) = Ofl [3/2 + (y’)ﬂ de, y(0)=0, y(1)= 46,Oflye“’dx =1+¢€2.
J(y) = j {ny + (y’)ﬂ dz, y(0)=0, y(1)= 3,0f1mydx =1

J(y) = 1f2;v (?/)2 de, y(1)=0, y(2)= 1271f2xydx =9.
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5.5.6 Problems about Sufficient conditions of a strict weak local extremum in the simplest
variational problem

P-9

{2y+3y + (y )}dx, y(0) =0, y(r)=n? [ysinadr =72 —1.
0

J(y) =

O%:\

P-10

s
/ P42 cosx} dr, y(0)=2, y(n) = —2,/ycos xdx =
= 7. Haittu npomyctumbie
0 0
=7
9KCTPEMAJIU U30IIEpUMETpUIecKoil 3agaun (11-14):

P-11

P-14
1 1
T) = [ oy’ = Sey')dz, y(0) =y(1) =0, [ [u/ +2()"] dr =8
P-15
Haittu mununvym J(y }r % dzx, ecnm y(0) = y(m) = O,nydx =1.
0 0
P-16
1 1
Haiitn muanmym J(y) = [ [ ] dz, ecrm y(0) = y(1) =0, [y?dz =1
0 0

5.5.6 Problems about Sufficient conditions of a strict weak local ex-
tremum in the simplest variational problem

Uccnenosars Ha sKcTpeMyM (1-9):
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5.6 Curve and trajectory problems

5.6 Curve and trajectory problems

5.6.1 Orthogonal Trajectory Problems

(?? 3aueM oHuM BOOOIIE HYKHBI??? II0KA IIPOCTO JIEXKAT, & TaM IIOCMOTDHM )

P-2.np.2
Haiitn oproronajbHble TPAEKTOPUHN CeMeCTBa KPUBBIX
y =tg(InCx).

Cuauasia cocraBuM JuddepeHnuaibHoe ypaBHEHNE 3aJJaHHOr0 ceMelicTBa KpubBbix. Jluddepennupys mo x
ypaBHEHHUEe 33J]aHHOTO CeMefcTBa U UCKaodas napamerp C, mojydaeM ypaBHEHMe

’ 1 1 2 L+y°
YT cos?(lnCz) «z [+ te*(n Ca)] x

3aMeHsig B 9TOM ypaBHeHNH i Ha (—%) , HaxouM jtuddepeHnnaabHoe ypaBHEHNE OPTOTOHAIBHBIX TPACKTOPHUit

_ 2 /
—z=(1+y°)y.
Samenus 3y’ Ha % U PEeNMB TOJyUYeHHOe YpaBHEHUE C Pa3/IeJIeHHBIMHU IIepEMEHHBIMU, HAXOINM ypaBHEHUE

OPTOrOHAJILHEIX TpaekTopmit 3x2 + 2y3 + 6y = C.
(?77)

HaiiTu oproronaibHble TPAEKTOPHUU JIjIsl 3aJaHHBIX CEMEHCTB I0CKUX KpuBbix (40 — 50):
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5.6.1 Orthogonal Trajectory Problems

P-40
y=C(z+1e®

P-41

y? = Ce™+v’,
P-42

(C’e_g”2 — 1) y=2.

P-43
y=Csinx — 2.

P-44
y(1+Ce”) =1.

P-45
y=Ccosx + 2.

P-48
y2 — Ce_(x+y) .

P-49
xy = CeY.

P-50
2r 4y —1=Ce?v ",

P-51

Haittu oproronaabuble TPAEKTOPUU CEMENCTBA SJIIUIICOB, UMEIONIUX ODIYI0 OOJIBIIYIO OCh.

P-52

Haiitu oproronanbable TPAEKTOPUHU CeMeicTBa TUEPOOJI, UMEIOMIAX OO0 MHUMYIO OCh.

P-53

CeMeliCcTBO KPUBBIX 3aJIaHO B MOJISPHBIX KoopauHaTtax ypasHerueM () = C'f(p), rue f(¢) - HEnpepbIBHO
muddepentupyemas dynkius.  CocraButh guddepeHnuagibHoe ypaBHEHHE OPTOTOHAJIBHBIX TPAEKTOPHIA.
HaiiTu oproronasbHble TPAEKTOPUHU CeMelcTBa KpuBbIX 1 = Ce?.

P-54
CemMeiicTBO KpHBBIX B IIOJISIDHBIX KoopjauHaTax 3ajaercsa ypasHenueM 7/(¢) = rf(p), tme f(p) -

nHenpepbiBHas ¢yHkius. CocraBuTh quddepeHnpaibHoe ypaBHEHNE CeMeHCTBA OPTOrOHAJIBHBIX TPAEKTOPUA.
Haiitu oproronajibuble TpaekTopun ceMmeiicTBa KpuBbix 1 = C coS .

P-89

Haiitu opToroHajbHBIE TPAEKTOPHH CEeMefCTBA OKPYKHOCTEH, IPOXOAIINX [epe3 HavaJ0 KOOPJIMHAT,
IEHTPBI KOTOPBIX JIEZKAT Ha OCH abCITUCC.
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5.6.2 Tasks on the approximate image of integral curves

P-91
a) Cocrasurb nuddepeHIaibHoe ypaBHeHHe OPTOrOHAJIBHBIX TPAEKTOPHIl ceMeficTBa KPUBBIX
(a:2 + y2)2 = any.
6)Haiitu oproronajbHble TPAEKTOPUU CEMEiCTBA KPUBBIX
(:E2 + y2)2 = a233y.

Ykazanue. IlepeliTn K MOJIAPHBIM KOOPIUHATAM.

5.6.2 Tasks on the approximate image of integral curves

(3aifimych aTnM, Kora moHamoOuTCs, 1s1 riasa Pomanko)

Cocrasuts auddepennuaibable ypaBHeHns cemeiictsa Kpubbix (1 — 18): 1. y = C2? — 2. 2. y = 2% + Cu.
3.y=@@-0)2% 4 (y—C2 =225 (z-C)P?+y?=1.6. 22+ (y—-C)2=1. 7. 222 +Cy? =1. 8.
(y—C) =219 22+20—(y—C)? =2. 10. y = tg(zx+C). 11. Cz = sinCy. 12. Cy = tgCx. 13.
22 = (C+y)eY. 14. y> +20zy + 22+ 22 =0. 15. y = Acos(z + ¢). 16. y = (Cy + Coz)e®. 17. y = % + Cax.
18. y? = C12% + Csz.

IMocrpouTs npubinzKeHHO MHTErpaJjibHble KpuBble ypasaenuit (19 — 38): 19. ¢y’ = ij 20. y = ﬁ_l 21.
yo=1=202 g = 93y = 8y = 25y = (z— 1)y, 260 Y = a(y+1). 27,y = EEE 28,
y = g;j; 29. y =22 +2y+1.30. ¥y =22 -2y —1. 31,y =y—2?—-22—-2. 32. ¢y =y — 22+ 22. 33.
Yy =—a? -2 34 ¢y =2 4+2% 35y =y—a3 36. y =22y —2.37. ¢ =P+ —1.38. ¢ =a? —y® — 1.

P-2.61

Haiitu nnTerpajpbHyio KpUBYIO ypaBHEHUS (1 — :EQy) dr + 2% (y — x)dy = 0, mepeceKaronyio IpAMYIo T =
IOJT, TIPSIMBIM YTJIOM.

1
2

5.6.3 Problems about applications in ecology

(xopotIast IOAroTOBKA JIst IIPUIIOXKEHHIT Morya 6b1 6bITh. )

®P. 3amaua npo nonynasinuu npu cbope ypoxkas (77)

UccnenoBarh perienne ypaBHEHUS
dzr a1 22

@ = T !

D10 ypaBHEHHE O IPOMBICE (cO0pe yporkas), OHO OIMCBIBAET CUTYAIUIO, KOTJA U3 IIOMYJIAIMOHHON CUCTEMBI,
OTIMCHIBAEMOI JIOTUCTHIECKUM ypaBHEHHEeM oTOmpaercss 6uomacca co ckopoctbio f. Hanwmume B 3namenareste
BTOPOI'O CJIATA€MOTO CIIPABA BEJIMYWHBI [ OIpee/isieT yMEHbIIEHne KOHKYPEHIINU 3a CYeT 0TOopa OMOMAaCChI.
OrnpesiesinTh yCJIOBUSL YCTONYUBOIO CyIIECTBOBAHUS ITOILYJISIITUH.

(77?7 u KAK HAXOJUTDL Ty CUCTEMY IIOJIOXKEHUil paBHOBecus???? BOT U cyiabas TeOpHsl, IPUEXAJIH. )
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Part IV
—— Special Differential Equations in a
Nutshell —

6 About another about Differential Equations

@®

Center Stable node (sink) Stable spiral

®

6.1 Other methods

(Bce KJIacCHYECKOe U MeHee IOIYJISIPHOe TYT. )

6.1.1 phase trajectories and phase plane

rA
’ unstable Y
nodes \
centers
. - D,
/ unstable \ﬁ*
P4 /

\\ . /
e ) - e
=/ spirals

\\/ L) stable
spirals

stable

nodes —_,
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6.1.2 matrix exponent

Ilonoxenust paBHOBecus Jis JAudpdypa BBICHIETO MOPSIIKA B OKPECTHOCTU I'PyOBbIX
IIOJIO’KEeHUil paBHOBecus

(TyT THIUYHOE THUIIUPOBAHUE WX.)

O6 y3zae
06 cexnJjie
O dokyce
O6 y3zme

O ANKPUTUYIECKOM Y3JIe

6.1.2 matrix exponent

TyT HIOa@HCOB MHOTI'O

rpaHulibl IPDUMEHUMOCTHU
HIOQHCBI IIpPMMEHEeHNd 3TOro MeToga

YTOOBI OBICTPO CYUTATD

CBsI3b C Teopueil rpynn

(em. Aggiep . 8 wm Ousep I1., moka 3HarO, 9TO OHU €CTh, HO U He JIO HUX)

6.1.3 method of hackteristics

JaBHO JyMaJl IIOHATD

6.2 Other typical diffuser-related tasks
6.2.1 On Equations in Differentials

O61ero mMeTosa OTHICKAHUS WHTEIPUPYIOMIEr0 MHOXKHUTES He CYIecTByeT. [yT mpocTo
HYKHO HaOPaThCs ONbBITa Y PeoOpa30BAHUIX.

MeTo/1p1 MOUCKA WHTETPUPYIOMIETO MHOXKUTEJIS

Bo Becex THNMYHBIX IpUMepaxX aJrOPUTM CJIe Ly FOIIHIi:
0) cMOTpHM, HE sIBJISIETCs JIM yPABHEHUE YPABHEHUEM B MOJIHBIX JuddepeHimaiax
1) upobyem obimue opmyiibt. st obo3Hadenuii

M(z,y)dz + N(z,y)dy =0
CMOTPHM, HE ABJISIOTCA JIU (PYHKIUN HUZXKE (DYHKIUAMI TOJTLKO (DYHKIIUAMEA OT T WJIH Y-

dnp 1 oM  ON dlng  (ON  OM 1
dr N dy

ox dy

y ox

M

Ecnu na, 7o uHTErpUpyION#it MHOYKUTEH JIETKO HAXOIUTCA U3 9TOH (POPMYIIBL.
Ecim  mwer, TO 4YacTo MOXKHO TIpUBECTH YpaBHEHHE K YPABHEHUIO B  IOJIHBIX
nuddepeniuaiax, JOMHOXKUB ero Ha (PyHKIUU TO00HbIE (DYHKITHAM i, x, Y, TaKXkKe OYEeHb
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6.2.2 boundary value tasks

YacTO MOXKHO €Ile JIOMHOXKUTH Ha KAaKHEe-TO 3JIEMEHTapHble (YHKIUU, KOTOpPbIe €CTb B
ncxogHOM ypasHeHun (tumna e® e * ma.) Torjga mHTErpupyomuii MHOKUTENb - KaK pa3 Ta
bYHKIMS, KOTOPYIO MbI II0I00OPOM HAIILIH.

O ToM, YTO He JieJiaTh JJisl pellieHnusi ypaBHeHuil B moJyHbix auddepenmuanax (?777)

(7) He cBomuth K 00bI9HBIM Judbdypam, MOTOMY YTO He permuib ux. [loka Takoil ombit,
MOKET OBITh, s1 OIIHOAIOCH.

6.2.2 boundary value tasks

Jloka3aTebCTBO HAJMYMS HEKOTOPOIo 4Yucja HyJsei Ha uarepsaie (777)

(ryT Teopema IllTypma, a Kak KOHKPETHO - TIOKa, He TIOMHIO. )

6.2.3 systems of linear diffusers with constant coefficients

Ecnn dbyskiumit 2 u cucrema HeoJHOPOAHAasA, TO Iepeiitu K Juddypy BBICOKOTO
MOpsiJIKa

Ecau cucrema 3x3 ¢ mocTossHHbIMEU KO3 pUImeHTaMu, TO HAXOJAUM COOCTBEHHOE
3HaYE€HWEe MAaTPHUIIbI, JAJIbIlle COOCTBEHHbBIE U, €CJIN €CTh, IPUCOE/IMHEHHbIE BEKTOPHI,
JaJjibiiie B oO0Iy10 (bopMyJIy IMO/ICTABJIsIEM PeIlleHne

IIpucoeJMHEHHbIC UIIEeM KaK
(A - )\E)hnpnc. = hCO6CTB.

(7?7 yKaxKy 9T METOJIbI JIMHAJIA, KOTOPbIe 51 3a0bLI yIKe.)
(yKaxKy MX KOJIMIECTBO, 9TOOBI OPHEHTHPOBATHCSI. )

Ecnn cucrema ogHopojHasi U K03 pUIUEHTHI MOCTOSTHHBIE, TO MOXKHO IMEepelTu K
MaTPUYHON dKcroHeHre (7)

(pacKporo MoTOM STOT METO/. )

Merton Bapuanuii fqiisi cucrem (7777)

(X3, MHOIO Ha 9TO 3a/a4.)

Onepanuonnsblii meron, aJisi cucrem (?777)

(emme 0YeHH MHOIO 3TO OTpabATHIBATH, TTOKA X3.)
(X3, MHOTO Ha 9TO 3ajad.)

6.2.4 systems of linear diffusers with variable coefficients

(7?7 TyT )KecTb Kakasi-To BOOOIIE 5 X3, BOOOIIE BCe 3a0bLT. )

6.2.5 Behavior of phase trajectories in the vicinity of noncoarse equi-
librium positions and on the entire phase plane

UccaenoBanmne moJjioXKeHusi paBHOBECHUS MPU ITapaMeTpe

(? Toke TaKme ecTh 3a/a49u, MOKa i X3)
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6.2.6 first integrals

6.2.6 first integrals

Ilouck nmepBBIX MHTErpPaJIOB

6.2.7 simplest problems in partial derivatives

(7?7 B wem ormame ot ymd?)

6.2.8 Variational Methods: Basics

(Toke THUIMYHBIE 3ajadu dK3aMeHoB!!)

Ocuosubie merognr (!!!)

6.2.9 Other variation methods (?7)

(TO OYeHB JlazKe MOXKeT MOHAJO00UTHCs, TaK ITO OyIeT pas/iest JIJisd 9TOro. )

6.3 Some Oscillations

(see special note about them)

6.4 Methods of diffusers in other questions of physics

(mo Murjasy jgonuriy, ToKa He JiyMaJl [Ipo 3T0)
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Part V
Other Topics

7 Oscillation Theory: Some Models and Methods

(see my special note about them for now)

8 Numerical Methods

(see special note about them)

8.0.1 Basic numerical methods of solution

8.0.2 Software implementation

(rmoste3Has riaBa, Kak Mporarhb ux?)

8.0.3 Network Visualization and Modeling

KaK PUCOBATH TPACKTOPHUH, KaK JUHAMUKY Ha (PA30BOM IIPOCTPAHCTBE M300pakaTh, KaKue
CBOIiCTBA.

ele Ipory MOJKJIIOUYY, KOHKPETHO KOJbl BCTaBJIIO, JUHAMUYECKUIA XaOoC KCTATU 3allyILy,
110J1I00yI0Ch Ha, HUX.

8.0.4 visualization of trajectories

CobepeM OJTHAZKTBI METO/IbI, KAKUMI MOXKHO CTPOUTH I'padUuKu TPacKTOPHIi.

8.0.5 visualization of attractors and chaotic equations

TO2KE O9€Hb MHTEPECHO.

8.0.6 wolfram simulation

9 Other Analytical Methods

9.1 Perturbation Theory for Differential Equations

(o uzee TyT BCE 0 HUX U GyJIeT.)

9.1.1 Typical Perturbation Theory

Teopus (?)

Kak mnpasuio, pemenus mpuddepeHnmaabibiX ypaBHEHUI HE MOTYT OBITh HalJIEHBI B
AHAJTUTUIECKOM BHJE. B 3TOM ciiydae Jijst UX MCCIeIOBAHUs CIeAYeT IIPU MEHSITh IUCIeHHbIE
MeTO/IbI. B TO Ke BpeMs CyIIecTByeT orpaHWYeHHBI HabOop "OasumcHbIX" 3ajad, perreHus
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9.1.1 Typical Perturbation Theory

KOTOPBIX MOTYT OBITb H aifjlenbl aH ajuTudecku. P accmMorpm M ciydail, Korja Jiu
ddepennmanbHOe ypaBHEHNE JIJIsi BEJIMYUHBI  ypaBHEHUE CBOIUTCI K BUJLY

F (z,u,0u,...) + €G (x,u, 0pu, ...) = 0.

Mpb1 nosraraem, 4To perenue ypapHerus F = ( u3BeCTHO aH aJUTHYECKHU, a € <K 1 - MaJIblii
1 apamerp. B arom ciydae perienne ypasHenusi (5.58) MOXKHO U CKaTh B BHJE Psijia [0 K
pemennio ypasaenus F' = (. Kak mnpaBujio, psiji 110 € SIBJASIETCA aCUMITOTHYIECCKIM.

Bynem cunrars, uro dbynkiusa F' omHeliHa 1o craprieit npousBojHONW OJiu, a T aKXKe
SBJIACT Csl PEryJsgpHOil PyHKIMEHl CBOMX IEePpEMEHHBIX, He W MEIOIeil 0 HUM OCOOEHHOCTEH B
MHTEpeCyIoIell Hac 00JIaCTH IMapaMeTpoB. DTOrO BCErJa MOXKHO JOOUTHCS Mpeodp a30B aHueM
yp aBuenusi F = (. Tlocrpoenne BO3MyIEeHHOrO perienus ypasaerust (5.58) cBogurcs K
caeaytomeMy. Mpbl OepeM HEKOTOpoe peleHue ug ypaBHenus [ = 0 u 1mojcrapjsieM ero B
npaByio dacTh ypasHenus (5.58). Ilocse sToro ciemyer HaiiTu mMompaBky u; K g, KOTOPYIO
MOYKHO HailTH, KaK pelieHne ypaBHeHUs

OF

—uy + a—F&Eul + - =€G,
ou

0 (Ozu)

KOTOpOE TOJIyd aeT Cs JiMHeapu3 anueil Jiepoit dactu ypasuenus (5.58). B mpoussosubie
OF /0u,0F /0 (0yu) 37ech H a0 MOJACTABIIATE . 1IpHBeieHHOE JIMHEAPU30BAHHOE yDAaBHEHHE
CJeJyeT peIaTb € Y9eTOM TIDAaHUYIHbIX YCJAOBHA. B pesysbrare pelieHus I[OJIy9aeTcs
oIpaBKa u; X €.

3agada

5.5.1. Haiitu HyneBoit u mepBwIil 10 € WieHb pernteHus ypaenenus O,u + yu + exu = 0 ¢
rparndabl.M yeaoBreM ©(0) = 1. CpaBHUTB €ro ¢ TOYHBIM PEIIeHHEM 9TOrO YPABHEHHSI.

Y100BI HAWTH TOMPABKY BTOPOI'O MOPSAJKA TIO €, Uz, CIELYeT MOJICTABUTH CYMMY U = Uy +
Uy + Uz B JIeBYIO YacTh ypaBHeHus (5.58) u yjep:karh B Heil WieH, KB aJpaTUdHbIi 1m0 €. s
sToro F' ciejryeT pa3ioKuTh JI0 IEPBOTO MOPSJIKA 10 U U JIO BTOPOT'O MOPSIKA 0 U1, B mpaBoii
qactu ypaBHenus (5.58) T akKe ciellyer HaiiTu BKJIaJ, KB aapaTudHblii o €. [ng sroro B G
CJIJTyeT TOJICTABUTD U = U+ U1 U YJEPXKAThb WIeH, TUHEWHBIH 110 u;. B pe3ybrare moyduT cda
JIMHEeHHOe ypaBHEeHNe Ha Ug, PEIlleHrne KOTOPOro (¢ y9eToM I'D aHMYHBIX YCJIOBUI) M JIACT BKJIA]
BTOPOTO TI0 € TIOPSIJIKA B U.

O6o0061menne 3Toit mporieLypbl Ha 60Jee BLICOKUE MOPSJIKN OYeBUIHO. MBbI JIO/I2KHBI KayK b
pa3 allMChIBATb U B BUJE U = Uy + Ui + Uz + ... U TOCJIEJIOB aTe/IHbHO HAXOIUTD U1, Uy, ... PEIIAd
JINHEITHOe Y aBHEHMe Ha OvYepeTHYIO MOMPAaBKY, KOTOPOE MOIYY aeT Cd B Pe3YJIbT aTe y/IePKUB
aHWsl B JIeBOH W TpaBoil yactu ypasHeHust (5.58) WIEHOB COOTBETCTBYIOIIErO MOPSIJIKA IO €.
HecmoTpst HA HEKOTOPYIO I'POMO3JKOCTD, 3Ta IPOIEAypa IMO3BOJISET MPAMBIM BBIYUCIEHUEM
HaNTH pa3jIoyKeHue u 10 €.

OjiH ako mpsiMasi Teopusi BOBMYIIEHHI 110 € OKa3bIBAET Csl HEIPUMEHUMON BOJIN3U 0COOBIX
TOYEK, TJe KO3DPUIMeHT npu crapiieii mpou3BoaHoil B (hyHkimu F obparaercs B Hoib. OHa
TaKKe HEIpPU MEHMMAa IIPU aHaJu3€e MOTPAHUIHBIX CJIOEB, KOTOpbIe (POPMHUPYIOTCS B CIydae,
KOI'JIa YJIEH CO CTapiieil MpOu3BOIHON OoTcyTcTBYeT B F', HO pucyrcTByeT B (3, TO €CTh UMEET
MaJIocTh €. Jlasiee MbI pa3dupaeM 3TU CIely aJbHbIE CIyYau.

Teopusi mo MV (?)

M3ﬂ0)KeHHbIﬁ BBIITIE Cl)OprlaJH/I3M, XO0TdA 1M HeIIoCpeacTBeH, HO JOBOJIbHO CJIO2KEH B BBICHINX
Hopsiikax.  PaccMOTpuM KpaTKO JAPYroii IOJAXOM, KOTOPBIA BeJIeT K BeChbMa 3JIEFaHTHOMY
«IIpeobpa30BaHmi0" IPEIBIIYIIEro Psija.
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9.1.1 Typical Perturbation Theory

Tpebyercs pemuthb ypasuenue Lu = Au, (L° + Q) u = \u. Sanumem ero B Bujie
Lou — Au = —Qu

B 1. 9 mbl yxke yoenuiuch B ToMi, 9To pertienne ypasuerust (Lo — \) u = f paBHO
= [Gxx) £ P = (i 1)/ (- N
CureroBaresnibho, 3a/ia4da uMeer (hopMaIbHOE PElIeHIe
U= Z U, / ()\ )\0)

Kone4Ho, IrepuaTHOCTb COCTOMT B TOM, YTO B 3TOM YpPABHEHHU BEJIMUYMHA U BCTPEYACTCS KaK
cipasa, Tak u ciesa: Ipejnonoxkum, uro npu Q — 0u — ul, A — A%, O6oznaunm sro pemenne
Uy, ¥ BbLIeauM u3 cyMMbl (10.26) n-it aaen. DTo gaer

L= e+ 3l (6 Qua) / (A — X0
m#n
rae
n e Qun/ (A= A7)
Pernm Tereps MeTomoM uteparmii Toanoe ypasuenue (10.27) s wy,:

0

ud - Qcu
Un:CU9L+Z Upy, (U - © )+
m

0 (,,0 .0\ (,0. 0
N Z Z U, (um Qup) (up chn) N

(An =A%) (A — A9)

m#n p#n m
0 0
—c ug + um@mn + qumePn + ...
2T 2 2 T ()

Taxum obpazom, u3 (10.28) u (10.29). nmeem
c()\n—Ag) =u - Qu, =

ot 3 Qo 35 Qo
m;én m m#n p;én n D

= C ,

OTKY/JIa TIOJIydaeM JIeraHTHBI TOIHBIN PAJT I Ay,

m;én
Qnm@mp@pn
+n§”; o gy

DTOT psjL JIydillie, YeM MOJIyIeHHbIe paHee, TaK KaK MOYKHO Cpa3y Ke HaIUuCcaTh UJIeH JTF000TO
HOPSJIKA; HO OH 00JIaJIae€T TeM HEJIOCTATKOM, UTO COJEPXKUT A, KaK CIIpaBa, TaK U CJIEBA;
BO3HUKAIOIIEE YPABHEHUE JJIA A, HY?KHO PENIaTh JHO0 UTEPAIUIME, JTUOO ¢ MOMOIIBIO JIPYTHX
PUOJIMZKEHUA.
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9.1.2 Solution near the singular point of the basic equation

(TyT TOXKe GOJIBINAsT TEOPHsi, KOTOPOil He 3aHUMAJICS, Hy?KHO Oy/ITe - 3aiiMyCh.)

9.1.2 Solution near the singular point of the basic equation

Teopus (?)

Mpsr1 Oyjiem Ha3bIBATH OCOOBIMU T€ TOUKHU, IJie Ko MU MUEHT IIpU cTapiieil mpon3BoHoi B F
o0paIaeTcss B HOJIb. DTO ABJIsIeTCs 0000IEHNEeM TOHATHS 0CO00i TOUKM, BBEJCHHOE B pa3jielie
2.1.1. Tlpum mamumaum ocoboit ToUKM (KOTOPYIO MbI 6e3 ToTepr OOITHOCTH OyieM IOMeIaTh B
x = 0) HyseBoe pubN Kenue ypaBaerus (5.58) JTOIKHO CTPOUTHC cretyomum obpazom. OHo
3ajiaeTcs perenneM ypaBaennd F = () Be3/ie, 3a HCKIIOYEHNEM Y3KOI OKPECTHOCTU TOYKH T = ().
Yro0bl HaliTH TIOBEJIeHNEe (PYHKIUU U B 9TOI objacTu, B pyHKIMIX F u G ciejlyeT COXPaHUTD
IJIaBHBIE 110 T YJIEHBI U PENINTDb MOJIydHuBIIeecs ypaBHeHne. KEro perneHune BHE paccMaTpUBae
MOIi 00J1aCTH BBIXOJUT Ha pelleHue ypaBHeHusi F' = 0, a BOJM3U 0cODO# TOUYKHU PEryJisipHO II0
x.

[IposeMon cTpup yem ckKazaHHOE H a IPU Mepe CJIEYIONIEro YpaBHEHUs MIePBOro MOPsIKa
(JTaiirxumn)

(x + eu)Oyu + (2+ z)u = 0.

[Ipenebperasi 371ech WICHOM € €, HaxXOauM ypaBreHne x0,u+ (2 + x)u = 0, KOTOpoe u Meer
ocobyto Touky x = (. Perienue 3Toro ypaBHeHUs UMEET BU]L

C

u=— exp(—x)

rjie C' - nNpom3BOJIbHAS KOHCTAHTa. JTO pemnieHue obpamaercs npu r — 0 B OECKOHETHOCTD.
Hr0o0bl HCCIEI0BATh TIOBEJIEHNE UCXOJHOrO ypasHeHusi (5.59) mpu MaJsibIX &, CJIe9/IeHbI 110
MaJIOMy &, UTO CBOJIUTCH K IpeHeOpekeHuio r B ¢rakTope 2 + x. B pesyibrare mojaydae M
ypaBHEHHe

(x + eu)d,u + 2u = 0.

Cpapuenne (haKTOPOB X U € IMO3BOJIsIeT HANTU MUPUHY 00JIACTH, TIe CYIIECTBEHEH UJIEH C €, 3Ta
mmpuna pasna (Ce)'/3. Tlopcranoska u = a1/ nupusoaut ypasuenue (5.61) X ypasHenmo na
7 C pas3IesIONMMUCs TIepeMeHHbIME. Ero permenne jaer

u(z + eu/3)* = C,

ato pu 3> (Ce)'/3 cpomures k u = C'/2%. Taxum obpasom, pemtenns (5.60) u (5.62) copm
aJ1al0T B IIPOMEKYTOYHON 00JIacTn (C’e)l/ <<l Ipn z < (C’e)l/ 3 perenue U BBHIXOIUT

2\1/3
Ha KOHCT aHtTy Uy = (9C/€?)””. Obpaiaem BHUMaHNE HaHEAHAJTUTHYECKYIO 3aBUCH MOCTbH U
T €.

3agada

5.5.2. IlocTpouTh HyIEBOE MPUO/IMKEHNE PENIEHUs yPABHEHUS
(x4 euw)Oyu + (3 + 2)u = 0.

Pacemorpum crieftyroriee JuHeHOE ypaBHEHNE BTOPOTO mopsiika (€ > 0)

[(m2+e)28§+2(x2+6)x&0+1}u:O,
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9.1.3 Boundary layer

IpU TIOJIOKUTEJbHBIX . [Ipenebperas € B (5.63), mosydaeM ypaBHEH He, PeIIeHUsT KOTOPOTO
cos(1/x),sin(1/x) Beayr cebsa cunrynsgpro mpu x — 0. Yienst ¢ € B (5.63) cranoBaTcs
cyliecTBeHHBIMU TIpH = ~ /€. Ilpu & < € ucxonuoe ypasaenue (5.63) CBOAUT sl K ypaBHEHUIO

(2 +1)u=0

periieHusi Koroporo cos(z/e€),sin(x/€) Bemyr cebst perysispHo npu x — 0. MoxKHO HaiiTu
pelteHust U CXOHOro ypasHenust (5.63)

x
cos | —= arctan —

Ve Vel

. x
sin | — arctan — | ,

Ve e

KOTOpbIE MOKPBIBAIOT 00e acuMmirorudeckue objmactu. Ilpu @ < (/€ Mbl mosydaem wus3
(5.64) cos(x/€), sin(x/¢€), Tak kak arctan(y) ~ y upu Masbix y. [pu x > /e cur yanus ayTh
CJIOZKHeEe.

Sagadua

5.5.3. IIpociennrs, Kak pemntenns (5.64) nepexonsar B pernenus cos(1/x),sin(1/x) npu z >
Ve.

B paccMOTPEHHBIX BBIIIE TIPUMEPAX YaBaAJIOCh AHAJIUTUIECKI HANTH BbIpazKeHUsl, KOTOPbIE
OBLITH CIIPaBEIUBBI Cpa3y B JIBYX aCUMIITOTHYECKUX 001acTax. Kak mpaBuiio, 3Toro ¢ienaTh He
YAAeTCs, U B JIydIleM CJIydae PelieHne MOKHO HaiiTu dncaerHo. OnHako Jyis o0Inero aHaamnsa
PeIleHrst JIOCTATOYHO MCCJIEJ0BATh €ro MOBEJCHUe B KayKJOH ach MITOTHYECKON obsactu u
10TpeGoBaTh CIIMBKE (TO €CTh PaBeH CTBa IO HOPAJIKY BEIMIMHBI) HANHJIEHHBIX DelleHuil Ha
clmBaTh HaJ0 Kak camMu (YHKIUM, TaK ¥ UX [OPOU3BOJHBIE (Kpome crapiieii). 1o jaer
npejicraBjieHne 00 O0IIeM XapaKTepe DelleHus U MO3BOJIsIeT OLPEJIEe/UTh ero U3MEeHEeHHsl IIPH
BAPUAIHIX €.

3agaua

5.5.4. TlocTrpouTs acumnroTrydeckue perterns ypapuerus (x > 0, € > 0)
(z + €)0? 4+ 20,u + zu = 0,

U IIPOCJIEIUTh, KaK OHM IEPEeXOJIdAT JPYyr B JIpyTa.

9.1.3 Boundary layer

Teopus (?)

[Torpanuunblit cj0it BO3HMKAaeT B ciydae, Korja jguddepeninaibHoe ypaBHEHUE,
KOTOPOMY MOJYUHAETCS (PYHKIUS WM I0Je, UMeeT MaJiblil KOd(MUIUMEHT pu crapiieit
npousBoHoii. lIpenedOperkenune 4ieHOM CO cTapiieil TPOM3BOIHON YIIPOIIAET YpaBHEHHUE, UTO
B psjie CIyYaeB IO3BOJIAET PEIUTh ero an anutudecku. Ho 3To an anuTudeckoe perienue He
MOZKET YJIOBJICTBOPUTH I'DAHUYHBIM Y CJIOBUAM, IOCKOJIBKY IIOPAJOK YCEYEHHOI'0 YDPaBHEHUS
HIKe, deM ucxomubiit.  Ilostomy 3amady mnpuxomuTces pemaTb OTAEIbHO IS OCHOBHOM
objactu, TJ/Ie paboTaeT yCceueHHOe ypaBHEHUe, U JiJIsd y3KOTO CJIosg BOJIM3U TI'DAHUILBI
(OrpaHUIHOrO CJI0s1), TJe yUeT BBICHIeH Npom3BoaHOil obs3aresen.  Obmiee pereHme
HAXOJIUTCS CITUBKOW HAIEHHBIX BbIPpAYKEHUI Ha TPAHUIE STUX 00JacTeil.
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9.1.3 Boundary layer

[Tomobnas curyalys BOZHUKAET, HAIIPUMED, [IPU aHAJNA3€ T'MIPOJUHAMUYICCKIX YPaBHEHU
pu Gostbiux unciaax PeitHonbaca. Torma BaskuMm wieHoMm B ypaBHeHnn HapbeCToKca MOXKHO
npeHebpedb NpU aH aju3e TedeHus B oObeme (MCKJouYasi TeYeHHsl € OYEHb MAasIbIMU
maciirabaMu), U Mbl IPUXOJUM K YPaBHEHWIO Diljiepa, KOTOPOe UMEET IEPBBIA MOPSIOK 110
rpajinenty.  OJHAKO pellleHusl ypaBHeHUsl Oiijepa HE MOTYT YJIOBJIETBOPUTH T'PAHUTHBIM
yCJIOBUSIM (HYJIEBOMY 3HAYEHHIO CKOPOCTH Ha rpanuie). [lo9Tomy BOJM3M TPAHUIIBI HMEETCsI
BABKUI TMOTPAHWIHBIN CJIO, TedeHre B KOTOPOM MOKeT OBITh ITPOaH aJIM3UPOBAHO TOJIBKO B
pamkax ypauenusi Hapbe-CToKca, cojepzKaliero BTopyio CTeleHb IpajueHTa.

[IponmrocTpupyeM cKkazaHHOE Ha IIPOCTEMIEM IIpuMepe ypaBHEHUS

€?u~+ du+u=0

rje € < 1. Byuem mckarh perierue ¢ rpaHudHbiMu yesioBus Mu u = 0,0,u = 1 upu = = 0.
[Ipenebperas wieHoM ¢ € B yp aBHenun (5.65), Haxoaum ypasaerne 0,u—+u = 0, obIee perenne
KoTOporo u meer BuJ u = aexp(—z). OueBUIHO, 9TO peIleHne HE MOXKET YJIOBJIE€TBOPHUTDH
IpaHUYHBIM yeaoBuaM. [losroMy mpm masnbix x perienme TpedyeT Koppeknuu. [locKombKy
w =0 npu z = 0, MbI MOXKEM TIpH MAJbIX T IpeHebpedb YaeHoM ¢ u B ypaBHenuu (5.65), uro
naet €0?u + d,u = 0. Pemmenne 5Toro ypaHeHus ¢ JAHHLIME IPAHAYHBIMU yCJIOBUSMU UMEET
BuJ U = €[l — exp(—x/€)]. YcaoBue IPUMEHIMOCTH STOTO NPUOIMKEHHU UMeeT BUL Oy > U,
97O JaeT HepaBeHCTBO & K €1n(1/€), KoTopoe onpesesser TOIMHY MOrPAHIIHOTOo ciosi. [Tpu
eln(1/€) > = > € Haii JieHHOe pellleHre BBIXOJAUT Ha KOHCTAHTY, paBHyIO €. CpaBHUBas 9Ty
KOHCTAHTY € U = @ exp(—1), HaXOUM KOHCTAHTY a = €. TakuM 06pa3oM, Mbl HAXOIUM DeIleHne
u = eexp(—x), KoTOpoe paboTaeT MPH YCJIOBUU T 3> €.

Saga4a

5.5.5. ¥Ypasuenue (5.65) peraercs Touno. Haiitu ero perenne ¢ rpaHUIHBIMU YCIOBHSIME
u=0,0,u=1nupu x =0 u CPABHUTH €r0 ¢ HANJEHHDM IMPUOTUKCEHHBM PEITEH HeM.

[Tepexomum Tenepb K HETUHEHHBIM YpaBHEHUSIM. B 3TOM cIyd ae BO3MOXKHO CYIIECTBOBAHUE
HECKOJIbKUX PENIeHUil ypaBHEHUs U JIa2Ke TIOCTPOEHNE PEIIeHUs, KOTOPOE 33/Ia€TCsl PA3TNIHBIMU
BBIDAYKEHUsI MU Ha Pa3HbIX HHTEPB ajax. Ha rpanuiiax uHTEepBasia JIO2KHBI ObITH BBIIIOJTHEHbI
yenoBust "ckytefiku": HenpepbIBHOCTH (DYHKIMHM U €€ MPOU3BOHBIX BILIOTH JIO MTPOU3BOJIHOIM,
Ha €JIMHWIY MeHbIe TOpsIKa ypaBHeHHWs. Hampum mep, Jjisi yp aBHEHUS MEPBOTO IMOPSIIKA
JIOCTATOYHO MMOTPeOOBATH HEMPEPBIBHOCTH caMOil (DYHKITNH, & JIJIsl yPABHEHHS BTOPOTO MOPSIKA
JIOJIZKHBI ObITH HENPEPBIBHBI caMa (DYyHKIUs U ee nepBasd npousBojanasd. [Ipu sTom Bo3HuKaer
"KOHTpUHTYUTHBHAA" CHUTyaIus, KOIJa, CKaXKeM, JiJis YPABHEHUS IIEPBOrO IMOPSJ/IKA B TOUYKE
CKJIEHKHU TpOn3BO/iHAS (DYHKITMH MOYKET HCIBITBIBATH CKAYOK. [lOHSTHE MOrpaHUYIHOrO CJIOsT
MIO3BOJISIET TTPOSICHUTD 9Ty CUTYAIHUIO.

PaccmoTpruM B KadecTBe mpuMepa ypaBHEHHE MTEPBOTO MOPSIKA (8xu)2 = 1. Ono umeer
perienne u = |x|, KOTOpOe YJIOBJIETBOPSET Yy CJOBUIO HEIl PEPBIBHOCTH, HO HMMEET CKAYOK
npousBojHOil B Touke r = (. CrpammBaercs, Kak BO3MOXKHO BO3HHKHOBEHUE TaKOI'O
Pa3PBIBHOIO pEIeHUs1?

Jlj1s1 BBISICHEHHST 9TOTO BOIIPOCA BBEJIE M B YKa3aHHOE YPABHEHUSI BTOPYIO IMPOU3BOIHYIO C
MaJsIbiM Koabdurmenrom: ed%u + (@Eu)2 = 1. D70 ypaBHEHHE JIETKO PEIIaeTcs aH aJuTHIeCKH,
JUIsT 9€r0 CJIejlyeT BBECTH IEPEMEHHYI0 W = Oyu, JJjIg KOTOPOi MPUBEIEHHOE ypaBHEHUE
SIBJIETCS] yPABHEHHEM IIE€PBOT'O IMOPsAJIKA C P3O MUCA IepeMeHHbIMu. Kro perrennem
(¢ TouHOCTBIO 110 cBHUTA 1O x) sABasgercd w = tanh(x/€). VHTerpupoBanne 3T0ro BhIpazKeHMs
mgaer u = elncosh(z/e).

D10 pererne OecKOHETHO audHepeHnupyeMo U He UMeeT HUKaKHX OCOOEHHOCTel Ha
JIeCTBUTELHON ocu. B TO Ke BpeMs MbI CTaJIKUBAaeMCs C MOTPAHUYHBIM CJI0EM TOJIIIIMHON €,
BHE KOTOPOIO, TO eCTh Upu || > €, dynknus u ~ |z|. IlonsTHo, uTo B npemesre € — O MbI
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9.1.3 Boundary layer

nosydaeM u = |z|, ¢ paspbiBoMm mpousBojHoil. O606mmas 910 HabIIOeHIe, MOXKHO CKa3aTh,
YTO peIeHus ¢ pa3pbiBaMHU B IIPOM3BOHBIX SABJISIOTCS CJEJICTBUEM HAJIWYUA TMOTPAHMIHBIX
CJIOEB, TOJIIMHA KOTOPBIX yCTpeMJIgeT cd K HyJo. 1Ipoan ajgusupyem HeuHeiiHOe ypaBHEHME

e0iu+ (1+u®) Opu—2 =0,

rie € < 1. Cuosa 6ygeM HCKATh pellleHHe ¢ I'PaHUYHBIMEA ycaoBusmu u = 0,0,u = 1
npu z = 0. IIpeneGperas wienom ¢ € B ypasuenun (5.66), HaX0qUM ypaBHEHUE, DEIEHUE
KOTOPOTO OIpejie/isieTcs cooTHomenueM u + u/3 = 2 (z — xg), KOTOpoe, OYeBH/IHO, He MOKET
YJIOBJIETBOPUTH 0OEUM I'PaHUYHBIM yCaoBUAM. B cuty Toro, uro u = 0 g x = 0, 1pu MaJjbix
x ujienoM ¢ u? B ypasHennu (5.66) MoxHO 1peHe6pedb. B pesy/bTaTe Mbl HAXOIUM ypaBHEHUE
€0?u + Opu — 2 = 0, penieHne KOTOPOro C IPUHATHIMU IPAHUYHBIMEU YCJIOBUAMU HAXOJUTCS W3
coornomenus €0,u +u = 2x + €. Penrenue, yI0BIeTBOPAIONIEEe JAHHBIM IPAHIMYHBIM YCJIOBUSIM,
“MeeT BUI

u = 2x — € + eexp(—z/e).

Kpurepuem npu menun moctu (5.67) apisercs u < 1, To ecth < 1. B 10 ke Bpems yxe
npu x > € pemtenne (5.67) BBIXOAUT Ha 2x — €, OTKY/la CJeLyeT To = €/2.

B paccMoTpeHHBIX ITpuMepax yaaBajaoCh aHAJIUTHICCKH HAWTH BBIPAXKEHUS, KOTOPbIE ObLIN
CIpaBeUINBBI Cpa3y B JBYX ACHUMITOTUYECKHX 00JacTaX. Kak mpaBmiio, 9TOro ciuejiarb He
yIaeTcsi, U B JIyUIlIeM CJIydae pelleHre MOXKHO HaiiTu uncienHo. OmgHAKO s OOIIero aHaJmsa,
pellleHnst JOCTaTOYHO MCCJIe0BaTh €ro IOBeJdeHne B KayKJI0H acHMITOTHYECKOH obJyacTu u
noTpeboBaTh CIHIMBKE (TO €CTh PaBEHCTBA IO TOPSJIKY BEJMYMHBI) HAJIEHHBIX pereHuil Ha
rpanuie objacTeil. DTa mporeaypa JaeT Ipe JcTaBjieHne o0 o0IeM XapakKTepe pelieHus U
[IO3BOJIAET HANTHU €ro M3MEHEHUs ITPU BapHaIlUsX €.

3agaga

5.5.6. IIpoanajmsupoBaTh perenue ypapHeHus €0-u + Oyu + xu = 0 IPH MaJIbIX €.
[TorpanudHbIil €10l MOYKET COEPKATH HECKOJIBKO TOJICI0eB. PaccMOoTpuM B KadecTBe MpH
Mepa yp aBHEHHE
392 3 2
EPu+ 2°u+ (27 — ) u=0,

rie x > 0,6 > 0,¢ < 1. Tlomaras B (5.68) € = 0, maxoaum ypasaerne x0,u + u = 0. Ero
pemrenne o< 1/, ono peamsyercs B ocHopHoil obmactu x> €'/2. Tlpn €2/? < 2 < €'/ moxno
npene6pedb HepBbIM dieHoM B (5.68) m x? 110 CpaBHEHMIO C €, YTO NPUBOJUT K ypPABHEHUIO
230,u — eu = 0, permenne koroporo o exp [—e/ (222)]. Ilpu z < ¢2/3 B (5.68) cieayer ocraBuTh
TOJILKO WJIEHBI C €, 9TO TPUBOJUT K ypaBHeHuto €202y — u = (), pemenust Koroporo exp(+z/e).
Taxum obpazoM, mosrydaeM

u=De?/x, x> €V?
u=Cexpl—e/(22%)], P <<l
u = Aexp(z/e) + Bexp(—x/e), =< /3

STI/I BbIpa2KC€HUs JO0JI2KHBI 110 IIOPAIKY BEJINYUHBI COBIIaJaTh Ha I'PaHUIlaX 06HaCTeI7I, 49TO HdaeT
nBa ycaoBus Ha KoncranTol A, B,C,D. Eme asa cOOTHONIEHUS JAIOT I'PAHUYHBLIC YCJIOBUSL.
Ecmn, ckaxem, u(0) ~ lu(l) ~ 1,10 A~ B~ 1,InC ~ e /3 D~ C.

3agaya

5.5.7. Tlpoananus uposaTh peienue ypasHenus €°02u + €sinhud,u + rd,u + tanhu = 0
npu MaJibix €. Paccmorpers ciydaii rpanumdnoro yejaosud u = 0 mpu x = 0.
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9.2 Other Methods of Solving Equations

9.2 Other Methods of Solving Equations

(TO’Ke THIUYHASI TEOPHs, [TOKa TYT, MO B Pa3Jiesl ¢ OCHOBAMHE IIOMEIILY. )

9.3 Integrable Systems: Introduction

(TO}Ke BazKHO HUX yKaBaTb, HOTOMy 9TO 39TO HepBbIﬁ paS,JGJI, KOTOprﬁ BbITEKaeT U3
mmbdypos.)

9.4 Stochastic Differential Equations: Introduction

(see special note about them, random processes. I’ll later write some basic topics about
them also here)

9.5 Averaging Method (?!)
9.5.1 Typical method

CuoBa obparumcst K juddepeniuanbaomy ypasaenuio (5.58), koropoe Mbl OyjeMm
paccmaTpuBarh B pamkax BpeMeHHOI sBosonuu. [Toaromy HesaBucH MoOit IepeMeHHOI Telrephb
Oyzer Bpems ¢, a ypasHenue (5.58) nepenuriercsi B BUje

F(t,z,0x,..) + G (t,z,0x,..) =0

Ypasuenue (6.11) MOKHO pemarb O TEOPUH BO3MYINEHUN, KOTOpas 3aK/I0YaeTcsd B
crnemyromeM. CHadaja Mbl HAXOJUM perteHne ypapHerus [ = 0, 3aTem mojicraB/isieM 3TO
HyJieBoe perienne B G u HaxoiuM u3 ypasHenus (6.11) mepByio mo ToONpaBKy K HYJI€BOMY
pelleHnio, W TakK jajiee. 'TeM caMbIM peleHue OyjeT HailIeHO B BHJle psja IO €. 3Ta
IIPOIIE/Iypa MOYKEeT OBITH OCYINeCTBJIeHA aHaJUTHYecKu, ecju dyHkimu F,G mocraTodHo
POCTBI. B mpoTuBHOM cilydae ee MOXKHO OCYIIECTBJISATH TOJBLKO uncjaeHHo. O JHAKO B psjie
CIIyYaeB PA3JIOKEHUE 10 € MOXKET pPas3pyliaThCsd Ha OOJIBIINX BpeMeHaX t. DTO MPOUCXOIUT,
ecyTi perierne ypapHeHus F' = () mMeeT OCIUJISTOPHBIN XapakTep, a GyHKusa G MPpUBOIUT K
PE30HAHCY € STUME OCIUJLIAINM MU. B 3roM ciaydae B periernn ypasaenusi (6.11) Bo3HuKaoT
TaK HA3bIBAEMbIe BEKOBbIE (CEKYJISIPHBIE) UWIEHbI, KOTOPbIe PACTYT CO BPEMEHEM ObICTpee, ueM
HYyJIEBOE DpeIlleHne, TO eCTh pelenue ypaBHeHus F = (0. 9To OpUBOJAUT K TOMY, UTO CO
BPEMEHEM CEKYJIdpHbIE YJIeHBI, HeCMOTPsl HA MaJjOCThb II0 €, MOTLYT CTaTh CPABHUMBIMU C
HYJIEBBIM pEIIeHUEM, UYTO M IPUBOJIUT K €ro pa3pylieHuio. Pojb CeKy/IspHbIX YJIEHOB B iU
ddepennmanbHbIX yYpaBHEHHSAX HCCIE/OBaIach eme B 18 Beke B paborax Jlarpam:xka wu
Jlanjaca npu pacuere 3BOJIIONUY [LIAHETHBIX OPOUT.
B kadecTBe mpocreiineil MJLUIIOCTPAIUN CKA3aHHOTO PACCMOTPHUM YpaBHEHUE

Otx + x = ex®.
[Tpu ¢ = 0 perenne ypasuenusi (6.12) umeer Bug xg = acos(t — T), rje T - TPOU3BOJIbHAS

KOH craHTa. llojcraB/isst 910 BbIpaykeHHe B IIPaByIO 4acTh ypaBHeHus (6.12), MbI HAXOIUM
ypaBHEHUE JJI IIepPBOil MONPABKU L1 K Xg:

1
Ofw) + 1y = Zea?’[cos(?)t —37) + 3cos(t — 7))
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9.5.1 Typical method

Bropoe cinaraemoe B mpapoii wactu (6.13) mMmeer 9acTOTy OCHOBHOTO PeIllEHHsi, TO €CTb
HAXOJIUTCS B PE30HAHCE € JIeBOH dacThio dToro ypasuenus. OHO TOPOXKIAET CJIETyIOIINN
CEKYJISIDHBIN BKJIAJ] B 1:

T = geaB(t — 1) sin(t — 7).
OueBuHO, YTO HA JOCTATOYHO OOJBIIMX BpEMeHaX, Korja t ~ (ea2)_1, IIpUBeJIEHHAS
[OIIPaBKa CTAHOBUTCS IIOPsAJIKA HYJIEBOTO peIlleHdus, YTO U O3HavYaeT HapyIIeHne
MPUMEHUMOCTHU PA3JI0KEHUS TIO €.

Mo2KHO CyIIeCTBEHHO yCOBEPIIIEHCTBOBATD CXeMY pellieHns ypapHenus (6.12) mo cpaBHeHHIO
¢ TPAMOI Teopuell BO3MYIIEHU i, TTOCTPOUB MPUOJIN YKEHHOE PEIeHne, KOTopoe padoTaeT Ha
Bpemenax t MHOTO 6OJIBITIX (eaQ)_l. Bynem nckars perenne ypaBHeHUs B BUje & = a cos(t —
T), TJe @ U T SBJISIIOTCS MeJUIeHHbIME (yHKIAME BpeMenu. [loj- craB jisig 970 BbIparKeHue
B ypaBHenue (6.12) u coxpaHsisi TOJILKO MEPBBIE MPOU3BOJHBIE 110 BPEMEHU OT G, T, HAXOJUM
cJejiytoliee ypaBHeHIe

—Owasin(t — 7) + racos(t — 1) = gea?’ cos(t — 7)

rJie Mbl OCTABUJIN B MIPABOil 9aCTH TOJBKO PE3OHAHCHBIN wieH. OmnyIneHHblil (He pe30HAHCHbI)
YJIeH JaeT MOIPaBKM, MaJible 10 €, Ha Bcex BpeMeHax. [IpmpaBHuBas K Hy/I10 KO3(MOUITNEHTHI
IIPU CUHYCe U KOCUHYCE, HAXOAUM CHU CTEeMY ypPaBHEHUN

Oa=0, OT= geaQ.

OuerunnbiM perennem cuctembl (6.14) sBiaserca a = const, 7 = 79 + (3/8)ea’t, rae 79 -
IIPOM3BOJIbHASA KOHCTAHTA. TakuM 00pa3soM, Mbl IPUXOIUM K DEIIEHUI)

x = acos [t — (3/8)ea’t — 7o

KOTOPOE TIPeJICTaB/IgeT coboit OCIMILIAIIN ¢ YacToTol w = 1 — (3/8)ea®. Tlonpapka K eJuHuIe
Ha3bIBAETCS HEJIMHEMHBIM CABUIOM YaCTOTHI.

YcranoBuMm Kpurepuii npumenuMocTu Bbipazkenus (6.15). Ilpu BoiBose ypasuenus (6.14)
Mbl oTGpocui wienbl ¢ 07 u ¢ O?a. MaJjibiM apaMeTpoM, MO KOTOPO- My 3TO MOKHO
CeJIaTh, ABJIACTCA ea’®. VIMEHHO ¢ 9TOH OTHOCHTEIHHON TOYHOCTHIO HaWJICHO BBIPAKCHUE JIJI
0,7, TOITOMY TIONPaBKa K STOMY BBLIPAsKEHHIO MOMKET OBITH OIleHeHa, Kak e2a*.  Taxmu
0o6pas3oM, TOMpaBKa K apryMeH- Ty KOCHHYCA B BBIDaXKeHHU & = acos(t — T) MOXKeT OBbITh
onenena, Kax tea?, To ecrnb pemenne (6.15) paGoTtaeT 1npu yciosun t < (62a4)_1.

3agaga

6.2.1. Cpasuurb perterne (6.15) ¢ TouHbIM perierneM ypashenus (6.12) u npoBepuTh
KpUTEpUil IPUMEHIMOCTH Bbipazkenus (6.15).

[IpuBenennyo BbIIIE CXeMy MOXKHO O0ODIINTH Ha CAydail TPOU3BOJBHOIO MAaJIOTO
BO3MYIIEHUsT YPABHEHUsI TAPMOHUYIECKOTO OCIMJLIATOPA. A WMEHHO, PAacCMOTPUM ypPaBHEHUE
oCIIMJIATOpPa ¢ 4YacToroil 1 m mobaBMM B TpaByl0 YacTh TOIO YpaBHEHUS ITPOU3BOILHBIN
MaJIbIil YJIeH, 3aBUCAIINIA OT & U O.x:

Otx +x = €G (v,0ux) .

Crioco6b  NnpuOJUKEHHOIO  pEIleHdsl  TAKOro  YPABHEHUS  HA3bIBAETCSI  METOJIOM
Borosmobosa-Kpeuiosa. Bsesem Bcromorare/ibHyo mepeMeHHyoo z = x + i0;x. B Tepmunax
sroii dbyHkim u ypasrerue (6.16) nmprobperaer cieyromiyio dhopmy

Oz = —iz + ieG(Re z,Im 2).
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9.5.1 Typical method

Beogum abcosrornoe snadenwe u dasy z : z = aexp(ip). Torma ypasaenwme (6.17)
IIEPEINCHIBACTCS B BUJIE

Oya = esin pG(a cos p, asin @),
cos ¢

OT =€ G(acos p,asinp),

rjie ¢ = —t + 7. Jlo cux nop npeodbpazoBaHus ObLIM TOYHBIMU. ITOOBI TPOJIBUHYTHCH JAJIbIIIE,
3aMETHUM, YTO IIPUPAIIEHUS @ U T 3 IIePHOJ] MAJIbI B CHJIY MaJIOCTH €. [lo3TOMy Tpu BbIYHUC/IEHIT
9TUX TpUpalieHnii B npapoit qactu (6.18) u 7 MOXKHO CUNTATH KOHCTAHTAMM, UTO JIAET

27

Aa = e/dgpsinng(acos Y, asin )
0
2w

AT = e/dngOSSOG(acos @, asin )
a
0

O6paruM BHEMaHWE HATO, YTO T BBINAJACT U3 BbIPAYKEHW /I 9TUX MpUpAIeHuii (B ity
TOTO, YTO HAYAJIO OTCYETa MePUOJIa MPOU3BOJIbHO). Takmm 06pa3oM, Jist Me IJIEHHO 9BOJIIOINNN
(Ha GOJIBIIX BpeMeHAX) Mbl HAXOAUM cJiejyornue 3bheKTHBHBIE YPaBHEHUS

2

Oa = 2i/dgosing0G(acos @, asin ),
7r

o = i/clgp(:OS(pG(acosgo,asingp).
2m a
0

JIerko NMpOBEpUThb, YTO JjIs MPOAHAJU3MPOB aHHON Hamu 3ajadn (6.12), korma G = 22,
ypasHenwust (6.19,6.20) cBogagarcs K ypaBHenusam (6.14).

Sagaua
6.2.2. HaiiTu moBesienne Ha GOJBIIMX BpPEMEHAX aMILIUTYAbl KOJeOaHHUi OCyWILISTOpa C
. 3
HeJIMHEHbIM 3aTyXanueM 0°% + = —¢ (0yr)” npu MajoM €.
3agaga
6.2.3. Tlpoananus MpoBaTh IOBEJEHUE pellleHns ypaBHeHus Oix + x = —edyr |Oww| npm
MAaJIOM €.

Paccmorpum ypasuenne Ban sep Ilos ¢ manbiM MHOKHTeIeM B IIpaBoil vact, € <K 1:
r+z=¢e(l—2%) o
Ypasuenus (6.19,6.20) 1t 5TOr0 CIydas CBOIATCH K

o,a = ga (1 — a2/4) , O =0.

Y pasnenne (6.22) onmuceiBaeT npubJIMKeHEEe aMILIATYAbL @ K YCTOHYNBON (DUKCUPOBAHHON TOUKE
a = 2, KOTopasi COOTBETCTBYET aCUMITOTHIECKOMY DEXKUMY aBTOKOJI€OaHWii (IIpeIeIbHOMY

KLY ).
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9.5.1 Typical method

3agaua

2
6.2.4. IIpoanains nuposaTh IOBeeHNE pellenust ypasuenus 07z + x = —e (1 — 2?)” Oy npn
MAaJIOM €.

Saga4ya

6.2.5. IIpoananus mpoBaTh NOBejeHHe pelieHust ypahenus Ofx + x = e (1 — 2?) O +
ex® mpu MajoMm e. Meros Boromo6osa-Kpeiios a MoxkeT OBITH 0000IIEH Ha ciydail SBHOM
sapucuMoct dyukiun G B ypasuenun (6.16) or Bpemenu npu ycjaosuu, uro dyukius G
ocraeTcsd IpUbJIM3UTEIHLHO IEPUOIANIECKOl (DyHKIMe BpeMenn ¢ mepuogoM 2. /s perrennst
3a/la90 B 9TOM CjIydae CHOBa MCXOAUM u3 ypasuenuil (6.18), riae B mpaBoil 4acTu IOSIBJISIETCSI
sIBHAsI 3aBUCUMOCTH OT BPEMEHM:

Ora = esin G (t, a cos g, asin p),
Cos

T =€ G(t,acos p,asiny),

e ¢ = —t + 7. CHoBa mMHTErpupys MO MEPUOIYy U HAXO/s NPUPAIIEHUs 4 U T, HAXOIUM
3 deKkTUBHbIE yPABHEHUS

2
Ora = Qi /d¢sinng(t — ¢,acos @, asiny)
T
0

2w
ot = < /dgbCOSSOG(t — ¢,acos @, asiny)
2m a
0

rjie ¢ =7 —t + ¢. ObpaTuM BHUMaHUE HATO, YTO TEIE€Pb T SBHO BXOJUT B DEICHHUE.

3agagya

6.2.6. Haiitu pemenue ypasuenuii (6.24,6.25) nys pesonancHoit Hakadku G = cost.

3agaya

6.2.7. Haiitu pemenne ypasaenuii (6.24, 6.25) jij1s1 pe30HAHCHON TApAMETPUIECKO HAKATKN
G = x cos(2t).

3agaga

6.2.8. Haiimu pemenue ypasuenwuii (6.24,6.25) s ocuminsiropa Ban jep [Moss ¢ Hakaukoii
G = (1 —2?) 0w + Kcost

Jlo cux mop MBI UPUBOAMIM BbIpaKeHUs I HPHUOIMKEHHBIX ypaBHEHU KojebaHuit
BO3MYIIIEHHOI'O OCIIMLISITOPa C €JIMHUYHON dYacToToil. Bce HalijleHHble BbIPaKeHUsl JIEI'KO
000011 aloTcd Ha ciydail KOHEYHO# 9acTOThI OCHUJIATOpPa w. I[IpumBegeM COOTBETCTB yIOIIHe
BbIpazkeHus. Bmecro ypasraerust (6.16) cieyer paccMOTpeTh ypaBHEHMe

Olr + wir = €G,
rjie w - COOCTBEHHAS ¥ acTOTa OCIU/LIATOPa. ByjeM HCKaTh PellleHne 9TOro ypaBHeHHs B BU/E

x = acos(—wt + ),
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9.5.2 Averaged equations for wave motion

rjie a,6 - MejieHHble (DYHKIIMNA BpPEMEHU. Y paBHEHUS HA TU (PYHKIUUA SIBIAIOTCA TTPSIMBIM
obobmernenm ypasaenuii (6.19, 6.20)

2m
€ dy
3t9 = E / %COS(@)G
0

[Tpu BBIMUC/ICHUT HHTETD AJI0B B paBbIX dacTax (6.28,6.29) B dyuknuio G ciieayer MoICTaBUTh
u — acosp,dyu — wsinp. Ypashenus (6.28,6.29), oueBuaHo, cBoggT csi K (6.19,6.20) npu
w=1.

B kadecTBe TpUBHAJIBLHOIO IPUMEPa PACCMOTPHUM JIMHEHHBIN OCIUJIIATOP C 3aTyXaHueMm. B
sToM ciydae G = —20,x, a € aBjsieTca JeKpeMeHToM 3aTyxanus. [lojcraBiisist 3T0 BeIpaKeHne B
coorrorterus (6.28,6.29), naxogum 0,0 = 0, 0;a = —ea. Kax u cieyer, aMIiuTyjia a 3aryxaer
CO BPEMEHEM C JIEKPEMEHTOM €.

9.5.2 Averaged equations for wave motion

Metos1, ycpe jHeHUsi, PA3BUTHIN BbIIIE JIjId KOJIEOATEIBHOI'O JIBUXKEHHS, HEITOCPEJICT BEHHO
0000ITaeTcd M JIJId BOJTHOBOTO JiBU:KeHus. Kak u i1 KojiebaTeIbHOTO JIBUXKEHUsI, Mbl Oy/1eM
cduTaTb, 4YTO B IJVIaBHOM HpI/I6J'II/DKeHI/II/I BOJIHOBOE€ JIBU>KEHHNE OIINCbhIBacTCA JIMHENHBIMU
BOJIHOBBIMHU ~ YpaBHEHUAMU, U OyjeM u3ydaTb pOJb MaJbIX TOIMPABOK, CBA3AHHBIX C
HEJUHEWHOCTBIO, BHEIITHN M BO3JEil CTBAEM, HEOJHOPOJHOCTBIO W TaK JIAJIee.

P accmorpum BoJIHOBOE JIBHXKEHHEe, KOT OpOe OIU ChiBaeT csi mosieM u(t, r), ypaBHeHue Ha
KOTOpOE UMeeT BU/

OPu + &*u = €G.

Beck oneparop w = w(—iV) onpeessiercs 3aKOHOM JUCIIepCuit t(q) BOJHOBOIO JIBUKEHHUSI, &
G - nekoropas QpyHKIHA MIOJIS U, €0 IPOU3BOIHBIX, a TAKKE, BO3MOYKHO, BDEMEHH ¥ KOOD/IMHAT.
[Tapamerp € B npaBoii yactu ypasHenusi (6.30) canraercst MaibiM. B HysmeBoM npubinkeHnn,
koryia € = 0, ypasuenue (6.30) cBOIUTCA K YUCTO BOJTHOBOMY JIMHEHHOMY ypPaBHEHUIO, KOTOPOE,
B YACTHOCTH, ¥ MEET PelleHue B BUJE OeryIieil IJIOCKOH BOJHBI ¢ BOJHOBLIM BEKTOPOM ¢ :
u = acos(—wt + qr + 0), tie w = w(q), a 0 - nTpousBosIbHAS KOHCTaHTA. DyJeM HCKaTh
perenne ypaprenns (6.30) B Tom ke Buje u = acos(—wt + gr + ), rue Tenepb (¢ ygeTom
JIOTIOJTHUTETHHOTO wieHa ¢ () mapaMeTpbl a U § ABISIOTCS MeJJIeHHBIME (DYHKITUSIMUA BDEMEHI
1 KOOp JIMHAT.

Vcnonbp3yeM TOT K€ IHpHUeM, KOTOPBIA MO3BOJMI HANWTH yCpeJHEHHBbIC yPABHEHUS IS
BO3MYIIEHHOIO TapMOHUYECKOIO ocHuuiaTopa.  Jjug sroro BBOAUM QYHKIAU U; U W:
Ouy = wu,w = u + iuy. Torma ypasuenne (6.30) mepenuiier csg B Buje ypaBHEHHs IEPBOTO
HOPAIKA

Ow = —idw + ieww LG,

[Moxpcrassst ciona w = aexp(—iwt + igr + i), Haxomaum M
) ) 1€ )
0ra + iad® + vVa + iavVl = —G exp(—ip),
w
rie v = Jw/dq - TpynnoBas CKOPOCTh BOJHBL [Ipu BBIBOJIE MBI HCIIOJIB30BAJIN COOTHOIICHUE

(4= ae?) | | | |
w(—iV)[exp(igr)y] = exp(igr)w(q — iV)1,
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9.5.2 Averaged equations for wave motion

u coxpa w(q — 1V) HyJeBOl u HepBbIil WieHbl pasitoxkenus 0 V/q. Mbl Tak:Ke 3aMeHIIN B
IPaBOi YaCTH W — W™ !, YTO CIPaBeINBO B IJIABHOM IIOPSJIKE 110 €. BBIIessada B I0Tyd9eHHOM
YPABHEHUHU JEHCTBUTEILHYIO M MHUA MYIO 9 aCTH, HAXOIUM

0wa +vVa = 5 sin(p)G
0 + vV = - cos(p)G
wa

pre,ZLHE{H 9THU ypaBHEHUA II0 II€PUOJY, MblI HaXOJUM YypaBHEHUA HOJid MEIJIEHHBIX

epeMeHHbIX
2

0a +vVa = 5 / dp sin(p)G
0

2
d
0,0 + vV = - / & cos(p)G
wa | 27
0

B aprymenre dyukimn G B Beipaxkenusix (6.33,6.34) cieyer mojacTaBisTh u — a cos @, Vu —
—qasin @, Oyu — wasin @. Ilociennne BuIpaykeHUs MOJTYyYIAIOTCA B TJIABHOM [PUOJIMKEHUU 10
€, 9TO JIOCTATOYHO B CHJIYy TOTO, YTO IpaBasl dacTh BbIpaxkeHuil (6.33,6.34) yxke comepKur
MAaJIOCTD 110 €. Vpapmemns (6.33,6.34) sBisirorest mpsimbiM 06061mennem ypasuenuit (6.28,6.29).
EnuncT BeHHas pa3HuUIla 3aK/I09aeTcs B HAJIUYUH IEPEHOCHOTO 4IeHa ¢ IpajineHToM. MoxKHO
cKa3aThb, 9T0 yp aBHeHus (6.33,6.34) coBuasaior ¢ ypasaenusimu (6.28,6.29) B cucreme orcuera,
KOTOpasi JIBUKETCsI ¢ TPYIIIOBOH cKopocThio v. Clieyer, 0JIHAKO, MOMHUTH O TOM, UTO MBbI
FIMeeM JIeJI0 € TI0JIeM, 3aJlaHHBIM B TpocTpaHcTBe. U notomy ypasaenus (6.33,6.34) HeoOxo/m
MO pelIaTh C y4eTOM I'DaHUYHBIX yCJIOBHII.

B kavecTBe TPHMBHAIBLHON WM/TIOCTPAINM CKa3aHHOTO PACCMOTPUM CJIydail 3aTyXaromei
BOJIHBL. B 3srom ciayuae G = —20,u, a € ABJIAETCA JEKPEMEHTOM 3aT YXaHUs BOJIHBI.
[TomcranoBka 9TOro0 BhIpazKeHust B cooTHomeHus (6.33,6.34) IpuBOANT K ypaBHEHUIM

oia +vVa = —ea, 0,0+ vVH=0.

Pemenue ypaBHeHus Jijisi aMIUIATYJbl @ HEOJHO3HAYHO.  Halpumep, pEIIeHHsIMUA JTOrO
ypaBHeHUst ABjistioTest a o< exp(—et) (a me 3aBucuT OT KoopjauHar), ui a o exp (—evr/v?) (a
He 3aBUCHT OT BpeMmeHu). HaiiTu U CTUHHOE pellleHHe ypaBHEHUs JJIsi AMILIUTYBl  MOYKHO
TOJILKO € YI€TOM I'DAHUIHBIX YCJIOBHIL.

[Tepeiiiem renepb K ypaBHeHHIo Ha orubaroryio ¢ = aexp(if). B srom ciyuae ypaBHeHust
(6.33,6.34) mepenucbBaOT Cs B BUJIE

2
‘ d
o) + vV = d exp(i0) / &e exp(—ip)G.
w 2
0
Hanpumep, miusg G = u? ypasuenne (6.35) coaurest K
e, o
S_WM V.

Ecnmu mnepeiitm B cucteMy oTcUeTa, JIBHXKYIILYIOCS C TPYIIOBONl CKOPOCTBIO ¥ U YYeCTb
caeaytomuii aaen pasnoxenus w(g — iV) mo V/g B (6.32), TO MBI HOJyYIMM HeJIMHEHOE
ypasHenue [IIpénnnarepa.

o) + vV =

3agaya

6.2.9. Haiitu ypaBnenue na orubatomntyio ¢ it G = u(Vu)?.
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9.5.3 Other about the averaging method

3agaua

6.2.10. Haiitu ypapHenue Ha orubarolryto 1) 1jist HequHeitHoro saryxanusa G = —du(Vu)?.

9.5.3 Other about the averaging method

(M6 TyT, MO B KaTaJiore HAIHUIILY, OKa X3)

(7?7 zamapio yKe 5T0 HAKOHeI-T0??7)

9.5.4 Introduction to Exotic Methods of Avergaings

(there are books about them, I don’t know them, maybe one day I'll read something about
them...)

9.6 Dynamical Systems (777)

(write intro, see a special note about them also or mechanics)

9.7 Geometrical Methods for DE (777)

(morom 1o ApHoJbiry MO TPOIiLy, OKA HE aKTYaJbHO. )

9.8 Exotic Differential Equations
9.8.1 Chaotic Trajectories

(Toke YacTO M3 BCeil TEOPUH TOIBKO 9Ta Hy»KHa, TaK 9TO BOT, 3ar'OTOBKa IIPO HeE OyeT.)
(see that youtube video about them and write some theory)

9.8.2 Delayed differential equations

(Takoe TOXKe eCThb, TIOTOM IPOIIHIILY )

AHanuTudyeckue cBoiicTBa

(IoKa 10 BHKH, § MPOCTO 3HAIO, 9TO TAKOE €CTh, IyTh UTO JOYIHBATH Oyiy KOIJIA-TO.)

- Continuous delay
0

—alt) = f t,x(t),/x(t-i-T)d,u(T)

- Discrete delay
d
ax(t) =f(t,z(t),z(t —71), ., x(t —Tn))

for ; > .-+ > 1, > 0. - Linear with discrete delays

d

Za(t) = Agx(t) + Az (= 1)+ A (= Tn)
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9.8.2 Delayed differential equations

where Ay, ..., A, € R™". - Pantograph equation

d
ax(t) = ax(t) + bz ()

where a,b and A\ are constants and 0 < A < 1. This equation and some more general forms are
named after the pantographs on trains.

Solving DDEs

DDEs are mostly solved in a stepwise fashion with a principle called the method of steps.
For instance, consider the DDE with a single delay

d
20 = fla(t),z(t — 7))

with given initial condition ¢ : [—7,0] — R”. Then the solution on the interval [0, 7] is given
by 1 (t) which is the solution to the inhomogeneous initial value problem

d
SU(t) = FW(), oft — 7))

with ¥(0) = ¢(0). This can be continued for the successive intervals by using the solution to
the previous interval as inhomogeneous term. In practice, the initial value problem is often
solved numerically.

Example

Suppose f(z(t),z(t — 7)) = ax(t — 7) and ¢(t) = 1. Then the initial value problem can be
solved with integration,

t

z(t) = z(0) + / %x(s)ds =1+a / (s — 7)ds

s=0

i.e., x(t) = at + 1, where the initial condition is given by z(0) = ¢(0) = 1. Similarly, for the
interval ¢ € [1,27]| we integrate and fit the initial condition,

t t

z(t) = x(1) + / %x(s)ds =(ar+1)+a /(a(s — 1)+ 1)ds

S=T S=T

t—7

= (a7+1)+a/(as+1)d3,

s=0

e, z(t)=(ar+1)+a(t—71)(lalt —7)+1).

Reduction to ODE (?777)

In some cases, differential equations can be represented in a format that looks like delay
differential equations.
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9.9 Calculus of Variations: Basic Methods

Example 1
Consider an equation

0
d

Em(zﬁ):f t,x(t),/x(t+7)e’\TdT

—00

0
Introduce y(t) = [ z(t 4+ 7)e’dr to get a system of ODEs

—0o0

d

Sl = Ftay), Syt =o -y

Example 2

An equation
0
d

G0 =1 (e, [ olt+ ) costar + g)ar

—0o0
is equivalent to

HpOI‘paMMHbIe BbIdHMCJI€CHUA

9.9 Calculus of Variations: Basic Methods

(put theory from typical textbook about them)

9.10 Calculus of Variations: Special Methods

(I know that they exists, but I never needed them. I’ll look maybe later, there are big books
about them)

9.11 Calculus of Variations: Special Methods for Applications in
Physics

(here, Tl collect methods, that are used in articles in physics, which which I worked at least
a little)

10 Some Famous Equations (77)
(moka 6e3 CTPYKTYpHBI, HE TaK OHa Hy»KHA.)

10.1 Bernoulli equation

(TyT 1mo/pobHO, B HaYase KOPOTKO OOCYIUIH YIKe)

10.1.1 Theory

IIOKa X3
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10.1.2 Attachments

10.1.2 Attachments

IIOTOM BCE 3TO IIPOCMOTPIO

10.2 Riccati equation

(IpocTO MOMHIO TaKoe, MHOTO TIPO HEro uH(bI, M6 IIOTOM YTO-TO cOGEpy )

10.2.1 Theory

IIOKa X3

10.2.2 Attachments

IIOTOM BCE 3TO IIPOCMOTPIO

10.3 Others

(BCe BazKHbI€ OCTaJIbHBIC TyT)

10.3.1 Airy equation

BCE IIPO HET'O 3ar0TOBJIIO TYT.

11 Applications of differential equations

OTCBLJIKM Ha TO, 9YTO B CTaTbhbAX HO,HpO6HO A mnpouiesr U u3yduJI.

11.1 Applications in mathematics and other sciences

(GosbIast BaKHas T JiaBa, KOTOPYIO Oyiy JefaTh KOIJIa Ha MACTePCKUil yPOBEHb Oyiry
BBIXO/IUTh, MOKa HY?KHO KaTaJor Perarh!)

11.2 Applications in Physics

11.2.1 In mechanics

(yzKe CKOpO 9Ty CBs3KYy Oy/Iy CO3/1aBaTh, OO MEXaHWKa YrKe CyIep Pa3sBUBACTCH)

11.2.2 In quantum mechanics

(y2Ke cKOpo 9Ty CBsA3KY Oy/Iy CO3/1aBaTh, MO0 MEXaHUKA y¥Ke CyIep Pa3BUBaeTCs )

11.2.3 On Applications in Other Physics

(y2Ke CKOpO 9Ty CBsI3Ky Oy/Iy CO3/IaBaTh, OO MEXaHUKa YKe CyIep Pa3sBUBAECTCH)

11.3 Life Applications
(777 T don’t know but they may be applicable)
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11.3.1 Economic applications

11.3.1 Economic applications

777

11.3.2 Environmental Applications (?7)

(ToKe Kacascs TaM MPHJIOXKEHHIL. )
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Part VI
Appendix

A Introduction and Overview

A.1 Extra Motivation

(rmos2Kke mpomuIILy, MOKa XBaTaer)

MHoro4uc/ieHHble IPpUMeHEHUs B (pu3uke

[Ipocto 9TO O/IMH U3 caMbIX BayKHBIX IIPEJIMETOB Jijisi (hu3uku. be3 Hero Bce OyjeT cymnep
M€/IJIEHHO U TYTO.

HPOJIETUM OBICTPO 10 MEeTOoJIaM, IIOTOM YCUJIUM UX MPO(EeCCHOHATBHBIMU METOIAMU - IIOTOM
oM AeM IIPUMEHATD.

NPUMEHEHUH BBIIEN KPBIIIU, JIJIsi TOTO U Pa3BUBaIO 3Ty COOPKY.

Ouenb yacTto dusmUeckKas MOJEJb CBOAUTCA MMEHHO K Auddypy M OCHOBHOI
3ajlaveil CTAaHOBUTCS TOJIBKO PEHIUTHh 3TOT audPyp

[TosToMy ¢ HEKOTOPOIT TOYKHM 3peHus JIIs He TAKUX 3ayMHBIX pasjeioB pu3uku auddypobl
- OCHOBHOII peiMeT. [loaTOMY He JleHb MOJINOTOBUTH METObI Ha TUIUYIHBIE 3a/Ia9H.

CioxkHbIe 3aJa4d YacTO CBOJAATCSA K CIHeu@UYEeCKUM MeTOdaM pelleHnd
anddypoB, ¢ KOTOPBIMHU He pa3o0bpaThbcs, ecJiu He B3dATa ba3a

Tax aro 3nanue quddypoB oTIUIUT MTPOodecCuoHaIa OT HOBUYKA.

TeopMuH 10 MexXaHHKe MHE YE€TKO yKas3aJ, u9To 0e3 HOPMAaJIbHOrO HMOHMMaHus auddypos,
11podheCcCHOHAIBLHO MEXaHUKON He TOJIYIUTCS 3aHAThCs. JlyMaro, 4acTo aHaJOTMIHAs CUTYaIlAs
Oymer.

a, @acTo 3a7a9u CBOIATCS K 9U€My-TO JIDYTOMY, HO BEPOATHOCTH, UTO JI€JIO CBEJIETCS K

b dypy, HANOOJIbITIALA.

NHaorpna Hy>kHO IIpoaHaJIM3uUpPOBaTh cBoiicTBa muddypa

KOTJIa TaM pelleHne OJIHO, KOIia HEeCKOJIBKO?
TyT 6e3 MOArOTOBKM HE MPUCTYIUTHCS, TaK ITO HE CJIOKHO COOPATh TEOPETHIECKYIO Da3y B
20-60 cTpanwuIl, ¢ KOTOPOil aHan3 OyaeT 6e3 mpodJIeM JieIaThCs.

dopmupyoT npeacraBieHue 0 Mupe

TaM IIPO CBHA3b C XaOCOM.
IPOIHUIILY 3TO B IIEPBOIl YacTu

IIOTOM IIOZAyMalO IIPpO UX BazKHOCTb OTJEJILHO.
9TO He onmcaTth auddypavu?

HawmnboJsiee mpukiiagablie Tembl audepeHnmaabHbIX YpaBHEHUN

o0cy MM, KaKiue TeMbl Ha caMOM JIeJie caMble BayKHbIE TYT.
(TOKa CJUIITKOM CJIabblil yPOBEHB, 9TOOBI BUJIETH, UTO HA CAMOM JIeJIe MOYKHO HCIIOJIb30BATh. )
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A .2 The Mindset of Professionals

YauBurtesbHbIE (PAKTHI

(TO}Ke MHOI'O€ MOZKHO 6y,ueT HalluCaTb, IIOKa HEe TOT ypOBeHb.)

A.2 The Mindset of Professionals

Ocynmm, Kakoe MbIILIeHHe Hanbostee 3hHEKTUBHOE I YCBOEHUE IIPeaMeTa.
(' ou BaxkHBII paszfen, b0 ocobblil mMoaxX0M K npeamMery Hyzker, n6o 100500 moIBOIHBIX
kamHeil B Hem!!)

A.2.1 Solving Effectively DE

C stumu MeTOdaMM BCeE 6I)ICT]_Z)O 1 peniaeTcd, K&)K,ZL]:IfI JeHb UX 1 UCIIOJIb3YIO.

IIpoBepku perneHuit ypaBHEeHUIT

Ecnn 3a/la49a BaxKHad, TO BCerda II0CJIE peH_[eHI/Iﬁ naeT IIpoBEpKa KaK HHZKE.

HpOBepﬂeM, He 11oTepsJin JIM Mbl KaKOe-TO KOHCTAaHTHOE€ pellleHue.

(4T0-TO OUEBHIHOE)

Yamie Bcero npocto nmo Boabdpamy mpoBepsiem

Eciin mer orBeroB, TO mpoBepsieM 110 Bobdpmay! A TakzKe, He MOTEPSIN JIU Mbl KAKHe-TO
pelleHnst [pHu IPeodPas3sOBaHUsIX, €CJIM MOXKHO, IIOJICTABUTH pEIIeHNs B ypaBHEHHE W
IIOCMOTPETH, TAKOE JI OHO! DTO OYeHb BaykKHO He 3a0bIBATH J1e/1aTh!

B momoms KoMaHIbI:

DSolve [eqn,u,x]
Apart[fraction]
Simplify [eqn]

00 oTyIm4udgx ¢ oTBeTaMu

Eciu cpaBHuBaeM ¢ orBeramMu, MOMHHUM, YTO KOHCTAHTA MOYKET UMETh Pa3Hble 3HAKH. IJTO
MOIJIO OBbI OTHATH BpeMs, IIOTOMY YTO M3-3a PA3HBIX 3HAKOB Y KOHCTAHT BUJI PEIIEHUT MOZKET
OTJIMYAETCSI OT TOTO, KOTOPHI B OTBETAX.

A.2.2 Attitude to the DE (!7

Auddepenninanbubie ypaBHEHUsI - 3TO HAOOP OTHOCUTEJIBHO MPOCTHIX 3a4a4 C
HeOOJIBINON /IJIsT HUX TeopHeil, a TakK>ke crnelnuduniecKuX MeTOI0B

['py6o romopst sTo Tak. Koneuno, merasneil Be3jie MOJHO, U MHOTOE €CTh CJIOKHOTO U
HEOYEBU/IHOTO, TEeM He MeHee, TPybo roBOps 9TO TaK U OOATCH HEeUero, CIIOKOWHO KazK/ bl JIEHD
MOXKHO TIO TIape W INpPOPENUBaTh YpaBHEHHIl cebe g pa3MUHKH, IJIABHOE TOJHKO 0A30BYIO
TEOPUIO Ha MIUHUMAJIbHOM yPOBHE HAIIUCATD.

BaxknocTp Jumip IIapbl OTAEJbHbIX METOJ0B

TyT packpoio MBIC/Ib, YTO MBI TTOJIB3yeMCS JIUITL Mapoil MeTo/IoB. V MMeHHO OHW HYKHBI,
OCTaJIbHOE - JINIIb 00Iee 0Opa3oBaHue, KOTOPOE TOXKE I0JIe3HO, HO He HACTOJBKO HYKHO, KaK
mapa MeTO/IOB, KOTOPBIE MOT'YT TJle YIOHO MTPUMEHATHCS.
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A.2.3 Ways to Guess Some Key Ideas

BuuMmareabHOCTL 1 I1ocJjie 10BaTeJIbHOCTD

Ouenb BayKHO BCErJla BHUMATEIHHO KayK/IbIil Iar mpeodpa30BaHmil Je/1aTh, HHAUE 3aCs1eIhb!
(ocTasibHOE TaKOE Ke TYT YKAXKYy C OIBITOM. )

Cwmbic muddpepeHnalbHbIX ypaBHEHMI

(@) TOM, YTO C IIOMOIIIBIO HUX OIIMCATb MO2KHO, a YTO HeJIb3d

(moToM Takoit 0630p MpUBEY. HeyzKean abC/IIOTHO BCE U MOKHO??)

O dunocodbun 3a guddepeHInaIbLHBIMA ypPAaBHEHUSIMU

(TaM 9TO MyTH MO YKU3HU ITO TOXKE TPAEKTOPHUH, YTO €CTh YCTOHUNBOCTh, & €CTh OOJIbIIAsT
3aBUCUMOCTh OT MEJIKMX HaJaJbHBIX YCJIOBULAX. TOXKe BaxkKHble obIeduIocodpekue
co0oOpazKeHusl, OJTHAKO OHM HAIPSAMYIO HE NMPUMEHSIOTCs, IOTOMY 9TO BCe PABHO BCE CBOJIUATCS
K TOMY, 4TO Cefiyac KOHKPETHO MTPOUCXOIUT?)

3abJiry>kieHue, 4ro JauddepeHinajibHble ypaBHEHUs ITIPOCTHIE

Kak Obl BPOJIE U HET.

XOTd KaXKYTCA U MPOCTHIMH.

TYT OJpoOHee HAIHUIITY PO TeX, KTO JIyMaeT, 9To UM yphl MPOCTHIE.
MPUHITUIINAIHGHO OHM UX HEe HAYHYT 3HATH.

A.2.3 Ways to Guess Some Key Ideas

(overview how people guessed some key ideas for the first time)

He HY»KHO JlyMaTh, 9TO BCe B >KW3HU MMM onuckiBaercs (777)

IIOKa X3.
HO TOYHO - TUKJ/IUTHCA Ha HUX 3TO IIJIOXOE JEJIO.
B 2KU3HU CJIUIIIKOM MHOI'O ITIapaMTE€pPOB U CJIUIIKOM BC€ CJIO2KHO.

TeOpPEeMBI CyII[eCTBOBAHUS U THUIIOB PEIEeHN O9eHb BaXKHBI B JII000I HeCTaH1apTHOU
curyaruu (777)

IIOKa IIPOCTO HE BCTPEYaJiOChb, HO f CJIbIIIAJI, 9TO 93TO HY2KHO.
1101 BOIIPOCOM 3TO.

A.3 Acknowledgements

Currently, no one except me has worked on the sections of this note (with the exception of
sections taken from books).

A.4 Literature
A.4.1 Main Literature

Munumanbaas

(moka X3, HU OJIHY KHUTY § TakK U He IPOYUTA, TIOTOMY YTO JI€Hb. )
Hwuecriepos Jlekiuu 1o jguddepeninaabHbIM YPpaBHEHUSIM
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A 4.2 Extra Literature

Bazosrrit kypc MmdTH, HamucaH MpPOCTO yKACHO B IJIaHE BEPCTKU, B IJIAHE COJIEPIKAHUSI,
HaBEPHOE, HEILI0XO.

[IerpoBckuit

Moszker, moToMm J106aB/1t0, OCHOBHOM CJIe/1af0.

Mst1bio3 Yoskep (MY (tak M6 morom Oyay 0003HAYATH, TOKa CJIMIIKOM MAJO U3 HEro
BBII'PY30K )

B HEKOTOPBIX Kypcax HaIMCAHO, 9TO 9TO XOPOIasg KHUTA, si TOYTU HE MPOBEPs, HO €CJIn
Oy/y K MacTepCTBY BBIBOJIUTDH 3AIUCh, TO MOXKET OBITH Oy/Iy MHOI'O CMOTPETH €€.

Books With Many Solved Problems

Pomanko B. K. Coopuuk 3ayaa mo nuddepeHnajibHbIM YPaBHEHUSIM U BAPUAITHOHHOMY
NCYIUCIEHUTO

OCHOBHO 3aTAYHUK

Ouunmor A. @. CoopuuK 3a1a4 110 1uddhepeHInaIbHbIM YPABHEHUSIM.

M6 mob6aBiifo IOTOM, ITOKa HE BUXKY CMBIC/IA.

Ilo Teopuu KoJsiebanuii U1 BOJIH

M.N.Pabunosu4, /I.1.Tpybeukos Beejenue B Teopuio KojieOaHmii 1 BOJIH

Xoportwuit 60/IbI0# yIeOHUK 10 KOJIeOAHUSIM U BOJIHAM, CKOPEEe BCErO MOCMOTPIO TTOTOM.

A A. Augponos, A.A. Burt, C.9. Xaiikun. Teopust kosiebanunii

Krura mpo 1o1pobHbIil aHam3 KoJieOaHuil, yKe B MEXaHUKe BO3HUKJIA TOTPEOHOCTD B TOI
TEOpuM.

Ilo Teopun ycroituuBocTHI
A.4.2 Extra Literature

Ilo npyrum meromam

Apuonsn B. U. dononnurenabHble IJIaBbI TEOPUN OOBIKHOBEHHBIX IH(bdepeHInaIbHBIX
ypasuennit. M.: Hayka, 1978.

MHuoro oTchLIOK, HO HEM3BECTHO, €CTh JIM HACTOSAINAs 10Jb3a OT 3TOW KHUI'H, TAK YTO HE
OyIy 3aHUMaThCd BOOOIIE €if, moKa cTabuIbHO TUIIMYHBIE 33 1a49u He Oyay permarb. [loka ere
HeJleJIsi TPEHUPOBOK JIJIsT STOTO YPOBHST TPeOyeTcs.

O Tex xke TeMax, 9YTO OCHOBHaA

[Tositpsizus JI. C. ObbikHOBeHHBIE nuddepeHImaabable y paBHeHnus, - VxxkeBck: Perysisapras
n xaoTndeckas guHamMukn, 2001.
[IOKa, TIOYTU HE OTKPBIBAJ, IIOTOM IIOCMOTPIO.

A H. Tuxonos, A.B. Bacuiwsesa, A.I'. Ceemaukos /Anddepenimanibibie ypaBHeHHS

Muiast HeGoJIbIIas KHUTa, Ie MHOI'O I0JI€3HON HH(MOPMAIH, €CTh (PU3UIECKHE TTPUMEPHI.
st 0b11Iero oO6pa3oBaHms HEILIOXast, IPOCTO PEIKO €CTh BPeMsI 3aHIUMAThCA TAKOIO THIIA OOIINM
obpazoBanuem. Huras ee yaca 5, Korja MHe ObLI0 19 JIeT.

@umumnmnos A. ®. Beenenne B Teopuio nuddepernnaapabix yp aBHenuit. - Mocksa: Ycc,
2004,2007; - Mocksa: KomKuura, 2007, 2010, http://bookfi.org/book /791964.

IIOKa IIOYTHU HE OTKPbIBaJI, IIOTOM IIOCMOTPIO.

Crenanos B. B. Kypc muddepennmanbubix ypasuennit. - Mocksa: JIKU, 2008.
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A 4.2 Extra Literature

IIOKa ITIOYTHU HE OTKpPbIBaJI, IIOTOM IIOCMOTPIO MO.

Pomasko B. K. Kypc muddepennuaabHblx ypaBHEHUII U BapUAIMOHHOTO HCYUUCIEHUS.
Mocksa: Jlaboparopus 6a3oBbix 3u an uit, 2000-2011.
MOKa HEe OTKPBIBAJ, IIOTOM ITOCMOTPIO MO.

Qenoprok M.B. O6wikHOBeHHBIE Tuddepennuanbubie ypapaenuns. - Cankr-IlerepOypr:
Jlanb, 2003.
[IOKa He OTKPBIBAJ, IIOTOM ITOCMOTPIO MO.

Yuvsio A. E., YvmzgoB E. A. OcnoBbl Teopunm OOBIKHOBEHHBIX IudpepeHnmnaIbHbIX
ypasuenwuii. - Mocksa: MOT U, 2016, http://www.umnov.ru.
[IOKa He OTKPBIBAJI, TOTOM ITOCMOTPIO MO.

lenbdang M. M., ®omus C.B. Bapuarnmonnoe ucuuciaenne, - Mocka: @usmarrus, 1961,
http://techlibrary,ru/bookpage. htm.

IIOKa He OTKPBIBAJI, IIOTOM ITOCMOTPIO MO.

[Terposckuit . T'. Jleknuu 1mo Teopuu OOBIKHOBEHHBIX i depeHInaIbHbIX YPaBHEHUI.
Mocksa: Puzmataut, 2009.

Hagepnoe, korga-To si pa3 OTKpPBLI, HMOHSII, YTO OBICTPO HE pa300paTbCs W 3aKpbLI, UTaK
ecTh Kydva JIpyroit Xoporueii jureparypbl. Ho, Bpoje, moje3nass KHUATA.

Kymmos. I1., Hukomaer B.C. Kypc jexiuii mo Teopun 0ObIKHOBEHHBIX Tud depeHnraIbHbIX
ypaBHenwuit: yuedbnoe rocodbue. - Mocksa: MOT I, 2003.
IIOKa He OTKPBIBAJ, IIOTOM ITIOCMOTPIO MO.

Nmnarosa B. M., IleiproBa O. A., Cemos B. H. Iucddepentin anbabie ypaBaerus. MeToibt
pemrennii. - Mocksa: MOT U, 2007, 2012.

[IOKa He OTKPBIBAJ, IIOTOM ITOCMOTPIO MO.

Oppoycemut, I[lmeitc Ob6bikHOBeHHBIE MuddepeHInaibbie ypaBHeHus.  KadecTBeHHAs
Teopust ¢ mpuioKeHuaMu |1986]
KaKas-TO Xopolnasg MO KHHATa, KOTOPOii ObLJIO B IUTAHAX JIONOJHUTH CTPYKTYPY.

O koHkpeTHBIX AU PDEPEHTNATBHBIX YPABHEHUAX

(ecsin kakoit-To ;b dyp Oyiay 00 U3ydaTh, COJa BCTABIIIO CCHIIKY HA KHUTY WJIN CTATHIO. )

O uyncIeHHbBIX penreHmuax

Xomomos Jlobanos Enokumor Paznocrable cxembr jitst perrennst xkectkux O/LV...
KaKHe-TO OYCHb IIPSIMO UHTEPECHBIE TaM IIPUMEPDI, IIOTOM JI00ABJII0 HEKOTOPBIE BEIIH, KOTJIa
0COOEHHO BBIUMATHI Oy/1y HOPMAaJIbHO MPOXOIUTh.

OcuHosBHbBIE 00 MHTEerpupyemMbIxX CucremMax

(TaM KcTaTH MHOTO BOOOIIE UX, HY U JIQIHO. )

O Mmonmessax

Nnbuna CeemnnukoB jauddepennraibible YpaBHEHHUS
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A.4.3 History of DE in a Nutshell

YTO-TO TaKOe TOMHIO, TaM KPYTble MOJEIN, KOTOPBIMH TOTOM JIOTIOJTHIO TEOPHUI0, YUCTO
3aIPOCTO, HAIIMCATh TEOPUIO CIIEpBa ObI.

O npujao>KeHusgax

A.4.3 History of DE in a Nutshell

(there are many discoveries and many applications, but it is a topic for a special book)

A.4.4 Features of This Note

oIlMcaHHe IJiaB 1 pa3aeJjioB

olMcaHue 3alucu B IeJIOM
nepBas 4acTh
BTOpPas 4acThb
OPUI0KEHUS

KaKye BooOIIe IPUJIOXKEeHNs s1 pasoupa’

ob03HaYeHUd M KOHCTAHTHI

O6Goznauenue luecneposa (?77)

Crenyronue cBs3uble MHOKecTBa (a,b) = {t 1 a <t < b}; [a,b) = {t: a <t < b}, ... Oymem
HA3BIBATH IIPOMEXKYTKaMMU 1 0003Ha4YaTh Jinbo J, jimbo < a,b > .

MHuozkecTBO (hyHKIHIA, HEITPEPBIBHBIX Ha MpoMexRyTKe J, oboznaunm C(J).

MHuozKecTBO (bYHKIMI, MMEIOMUX k HempepLIBHBIX TPOU3BOIHLIX Ha J, obosnadamm CF(.J).

Yepes Q C R7, o6o3HaqmM 06IACTS.

MuoxkectBo dyukuumit f(t, z), HenpepbiBHBIX B objactu {2 obozuadmm C(€2).

MmuozkecrBo dbyukiwmit f(t, x) B obracTu 2, 7151 KOTOPBIX BCE YaCTHBIE IPOU3BO/HBIE TOPSIKA
k cymecTBytoT n HenpepbiBHbI, obozHaunm CF ().

Oxkonyanue 3aMevanuil ¥ TpUMepoB OyJIeT 0603HATATHCA CHMBOJIOM <.

[Tycts dbynkius F(t, x, p) onpesenena u nenpepbibia B obgactu G C C R?

A.5 Puzzles for Different Situations
A.5.1 Puzzles for Interesting Discussion

A.5.2 Selected Fun Typical Problems

(all this should also be in the problem-solution section!)
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