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7 Nonequilibrium Cooper pairing in the nonadiabatic
Regime by Yuzbashyan et al.

Abstract

We obtain a complete solution for the mean-field dynamics of the BCS paired state
with a large, but finite number of Cooper pairs in the nonadiabatic regime. We show that
the problem reduces to a classical integrable Hamiltonian system and derive a complete set
of its integrals of motion. The condensate exhibits irregular multi-frequency oscillations
ergodically exploring the part of the phase-space allowed by the conservation laws. In the
thermodynamic limit however the system can asymptotically reach a steady state.

The study of the dynamics of the BCS superconductors has a long history[l]. Early
attempts to describe nonstationary superconductivity were based on the time-dependent
Ginzburg-Landau (TDGL) equation |2, 3, 4|, which reduces the problem to the time evolution
of a single collective order parameter A(t). The TDGL approach is valid only provided the
system quickly reaches an equilibrium with the instantaneous value of A(t), i.e. a local
equilibrium is established faster than the time scale of the order parameter variation,
7a ~ 1/A. This requirement limits the applicability of the TDGL to special situations where
pair breaking dominates, e.g. due to a large concentration of magnetic impurities. An
alternative to TDGL is the Boltzmann kinetic equation|5, 6] for the quasiparticle distribution
function coupled to a self-consistent equation for A(¢). This approach is justified only when
external parameters change slowly on the 7o time scale, so that the system can be
characterized by a quasiparticle distribution.

Is it possible to describe theoretically the dynamics of a BCS paired state in the nonadiabatic
regime when external parameters change substantially on the 7o time scale? In particular, an
important question is whether, following a sudden perturbation, the condensate reaches a steady
state on a 7o time scale or on a much longer quasiparticle energy relaxation time scale 7.. In the
nonadiabatic regime both TDGL and the Boltzmann kinetic equations fail and one has to deal
with the coupled coherent dynamics of individual Cooper pairs. Recent studies|[15, 16, 17, 18]
of this outstanding problem were motivated by experiments on fermionic pairing in cold atomic
alkali gases[8, 7|. The strength of pairing interactions in these systems can be fine tuned
rapidly by a magnetic field, making it easier than in metals to access the nonadiabatic regime
experimentally.

The main result of the present paper is an explicit general solution for the dynamics of the
BCS model, which describes a spatially homogenous condensate at times t < 7.. We employ
the usual BCS mean-field approximation, which is accurate when the number of Cooper pairs is
large[10, 11]. It turns out that the mean-field BCS dynamics can be formulated as a nonlinear
classical Hamiltonian problem. We obtain the exact solution for all initial conditions and a
complete set of integrals of motion for the mean-field BCS dynamics.

In this paper we assume that the number of Cooper pairs in the system is arbitrary large, but
finite. In this case the typical evolution at times t < 7, is quasi-periodic with a large number
of incommensurate frequencies. The condensate exhibits irregular multi-frequency oscillations
ergodically exploring the part of the phase-space allowed by the conservation laws. The system
returns arbitrarily close to its initial state at irregular time intervals. However, the return time
diverges in the thermodynamic limit for most physical initial conditions, while the solution
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asymptotically reaches a steady state on the 74 time scale. The system thermalizes on a much
larger energy relaxation time scale 7.[9].

The dynamics of the BCS condensate following a sudden change of external parameters has
been previously discussed by a number of authors|11, 12, 13, 14, 15, 16, 17, 18, 19]. Most notably,
a linear analysis around the BCS ground state has been performed|11, 12| and some simple
particular solutions for the nonlinear mean-field dynamics in the context of superconductivity
have been reported|[14, 15]. We discuss below how these results fit into the general picture.

We begin our description of the nonequilibrium Cooper pairing in the non-dissipative regime,
t < 1., with the BCS model|20, 21, 22].

Hpes = Y _€ele0 — gy bl égén (7.1)
7,0 7,9
where ¢€; are single-particle energies. The pairing is between time reversed states |j 1) and
|7 4)[23]. Our goal is to determine the evolution of a state that was driven out of equilibrium
at, say, t = 0.

There are several equivalent ways to derive mean-field equations of motion. One can start
with the BCS product state, []; <Uj () + Vj(t)c}TéL) |0), and use Bogoliubov-de Gennes equa-
tions for the time-dependent amplitudes U;(t) and V;(t). Alternatively, one can study the
evolution of the normal, G, (t) = —i([¢;+(1), é}T(t)]), and anomalous, F;(t) = —i([¢;+(t), &, (1)]),
Green’s functions at coinciding times|12].

The most convenient for us approach to the BCS mean-field dynamics is based on the
Anderson pseudospin representation[11]. Within this approach the mean-field equations are
Hamiltonian equations of motion for a classical spin chain. Pseudospin-1/2 operators are related
to fermion creation and annihilation operators via Kj = (nj +nj —1)/2 and IA(]_ = Cj G =
([A(;F)T Pseudospins are defined on empty and doubly occupied (unblocked) single-particle
orbitals €;. Singly occupied orbitals are decoupled from the dynamics. For n unblocked orbitals
the Hamiltonian has the form

n—1
Hpcs =Y 26K —gy KK, (7.2)
J=0 Jq

The mean field approximation is accurate[11, 10] in the thermodynamic limit due to the
infinite range of interactions between spins in the Hamiltonian (7.2). Therefore, the effec-
tive field seen by each pseudospin in (7.2) can be replaced with its quantum mechanical
average, b;(t) = (—2A,(t), —2A,(t), 2¢;), where A(t) = A,(t) —iA,(t) = gZJ(K;(t)> is
the BCS gap function. In this approximation, each spin evolves in the self-consistent field:
Kj = i[ﬂBCS, KJ] ~ b; x Kj. Taking the quantum mechanical average of these equations with
respect to the time-dependent state of the system, we obtain for s;(t) = (K;(t))

Sj = bj X 8; bj — (_2g<]xa _29Jy72€j) J= ZS‘I (73)

The components of the classical spins sj(t) and s?E =s; £ isg are related to Bogoliubov ampli-
tudes and equal times Green’s functions as 257 = |V;|* — |U;]?, s; = U;V; and Gj(t) = is3(t),
Fj(t) = isj (t), respectively. Evolution equations (7.3) conserve the square of the average for
each spin: ds? /dt = 0. If the spins initially were in a product state, SJZ = 1/4. Note also that
A(t) = gJ_(t).

One can check that Egs. (7.3) are equations of motion for a classical spin Hamiltonian

n—1
Hpes = Z 2¢585 — g Z s} sy, (7.4)
J=0 74

7
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It means that Eqgs. (7.3) are Hamilton equations $; = {Hpcg,s;} derived from Hamiltonian
(7.4) using the usual angular momentum Poisson brackets

{8?7 82} = _gabcéjks; (75)

where a, b, and ¢ stand for spatial indexes x, y, and z. The classical model (7.4) can be obtained
from its quantum counterpart (7.2) by replacing operators with classical dynamical variables
and commutators with Poisson brackets.

Both the classical (7.4) and quantum models (7.1) and (7.2) are integrable|24, 25, 26]. To
show this, one can introduce a vector function (Lax-vector) of an auxiliary parameter u

Liu)=—+> 2, (7.6)

— U — €5
j J

where z is a unit vector along the z axis. Poisson brackets between components of L(u) at
different values of u can be evaluated using Eq. (7.5).
Le(v) = L*(w)

v —w

{L(v), L*(w)} = €ape

(7.7)

(Relations (7.7) hold for each term in (7.6) separately; all terms Poisson-commute with each
other). It follows from Eq. (7.7) that the lengths of the Lax vector at different values of u
Poisson-commute:

{L*(v),L*(w)} =0 (7.8)
The scalar function L?(u) can be represented in the form
n—1 2
1 2H; S
L*(u) = — + ( 4 J 2) (7.9)
g L \u—g (u —€j)
where ,
" - s%
=5 2% 5 (7.10)
=0 G % 9

Since Eq. (7.8) holds for any v and w, all H; Poisson-commute with each other. Therefore,
each H;, as well as any algebraic combination of H;, defines a classical model[27] that has n
degrees of freedom (n classical spins) and n integrals of motion (including itself) and thus is
integrable in the usual sense|28|. Note that the sum of H; is proportional to the z-component
of the total spin J, therefore J, is conserved by all H; and their combinations. Moreover, the
following identity follows from Egs. (7.4,7.10)

Hpcs = —gZejHj + const (7.11)

J

This implies that the classical BCS model (7.4) Poisson-commutes with all H;’s and thus is
also integrable. Equations (7.10) and (7.11) can be straightforwardly quantized by replacing
S; — Kj. The resulting operators H ; all pairwise commute, thus showing the integrability of
quantum models (7.1) and (7.2).

To obtain the general solution for the mean-field dynamics of the BCS model (7.1), we
follow the method of Ref. [29] and introduce n — 1 separation variables uy, as zeros of L_(u) =
Ly(u) —iLy(u), ie. > ;s /(ug —€;) = 0.

Equations of motion for the variables u;, are[30]

g, = 208/ Qan (ur) ] (e — )™ (7.12)

m#k
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where Q2,(u) is the spectral polynomial defined as

Qan(u) = ¢°L7 () [ J(u — ¢))? (7.13)

J

By Eq. (7.9), the coefficients of Q2,(u) depend only on the integrals of motion Hj.

Egs. (7.12) constitute the well-known Jacobi’s inversion problem solvable in terms of hy-
perelliptic theta functions[31]. Here we outline the final answer, the details will be reported
elsewhere[30]. Klenian o- and (-functions of genus G (in our case G = n — 1) are defined as

_ lnolx) o(x) = ex x
Q) =—5_ (x) m;g P [Sm(z)/2] (7.14)
Sm(z) = x-nw™'x + 2ir(m - 7m + w ™~ 'x - m)

1

where the sum is over all G-dimensional integer vectors m, 7 = w'w™ ", and w, W', and 7n are

G x G matrices of periods (see below). The solution is

€

5(0) = (e ()i (t) = 1Ol ) [] —2 (715)
ks 4k
_ _ N fiﬁto—(x +d)
A(t) = gJ_(t) = gzj:sj (t) = cpe s d) (7.16)
Here xT = i(cy,...,Ch 9,2t + ¢,_1); d is a vector of constants; 8 = gJ, + Zj €j; C1,...,Cp are
constants fixed by the initial conditions, and
n—1
r(ut) =1=> (Gx+d) = Glx—d) + ap)u™" (7.17)
k=1

Constants ay, the matrices of periods, constant vector d, are all uniquely determined|32] by
the spectral polynomial Qs (u), i.e. by integrals of motion.

The evolution of s;(t) = (K;(t)) described by the general solution is typical of an integrable
system|28]. It is characterized by n frequencies, which in our case can be determined|30] in terms
of integrals of motion, and are typically incommensurate. Note that |A(t)| contains only n — 1
frequencies. The typical dynamics is stable against perturbations destroying integrability[28].

Now let us discuss some particular solutions. There are two types of equilibrium states that
play an important role in the dynamics. In normal states all spins are parallel to the z-axis,
287 = +1. Since 2s; = (f;) — 1, these states correspond to the ground state and excitations
of the single-particle part of the Hamiltonian (7.1) (Fermi gas). They are stationary within
the mean-field dynamics (7.3). For a finite system, they are non-stationary for the quantum
Hamiltonian (7.1) and their short time dynamics is entirely driven by quantum corrections (cf.
Refs. 33, 34]).

The second type of equilibrium states are anomalous ones, which correspond to the BCS
ground state and excitations. These states are obtained by aligning each spin in (7.4) self-
consistently along the effective magnetic field acting on it. The self-consistency condition is the
BCS gap equation. As s; = (K]-), one can obtain the BCS wave-function and energy spectrum
from anomalous equilibrium configurations of classical spins s;.

It turns out that equilibrium states are a part of a more general scheme when the dynamics
of n spins degenerates to that of m < n collective spins (m-spin solutions) governed by the
same Hamiltonian (7.4) only with m spins and new parameters j; instead of ¢;. Normal and
anomalous states correspond to 0- and 1-spin solutions, respectively. To construct m-spin
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solutions one has to take the Lax-vector (7.6) to be proportional to that of a system with
m spins tg, L(u) = [1 4+ >,b;/(u — ¢;)|L¢(u), where b; are time-independent constants, and
L¢(u) = —2/g+ >, ti/(u— ). Then, 2(n —m) of 2n, typically distinct, roots of the spectral
polynomial Qs,(u) become doubly degenerate and n — m separation variables u; are frozen
in these double roots, which automatically solves the equations of motion for these n — m
variables. The dynamics is obtained by replacing n — m and €, — py in Eqgs. (7.14-7.17) and
is characterized by m < n typically incommensurate frequencies. For m = 2 the solution is
in terms of hyperelliptic functions of genus G = m — 1 = 1, i.e. in terms of ordinary elliptic
functions.

Now let us discuss the connection of our results with the previous work. The solutions for the
mean field BCS dynamics obtained in Ref. [15] are 2-spin solutions in the above classification.
They were used in Ref. [15] to describe the evolution beginning from a state infinitesimally
close to the normal ground state. In our view, the dynamics in the vicinity of this state can
have additional features and deserves further analysis.

The 2-spin solutions resemble the TDGL approach in that they describe the dynamics of
all pairs in terms of only two collective degrees of freedom resulting in large amplitude single
frequency (periodic) oscillations of the order parameter magnitude |A(¢)|. Mathematically, they
lie on a 1d curve of points in a multi-dimensional (infinite-dimensional in the thermodynamic
limit) space of possible values of integrals of motion. The situation with other few spin solutions
is similar[35]. In contrast, the general solution we obtained here typically has a large (infinite in
the thermodynamic limit) number of incommensurate frequencies and a substantially reduced
amplitude. The difference between the general and few spin solutions is clear in a linear
analysis|[11, 12] around the BCS ground state that displays normal modes with frequencies wy =
2,/ + A%, where ¢, are single-particle energies and A is the equilibrium order parameter. In
the linear regime, the general solution becomes an arbitrary superposition of all normal modes,
while few spin solutions single out all, but few modes. For example, 2-spin solutions of Ref. [15]
correspond to a single normal mode with a frequency 2A,.

In conclusion, we have obtained the explicit general solution for the mean-field dynamics
of the BCS paired state and discussed a number of special cases including two types of equi-
librium states and few spin solutions. A still open problem is to fully analyze the solution in
the thermodynamic limit. It is also desirable to better understand the dynamics in the vicinity
of normal states where quantum effects become important. Finally, it is interesting to iden-
tify experimental setups where peculiar features of the nonequilibrium Cooper pairing in the
nonadiabatic regime can be observed such as e.g. cold Fermi gases.

We are grateful to I. Aleiner, V. Falko, L. Glazman, L. Levitov, A. Millis, A. Polyakov, and
O. Tsyplyatyev for stimulating discussions. This research was supported by NSF DMR, 0210575
and by ARO/ARDA (DAAD19-02-1-0039).

Note Added. Recently, we became aware of a publication|36] that is in agreement with some
of our conclusions — that the initial dynamics of the normal ground state is driven by quantum
corrections and that the system can reach a steady state at large times.

8 Pure Goldstone mode in the quench dynamics of a
confined ultracold Fermi gas in the BCS-BEC crossover
regime by Kettmann et al.

Abstract

We present a numerical study of the dynamic response of a confined superfluid Fermi
gas to a rapid change of the scattering length (i.e., an interaction quench). Based on a fully

10



8.1 Conclusion

microscopic time-dependent density-matrix approach within the full Bogoliubov-de Gennes
formalism that includes a 3D harmonic confinement we simulate and identify the emergence
of a Goldstone mode of the BCS gap in a cigar-shaped %Li gas. By analyzing this Goldstone
mode over a wide range of parameters, we show that its excitation spectrum is gapless and
that its main frequency is not fixed by the trapping potential but that it is determined by
the details of the quench. Thus, we report the emergence of a pure Goldstone mode of the
BCS gap that —in contrast to situations in many previous studies— maintains its gapless
excitation spectrum predicted by the Goldstone theorem. Furthermore, we observe that
the size-dependent superfluid resonances resulting from the atypical BCS-BEC crossover
have a direct impact on this Goldstone mode. Finally, we find that the interaction quench-
induced Goldstone mode leads to a low-frequency in-phase oscillation of the single-particle
occupations with complete inversion of the lowest-lying single-particle states which could
provide a convenient experimental access to the pure gapless Goldstone mode.

8.1 Conclusion

In conlusion, we have calculated the dynamics of a confined ultracold %Li gas at T = 0
induced by an interaction quench on the BCS side of the BCS-BEC crossover. We used a full
dynamical BdG approach to set up and solve the equations of motion for the single-particle
occupations and coherences. In doing so, we have shown that the interaction quench excites a
low-energy linear dynamics of the complex phase of the BCS gap, i.e., a Goldstone mode. We
have analyzed this Goldstone mode over a wide range of parameters showing that its excitation
spectrum is gapless and that its main frequency is not fixed by the trap frequencies but that
it is determined by the details of the quench. Furthermore, we found that the atypical BCS-
BEC crossover leads to resonances in the gapless Goldstone mode. Finally, we investigated the
impact of the gapless Goldstone mode on the single-particle occupations. We have shown that
it leads to an in-phase oscillation of the whole single-particle spectrum with a full inversion of
the lowest-lying single-particle states which could provide an experimental access to the gapless
homogeneous Goldstone mode.

8.2 Introduction

Due to their unique controllability ultracold Fermi gases provide an ideal system to test
concepts of many-particle physics as well as particle theory. Adjustable interparticle interac-
tions provide the possibility to explore both the regime of weak attractive interactions where
a superfluid Bardeen Cooper Schrieffer (BCS) phase emerges as well as the regime of weak
repulsive interactions which lead to the formation of a Bose-Einstein condensate (BEC). Both
regimes are connected by a smooth BCS-BEC crossover with strong interparticle interactions
including a point of unitarity where the coupling strength diverges |Giorgini et al.(2008), Bloch
et al.(2008)]. Furthermore, the emergence of a BCS phase is associated with a spontaneously
broken U(1) symmetry which makes ultracold Fermi gases a convenient candidate to study the
fundamental concept of spontaneous symmetry breaking (SSB) [Weinberg(1996)].

Spontaneously broken gauge symmetries and the resulting two types of fundamental col-
lective excitations —gapped amplitude/Higgs modes and gapless phase/Goldstone modes (see
Fig. 8.1)— are of fundamental interest for several fields of physics like condensed matter and
particle physics. Probably the most prominent application of the concept of SSB is the Higgs
mechanism in particle physics [Higgs(1964)]. In condensed matter physics SSB occurs in sev-
eral systems, for example in ferromagnets (see, e.g., [Burgess(2000)]), superfluid *He [Paulson
et al.(1973), Lawson et al.(1973)] and BCS superconductors [Anderson(1958), Weinberg(1996)].
In these cases, the fundamental excitations ~known as magnons (i.e., spin waves), second sound
(i.e., heat waves) and plasmons— correspond to the Goldstone modes resulting from SSB.

11



8.2 Introduction

Re(A) Im(A)

Figure 8.1: (color online) Ginzburg-Landau free energy of a BCS phase of a homogeneous Fermi
gas for T' < T (schematic). The rotational U(1) symmetry is broken, when the gap A of the
system gains a certain phase inside the rim of the potential. The resulting excitation modes
are the Higgs-amplitude mode and the Goldstone mode, i.e., a phase oscillation of the gap.

In the field of ultracold Fermi gases the Higgs and the Goldstone mode have received great
attention over the past years. The Higgs mode, i.e., the amplitude oscillation of the BCS
gap, is difficult to address in experiment since it does not couple directly to external probes
[Pekker and Varma(2015)]. This is why measurements of the Higgs mode have only recently
been achieved for lattice superfluids [Bissbort et al.(2011), Endres et al.(2012)] (in the case
of BCS superconductors an experimental access has been found via THz spectroscopy [Mat-
sunaga et al.(2013), Matsunaga et al.(2014)]), while several theoretical studies on the Higgs
mode have been reported [Barankov et al.(2004), Barankov and Levitov(2006), Yuzbashyan
et al.(2006), Dzero et al.(2007), Scott et al.(2012), Bruun(2014), Hannibal et al.(2015)]. In con-
trast, the Goldstone mode, i.e., the oscillation of the complex phase of the BCS gap, has been
intensively studied both theoretically and experimentally (see, e.g., [Kinast et al.(2004a), Ki-
nast et al.(2004b), Bartenstein et al.(2004), Altmeyer et al.(2007a), Altmeyer et al.(2007b),
Riedl et al.(2008), Baranov and Petrov(2000), Bruun and Mottelson(2001), Bruun(2002), Hu
et al.(2004), Heiselberg(2004), Stringari(2004), Grasso et al.(2005), Korolyuk et al.(2011)]).

However, most previous studies were based on the fact that the Goldstone mode couples to
the real-space dynamics of the Fermi gas. Therefore, it can be excited by inducing a collective
oscillation of the trapped cloud, which can be achieved, e.g., by various schemes of confinement
change or by optical excitation. The dynamics in the Goldstone mode is then directly reflected
in the collective oscillation of the cloud and can be observed via the latter. However, a coupling
to the real-space oscillation of the cloud implies a coupling to the trapping potential. I.e., in
the previous studies the frequency of the Goldstone mode was fixed by the frequencies of the
trap which stands in direct contrast to the Goldstone theorem predicting a gapless excitation
spectrum of the phase mode. Thus, the observation of the gapless phase mode resulting from
the Goldstone theorem was so far obstructed by the coupling to the trapping potential via the
collective oscillation of the cloud.

In contrast, we report the emergence of a pure Goldstone mode in the dynamics of a trapped
ultracold Fermi gas by showing that its original gapless excitation spectrum can be recovered

12
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by exciting the cloud via an interaction quench. To this end, we observe that the frequency of
the interaction quench-induced phase mode can be tuned over a wide range from zero to finite
values by adjusting the details of the quench. We explain this by the circumstance that the
excited Goldstone mode is homogeneous, i.e., that it does not introduce any phase gradients,
and that it therefore does not couple to the trapping potential.

To do so, we study the dynamics of the BCS gap of a confined ultracold ®Li gas at 7' = 0
on the BCS side of the BCS-BEC crossover [i.e., the Fermi wave vector kp times the scattering
length a is given by 0 > 1/(kpa) > —1] as well as in the BCS regime [i.e., —1 > 1/(kpa)|. We
calculate the dynamics of the Bogoliubov quasiparticles in the framework of the Bogoliubov-de
Gennes (BdG) formalism and by that the dynamics of the BCS gap. The investigated system
is in the low-density regime, i.e., we use a short-range s-wave interaction between particles with
opposite spin. The confinement is modeled by a cigar-shaped 3D harmonic potential, which
in good approximation describes the standard laser confinement used in experiment [Bloch
et al.(2008)]. The system is excited by an instantaneous interaction quench, i.e., a rapid change
of the interparticle interaction strength. This can experimentally be achieved, e.g., by an optical
control of a Feshbach resonance [Clark et al.(2015)].

Our work is structured as follows. In section 8.3 we present the formalism we used within
the context of this work, i.e., a full BAG approach as well as its simplification via the Anderson
approximation. We will derive the equations of motion for the quasiparticle expectation values
which allow for a calculation of the phase dynamics of the BCS gap. In section 9.4 we present
the results obtained by the full BAG approach and show that they are well reproduced by
Anderson’s approximate solution. Based on the latter we will analyze the effect of the excitation
parameters and of the trapping frequencies on the interaction-quench-induced Goldstone mode
as well as the impact of this Goldstone mode on an experimentally accessible quantity, i.e.,
the single-particle excitations of the cloud. Finally, we conclude and summarize our findings in
section 9.1.

8.3 Theoretical approach

To calculate the ground state as well as the dynamical properties of a BCS condensate in
a trap we start from the Bogoliubov-de Gennes (BdG) Hamiltonian [De Gennes(1989), Datta
and Bagwell(1999)]:

HBdG—/\Iﬂ(r)HO\I/T(r) d3r+/ \Ifi(r)Ho\Ili(r) d®r

+ / [A(r)\ﬂ(r)\lﬂ(r)—I—A*(r)ﬁ@(r)@%(r) d*r. (8.1)

Here the field operators U (r) describe the annihilation (creation) of Fermions —in this case
atoms of °Li~ with spin o at the position r and the BCS gap is given by

A(r) = —g (¥ (r)We(r)). (8.2)
The interaction strength g = — 4% g Jetermined by the s-wave scattering length a and the
mass of the particles m. The 3D harmonic trapping potential V(r) is included in the
one-particle Hamiltonian Hy = % + V(r) — p with the chemical potential 1, where we set the
trapping frequencies to f, = f, =: f1 > f| := [., i.e., a cigar-shaped trap.

In the following, we will show how to diagonalize Eq. (8.1) and thus obtain its eigenstates and
energies which describe the single-particle excitations of the BCS condensate.
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8.3.1 The BdG ground state

8.3.1 The BdG ground state

To calculate the ground-state properties of the BCS condensate it is instructive to write the
eigenvalue equation corresponding to Eq. (8.1) as the BAG equation [De Gennes(1989)]

(o 280) (onte) ) = () »

This equation has the form of a one-particle Schrodinger equation!, which implies that Hggq
describes non-interacting quasiparticles, i.e., the single-particle excitations of the BCS conden-
sate. Therefore, Eq. (9.3) can be diagonalized which yields the corresponding single-particle
wave functions [up/(r),va(r)] and energies Ey;. However, before we do so, we want to state
that the single-particle states divide into two branches (one of positive energies Eyy = Fyuo > 0
and one of negative energies Eyy = E,,,3 = —F,,) that can be expressed by one another [Datta
and Bagwell(1999)]. Accordingly, we simplify our formalism by writing the corresponding ex-
pressions —whenever possible— solely in terms of the positive-energy states and by dropping
the index a. lLe., in the following we set [ty (r), vy (r)] = [Uma(r), Una(r)] and E,, = E,,.
Furthermore, we transform into the excitation picture, i.e., we flip the g-branch [(m3) — (mb)]
and leave the a-branch unchanged [(ma) = (ma)]. This yields one twofold degenerate branch
with E,, = E,e = E,p. The corresponding creation operators read

N / o ()WL) 03 ()0, ()] (8.4)

- / o1 (1)} () — 01, (1), ()] (8.5)

We solve the BAG equation by expressing the single-particle states [up(r), vp(r)] in terms of
the bare atomic states, i.e., the eigenstates of the harmonic trap ¢;(r),

uy(r) = Zug\?qﬁi(r) (8.6)

N
vy (r) = ZUJ(\?%(I'% (8.7)
i=1
with M € {ma,mb}. Here, we restrict the sum to atomic states from a window of width
Ae ~ 1y around the chemical potential (i.e., 0.5u < € < 1.5u) to reduce the numerical effort?.
Inserting this in the BAG equation, multipliying by ¢,,(r) and integrating over r yields:

€1 — [ 0 e 0 (A1 e (A)iv Ug\? “g\il)

0 " : : " : ul?) ul?

€2 — . : : . : M M

: . . 0

N N

0 0 ex—p (AN (A)nn ugw) — By u%/
(D)1 T (A)iy —a+p 0 T 0 v](\? UJ(\}[) 7

. ) . 0 B . . (2) @)

€2+ 1 . . Unpm U

N PR Ay 0 0 ey a) \off! vhr

(8.8)

'To be precise, the many-body nature of the BCS pairing is included in Eq. (9.3) via the self-consistent
calculation of the BCS gap A(r) (see below).

2We have checked that the qualitative features investigated in this work are independent from the size of this
window. However, the features shift quantitatively, e.g., the gaps and frequencies shift to larger values when
increasing the window size.
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8.3.2 Quench dynamics

with ( = [ 3¢k, (r)A(r)¢,(r).* However, the BCS gap can be expressed in terms of the
Bogohubov transformatlon [Egs. (8.4) and (8.5)] which yields

=g ZU <’yma’7na>
+um(r Unp I‘ </ymbfyna>

I‘ U I' <’Ymar)/nb>

<’an’7mb> mn] ) (8.9)

and for the ground-state gap

Acs(r) =g )t (r)o), (). (8.10)
Therefore, a diagonalization of Eq. (8.8) requires a self-consistent treatment together with Eq.
(8.10). In doing so, we set the chemical potential 4 = Er with Ep the Fermi energy of the
bare atomic system, i.e., we assume that the chemical potential is not effected by the BCS
pairing. Strictly speaking this assumption is only valid in the deep BCS regime. However, our
numerical data on the basis of the Anderson approximation (see section 8.3.3) show that it has
no qualitative effect on the features studied in this work.

A final remark to Eq. (8.10): In the presented form the gap equation exhibits an ultraviolet-
divergence, i.e., —strictly speaking— Eq. (8.10) needs to be regularized to ensure the convergence
of the sum over the BdG eigenstates [Bloch et al.(2008)|. However, in our case we restrict those
sums to a rather narrow energy range around the Fermi level (see above) and this numerical
cutoff remedies the need for a further regularization. This will be different in the calculations
based on the Anderson approximation, as will be discussed below.

8.3.2 Quench dynamics

To calculate the dynamics of the BCS condensate we make use of the Bogoliubov trans-
formation Eqgs. (8.4) and (8.5). The quasiparticles resulting from that transformation are the
single-particle excitations of the BCS phase, which are created, when the system is perturbed.
All dynamical quantities investigated in the context of this work can be expressed in terms
of expectation values of these quasiparticles. Therefore, we use Heisenberg’s equation of mo-
tion for the quasiparticle operators to numerically calculate the dynamics of the quasiparticle
expectation values.

To this end, we express the BAG Hamiltonian in terms of the single-particle operators for
a general nonequilibrium situation where A(r,t) # Ags(r), i.e., where the current value of the
gap differs from the ground-state value Agg(r). Thus, inserting Eqs. (8.4) and (8.5) into Eq.
(8.1) where A = A(r,t) # Ags(r) and identifiying Agg via Eq. (8.10) yields

Hpac = Z Erna (’Ylm’yma + ’Yinb’ymb - 1)
+ Z |:<A - AGS)ujnvn + (A* - ES)U;‘nun] ,YIYLCL,YTL(L

+ Z |:<A - AGS)u,*nu;g - (A* - ES)v;‘nv:L:| P)/;rnafy'jzb

3To calculate matrix elements of the form [ d3r¢,, (r)¢,(r)dr(r)d;(r) we used an analytical expression de-
rived in [Lord(1949)].
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8.3.2 Quench dynamics

- Z :(A - AGS)vmvn - (A* - AES)umun ]%nb%m

—+ Z (A — AGS)vmu; + (A* — Es)umv;} f}/:nb’an

- Z (A - AGS)vmu;‘L + (A* - AES)UMU;‘J ) (811)

with
(A - AGS)umvn =

/ Eru, (£)[Alr, £) — Ags(r)]vn(r). (8.12)

We insert this into Heisenberg’s equation of motion

d 1 0
— Ay =—-|Hg, A —A 1
: . : . . 0
where Ap is the corresponding operator in the Heisenberg picture and | —A = 0 for

ot
the quasiparticle operators since all our calculations are performed with fixed basis states

[um(r), vm(r)]. For the required single-particle expectation values this yields the following
equations of motion:

d
hi— (] =—(E,—E)~! §
Zhdt <7ma7na> ( m n)<7ma7na> + l (

- |:(A - AGS)UE‘vm + (A* - AES)Ul*um] <,YZTa,yna> + |:(A - AGS)u;‘Lvl + (A* - A*GS)’U;,‘LU/I:| <’ana71a>

(A = Bas)pp = (A" = Ats) e | (i) = [ (A = Bas) g, + (A" = A8, ] (iia))
(8.14)

4 i
g () = (B = Bu) i) +3 (

— (8 = Aas)yp,, + (A" = Abs)ypu, | (1) + (A = Ags)yy, + (A" = Alig), | ()

(A = Bas)ypr = (A" = Ass) e | h7s) = [ (A = Bas) g, + (A" = A8, ] ruia)
(8.15)

* )k
uyu;

ih% (YmbYna) = —m% ((%*m; b>)* = (B + E0) (Vb Vna) + Y (

l
(& = Aas)y, + (A" = Alig)y, | Grnaia) + [(A = Aais)ypg = (A" = Alig)yge | (e = (0

= (8 = Aas)ypuy, = (A" = Aligys | e + | = (A = As) sy, + (A" = D) | 7a))
(8.16)

We solve these nonlinearly coupled equations of motion for the initial value problem defined
by an instantaneous interaction quench. I.e., we start from the ground state corresponding
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8.3.3 Anderson’s Approximation

to a scattering length a; and instantaneously switch to a different value* a; — ay. Therefore,
during the quench at the time ¢ = 0 the system has no time to relax to the new ground
state corresponding to ay but it remains in the old ground state corresponding to a;. Le., all
quasiparticle expectation values of the form (y!,vy/) and (ypyar) with M € {ma, mb} and
M’ € {m'a, m'b} which correspond to the old ground state vanish for ¢ = 0. With this in mind,
we invert the Bogoliubov transformation for the operators 7, in the old basis before the quench
and insert the resulting expressions for ¥_ and ¥! into the quasiparticle operators in the new
basis after the quench [Eqgs. (8.4) and (8.5)]. This yields the initial values for the dynamics

Ohnallizo = 3 [ & [om®)in(e) = ()50 (r)]

@ [ - ) (8.17)

Otilimo = 3 [ i e)n(e) = ()56
. / &3 [vn(r')ﬂz(r’) +un(r')a;(r')} (8.18)

Ol i=o = (Ofurhllizo) (8.19)

Oladlizo = = 3 [ r[un @) + ui(6) (v

. / & [0 ()5 ) + 0 ()it ()] + B, (8.20)

where u,, and v,, refer to the single-particle states before the quench and u,, and v,, to those
after the quench.

With Eqgs. (8.17)-(8.20) we can numerically integrate the equations of motion and thus
calculate the gap dynamics for a gas of 5Li in a 3D harmonic trap via Eq. (9.14). In section 8.4.1
we will present the corresponding results for the phase dynamics of the gap. However, before
that we introduce Anderson’s approximation which we will use to perform elaborate parameter
scans and to calculate the gap dynamics for systems with rather large particle number that
are numerically too complex to address within the full BAG approach. In doing so, we will
restrict our explanations to the main aspects of the approximation. A detailed description of
the corresponding formalism with all expressions derived from the above can be found in our
previous work [Hannibal et al.(2015)].

8.3.3 Anderson’s Approximation

In Anderson approximation the expansion of the quasiparticle wave function in Eqgs. (8.6)
and (8.7) is truncated such that u,,(r) = U@, (r) and v,(r) = v,e,(r). This strongly
simplifies the formalism presented above. For the ground-state properties the diagonalization
of Eq. (8.8) directly yields

En = /(em — n)* + (AG5,)? (8.21)

4This assumption of an instantaneous quench is valid, since the experimentally achieved quench times ~ns
are way below the timescales of the gap dynamics ~ms.
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and

1 Em — [ 1 Em — b
u \/2(+ B > v \/2< o ) (8.22)

which —in combination with Eq. (8.10)- leads to a BCS-like selfconsistency equation, that we
solve numerically. In doing so, we use much larger energy windows in the sum over the states
as compared to the full BAG approach since the numerical effort is strongly reduced in the
case of the Anderson approximation. Thereby, we employ the regularization scheme introduced
in [Hannibal et al.(2015)]. Only when directly comparing the full BAdG equations with the
Anderson approximation (Sec. 8.4.1) we use the same cutoffs in both calculations to improve
the comparability of the respective calculations.

For the dynamical situation we furthermore assume that
(A — AGS)xmyn = (A - AGS)xmyn Omn With T, Ym € {UUm, vm}, 1.e., that the main implications
of the Anderson approximation ASS = ASS5  holds for the dynamical situation as well.

That leads to a great simplification of the equations of motion.

However, strictly speaking Anderson’s approximation is only valid if ASS < §e with de
the level spacing of the harmonic eigenenergies. In general, this only holds for weak coupling,
i.e., deep in the BCS regime, and/or for strong confinements and thus large level spacing.
Nevertheless, our numerical data show that the approximation reproduces all the main features
investigated in this work even for moderate confinements in the BCS-BEC crossover regime (cf.
section 8.4.1).

8.4 Results
In the following, we investigate the phase dynamics of the spatially averaged BCS gap®
- 1
A(t) = v / d*rA(r,t) (8.23)

for an ultracold gas of °Li in a cigar-shaped harmonic trap. We use V' = [, [, with [, being the
oscillator length in direction « as a normalization volume. We excite the system by interaction
quenches a; — ay.

In section 8.4.1 we will identify the emergence of a Goldstone mode in the phase dynamics
of the BCS gap with one dominant low-frequency contribution. Furthermore, we will show
that the results obtained within the Anderson approximation are in good agreement with the
full BAG solution. In section 8.4.2 we will analyze this Goldstone mode over a wide range of
parameters and we will show that its excitation spectrum is gapless and that its main frequency
is not determined by the trap parameters but by the details of the excitation.

In section 8.4.3 we will investigate the influence of the confinement parameters on the phase
dynamics and by that the effect of the superfluid resonances found in [Shanenko et al.(2012)].
Furthermore, in section 8.4.4 we will evaluate the impact of the interaction quench-induced
Goldstone mode on the single-particle excitations of the cloud which could provide an experi-
mental access to the gapless phase mode.

8.4.1 Phase dynamics of the gap

Figure 8.2 shows the dynamics of the phase ¢ = arg(A) of the spatially averaged BCS
gap for a system with f; = 1kHz and f; = 96 Hz excited by quenches with the strength
d[1/(kra)] = 1/(kpas) — 1/(krpa;) = —0.1 at different positions in the BCS-BEC crossover.
The particle number is set to Np = 120 and the expansion of the single-particle wave functions

SIn our case the phase of the gap ¢ is nearly homogeneous (see below), i.e., ¢ ~ ¢(r).
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8.4.1 Phase dynamics of the gap

in Egs. (8.6) and (8.7) is restricted to atomic states from a window of width Ae := 0.92Fp
around the chemical potential (i.e., p — 0.46Er < & < pu+ 0.46FEr). This is the limitation of
our current numerical setup for the full BdG approach.

The solid lines in Fig. 8.2 show the data obtained by the full equations of motion (8.14)
- (8.16). First of all, one clearly observes that —for all quenches— the phase dynamics of the
gap is strongly dominated by a linear decrease in time. Therefore, after the quench the system
performes a constant phase “motion” of the gap which nicely corresponds to the simplified
picture of a Mexican-hat potential introduced in Fig. 8.1: The potential is flat inside the
rim which implies a constant phase velocity, i.e., a steady oscillation inside the rim where the
frequency of the latter —i.e., the frequency of the Goldstone mode- is defined by the time-
averaged slope fg = %%ﬁ—’ where At is large compared to the intrinsic time scales of the
system.® The corresponding values are given by fg = 1.6 Hz for the weakest coupling strength
and fe =21.9Hz for 1/(kpay) = —0.9 and fo = 118.7Hz for 1/(kpas) = —0.5 (for illustrative
purposes the curves for the two weaker coupling strengths are scaled by a factor 3 and 10,
respectively). Thus, the interaction quench-induced “phase velocity” strongly increases when
approaching the unitary point 1/(kra) = 0.

Furthermore, a closer look at Fig. 8.2 reveals that a higher-frequency oscillation exists on
top of the linear contribution. This contribution is strongest for the system with 1/(kpays) =
—1.4 and much weaker —and thus not directly visible in Fig. 8.2— for the stronger-coupling
cases. A more detailed analysis shows that the corresponding frequencies again increase when
approaching the unitary point, i.e., this dynamics is fast for large and slow for small coupling
strengths. Nevertheless, the corresponding range of frequencies coincides with that from the
spectrum of the Higgs mode. This indicates that the Higgs and the Goldstone mode are weakly
coupled, where we observe that the influence of the Higgs mode increases when approaching the
BCS limit 1/(krpa) < —1 and when increasing the modulus of quench strength |6 [1/(kra)]|.
However, the Higgs mode was extensively studied in [Hannibal et al.(2015)]. Therefore, in this
work we will not go into details about these contributions.

6We want to remark that the appearance of a Goldstone mode with a fixed frequency is similar to the case
of the AC Josephson effect. There, a difference in the chemical potentials p; on the two sides of a Josephson
junction leads to the emergence of a Goldstone mode with the frequency given by fo ~ (u2 — 1) [Pekker and
Varma(2015)]. In contrast, in our case the Goldstone mode is driven by the quench which drives the system
instantaneously from an equilibrium into a non-equilibrium state.
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Figure 8.2: (color online) Phase dynamics for the full BAG solution (solid lines) and the An-
derson approximate solution (dashed lines) for 6 [1/(kra)] = —0.1 and different final coupling
strengths: 1/(kpas) = —0.5, 1/(kpay) = —0.9 (scaled by a factor of 3) and 1/(kpas) = —1.4
(scaled by a factor of 10); parameters: f =96 Hz, fi = 1kHz, Np = 120.

The dashed lines in Fig. 8.2 show the Anderson approximate solution corresponding to sec-
tion 8.3.3 (note that in order to improve the comparability here we have used an ungregularized
Anderson solution with the same cutoff as in the calculations without Anderson approxima-
tion). One can see that the approximate solution gives an overall good qualitative agreement
with the full dynamics: It shows the same linear decrease in time with a —in the stronger cou-
pling cases not directly visible- higher-frequency contribution on top. Again, the slow linear
decrease corresponds to the Goldstone mode while the higher-frequency component results from
the coupling to the Higgs mode”. However, one can observe as well that the quantitative devia-
tions between the full and the approximate solution increase with increasing coupling strength:
While —considering that the corresponding curves in Fig. 8.2 are scaled by a factor of 10— the
frequency of the Goldstone mode, i.e., the slope of the linear contribution, matches very well
for the case of 1/(kras) = —1.4 the deviation of the two solutions becomes rather significant
when increasing the coupling strength.

"The agreement of both solutions with respect to the Higgs mode may not look very convincing. However,
already rather small deviations in the spectral composition of the Higgs mode result in large deviations in the
time domain at larger times. L.e., the qualitative agreement of both solutions is in indeed good.
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Figure 8.3: (color online) Frequency of the Goldstone mode resulting from the full BAdG solution
(solid line) and from Anderson’s approximate solution (dashed line) for the same system as in
Fig. 8.2 but varying 1/(kpays) (to reduce the numerical effort we set Ae = 0.58EF).

This is illustrated in Fig. 8.3. There, the frequencies of the Goldstone mode result-
ing from the full and from the approximate solution are shown for a fixed quench strength
d[1/(kra)] = —0.1 and varying 1/(kpay). One can clearly observe that the approximate so-
lution reproduces well the qualitative trend, i.e., an overall increase of the frequency of the
Goldstone mode when approaching the unitary point. Indeed, when entering the BCS regime
even the quantitative values match very well. However, one can see as well, that the deviation
between both solutions increases with increasing coupling strength and becomes rather large in
the crossover regime. This indicates that Anderson’s approximation tends to break down —as
expected— when approaching the unitary point.

Nevertheless, we want to emphasize that all features in the phase dynamics investigated in
this work are fully reproduced by the Anderson approximation. Solely the shift in frequency
between the full and the approximate solution increases with increasing coupling strength.
Therefore, all following calculations of this work are performed in Anderson approximation
which allows for a drastical reduction of computational effort and thus for a detailed investiga-
tion of parameter dependencies and of larger systems at all. In doing so, from now on all sums
will be restricted to states from a window of size 2Er around the Fermi level instead of 0.92E
as before to ensure a better quantitative convergence of the obtained frequencies (cf. [Hannibal
et al.(2015)]).

Continuing in Anderson approximation we will now investigate the phase dynamics in closer
detail, i.e., we will analyze the influence of the external parameters on the frequency fg of the
Goldstone mode and we will point out by which quantities it is determined. To do so, we will
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8.4.2 Influence of the quench

first investigate the influence of the coupling strength and of the details of the quench. In
section 8.4.3 we will focus on the effect of the confinement.

8.4.2 Influence of the quench

Figure 8.2 already suggests that the frequency of the Goldstone mode f; depends on the
details of the quench instead of being fixed by the external parameters of the cloud. The
phase dynamics changes from a very slow decrease for the system in the BCS regime with
1/(kpas) = —1.4 to a rather fast decrease in the crossover regime with 1/(kpay) = —0.5.
However, in Fig. 8.2 the quench strength by means of 6 [1/(kra)] was kept fixed. Only the
position in the BCS-BEC crossover was varied. Accordingly, we will in the following investigate
the influence of the quench strength on the phase dynamics for one particular final coupling
strength 1/(krays) in Fig. 8.4 and for a wider range of 1/(kpas) in Fig. 8.5. In doing so, we
will show, that the excitation spectrum of the interaction quench-induced Goldstone mode is
gapless, i.e., it is a Goldstone mode in the original sense of the Goldstone theorem. Furthermore,
we will show that its frequency can be adjusted by changing the details of the quench and that
it is determined by the initial values of the dynamics and by the gap of the system after the
quench.
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Figure 8.4: (color online) Frequency of the Goldstone mode fg for quenches with varying
strength to 1/(kpas) = —0.9; parameters: fj = 96Hz, f, = 1kHz, N = 1000.
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Figure 8.4 shows the frequency of the Goldstone mode for a system with 1/(kpas) = —0.9
in the same trap as in Fig. 8.2 but —since we now apply Anderson’s approximation— for a
larger particle number® of Np = 1000. The initial coupling strength 1/(kra;) is varied, i.e., the
dependence of fs on the quench strength is shown.

First of all, Fig. 8.4 demonstrates that the phase dynamics strongly depends on the quench
strength: When approaching 1/(kra;) = 1/(kras) = —0.9, i.e., the point of quench strength
d[1/(kpa)] = 0, from either side [from larger or smaller values of 1/(kra;)| the frequency
of the Goldstone mode continuously decreases to zero. Thus, the frequency of the Goldstone
mode decreases with decreasing (modulus of the) quench strength and continuously vanishes for
d[1/(kpa)] — 0. This implies that the excitation spectrum of the interaction quench-induced
phase mode is indeed gapless as stated above.

Furthermore, we observe that the dependence of f; on the quench strength in Fig. 8.4 is
asymmetric: Negative quenches with 0 [1/(kra)] < 0, i.e., those on the left hand side of Fig.
8.4, lead to a stronger increase in fg and thus to larger frequencies than positive quenches. This
asymmetry is linked to the fact that the same excitation strength in terms of 1/(kra), i.e., the
same |0 [1/(kpa)] |, results in different actual changes in the scattering length |da| = |a; — a;
depending on the position of the initial system in the crossover. Hence, negative quenches lead
to much larger changes in the scattering length |da| —and therefore in the gap— than positive
quenches. As we will show later on, this results in larger fg. However, before we do so, we
will demonstrate that the features found above hold for a wide range of quenches in the BCS-
BEC crossover. Indeed, our numerical data indicate that the above found nature of the phase
dynamics holds for all moderate quenches on the BCS side of the BCS-BEC crossover, i.e., for
all quenches that can be associated with the phase II of the quantum quench phase diagram
introduced in [Yuzbashyan et al.(2015)|. For quenches exceeding this range, the phase dynamics
tends to become irregular. In particular, strong negative quenches which lead to a dynamical
vanishing of the gap in the Higgs mode (phase I) exhibit a persistent but very irregular phase
dynamics which makes the definition of a frequency of the Goldstone mode arbitrary. However,
in this work we restrict ourselves to the investigation of the regular phase dynamics in the
gapless Golstone mode, i.e., to quenches in the phase II.

To this end, Fig. 8.5 shows the dependence of fi on the quench strength for varying
1/(kpay), i.e., each horizontal line in Fig. 8.5 corresponds to a plot like in Fig. 8.4 but for a
different coupling strength.

8With our current numerical setup we can calculate the dynamics of single systems for up to Np ~ 10*
particles. However, there are no qualitative changes in the gap dynamics when increasing the particle number,
i.e., here we restrict ourselves to rather small Np to reduce the numerical effort.
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Figure 8.5: (color online) Frequency of the Goldstone mode fg for different excitations
1/(kpa;) — 1/(kpay) corresponding to phase II of the quantum quench phase diagram (see main
text); quenches corresponding to phase I are not shown; parameters: fj = 96Hz, f, = 1kHz,
N = 1000.

Indeed, one observes on the basis of Fig. 8.5 that the nature of the Goldstone mode described
above holds for all phase II quenches investigated here (we omit the quenches in the upper left
corner corresponding to phase I). For each horizontal line in Fig. 8.5 we see a decrease of fg
with decreasing modulus of the quench strength |0 [1/(kra)] | as found above with a continously
vanishing Goldstone mode when approaching 1/(kpa;) = 1/(krays). However, furthermore one
can see, that the frequency of the Goldstone mode also depends on the vertical position of
the quench in Fig. 8.5: It is largest for quenches at the bottom, i.e., for systems with large
coupling strength. In fact, one can observe that quenches with the same |0 [1/(kra)]| but
opposite directions, e.g., those correspoding to the points [1/(kpa;), 1/(krays)] = (—1.0,—0.5)
and [1/(kra;),1/(kpas)] = (—0.5,—1.0) lead to significantly different f;. This indicates that
fo depends not only on the quench strength but also on the coupling strength of the system
after the quench, i.e., a stronger coupling results in a larger f;. In the following, we will explain
both these features —the dependence on the quench strength and the dependence on the final
coupling strength— by taking into account that the only parameters of the dynamics affected
by the quench are the initial values of the excitation and the gap after the quench. We will
isolate the effects of both quantities on the basis of Fig. 8.5 and Eqs. (8.17)-(8.20).

To do so, we at first want to state that the frequency of the Goldstone mode depends linearly
on the initial values of the dynamics which in Anderson approximation read (cf. [Hannibal
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et al.(2015)] and Eqs. (8.17)-(8.20))
<’yl’ba’7ma> ‘t:O = (’Um’&m - umf)m)z =. Z’gg)

<71J5m’7:rnb> ‘tzo = (vmam - umf)m) (Umf)m + umﬁm)
=y, (8.24)

with @, and 9, (u,, and v,,) being the Anderson amplitudes before (after) the quench [see Eq.
(8.22)]. Indeed, our numerical data show that by artificially multiplying these initial values by
a factor k the frequency fg increases by the same factor?, i.e.,

fo (k- {29, y0%) = kfe ({29, y0}) .

This means that ~whatever the actual system parameters (ay, Np, f|, fi) are- the frequency
of the Goldstone mode can be tuned by adjusting the initial values of the dynamics. As Eqgs.
(8.22) and (8.24) imply, the latter depend on the gaps of the system before and after the quench
which are defined by the quench.

A detailed evaluation of Egs. (8.24) shows that the initial values are large when the difference
between the gaps before and after the quench and thus between the amplitudes (i, 7,,) and
(U, U ) is large. This is the case for strong quenches, i.e., strong quenches result in large initial
values which well coincides with the above findings for f;. However, Eqgs. (8.24) also show
that the amplitude of the initial excitation is independent from the quench direction. When
changing the quench direction, i.e., when interchanging (u,, 0) < (Um,vm) in Eqgs. (8.24),

only the sign of the anomalous initial values <'yfna7jnb | changes. Therefore, the initial values

t=0
for quenches with the same | [1/(kra)]| but opposite directions have the same strength but
—as observed above— the frequency is larger for the respective positive quench to the stronger
coupling 1/(kpay). This indicates that the frequency of the Goldstone mode also depends on
the actual coupling strength of the system after the quench.

We can conclude the results of this paragraph: The excitation spectrum of the Goldstone
mode of the BCS gap of a 3D confined ultracold Fermi gas excited by an interaction quench is
gapless and the frequency of the Goldstone mode can be tuned in a wide range by adjusting the
strength of the quench. Again, this coincides with the simplified picture of Fig. 8.1: However
small the quench-induced initial “momentum” of the phase dynamics might be, it results in
a constant “phase motion” inside the rim. This is —in simple words— the consequence of the
Goldstone theorem, which therefore can well be observed in the dynamics after an interaction
quench.

However, the fact that in our case the Goldstone mode is gapless and that its frequency
can be adjusted by the strength of the excitation stands in contrast to the experimental and
theoretical findings of Refs. [Kinast et al.(2004a), Kinast et al.(2004b), Bartenstein et al.(2004),
Altmeyer et al.(2007a), Altmeyer et al.(2007b), Riedl et al.(2008), Baranov and Petrov(2000),
Bruun and Mottelson(2001), Bruun(2002), Hu et al.(2004), Heiselberg(2004), Stringari(2004),
Grasso et al.(2005), Korolyuk et al.(2011)]. There, the frequency of the phase dynamics was
found to be fixed by the frequencies of the trapping potential. Nevertheless, this discrepancy
can be explained by the circumstance that in the previous works the dynamics was induced by
spatially inhomogeneous perturbations of the cloud, e.g., by confinement quenches or optical
excitations. Such a spatial perturbation creates a motion of the superfluid in the trap with
a time-dependent verlocity vs. This directly induces a dynamics of the phase of the gap via
[Giorgini et al.(2008)]

Vs = iVaurg [A(r,1)]. (8.25)

2m

9For the situation of strong interactions and strong quenches even an analytical expression can be found:
wag = 27TfG =~ Im(%A)h:O/AGS.
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On the one hand, this means that —whenever a superfluid velocity v, is excited— the real-space
dynamics is directly linked to a dynamics in the Goldstone mode. In this sense, the latter
can be observed through the motion of the cloud. On the other hand, the trapping potential
governs the real-space dynamics of the cloud. Therefore, a direct coupling of the Goldstone
mode to the real-space dynamics implies that the trap imprints its frequencies on the Goldstone
mode. For inhomogeneous excitations fg is thus pushed to the trap frequencies as found in the
previous works.!°

In our case the excitation is spatially homogeneous and does not —as our numerical data
confirm— produce any significant phase gradients. Therefore, no real-space dynamics of the
cloud is induced by the interaction quench which implies that the phase dynamics does not
couple to the trap. Accordingly, the excitation spectrum of this homogeneous Goldstone mode
remains gapless. In this sense the interaction quench-induced Goldstone mode remains pure.

8.4.3 Impact of the superfluid resonances

In this section we want to study the influence of the confinement on the frequency of the
gapless Goldstone mode and by that the impact of the size-dependend superfluid resonances
theoretically predicted in [Shanenko et al.(2012)]. To do so, we will investigate the dependence
of the phase dynamics on the trapping frequency in x-y direction f, for a system with fixed
fj = 96 Hz, Np = 1000 atoms in the trap and a quench given by 1/(kra) = —0.8 = —0.9. The
complementary situation, i.e., a fixed f; with varying f; produces the same effects. Therefore,
the influence of f will not be investigated separately.

Figure 8.6 shows the frequency of the gapless Goldstone mode for the above system over
a wide range of f;. One can see, that —on top of a global increasing trend''- fg exhibits a
series of local maxima for different values of f,. The distance of the maxima increases with
increasing f, while at the same time the maxima become more pronounced. I.e., the maxima
in fg occur less frequent but more pronounced when approaching higher values of f .

Furthermore, the dashed lines in Fig. 8.6 indicate the positions of integer system parameter
S = p/hw, with w; = 2xf;. These positions indicate trap parameters where the minimum
of an atomic subband crosses the chemical potential (for a detailed description of the band
structure see section 8.4.4). To be precise: The distance between two atomic subbands is fiw,
and the minimum of the lowest subband is at € = Aw, . Therefore, the integer part of S is the
number of subbands that have a minimum below/at the chemical potential, i.e., the number
of subbands crossing the chemical potential. One can see that every resonance closely follows
such a point of integer system parameter S.

An explanation for this behavior can be given on the basis of the atypical BCS-BEC crossover
[Shanenko et al.(2012)]: On the one hand, the atomic states closest to the chemical potential
contribute strongest to the pairing. On the other hand, the states with the lowest quantum
numbers m, which are located at the subband minima exhibit the strongest interaction matrix
elements [Hannibal et al.(2015)]. Therefore, each time an atomic subband crosses the chemical
potential (S =1,2,3,..) the pairing is enhanced and the system is shifted towards the unitary
point. Following section 8.3.2, this results in a larger frequency of the gapless Goldstone mode.

However, the decrease of the impact of the resonances for increasing system parameter
reflects the circumstance that for large S several subbands contribute to the pairing while only
a small fraction of the corresponding atomic states exhibits an enhanced coupling due to the
resonance. Thus, for increasing S the influence of the resonant states on the overall coupling

10 Actually, both manifestations of the Goldstone mode ~the gapped inhomogeneous and the gapless one— may
exist at the same time depending on the nature of the excitation.

HThis global increase is due to the circumstance that the density of the condensate and thus the gap increases
when f) is increased with fixed f; and Np.
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Figure 8.6: (color online) Frequency of the gapless Goldstone mode fg for fixed f| = 96 Hz,
Np =1000 and 1/(kpa) = —0.8 — —0.9; upper label: system paramter S = u/hw, .

8.4.4 Goldstone mode in the single-particle excitations

In this section we study the impact of the phase dynamics of the BCS gap on an experi-
mentally more relevant physical quantity, the single-particle excitations of the condensate. An
experimental investigation of the single-particle excitations has already been reported in [Stew-
art et al.(2008)] via RF-spectroscopy. Thus, they could provide a convenient access to the
quench dynamics investigated here. Indeed, we will show that the gapless Goldstone mode is
directly visible in the dynamics of the single-particle occupations and that it leads to a full in-
version of the lowest-lying single-particle states. We will demonstrate this by investigating the
effect of the phase dynamics on individual occupations as well as on the whole single-particle
band structure.

In doing so, we focus on a cloud with the confinement frequencies given by f; = 56 Hz
and f; = 4kHz, with Np = 1700 atoms in the trap and with an excitation of 1/(kpa) =
—0.8 — —0.9. For such a cigar-shaped trap the atomic energies €, m,m. := €m are strongly

separated with respect to m, and m, and comparatively dense with respect to m., i.e., they
form subbands. The single-particle energies of Eq. (8.21) inherit this band structure which can
be seen in Fig. 8.7.
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Figure 8.7: (color online) Single-particle energies for a strongly confined Fermi gas in a BCS
phase with four atomic subbands crossing the chemical potential; AY denotes the gap of the
subbands with m, + m, = i and (m,, m,) denotes the subband index (see main text); the
marked states (1), (2), (3) are discussed below; parameters: f; =56 Hz, f| = 4kHz, N = 1700
and 1/(kpa) = —0.9.

There, a plot of the single-particle energies against the quantum number m, is shown for
the system introduced above. One clearly observes several subbands each of which corresponds
to certain sets of quantum numbers (m,, m,), where —due to the cylindrical symmetry of the
system-— each subband is 2(m,+m,+1) fold degenerate (the factor 2 results from the degeneracy
of the two single-particle branches corresponding to the two spin configurations)!?. Further-
more, the four subbands with the lowest sets of quantum numbers (m,, m,) show minima when
the corresponding atomic subbands cross the chemical potential, i.e., at different values for
m,. The states located at the minima thus lie in close vicinity to the chemical potential and
contribute strongly to the BCS pairing (the expectation values ASS = corresponding to these
states, i.e., the subband gaps, will be denoted as A with i = m, + m, being the subband
index; see Fig. 8.7). The higher atomic subbands with m, +m, > 4 do not cross the chemical
potential. The corresponding single-particle subbands therefore do not exhibit any minima.

Since the single-particle operators corresponding to the energies of Fig. 8.7 —i.e., those

12 Actually, subbands with different and not just interchanged quantum numbers (m.,m,) are not exactly
degenerate due to slightly different subband gaps A;gn (on the order of 0.1peV for the investigated systems).
For example: The subbands (0, 3) and (3, 0) are exactly degenerate, whereas the subbands (0, 3) and (1,2) are
split by ~ 0.5 peV. However, in the presented plots and with the assumed experimental accuracy this splitting
is not resolved.
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8.4.4 Goldstone mode in the single-particle excitations

of Egs. (8.4) and (8.5)— are defined in the excitation picture all energy states of Fig. 8.7
are not occupied in the ground state before the quench. But, during the temporal evolution
following the quench occupations of the order of 1 are created. We will show this explicitly
for three particular single-particle states [marked as (1), (2) and (3) in Fig. 8.7], one close to
the minimum of the subband (1,2) (E,, = 5.2peV), one at the minimum of the subband (0,0)
(E,, = 4.7peV) and one at a higher energy in the subband (0,0) (£, = 8.4peV). Furthermore,
we will identify the gapless Goldstone mode of the BCS gap in the corresponding dynamics.

The dynamics of the three single-particle occupations is shown in Fig. 8.8 (a) for the first
20ms after the quench. We clearly observe that all occupations oscillate in phase with one
dominant low frequency. The states (1) (blue line) and (2) (red line) have a large amplitude of
the order of 1 while the amplitude of state (3) (green line) is much smaller. Furthermore, the
three occupations each exhibit an individual weak higher-frequency component which has the
largest frequency for the state (3) of high energy. However, we find that the amplitude of the
higher-frequency component increases with decreasing the scattering length, i.e., when entering
the BCS regime with 1/(kpa) < —1.
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Figure 8.8: (color online) (a) Dynamics of three particular single-particle occupations, one state
of higher energy (3) and two from subband minima (1), (2) (see Fig. 8.7). (b) Fourier transform
of the functions in (a).

A comparison of the single-particle dynamics with the dynamics of the phase of the gap
[Fig. 8.8 (a); dashed line| shows that the dominant low oscillation frequency originates from
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8.4.4 Goldstone mode in the single-particle excitations

the Goldstone mode of the gap: The phase of the gap shows the same linear dynamics as in
section 8.3.2 with a rate corresponding to the low-frequency part of the single-particle occupa-
tions. Thus, the gapless Goldstone mode is directly visible in the excitation dynamics of the
condensate.

To investigate the single-particle dynamics in closer detail, Figure 8.8 (b) shows the Fourier
spectrum of the data of Fig. 8.8 (a). Again, we observe that the dominant low frequencies of
the occupations and the phase of the BCS gap exactly match. But, the origin of the higher
frequencies in the excitation dynamics can now be seen as well: Besides the dominant low-
frequency components each spectrum exhibits a series of weak peaks at approximately twice the
energy of the corresponding single-particle state. L.e., the higher-frequency components result
from an eigenoscillation of the single-particle occupations. In Ref. [Hannibal et al.(2015)] a sum
of all eigenoscillations was shown to result in the Higgs mode of the gap. The higher-frequency
components can thus be understood as fragments of the Higgs mode of the BCS gap.
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Figure 8.9: (color online) Single-particle occupations at different times after the interaction
quench; parameters: See Fig. 8.7.

At last, —to analyze the impact of the gapless Goldstone mode on the whole single-particle
spectrum— Figure 8.9 shows snapshots of the single-particle occupations plotted against the
quantum number m, and the excitation energy FE,,, like they could be measured by angle- and
momentum-resolved RF spectroscopy [Stewart et al.(2008)], for a series of time steps after the
quench. The first snapshot corresponds to the time ¢ = 0.6 ms and thus directly follows the
quench. Here, the excitations are rather weak and can hardly be seen. However, going on in
time we observe that all occupations increase in phase until the time ¢ = 3.8 ms, where the
maximum occupation of all states is reached. Afterwards the occupations decrease until the
initial situation is reached again. Thus, Fig. 8.9 is an illustration of the in-phase oscillation of
all single-particle occupations due to the gapless Goldstone mode.

In addition, —neglecting the contributions from the eigenoscillation— the snapshot for ¢t =
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8.5 Gapless Goldstone mode and RF spectroscopy

3.8 ms provides a map of the amplitude of the single-particle oscillations since here the dominant
low-frequency part of all occupations exhibits its maximum value. On the basis of this amplitude
map one observes, that the amplitude distribution shows a resonance behaviour: The amplitude
is largest for states with low quantum number m, and low energy FE,, and decreases with
increasing values of m, and F,,. In fact, directly at the minimum of the subbands with m, +
m, = 3 the oscillation amplitude is 4, decreasing by 1 for every next lower subband m, 4+ m,,.
However, this dependence is due to the (m, + m, + 1)-fold degeneracy of the subbands (only
the particle-like excitations of the single-particle branch a are shown). ILe., the oscillation
amplitude of each individual single-particle occupation at a subband minimum is 1. Thus, the
single-particle occupations at the subband minima exhibit a full inversion.

Concluding this section we can thus state: We have shown that the gapless Goldstone
mode of an interaction-quenched ultracold Fermi gas directly couples to the single-particle
occupations and leads to a full inversion of the lowest-lying states. An experimental access
to the dynamical single-particle occupations would thus allow for a direct observation of the
massless Goldstone Boson predicted by the Goldstone theorem. However, we want to remark
that an application of RF-spectroscopy —a state-of-the-art experimental access to the single-
particle excitations [Stewart et al.(2008), Stewart et al.(2010)]- to the dynamical situation is
restricted to the observation of the inhomogeneous phase dynamics. It turns out that it does not
contain any signature of the gapless homogeneous Goldstone mode (see appendix). Therefore,
at least a modification of this experimental technique would be required to observe the gapless
Goldstone mode via the single-particle excitations.

8.5 Gapless Goldstone mode and RF spectroscopy

One way to study the single-particle occupations in experiment is RF spectroscopy as was
shown in Ref. [Stewart et al.(2008)]. There, a first direct measurement of the single-particle
excitations via RF spectroscopy was achieved for a thermal superfluid gas of ultracold “°K in
the BCS-BEC crossover. An application of RF spectroscopy to the dynamical situation could
thus allow for a direct observation of the Goldstone mode without coupling it to the trap. This
could be achieved, e.g., via a pump-probe like experimental setup: By introducing a delay
time ¢ between the quench (the “pump pulse”) and the actual RF measurement (the “probe
pulse”) a time-resolved single-particle spectrum like in Fig. 8.9 could be obtained. However,
in the following we will show that RF signals give a direct measurement of the single-particle
occupations only if no single-particle coherences are present. In contrast, we will demonstrate
that —for our case of a coherent evolution of the condensate— the single-particle coherences
cancel the signature of the gapless Goldstone mode in the RF signal and thus prohibit its
direct observation via RF spectroscopy.

The basic principle of RF spectroscopy applied to ultracold Fermi gases is to optically excite
the atoms from one of the two hyperfine states of the condensate, i.e., the state denoted as |k 1),
to a third hyperfine state which is not involved in the BCS pairing (following Ref. [Ketterle and
Zwierlein(2008)] we will denote this state as |ko) with ¢ = 3; depending on the atom species
used the actual spin of the corresponding hyperfine state will be different though). Then,
the resulting occupations of the third hyperfine state can be used —at least in the absence of
coherences between the single-particle states— as a direct measure of the corresponding single-
particle occupations (see below and |[Ketterle and Zwierlein(2008)]).

As stated above, an RF excitation results in a simultaneous spin flip of all atoms in the
cloud which is described by the operator [Ketterle and Zwierlein(2008)]

V="V, Z (c%cm + C};TCkg) , (8.26)
k
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with ¢l (c,,) creating (annihilating) one atom in the state with quantum number k& and spin
index o € {1,],3}. Here, we assume the excitation to be orthogonal with respect to the
quantum number k, i.e., we only consider transitions |k 1) — |k'3) with & = k’. Strictly
speaking this applies only to very large systems where k corresponds to the wave number
and if we furthermore assume hkrp < hk, i.e., that the momentum of the photons is much
smaller than the momentum of the atoms. However, in Anderson Approximation transitions
with k& # k' do not contribute to the RF signal since all nondiagonal single-particle expectation
values vanish (see below). Thus, we can apply Eq. (8.26) to our current situation.
Following [Ketterle and Zwierlein(2008)], we use

Cit = UHLL — VkVkb (8-27)

and we furthermore assume the third hyperfine state to be initially empty, i.e., cx3|¥(¢)) = 0
with |U(t)) the state of the condensate before the RF pulse. This yields:

V="V, Z cL3 <uk’y,1a — kaykb) ) (8.28)
k

Therefore, the RF excitation transfers single atoms to the state |k3) by creating a quasiparticle
in the single-particle state ka and destroying one in state kb. However, we are interested in
the occupations of state |k3) after the excitation, i.e., we have to investigate the transitions
governed by the matrix elements

My = (fIV]¥(2)), (8.29)

where |U(t)) = |v(t))|0)3 is composed of the quasiparticle contribution |y(¢)) and the vacuum
of the third hyperfine state |0)3. Since the exact quasiparticle configuration after the RF pulse
is not relevant, the final state of the transition |f) needs to take into account all possible end
states for the quasiparticles, i.e.,

1) =3 (e = vwn) H(OMR3), (8.30)

k,/

Inserting this into Eq. (8.29) and keeping in mind that in Anderson approximation

(’y:m/b’ym/b> = (v = 0 for m # n and that (7], Yma) = (V) 7ms) [Hannibal et al.(2015)]
we obtain

My ~ (1 = 03) {0, wa) — 2useiRe (k) + 03, (8.31)

Therefore, the population in the state |k3) created by the RF pulse is a direct measure of
the single-particle occupations if the single-particle coherences <’Y;£a711b> vanish. This is the
case for every thermal state of the condensate. l.e., —in that case- a momentum- and energy-
resolved measurement of the occupation of the third hyperfine state maps the single-particle
band structure (cf. [Stewart et al.(2008)]).

However, if single-particle coherences are present, they may interfere with the signal from
the occupations and prohibit an observation of the latter. This is the case for our situation as
can be seen by calculating M, directly from Eq. (8.26) The quasiparticle part of the transition
matrix elements M), is basically given by the occupation of the atomic state |k 1), i.e.,

Mk ~ <CLTC]CT> (832)

Therefore, the overall transition matrix element considering all transtitions to the third hyper-
fine state yields

Miotar ~ Z(CLTC]CT> = Npy. (8.33)
k
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However, Np; is a conserved quantity during the free quench dynamics, i.e., during the dynamics
before the RF pulse. Therefore, M, and thus the overall RF-induced occupations of the third
hyperfine state do not depend on the actual time of the RF measurement. This implies that
the contribution from the Goldstone mode in the occupations has to be canceled out by a
corresponding contribution in the single-particle coherences since all single-paricle occupations
oscillate in phase with respect to the gapless Goldstone mode. Therefore, every individual M;,
is a constant with respect to the Goldstone mode. In that sense, particle conservation prohibits
an observation of the gapless Goldstone mode via RF spectroscopy.

Indeed, our numerical data confirm that the contribution of the single-particle coherences
to Eq. (8.31) exactly cancels out the signal of the Goldstone mode from the single-particle
occupations. This confirms that the Goldstone mode in the present form is not visible via RF
spectroscopy.

However, the same applies to the real-space dynamics of the condensate: For the same
reasons as stated above the gapless homogeneous Goldstone mode is not visible in the atomic
density p(r,t) of the cloud. With Eqgs. (8.4)-(8.5) one directly obtains

p(r,t) = Z<\il:r7(r7 t)\ij0<r7 t))

=2 Z [(uz - Ul%)<7]:a’yka>

k
= 2uiRe (2, 2f)) + 0B len (), (8.34)

which has the same structure as Eq. (8.31). Therefore, the gapless homogeneous Goldstone
mode does not couple to the real-space dynamics of the cloud as already stated in section 8.3.2.
However, the resemblence of Eqs. (8.34) and (8.31) also implies that the Goldstone mode
is visible in the RF signal for the case of inhomogeneous excitations. There, the symmetry
between the single-particle excitations and coherences preventing the gapless homogeneous
Goldstone mode from observation must be broken to allow for a collective oscillation of the
cloud. Therefore, we state that in our case of a homogeneous excitation the Goldstone mode
is visible neither in the single-particle excitations nor in the real-space dynamics of the cloud.
But, for the same reason it must be visible in both quantities for the case of inhomogeneous
excitations.

9 Dynamical vanishing of the order parameter in a con-
fined Bardeen-Cooper-Schrieffer Fermi gas after an in-
teraction quench by Hannibal et al.

Abstract

We present a numerical study of the Higgs mode in an ultracold confined Fermi gas
after an interaction quench and find a dynamical vanishing of the superfluid order pa-
rameter. Our calculations are done within a microscopic density-matrix approach in the
Bogoliubov-de Gennes framework which takes the three-dimensional cigar-shaped confine-
ment explicitly into account. In this framework, we study the amplitude mode of the order
parameter after interaction quenches starting on the BCS side of the BEC-BCS crossover
close to the transition and ending in the BCS regime. We demonstrate the emergence of
a dynamically vanishing superfluid order parameter in the spatiotemporal dynamics in a
three-dimensional trap. Further, we show that the signal averaged over the whole trap
mirrors the spatiotemporal behavior and allows us to systematically study the effects of
the system size and aspect ratio on the observed dynamics. Our analysis enables us to
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9.1 Conclusion

connect the confinement-induced modifications of the dynamics to the pairing properties
of the system. Finally, we demonstrate that the signature of the Higgs mode is contained
in the dynamical signal of the condensate fraction, which, therefore, might provide a new
experimental access to the nonadiabatic regime of the Higgs mode.

9.1 Conclusion

In this paper, we have presented a numerical study of the dynamical vanishing of the order
parameter in a cigar-shaped ultracold Fermi gas in the framework of the fully microscopic BAG
equations. We have calculated the spatiotemporal dynamics of the order parameter after an
interaction quench. We have observed a rapid initial decay as well as a revival which both affect
the whole trap. Thus, both can be characterized by the spatially averaged gap. Whereas, after
the initial decay we find an oscillation of the order parameter in the longitudinal direction of
the harmonic trap which is not seen in the average value due to the continuity equation.

Exploiting the spatially averaged order parameter, we have demonstrated that the dynamical
vanishing in inhomogeneous systems is robust with respect to the size and aspect ratio of the
system while modifications to this vanishing arise from the finite size due to the trap potential.
The occurrence of a vanishing order parameter predicted in the homogeneous case is maintained
but the precise onset of the vanishing is altered by the pairing properties in the trap. We find
that the pairing strength, characterized by the gap at the chemical potential or equivalently
by the smallest BAG eigenenergies, increases with the aspect ratio as r2/3 /Tirap and with the
particle number as N/3,

We have found that the transition to a vanishing order parameter in a cigar-shaped ultracold
Fermi gas is determined by two criteria which both need to be fulfilled and which depend
contrarily on the aspect ratio of the trap. For small aspect ratios the position of the transition
is determined by the initial decay rate which needs to be sufficiently fast compared to the
characteristic time scale of the trap. In this case we observe that the quench strength necessary
for the transition decreases with increasing aspect ratio. However, for smaller quench strengths
and larger aspect ratios the signature of the linear Higgs mode from "phase II“ becomes more
prominent which prevents a vanishing to be visible. Then, the transition is determined by
the linear Higgs mode which leads to an increasing transition quench strength with increasing
aspect ratio.

Furthermore, we have shown that the condensate fraction on the BCS side of the BCS-BEC
crossover can be a suitable measure to access the Higgs mode in such a cigar-shaped ultracold
Fermi gas. Nevertheless, we also find that the condensate fraction will reduce the amplitude
of the signal compared to the order parameter and does not mirror the Higgs mode exactly.
We expect that this does not introduce new effects but will rather only lead to a shift of the
observed transition.

9.2 Introduction

Due to a remarkable control over many relevant system parameters which, in most cases,
can be tuned at will, ultracold quantum gases are an ideal testbed for many-body theories
and for concepts known from solid-state theory. These include, e.g., lattice symmetries [Bloch
et al.(2008)], topological properties [Goldman et al.(2016)], spin-orbit coupling [Galitski and
Spielman(2013), Wu et al.(2016)], and non-homogeneous superconductivity |Liao et al.(2010)].
For these reasons ultracold Fermi gases have received great attention both from an experimental
and from a theoretical point of view [Bloch et al.(2008), Giorgini et al.(2008)].

Using a Feshbach resonance [Chin et al.(2010)] to adjust the interaction strength a Bardeen-
Cooper-Schrieffer (BCS) superfluid state of Cooper pairs has been achieved for small attractive
interactions, whereas in the limit of large interactions between the fermions repulsive bosonic
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dimers form and a Bose Einstein condensate (BEC) of the latter has been observed |[Regal
et al.(2004)]. Those two limiting superfluid states are connected by the BCS-BEC crossover
featuring strong interactions and unitary properties |Zwerger(2011)].

The implementation of ultracold Fermi gases always requires an external confinement, e.g.,
optical traps. The control of this external confinement on the one hand provides means for
the outstanding control over the system [Bloch et al.(2008), Grimm et al.(2000)]. On the
other hand, this implies a finite system size which can have a major impact on the physics of
a superfluid system. The pairing properties strongly depend on the structure of the energy
spectrum of the system and, hence, on the dimensionality of the system. Theoretical studies
predict an atypical BCS-BEC crossover due to confinement effects [Shanenko et al.(2012)].

Recently, efforts have been devoted to the non-equilibrium properties of the superfluid state
[Polkovnikov et al.(2011), Yin and Radzihovsky(2013), Yin and Radzihovsky(2016)]. Due to the
spontaneously broken U(1) symmetry two fundamental modes of the complex order parameter
evolve: the (massive Higgs) amplitude mode and the (massless Goldstone) phase mode. The
observation of the collective Higgs excitation in a system with spontaneous symmetry breaking
(SSB) is of fundamental importance to gain a better understanding of the physical system
at hand, as was recently demonstrated in the case of the standard model of particle physics
[Collaboration(2012)].

The first evidence of the Higgs mode was reported by Raman scattering in a superconducting
charge density wave compound [Sooryakumar and Klein(1980), Littlewood and Varma(1981)].
Furthermore, in ultracold gases the Higgs mode has been observed in the spectral response of
a 2D optical lattice excited by an amplitude modulation of the lattice [Endres et al.(2012)]. A
time-resolved observation of the nonadiabatic regime of the Higgs mode [Papenkort et al.(2007),
Papenkort et al.(2008)], as has been achieved in a superconducting NbN film |[Matsunaga
et al.(2014), Matsunaga et al.(2013), Matsunaga and Shimano(2012)], is still pending for ul-
tracold gases. In order to reach the nonadiabatic regime the challenging implementation of an
interaction quench has been proposed to be done either by an RF flip of one species of the con-
densate (cf. [Frohlich et al.(2011)]), which leads, in the vicinity of a Feshbach resonance, to the
desired almost instantaneous change of the scattering length. Alternatively the quench could
be implemented by an optical control of the interaction in quantum gases [Clark et al.(2015)].
However, there are several theoretical studies addressing an ultracold Fermi gas after an interac-
tion quench [Yuzbashyan et al.(2015), Yuzbashyan et al.(2006), Yuzbashyan and Dzero(2006),
Yuzbashyan et al.(2005), Barankov and Levitov(2006), Bruun et al.(1999), Bruun(2014), Scott
et al.(2012), Hannibal et al.(2015)]. In the case of a homogeneous system three dynamical
phases depending on the excitation condition have been predicted analytically [Yuzbashyan
et al.(2015)]. They include persistent oscillations of the BCS gap (“phase III”), damped os-
cillations with inverse square root decay (“phase II") and a dynamical vanishing of the order
parameter (“phase I”). Previous studies in confined systems focused on the damped oscillations
and showed that for superconducting BCS nanowires the decay exponent is changed from —1/2
to —3/4 due to quantum size resonances [Zachmann et al.(2013)], while for even tighter confined
superconducting nanorods the decaying oscillation becomes irregular [Kettmann et al.(2017)].
In a BCS Fermi gas confined in a box with periodic boundary conditions in two dimensions
and a harmonic confinement in the third dimension the inverse square-root decay has been
confirmed [Scott et al.(2012)] and for a three-dimensional harmonic confinement an additional
fragmentation of the damped oscillations has been predicted [Hannibal et al.(2015)].

In this paper we show that the dynamical vanishing of the superfluid order parameter, i.e.,
phase I, also emerges in a Fermi gas confined in a three dimensional harmonic trapping potential
after an interaction quench. The emergence of phase I has not only been shown in ultracold
Fermi gases but also in BCS superconductors [Papenkort et al.(2009), Chou et al.(2017)]. Here,
we analyze the transition to a dynamically vanishing order parameter in dependence of the
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confinement properties. To this end, we present a numerical study based on the previously
published microscopic density matrix approach within the Bogoliubov-de Gennes framework
[Hannibal et al.(2015)]. This allows for a full microscopic and coherent quantum mechanical
treatment of the system and provides access to the spatiotemporal dynamics of the order
parameter as well as to the condensate fraction which is a possible experimental candidate to
carry the signature of the Higgs mode.

This paper is organized as follows. In Sec. 9.3 we will give a short summary of the used
theoretical model, while Sec. 9.4 is devoted to the results of our numerical calculations. We
start by discussing the spatiotemporal dynamics of the order parameter in Sec. 9.4.1. In the
next step, we will give a detailed analysis of the dynamical vanishing in a cigar-shaped trap in
Secs. 9.4.2 and 9.4.3 based on the spatially averaged order parameter. In Secs. 9.4.4 and 9.4.5
we will provide extrapolations to typical experimental particle numbers. Finally, in Sec. 9.4.6
we present the dynamics of the condensate fraction after an interaction quench. In Sec. 9.1 we
will briefly summarize our findings.

9.3 Theoretical Model

We employ the Bogoliubov-de Gennes (BdG) formalism [Hannibal et al.(2015), Datta and
Bagwell(1999), De Gennes(1989)] to calculate the dynamics of the superfluid order parameter
A(r,t) of an ultracold Fermi gas confined in an axially symmetric harmonic trapping potential
after an interaction quench. In this section, we provide a short summary of the most essen-
tial aspects of the used formalism and the relevant system parameters. For a comprehensive
discussion of the formalism we refer the reader to our previous work [Hannibal et al.(2015)].

We consider the gas to be composed of fermionic °Li atoms in two different internal spin
states (labeled by 1 and |) with equal particle numbers Ny = N = N/2. The atoms in the two
spin states interact via a contact interaction with Veongact = (47h%a/m) 6(r1 —13) = g §(r; —12),
where m is the mass of a °Li atom and a < 0 is the scattering length. Hence we only consider
systems on the BCS side of the BEC-BCS crossover.

We use a cigar-shaped harmonic confinement potential given by Vious = %mwi (22 + %) +
%mwﬁz2, where w; (wy) is the radial (longitudinal) confinement frequency, respectively. We
denote the eigenfunctions of the confinement potential by (7|k) = ¢(r) and the equidistant
single-particle energies of the confinement potential are labeled by &, where we use the tuple
k = (ky, ky, k.) with k; € {0,1,2,..}. In this paper, we consider elongated traps characterized
by an aspect ratio of the cloud r = w; /w; > 1. In such a geometry one-dimensional subbands
form resulting in quantum size oscillations in the case of small particle numbers [Shanenko
et al.(2012), Hannibal et al.(2015)]. In order to characterize the number and positions of these
subbands it is instructive to introduce the subband parameter s = Er/(hw,) where the Fermi
energy Fr is given by the chemical potential in the non-interacting case. That is, for a system
with s = j, where j € N, the minimum of subband j is located at the Fermi energy. The choice
s = 7 + 0.5 implies that the physics of the system are not dominated by a single band and
the effects of the quantum size resonances are negligible also in small systems (cf. [Hannibal
et al.(2015)]).

In order to describe the system, we use the introduced contact interaction and confinement
potential and we obtain the BAG Hamiltonian with the BCS-like mean-field approximation

Hpae = ) / d*r W (r) HyW, (r)

+/d37" A*(r)U, (r)Us(r) + h.c., (9.1)
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where Hj is the single-particle Hamiltonian. By doing so we introduce the superfluid spatially
dependent order parameter

A(r) = g (U (r)¥s(r)) . (9-2)
Here, ¥, (r) is the field operator annihilating an atom with spin ¢ at position r. The cor-
responding eigenvalue problem to the Hamiltonian in Eq. (9.1) is the BAG equation which

reads
(s 20 (ot} ) = (1) ) o3

The solution of this equation yields two branches (labeled by K — ka and K — kb) for
the eigenenergies and eigenfunctions which result from the two spin species. However, the
eigenenergies and eigenfunctions can be expressed by one another [Datta and Bagwell(1999)].
Therefore, we drop the index a/b wherever possible and imply thereby the use of the states
and energies corresponding to branch a.

Since the BAG equation has the form of a one-particle Schrédinger equation we use the
BdG wave functions to introduce Bogoliubov’s quasiparticles which diagonalize Hpqg. The
transformation reads

-
,y]:f:b - /uk(r)\lli(r) — Uk(r)‘I/T(I'> d37“, (94)

In order to obtain the solution of the BdG equation we make use of Anderson’s approx-
imation [Anderson(1959)], i.e., we assume the BdG wave functions to be proportional to the
bare atomic wave functions with wuy(r) = urér(r) and vg(r) = vggg(r). This yields the BAG
eigenenergies

By = /(6 — p)” + A2 (9.5)
and BdG coeflicients

“’“:\/%(Hgka_ku) ka\/% (1—5’“]%“) (9.6)

where A = (k|A(r)|k). Exploiting this solution and substituting Bogoliubov’s quasiparticles
in the definition of the order parameter in Eq. (9.2) we obtain the well-known self-consistency
equations for the order parameter and the chemical potential p in the ground state of the
system at T" = 0 K. They read

1 JANY,
Ap=—- Z View' k/ Xk (9.7)

N:Q;(1—5E“>, (9.8)

where we have used Vi = g [ @ |¢x(r)]” |or(r)|>. The self-consistent solution Ay of these
equations characterizes the pairing properties in the ground state of the system, where the pair-
ing takes place predominantly in an interval around the chemical potential as known from bulk
BCS theory. The factor xx = (1— Ej /&) in Eq. (10.36) regularizes the well-known ultraviolet
divergence of the contact interaction [Bruun et al.(1999), Bruun and Heiselberg(2002), Shanenko
et al.(2012)]. This regularization is introduced into all terms which result from summations
over states k. Additionally, the numerically necessary cutoff is chosen such that all physical
effects are qualitatively correctly accounted for.
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In order to excite the nonadiabatic dynamics of the system we implement an interaction
quench, i.e., an instantaneous change of the scattering length a, which leaves the particle

density n(r) = nqy(r) + n (r) = 2 <‘P$\IIT> unchanged. In doing so, only occupations xy =

<7,ia%a> = <7,ib%b> and coherences y; = <7,1a7;rb> = <7lb7,m> which are diagonal in terms of
the quasiparticles, i.e., xy = x; 0x and yi = Y O, are excited.

In the next step, we utilize Heisenberg’s equations of motion in order to obtain equations
of motion for the occupations xp and coherences y; of the density matrix. For our dynami-
cal calculations we choose a time-independent basis, i.e., the basis given by the final system
(Um,vm). This leads to a time-dependent Hamiltonian and the appearance of terms specifying
the deviation between the dynamical gap A and the ground-state value Ags. The obtained
equations of motion read

zh%xk = aryp — ALYk (9.9)
d ren
iy = —2 E™y + ap (1= 213) (9.10)
where
E'™ = B, 4+ 2uveRe [(A — Agg)y] (9.11)
ap — U]%(A — Ags)k — ui(A — Ags)}; (912)

and the deviation of the current gap is given by

(A —Ags)r = — Z [QUlulxl + u?yl* - vlzyl] Vi xi- (9.13)
!

Here, x; regularizes this term in analogy to Eq. (10.36). We solve these equations of motion
numerically with the Runge-Kutta-Fehlberg method which provides good numerical stability
for all investigated sets of parameters.

Finally, we invert Bogoliubov’s transformation and we arrive at the space- and
time-dependent order parameter in terms of the quasiparticles which reads

Alr,t) =g > 20(r)u(r) (:zck(t) - %)
+ g (r) yi(t) — vR(r) ye(t). (9.14)

9.4 Results

In this section, we will first discuss the full spatiotemporal dynamics of the modulus of the
order parameter |A(r, t)| and in the next step we turn to the temporal evolution of the modulus
of the spatially averaged order parameter given by

A) = ‘% / FErA( 1) (9.15)

where the volume V = (h/m)3/2wllw[1/2 = 3] is determined by the harmonic trapping
frequencies. This quantity will enable us to carry out a systematic study of the obtained
dynamics in dependence on the trap parameters.

In this paper, we investigate interaction quenches for which the initial ground state, char-
acterized by 1/(kpa;) and the ground-state gap A;, is situated in the crossover regime of the
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BEC-BCS crossover and the final ground state [1/(kpay), Ay, is situated deep in the BCS
regime. Here, we assume the well-known dispersion relation of the homogeneous Fermi gas in
order to obtain the Fermi wave vector kr. Throughout the paper we choose 1/(kpas) = —1.45
and characterize the strength of the quench by the initial coupling parameter 1/(kpa;). We
note that it would also be possible to characterize the quench strength by Zf /A; in analogy to
[Yuzbashyan et al.(2015)]. However, with the introduced regularization A;/A; converges much
slower than Ay when increasing the numerical cutoff. Since A; determines the main properties
of the system in our formalism it is sufficient to choose the numerical cutoff according to Ay,
which substantially reduces the numerical effort. Bearing this in mind, we characterize the
quench strength by 1/(kra;), which is independent of the numerical cutoff. In the case of a ho-
mogeneous system a study of similar quenches has been done before and our quenches here are
connected to the emergence of phase I [Yuzbashyan et al.(2015), Yuzbashyan and Dzero(2006)].

9.4.1 Spatiotemporal dynamics

In this section, we will investigate the spatiotemporal dynamics of the order parameter. To
this end, we keep here, and in Secs. 9.4.2 and 9.4.3, the subband parameter s = 3.5 fixed.
Furthermore, we choose wy = 27 - 120 Hz, which then determines together with a given aspect
ratio r and subband parameter s the transverse trapping frequency w, and the particle number
N.

|A(p, z,t)| in peV
0 20 40 60 80 100 120

- {(b) "t = 0.05 Tirap

() = 0.5 o

‘: ‘10 Ttrap|

transversal position p/l
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Figure 9.1: Spatiotemporal dynamics of the modulus of the order parameter after a sudden

change of the scattering length from 1/(kpa;) = —0.4 to 1/(kpay) = —1.45 and an aspect ratio

of 7 = 50, where Tap = h/0E = 1/(2f) is the characteristic time scale of the trap [Hannibal
et al.(2015)].
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In Fig. 9.1 we show the spatially dependent modulus of the order parameter |A(r,t)| at
six different times after an excitation by an interaction quench. Figure 9.1(a) shows the initial
spatial distribution of the gap at ¢ = 0 after the instantaneous quench, i.e., the excitations
introduced by the quench are already included. We find a symmetrical distribution which
features a maximum in the center of the trap. After ¢ = 0.057ap, We obtain a rapid decay
of the order parameter of approximately one order of magnitude which affects the whole trap
(cf. Fig. 9.1(b)). In addition, we find that the relative suppression of the order parameter
with respect to the ground-state value of the final system is strongest in the center of the trap.
Subsequently, we find that the remaining condensate moves towards the center of the trap
where the distribution of the order parameter becomes very narrow with a large amplitude at
t = 0.5Tap (cf. Fig. 9.1(d)). Comparing Figs. 9.1(c) and (e), which are almost identical, we see
that this behavior occurs oscillatory and we find that the frequency is given by feoliapse = 2f]-
Finally, in Fig. 9.1(f) we see a revival of the order parameter at ¢ = Tiap, Which shows two
maxima located symmetric to the center of the trap.

Overall, from Fig. 9.1 we extract two effects. The first one is characterized by the rapid
initial decay of the order parameter and the revival after 7i.p,. The initial distribution of
|A(r,t = 0)] is set by the ground-state order parameter of the initial system while at the time
of the revival we see that the order parameter shows two maxima which result from —as our data
shows— the spatial profile of the order parameter in the final system. The second effect is an
oscillation taking place in the remaining superfluid after the initial decay. We see from our data
that the suppression of the order parameter with respect to the ground-state value is strongest
in the center of the trap. This causes the superfluid to start oscillating in the harmonic trap
by moving towards the center. An analysis of the complex phase of the order parameter ®(r, t)
shows that this oscillation fulfills the general relation between the superfluid velocity and the
gradient of the phase, i.e., v = h/m V®(r,t). This implies that the order parameter obeys
a continuity equation and, hence, this oscillation will not be visible in the spatially averaged
order parameter, as we will see in the next section.

Before we proceed, we point out that during the dynamics the average occupation number
of the fermionic atoms stays smeared out around the chemical potential and the coherences yy
of the density matrix stay finite, indicating the existence of pair correlations at all times. In
equilibrium these properties are directly linked to a superfluid behavior of the system. In a
dynamical situation these properties are typically related to a superfluid behavior of the system
even in the case of a vanishing order parameter as was also pointed out in Ref. [Yuzbashyan
and Dzero(2006)].

In the following, we will systematically analyze the dynamical vanishing of the order pa-
rameter in a harmonic trap. To this end, we will discuss the modulus of the order parameter
averaged over the trap. First, we will show that this is a suitable quantity to characterize the
dynamical vanishing. Further, we will investigate its dependence on the aspect ratio r of the
trap for small systems with fixed parameter s. In the next step we will show how the results
scale for a larger system and, finally, we will present the dynamics of the condensate fraction
for larger systems after the same type of quench.
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9.4.2 Dynamical vanishing in the spatially averaged order parameter
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Figure 9.2: (a) Dynamics of the spatially averaged gap after a sudden change of the scattering
length from 1/(kra;) = —0.4 (blue solid line) and 1/(kra;) = —0.8 (red dash-dotted line) to
1/(kpag) = —1.45 and an aspect ratio of r = 50. The gap is normalized to the spatially averaged
ground-state gap of the system before the quench A;. Ay is the spatially averaged ground-state
gap of the final system and A, marks the height of the plateau for 1/(kpa;) = —0.4; (b) Fourier
transform of the gap dynamics with 1/(kra;) = —0.4 and the BdG eigenenergies F.

Figure 9.2(a) shows the dynamics of the modulus of the spatially averaged order parameter
in a system with r = 50 after quenches with 1/(kra;) = —0.4 (blue solid curve) and 1/(kra;) =
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—0.8 (red dash-dotted curve). After the stronger quench (i.e., 1/(kpa;) = —0.4, being identical
to Fig. 9.1) a decay of the modulus of the order parameter to a value which is much smaller than
the ground-state value of the final system Zf (solid green line) is seen. Following this decay a
plateau evolves where the averaged value of the height of the plateau is labeled by A,,. Although
the height of the plateau is very small compared to Zf there are still some oscillations with the
transverse confinement frequency w, visible. Since we cannot expect an exact vanishing of our
numerical solution of a nondissipative model, we will, nevertheless, refer to such a behavior as
dynamical vanishing of the gap. A technical discussion of the classifications of the numerical
solutions is provided in the Appendix. Overall, our definition of the dynamical vanishing of the
gap is in close analogy to what has been labeled phase I in a homogeneous system |Yuzbashyan
et al.(2015)].

Additionally, in contrast to the homogeneous system, there are pronounced spikes visible at
Tirap- 1 hese result from the rephasing of the oscillators, i.e., the quasiparticle occupations and
coherences, with equidistant energies spaced by 0FE = 2hf that contribute to the dynamics.
Therefore, the time is given by Tiwap = h/6E = 1/(2f}) as has been discussed for the dynamics
dominated by a dephasing of these oscillators, also labeled by phase II [Hannibal et al.(2015),
Yuzbashyan et al.(2015)].

In comparison to the spatiotemporal dynamics in Fig. 9.1 we find that A(t) precisely maps
the rapid decay and the revival of the order parameter. As expected the oscillations towards
the center of the trap are not visible; instead we observe an oscillation with the transverse
confinement frequency. In general, this oscillation is also visible in A(r). However, it is not
visible in Fig. 9.1 due to the temporal spacing of frames since f; > f. Thus, we establish
that A(t) is suitable to analyze both the initial decay and the evolution of a plateau in the
dynamics of the order parameter in a cigar-shaped trap.

The weaker quench, i.e., 1/(kra;) = —0.8, belongs to phase II and shows an oscillation
around a non-vanishing average, slightly smaller than A;. The higher-frequency parts are
given by the transverse trapping energy hw,. For an exhaustive discussion of phase II in an
inhomogeneous system we refer the reader to our previous publication [Hannibal et al.(2015)].
In addition, comparing the two quenches we see that a larger quench leads to a faster initial
decay of the order parameter which we will come back to later.

In order to gain further insight into the dynamics we show the Fourier transform of the
dynamically vanishing amplitude of the order parameter in Fig. 9.2(b). We observe a spec-
trum with equidistant Fourier components spaced by 2f; which decay with increasing energy.
The equidistant peaks evolve as a result of a nonlinear behavior of the equations of motion.
While for a small quench, i.e.; in the linear phase II, the Fourier components are given by the
BdG quasiparticle energies (green dots) the frequencies for a large quench are given by the
difference between the energies of the quasiparticle states contributing to the dynamics. To be
precise, each occupation and coherence oscillates dominantly with a frequency given by twice
the difference between the corresponding single-particle energy and the chemical potential pu.
Since the final system is located in the BCS regime, i.e., p ~ Ep, this difference is always a
multiple of hwj. Overall, we obtain in phase I a spectrum with equidistant peaks dominated
by non-linear effects. We refer to such a spectrum as “quasi-ungapped” spectrum, since the gap
of the spectrum is given by the energy spacing of the equidistant peaks which is much smaller
than the quasiparticle gap of the ground state.

In such a case of an equidistant quasi-ungapped spectrum a Fourier series directly connects
the initial decay in the time domain with the width of the distribution of the frequency com-
ponents. We label this width by 8 and determine it by an exponential fit in the time domain,
which we discuss in the Appendix. In frequency space a physical understanding of the width
of the decay can be obtained when considering the BCS pairing properties: Cooper pairing of
atoms takes place in an interval around the chemical potential determined by the BdG wave
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functions. From the solution of the BdG equation we see that the width of this interval is
determined by the gap Ay of state k at the chemical potential . Further, the pairing strength
continuously decreases in the given interval with increasing distance to the chemical potential
due to the form of the BAG wave functions. This implies that the amplitude of the oscillation
of the occupations and coherences decays with increasing distance to the chemical potential.
Therefore, considering Eq. (9.14) also the Fourier coefficients of the dynamical vanishing gap
decay with increasing energy over a width determined by A,.

Overall, we find that the width § is connected to the pairing properties at the chemical
potential which can be characterized by the smallest BdG eigenenergy FE,.i,, since & ~ u at
the chemical potential. Hence, we obtain that g o FE,;, for the dynamical vanishing of phase
I. We have confirmed numerically that there is no additional dependence on the aspect ratio,
i.e., for a given F;, [ is identical for any aspect ratio r.

Summarizing, from Fig. 9.2 we have extracted the relevant physical properties to understand
the dynamical vanishing in an inhomogeneous system. We have shown that the dynamics has a
nonlinear character and we have related the dynamical behavior to the ground-state properties
of the final system for a given quench strength and aspect ratio. We have shown that for a
given quench the initial decay characterized by [ is proportional to the pairing properties in
the final state, i.e., Fy;, which, thus, will be an important variable for the subsequent analysis.
With this fundamental understanding we now turn to the transition between the two different
“phases” and investigate the impact of different aspect ratios.

9.4.3 Impact of the aspect ratio

In the following we will systematically investigate the impact of the aspect ratio of the cloud
on the emergence of a dynamical vanishing of the spatially averaged order parameter. We will
first establish numerical criteria necessary for the analysis and then evaluate the dynamics
for various aspect ratios and again connect the observed behavior to the ground-state pairing
properties characterized by Fpip.

For the subsequent analysis of the dynamical vanishing of the order parameter A, will
be the central quantity. We obtain A, from our numerical data by fitting an exponential
decay f(t) = exp(—pft) + « in the beginning and by checking whether a flat plateau evolves
afterwards. For this we require 8 to be large enough (criterion A) and an oscillatory behavior
to be nonvisible in the subsequent dynamics (criterion B). If a plateau is identified we take A,
as the height of this plateau otherwise A, is the arithmetic mean over the whole calculation
time. A discussion of details and implications of our numerical procedure is provided in the
Appendix.
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Figure 9.3: A, normalized to the ground-state gap of the initial system A, for different quenches
with 1/(kpay) = —1.45 and aspect ratios r. Inset: quench parameter 1/(kra;); at the transition
to the dynamical vanishing vs. the aspect ratio r. The red solid line (fit A) shows a linear fit to
data for » < 8 and the black dashed line (fit B) is an inverse proportional fit to data for r > 9.

In the following, we carry out an analysis of A, for a range of quenches which all end
at the same 1/(kpay) = —1.45 where we vary the aspect ratio of the systems and keep the
parameters s = 3.5 and w| = 27 - 120 Hz fixed. In Fig. 9.3 we show results for four different
aspect ratios which represent the effects obtained from our numerical data. For small quenches,
i.e., small 1/(kra;), we find a decreasing of A, with increasing quench strength, i.e., larger
1/(kra;), as has been predicted before [Yuzbashyan et al.(2015), Scott et al.(2012)|. Increasing
the quench strength further, we observe a drop in A, where the position of this visible drop
is altered depending on the aspect ratio. The drop implies that the specified conditions for
a vanishing order parameter are met and A, is taken as the height of the identified plateau.
Furthermore, we see that the height of the obtained plateau continuously tends to zero where
it almost coincides for all aspect ratios. In the following, we will investigate the dependence of
the drop on the aspect ratio which marks the transition to a vanishing order parameter.

For r = 5 (purple boxes) we find a distinct drop at 1/(kpa;); = —0.56 to a plateau with a
small height. When increasing the aspect ratio to r = 10 (green crosses) we observe that the
transition to a plateau behavior is shifted to smaller quench strength, i.e., 1/(kra;); =~ —0.69.
At the same time the height of the plateau after the transition is increased. In contrast,
increasing the aspect ratio even further to r = 20 (blue circles) and r = 50 (orange triangles)
leads to a reversal in the shift of the necessary quench strength for the transition. For » = 50 it
is given by 1/(kra;); = —0.56, while the height of the plateau is reduced, since it is determined
by the same curve for all aspect ratios which is set by the nonlinear behavior of the equations
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of motion.

In order to investigate the shifts of the transition to a dynamical vanishing in more detail,
we plot the initial coupling parameter at the transition point 1/(kra;); in dependence of the
aspect ratio in the inset of Fig. 9.3. For small aspect ratios » < 8 we find that 1/(kpa;):
decreases linearly which is illustrated by the linear fit A. In contrast, for » > 9 the transition
quench strength increases again and shows an a/r + b (fit B) dependence, where b ~ —0.55 is
in agreement with the maximum value of 1/(kra;); in the main part of Fig. 9.3. It provides
a limit of the quench strength necessary for aspect ratios r > 50. In the following, we will
investigate these two confinement-induced shifts of the critical value of the quench strength
characterized by 1/(kra;), responsible for the transition to the dynamical vanishing. To this
end, we will analyze the dominant energy and, hence, time scales of the system. This includes
the dependence of the initial decay constant 3, which turns out to control the behavior according
to fit A, as well as the period of the Higgs mode in phase II, which will control the emergence
of a dynamical vanishing and the visibility of a plateau in the range of aspect ratios where fit
B applies.

In order to observe a vanishing of the order parameter the initial decay needs to be suffi-
ciently fast compared to the trap time Tiap (cf. criterion A). Therefore, we start by investigating
the initial decay characterized by 8 with respect to the trap time 7., in dependence of the
initial coupling 1/(kra;) and the aspect ratio r. Figure 9.4 shows 7., for a range of different
quenches which are identical to those in Fig. 9.3. We find a nonlinear increase of the initial
decay rate with an increased quench strength for all aspect ratios. That is, a stronger quench
leads to a faster decay as expected for our initial value problem: the initially excited occupa-
tions and coherences depend on the order parameter in the initial system. Since we keep the
final system identical the initial system for a larger quench is located closer to the BCS-BEC
crossover and, hence, features a larger gap. This leads to a wider pairing interval determined
by the BAG coefficients u,,, v,, and, therefore, to larger initial values which are distributed over
a wider range of energies. This carries over to the spectral properties of the dynamics and
thus leads to a larger § and, hence, a faster initial decay. Therefore, we establish the criterion
BTiap > 10 as a necessary condition for the vanishing to occur, as discussed in the Appendix.

47



9.4.3 Impact of the aspect ratio
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Figure 9.4: Time scale of the initial decay with respect to the trap time (7., for various
quenches to 1/(kpay) = —1.45 and wy = const. for r = 5,10 and 20. Inset: BTiap vs. the
aspect ratio r at fixed quench conditions; the dashed black line marks the condition 57, = 10
in either figure.

In the case of a system with an aspect ratio of » = 5 this criterion is met for 1/(kra;) >
—0.56. This matches with the onset of the dynamical vanishing as seen in Fig. 9.3 and applies
to all systems which show the behavior of fit A. The linear behavior of fit A is inherited from
the linear dependence of (37.p on the aspect ratio which we show in the inset of Fig. 9.4 at
a fixed quench strength. Here, the solid blue line is a linear fit to the data points. Since the
dependence of BTiap on the quench strength is rather small in the range of the shift of 1/(kra;):
in Fig. 9.3 the dependence of 1/(kpa;); on r is dominated by the dependence of 57, on the
aspect ratio which results in the observed linear dependence of fit A due to criterion A.

In contrast, for the other shown aspect ratios in Fig. 9.4 (r = 10, 20) the condition S7a, >
10 is fulfilled for any quench strength with 1/(kpa;) > —0.7. Nevertheless, in comparison with
Fig. 9.3 one finds that this does not necessarily lead to a dynamical vanishing of the gap.
Furthermore, in the inset of Fig. 9.3 we found a different dependence of 1/(kra;); on the aspect
ratio r for these systems. This suggests that a different effect, which turns out to be connected
to criterion B, is responsible for the transition point to the dynamical vanishing. Since these
systems are located at the transition between phase I and phase II we go back to a system from
phase II [cf. red dash-dotted line in Fig. 9.2(a)] and discuss the dependence of the relevant
energy scale on the aspect ratio in this phase.

If the period of the Higgs mode Tiig,s is large compared to the trap time, i.e., Thiggs/ Tirap >
1, a plateau after the initial decay can become visible (cf. Fig. 9.7 in the Appendix). Addition-
ally to the criterion A of a fast initial decay, characterized by STiap, We require the features of
the linear Higgs mode of phase II to be non-visible in the dynamics. This is expressed through
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the condition Thiggs/Tirap > 1 (criterion B). If this second condition is not met, we observe an
oscillation of the spatially averaged order parameter around the mean value A, even if the
initial decay is sufficiently fast.

In order to determine the period of the linear Higgs mode we consider the dominant energy
scale in phase II which is given by the main frequency of the amplitude (Higgs) mode fiiggs.
Previous studies [Hannibal et al.(2015), Yuzbashyan et al.(2015)] showed that figes depends
on the quench strength: in the case of a very small quench figes is given by 2E,;,. Further, for
all quenches from "phase I fyg,s is closely connected to the mean value A, of the oscillations
13 Therefore, fiiges decreases with increasing excitation strength as can be seen from Fig. 9.3.
However, the decrease of A, occurs in the same manner for all aspect ratios and, hence, does
not introduce a significant dependence of figes on the aspect ratio. As a result, the dependence
of fiiges ON the aspect ratio is in good approximation solely inherited from the dependence of
E.in on the aspect ratio.

We investigate this dependence in the following sections and find that the minimal quasipar-
ticle energy E, increases with the aspect ratio. Therefore, the period of the Higgs mode Tfiggs
decreases with increasing aspect ratio and it turns out that this decrease is in good agreement
with the 1/r behavior of fit B in the inset of Fig. 9.3, which we will come back to in Sec. 9.4.5.
Hence now the transition is determined by the criterion B.

Summarizing, we have analyzed the confinement-induced effects on the continuous transi-
tion to the dynamical vanishing of the order parameter in a cigar-shaped ultracold Fermi gas.
Exploiting our introduced classification, we have formulated two criteria which need to be ful-
filled in order to observe a dynamical vanishing characterized by the emergence of a plateau.
These two criteria depend contrarily on the aspect ratio and, hence, we distinguish the follow-
ing two cases. For small aspect ratios r < 8 the transition is determined by the initial decay
constant 5 o< F;,. This leads to a linear shift of the transition in dependence of the order
parameter according to fit A. For larger aspect ratios r 2 9 (fit B) the transition is determined
by the period of the Higgs mode where again the relevant dependence is solely given by FE,.
Since we have shown that both criteria depend on E,;, we will provide a more general study
of this key variable in the next sections.

9.4.4 Scaling properties

In this section we will consider the dependence of E,;, on the aspect ratio r in a more
general situation where the aspect ratio r = w, /wj is changed as 7 — Ar, where we now keep
a fixed particle number of N = 1000 as opposed to the parameter s. In order to achieve this
scaling of the aspect ratio r we consider three possible options which are shown in Table 1. For
each option we numerically calculate E,;,, Fr, and § and extract the scaling behavior by fits
analog to those in the inset of Fig. 9.4.

Option one is to keep wj fixed, which is similar to the previous method but now we keep the
particle number N fixed, option two ensures a constant w , while option three leaves the volume
of the trap unchanged. Strictly speaking, all scaling possibilities could already be deduced from
options one and two but we add option three for illustration. Table 1 lists the exponents p of
the corresponding dependence of EyinTirap — AP EminTirap fOr each option.

Our numerical study shows that the scaling of both 57iap and EyinTirap is -independent of
the way in which the scaling of the aspect ratio r is performed— proportional to A%/3. The scaling
of ErinTirap follows directly from the gap equation (10.36): we consider Ay to be located at
the bottom of a subband, i.e., & = p, and omit the term introduced for regularization. Then,
according to Eq. (9.5) Agx/E; =~ 1 holds true and the effect of the scaling is determined by

13In the homogeneous dynamical BCS theory both the frequency of the oscillations and the average value is
given by the gap.
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9.4.5 Large system

way of scaling ‘ W ‘ Wy ‘ Ttrap ‘ Er H EinTerap
1: wj =const | 0 1 0 |2/3 2/3
2: w; =const | -1 0 1 |-1/3 2/3
3: Vol=const | -2/3 [1/3]2/3| 0 2/3

Table 1: Scaling exponents p of A for the relevant quantities of a cigar-shaped cloud when
scaling the aspect ratio as r — Ar and fixed particle number N.

1/2

Vi ¢ awiw'" Bearing in mind, that we keep 1/(kra) fixed which implies a scaling of the

scattering length as a o k' o E;l/ ? o V=1/3 this yields in all three options Epin Tirap o< A3,
as one can deduce from Table 1. Additionally, this also implies STiap o< N3 since B o Emin
as argued in Sec. 9.4.2.

However, we point out that from the inset of Fig. 9.4 we find a different scaling of B7iap
which can be explained by the fact that the particle number is changed when keeping the
parameter s = const. If we keep s = const. and scale the aspect ratio as r — Ar we find
from our analysis that N — AN and, hence, Fr — AEr. However, in order to generalize
our previous findings to any scaling of the aspect ratio thus to experimentally more relevant
systems in a cigar-shaped trap, we will discuss the behavior for larger particle numbers in the
next subsection.

9.4.5 Large system

We will now consider a cloud of Li atoms in a cigar-shaped trap with larger particle numbers
and calculate the smallest BAG quasiparticle energy E;, of the system. As argued above the
relevant time scales of the dynamics are set by this pairing property for a fixed quench. Hence,
in this section we extend our systematic analysis to much larger particle numbers up to N ~ 10°
by only calculating the ground-state properties of the given system. A full dynamical calculation
of these systems is not possible due to numerical constraints.
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Figure 9.5: Minimal BdG quasiparticle energy FE,,;, for various aspect ratios in dependence of
the particle number N. The red dashed line is a fit E,;, = a NY3 4 b to the data for r = 5 and
the dash-dotted black line is the value of E,;, for N = 1-10° obtained from the fit.

Figure 9.5 shows the increase of the smallest BAG eigenenergy FE,.;, in dependence of the
particle number N, where the aspect ratio is scaled such that w; = const.. The dashed red line
shows a fit Ey, = a N3 + b for an aspect ratio r = 5 and the oscillations visible for small
particle numbers are the aforementioned quantum size oscillations [Shanenko et al.(2012)],
which can be neglected for the general analysis of the scaling in this paper. Overall, we extract
from our numerical data that En, o< N3 for all aspect ratios r which also implies that
B o N3,

With this result, we now go back to the case discussed in Sec. 9.4.3 where the parameters
s and w) are fixed which implies that the particle number scales with N oc 7. Combining the
general scaling properties of EiinTirap X r2/3 in Table 1 with the dependence on the particle
number yields Thiggs ¢ 1/ fitiggs X 1/ Emin < 1/7 and 8 o< Eyin o< 7. This is in good agreement
with the inset of Fig. 9.3 and the inset of Fig. 9.4, respectively.

Furthermore, the black dash-dotted line shows the value of E;, for N = 1-10°% as obtained
from the shown fit. From the intersections with the black dash-dotted line obtained in Fig. 9.5
we can choose system parameters with rather small particle numbers which resemble closely
the situation in a system with a far larger particle number but smaller aspect ratio. In the
next section we present the calculation of the condensate fraction for a system with » = 50 and
N = 8428 for this reason.
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9.4.6 Condensate fraction

9.4.6 Condensate fraction

We obtain the condensate fraction of the system following the usual definition of the con-
densate fraction ¢ of the order parameter [Leggett(2006)], which yields

%
¢ N—gz/d3r|A(r)|2, (9.16)
where V' is the volume, N the particle number, and g the interaction strength. In Fig. 9.6
the dynamics of the condensate fraction and the modulus of the averaged gap is shown for a
system with an aspect ratio of » = 50 and a particle number N = 8428. This is the system

that energetically resembles a system with an aspect ratio of r = 5 and a particle number of
N =1-106.
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Figure 9.6: Condensate fraction (blue solid line) and modulus of averaged order parameter
(red dashed line) after a quench to 1/(kpay) = —1.45 from (a) 1/(kpa;) = —0.8 and from (b)
1/(kpa;) = —1.0, with an aspect ratio r = 50, and a particle number N = 8428. The data is
normalized to the ground-state value of the initial system ¢; and A;, respectively.

From Fig. 9.6(a) it becomes apparent that the visibility of the signature of the Higgs mode
is reduced in the signal of the condensate fraction due to the quadratic dependence on the order
parameter. While the signal still contains all frequencies inherited from the Higgs mode, the
amplitude of these oscillations is barely visible and the resulting dynamics of the condensate
fractions fulfills all requirements to be identified as vanishing. In the case of a smaller quench,
i.e., further away from the transition, the signal of the condensate fraction is large enough to
maintain the visibility of the Higgs mode, i.e., its shape and, hence, main frequency, as is shown
in Fig. 9.6(b).

Overall, the condensate fraction could provide a measure to detect amplitude oscillations
of the superfluid gap in an ultracold Fermi gas. However, due to the quadratic dependence on
the gap the condensate fraction is already for rather small quenches reduced to < 10% of the

92



9.5 Fitting procedure

initial condensate fraction. This can make it challenging to detect oscillations in a time-resolved
manner. Further, when analyzing the transition to a vanishing order parameter this will lead to
observing a shift of the transition to smaller quench strength. However, we expect the finite-size
effects to be qualitatively identical for the condensate fraction as previously discussed for the
modulus of the spatially averaged order parameter since all main frequencies are inherited.

9.5 Fitting procedure

In this Appendix we discuss our fitting routine in order to obtain A, in "phase I and
"phase II* from our numerical data A(t).

A(t)

0.35 | f(x) =aexp(—pt)+c¢ ----- -
linear fit in [—=5/8,0.8Tqap] — - —
0.3 A i
-~ 0.25
<1
= 0.2
<1015
0.1

0.05

0 0.2 04 06 0.8
time ¢/ Tiyap

Figure 9.7: Exemplary illustration of our fitting routines in order to obtain A, for a system
with 7 = 10 and a quench with 1/(kpa;) = —0.66. In this system we find a plateau behavior
before Tiyap, which is characterized by the non-vanishing mean value of the plateau.

In Fig. 9.7 we show the results of the fitting routines carried out for an exemplary case of
r = 10 and 1/(kpa;) = —0.66, i.e., a system with a plateau with a non-vanishing height (cf.
Fig. 9.3). First, we fit f(t) = aexp(—pFt) + ¢ to our data (black dotted line) and check whether
B Tirap/2 > 5 holds true. If that is the case the initial decay is fast enough that at ¢ = 0.57ap
the amplitude of the oscillations described by an exponential decay contributes with less than
1% to the total signal and a plateau can become visible before 7., as shown in Fig. 9.7.

Since the exponential fit is only carried out for the initial decay the offset does not identify
the visibility of a plateau correctly in the transition between the two phases. Therefore, if
B Tirap/2 > 5 is fulfilled, we carry out a linear fit from 5/8 to 0.8 Tyap and require the relative
incline to be less than 10%. If these criteria are met we find a plateau and choose A, to be
the mean value for 5/ <t < 0.8 Tiyap; otherwise, we take A, as the arithmetic mean over the
whole calculation time. The lower bound of the interval is motivated by the initial exponential
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Observing Dynamical Phases of BCS Superconductors in a Cavity QED Simulator by Young
et al.

decay while the upper bound ensures that the emergence of the peak at 7i;,p does not hinder
a detection of a visible plateau. A linear fit is necessary to rule out oscillatory behavior as, for
example, seen in the red dash-dotted line in Fig. 9.2. This routine enables us to systematically
distinguish between the dynamical vanishing of the gap including the height of the plateau and
linear dephasing dynamics of "phase II*.

In mean-field theory a phase transition is obtained in the thermodynamic limit, which has
previously been done on the case of the homogeneous system [Yuzbashyan et al.(2015)]. In
order to investigate the confinement-induced effects to the dynamics in such an ultracold Fermi
gas the thermodynamic limit is not suitable. This directly implies that the transition between
the "phase I“ and "phase II* takes place continuously in the inhomogeneous system. The above
introduced classification quantifies the effects of the two ”phases and, hence, enables us to
investigate the effects of the aspect ratio to this continuous transition. Although the criteria
are well motivated from our observations of the dynamical behavior the exact numerical values
for each criteria are within a reasonable range arbitrarily. However, changing the criteria within
a reasonable range does not have a qualitative effect on the results presented in this paper.
Solely, small quantitative changes such as slightly shifted transition points to the vanishing
regime or heights of the plateau occur.

10 Observing Dynamical Phases of BCS Superconductors
in a Cavity QED Simulator by Young et al.

Abstract

In conventional Bardeen-Cooper-Schrieffer (BCS) superconductors [Bardeen
et al.(1957)|, electrons with opposite momenta bind into Cooper pairs due to an
attractive interaction mediated by phonons in the material.

While superconductivity naturally emerges at thermal equilibrium, it can also emerge
out of equilibrium when the system’s parameters are abruptly changed [Yuzbashyan
et al.(2006), Barankov and Levitov(2006), Yuzbashyan and Dzero(2006), Gurarie and
Radzihovsky(2007), 36, 93, Yuzbashyan et al.(2015)].

The resulting out-of-equilibrium phases are predicted to occur in real materials and
ultracold fermionic atoms but have not yet all been directly observed.

(I thought, they have been observed, no?)

Here we realise an alternate way to generate the proposed dynamical phases using
cavity quantum electrodynamics (cavity QED).

Our system encodes the presence or absence of a Cooper pair in a long-lived electronic
transition in 88Sr atoms coupled to an optical cavity and represents interactions between
electrons as photon-mediated interactions through the cavity [Lewis-Swan et al.(2021),
Kelly et al.(2022)].

(how?7?7)

To fully explore the phase diagram, we manipulate the ratio between the single-particle
dispersion and the interactions after a quench and perform real-time tracking of subsequent
dynamics of the superconducting order parameter using non-destructive measurements.

We observe regimes where the order parameter decays to zero (phase I) [Barankov
and Levitov(2006), Yuzbashyan and Dzero(2006)|, assumes a non-equilibrium steady-state
value (phase II) [Barankov and Levitov(2006), Yuzbashyan et al.(2006)], or exhibits per-
sistent oscillations (phase III) [Barankov and Levitov(2006), Yuzbashyan et al.(2006)].

This opens up exciting prospects for quantum simulation, including the potential to
engineer unconventional superconductors and to probe beyond mean-field effects like the
spectral form factor [Stewart(2017), Sato and Ando(2017)], and for increasing coherence
time for quantum sensing.

(which prospects? beyond mean-field effects??7?)
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10.1 Introduction

Conclusion

The demonstrated capability to emulate dynamical phases of superconductors in opti-
cal cavities opens exciting prospects for quantum simulation. For example, it will be in-
teresting to see if our cavity simulator can engineer and probe topological superfluid phases
[93, Black-Schaffer(2012), Nandkishore et al.(2012), Kiesel et al.(2012), Kiesel et al.(2013), Fis-
cher et al.(2014), Shankar et al.(2022)]

(topological superfluid phases???)

and understand competing superconducting orders [Laughlin(1998), Balatsky et al.(2006)]
in a single system

(competing superconducting orders 7777),

or else enable simulation of superfluidity in phenomena relevant to high energy physics
[Schéifer and Teaney(2009), Pehlivan et al.(2011)].

10.1 Introduction

Quantum simulation offers a path to understand a broad range of phenomena, from
high-temperature superconductivity and correlated quantum magnetism in condensed matter
physics [Zhou et al.(2021)] to quarks and gluons in nuclei and matter under extreme
conditions [Shuryak(2017)], as well as the black hole information paradox in gravitational
physics [Harlow(2016)].

(interesting, but it is not related to the topic)

A fascinating and promising case is the prethermal dynamical phases [Marino et al.(2022)]
predicted to emerge from quenches of superconductors and superfluids [Yuzbashyan et al.(2006),
Barankov and Levitov(2006), Yuzbashyan and Dzero(2006), Gurarie and Radzihovsky(2007),
36, 93, Yuzbashyan et al.(2015), Volkov,Kogan (1973), Yuzbashyan et al.(2005), Barankov
et al.(2004), Yuzbashyan(2008), Foster et al.(2014), Collado et al.(2023)|, systems that fea-
ture Cooper pairing of electrons or neutral fermions.

(just a collection of relevant citations)

While there has been great progress in pump-probe experiments of superconductors to
induce such fast quenches using THz technology, and signs of phases I and I have been observed,
the intense pulses couple nonlinearly to the Cooper pairs in the superconductor and complicate
a clean observation of the dynamical phases [Mansart et al.(2013), Matsunaga et al.(2013),
Matsunaga et al.(2014)].

('l read it, I don’t know yet, why is it so?)

For these reasons, the realisation of fermionic superfluids in ultracold atomic gases [Randeria
and Taylor(2014)] has generated great excitement [Yuzbashyan et al.(2006), Barankov and Lev-
itov(2006), Yuzbashyan and Dzero(2006), Gurarie and Radzihovsky(2007), 36, 93, Yuzbashyan
et al.(2015)]; however, to date observations have been limited to spectroscopic signatures rather
than the full time dynamics [Behrle et al.(2018)].

(spectroscopic signatures 777)

In neither system has a systematic scan of the dynamical phase diagram been performed,
and in fact phase III has not been observed.

(dynamical phase diagram 7777)
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Figure 10.1: Engineering BCS dynamical phases. a, The Anderson pseudospin mapping
encodes the presence and absence of a Cooper pair as the up and down states of a spin-1/2
system, respectively. Under this mapping, the attractive interaction XéLéT_ké,k/ék/ between

electrons is equivalent to an all-to-all exchange interaction )(Slf 31:, between pseudospins. b,
Model parameters. The top plot shows the effective dispersion relation near the Fermi surface
engineered in our system as a function of parameters d; and Ew, controlled using AC Stark
shifts. The bottom plot visualises the ground state of a BCS superconductor using Anderson
pseudospins. Near the Fermi momentum, the pseudospins develop a phase-coherent superpo-
sition at a scale set by a nonzero BCS pairing gap Apcs. This gap is self-consistently defined
from the spin coherence as shown on the Bloch sphere. ¢, Dynamical phase diagram. The
three dynamical phases can be realised by varying parameters x N, ds, and Fyw. Representative
dynamics of the BCS order parameter |Apcs| for each phase are shown as insets. We explore
cut H1 (dashed line) in Fig. 10.2 using a single ensemble of atoms and cuts V and H2 (solid
lines) in Figs. 10.3 and 10.4 using two separately controlled sub-ensembles. d, Cavity QED
implementation of the BCS interaction. Coupling many strontium atoms to a detuned optical
cavity generates infinite-range spin-exchange interactions mediated by a virtual exchange of
cavity photons. This interaction also causes a field proportional to Agcg to leak out of the
cavity, providing a real-time probe of the dynamics.

Here, we take a step forward towards this challenge by using internal electronic states to
encode effective Cooper pairs. (I have no idea what is meant here)

At the heart of this implementation is the Anderson pseudospin mapping [Anderson(1958)]
by which the presence or absence of Cooper pairs in a momentum mode is encoded in a pseudo
spin-1/2 system. We simulate Anderson pseudospins using a long-lived electronic transition in
8Sr with interactions between the spins mediated by a high finesse optical cavity. (how??777)

As proposed in Refs. [Lewis-Swan et al.(2021), Kelly et al.(2022)], the scattering between
Cooper pairs in condensed matter systems can be engineered in our system via the exchange
of photons through the cavity (see Fig. 10.1d).

(read their article, tell why it can be so??? I have no idea now)

In this way, the dynamics of a collection of interacting spin-1/2 systems maps onto the
low-energy physics of a superconductor or superfluid.

We probe all three dynamical phases (phases I, II, and III) predicted to exist in BCS
superconductors

(where was this prediction made???)

by utilising the high degree of control and flexibility in state initialisation, interaction con-
trol, and non-destructive measurements available when coupling long-lived atoms to an opti-
cal cavity. Behaviours intrinsic to phase I (normal phase) and phase II (finite steady-state
superconductivity) have previously been observed in spin systems realized in optical cavities
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10.2 Experimental setup and model system

[Davis et al.(2020), Norcia et al.(2018a)] and in two-level atoms interacting via collisions [Allred
et al.(2002), Kleine et al.(2008), Deutsch et al.(2010), Smale et al.(2019)].

We build on this work by clarifying the connection between these dynamical phases from
the BCS model and the physics of many-body gap protection in spin systems.

(what is the second, gap protection??)

Our results also provide the first demonstration of phase III (a self-generated Floquet phase
featuring persistent oscillations of the order parameter), which is predicted to dynamically
emerge in superconductors via quenches from weak to strong interactions [Barankov and Lev-
itov(2006), Yuzbashyan et al.(2015)]. In our system, we instead engineer this phase using
flexible control of the single-particle dispersion [Lewis-Swan et al.(2021), Collado et al.(2023)]
(to understand it, I would need to read these articles), dynamically resembling the low-energy
condition of a BCS superconductor.

For all experiments, we perform real-time tracking of the superconducting order parameter,
enabling fast readout of the dynamics.

10.2 Experimental setup and model system

To realise dynamical phases of the BCS model, we laser cool an ensemble of N = 10° — 10°

8Sr atoms and trap them inside a A\;, = 813 nm 1D optical lattice supported by a high-finesse
optical cavity.

(what is an optical lattice?)

A spin-1/2 system is encoded in the electronic ground state ||} = |'Sy,m; = 0) and a
long-lived optical excited state |1) = [Py, my = 0).

Along this transition, we define spin operators Sy = |1} (1|x and S7 = (|1) (}[x— 1) (L) /2 for
single atoms with labels k € {1,..., N}, as well as the collective lowering operator S~ = 3=, Sy
and raising operator St = (§7)1.

Assuming homogeneous atom-light coupling in the cavity and unitary dynamics, our system
can be described by the Hamiltonian

H=hxST5" +) =S5, (10.1)
k

The first term represents an infinite-range spin-exchange interaction described by a frequency
scale x [Norcia et al.(2018a)], realised using the collective coupling between the atomic ensemble
and a detuned optical cavity mode.

Inhomogeneous atom-light coupling and dissipative processes (including, foremost, single-
particle spontaneous decay) are present in the current implementation but do not largely change
the qualitative behaviour of the targeted dynamical phases under our experimental conditions
(see Methods). Previously, we have characterised this interaction |Norcia et al.(2018a)] and
studied collective dynamics by applying an external drive [Muniz et al.(2020)|. In this work,
we go beyond the fully collective manifold by engineering a spread in single-particle energies
e = hwy using applied AC Stark shifts wy [Baghdad et al.(2023), Sauerwein et al.(2023)].
These shifts form the second term in the Hamiltonian and compete with the spin-exchange
interaction.

Equation (10.1) is the so-called Richardson-Gaudin spin model [Richardson and
Sherman(1964),  Gaudin(1976)],  which  describes  the low-energy  physics  of
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10.2 Experimental setup and model system

Bardeen-Cooper-Schrieffer (BCS) superfluids and superconductors using the Anderson
pseudospin mapping [Anderson(1958)].

(read their paper!!??)

This mapping relates the presence (or absence) of a Cooper pair formed by a pair of elec-
trons with momenta £k to a spin-up (or down) at momentum k, as shown in Fig. 10.1a.
Correspondingly, annihilating a Cooper pair maps to a spin lowering operator by the relation
Sk = CpC_ k7 Where ¢4k are fermionic annihilation operators. Similarly, the spin operator
ZS’ﬁ +1:= ckck + cfkc_k counts the number of electrons with momentum k or —k. Our cavity
system therefore manifestly implements a BCS superconductor if one identifies the label £ of
an atom in the cavity with the momentum k of the electrons in a Cooper pair. In this way,
the first term in Eq. (10.1) is equivalent to the attractive interaction between electrons in the
superconductor, and the second term can be associated with the kinetic energy or dispersion re-
lation of the electrons. Note that the BCS model, described by Eq. (10.1), only accounts for the
zero momentum collective excitations present in conventional superfluids and superconductors

[Anderson(1958)].

The BCS order parameter in the Anderson mapping is defined by Apcs = x (D) CkC_k) =
x(S7), as depicted in Fig. 10.1b.

In equilibrium, it plays the role of the BCS pairing gap, which energetically favours many-
body states where the electrons arrange in a coherent superposition between Cooper pairs and
holes for states close to the Fermi energy.

Away from equilibrium, Apcs is also predicted to characterise the three dynamical phases (I,
I1, and III) that arise after quenches in superconductors and superfluids [Marino et al.(2022)].

(so they don’t call it the gap??? what then do they mean by the "dynamical phase"?7?)

Such dynamical phases represent distinct regimes of dynamical behaviour that arise after a
sudden perturbation of a control parameter in a closed many-body system.

They are described using a time-averaged or steady-state order parameter that demonstrates
non-analytic behaviour at the boundary between phases.

(a very unclear sentence. regimes use some secret steady-state order parameter? what is
it?7?)

In particular, the BCS model is predicted to exhibit second-order dynamical phase transi-
tions.

(what is it77?)
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Figure 10.2: Phase I to phase II transition.

Explanation of 10.2. a, Tuning the single-particle dispersion. We shine an off-resonant
461 nm beam onto the atoms from outside the cavity. This generates a distribution of AC
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10.2 Experimental setup and model system

Stark shifts representing a roughly uniform density of states p(w) (bottom plot). b, Probing
phase I and phase II. We perform a rapid 7/2 pulse to prepare a highly coherent initial state,
wait for 2 us, quench to a variable xYN/Ew with 6 = 0, and then let the system evolve.
The inset shows the explored parameter cut and identifies post-quench xN/Eyw values with
coloured dots. The main plot shows experimental time traces of |Apcs| (coloured curves)
accompanied by numerical simulations (darker lines). Two curves are extended to demonstrate
long-time coherence protection, with the yN/2m = 0.19 MHz trace smoothed for clarity. For
XN/2m = 1.2 MHz, we show an ideal simulation neglecting dissipation and motional effects
(dashed line), which exhibits transient Higgs oscillations. Hints of these oscillations are present
in experimental data with additional damping. c, Characterising the phase transition. Blue
triangles show the fitted coherence time of |Apcs| from ¢ = 1 pus to 30 us. Green circles show
the time-averaged |Apcs| between ¢ = 3 us and 8 s, with the dark green line representing
numerical simulations. In all cases, we identify a phase transition at xyN/27 = 0.2 MHz.
Error bars in all plots represent the s.e.m. of boostrap resamplings on experimental shots. d,
Varying initial conditions. Before t = 0, we shine a high-intensity 461 nm beam within 300 ns,
engineering an initial phase spread ¢(wg) € [0, ¢o| depicted on the Bloch sphere. The phase
¢(wy,) applied to atom k is proportional to the post-quench frequency shift wy. Traces represent
different ¢y and show enhanced oscillations with increasing .

Phase I is characterised by a steady state with a vanishing order parameter |Apcs(t)] — 0
at long times. Phase II exhibits a steady state with a constant nonzero order parameter A, :=
lim; o |Apcs(t)| > 0. Finally, phase III features oscillations in |Apcs(t)| that persist to long
times, realising a Floquet superfluid despite not being periodically driven |[Foster et al.(2014),
93, Yuzbashyan et al.(2015), 36]. The long-time behaviour of these dynamical phases admits a
simpler description in terms of the Lax-reduced Hamiltonian, which is an effective Hamiltonian
taking the same form of Eq. (10.1) but with rescaled parameters and a reduced number of spins
[Yuzbashyan et al.(2015), Marino et al.(2022)]. Under this formulation, phases I, II, and III
emerge when the Lax-reduced Hamiltonian describes effective zero-spin, one-spin, and two-spin
systems respectively.

Inspired by the Lax-reduced Hamiltonian, and in order to explore all three dynamical phases,
we engineer two sub-ensembles of atoms with separate control over energy shifts within each
sub-ensemble. For practical convenience, we introduce experimental control in the form of an
overall frequency splitting d; between two sub-ensembles and an effective frequency width Ew
of each sub-ensemble to engineer a tunable dispersion relation ¢, as in Fig. 10.1b. Phase I and
phase II can also be observed using a single ensemble of atoms as shown in Fig. 10.2. Both
experimental setups can nonetheless be described by a common phase diagram as shown in
Fig. 10.1c.

We initialise all the atoms in the |]) state and then apply a coherent 7/2 pulse through
the cavity in 100 ns such that Q > xN, where (2 is the pulse Rabi frequency and y/N is
the characteristic interaction strength for an ensemble of N atoms. This establishes a large
BCS order parameter Agcg on a timescale faster than any other relevant dynamics, mimicking
the ground state of a Hamiltonian with an infinite interaction strength y. We then quench
the system by rapidly turning on e, which sets a finite ratio YN/FEw and a variable &5/ Ew,
allowing us to explore the dynamical phase diagram shown in Fig. 10.1c.

We measure both the pre- and post-quench dynamics of |Agcs| by monitoring light emitted
by the atoms into the cavity as a function of time (see Fig. 10.1d).

This light arises from a superradiance process which is suppressed when the cavity resonance
is detuned from the atomic transition frequency by much more than x, the cavity power decay
linewidth [Weiner et al.(2012), Bohnet et al.(2013), Norcia et al.(2016)].
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10.3 Phase I to phase II

(what it the superradiance? what is going on in the cited articles??)

In this limit, the established cavity field adiabatically follows (5’ ~), which is proportional to
Agcs. By measuring the leakage of light from the cavity in heterodyne with a local oscillator,
we therefore obtain a real-time probe of Apcs.

(how is it?777)

Importantly, at the chosen detuning this probe is quasi-nondestructive, since only a small
fraction of the atoms emit light over relevant timescales. In plots of |Apgcg| over time, we

normalise traces to the initial gap size A,y measured right after the 7/2 pulse.

10.3 Phase I to phase II

We probe the phase I to phase II transition by varying the ratio xN/Ew between the
interaction strength and the width of the single-particle energy distribution. As shown in
Fig. 10.2a, we shine an off-resonant 461 nm beam onto a single atomic ensemble from the side
of the cavity that generates a distribution of AC Stark shifts with a spread Ew. Careful shaping
of the 461 nm beam allows us to realise a roughly flat density of states (see Methods), resulting
in a setup consistent with the d; = 0 line in Fig. 10.1c (see Supplemental Online Material).
After the initial 7/2 pulse, we wait for 2 us to let transient dynamics settle and then turn on
the 461 nm beam to quench on Ew /27 = 0.83 MHz from an initial value E\(;(\),)/QW < 0.1 MHz.
The beam exhibits a rise time of roughly 50 ns, much faster than the relevant dynamics. To
scan across the phase diagram in the inset of Fig. 10.2b, we vary the interaction strength y /N
between shots by changing the atom number N.
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Figure 10.3: Phase II to phase III transition. a, Engineering a bimodal energy distribution.
We prepare two atomic clouds with centres separated by 3 mm and shine an off-resonant
461 nm beam centred on one cloud. This generates a density of states p(w) (middle plot),
equivalent to a dispersion relation e, = hw;, (bottom plot). b, Probing phase II and phase
ITII. We prepare the same initial state as in Fig. 10.2b with a 7/2 pulse, quench to a finite
ds/Ew, and then let the system evolve. The inset shows the explored parameter cut and
identifies post-quench s/ FEw values with coloured dots. As before, coloured traces represent
experimental time traces of [Apcs|, and darker lines represent numerical simulations. ¢, Ideal
simulations of mean-field trajectories for the two sub-ensembles (solid and dashed curves) in
phase II (magenta) and phase III (blue). The trajectories are projected onto the surface of the
Bloch sphere for visual clarity. d, Fourier response of |Apgg|? for different dg, plotted as power
spectra of the dynamics from t = 0.5 us to 4 us after subtracting slow-moving behaviour. e,
Average oscillation amplitude between ¢t = 3 ps and 8 us. For the remaining plots, dashed
lines represent ideal simulations (ignoring dissipation or motional effects), and solid dark lines
correspond to full simulations. The additional dotted line represents numerical simulations
rescaled by x0.2, plotted to show similar trend behaviour between experimental data and
simulations. We identify a phase transition around d5/27 = 0.85 MHz. f, Oscillation frequency
of |Apcs|, measured using power spectra calculated in (d). We correct for systematics inferred
from our data analysis and assume this correction has an uncertainty of 100%, shown by the
green band. The phase transition point observed in data in panels (e) and (f) agrees well with
simulations.

As shown in Fig. 10.2b and ¢, we observe two distinct dynamical behaviours corresponding
to phases I and II, signalled by the decay rate of |Apcs|. For experiments with sufficiently small
XN, such as xN/2m = 0.19 MHz, |Apcs| decays with a 1/e coherence time of 0.94+0.1 ps. This
coherence time is consistent with single-particle dephasing of (S"} set by the energy spread
hEw and is nearly constant throughout this regime. We identify the fast decay of |Apcs| as an
experimental signature of phase I. For larger interaction strengths, we observe a rapid increase
in coherence time up to a maximum of 29 us when YN/27m = 1.2 MHz; this constitutes an
improvement of more than a factor of 30. We identify this extended coherence time regime as
phase II. The residual decay of |[Apcs| in this regime can be attributed to intrinsic dissipative
processes including spontaneous emission, off-resonant superradiant emission, and scattering
of 461 nm light [Norcia et al.(2016), Norcia et al.(2018a)], which set a maximum predicted
coherence time of 29 us (see Methods). All experimental observations (coloured traces) are in
good agreement with numerical simulations based on experimental conditions (dark lines—see

Methods).
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10.4 Phase II to phase III

Due to the separation of timescales in the decay of |Apcs|, we are able to determine the
boundary between phase I and phase II in our experiment by calculating the average |Apcs|
in a time window from 3 us to 8 us as a function of YN (see Fig. 10.2c). In this analysis,
phase I features a vanishing average |Apcg|, while phase II sees a nonzero |Apcs| that increases
with yN. The sharp rise of average |Apcs| around yN/27 = 0.2 MHz indicates a dynamical
phase transition, which agrees with the point predicted by numerical simulations. In a spin-
model picture, the BCS pairing gap corresponds to the energy gap between collective angular
momentum states, which exists due to the spin-exchange interaction yS*tS5~ [Rey et al.(2008)].
Phase II corresponds to the parameter region where such interactions are sufficiently strong to
protect against single-particle dephasing. As a result, the observed transition directly relates to
previous experiments exploring coherence protection in other systems [Davis et al.(2020), Norcia
et al.(2018a), Smale et al.(2019), Deutsch et al.(2010), Kleine et al.(2008), Allred et al.(2002)].

In BCS superconductors, the excitation of a Higgs mode is predicted to occur in phase II.
This mode can be characterised by a collective damped oscillation of the order parameter |Apcs|
with a characteristic frequency of 2A., [Yuzbashyan et al.(2015)]. We observe hints of Higgs
oscillations by comparing the experimental trace of |Apcg| at xN/2m = 1.2 MHz (red curve in
Fig. 10.2b) with the dissipation-free simulation (dashed line in Fig. 10.2b) and noticing that
the first dip in the experimental trace coincides with the first cycle of Higgs oscillations (see
Methods). The size of this feature can be increased experimentally by engineering an initial
phase spread p(wy) € [0, po] between atoms which is correlated with the post-quench frequency
shifts wy, of the atoms, as shown in Fig. 10.2d. The initial state with a nonzero opening angle
¢o shares qualitative features with the BCS ground state at finite y up to a m/2 rotation on
the Bloch sphere [Lewis-Swan et al.(2021)], in contrast to the initial state mimicking the BCS
ground state with infinite x in Fig. 10.2b.

10.4 Phase II to phase III

We probe the phase II to phase III transition using a vertical cut through the dynamical
phase diagram. To realise this, we introduce an energy splitting Ads between two individually
addressable clouds of atoms along the cavity axis using AC Stark shifts from our 461 nm beam,
as shown in Fig. 10.3a. In combination with a background energy spread AFEy associated with
lattice shifts (see Methods), this produces a bimodal density of states and a dispersion relation
similar to the one proposed in Fig. 10.1b. As before, we begin the experiment with a highly
coherent state and with o, = 0. Then, we quench on a nonzero d; and let the system evolve.
Between shots, we scan dg while fixing xyN/27 = 0.9 MHz and Fw /27 ~ 0.34 MHz to explore
the vertical cut.

The resulting dynamics show a marked change in the dynamical evolution of |Agcg| over the
scan as shown in Fig. 10.3b, which we attribute to a transition between phase II and phase III
dynamics. For small d5, we either see Higgs-like oscillations which are damped after 3 us (the
trace where ds/2m = 0.6 MHz) or, for very small splittings, no oscillations resolvable above the
noise floor (ds/2m = 0.3 MHz). We associate this regime with phase II since it overlaps with the
previously observed phase II dynamics in parameter space. For larger dg, curves instead show
large-amplitude oscillations that persist for more than 5 us (6s/2m = 1.4 MHz). We identify
the long-lived oscillations in this parameter regime as an experimental signature of phase III.

Intuitively, we can understand the difference between the two phases by identifying the two
sub-ensembles of atoms with two Bloch vectors (see Fig. 10.3c). In phase II, a finite Js causes
the Bloch vectors to precess in different directions, but the dominant scale YN locks them
together to form the solid and dashed magenta orbits. In the presence of a finite Ey, the orbits
decay, but the Bloch vectors maintain phase coherence. On the other hand, in phase III g is
large enough that the two Bloch vectors accrue an unbounded relative phase, as in the blue

62



10.4 Phase II to phase III

orbits. The presence of interactions locks each sub-ensemble separately against a finite Euy,
leading to persistent oscillations. This effective beating of two large spins in a macroscopic
array of spin-1/2 particles is truly an interaction-driven effect since the interactions are strong
enough to lock the spins within each sub-ensemble but not strong enough to lock both sub-
ensembles together. In our implementation of phase III, the bimodal distribution allows us to
dynamically separate the Bloch vectors of the two sub-ensembles, instead of starting with an
already split distribution like in weakly interacting BCS ground states featuring a sharp Fermi
edge. Despite their qualitative differences, these two situations can be dynamically connected
(see Methods).

We can experimentally define a boundary between phase II and phase III using the separa-
tion of timescales observed for oscillations in |Apcg|. Fig. 10.3e shows the average oscillation
amplitude in a time window from ¢t = 3 pus to 8 us. In this analysis, we observe a sharp rise in
oscillation amplitude at ds/27 = 0.85 MHz ~ xN /27 as we increase s, which we identify as a
dynamical phase transition. Numerical simulations plotted in Fig. 10.3e agree fairly well with
data in capturing trend behaviour and estimating the phase transition point. However, we see
a discrepancy in the absolute size of the observed and predicted oscillation amplitudes. We
attribute this to an extra dephasing mechanism (likely residual motional effects) in our system
or other imperfections in the experimental sequence not captured by the theory model.
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Figure 10.4: Scan across three dynamical phases. a, Probing phase I, IT and III dynamics
using time traces of |Apcg|. Quenches are performed in the same manner as in Fig. 10.3b,
except between shots we hold post-quench values of d4 fixed and vary y/N instead. The inset
shows the explored cut through the phase diagram and identifies final y N/ Eyw values with green
(phase I), blue (phase III), and red (phase II) dots. The xN/27 = 0.2 MHz trace is smoothed
for clarity. b, Time average of |Apcs| in a bin from ¢ = 3 us to 8 us vs. interaction strength. The
experimental data shows signatures of a phase I to phase III transition at xyN/27 = 0.25 MHz.
¢, Oscillation frequency of |Apcs| vs. interaction strength in a bin from ¢ = 0.5 us to 4 us.
Again, we correct for systematics inferred from our data analysis and assume this correction
has an uncertainty of 100%, shown by the green band. This data identifies a phase III to
phase II transition at x/N/2m = 1.0 MHz. Experimental data and transitions in both plots are
consistent with numerical simulations.

We verify the location of the phase II to phase III transition using the short-time oscillation
frequency (from ¢ = 0.5 us to 4 us) as an additional experimental signature. As can be seen
in the Fourier responses in Fig. 10.3d and quantified in Fig. 10.3f, the oscillation frequency
exhibits a dip vs. d5 at the previously-identified phase boundary. This dip is present in roughly
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10.5 Scan across three dynamical phases

the same location for experiment and theory and is expected to coincide with the phase II to
phase III transition (see Supplemental Online Material).

10.5 Scan across three dynamical phases

Finally, we observe all three dynamical phases in a single cut through parameter space, as
shown in Fig. 10.4a. We run the same experimental sequence described in Fig. 10.3, but instead
scan xN between shots with d;/2m = 1.1 MHz and Ew/27 = 0.46 MHz fixed. This allows us
to probe phase I, phase III and then phase II by increasing atom number N.

Using order parameters established in Figs. 10.2 and 10.3, we determine boundaries between
the three phases. As shown in Fig. 10.4b, the long-time average of | Agcs| rises suddenly around
XN /27 = 0.25 MHz in both data and simulations. This transition marks the boundary between
phase I and phase III. Additionally, at x/N/2m = 1.0 MHz we observe a dip in the short-time
oscillation frequency of |Apcs| (Fig. 10.4c), marking a transition between phase III and phase
II. For this scan, we do not use the long-time oscillation amplitude as an order parameter due
to poor signal-to-noise for smaller values of y/V.

10.6 Methods
10.6.1 Experimental setup: phase I to phase II transition

To explore the phase diagram cut in Fig. 10.2, we first load 10° — 10® ®Sr atoms from a
magneto-optical trap into an 813 nm optical lattice supported by a high-finesse optical cavity,
similar to previous experiments [Norcia et al.(2016), Norcia et al.(2018b), Norcia et al.(2018a),
Muniz et al.(2020)]. The resulting atomic cloud has a temperature of roughly 15 uK, resulting
in a Gaussian distribution transverse to the cavity axis with standard deviation o, = o, =
16 pm (coordinates defined in Extended Data Fig. 10.1a). Further, the cloud is extended over
thousands of lattice sites, forming a distribution along the cavity axis with a standard deviation
0, = 430 pm. We measure an axial trapping frequency of w, /27 = 165 kHz, giving a Lamb-
Dicke parameter of n = 0.17 for excitation with 689 nm light. At the measured temperature,
n*(2n + 1) = 0.11 < 1, placing the atoms in the Lamb-Dicke regime. We set a quantisation
axis along ¢ with a 2.4 G magnetic field and tune the lattice polarisation to a “magic angle”
relative to this axis, such that the differential lattice shift between ground (]'Sy)) and excited
(|1>P1, my = 0)) states vanishes [Muniz et al.(2020)]. Using piezoelectric actuators, we stabilise
the cavity length to set the closest TEMg, resonance to be 51 MHz red-detuned from the atomic
transition.

After loading into the lattice, we initialise the atoms with a g-polarised drive through the
cavity which is nominally resonant with the atomic transition. Because the drive is far off-
resonance from the cavity (which has linewidth /27 = 153 kHz at 689 nm), the induced Rabi
frequency is somewhat suppressed. Nonetheless, we find that roughly 5 mW of power before the
cavity is sufficient to drive the atoms with a 7/2 pulse in 100 ns. We allow the atoms to settle
for 2 ps in order to distinguish the desired physics from transient dynamics observed after state
initialisation, which we attribute to undesired excitation of sideband transitions. We then shine
a 461 nm beam from the side of the cavity along the ¢ direction, detuned from the [1Sy) — |'P;)
transition by more than 10 GHz, in order to induce AC Stark shifts on the ground state. The
beam has waists (w,,w,) = (1030 pm, 75 pm) along the & and Z directions at the plane of the
atoms, and its centre is displaced from the centre of the atomic cloud by xq = 580 pm along the
cavity axis. From these dimensions, we calculate an atomic density of states p(w) as a function
of frequency shift which is roughly uniform between 0 and a maximum shift AEw. We estimate
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10.6.2 Experimental setup: cuts through phase I11

that for the power and detuning used in this cut, the 461 nm beam scatters off the atoms with
an average rate of Ry./2m = 1.3 kHz, roughly a factor of six smaller than /27 = 7.5 kHz,
the spontaneous emission rate. Combined with collective emission from the atoms as described
in the Readout section of the Methods, these dissipation processes set a maximum predicted
coherence time in the system of 29 us.
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Extended Data Fig. 10.1: Experimental configuration. a, Detailed diagram of the cavity
and all relevant beams. A magnetic field along 7 sets the quantisation axis. The 813 nm optical
lattice supported by the cavity has a tunable linear polarisation. We drive a 7/2 pulse with
a beam polarised along ¢ through the cavity, and during the experiment we probe the cavity
resonance frequency using a second g-polarised beam to measure atom number. A 461 nm beam
far-detuned from the |'Sp) — |'P;) transition shines on the atoms from the side of the cavity,
inducing AC Stark shifts. We probe signals transmitted through the cavity using a balanced
heterodyne detector. b, Fluorescence image of the two atomic clouds used when scanning
through phase III in Figs. 10.3 and 10.4. ¢, Frequency landscape of 689 nm beams. The atomic
drive frequency wgrive is resonant with the atomic transition. The cavity probe frequency we, is
nominally centred with the cavity resonance frequency, 51 MHz red-detuned from the atomic
transition. The local oscillator used in heterodyne detection has frequency wro and is 80 MHz
blue-detuned from the atomic transition.

10.6.2 Experimental setup: cuts through phase III

For the two cuts through phase III described in Figs. 10.3 and 10.4, we load the atoms in
two clouds separated by 3 mm, as shown in Extended Data Fig. 10.1b. The left cloud has an
extent described by standard deviations (0,,0.) = (200 pm, 16 pm). The right cloud has a
similar extent along o, but is broader along the cavity axis. We tune the lattice polarisation to
point along Z, which breaks the magic angle condition and introduces a differential trap depth
between ground and excited states of 0.47 MHz for atoms experiencing peak lattice intensity.
Due to their finite temperature, the atoms experience a spread in lattice intensities which
leads to an inhomogeneous trap depth. We estimate the induced distribution of energy shifts
by assuming the atoms occupy a 2D Gaussian distribution radially with standard deviation
oy = 0, = 16 um, compared to the lattice waist w, = w, = 80 pm. This produces a peaked
distribution equivalent to the narrow peak in Fig. 10.3a.

In these experiments, we perform a 7/2 pulse as before and then immediately shine a 461 nm
beam centred on the left (“bright”) atomic cloud. Unlike in the previous cut, we do not wait
for transient dynamics to settle after state initialisation, for the sake of simplicity. We do
not see major differences between observed and expected behaviour when omitting the wait
period. The beam has waists (w,,w,) = (1700 pm,80 pm). We install a beam block just
before the chamber that clips the beam tail that would otherwise hit the right (“dark”) atomic
cloud. The 3 mm separation between clouds is sufficiently large to ensure the beam does not
significantly diffract around the beam block. The beam shifts the mean energy of the bright
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cloud away from that of the dark cloud, introducing a tunable d;. While nominally, we hold
Ew fixed while scanning d4 to explore the phase II to phase III transition, in reality the finite
size of the blue beam introduces an additional contribution to Eyw on the bright cloud. As d
increases, therefore, both the size and shape of the single-particle energy distribution changes.
We calculate Ew in a consistent manner by estimating the standard deviation of the bright
cloud distribution and matching the result to a uniform distribution with the same standard
deviation (see Supplemental Online Material). In the main text, we report the value of Ew
obtained at the phase transition point for the phase II to phase III transition. As we increase
the 461 nm beam power, the atoms also scatter more blue photons. At the largest applied AC
Stark shift, we estimate that the bright cloud experiences a scattering rate of Ry./2m = 3.4 kHz,
resulting in lower coherence times for traces with large d;. However, this excess decoherence
does not bias our measurements of oscillation amplitude and frequency at times t < 8 us.

10.6.3 Readout

After initialisation in all experiments, the atomic ensemble establishes a small electric field
inside the cavity which adiabatically follows (S~) [Norcia et al.(2018a)]. Assuming homoge-
neous atom-light coupling (see next section for modifications due to inhomogeneous coupling),
the complex amplitude of the electric field leaking out of the cavity is given by

o (1) = = 5v/mdS (1), (10.2)

where s has units of \/photons/s. Here, 2¢g/27 = 10.6 kHz is the single-photon Rabi fre-
quency for an atom maximally coupled to the cavity, 6./27 = (w. — w,)/2m = —51 MHz is
the detuning between the cavity resonance frequency w. and the atomic transition frequency
Wa, and K, /2m = 41 kHz is the rate at which photons incident on the cavity mirror are trans-
mitted. oy is a form of dissipation in the system equivalent to superradiance in a detuned
cavity limit. Over the region of parameter space explored in this work, we estimate that the
dissipation rate never exceeds ysg/2m = 2.3 kHz. We measure the detuned superradiant light
as it leaks out of the cavity using balanced heterodyne detection, providing us with a real-time
probe of <§ ~) o« Apcs. In plots of |Apgs| in the main text, we calculate the square magnitude
of this quantity and average over 400-1600 shots of the experiment, taken within 2-10 minutes.
We then perform background subtraction to remove vacuum noise power from the heterodyne
signal. Finally, we take a signed square root of the result to return an estimate of |Agcs| which
averages to zero in the absence of a real signal. This explains why some traces dip below zero
despite representing a nonnegative quantity.

Additionally, the cavity experiences a (dispersive) shift in its resonance frequency propor-
tional to the number of atoms. We use this fact to measure atom number by sending a pulsed
probe tone through the cavity and measuring the frequency shift using the transmitted light.
Since this light is spectrally resolved from the light emitted by the atoms, we are able to mea-
sure both signals independently on our heterodyne detector. The different optical frequencies
involved in the heterodyne beat are compared in Extended Data Fig. 10.1c.
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10.6.4 Dynamical phase diagram
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Extended Data Fig. 10.2: Numerical simulation of the dynamical phase diagram
based on Eq. (10.3). We identify the dynamical phases based on the long-time average
(a) and the long-time standard deviation (b) of |Apcg(t)|, normalised by its initial value
Aipnit = |Apcs(0)]. The white solid lines mark the corresponding dynamical phase bound-
aries, analytically derived from Eq. (10.1), which agree with the numerical results based on
Eq. (10.3). The white dashed lines mark an extra dynamical phase transition that only exists
for Eq. (10.1).

10.6.4 Dynamical phase diagram

The unitary dynamics of our system is modelled by an effective atom-only Hamiltonian,
given by

H=hx> oSSy +Y esi, (10.3)
jk k

where S77, S7%* are the standard spin-1/2 operators on atom k. We define y = —g23,/(0% +
k%/4), where g and ¢, are as defined in the previous section, and & is the cavity linewidth. The
spatial dependence of the interaction term is characterised by (; = cos(j¢) with ¢ = T/,
which arises because the lattice wavelength A\, = 813 nm is incommensurate with the cavity
wavelength A\, = 689 nm. In contrast to Eq. (10.1), Eq. (10.3) becomes non-integrable due to
the inhomogeneity in the interaction term. Nevertheless, as shown in Extended Data Fig. 10.2,
Eq. (10.3) leads to a similar dynamical phase diagram as Eq. (10.1) if we

1. Use a generalised superconducting order parameter Agcs = X > . G S )

2. Interpret the m/2-pulse as a pulse along the cavity axis under the Hamiltonian I—:Tdrivc =
hQYY", CeSy that generates the maximum possible |Apcg|, which occurs when Qt =
0.5867;

3. Replace the atomic number N by an effective atom number N.g = N/2, such that x Neg
represents the averaged interaction strength of Eq. (10.3).

We can still measure the generalised order parameter Apcg using the field leaking out of
the cavity as in the previous section, since with inhomogeneous coupling the transmitted field
takes the form aou(t) = —Z&\/Km Dy Ce(S7 (1)) o< Apcs. The dynamical phase diagram in
Extended Data Fig. 10.2 is numerically calculated based on unitary evolution under Eq. (10.3),
with a single-particle dispersion €5 /h sampled from a uniform distribution in the frequency
range [—0s/2 — Ew /2, —0s/2 4+ Ew/2] and [05/2 — Ew/2,0s/2 + Ew/2]. There x N corresponds
to the averaged interaction strength of Eq. (10.3). We identify the dynamical phases based on
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10.6.4 Dynamical phase diagram

the long-time average of |Apcs|, given by

1"
Ave(Ancsl) = Jim 7 [ 1Ancs(®)d (10.4)

as well as the long-time oscillation amplitude of |Apcg|. Since the oscillations in |Apcs| might
deviate from a sinusoidal form, for theoretical simulations it is easier to use the standard
deviation as a measure of the oscillation amplitude:

Std(|Apcs])

— { lim l/OT <|ABcs(t)| - AVg<|ABCS|)>2dt:|

When comparing to experimental data, we measure oscillation amplitude using the Fourier
spectrum because technical noise in the experiment contributes to the standard deviation of
the time traces (see Fig. 10.3d). The dynamical phases can be characterised in theoretical
simulations by

e Phase I: Avg(’ABcsD = 0, Std(|ABcs|) =0.
e Phase II: Avg(|ABcs|) > 0, Std(|ABcs|) =0.

1/2 (10.5)

e Phase III: Avg(|Apcs|) > 0, Std(]Apcs|) > 0.

Std(|Ages| )/ A
a m b 3.0 (|Agcs| ) Dini 0.30
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Extended Data Fig. 10.3: Alternative approach for phase III. a, Simulation of an
alternative experimental sequence. As described by the timing sequence at the top, we simulate
an experiment that prepares the initial state using a 7/2 pulse, lets the system evolve under a
bimodal distribution of single-particle energy (see the inset) until |Apcg| reaches its minimum
value, and then quenches the system back to a continuous distribution of single-particle energies
(see the inset). The theoretically predicted time trace of |Apcs| with xN/Ew = 1.0 and
dsimit/ Ew = 1.6 is shown at the bottom. The blue (grey dashed) line shows phase III dynamics
under a continuous (bimodal) distribution. b, Long-time standard deviation of |Apcs ()| after
quenching to the continuous distribution shown in a. The white lines are dynamical phase
boundaries for bimodal distributions (see Extended Data Fig. 10.2). Nearly all the choices
of parameter for phase III using bimodal distributions can lead to phase III behaviours after
quenching to the continuous distribution.

The dynamical phase boundaries (white solid lines) in Extended Data Fig. 10.2 are ana-
lytically calculated using a Lax analysis applied to Eq. (10.1), similar to the one discussed in
[Lewis-Swan et al.(2021), Marino et al.(2022)], and take the following form (see Supplemental
Online Material for a detailed derivation):
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10.6.5 Phase III dynamics: the case of a continuous single-particle dispersion

e Phase I to phase II:

N s
MU0 with =2 e 0, 1],
Bw m Ew (10.6)
s xN 1 2 '
=1 with =—¢€ |-, —
W By T
e Phase I to phase III:
xN 2 . Js
o = th — > 1. 10.
Bo n wi By > (10.7)
e Phase II to phase III:
— = — th — > —. 10.8
o cse (XN) wi By > (10.8)

The analytical results agree with the numerical simulations for Eq. (10.3). The only difference
is that Eq. (10.1) predicts an extra dynamical phase transition marked by the white dashed
line. The dynamical phase boundaries shown in Fig. 10.1c are constructed by the analytical
formulas above.

10.6.5 Phase III dynamics: the case of a continuous single-particle
dispersion

In this manuscript, we generate phase III using a bimodal single-particle dispersion, repre-
sented with idealized assumptions by Fig. 10.1b and with actual experimental conditions by
Fig. 10.3a. Here we show that this experimentally convenient approach generates similar phase
IIT dynamics to the one obtained in the case of a continuous dispersion but with different initial
conditions.

This is done by the protocol shown in Extended Data Fig. 10.3a, which uses a bimodal
distribution (Jsmit > Ew) just to generate a state with minimum |Apcg|. At this point the
system’s dispersion is restored to be continuous by setting s fina1 = Fyw. This approach more
closely resembles the phase III quench discussed in actual BCS superconductors, where phase
IIT is observed by quenching from a state with weak BCS paring gap |Apcs| to one with a
strong pairing gap [Yuzbashyan et al.(2015)]. Numerical simulations based on Eq. (10.3) show
that nearly all choices of parameters that lead to phase III using a bimodal distribution also
lead to phase III dynamics when quenching to a continuous distribution. The only exception is
a small parameter regime close to the boundary between phase 111 and phase II (see Extended
Data Fig. 10.3b). Note that here we use definitions for Agcg, the 7/2 pulse, and xN which
correspond to Eq. (10.3), as explained in the previous section.

10.6.6 Numerical simulations

The black dashed lines in Figs. 10.2, 10.3, and 10.4 are computed from unitary evolution un-
der Eq. (10.3) using a single-particle dispersion ¢, sampled from the experimentally engineered
distribution.

The black solid lines in the same figures are obtained by adding dissipative processes and
axial motion to Eq. (10.3). The system dynamics is described by the following master equation
for the density matrix p:

dp

- = h[Hp]—i—E +Z£ o) +Z£ o) (10.9)
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10.6.6 Numerical simulations

The Lindblad superoperator takes the form £(L)[p] = LpLt — %(fﬁf)ﬁ + pLTL). Superradiance
through the cavity is described by the jump operator

Le=vVT> &GSy (10.10)
k

where I" = yk/d.. Spontaneous emission from the atomic excited state is described by the jump
operator

Ley = /755, (10.11)

where v/27 = 7.5 kHz is the spontaneous emission rate out of ®P;. Single-particle decoherence

is described by the jump operator ) )
L = /2755, (10.12)

where 7, is a fitting parameter taking into account free space scattering from the AC Stark
shift beam, as well as other decoherence processes in the experiment (see Supplemental Online
Material). These are the dominant dissipative processes in our system.

The axial trapping frequency of the lattice is 165 kHz and is therefore smaller than the spin-
exchange interaction rate y /N for most of the experiments. As a consequence, in contrast to the
idealised model where atoms are assumed to be frozen, motional processes need to be accounted
for, even though they are suppressed in the Lamb-Dicke regime. As shown in the Supplemental
Online Material, axial motion can lead to a faster damping rate of |Agcs| oscillations. The
predicted dynamical phase boundaries are nevertheless unaffected by the axial motion.

All the numerical simulations are computed using the mean-field approximation, which re-
places the operators S,fyz by their expectation values (S,fyz> in the Heisenberg equation of
motion. The mean-field treatment of the BCS model is predicted to be exact in the thermo-
dynamic limit due to the infinite-range nature of the interactions [Yuzbashyan et al.(2015)].
The atom number for numerical simulation is set to 5000 for the ideal conditions and 2000 for
actual experimental conditions. We rescale x to match y/N with experimental values.
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10.6.7 Higgs-like behaviour in short-time phase II dynamics
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Extended Data Fig. 10.4: Collective scaling in damped phase II oscillations. a,
Time dynamics of |[Apcs| measured after engineering an initial phase spread over [0, ¢o] where
wo = 0.87 as in Fig. 2d, plotted in absolute frequency units (pink trace). The solid black
curve represents a numerical simulation of the full system, whereas the dashed curve represents
an ideal simulation neglecting dissipation and motional effects. We obtain a crude estimate
of oscillation frequency in the experimental data by fitting a trough and peak to smoothed
data (after subtracting slow-moving behaviour) within the first couple ps (magenta points),
using these points to infer a half period of oscillation, and with uncertainties determined using
a 90% amplitude threshold (pink bands). b, Comparing oscillation frequency estimates of
experimental data (pink squares) with those of ideal simulations (black dots) for different .
Theory oscillation frequencies are calculated using a Fourier transform from ¢ = 0 ustot = 5 us.
Error bars for experimental data are set by the minimum and maximum frequencies implied
by uncertainties in the half period shown in a. The two frequency estimates agree within error
bars. ¢, Collective scaling of oscillation frequency. For each ¢y measured in the experiment,
we plot the oscillation frequency against the long-time BCS gap A, calculated at ¢ = 18 us
for ideal simulations and at ¢ = 3 us for experimental data. The solid black line is defined by
Wese = 2A,, demonstrating the expected scaling for Higgs oscillations. The dashed pink line
represents a linear fit to the experimental data. The pink band shows the uncertainty in the
slope assuming correlated error in wee., such that its bounds are defined by linear fits to the
data assuming maximum and minimum values for wes. as defined by the error bars.

10.6.7 Higgs-like behaviour in short-time phase II dynamics

When quenching into phase II, we observe highly damped oscillations in |Agcg|, reminiscent
of the Higgs oscillations predicted to arise in this regime of the BCS model. Here, we analyse
traces from Fig. 10.2d, in which we engineer a variable phase spread p(wy) € [0, o] before
quenching into phase II, to study this potential connection.

In the BCS model, Higgs oscillations can be characterised by their frequency, which should
scale with the long-time BCS order parameter A, as wes. = 2A [Yuzbashyan et al.(2015)]. We
confirm this scaling in theory by measuring the oscillation frequency from ¢t =0 ps tot =5 us
in idealised numerical simulations ignoring dissipation and motional effects (black dashed line
in Extended Data Fig. 10.4a). For different values of the phase spread extent g, the system
reaches its steady state at a different long-time BCS gap A,,. By parametrically plotting the
oscillation frequency vs. 2A ., as a function of ¢y in panel ¢, we observe the expected scaling.

As discussed in the main text, oscillations in |Apcg| are consistently smaller and decay
more quickly in experiment than in theory. Nonetheless, we obtain a crude estimate of the
experimental oscillation frequency by measuring a half period from the first trough and peak
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10.7 Dynamical phase diagram

of |Apcs(t)|, as shown in panel a. In panel b, we compare the frequency in experimental data
to that of ideal simulations for different ¢, and show that the frequencies agree within error
bars. This suggests that the transient dynamics observed in |Apcg| are related to the Higgs
oscillations present in theory.

Although the experimental oscillation frequency agrees with simulations, the steady-state
order parameter A, is much smaller, as can be seen in Extended Data Fig. 10.4a. As a result,
the measured frequencies scale linearly with A, but with a different prefactor. In panel c, we
fit a linear relation of wes. = (1.7707) x 2A, to the data, where the slope uncertainty bounds
are calculated assuming errors in we. are perfectly correlated. Most of the reduction in A, can
be captured in theory by considering dissipation and motional effects (solid black trace). We see
an additional small difference in |Apcs| between full numerical simulations and experimental
data, which we attribute to drifts in experimental alignments and calibration factors over time.
This difference is not apparent in Fig. 10.2d because we plot |Apcg| in normalised units.

10.7 Dynamical phase diagram

In this section, we perform detailed analysis of the dynamical phase diagram shown in Fig. 1c
in the main text. We start from analytic calculation in the case of homogeneous couplings, and
then generalize to the case of inhomogeneous couplings. Finally we discuss the application of
our findings to experimental conditions.

10.7.1 Homogeneous model

First we discuss the dynamical phases for the BCS Hamiltonian with homogeneous cou-
plings,
H=hxST5" + ) =55, (10.13)
k

We will set i = 1. As shown in Ref. [Yuzbashyan et al.(2015), Lewis-Swan et al.(2021)], the
dynamical phases can be determined using a mean-field Lax vector analysis. The Lax vector is
defined as L(u) = L*(u)Z + LY(u)y + L*(u)Z with components,

S2(0 v SY(0 o1 S7(0
Lz(“):zk:u——ik)/f L(u)_zk:u_—ik)/z, L(u)——;—zu_—ik)/? (10.14)

where S¢¥%(0) are the expectation value of operators Si*¥* in the initial state.
Here we consider the initial state as S§(0) = 1/2, S{(0) = S{(0) = 0, and ¢, is chosen

from a uniform distribution in the frequency range [—ds/2 — Ew/2, —6s/2 + Ew/2] and [ds/2 —

Ew/2,0s/2 + Ew/2]. In this case, the mean-field Lax vector takes the following form:

XN 1 —0s/2+Ew /2 dax 1 0s/24+FEw /2 dx
Xy = X5 [ +
2 [2Bw J_s.)0-py2 U— x/2  2Ew 8 /2—Ew/2 U — z/2

XN 65 EW 55 EW 55 EW 6s EW
= A & 2w O IW (- B 2V - 2 EY
2Ew[n(“+4+4) n<“+4 ;)T\t Ta T \UTY T )]

XL (u) = 0,
xL*(u) = —1.

(10.15)
Note that In z in the complex plane is a multivalued function. Here we take the principal value
Inz = In|z| + iArg(z), where Arg(z) is the argument of z restricted in the interval (—m,7].
Directly combining the logarithm functions might lead to moving out of the principal branch.
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10.7.1 Homogeneous model

One can define the dynamical phases based on the number of complex roots of equation
E(u) . E(u) = 0: Phase I has zero complex roots, phase II has a pair of complex roots, phase
IIT has two pairs of complex roots. Whether the complex roots have non-zero or vanishing real
parts could be used for further separation of the phases. In our case, the equation L(u)-L(u) = 0
takes the following form,

ﬂ[ln (u+§+E—W) —In (u—{—%—E—W)—I—ln (u—%—l—E—W) —In (u—§—@)] = 4.

2FEw 4 4 4 4 4 4 4 4
(10.16)
We find four dynamical phases based on analyzing the roots of Eq. (10.16):
e Phase I: No complex roots, which exist in the regime
s xN 1 s xN 2
<l, —<- >1, —— < - 10.17
EW ’ EW ™ o EW ’ EW ™ ( )

e Phase II: A pair of complex roots,

u ? Ew Ew 92
— =+—|cot | — =) - = 10.1
1 {co <XN) + \/csc (XN) 2 | (10.18)

which exist in the regime

ds N
< 1’ X_
Ew L

1
> —. 10.19
. (10.19)

e Phase I1la: Two pairs of complex roots with vanishing real parts,

(51 1 EW Ew 02 U9 1 EW EW 02
— ==*£—|cot | — 2 - = =x—|cot| —|— 2l —= ) - =
P 1 {co (XN)+\/CSC (XN> 22| Bw 1 co N csc N zak

(10.20)
which exist in the regime
53 XN 2 (53 EW
>1, = > - < — . 10.21
B ' Be T n B csc (XN> ( )

In phase IIla, the order parameter, Apcg oscillates around a non-zero value (non-ZOPA)
as pointed out in Ref. [Collado et al.(2023), Lewis-Swan et al.(2021)].

e Phase IIIb: Two pairs of complex roots with non-zero real parts,

m = 4_1 {\/5;2 — cse2 (X’_N)im()t (X’N)]’ m = Z {—\/522 — csc? (XI—N>izcot <X'N>]7

(10.22)
which exist in the regime
55 XN 2 55 EW
>1, —>— > — . 10.23
B BT n B cse (XN) ( )

In phase IIIb, Agcg oscillates with zero order parameter average (ZOPA) as explained in
Ref. [Collado et al.(2023), Lewis-Swan et al.(2021)].
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10.7.1 Homogeneous model

The dynamical phases derived from the Lax analysis above are supported by numerical
evidences, as shown in Fig. 10.5a and Fig. 10.5b. We numerically solve the dynamics of Agcg =
X(S ~) under Eq. (10.13) based on mean field approximation, and then identify dynamical phases
based on long-time average of |Apgcs|,

1
Ave(|Sncs)) = Jim - [ [Sncs(t)lt (10.24)
—00 0

and long-time oscillation amplitude of |[Agcg|. Since the oscillations in |Agcg| might deviates
from a sinusoidal form, it is easier to use the standard deviation as a measure of the oscillation

amplitude,
1/2

Std(|Apcs|) = [Yhm %/OT <]ABcs(t)] - Avg(]ABCSD)th} ) (10.25)

—00

although experimentally it’s better to use the peak of Fourier spectrum to suppress the noise
(see Fig. 3d in the main text). The dynamical phases can be characterized by

e Phase I: Avg(|Agcs|) =0, Std(|Apcs|) = 0.
e Phase II: Avg(|Apcs|) > 0, Std(|]Apcs|) = 0.
e Phase III: Avg(|Agcs|) > 0, Std(|Apcs|) > 0.

Since €y, is chosen from a distribution with particle-hole symmetry (symmetric about 0), Agcs
becomes a real number in this case. One can further separate phase Illa and phase IIIb by the
behavior of Apcg shown in Fig. 10.5e and Fig. 10.5f.
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10.7.2 Inhomogeneous model

a 20 Homogeneous Avg(IAgcs!)/ Ainit L0 b 20 Homogeneous Std(IAgcs!)/Ainit 030 € L0
Ila
0.25 g
1.5 08 os
020 &7
Q1.0 Q 0.15
S 0.4 “© 0‘00 10 20
0.10 N7
0.5 0n 0.5
: oos £
ITIb
0.0 NIEw 0.0 0.0 NIEw 0.00 ;
% 0
¢ , nhomogencous Ave(Ancs)/Am o , glnhomogencous Std(Apcs)/ A =
03 0.25 ~l 10 20
¥Nt2x
0.20 g )(Nef[t/Zﬂ'
0.6 I 6
1.0 1.0 0.15 I

AT

2

0.05

(=)
[\
o
W
In’l(ABCS )/Almt
(=]

10 15 20 00 080 05 10 15 20 %00 -1 0 10

JXNett/ Evy XNett/ Ew Re(Apcs)/Ainit

080 0.5

Extended Data Fig. 10.5: Dynamical phase diagrams. a and b, Dynamical phase diagram
of the homogeneous model normalized by A, /XN = 1/2, where Ay is the initial value of
|Apcs|. The white lines are the dynamical critical points derived from the Lax analysis. c
and d, Dynamical phase diagram of the inhomogeneous model normalized by Ajnii/XNeg =
J1(27). The white lines are the same as the homogeneous model. e, Time evolution of Apcg
at 6s/Ew = 1.1, xN/Ew = 1.0 under the homogeneous model (phase IIla). f, Time evolution
of Apcs at ds/Ew = 1.6, xN/Ew = 1.0 under the homogeneous model (phase IIIb). g, Time
evolution of Apcs at ds/Ew = 1.6, xN/Ew = 1.0 under the inhomogeneous model (phase III).

10.7.2 Inhomogeneous model

Here we discuss the dynamical phases for the BCS Hamiltonian with inhomogeneous cou-
pling,
H=hx> oSy Sy +Y ansi, (10.26)
jk k

where (j is generated by random sampling of cos(z), with = chosen from a uniform distribution
in the interval [0, 27). Similar to the homogeneous model, € /A is still chosen from a uniform
distribution in the frequency range [—ds/2 — Ew/2, —ds/2 + Ew/2] and [0s/2 — Fw/2,0s/2 +
Ew/2]. In this case, we explore the dynamical phases numerically since the Lax analysis is not
applicable. As shown in Fig. 10.7c and Fig. 10.7d, one can obtain similar dynamical phases as
the homogeneous model: Phase I remains the same, Phase I1Ia merges into Phase II, and Phase
IIIb becomes the new Phase III. The phase boundary can be roughly captured by the analytical
solution of the homogeneous model. Note that x N.g is the averaged interaction strength in the
inhomogeneous case, where Neg = N/2. The superconducting order parameter is defined as
Apcs = XD, QJS’,; ). The initial condition is chosen as the maximum |Apcg| one can achieved
by an external drive along the cavity axis, Hdrive =Q>, Ckgfj Assuming the initial state can
be prepared by applying Hapive for a time 7, we have

Apig 1 [*
X Negt ~on 0

dx cos(z) sin(Q1 cos(x)) = J1(Q71), (10.27)
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10.7.3 Experimental control of dynamical phases

where 7, is the Bessel function of the first-kind, and the maximum of 7;(€27) can be achieved
at Q7 = 0.5867. It is worth to mention that Agcg is a real number initially, but it becomes a

complex number during the time evolution, as shown in Fig. 10.7g.
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Extended Data Fig. 10.6: Experimental control of dynamical phases. a and b, Dy-
namical phase diagram for the experiment with two atomic ensembles, in terms of averaged
spin-exchange interaction strength xN.g and peak AC Stark shift fac. The white lines show
the predicted dynamical phase boundaries to guide the eye. The white dashed line marks a
small region of phase II’ due to the imbalance of Eyw for the two atomic ensembles. ¢, Ew as
a function of peak AC Stark shift fac, with AC Stark shift applying to atomic cloud 1. d, s
as a function of peak AC Stark shift fac (red line). The dashed line marks the place where

ds = fac.

10.7.3 Experimental control of dynamical phases

Here we elaborate on the experimental implementation of the Hamiltonian Eq. (10.26). As
discussed in the previous section, we would like to approximately engineer single-particle ener-
gies i /h sampled from a uniform distribution in the frequency range [—ds/2 — Ew/2, —ds/2 +
Ew/2] and [0s/2 — Ew/2,0s/2 + Ew/2]. The two different experimental schemes used in the
main text to explore the energy distribution are summarized in the following table:

Description Approx. € /h

1) Single atomic cloud
2) AC Stark shift

Scheme I N .
(Fig. 2, main text) [—Ew/2, Ew/2]
Cloud 1: [=6s/2 — Ew/2,—0s/2 + Ew/2]

Scheme II 1) Two atomic clouds Cloud 2: [+:0:/2 — By /2, +0:/2 + Ew /2]

(Fig. 3, 4, main text)2) AC Stark shift to cloud 1

The first scheme is used to probe the phase I to phase II transition. We use a single atomic
ensemble and apply an AC Stark shift beam with a gradient to approximately engineer ¢ /h
from a uniform distribution [—Fyy /2, Ew /2], as discussed in the Methods. As shown in Fig. 2a
in the main text, the distribution of atomic frequencies is not exactly uniform, so we calculate
the variance of the frequency distribution experimentally. Theoretically we assign a spread Evw
such that the uniform distibution over [—FEyy /2, Ew/2] matches the measured experimental
variance. We use this scheme to probe the dynamical phase diagram at d; = 0 (see Fig. 1c in
the main text).

It is worth mentioning that the uniform distribution [—Ew /2, Ew/2] can be interpreted
in two different ways: 1) §s = 0 and Ew = FEw: 2) 0 = BEw = Ew /2. Here we prefer the
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10.8 Short-time signatures of dynamical phases

first interpretation 6; = 0 because in this scheme we only have a single control parameter
(the strength of AC Stark shift beam). Additionally, the line ¢, = Eyw in the dynamical
phase diagram has an implication that a small perturbation of d; can generate a gap in atomic
frequency, which is prohibited under this mapping between experimental controls and the model
parameters.

In the second scheme that probes transitions into phase III, we use two atomic ensembles
and apply an AC Stark shift beam (peak AC Stark shift fac) to the first ensemble to generate
a frequency splitting d; between the two ensembles. In contrast to the first scheme, as discussed
in the Methods, here we instead use the differential lattice light shifts to engineer a frequency
spread Ew for each ensemble. As shown in Fig. 3a in the main text, in this case we define g as
the mean frequency difference between the two ensembles, and Fyw as the width of a uniform
distribution generating the same variance.

It is worth mentioning that the Gaussian profile of the AC Stark shift beam leads to an
increase in Eyw for the first atomic ensemble, as well as a reduction of the expected splitting of
the two ensembles 63 < fac, as shown in Fig. 10.6c and d. Using experimental parameters, we
get the dynamical phase diagram as depicted in Fig. 10.6a and b. The imbalance of Ew for the
two atomic ensembles can lead to a small region of phase I’ marked by the white dashed line.
This occurs because the spin-exchange interaction is able to lock the ensemble with smaller
Ew, while the ensemble with larger Eyw remains unlocked, which leads to |Apcs| approaching
a small but nonzero constant value. In the experiment, due to other dissipative processes and
reduced signal-to-noise ratio for small YN, we do not observe a difference between phase I and
phase II’. This is the cause of a small discrepancy between theory and experiment in Fig. 4b
in the main text in identifying the position of the phase transition.

10.8 Short-time signatures of dynamical phases

In this section, we discuss the properties of the dynamical phases using short-time observ-
ables, since dissipative processes and noise in the experiment lead to difficulties in measuring
long-time observables. In the following, we show that phase I can be characterized by the fast
decay of |Apcs|, phase II can be characterized by Higgs oscillations. We further show that
the phase II to phase III transition can be captured by the dip in the short-time oscillation
frequency of |Apcg|. Finally, we provide an explanation of the frequency dip using an analytical
solution of the two-spin BCS model.

10.8.1 Phase I: fast decay

In phase I, the single-particle energy term ), 1S - dominates over the spin-exchange inter-
action. To leading order, one can calculate |Apcs| in the homogeneous model by dropping the
interaction term, which gives

| Apcs| ~ L‘ Z efiekt/h‘ ot /65/2+EW/2 L R R ot gy
XN 2N A 2|2Ew —8s/2—Ewy /2 2Ew 8s/2—Evwy /2
1 ds sin(Ewt/2)
~ 2™ (5)‘ Tm‘

(10.28)
The decay profile of [Apcs| is set by a sinc function with a 1/e coherence time ¢ satisfying
Ewt/2m ~ 0.7. For the inhomogeneous model a similar fast decay time scale of the order of
Ewt/2m ~ 1 can be derived. As shown in Fig. 2b in the main text, we observe fast decay of
|Apcs| within 1 ps in phase 1. The decay time scale for the other dynamical phases can be more
than 10 times longer.
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Extended Data Fig. 10.7: Relation between oscillation frequency and averaged order
parameter in Higgs oscillations. a, Homogeneous model where each point is a choice of
(xNV, ds) in phase II (red) and phase IIla (blue). The dashed line represents w = 2Avg(|Apcs|).
b, Inhomogeneous model where each point is a choice of (xNeg, ds) in phase I1. The inset shows
the points with ds = 0.

Higgs oscillation, generated by collective excitation of the Higgs mode in BCS superconduc-
tor, is characterized by the oscillation of |Apcg| at frequency w = 2Avg(|Apcs|) [Yuzbashyan
et al.(2015)|. For the homogeneous model (see Fig. 10.7a), we numerically confirmed this rela-
tion for all the points in phase IT and phase IITa. For the inhomogeneous model (see Fig. 10.7b),
this relation is approximately satisfied in phase II. In experiment, we observe hints of Higgs
oscillation (see Fig. 2 in the main text), which can be ideally described by the inhomogeneous
model with ds = 0 (see the inset in Fig. 10.7b).

10.8.3 Transition to phase III: frequency dip

In the main text, we discuss a way to understand the phase II to phase III transition by
visualising the two atomic ensembles as two large spins. For the inhomogeneous model, phase
IT exists in the small s regime, where the two spins lock to each other and form a single
large spin through spin-exchange interactions. In this case the many-body gap protection
leads to the damped oscillations observed in phase II. Increasing d; in phase II leads to the
reduction of the many-body gap, and hence to a decrease of the corresponding oscillation
frequency. Phase III exists in the large ds regime, where the spin locking occurs separately in
each ensemble, and the two large spin are instead precessing around each other, with a rate
set by the splitting s and the spin-exchange interaction. Increasing ds in phase III leads to a
speed up of the oscillation frequency. Therefore one expects the existence of a frequency dip
separating between phase Il and phase III. Indeed as shown in Fig. 10.8c and d, we find good
agreement between the frequency dip and the corresponding dynamical critical point. For small
0s, the oscillation frequency approaches the Higgs oscillation frequency discussed in the previous
subsection. For large d4, the oscillation frequency approaches d;. The reduction of oscillation
frequency compared to dg indicates many-body effects in phase III. It’s worth to mention that
in contrast to the inhomogeneous model, the frequency dip indicates the phase IIla to phase
IIIb transition for the homogeneous model.
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Extended Data Fig. 10.8: Frequency dip as a signature of the phase II to phase III
transition. a, Mean field trajectories of the two large spin model evolving under Eq. (10.29).
From left to right, Bloch spheres display trajectories with d5/(xN) = 0.5, 1, and 2 respectively.
b, Oscillation frequency of |Apcs| in the two-spin BCS model Eq. (10.29) as a function of
ds/xN. The frequency dip at ds/xN = 1 marks the dynamical phase transition point. ¢, Short-
time frequency w of the dynamics under inhomogneous atom-light coupling (see Eq. (3) in the
Methods). The white line marks the phase II to phase III transition, the same boundary as
shown in Extended Data Fig. 2 from the Methods. d, Short-time frequency w of the dynamics
using experimental control parameters. The white line marks the phase II to phase III transition
and represents the same boundary as in Fig. 10.6. The frequency dips match the dynamical
critical points for both cases.

10.8.4 Frequency dip in the two-spin BCS model

Here we use the analytical mean field solution of the BCS Hamiltonian with two large spins
(S = N/4 for each spin) to understand the frequency dip discussed above. In this case, the
Hamiltonian simplifies to

Os &2 Os 4

EsSf — 5 z, (10.29)
where $* = Si + SF. The mean field equations of motion for the Hamiltonian above can then
be written as

H/h=x5t5" +

d 55 d T Oz 58 €T d z xr X
51 = 208751 - §3f7 %Sqi] =SS+ 55, ST = —2x(5357 — 555), (10.50)
d 55 d €T Oz 58 €T d z X X ‘

The spin components without the hat represent the expectation value of the corresponding spin
operators.

In the following, we assume an initial state satisfying ST = S§ = N/4, S} = S = S} =
S5 = 0. The conserved quantities of the two-spin BCS model are the total magnetisation

S* = S7+5; =0, (10.31)
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the total energy

2

E/h=xStS™ + %Sf — §S§ = X(E) : (10.32)
2 2 2

as well as the spin length of each of the large spins, (S7)? + (S7)? + (S7)? = (N/4)?, (S5)% +

(S¥)? + (S3)? = (N/4)%. Using these conserved quantities, one can derive from the mean field

equations in Eq. (10.30) an equation of motion for the BCS order parameter, Agcs = xS~. To

simplify the notation, we define A = |Apcs|/x N, i.e. A? = STS~ /N2 From Eq. (10.31) and

Eq. (10.32), we obtain

d ., 5 d 26

%A = — N dtSZ = F;(S%Sf — 8557, (10.33)
which leads to
& A2 25 (S’” Sy + Sy — S‘” Sy Sy — S5 — Sy)
Y 2 1 2 2
dt 252 dt dt dt (10.34)
= 455><A2Sf (Sa’Sr SYSY).

From the above conserved quantitles7 we can create the equivalent expressions
057 = —xN?(A? — 1/4), 2(S7S% + S7SY) = N2A? — 2 x (N/4)* + 2(S7)2. Plugging these into
the equation of motion gives

d® 20 A 212 2\ A2 1 a3 — (xN)?
AT = —G(XN)(A%)? + (2(XN) 6 )A B (10.35)
The equation above can be further simplified to
2
LOAAY fva)=o (10.36)
2\ dt - '

where

V(A) = %(XN)Q (N — i) (N — #/XN)Q) (10.37)

with an initial condition A = 1/2. Eq. (10.36) can be understood as a classical particle with
position A oscillating in the potential V(A). For §; < xN, we find A oscillating between
Apax = 1/2 and Ay = /1 — (05/xN)?/2. This is equivalent to phase II in the cases of many
spins with inhomogeneous atom-light couplings, because all the oscillations damp in the large
XN limit. For §s > xN, we find A oscillating between Ay, = 1/2 and Ay, = 0, since the
definition of A requires A > 0. This is equivalent to phase III in the cases of many spins
because the phase connects to single-particle oscillations in the large ds limit. Therefore, a
dynamical phase transition occurs at ds/x/N = 1, which is equivalent to the phase II to phase
III transition in the many-spin system.

The analytical solution of Eq. (10.36) can be written in terms of Jacobian elliptic funtions
dn and cn:

—dn(lth‘((S /XN) ) if 5, < \N
A(t) = . (10.38)

% Cn(%ést (XN/(SS)Q)‘ if 6 > xN
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The frequency of A(t) can be written in terms of the complete elliptic integral of the first kind
K(k?):

( T if 0s < xN
K((0.,/NP2)
w
— = . (10.39)
xNV
% T if 5, > YN
|V 2k (ev/6,)?)

The mean-field trajectories on the Bloch sphere are shown in Fig. 10.8a, and the oscillation
frequency Eq. (10.39) is shown in Fig. 10.8b. The dynamical phase transition can also be
understood from the mean field trajectories. For d; < x IV, the two large spins lock to each
other and oscillate near the x axis of the Bloch sphere. For s > xN, the two large spins are
unlocked and precess around the whole Bloch sphere. Near the dynamical critical point, the
mean field trajectories are close to the north pole or south pole of the Bloch sphere, which leads
to a slow down of the oscillations because they approach stable fixed points of the Hamiltonian.

10.9 Axial Motion

In this section, we elaborate on how to take into account axial motion present in the exper-
imental system. Similar discussions can be found in Ref. [Muniz et al.(2020)]. We start with
the one-dimensional Hamiltonian of our cavity QED system with two internal atomic levels

(1) and | 1)), given by

H= _Z{Tji} / dz )} (x {— + Vjsin (m)} Yo (z) + / dz ¥l() [hwo + Uac(:v)] ()

+ hg. / dx cos(k.x) [ﬂq(x)@/h(x)d + &Mﬁl(m)zﬁ(m)] + hw.a'a,

(10.40)
where k;, = 27/A[ is the wavenumber of the lattice beams (A = 813nm), k. is the wavenumber
of the cavity mode (A, = 689nm), wy is the atomic transition frequency between |1) and ||)
states, U(x) is the AC Stark shift applied to the atoms (including the differential light shift
from the lattice beams and the transverse AC Stark shift beam), and w. is the frequency of
cavity resonance.

Since the atoms are trapped in an optical lattice with lattice depth on the order of 103 Ejp,
we can approximate each lattice site as an harmonic trap with axial trapping frequency hwr =
VAV ER, where Ex = h?k? /2M is the lattice recoil energy. We also ignore tunnelling processes
between lattice sites. In this case, one can expand the atomic field operator in terms of lattice
site index j and harmonic oscillator levels n:

Vol2) = Cjnatalz — jar). (10.41)

Here, a;, = A1 /2 is the lattice spacing, and ¢,, is the harmonic oscillator wave function for mode

n, given b
& Y b (2) 1 Mwrp 14 ~Muwra?/2h Mawr (10.42)
() = — (& n T ’
V2rpl \ Th h

where H,(z) are the Hermite polynomials. Plugging this expansion into the Hamiltonian and
transforming to the rotating frame of the atoms, we obtain

H/h Z”WT% Uc]n(,—l—z anjn chnT—i—chQ Jn +Cjm,1a+a cT Cjn7T)+5chCAL (10.43)

jno jnm
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10.9 Axial Motion

where 6. = w. — w,. For simplicity, we assume U,.(z) is either small or slowly varying in
space and thus does not change the trap geometry. This term gives rise to an inhomogeneous
transition frequency e, = [ daUsc(2)[pn(z — jar)]?/h. We calculate ¢ in the following way:

¢ = / dz cos(kua)on(x — jar)om(x — jar) / de cos(kut + kuja)bn(x)ém()
= cos(j) [ de cos(lr)ou()om(o) —sinlie) [ da sinlhea)on(x)6n ()

2 ! 2 !
= cos(jip) Re| (in)*e ™"/ [ "= Ls_(n)| — sin(ji) Im | (im)*e ™72, [2<5 L (7).
ns! ns!

(10.44)
where ¢ = 7kp/ke, s = |n — m|, n. = min(n,m), n~ = max(n,m), LY(x) are the gener-
alised Laguerre polynomials, and 1 = k.\/h/2Mwy is the Lamb-Dicke parameter. In our case
wr /2w = 165 kHz, implying that n = 0.17. This places us in the Lamb-Dicke regime where
(7™ is negligible for [n —m| > 1. It can be convenient to rewrite the Hamiltonian in terms of

operators wa mo! = cjn »Cjm,o'» Tesulting in the following form:
Hih=> nwrS, ., + Z Sty + 00 Y (S a+alS ) +dafa. (10.45)
jno jnm

In addition to the Hamiltonian dynamics, we also consider dissipation processes such as
cavity loss with a rate /27 = 153 kHz, as well as spontaneous emission with a rate v/27 =
7.5 kHz. The full dynamics of this open system can be described by the following Lindblad
master equation:

d . A A J PP A 1 .0 -
p= LA+ | Ll — U ﬁ}} +3 {Lj,nﬁL;,n AL Ly p |, (10.46)
where the jump operator for cavity loss is given by cay = \/— ka, and the single-particle jump
operators for spontaneous emission are given by L],n =7 Sn Lnt- Here, we assume that spon-
taneous emission is in the Lamb-Dicke regime.

In the experiment, ¢, is the largest frequency scale (6. > g.V'N, k), so we can adiabatically
eliminate the cavity photons [Reiter and Sgrensen(2012)| and obtain the following effective
atom-only master equation:

d. i e e s T
dtﬂ h[Heff,P] + |:LcolpL(tol - é{LiolLC017p}:| + Z |:Lj,an;r',n - 5{[&”[1]',”,0} : (1047)

Here, the effective Hamiltonian is given by

Heff/h = anT no,noc + Zgjn ntnt +XZZCnmC]€qS1]1Tm¢ pl,qt? (1048)
jno jnm kpq
and effective collective jump operator generating superradiant decay takes the form

col - \/_Zgnmsj Lnts (1049)

jnm

where xy = —¢20./(0% + k?/4) and T' = g2k /(0% + k*/4). The equivalent superconducting order
parameter takes the following form:

Ancs =X Y _ CPUSE ). (10.50)

kpq
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One can recover the inhomogeneous model discussed in the previous section by removing the
axial harmonic oscillator level labels.
Similarly, the Hamiltonian for initial state preparation takes the form

. . 1 . »
_ ] nm 7 * QJ
Harve/h =3 nwrSlpns + 5 D G (U g + 2 Sy ) (10.51)
jno jnm
a0 b 10 ¢ 10
— Exp

0.8 0.8 0.8 Ideal
E 2 E —— Diss
g 0.6 d 0.6 d 0.6 —— Axial
ﬂ%:’ 0.4} Sc“n 0.4} !}% 0.4

0.2¢ 0.2 0.2 /J

080725 50 75 100 980 25 50 75 100 980 25 50 75 100
t[us] t [ps] t[ps]

Extended Data Fig. 10.9: Understanding experimental results with axial motion
effects. a Example phase II traces with xN/27 = 1.29MHz, fac/27m = 1.1MHz. b Example
phase III traces with yN/2m = 0.79MHz, fac/2m = 1.1MHz. ¢ Example phase I traces with
XN/2m = 0.15MHz, fac/2m = 1.1MHz. The blue points are experimental data, the orange lines
represent numerical simulations under ideal conditions (see Eq. (3) in the Methods), the green
lines include dissipative processes on top of the ideal simulations, and the red lines consider
both dissipative processes and axial motion effects.

In numerical simulations, we perform a mean-field approximation, which replaces the op-
erators 5';07 o0 Dy their expectation values <5';m 4o i the Heisenberg equation of motion. We
perform a random sampling of the axial harmonic oscillator mode n for each atom based on
a thermal distribution of 15 pK, and we only include the modes n and n £ 1 into our calcu-
lation due to the Lamb-Dicke parameter. The atom number in our simulations is set to 2000;
to match yN to experimental values, we rescale x accordingly. We also empirically take into
account two additional dissipation processes to quantitatively capture the behavior of |Apcs|
at longer time scales. The first is a single-particle decoherence between electronic states, de-
scribed by the jump operators f}‘;la = /Y 2 S’ﬁ;mm with v./27 < 1kHz for Fig. 2 starting
from ¢ = Ous, and by e /27 = 0.0036( fac/27) + 4kHz for Fig. 3 and Fig. 4 in the main text.
The second is a single-particle decoherence between motional states, described by the jump
operators I:;nf; = /Vmo Dy égm with ymo/2m = 15kHz.

Some example traces including axial motion effects are depicted in Fig. 10.9. Generally
speaking, accounting for these effects allows us to more accurately predict features present
in the experimentally measured evolution of |Apcg|, at the same time leaving the predicted
dynamical phase boundaries unchanged. As shown in Fig. 10.9a, including axial motion effects
in phase II traces allows us to capture the faster damping rate of the Higgs oscillations, as
well as a slow oscillation in |Agcs| at the axial trapping frequency. Likewise, as shown in
Fig. 10.9b, including axial motion effects in phase III traces allows us to capture the faster
damping rate of the oscillations in |Apcg|, although the observed damping rate is still faster
than the rate predicted by theory. Finally, as shown in Fig. 10.9¢c, all the theory simulations
of phase I dynamics are similar to the simulation under ideal conditions, indicating that axial
motion does not play an significant role in this regime.
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11 Higgs mode in a strongly interacting fermionic super-
fluid by Behrle, Harrison et al.

11.0.1 Main theory

Higgs and Goldstone modes are possible collective modes of an order parameter upon spon-
taneously breaking a continuous symmetry. Whereas the low-energy Goldstone (phase) mode is
always stable, additional symmetries are required to prevent the Higgs (amplitude) mode from
rapidly decaying into low-energy excitations. In high-energy physics, where the Higgs boson|1]
has been found after a decades-long search, the stability is ensured by Lorentz invariance. In the
realm of condensed-matter physics, particle-hole symmetry can play this role[2| and a Higgs
mode has been observed in weakly-interacting superconductors|3, 4, 5. However, whether the
Higgs mode is also stable for strongly-correlated superconductors in which particle-hole sym-
metry is not precisely fulfilled or whether this mode becomes overdamped has been subject of
numerous discussions|6, 7, 8, 9, 10, 11]. Experimental evidence is still lacking, in particular
owing to the difficulty to excite the Higgs mode directly. Here, we observe the Higgs mode in a
strongly-interacting superfluid Fermi gas. By inducing a periodic modulation of the amplitude
of the superconducting order parameter A, we observe an excitation resonance at frequency
2A/h. For strong coupling, the peak width broadens and eventually the mode disappears when
the Cooper pairs turn into tightly bound dimers signalling the eventual instability of the Higgs
mode.

Spontaneous symmetry breaking occurs when an equilibrium state exhibits a lower symme-
try than the corresponding Hamiltonian describing the system. The system then spontaneously
picks one of the energetically degenerate choices of the order parameter and due to the specific
energy landscape this process is accompanied by new collective modes. The typical picture,
which exemplifies spontaneous symmetry breaking, uses a Mexican-hat shaped energy poten-
tial (see Figure la) that suggests the emergence of two distinct collective modes: the gapless
“Goldstone mode”, which is associated with long-wavelength phase fluctuations of the order
parameter, and an orthogonal gapped mode, the “Higgs mode”, which describes amplitude
modulations of the order parameter. While Goldstone modes, such as phonons, appear nec-
essarily when continuous symmetries are broken, stable Higgs modes are scarce, since decay
channels might be present. The best-known example of a Higgs mode appears in the Standard
Model of particle physics where this mode gives elementary particles their mass [1].

In the non-relativistic low-energy regime usually encountered in condensed-matter physics,
the existence of a stable Higgs mode cannot be taken for granted|6]. However, under certain
conditions, other symmetries, such as particle-hole symmetry, can play the role of Lorentz
invariance and induce a stable Higgs mode. A notable example of a low-energy particle-hole
symmetric theory hosting a stable Higgs mode is the famous Bardeen-Cooper-Schrieffer (BCS)
Hamiltonian describing weakly interacting superconductors [2, 12|. Evidence for the Higgs mode
has been found in conventional BCS superconductors 3, 4, 5|. However, experimental detections
have been solely indirect as the Higgs mode does not couple directly to electromagnetic fields
owing to the gauge invariance required for its existence. The far-reaching importance of the
Higgs mode is further illustrated by its observation in a variety of specially tuned systems such
as antiferromagnets [13|, liquid *He [14], ultracold bosonic atoms near the superfluid/Mott-
insulator transition [15, 16|, spinor Bose gases [17], and Bose gases strongly coupled to optical
fields [18]. In contrast, weakly-interacting Bose-Einstein condensates do not exhibit a stable
Higgs mode [6, 10, 11].

In recent years, research has focused on advanced materials exhibiting superconductivity far
beyond the conventional BCS description, such as cuprates, pnictides, and the unitary Fermi
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Figure 11.1: Principle of the Higgs mode excitation. (a) Mexican hat potential of the free
energy as a function of real and imaginary part of the complex order parameter A. The
equilibrium state order parameter takes spontaneously one of the values at the energy minima.
(b) We employ radiofrequency dressing of the paired superfluid by off-resonant coupling to
an unoccupied state |3). This results in a periodic modulation of both the occupation of the
state |3) (c) and the superconducting gap (d). Shown are numerical simulations for a coupling
constant 1/(kpa) = —0.6704, hQQr = 0.0353Er and hd = —0.3247Fr. (e) By adjusting the
modulation frequency, we achieve an excitation of the Higgs mode in the Mexican hat.

gas. Many of these materials are characterized by strong fermionic correlations. Even though
in this context the existence of a Higgs mode has been the topic of theoretical debates |7, 8,
9, 10, 11], experimental evidence for the Higgs mode in systems exhibiting strong correlations
between fermions is still absent.

Here, we spectroscopically excite the Higgs mode in a superfluid Fermi gas in the crossover
between a weakly-interacting BCS superfluid and a Bose-Einstein condensate (BEC) of
strongly-coupled dimers (Fig. 1). We induce a periodic modulation of the amplitude of the
superconducting order parameter A and find an excitation resonance near twice the
superconducting gap value. On the BCS side, the spectroscopic feature agrees with the
theoretical expectation of the Higgs mode. On the BEC side of the crossover, we find strong
broadening beyond the predictions of BCS theory and, eventually, the disappearance of the
mode as predicted for a weakly-interacting BEC [6, 10, 11].

Our measurements are conducted in an ultracold quantum gas of ~ 4 x 10° °Li atoms
prepared in a balanced mixture of the two lowest hyperfine states |1) and |2) of the electronic
ground state. The gas is trapped in a harmonic potential with frequencies of (w,,w,,w,) =
21 x (91,151,235) Hz and is subjected to a homogeneous magnetic field, which is varied in
the range of 740 — 1000 G in order to tune the s-wave scattering length a near the Feshbach
resonance located at 834 G. This results in an adjustment of the interaction parameter of the
gas in the range of —0.8 < 1/(kpa) < 1, i.e. across the whole BCS/BEC crossover. The Fermi
energy in the center of the gas is Fr ~ h x (34 + 3) kHz at each of the considered interaction
strengths and sets the Fermi wave vector kp = \/8m?mFEp/h?, where m denotes the mass of
the atom and h is Planck’s constant.

Excitation of the Higgs mode requires a scheme which couples to the amplitude of the order
parameter rather than creating phase fluctuations or strong single-particle excitations. Previous
theoretical proposals|19, 8, 20] for exciting the Higgs mode in ultracold Fermi gases have focused
on a modulation of the interaction parameter 1/(kra), however, experimentally only single-
particle excitations have been observed from such a modulation|21]. We have developed a
novel excitation scheme employing a radiofrequency (rf) field dressing the state |2) with the
initially unoccupied hyperfine state |3) thereby modulating the pairing between the |1) and
|2) states, see Figure 1b and c. Previous experiments investigating ultracold gases with rf
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spectroscopy|22, 23, 24, 25| have focused on studying single-particle excitations. To this end,
there, the duration of the rf pulse 7 had been chosen shorter than the inverse of the Rabi
frequency (g, such that the spectra could be interpreted in the weak-excitation limit using
Fermi’s golden rule. In contrast, here, we employ an rf drive far red-detuned from single-
particle resonances in the interacting many-body system and in the long-pulse limit Qgz7 > 1,
in order to couple to the amplitude of the order parameter. To illustrate this, consider first
an isolated two-level system of the |2) and the |3) state coupled by a Rabi frequency Qg
with detuning ¢ from the resonance. The occupation probability of the atoms in the |2) state
is ppy = 1 — 03 /% sin?(Qst/2), ie. the continuous rf dressing leads to a time-periodic
modulation of the occupation of the |2)-state with the effective Rabi frequency 0 = /Q% + 62

In the many-body problem of the BCS/BEC crossover, the situation is complicated by the
dispersion of the (quasi-) particles and the presence of interactions. In particular, a continuum of
excitations typically occurs above the energy of the lowest single-particle excitation to state |3)
(see Figure 2a). Deep in the BCS regime, the continuum of excitations is related to the different
momentum states and the excitation scheme can be approximated by coupling each occupied
momentum state of the BCS quasi-particles in level |2) to the corresponding momentum state
in state |3) since the rf dressing transfers negligible momentum. The effective Rabi frequency
Qpp = /% + 62 and therefore the excitation probability becomes momentum dependent by
the many-body detuning hd, = hd — Ey — &, where &, is the single-particle dispersion, and
Ey = /& + |A]? is the quasi-particle dispersion and A is the s-wave superconducting order
parameter. A red-detuned rf drive, as employed here, avoids resonant coupling to the single-
particle excitations, however, still modulates off-resonantly the occupation of the excited states
as shown in Figure 2b.

The off-resonant periodic modulation of the occupation of the state |2) with controllable
frequency Q7 , induces a modulation of the amplitude of the order parameter |A| (Fig. le, for
details see Methods) and hence couples directly to the Higgs mode. To illustrate this mech-
anism, we numerically solve the minimal set of coupled equations of motion describing the
evolution of the order parameter in the presence of an rf coupling to state |3) (see Methods
and Supplementary Figure). We see that the Fourier spectrum of |A| for one modulation fre-
quency displays — aside from a response corresponding to the modulation frequencies Q}{ !
sharp peak at the gap value 2|Al, see Figure 2d. By the momentum-resolved representation
(Figure 2c) we identify this peak to be dominated by the Higgs excitation with a momentum-
independent dispersion. The amplitude of the latter is maximum when the averaged effective
drive frequency hQ,0q = 2|A| in accordance with its expected frequency. The Higgs mode is a
collective mode of the system and even for the harmonically trapped gas exhibits a unique fre-
quency. Numerical studies in the BCS limit have shown that in harmonically trapped systems,
the Higgs mode should occur at the frequency of twice the superconducting gap evaluated at
the maximum density of the gas [8, 26, 27, 28, 29] and hence we use this as our reference for
the value of the gap in order to compare with theory and other experiments.

In the experiment, we search for the Higgs mode by measuring the energy absorption spec-
trum of the fermionic superfluid in the |1,2) states for different interactions. Using Qp and §
as adjustable parameters, we dress the |2) state by the |3) state with adjustable modulation
frequency given by the effective Rabi frequency. We choose a drive frequency in the single—
particle excitation gap. For our experiments we measure the modulation frequency €2,,,4 and
amplitude « of the time-dependent population of the |3) state (for calibration, see Methods
and Supplementary Figure). We then use a constant excitation amplitude pj3y ~ 0.5% and
apply the modulation for a fixed period of 30ms. After the excitation we conduct a rapid
magnetic field sweep onto the molecular side of the Feshbach resonance and convert Cooper
pairs into dimers and measure the condensate fraction of the molecular condensate in time-of-
flight imaging. The change in the condensate fraction provides us with a sensitive measure of
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Figure 11.2: Ilustration of the excitation scheme for one modulation frequency. (a) The ra-
diofrequency field is red-detuned from the single-particle excitation of the interacting system.
It creates an off-resonant excitation to the state |3) with a varying detuning for different mo-
menta. (b) Time-evolution of the momentum-resolved occupation of the |3) state with momen-
tum k for a fixed value of Hla = —0.63, a Rabi frequency h{2r = 0.038Fr, and a detuning
ho = —0.34Er. Blue: |k|/kr =0, red: |k|/kr = 0.8, green: |k|/kr = 1.1. (c) Spectral weight
of the momentum-resolved gap Ax(w) (see Methods). The circles indicate the Higgs mode, the
stars mark the response to the modulation frequency and the crosses indicate the quasiparticle
excitations at 2E). The position of the star at k& = 0 approximately represents the effective
modulation frequency for the chosen parameters. (d) Fourier spectra (momentum integrated)
of the occupation of the |3) state (red) and |A| (blue). The dashed line is the expected loca-
tion of the Higgs mode at 2|A|. Subplots b, ¢, and d are for the same driving and detuning
parameters.
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Figure 11.3: Excitation spectra of the Higgs mode. (a) Excitation spectra of the Higgs mode
for different interaction strengths, 1/(kra), as labeled in the figure. The different levels of
background condensate fraction are due to the different 1/(krpa). The solid lines shows the
Gaussian fit to the high frequency side of the spectra. The error bars show the standard
deviation of approximately four measurements. (b) Time-of-flight image of the condensate with
the thermal background subtracted at 1/(kpa) ~ —0.43. Rings indicate momentum intervals
of 0.02kp. (¢c) Momentum-resolved analysis of the Higgs excitation inside the condensate by
averaging the optical density in the color-coded rings in (b) for different modulation frequency.
The resonance occurs at the same modulation frequency for all momenta.
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the excitation of modes in the quantum gas. In Figure 3a we plot the measured spectra as a
function of the modulation frequency for different values of 1/(kpa). On the BCS-side of the
Feshbach resonance up to unitarity, 1/(kra) < 0, we observe clear resonances for which the
condensate fraction reduces, signaling the excitation of a well defined mode. For 1/(kra) > 0,
the energy absorption peak is gradually washed out and broadens significantly. Far on the
BEC side, for 1/(kra) ~ 1, we cannot observe a resonance and conclude that the Higgs mode
is absent. The resonances generally exhibit an asymmetric line shape, which we fit with a
Gaussian to the high-frequency side in order to extract the peak position and width. A contri-
bution to the asymmetric peak shape stems from the momentum-dependence of the effective
Rabi frequencies (2 . As indicated in Figures 2a and b, the effective detuning (and hence the
modulation frequency) varies with increasing momentum k. Therefore, a resonant excitation at
the Higgs mode frequency can be achieved for high momenta k even though for low momenta
the modulation frequency is below the resonant excitation.

In order to demonstrate the collective mode nature of our resonance, we perform a num-
ber of checks. Firstly, we verify that the excitation resonance frequency (to within 4%) and
shape is independent of the modulation strength in the range of 0.001 < o < 0.2 and modu-
lation duration between 7 = 0.5ms and 7 = 30ms (for the definition of «, see Methods and
Supplementary Figure). Secondly, we have confirmed that the observed resonance peak is not
caused by single-particle excitations by measuring the excitation probability to the |3) state vs.
modulation frequency €2,,,q and finding a featureless broad spectrum. This and the following
checks have been performed with a modulation amplitude of o = 0.2 and a modulation time
of 0.5ms, which is much shorter than the trap period of ~ 5ms. Hence the measurement is
insensitive to thermalization effects and/or density redistribution within the cloud. Thirdly,
we check the momentum-dependence of the resonance. After the modulation, we perform a
time-of-flight expansion for a period of 15ms, which is approximately a quarter period of the
residual harmonic potential during ballistic expansion. This procedure maps the initial mo-
mentum states to positions in the absorption image [30]. We analyse the detected condensate
density in momentum intervals of 0.02 kr and find that the excitation resonance is at the same
frequency for all momentum intervals, see Figure 3b and 3c. Finally, we have searched for possi-
ble quasiparticle excitations resulting from our interaction modulation by employing standard
rf spectroscopy |24, 25, 31] after the interaction modulation. The spectra only show a very
weak and broad background independent of the modulation frequency. This behaviour is not
unexpected since the contribution of quasi-particle excitations is smeared out in the presence
of a trap as we confirmed numerically using the local-density approximation.

In Figure 4a, we plot the position of the fitted peak of the energy absorption spectra vs. the
interaction parameter 1/(kra) evaluated at the center of the sample. It has been suggested|8]
that the Higgs mode frequency is close to twice the superconducting gap in the BCS/BEC
crossover and can therefore be used as an approximative measure of the gap. In the crossover
regime, the exact value of |A| is yet unknown and both experiments and numerical calculations
are challenging. We compare our data to gap measurement using different methods|31, 32| and
several numerical calculations|33, 34, 35, 36, 37, 38]. As compared to the previous experimental
results, our extracted value is somewhat larger. We note that previous gap measurements rely
on fitting the onset of a spectral feature whereas our method is based on fitting a Gaussian
to a slightly skewed spectral feature and both methodologies could be susceptible to small
systematic uncertainties. An upper bound is provided by the theoretical result of mean-field
theory (dashed line), which is known to overestimate the superconducting gap.

In Figure 4b, we plot the full-width-at-half-maximum of the Gaussian fits to the energy
absorption peaks. Utilizing the BCS model for the momentum-dependent excitation discussed
above, we estimate the width of our excitation resonance to be of order A, see Supplementary
Figure. Hence, we cannot directly interpret the linewidth of our spectra as the decay rate of the
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Figure 11.4: Observation of the Higgs mode. (a) Measured peak positions of the energy ab-
sorption spectra (black circles). For comparison we show numerical simulations of the gap
parameter multiplied by 2: BCS mean field theory (blue dashed line), ref. [33] (red), ref. [34]
(green), ref. [35] (orange), ref. [36] (purple), ref. [37] (brown), ref. [38] (pink). The grey
symbols show the experimental data of ref. [32]. (b) Measured fullwidth at half maximum
(FWHM) of the absorption peaks (black circles). For comparison, the BCS mean field theory
gap is also shown (blue dashed line). The error bars in a and b represent the standard errors.
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Higgs mode but only as lower limit of the lifetime. On the BCS side of the resonance we find
good agreement with our model and towards the BEC side the measured width far exceeds the
prediction, indicating that the Higgs mode becomes strongly broadened, for example, due to
the violation of particle-hole symmetry resulting in a decay into Goldstone modes|39, 6, 10, 11].
Extending, in the future, our novel experimental scheme with a better momentum resolution will
provide a route to finally explore the decay mechanisms of the Higgs mode, the understanding
of which is a cornerstone in both high-energy particle physics and condensed-matter physics.

11.0.2 Methods

Preparation

Using standard techniques of laser cooling and sympathetic cooling in a mixture with Sodium
atoms in a magnetic trap, we prepare ~ 5 x 107 cold fermionic Lithium atoms in a crossed-
beam optical dipole trap of wavelength 1070 nm in an equal mixture of the two lowest hyperfine
states |1) and |2). Using subsequent evaporative cooling in a homogeneous magnetic field of
795 G, in immediate vicinity of the Feshbach resonance at 834 G, we produce a condensate in
the BCS/BEC crossover regime with a temperature of 7//Tp = 0.07 4 0.02. After preparation
of the fermionic superfluid, the magnetic offset field is adiabatically adjusted in the range
between 740 G and 1000 G in order to control the interaction parameter 1/(kpa) in the range
of —0.8 < 1/(kpa) < 1, i.e. across the whole BCS/BEC crossover region.

Calibration of spectroscopy and analysis

We experimentally calibrate the modulation frequency and amplitude to take into account
energy shifts owing to interaction effects of the initial and final states and the efficiency of the rf
antenna setup. To this end, we drive Rabi oscillations with set values of detuning é and power
and measure the population pj3y as a function of time during the rf drive pj3y = « sin?(Qmoat/2).
This provides us with a direct measurement of the modulation frequgzncy and amplitude. In

. Q
order to model the data, we assume a Lorentzian line shape o = 5 +( . L however, we allow
R

for a frequency shift dy(kra) by which the detuning d is corrected as compared to the Zeeman-
energy resonance of the free atom. The fit parameter dy absorbs the effects of interactions in the
final state of the spectroscopy, the condensation energy of the initial state, and the averaging
of different momentum states and densities in the trap. Experimentally, the calibration is
performed at a value of o ~ 4% for which we obtain agreement with the Lorentzian model to
a few percent.

We check for unpaired atoms in the |2) state for red and blue detuned radio-frequency with
respect to dy as a result of the modulation. This has been achieved by rapidly ramping the
field to 450 G with approximately 4 G/us, which allows for the detection of free atoms rather
than paired atoms. In the case of a red-detuned radio-frequency modulation no enhancement
of the signal of unpaired atoms could be observed over the whole range of modulation frequen-
cies. However, blue detuned radio-frequency modulation increases significantly the number of
unpaired atoms due to single particle excitations to the continuum, see Supplementary Figure
1.

Additionally, we vary the driving strength oo and observe that the resonance position of the
peak with respect to the modulation frequency does not vary, see Supplementary Figure 2.

Theoretical modelling

The experimental system can be described taking three different fermionic levels into ac-
count. Initially the system is prepared in a balanced mixture of states |1) and |2). Since we are
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mainly interested in the excitation mechanism and for this mainly the presence of a difference
in the interaction strength between states (|1) and |2)) and (|1) and |3)) is needed, we take
here only the interaction between these two states into account and decouple this term within
the s-wave BCS channel. Using the rotating wave approximation for the coupling between the
states |2) and |3), we obtain the Hamiltonian

hQ)
H=Hpgcs + Z(&k - hé)nk?g + TR Z (CL’3C]<,’2 + 0;27201“3)
k k
with
HBCS = Z Ek(nkﬂ + nk72) + Z {A*C_k720k71 + ACLJCJL,‘:’Q} . (111)
k k

Here A = &%, (c_k2ck1), Qg is the Rabi-frequency, g the interaction strength, V' the volume,
and the momentum independent detuning is 7§ = hiw,; — (€5 — £9), where €9 is the bare energy
for the state n = 2,3 and &, = h%k?/(2m) is the single-particle dispersion. We determine g
from the scattering length using the expression provided in Ref. [23].

In order to determine the time evolution of the order parameter, we derive a closed set of

equations for the expectation values

Mo eaens) = H{-2ek{eoacin) — o e acir) + Alns + ks~ 1)}
h%@—k,sck,ﬁ = i _M;_R<C—k,2ck,1> — (26, — RO){c_r3Ck1) + A<Cik720—k,3>}
h%w_ kaC—ks) = H{A (e pacra) +h6(clhe k) — M;—R(nk,2 —n_p3)}
h%nk,l = —2Im(A" (c_g2ck1))
h%nk,g = —2Im(A" (c_g2ck1)) + h Qg Im(<CT_k’QC,k73>)
h%nk,?) = —hQpg Im(<CT_k7267k:,3>)7
where the number densities are defined as ng,, = (chckm} with m = 1,2,3. We solve

these equations numerically discretizing both time ¢ and momentum k and using the self-
consistency condition A = &>, (c_rack1) at each time step ensuring both the convergence
for the time-step dt and the momentum spacing. Typical values taken are dk/kp = 5 x 1074,
dt =5 x 10*4h/EF and the cutoff for the momentum sum is £, = 100 EF.

The momentum resolved spectral weight of the gap shown in Figure 2c¢ is computed as

ﬁ’{‘Ak(t)‘ —%/OTdt’Ak(t)‘}' (11.2)

with the momentum-dependent order parameter Ay = g/V(c_gack1). We use T' = 400h/Er
for the calculation.

Time evolution of the population of state |3)

We compare the theoretical evolution of the population of atoms in state |3) (see Figure 1c)
during the application of the rf dressing to the experimental results. Supplementary Figure 3
shows the population of the atoms in state |3) normalized to the initial atom number in state |1).
The simulation and experiment were performed with the same effective modulation frequency,
Qod, and maximum atom transfer. Both curves show damped oscillations of the population of

92



11.0.2 Methods

state |3) with time. The initial time behaviour up to approximately three oscillations agrees well
between theory and experiment which means that the dominant damping mechanism is due to
a dephasing of the different momentum components. Afterwards the experimental results show
a stronger damping which we attribute to other damping mechanisms such as for example the
presence of collisions in the experiment which are not considered in the theoretical description.

Time evolution of the condensate fraction

We show the evolution of the condensate fraction during the application of the rf dressing
in Extended Data Fig. 4. After different durations of the application, the drive time, the
rapid mapping to the condensate fraction has been performed and the condensate fraction has
been taken. The drive amplitude was chosen to be 0.05%. As a response, an oscillation of
the condensate fraction close to the expected Rabi frequency can be observered over several
oscillation periods with an amplitude of the order of 0.05 %.

Comparison of the experimental and theoretical spectra

In Supplementary Figure 5, we show a comparison of the experimentally measured spectra
with the theoretical simulation. In order to gain insight into the structure expected from
the excitation scheme, we theoretically extract the weight of the Higgs excitation for different
effective modulation frequencies and plot these in the lower panel of Supplementary Figure 5
for 1/(kpa) = —0.63. To evaluate the area under the Higgs, for each momentum, we integrate
around the Higgs excitation peak (shown in Figure 2¢) and then sum over all momenta along
the Higgs excitation line. Let us note that this procedure leads to the artefact that at high
modulation frequencies still a non-vanishing contribution to the weight is found, which, however,
can be attributed to the excitation of quasi-particles in a homogeneous system and would vanish
in a trapped system as considered experimentally. More importantly, we see that even though
the Higgs mode has a very sharp frequency (as shown in Fig. 2c) and therefore a long life-time,
the resulting spectra show a much broader peak. The width of the peak is due to the excitation
procedure. In particular, a resonant excitation of the Higgs mode is already possible if the
effective modulation frequency lies below the sharp frequency of the Higgs mode, since then
already some of the Rabi frequencies of the higher momentum components (compare stars in
Fig. 2c) can resonantly excite the Higgs mode. Thus, the broadening of the spectral feature is
mainly due to the particular excitation scheme and not a measurement of the life-time of the
Higgs mode. Let us conclude by pointing out that the full width at half maximum in both the
theoretical and the experimental spectra is approximately |A].

Local density approximation for the quasi-particle excitations

To study the effect of the harmonic trapping on the quasi-particle excitations we performed
a calculation of the system’s dynamics within the local-density approximation (LDA). Within
LDA we treat points of different density as effectively homogeneous systems with rescaled
interaction 1/[kr(r)al, Fermi energy Er(r) and chemical potential consistent with the system’s
density profile. We assume the latter to be the profile for non-interacting fermions as typically
the density profiles only changes slightly for the considered interactions. The time evolution of
the superconducting order parameter of the homogeneous system is performed locally for each
point in the trap and rescaled to give %. We then take the density-weighted average of its
Fourier transform. It is important to note that the Higgs - due to its collective nature - cannot
be treated in this formalism, so that we remove the Higgs peak in each Fourier transform by
hand before we take the trap average. Integrating the resulting spectrum gives the “background
excitation weight” (cf. Supplementary Figure 6). In contrast to the peaked quasi-particle
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structure of a homogeneous system, we find the trap averaged “background excitation weight”
to be significantly broadened resulting in a featureless, broad background.
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