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Part I

Polarons in a Nutshell
0.1 Main Formulas and Ideas (?)
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Part II

My Theory of Polarons
1 Physics Behind Polarons

1.0.1 Concept of Polarization for Polarons

(??? see note on ED, I’ll write what is it??? how exactly it is introduced???)

1.0.2 When Electron-Phonon Coupling is Large

(??? this determines the model that can be used. but how to know, what is it from other
experiments or from other theory?)

1.0.3 Requirement of Being Semiconductor to Have Polarons

(??? why exactly semiconductors are assumed???)

2 Main Models of Polarons

(see Alexandrov, Mott for now)

3 Numerical Simulation of Polarons

(there are references in Alexandrov, Mott, but it is a complicated topic...)

4 Experimental Consequences of Polarons

(see Alexandrov, Mott for now)
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Part III

Examples and Solved Problems
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Part IV

Well-known and Important Theories
5 Polarons and Bipolarons by Alexandrov, Mott

5.1 Introduction

(here, explanation is not clear, one needs to read original works to figure out what is meant
here. It is a very very bad introduction.)

The concept of polarons was first introduced by Landau (1933). If an electron is placed into
the conduction band of an ionic crystal the force on another electron at a distance r from it
would be e2/ϵ0r2. But if the ions did not move the force would be e2/ϵr2, where ϵ0 and ϵ are
the static and high-frequency dielectric constants, respectively.

(?????? some assumed properties of a dielectric constant are here. I don’t understand it.
(???))

Thus an electron is acted upon by a potential energy

−
e2
(
ϵ−1 − ϵ−1

0

)
r

(0.1)

Since this is a Coulomb potential, localised states must exist. The electron is ’trapped by
digging its own hole’.

Mott and Gurney (1940) argued that the trapped electron must be mobile but heavy, and
find it remarkable that no such entity had been observed. The concept was treated in much
greater detail by Fröhlich (1954), Yamashita and Kurosawa (1958), Sewel (1958), Holstein
(1959), Toyozawa (1961), Eagles (1963), Reik (1963), Friedman (1964), Holstein and Friedman
(1968), Austin and Mott (1969), Emin and Holstein (1969), Emin (1970), the Russian school:
Pekar (1951), Tjablikov (1952), Rashba (1957), Klinger (1961), Lang and Firsov (1962) and
later by many others.

In Holstein’s treatment an electron is trapped by the self induced deformation of two-atomic
molecules. (???)

A Franck-Condon model is used to calculate their quasistatic displacement and the frequency
with which the polaron can move to a neighboring molecule. (what are quasistatic displacement
and the frequency?)

This (in the so-called adiabatic approximation) involves the excitation of both the occupied
and empty molecules to the same energy, so that the electron can tunnel backwards and forwards
between them. (why???)

This excitation involves an activation energy Ep/2, and the excitation can occur through
the action of temperature or zeropoint motion. (how does it involve an activation energy?)

In the former case the polaron moves by thermally activated hopping, with a diffusion
coefficient

ωa2 exp

(
− Ep

2kBT

)
(0.2)

where a is the distance between molecules.
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In the latter case, for kBT < ℏω/2 the motion is coherent, the polaron behaves like a heavy
particle with the mass

m∗ ∼ exp

(
Ep

ℏω

)
(0.3)

and with a mean free path determined by the phonon and impurity scattering. (what is a
coherent motion???)

Here ω is the characteristic phonon frequency (how to find out what is it?).
For ionic crystals we may write

Ep =
e2
(
ϵ−1 − ϵ−1

0

)
rp

(0.4)

where rp is the radius of the volume within the wave function trapped by the lattice deformation
(polaron radius). (mean radius?) This can be greater than or comparable with the lattice
constant a.

It is of course possible that the process described only leads to a small phase shift in the
wave function at each hop if Ep ≪ ℏ2/ma2, where m is a rigid band mass. (he just wrote that
there is diffusion and hopping, so why there could be only phase shifts???)

The polaron is than called ’large’, and can be described as a free particle moving in an
elastic continuum.

The most sophisticated treatment of the large or ’continuum’ polaron is due to Feynman and
co-workers (1962) (they calculated some impedance, I don’t understand what is it?) following
that given by Pekar (1951) and Fröhlich (1954) (??? I’ll read these papers later).

This treatment leads to a mass enhancement, but not to a hopping conduction (?? why not
to it?? read that articles??) or to a narrow polaron band (how could it be?).

It is in this sense that we use the term ’large polaron’. Some authors used the term ’large’
to describe only situations where (ϵ−1 − ϵ−1

0 ) is considerably less than unity (why?).
But even this is by no means the case of large polarons if the bare electron band is sufficiently

narrow (why???).

For non-ionic materials (elements) (which?), large polarons in our sense do not exist.
If we take the Holstein model with the phonon coordinate x (molecular deformation) which

lowers the electron energy by xω
√

2MEp (why???), then the deformation region of the size rp
with one localised electron in it costs the energy

(??? I have no idea what happens here, I’ll better read original articles)

E (u, rp) ≃
ℏ2

2mr2p
− xω

√
2MEp +

Mω2x2

2

(rp
a

)3
. (0.5)

Minimising it with respect to the displacement one obtains

x0 =

√
2Ep

Mω2

(
a

rp

)3

(0.6)

and the minimum

E (x0, rp) =
ℏ2

2mr2p
− Ep

(
a

rp

)3

(0.7)

The energy has a minimum for rp = 0; therefore the electron collapses into a point at
any value of the polaron binding energy Ep. In fact rp is restricted from below by the lattice
constant a. Therefore there is a critical value of the coupling constant λ = Ep/

ℏ2
2ma2
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λc = 1 (0.8)

No polarons are formed in the weak coupling region λ < λc (rp = ∞), and only small
polarons (rp = a) exist in the strong-coupling regime λ > λc.

The concept of a small polaron was first applied to an electron or hole in a nonmetal (e.g.
in alkali halides). For the new superconductors our model is of course that of a degenerate gas
of small polarons or bipolarons which are also degenerate below Tc and nondegenerate above.
The bound state of two large polarons on an elastic polarisable continuum (large bipolaron)
was introduced by Vinetskii and Giterman (1957) using a variational approach. Vinetskii and
Pashitskii (1983) also discussed low-dimensional large bipolarons with disklike morphology and
the possibility of their Bose-Einstein condensation. In ionic crystals the polarization wells and
wave functions of macroscopic (large) bipolarons with the radius rB ≫ a, where a is the lattice
constant, overlap strongly and this should result in their dissociation if the
carrier density is sufficiently high n > 1020 cm−3. However at low density (less than 1018 cm−3)
a gas of large bipolarons can be condensed below some critical temperature Tc without any
overlapping of the polarization wells. Eagles (1969) examined a possibility of explaining the
superconductivity of SrTiO3 through such particles.

The concept of a small on-site localised bipolaron was introduced by Anderson (1975) and
by Street and Mott (1975). It was applied to glassy semiconductors (chalcogenide glasses)
to explain their magnetic and electric properties. Small bipolarons different from those were
identified by Lakkis et al (1976) in Ti4O7 and Ti4−xVxO7. These are inter-site small bipo-
larons, which are bound states of two Ti+3 ions stabilised by a large lattice distortion. At low
temperatures they form a charged ordered state and are immobile. Chakraverty (1981) dis-
cussed bipolarons in connection with superconductivity, but considered that bipolarons would
be immobile and therefore inactive as superconducting carriers.

The introduction of small mobile bipolarons and small polarons into the theory of supercon-
ductivity dated from the work of Alexandrov and Ranninger (1981a,b) and Alexandrov (1983),
respectively. Many authors applied the BCS approach to describe the behavior of materials
with strong interaction, so that the electron-phonon coupling constant λ increases (for review
see Scalapino (1969)). The new point is that λ ≃ 1 is the condition for polaron formation, and
it is shown that for a value of λ in the neighborhood of unity there is a fairly sharp transition
to a situation in which all the carriers form small polarons. The electron band collapses into
a narrow smallpolaron band (half bandwidth w < ω) so that the gap extends across the whole
Fermi distribution. The discovery of the new superconductors by Bednorz and Müller in 1986
lead to renewed interest in the bipolaronic superconductivity. We consider bipolarons as a key
element for the understanding of the high- Tc phenomenon. Most of the experimental work
has been in copper oxides, for which there is convincing evidence that the carriers are small
polarons and bipolarons (Alexandrov and Mott (1994)).

In this book single-particle and cooperative properties of selflocalised carriers on a lattice are
discussed at a fairly basic level with an emphasis on developments of the strong-coupling theory
of superconductivity. Polaron and bipolaron formation provides a number of new physical
phenomena both in the normal and superconducting ntates. Highly non-adiabatic motion of
selftrapped carriers results in fundamental difference of low mobility conductors compared with
simple metals and BCS superconductors.

The book starts with a single polaron problem. Both large and small polarons are discussed
in Chapter 1. In the second Chapter the bipolaron formation is considered in ionic and atomic
solids. The canonical theory of the electron-phonon interaction in metals is discussed in Chapter
3. In Chapter 4 we introduce the multi-polaron problem. Polar doped M O 11 milto described in
Chapter 5. In chapter are We pay perconductivity and CDW in the strong coupling regime. far
special attention to a charged Bose gas (CBG) in Chapter 7 as a simple but IC maching model
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explaining many thermodynamic and kinetic properties of highthe the textreonductors. A
discriminating selection of clear-cut experiments confirming correstence of mobile small polarons
and bipolarons is presented in Chapter 8. In conclusion we suggest an overview of the high- Tc
problem.

5.2 1 Large and small polaron

5.2.1 How to know, which type of polaron is present?

(????????????? I have no idea, I haven’t seen a discussion of it here)

5.2.2 1.1 Strong-coupling large polaron

Theory

This book is about cooperative properties of self-trapped carriers in solids with strong
electron-lattice interaction. To approach the many polaron problem we first discuss a single
electron interacting with the lattice deformation.

The simplest case studied by Pekar (1946) is a free electron interacting with the dielectric
polarisable continuum, described by the static ϵ0 and the optical (high frequency) dielectric
constant ϵ.

This is the case for carriers interacting with optical phonons in ionic crystals under the
condition that the size of the self-trapped state is large compared with the lattice constant so
the lattice discreteness is irrelevant.

Describing the ionic crystal as a polarisable dielectric continuum one should keep in mind
that only the ionic part of the total polarisation contribute to the polaron state. (how it could
be otherwise??)

The interaction of a carrier with valence electrons responsible for the optical properties is
taken into account with the Hartree-Fock periodic potential and included in the band mass m,
Chapter 3 (? I’ll think later, how it is done?).

Therefore only ion displacements contribute to the self-trapping.
Following Pekar we minimise the sum E(ψ) of the electron kinetic energy and the potential

energy due to the self-induced polarisation field

E(ψ) =

∫
dr

[
ψ∗(r)

(
−∇2

2m

)
ψ(r)−P(r) ·D(r)

]
(1.1)

where

D(r) = e∇
∫
dr′

|ψ (r′)|2

|r− r′|
(1.2)

in the electric field of an electron in the state with the wave function ψ(r) and P is the ionic
part of the lattice polarisation.

(???? !!! write better, which idea is assumed here???)
Here and further we set ℏ = c = kB = 1 unless specified otherwise.
Minimising E(ψ) with respect to ψ∗(r) at fixed P and

∫
dr|ψ(r)|2 = 1 one arrives at the

equation of motion (
−∇2

2m
− e

∫
dr′P (r′) · ∇′ 1

|r′ − r|

)
ψ(r) = E0ψ(r) (1.3)

where E0 is the electron part of the ground state energy.
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(I’ll check the transformation later, maybe it is not that hard)
The ionic part of the total polarisation is given by the definition of the susceptibilities χ0

and χ
P = (χ0 − χ)D. (1.4)

(why???)
The dielectric susceptibilities χ0 and χ are expressed through the static and high frequency

dielectric constants, respectively (χ0 = (ϵ0 − 1) /4πϵ0, χ = (ϵ− 1)/4πϵ) to obtain

P =
D

4πκ
(1.5)

with κ−1 = ϵ−1 − ϵ−1
0 .

(I need to revise electrodynamics)
Then the equation of motion is(

−∇2

2m
− e2

4πκ

∫
dr′
∫
dr′′ |ψ (r′)|2∇′ 1

|r′ − r′′|
· ∇′ 1

|r′ − r|

)
ψ(r) = E0ψ(r) (1.6)

Differentiating by parts with the use of the equation ∇2 1
r
= −4πδ(r), we obtain(

−∇2

2m
− e2

κ

∫
dr′

|ψ (r′)|2

|r′ − r|

)
ψ(r) = E0ψ(r) (1.8)

(I’ll check the transformation later, maybe it is not that hard)
(write here the idea better!!! why do we introduce a functional???? what this method is???)
The solution of this nonlinear integral-differential equation can be obtained with the help

of a variational minimisation of the functional

J(ψ) =
1

2m

∫
dr|∇ψ(r)|2 − 1

2maB

∫
drdr′

|ψ(r)|2 |ψ (r′)|2

|r′ − r|
(1.9)

where aB = κ/me2 is the effective Bohr radius.
The simplest choice of the normalised trial function is

ψ(r) = Ae−r/rp , (1.10)

with

A =
1√
πr3p

(1.11)

Here we take the volume of the crystal Ω = 1. Substitution of Eq.(1.10) into Eq.(1.9) yields

J(ψ) = T +
1

2
U (1.12)

where the kinetic energy is

T =
1

2mr2p
(1.13)

(I’ll check all what is below later, it is a technical part)
To calculate the potential energy U we first integrate in Eq.(1.9) over the angle θ between

r and r′ ∫ π

−π

sin θdθ

|r− r′|
=

2Θ (r − r′)

r
+

2Θ (r′ − r)

r′
(1.14)
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to obtain

U = −32π2

maB

∫ ∞

0

drr2ψ2(r)

∫ ∞

r

dr′r′ψ2 (r′) (1.15)

Here Θ(x) = 1 for x > 0 and zero otherwise. With Eq.(1.10) we find

U = − 5

8maBrp

and the function to be minimised with respect to rp is

J(ψ) =
1

2mr2p
− 5

16maBrp
(1.17)

As a result, for the polaron radius we obtain

rp =
16aB
5

(1.18)

and the ground state energy E0 = T + U is

E0 = −0.146
1

ma2B
(1.19)

this is the first important result of this model

This can be compared with the ground state energy of the hydrogen atom −0.5mee
4, where

me is the free electron mass. Their ratio is 0.3m/meκ
2. In polar solids 4 < κ ≃ 20. Then the

large polaron binding energy is below 0.25 eV if m ≃ me. The potential energy in the ground
state is

U = −4T =
4

3
E0 (1.20)

The lowest photon energy νmin to excite a polaron into the electron band is

νmin = |E0| . (1.21)

The ion configuration is not changed during the photoexcitation of a polaron. A lower
activation energy WT is necessary, however, if the self-trapped state disappears together with
the polarisation well due to a thermal fluctuation

WT = |E0| − Ud, (1.22)

where Ud is the deformation energy. In ionic crystals

Ud =
1

2

∫
drP(r) ·D(r) (1.23)

which for the ground state is

Ud =
2

3
|E0| . (1.24)

Therefore the thermal activation energy is

WT =
1

3
|E0| . (1.25)

The ratio of four characteristic energies for the large strong-coupling polaron is given by
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WT : Ud : νmin : |U | = 1 : 2 : 3 : 4. (1.26)

Different trial functions yield practically the same ground state energy with numerically
different polaron radius. In particular, with Pekar’s choice

ψ(r) = A
(
1 + r/rp + βr2

)
e−r/rp (1.27)

one obtains A = 0.12/r
3/2
p , β = 0.45/r2p and the polaron radius

rp = 1.51aB (1.28)

The ground state energy is

E0 = −0.164
1

ma2B
(1.29)

How exactly the strong-coupling large polaron is related to other models?

(???????????????????????????????????????????)

5.2.3 1.2 Effective mass of large strong-coupling polaron

Theory

(somehow another model appears... why???)
Any polaron in a perfect crystal can move because of the translational symmetry. However,

the dynamical lattice deformation does not follow perfectly well the polaron motion. The
retardation is responsible for the polaron mass enhancement. Within the continuum harmonic
approximation the evolution of the lattice polarisation P(r, t) is described by the harmonic
oscillator subjected to an external force ∼ D/κ :

ω−2∂
2P(r, t)

∂t2
+P(r, t) =

D(r, t)

4πκ
, (1.30)

where ω is the optical phonon frequency. If during the characteristic time of the lattice re-
laxation ≃ ω−1 the polaron moves a distance much less than the polaron radius, the polarisation
practically follows the polaron motion. Therefore for a slow motion with the velocity

v ≪ ωaB (1.31)

the first term in Eq.(1.30), responsible for the retardation is a small perturbation. Then

P(r, t) ≃ 1

4πκ

(
D(r, t)− ω−2∂

2D(r, t)

∂t2

)
(1.32)

The total energy of the crystal with an extra electron

E = E(ψ) + 2πκ

∫
dr

[
P2(r, t) + ω−2

(
∂P(r, t)

∂t

)2
]

(1.33)

is determined in such a way that it gives Eq.(1.30) if minimised with respect to P. We note
that the first term of the lattice contribution is the deformation energy Ud, discussed in the
previous section. As follows from Eq.(1.32) the lattice part of the total energy depends on the
polaron velocity and contributes to the effective mass. Replacing the static wave function ψ(r)
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in all expressions for ψ(r−vt) and neglecting a contribution to the total energy of higher order
than v2 one obtains

E = E0 + Ud +
m∗v2

2
, (1.34)

where

m∗ = − 1

12πω2κ

∫
drD(r) · ∇2D(r) (1.35)

is the polaron mass. The use of the equation

∇2D = −4πe∇|ψ(r)|2 (1.36)

and

∇ ·D = −4πe|ψ(r)|2 (1.37)

yields

m∗ =
4πe2

3ω2κ

∫
dr|ψ(r)|4 (1.38)

Calculating the integral in Eq.(1.38) with the trial function Eq.(1.10) one obtains

m∗ ≃ 0.02α4m (1.39)

where α is the dimensionless constant, defined by Fröhlich as

α =
e2

κ

√
m

2ω
. (1.40)

To conclude our discussion of the strong-coupling large polaron let us determine the condi-
tion of its existence. The polaron radius should be large compared with the lattice constant,
rp ≫ a to justify the continuum effective mass approximation for the electron. Then the value
of α should not be very large,

α ≪
√
D

zω
, (1.41)

where D ≃ z/2ma2 is half of the bare electron bandwidth, z is the lattice nearest neighbor
number. On the other hand the continuum (classical) approximation for the lattice polarisation
is justified if the number of phonons taking part in the polaron formation is large. This number
is of order Ud/ω. The total energy of the immobile polaron and deformed lattice, Eq.(1.34) is
expressed as

E = −0.109α2ω (1.42)

and Ud = 0.218α2ω. Then α is bounded below by the condition Ud/ω ≫ 1, which yields

α2 ≫ 5. (1.43)

The adiabatic ratio D/ω is of order 10 to 100. In fact in many transition metal oxides
with narrow bands and a high optical phonon frequency this ratio is below 10, which makes
Eq.(1.41) and Eq.(1.43) incompatible. Therefore the large strong coupling polaron is difficult
to realise in practice, and we do not know of any solid in which it has been observed.
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5.2.4 1.3 Fröhlich large polaron

Theory

Fröhlich (1950), Fröhlich et al (1950) and other workers applied the second quantisation
form of the electron-lattice interaction to describe a week-coupling large polaron when α ≤ 1,
so the quantum nature of the lattice polarisation becomes important. The electron potential
energy in a crystal field distorted by phonons is

V (r) =
∑
1

v (r−R1) , (1.44)

where the interaction of an electron with a single ion is described by the potential v(r). The
distance of ions u1 = R1 − 1 from the equilibrium positions 1 is small compared with a lattice
constant a, which allows us to expand v (r−R1) near equilibrium:

v (r−R1) ≃ v(r− 1)− u1 · ∇v(r− 1).

The lattice part of the Hamiltonian can be diagonalised with harmonic phonons (see Chapter
3) such, that the ion displacement is a linear combination of their annihilation dq and creation
d†q bosonic operators:

ul =
∑
q

eq√
2NMωq

dqe
iq·l + h.c. (1.46)

where q is the phonon momenta in the first Brillouin zone, ωq the phonon frequency, M
ionic mass, eq is a unit polarisation vector, and N is the number of ions (sites) in a crystal.
With the help of the Fourier expansion

v(r) =
∑
k

vke
ik·r (1.47)

the electron-phonon interaction in the second quantization is written as:

He−ph =
1√
2N

∑
q

γ(q)ωqdqe
iq·r + h.c. (1.48)

where the dimensionless matrix element is

γ(q) = −iNeq · q√
Mω3

q

vq (1.49)

In ionic crystals the interaction v(r) is the Coulomb one with the Fourier component vq ≃
4π/Ωκq2 (Ω is the crystal volume). Then the coupling with longitudinal (eq∥q) ionic plasmons
is

γ(q)ω

2N
≡ Vq = −iω

q

(
4πα

Ω
√
2mω

)1/2

(1.50)

where α is the Fröhlich constant and ω =
√

4πNe2/MΩκ is the ionic plasma frequency.
The complete Hamiltonian including the quantised deformation energy has the form

H = −∇2

2m
+
∑
q

(
Vqdqe

iq·r + h.c.
)
+
∑
q

ωq

(
d†qdq + 1/2

)
(1.51)

The quantum states of the noninteracting electron and phonons are classified with the
electron momentum k and with the phonon occupation numbers

〈
d†qdq

〉
≡ nq = 0, 1, 2, . . .∞.
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For zero temperature the unperturbed state is the vacuum |0⟩ of phonons and the electron
plane wave

|k, 0⟩ = 1√
Ω
eik·r|0⟩ (1.52)

While the coupling is weak one can apply perturbation theory. The interaction couples the
state Eq.(1.52) with the energy k2/2m and states of a single phonon of momentum q and the
electron of momentum k− q with the energy (k− q)2/2m+ ω

|k− q, 1q⟩ =
1√
Ω
ei(k−q)·r |1q⟩ (1.53)

The corresponding matrix element is

⟨k− q, 1q|He−ph|k, 0⟩ = V ∗
q (1.54)

There are no diagonal matrix elements of He−ph. Then the renormalised energy Ẽk in the
lowest second order is

Ẽk =
k2

2m
−
∑
q

|Vq|2

(k− q)2/2m+ ω − k2/2m
(1.55)

As in section 1.2 we consider a slow electron, such as

k < qp (1.56)

where

qp = min(mω/q + q/2) =
√
2mω (1.57)

In this case there is no imaginary part of Ẽk, which means that the momentum is conserved.
On substituting the expression for Vq, Eq.(1.50), changing the sum over q to integrals, and
taking the upper limit infinity for q one obtains

Ẽk =
k2

2m
− αω

π

∫ 1

−1

dx

∫ ∞

0

dy

y2 − 2yxk/qp + 1
(1.58)

The integral over q converges because the coupling constant (∼ 1/q) decreases with q.
Therefore long wave optical phonons contribute mainly to the polaron self-energy. That is not
the case for molecular or acoustical phonons when all states of the Brillouin zone contribute.
Evaluating the integrals one arrives at

Ẽk =
k2

2m
− αωqp

k
arcsin

(
k

qp

)
(1.59)

which for a very slow motion k ≪ qp yields

Ẽk ≃ −αω +
k2

2m∗ (1.60)

Here the first term is the polaron binding energy. The effective mass of the polaron is
enhanced

m∗ =
m

1− α/6
≃ m

(
1 +

α

6

)
(1.61)
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This is due to a phonon cloud accompanying a slow polaron. The number of virtual phonons
Nph in the cloud is given by taking the expectation value of the phonon number operator

Nph =

〈∑
q

d†qdq

〉
(1.62)

where bra and ket refer to the perturbed state

⟩ = |0⟩+
∑
q′

V ∗
q′

k2/2m− (k− q′)2 /2m− ω
|1q′⟩ (1.63)

For a polaron at rest (k = 0) one obtains

Nph =
∑
q

|Vq|2

(ω + q2/2m)2
(1.64)

The value of the integral in Eq.(1.64) is

Nph =
α

2
(1.65)

Therefore the Fröhlich coupling constant measures directly the cloud ’thickness’. One can
also calculate the lattice-charge density induced by the electron. The electrostatic potential
eϕ(r) is given by the average of the interaction term of the Hamiltonian

eϕ(r) =

〈∑
q

Vqe
iq·rdq + h.c.

〉
(1.66)

and the charge density ρ(r) is related to the electrostatic potential by Poisson’s equation

∇ϕ = −4πρ (1.67)

As a result

ρ(r) = − 1

2πe

∑
q

q2 |Vq|2 cos[q · r]
ω + q2/2m

(1.68)

By integration over q one obtains

ρ(r) = −
eq3p
4πκ

e−qpr

qpr
(1.69)

The mean extension of the phonon cloud which can be taken as the radius of a weak coupling
polaron is

rp = q−1
p (1.70)

The total induced charge is

Q =

∫
drρ(r) = − e

κ
(1.71)
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5.2.5 1.4 Intermediate-coupling large polaron

Theory

Many polar materials are in the intermediate regime 1 < α < 10. (why??)
One can approach this regime applying the Lee-Low-Pines (LLP, 1953) canonical transfor-

mation, removing the electron coordinate followed by the displacement transformation (Tjab-
likov (1952), Lee and Pines (1952), Gurari (1953)). (why??)

The latter serves to account for that part of the lattice polarisation which follows the electron
instantaneously.

The remaining part of the polarisation field turns out to be small if the coupling constant
is not extremely large.

(check these statements!)

In the opposite extreme limit, which is Pekar’s strong-coupling regime already discussed one
can construct the perturbation theory by an expansion in descending powers of α (Bogoliubov
(1950)). (read this article, maybe it is a good one!)

Alternatively one can apply Feynman’s path-integral formulation (1955) of quantum me-
chanics to remove the phonon field at the expense of a non-instantaneous interaction of electron
with itself. (do it!! a good exercise)

Here we consider the canonical transformation approach referring the reader to the papers
by Allcock (1962) and Bogoliubov Jr.(1994) for the strong-coupling large polaron theory and
by Schultz (1962) for Feynman’s path integral method, which is also discussed in section 2.3.
(I am not sure how useful is path integral here, so I’ll read it later)

A canonical transformation can be written as

|Ñ⟩ = exp(S)|N⟩ (1.72)

where in our case |N⟩ is a single-electron multi-phonon wave function, |Ñ⟩ is a transformed
one, satisfying the Schrödinger equation :

H̃|Ñ >= E|Ñ > (1.73)

with the transformed Hamiltonian

H̃ = exp(S)H exp(−S) (1.74)

If all operators are transformed according to Eq.(1.74) the physical averages, in particular
the energy remain unchanged. LLP transformation eliminating the electron coordinate from
the Hamiltonian is defined as

SLLP = i
∑
q

(q · r)d†qdq (1.75)

In the new representation the phonon operator is

d̃q = eSLLP dqe
−SLLP = dqe

−iq·r (1.76)

and the electron momentum operator is

−i∇̃ = −ieSLLP∇e−SLLP = −i∇−
∑
q

qd†qdq (1.77)

To derive Eq.(1.76) and Eq.(1.77) one can apply transformed operators to the eigenstates
of the phonon-number operator and to the plane waves, respectively. The transformed Hamil-
tonian is therefore



5.2 1 Large and small polaron 20

H̃ =
1

2m

(
−i∇−

∑
q

qd†qdq

)2

+
∑
q

(Vqdq + h.c.) + ω
∑
q

(
d†qdq + 1/2

)
(1.78)

The electron coordinate is absent from H̃. Hence the eigenstates |Ñ⟩ are classified with the
momentum K, which is the conserving total momentum of the system

|Ñ⟩ = 1√
Ω
eiK·r

∣∣∣Ñph

〉
(1.79)

where the phonon part of the wave function
∣∣∣Ñph

〉
satisfies to the Schrödinger equation with

the phonon Hamiltonian

H̃ =
1

2m

(
K−

∑
q

qd†qdq

)2

+
∑
q

(Vqdq + h.c.) + ω
∑
q

(
d†qdq + 1/2

)
(1.80)

As follows from the Fröhlich perturbation analysis the number of virtual phonons is not
small in the intermediate coupling regime. Therefore one cannot apply the perturbation theory
to H̃. However, one can remove the essential part of the interaction term from the Hamiltonian
by the displacement canonical transformation

S =
∑
q

f(q)dq − h.c. (1.81)

where the c-number f(q) is to be determined by minimisation of the ground state energy

− ∂E0

∂f ∗(q)
= 0 (1.82)

The transformed phonon operator is

d̃q = eSdqe
−S = dq − f ∗(q) (1.83)

which is obtained with the help of the expansion

eSdqe
−S = dq + [dq, S] +

1

2
[[dqS] , S] + . . . (1.84)

Because [dq, S] = −f ∗(q) is a c-number all terms after the second vanish. From Eq.(1.83) it
follows that expS displaces ions to new equilibrium positions. Assuming that the transformed
ground state is a phonon vacuum ∣∣∣ ˜̃Nph

〉
= eS

∣∣∣Ñph

〉
= |0⟩ (1.85)

one finds for the energy ẼK ≡ ⟨0| ˜̃H|0⟩

ẼK =
K2

2m
−
∑
q

(Vqf
∗(q) + h.c.) +

∑
q

|f(q)|2
(
ω − K · q

m
+

q2

2m

)

+
1

2m

∑
q

∑
q′

∣∣∣∣∣ f (qf (q′)|2 q · q′ (1.86)

Taking the functional derivative of Eq.(1.86) to be zero one arrives at
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f(q)

[(
ω − K · q

m
+

q2

2m

)
+

1

m

∑
q′

|f (q′)|2 q · q′

]
= Vq (1.87)

It is essential in eliminating a large part of the Fröhlich interaction that the linear term with
respect to the phonon operators vanishes from ˜̃H if f(q) satisfies to Eq.(1.87). Introducing a
constant η determined as ∑

q′

|f (q′)|2 q′ = ηK (1.88)

one finds a formal solution to Eq.(1.87)

f(q) =
Vq

ω + q2/2m− (1− η)q ·K/m
(1.89)

and with Eq.(1.86)

ẼK =
(1− η2)K2

2m
−
∑
q

|Vq|2

ω + q2/2m− (1− η)q ·K/m
(1.90)

The last equation is the same as Eq.(1.55) if η = 0. However, η = 0 is not a solution of the
self-consistent equation for η which is obtained by substituting Eq.(1.89) into Eq.(1.88)

ηK =
∑
q

|Vq|2 q
(ω + q2/2m− (1− η)q ·K/m)2

(1.91)

Integrating gives

ẼK =
(1− η2)K2

2m
− αωqp
K(1− η)

arcsin

(
K(1− η)

qp

)
(1.92)

with

η(1− η)2 =
αq3p
2K3

 (1− η)K√
q2p − (1− η)2K2

− arcsin
(1− η)K

qp

 (1.93)

For a slow polaron with K ≪ qp only the term independent of K needs to be retained in η

η =
α/6

1 + α/6
(1.94)

Then the energy up to order K2 is

ẼK = −αω +
K2

2m∗ (1.95)

where the polaron mass is now

m∗ = m(1 + α/6) (1.96)

This result shows that the perturbation theory, Eq.(1.61) can be extended even to α > 1.
Lee, Low and Pines evaluated also the corrections due to the off-diagonal part of the transformed
Hamiltonian ˜̃H and found that they are below 0.02α for the polaron shift in Eq.(1.95) and
below −0.02α2/(1 + α/6) for the effective mass. A lower value of the ground state energy
(approximately by 10%) and heavier effective mass was obtained by Feynman using the path
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integral. The difficulty with the path integral is that the effective action is not quadratic with
respect to the electron coordinate. Therefore to determine an upper bound to the ground
state energy the action was approximated by an effective quadratic action with two variational
parameters. The general conclusion is that for a wide range of α the Feynman estimate of the
ground state energy is lower than that obtained by the canonical transformation. Both the
Feynman variational path integral approach and the LLP transformation are inaccurate for the
strong coupling large polaron, α > 10.

5.2.6 1.5 Small polaron: two-site Holstein model

Theory

When the coupling with phonons increases the polaron radius decreases and becomes of the
order of the lattice constant. Then all momenta of the Brillouin zone contribute to the polaron
wave function and the effective mass approximation cannot be applied. This regime occurs
if the characteristic potential energy Ep due to the local lattice deformation is comparable or
larger than the half bandwidth D. The strong coupling regime with the dimensionless coupling
constant

λ ≡ Ep

D
≥ 1 (1.97)

is called a small polaron. In general, Ep is estimated using the perturbation theory, Eq.(1.55)

Ep =
1

2N

∑
q

|γ(q)|2ωq (1.98)

for any type of phonons involved in the polaron cloud. For the Fröhlich interaction with
optical phonons one estimates

Ep ≃
qDe

2

πκ
(1.99)

where qd = (6π2/Ω)
1/3 is the Debye momentum. With parameters appropriate for high Tc

copper oxides ϵ0 ≫ ϵ∞ ≃ 5 and qD ≃ 0.7Å
−1

, one obtains Ep ≃ 0.6eV. The exact value of λc
when the large polaron collapses into a small one depends on the lattice structure and phonon
frequency dispersion. The transition occurs around λc ≃ 0.5 in the Holstein model (see Section
1.8). Small polarons are expected to be the carriers in high- Tc oxides, which are strongly
polarisible doped semiconductors with rather narrow electron bands (Chapter 8). The band
structure and kinetic properties are drastically different in the small polaron regime compared
with the large polaron as was discussed by Tjablikov (1952), Yamashita and Kurosava (1958),
Sewell (1958), Holstein (1959), and by the Russian school: Rashba (1957), Klinger (1962),
Firsov and co-workers(1962) and others.

The main features of the small polaron are revealed in the simplest Holstein model con-
sisting of only two vibrating molecular sites and one electron between them. Neglecting the
intermolecular coupling the vibration (molecular) part of the Hamiltonian is written as

Hph = − 1

2M

∑
i=1,2

(
∂2

∂x2i
+
Mω2x2i

2

)
(1.100)

where x1,2 is the intramolecular coordinate, which is the change of the distance between
two ions of a diatomic molecule on site 1 and 2 , respectively, and M is the relative mass. The
interaction of an electron with two rigid molecules is described by the ’electronic’ part of the
Hamiltonian
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He = −∇2

2m
+ V (r− l1) + V (r− l2) , (1.101)

where l1,2 are site coordinates, and the interaction term is

V (r− 1) = v(r− 1− a/2)− v(r− 1 + a/2) (1.102)

in case of the molecules consisting of two ions with the opposite charge and the equilibrium
distance a between them, Fig.1.1.

Fig.1.1. Two-site one-electron Holstein model.

And finally, the electron-phonon interaction with a stretching molecular mode is a linear
function of the displacements

He−ph = −
∑
i=1,2

xi
2

∂

∂x
[v (r− li − a/2) + v (r− li + a/2)] . (1.103)

The state of the system is expressed as a linear superposition

|r, x1, x2⟩ =
∑
i=1,2

ai (x1, x2)w (r− li) (1.104)

of electron wave functions, w(r − 1) each localised about particular molecular site 1 and
assumed to be normalised and orthogonal. If the molecules are separated by a large distance
these Wannier (site) wave functions are molecular orbitals satisfying the Schrödinger equation
for an isolated molecule (

−∇2

2m
+ V (r)

)
w(r) = 0 (1.105)

where the electron energy of a rigid molecule is taken to be zero. Equations for the ai (x1, x2)
are obtained by substitution of Eq.(1.104) into the Schrödinger equation of the system with the
complete Hamiltonian He +He−ph +Hph followed by multiplication on the left with w∗ (r− li)
and integration over the electron coordinate, r. This procedure gives

[
E +

1

2M

(
∂2

∂x21
+

∂2

∂x22

)
− Mω2 (x21 + x22)

2
− γω

√
Mωx1

]
a1 (x1, x2) = −Ja2 (x1, x2) , (1.106)

and

[
E +

1

2M

(
∂2

∂x21
+

∂2

∂x22

)
− Mω2 (x21 + x22)

2
− γω

√
Mωx2

]
a2 (x1, x2) = −Ja1 (x1, x2) , (1.107)
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where

γ = − 1

2ω
√
Mω

∫
dr|w(r)|2 ∂

∂x
[v(r− a/2) + v(r+ a/2)] (1.108)

is the dimensionless matrix element of the electron-phonon interaction as in the Fröhlich
Hamiltonian, Eq.(1.48). The hopping integral J is defined as

J =

∫
drV (r)w∗(r)w (r− l2 + l1) (1.109)

There are two molecular levels in the noninteracting case, γ = 0

E E = ω ± J

with 2J playing a role of the half bandwidth D in a crystal. The matrix element γ is
diagonal with respect to the site index. There is also an off-diagonal matrix element, which is
negligible if the overlap of molecular orbitals is small.

The strong coupling condition λ > 1 corresponds to γ2 > 4J/ω. Two limiting methods are
available for the treatment of the system of two coupled differential equations (1.106, 107) in
this strong-coupling regime; the perturbation and the adiabatic approaches, valid in the case
of large or small adiabatic parameter ω/J , respectively.

5.2.7 1.6 Nonadiabatic small polaron

Theory

In the perturbation nonadiabatic approach the lattice moves fast and the electron slow.
Then one can take J = 0 in zero approximation with two degenerate eigenstates al,r, corre-
sponding to the polaron ’sitting’ on the ’left’ al and on the ’right’ ar molecule, Fig.1.2

al1 (x1, x2) = exp

[
−Mω

2

((
x1 +

γ√
Mω

)2

+ x22

)]
; al2 (x1, x2) = 0 (1.111)

and

ar1 (x1, x2) = 0; ar2 (x1, x2) = exp

[
−Mω

2

((
x2 +

γ√
Mω

)2

+ x21

)]
(1.112)

Fig.1.2. Zero-order deformation of the molecules.
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The electron-phonon interaction leads to the shrinking of the molecular size by the value
γ/

√
Mω and to the lowering of the molecular level by the polaronic level shift

E ≃ ω − Ep. (1.113)

We note that the polaronic level shift Ep = γ2ω/2 is independent of the molecular mass.
The first term in Eq.(1.113) is the energy of zero point fluctuations of two vibrating molecules.
In the first order of the perturbation theory[

a1 (x1, x2)
a2 (x1, x2)

]
= α

[
al1 (x1, x2)

0

]
+ β

[
0

ar2 (x1, x2)

]
. (1.114)

Here the coefficients α and β are independent of x1,2. The standard secular equation for E
is obtained by substitution of Eq.(1.114) into Eq.(1.106) and Eq.(1.107) followed by multiplica-
tion on the left with al1 (x1, x2) and ar2 (x1, x2), respectively and integration over the vibration
coordinates, x1,2. The result is

det

∣∣∣∣ E − ω + Ep J̃

J̃ E − ω + Ep

∣∣∣∣ = 0 (1.115)

with the renormalised hopping integral

J̃ = J

∫
dx1

∫
dx2a

l
1 (x1, x2) a

r
2 (x1, x2)∫

dx1
∫
dx2

∣∣al1 (x1, x2)∣∣2 . (1.116)

The corresponding eigenvalues, E±are

E± = ω − Ep ± J̃ (1.117)

The hopping integral splits the molecular level. The effective ’bandwidth’ is significantly
reduced compared with the bare one

J̃ = Je−g2 (1.118)

where g = γ/
√
2. The origin of the polaron band narrowing e−g2 lies in a small overlap

integral, Eq.(1.116) of two displaced oscillator wave functions al1 and ar2. This effect is beyond
the large-polaron approximation.

5.2.8 1.7 Adiabatic small polaron

Theory

In the adiabatic approach when J ≫ ω, one assumes a wave function of the form(
a1 (x1, x2)

a2 (x1, x2)

)
= χ (x1, x2)

(
ψ (x1, x2)

ϕ (x1, x2)

)
(1.119)

where ψ and ϕ are solutions of the ’electronic’ hopping Hamiltonian with a frozen molecular
deformation x1,2

(
E (x1, x2)− γω

√
Mωx1 J

J E (x1, x2)− γω
√
Mωx2

)(
ψ (x1, x2)

ϕ (x1, x2)

)
= 0. (1.120)

The lowest eigenvalue of Eq.(1.120) is of interest in the adiabatic approximation
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E (x1, x2) =
γω

√
Mω (x1 + x2)

2
−

[
γ2Mω3 (x1 − x2)

2

4
+ J2

]1/2
(1.121)

As is known, E (x1, x2) plays the role of a potential energy term in the equation for the
’vibration’ wave function, χ (x1, x2), which reads[

E +
1

2M

(
∂2

∂x21
+

∂2

∂x22

)
− Mω2 (x21 + x22)

2
− E (x1, x2)

]
χ (x1, x2) = 0. (1.122)

Terms with the first and second derivatives of the ’electronic’ functions ψ and ϕ are small
compared with the corresponding terms with the derivatives of χ for the case in hand. The
transformation

X =
x1 + x2

2
, x = x2 − x1 (1.123)

leads to a product solution of the form χ (x1, x2) = F (X)χ(x), where F (X) is the ground
state of a harmonic oscillator in the presence of a constant force γω

√
Mω with the ground state

energy (ω − Ep) /2. The equation for χ(x) is[
E +

Ep

2
− ω

2
+

1

2µ

∂2

∂x2
− U(x)

]
χ(x) = 0 (1.124)

where µ =M/2 and

U(x) =
µω2x2

2
−
[
Epµω

2x2 + J2
]1/2 (1.125)

The potential energy of the problem U(x) consists of two symmetrical potential wells, sep-
arated by a barrier, Fig.1.3.

Fig.1.3. Double well potential of the adiabatic Holstein model for λ = 1.

Minima are located at

xmin = ±

√
Ep

µω2

(
1− 1

4λ2

)
(1.126)

and have the common value

Umin = −Ep

2

(
1 +

1

4λ2

)
. (1.127)

The barrier height is − (J + Umin ). If the barrier were impenetrable, there would be the
ground state energy level E0, the same for both wells. To determine its position one can expand
the potential near the minimum as
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U(x) ≃ Umin +
µω̃2 (x− xmin)

2

2
(1.128)

where

ω̃ = ω

√
1− 1

4λ2
. (1.129)

Then the system is a harmonic oscillator with the renormalised frequency ω̃ and the ground
state energy

E0 − Umin =
ω̃

2
(1.130)

The tunneling through the barrier results in the splitting of this level into two, corresponding
to states in which electron moves simultaneously in both wells. This is a well known double
well potential problem, which can be solved by the quasi-classical technique, if the condition∣∣∣∣ ddx 1

p(x)

∣∣∣∣≪ 1 (1.131)

is satisfied. Here p(x) =
√

2µ [E0 − U(x)] is the classical momentum. Because ω ≪ J < Ep

the quasiclassical condition is satisfied practically for all x. The splitting is given by the
textbook expression (Landau and Lifshitz (1977))

∆E =
ω̃

π
exp

[
−2

∫ a

0

|p(x)|dx
]

(1.132)

where a ≃ xmin − 1/
√
µω̃ is the classical turning point corresponding to the energy E0.

Fig.1.3. In the extreme strong coupling limit λ≫ 1 the integral in Eq.(1.132) is∫ a

0

|p(x)|dx ≃ Ep

2ω
+

1

4
ln
Ep

ω
+O(1) (1.133)

Omitting a multiplier of the order of unity, one finds

∆E ∼
√
Epωe

−g2 . (1.134)

Holstein found corrections to this expression up to terms of the order of 1/λ2

∆E ≃
√

4Epω

π
e−g̃2 (1.135)

where

g̃2 = g2
[
1− 1

4λ2
ln(4λ)− 1

8λ2

]
(1.136)

In the strong-coupling limit λ≫ 1 the exponent in the renormalised bandwidth Eq.(1.135)
is the same, as for the nonadiabatic regime, Eq.(1.118) g̃ = g. However, the term in front
of the exponent differs from 2J for any value of λ. There is also an essential exponential
difference between Eq.(1.135) and twice of Eq.(1.118) in the intermediate coupling region,
where g̃ differs from g. As a result the adiabatic small polaron has much lower effective mass
for the intermediate coupling compared with that estimated with the nonadiabatic expression
(1.118). It is thus apparent that the perturbation nonadiabatic approach covers only part of
the total small polaron region λ ≥ 1. The upper limit of applicability of perturbation theory
is given by J <

√
Epω. For the remainder of this region, the adiabatic Eq.(1.135), rather than
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the perturbation approach is to be employed. Finally, using the expression for the minima
position xmin of the double well potential, Eq.(1.126) one can determine the critical value of
λ at which the transition to small adiabatic polaron is expected. The double well disappears
when xmin = 0 and λ = λc = 0.5. At this coupling the renormalised phonon frequency ω̃ is
zero as one can see from Eq.(1.129).

5.2.9 1.8 From large to small polaron: numerical calculations

Theory

Two analytical approaches discussed above are based on the 1/λ or ω/J expansions.
A priori it is difficult to say to what extent they are reliable in the intermediate coupling

region, λ ≃ 1, when the size of a polaron shrinks and for the intermediate value of the adiabatic
parameter ω/J ≃ 1.

Fig.1.4. The ’Monte-Carlo’ polaron collapse of the kinetic energy (K/J) of one-dimensional,
two, d = 2, and three-dimensional, d = 3 fermions interacting with molecular phonons with the
interaction constant γ for ω/J = 1 (de Raedt and Lagendijk (1983)).

The ground state energy is not so sensitive to the parameters being about −Ep for the small
nonadiabatic and small adiabatic polarons. However, the effective mass and the bandwidth
depends strongly on the polaron size and the adiabatic ratio. Several attempts to describe the
intermediate region of the coupling λ ≃ 1 with and
without electron-electron correlations are known in the literature. These are based on the
variational approach, the Monte-Carlo calculations and on the exact (numerical) solution of a
several-site Holstein model. The transition from a wide band electron (or large polaron) to a
narrow band small polaron is extremely sharp as seen in the Monte-Carlo simulations, Fig.1.4.
The general conclusion is that there is a continuous but rather sharp evolution from a wide
band electron to a narrow band small polaron in the intermediate region of the coupling λ ≃ 1.

The most reliable results for the intermediate region are obtained with the exact numerical
diagonalisation of vibrating clusters (Kongeter and Wagner (1990), Ranninger and Thibblin
(1992), Alexandrov et al. (1994a), Marsiglio (1995)). Numerical solution for several vibrating
molecules coupled with one electron in the adiabatic ω/J < 1 as well as in the nonadiabatic
ω/J > 1 regimes using numerical diagonalisation with 50 phonons shows that the adiabatic and
the perturbation approximations are in excellent agreement with the exact solution in adiabatic
and nonadiabatic regimes respectively for all values of the coupling constant.
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Fig.1.5. Band width (in units of J) of the two-molecular model (Alexandrov et al (1994a)).

To illustrate this we compare in Fig.1.5 the exact splitting of levels for two site cluster
with the expression (1.118) for nonadiabatic case and with the Holstein quaniclassical formula
Eq.(1.135) in the adiabatic case, generalised for the finite value of λ as

∆E =

√
4Epω

π
β5/2λ1−β[2(1 + β)]−βe−g̃2 (1.137)

where now g̃2 = g2 {β − [ln(2λ(1 + β))]/4λ2}. This generalisation takes into account the
frequency renormalisation β ≡ ω̃/ω =

√
1− 1/4λ2 and the anharmonic corrections of the

order of 1/λ2 to the turning point a in Eq.(1.132). A much lower effective mass of the adiabatic
small polaron in the intermediate coupling region compared with that estimated from the
perturbation theory expression (1.118) is revealed in Fig.1.5a. In the intermediate coupling
region, the effective bandwidth of a smal adiabatic polaron (ω ≪ J) can be only one order of
magnitude smaller than the bare band width. However, perturbation theory is reliable already
for ω > 0.5J as one can see in Fig.1.5c,d for all values of the coupling. The renormalised
phonon frequency has a minimum at the transition from large to small polaron. At large λ the
frequencies remain unchanged, Fig.1.6 as predicted with the adiabatic formula Eq.(1.129).

Fig.1.6. Phonon frequency renormalisation as a function of the coupling constant for a 4 -site
cluster. All four phonon modes are shown. An asymmetric mode ($-u_{1},-u_{2}, u_{2},
u_{1}$) is unstable at λ ≃ 0.57.

The infinite-site Holstein model can be solved numerically in the adiabatic limit ω ≪ J for
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any value of λ fully taken into account the discreteness of the lattice and the finite bandwidth
(Kabanov and Mashtakov (1993)). In this limit applying variational procedure to the action
with respect to a local displacement field ϕi one arrives at

ϕi = −
√
2g
∑
r

∣∣∣ψ(r)
i

∣∣∣2 nr, (1.138)

and

J
∑
j ̸=0

ψ
(r)
i+j +

√
2gωψ

(r)
i ϕi = ϵrψ

(r)
i (1.139)

These equations are written by the use of the extreme adiabatic approximation ∂ϕ
∂τ

= 0 with
ψi describing an electron localised on a site i. They do not contain spatial derivatives because
"bare" phonons are supposed to be dispersionless. nr means the occupation number in the
eigenstate r.

In the weak-coupling regime λ≪ 1 one can replace the discrete set for a continuous equation
with the following exact solution in 1D (Rashba (1957)) :

ψ(x) ∼ 1/ cosh

(
λx

a

)
(1.140)

The numerical analysis of the discrete set of the adiabatic equations leads to the conclusion
that there is a smooth transition at λ ≃ 1 from large to small polaron, and the self-localization
occurs without barrier formation in the 1D case.

In 2D case the situation changes qualitatively. The formation of a self-localized state in
2D case is accompanied by the formation of an energy barrier that separates the self-localized
and delocalised state. The formation of the barrier is associated with a finite width ∼ J of the
bare electronic band, while the numerical study of Eqs. (1.138, 139) in the continuous (effective
mass) approximation shows that the selflocalization occurs without barrier formation. This
is attributed to the fact that on a decrease in polaron size both the kinetic energy and the
strain energy are proportional to 1/r2p. However, the criterion of the polaron formation in 2D
corresponds to existence of a self-localized state within an interatomic space, where a finite
bandwidth (lattice discreteness) plays an important role. This fact means that the kinetic
energy scaling brakes down. Consequently, the 1D Holstein chain is essentially different from
2D or 3D Holstein adiabatic lattices. In all dimensions the ground state is a small polaron
if λ ≥ 1. However, in the 1D case there is no well defined transition to the self-trapped
regime with the increasing coupling. Calculating the nonadiabatic flucfuation corrections to
the classical phonon vacuum one obtains the phonon frequency renormalisation and the ground
state energy as in the two-site Holstein model.

On the basis of the Holstein model, it appears likely that the bandwidth in a crystal in the
strong coupling regime, λ ≥ 1 is given by an expression of the form (1.118) in the nonadiabatic
case (ω > J) and by the formula Eq.(1.135) in the extreme adiabatic case, J ≫ ω. We discuss
the small-polaron band in a crystal in Chapter 4.

In the rest of the book we survey the cooperative phenomena in many-polaron nystems.
A single polaron was discussed in detail in reviews by Appel (1968), Devresse(ed.) (1972),
Firsov (1975), Klinger (1979), and more recently by Devreese and Peeters (eds) (1984), Rashba
(1985), Fisher, Hayes and Wallace (1989), Toyozawa 1990), Gerlach and Lowen (1991), Shluger
and Stoneham (1993) and several others. in magnetic materials the carriers in the conduction
band form spin polarons - somemos called ferrons (Nagaev (1979)); that is a group of moments
oriented antiparallel to that of the carrier. Magnetic polarons were first invoked in ferromagnets
by von Molnar and Methfessel (1967) in their study of the giant negative magneto-resistance
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in ferromagnetic Eu1−xGdxSe. One can assume that spin polarons are carriers in Clie simple
Mott insulator such as La2CuO4. We think, then, polarons must be of complex hybrid type. In
the highly dielectric materials they will dies. Both spin and lattice will contribute to the mass
enhant diin polarons are equivalent to the lattice ass enhancement. To some extent liy the hole
is similar to the lattice one. and this fact makes some properties one. However, magnons are
not perfect bosons, firent from those of lattice polaries of spin polarons (e.g. effective mass)
quite dimily the linearised collective excitat. Nevertheless even in this case the idea that mil the
constructive and the proble (magnons) of the spin system matter turns. Then be treated with
them can be carrier strongly coupled with the spin powerful polaron formalism. We believe
that (lie cooperative properties of spin and lattice bipolarons are those of charged bosons
and can be described within the same formalism. Under certain conditions strongly correlated
electrons can be described by a single-band t − J model, in which the hole, constrained to a
projected Hilbert space without double occupancy of sites, interacts with the spin density. The
formation of small polarons in the Holstein t− J model is examined in Chapter 5. It turns out
that the correlations between electrons significantly reduce the critical value of the coupling
constant λ helping to form small polarons.

5.3 3 Electrons and phonons

5.3.1 3.1 Electrons, phonons and the Fröhlich interaction

Theory

In this Chapter, we discuss electrons, phonons and their interaction starting from first
principles. Physics and chemistry of solids, liquids and gases are described with the Hamiltonian

H = −
∑
i

∇2
i

2me

+
e2

2

∑
i ̸=i′

1

|ri − ri′|
− Ze2

∑
ij

1

|ri −Rj|

+
Z2e2

2

∑
j ̸=j′

1

|Rj −Rj′|
−
∑
j

∇2
j

2M
(3.1)

where ri,Rj are coordinates of electrons and nuclei, i = 1, . . . Ne; j = 1, . . . N ;Ne = ZN ,
∇i =

∂
∂ri
,∇j =

∂
∂Rj

, Z is the number of protons in a nucleus, me,M are the electron and nuclear
mass, respectively, and e is the elementary charge.

There is no possibility at present to solve the corresponding Schrödinger equation pertur-
batively because the Coulomb interaction is strong, the ratio of the characteristic interaction
energy to the kinetic energy rs = mee

2/(4πn/3)1/3 ≃ 1, or numerically for a condensed matter
with the density n = ZN/Ω ∼ 1023 cm−3.

Here the normalised volume is taken Ω = 1 unless specified otherwise. (can it play an
important role??)

However, one can take advantage of the small value of the adiabatic ratio me/M < 10−3.
Because nuclei are heavy the amplitude ⟨|u|⟩ ≃

√
1/MωD (derive this formula btw) of their

vibrations near the equilibrium R0 ≡ l in a crystal is much smaller than the lattice constant
a = N−1/3

⟨|u|⟩
a

≃ (me/Mrs)
1/4 ≪ 1. (3.2)

To obtain this estimate we take into account that the characteristic vibration frequency ωD

is of the order of the ionic plasma frequency
√
4πNZ2e2/M . (check that it is so)
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Using the smallness of the vibration amplitude we can expand the Hamiltonian in powers of
|u| up to quadratic terms, responsible for the quasi-elastic forces returning ions to their equilib-
rium positions. (it is very not clear, how to do it, because there is no |u| in the Hamiltonian...)

Further progress requires a simplifying physical idea which is to approach the ground state
of the many-electron system via a one-electron picture.

This is called a local density approximation (LDA) introducing an effective one-body po-
tential V(r)

V(r) = −Ze2
∑
j

1

|r−Rj|
+ e2

∫
dr′

n (r′)

|r− r′|
+ µxc(r) (3.3)

where µxc(r) is the exchange interaction, usually expressed by

µxc(r) = −β[n(r)]1/3 (3.4)

with constant β. (write more, why is it so??)
Hohenberg and Kohn (1964) proved that V(r) is a unique functional of the electron density

n(r) =
〈
ψ†(r)ψ(r)

〉
. (check their paper???)

As a result the Hamiltonian in the second quantisation for electrons takes the form

H = He +Hph +He−ph +He−e, (3.5)

where
He =

∫
drψ†(r)

(
∇2

2me

+ V (r)

)
ψ(r) (3.6)

is the electron energy in a periodic crystal field V (r) =
∑

1 v(r − 1), which is V(r) calculated
with Rj = 1 and with the periodic density n0(r+ 1) = n0(r),

Hph =
∑
l

(
−∇2

u

2M
+ ul ·

∂

∂l

∫
drn0(r)V (r)

)
+

1

2

∑
l,l′,α,β

uαl u
β
l′Dα,β (l− l′) (3.7)

is the vibration energy with α, β = x, y, z and

Dα,β (l− l′) =
∂2

∂lα∂l′β

(
Z2e2

2

∑
l′′ ̸=l′′′

1

|l′′ − l′′′|
+

∫
drn0(r)V (r)

)
(3.8)

(derive it!!!)

He−ph =
∑
1

ul ·
∂

∂l

∫
dr
(
ψ†(r)ψ†(r)− n0(r)

)
V (r)

+
1

2

∑
1,l′,α,β

uα1u
β
1′

∂2

∂lα∂l′β

∫
dr
(
ψ†(r)ψ(r)− n0(r)

)
V (r) (3.9)

is the electron-lattice vibration interaction, and

He−e =

∫
drdr′

(
e2

2 |r− r′|
[
ψ† (r′)ψ (r′)− n0 (r′)

]
− µxc(r)δ (r− r′)

)
ψ†(r)ψ(r)

+
Z2e2

2

∑
l̸=l′

1

|l− l′|
− e2

2

∫
drdr′

n0 (r′)

|r− r′|
ψ†(r)ψ(r) (3.10)
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describes electron-electron correlations.
(derive it!!!)
We include the electrostatic repulsive energy of nuclei in He−e, so the average of He−e is

zero in a Hartree-Fock approximation. (what is meant by Hartree-Fock a.????)
All integrals above include also summation of spin coordinates. If the magnetic interaction

is important the spin-polarised LDA can be applied (for a review see Staunton (1994)). (???)
The vibration Hamiltonian Hph is a quadratic form and therefore can be diagonalised with

a linear canonical transformation for the displacement operators

ul =
∑
q

eq,ν√
2NMωq,ν

dq,ν exp(iq · l) + h.c., (3.11)

∂

∂ul

=
∑
q

eq,ν

√
Mωq,ν

2N
dq,ν exp(iq · l)− h.c., (3.12)

(at which point creation, annihilation operators appear? we had just a wave function)
where q is a phonon momentum, dq,ν is a phonon (Bose) annihilation operator, eq,ν being

a unit vector, and ωq a phonon frequency.
Substitution of the last two equations into Hph yields
(check it!!! and the coefficients)

Hph =
∑
q,ν

ωq,ν

(
d†q,νdq,ν + 1/2

)
(3.13)

if eigenfrequencies ωq,ν and eigenstates eq,ν satisfy

Mω2
q,νe

α
q,ν =

∑
β

Dα,β
q eβq,ν (3.14)

and ∑
q

e∗αq,νe
β
q,ν = Nδα,β (3.15)

The last equation and the bosonic commutation rules dq,νd†q′,ν′ − d†q′,ν′dq,ν = δq,q′δν,ν′ follow
from ∂

∂uα
1
uβ1 − uβ1

∂
∂uα

1
= δα,β. Here

Dα,β
q =

∑
m

exp(iq ·m)Dα,β(m) (3.16)

is the Fourier component of the second derivative of the ion potential energy, Eq.(3.8).
The first derivative in Eq.(3.7) is zero in the presence of a symmetry center. The different

solutions of Eq.(3.14) are classified with the mode index ν, which is 1, 2, 3 for a simple lattice,
and 1, . . . 3k for a lattice with k ions per unit cell.

The electron (periodic) part of the Hamiltonian is diagonal in the Bloch representation
(revise Bloch’s theory)

ψ(r) =
∑
k,n,s

ϕk,n,s(r)ck,n,s (3.17)

where ck,n,s is a fermionic annihilation operator. The Bloch function obeys the Schrödinger
equation
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(
− ∇2

2me

+ V (r)

)
ϕk,n,s(r) = Ek,n,sϕk,n,s(r) (3.18)

One-particle states are classified with the momentum k in the Brillouin zone, band index n
(how does it appear??)and spin s.

The solution of this equation is used to obtain the density n0(r), which determines the
crystal field potential V (r). (this is odd... how would we plug V in the equation then, if we
need to get if from solution of the eq.?)

The LDA can explain the shape of the Fermi surface of wide band metals and gaps in narrow
gap semiconductors. (why??)

The spin polarised version of LDA can explain a variety of properties of many magnetic ma-
terials. (why??)This is in contrast to narrow d and f band metals as well as to oxides and other
ionic lattices with strong electron-phonon interaction and Coulomb correlations which display
much less dispersion and wider gaps than the first-principles band structure methodology can
predict.

Substituting Eq.(3.17) into the Hamiltonian one finally obtains

H = H0 +He−ph +He−e, (3.19)

where

H0 =
∑
k,n,s

ξk,n,sc
†
k,n,sck,n,s +

∑
q,ν

ωq,ν

(
d†q,νdq,ν + 1/2

)
(3.20)

describes independent electron Bloch bands and phonons, ξk,n,s = Ek,n,s − µ is the band
energy spectrum.

Because the electron-phonon interaction leads to the pairing of electrons it is convenient to
consider an open system with a fixed chemical potential µ rather than to fix Ne to avoid some
artificial difference between odd and even Ne. (don’t understand how will it help to avoid and
what is the problem?)

The ground state of an open system has the minimum expectation value of H − µNe. That
is why the electron energy is related to µ.

The part of the electron-phonon interaction, which is linear in phonon operators can be
written as

(derive!!! where the bands at all come into the game??)

He−ph =
1√
2N

∑
k,q,n,n′,ν,s

γn,n′(q,k, ν)ωq,νc
†
k,n,sck−q,n′,sdq,ν + h.c. (3.21)

with a dimensionless matrix element

γn,n′(q,k, ν) = − N√
Mω3

q,ν

∫
dr (eq,ν · ∇v(r))ϕ∗

k,n,s(r)ϕk−q,n′,s(r) (3.22)

Low energy physics is often described within a single band approximation with the matrix
element γ depending only on the momentum transfer q. If

γn,n′(q,k, ν) = γ(q) (3.23)

we call the interaction the Fröhlich one. Terms of He−ph quadratic and higher order in
phonon operators are small. They play a role only for those phonons which are not coupled with
electrons by the linear interaction, Eq.(3.21) (γ = 0). The correlation energy of a homogeneous
electron system is written as
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He−e =
1

2

∑
q

Vc(q)ρ
†
qρq (3.24)

where Vc(q) is a matrix element of the Coulomb interaction, which is zero for q = 0 because
of electroneutrality (why??)and

ρ†q =
∑
k,s

c†k,sck+q,s (3.25)

is the density fluctuation operator. For doped semiconductors and amorphous metals a
random potential should be included in H0. (there are some exotic models about it, maybe I’ll
learn them later)

The harmonic approximation is sufficient for low temperature kinetics and thermodynamics
of solids. Further corrections in |u|, especially those of third and fourth order, are known
as anharmonic terms, and are of importance for the thermal expansion and lattice thermal
conductivity. (I’ll maybe meet them in another theory, here they are just not used)

5.3.2 3.2 Bare phonons and sound in a metal

Theory

(in this section, it is not clear, what problem is solved by this formalism, it is just a revision
of well-known electron-phonon formalism with some unusual features. Basically, the main
conclusion is that phonons are renormalized.)

In wide-band metals such as Na or K the correlation energy is relatively small (rs ≤ 1) and
carriers are almost free. Core electrons together with nuclei form compact ions with an effective
Z. The carrier wave function outside the core can be represented by a plane wave

(why??)
ϕk,n,s ≃ eik·r (3.26)

and the carrier density n0(r) is constant. Therefore the only relevant interaction in the
dynamical matrix is the Coulomb repulsion between ions, which yields

(check that it is the same formula as before, but simplified)

Dα,β (l− l′) =
Z2e2

2

∂2

∂lα∂l′β

∑
l′′ ̸=l′′′

1

|l′′ − l′′′|
(3.27)

The electron-phonon coupling constant is determined with the Coulomb electron-ion attrac-
tion v(r) = −Ze2/r and with the plane waves in Eq.(3.22).

(hard task to do: find this coupling constant for some different types of material. maybe
I’ll do it in another note)

(here, there is some idea, why do we do such transformations as below??? I don’t yet
understand it)

The potential 1/r may be expanded in a Fourier series as

1

r
= 4π lim

κ→0

∑
q

1

q2 + κ2
eiq·r (3.28)

Substituting this expansion into Eq.(3.27) and Eq.(3.22) we find
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Dα,β(m) = 4π lim
κ→0

∑
q

qαqβ
q2 + κ2

cos(q ·m) (3.29)

and

γ(q) = i
4πNZe2√
Mω3

q

lim
κ→0

eq,ν · q
q2 + κ2

(3.30)

Calculating the Fourier component of Eq.(3.29) one obtains for eigenfrequences and three
eigenvectors

(how to do it????)

ω2
q,νeq,ν = ω2

i q
eq,ν · q
q2

(3.31)

where ωi =
√
4πNZ2e2/M is the ionic plasma frequency. A longitudinal mode with e ∥q is

an ionic plasmon

ωq = ωi (3.32)

and two shear (transverse) modes with e ⊥ q have zero frequency, which is due to a hard
core approximation. (why??)

In fact, the core electrons undergo a polarisation when ions are displaced from their equi-
librium positions which yields a finite shear mode frequency.

According to Eq.(3.30) carriers interact with the longitudinal phonons. The interaction is
strong, giving rise to a significant renormalisation of the bare phonon frequency, Eq.(3.32).

To calculate the renormalised phonon frequency one can apply following Migdal (1958) the
Green’s function (GF) formalism. The one-particle Green’s function (GF) is determined as:

(never saw that GF has both Shr. and Heis. operators. is it ok?)

G(k, t) = −i
〈
Ttck(t)c

†
k

〉
(3.33)

with ck(t) = exp(iHt)ck exp(−iHt) and TtA(t)B = Θ(t)A(t)B − Θ(−t)BA(t) for any
fermionic operators A,B and with the opposite sign of the second term for any bosonic oper-
ators, Θ(x) = 1 for x > 0 and zero otherwise. The Fourier component of the free-electron GF
(H = H0) is given by

G(0)(k, ω) =
Θ (ξk)

ω − ξk + i0+
+

Θ(−ξk)
ω − ξk − i0+

, (3.34)

with ξk = k2/2me − µ which is obtained by the direct integration of Eq.(3.33):

G(0)(k, ω) =
1

2π

∫ ∞

−∞
dtG0(k, t)eiωt (3.35)

(check this. it should be straightforward)
For interacting electrons the electron self-energy is introduced asы

Σ(k, ω) =
(
G(0)(k, ω)

)−1 − (G(k, ω))−1 (3.36)

so
G(k, ω) =

1

ω − ξk − Σ(k, ω)
(3.37)

It is a well-known formalism.
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The phonon GF can be determined as

D(q, t) = −iωq

2

〈
Tt
(
dq(t)d

†
q + d†q(t)dq

)〉
. (3.38)

(check that such defs are in other books...)
Thus the Fourier component of the free phonon GF (H = H0) is the dimensionless even

function of frequency

D(0)(q, ω) =
ω2
q

ω2 − ω2
q + i0+

(3.39)

and the phonon self-energy

Π(q, ω) =
(
D(0)(q, ω)

)−1 − (D(q, ω))−1. (3.40)

(nothing is explained below, so one needs to know all this formalism in order to understand
it)

The Feynman diagram technique is convenient, Fig.3.1.

Fig.3.1. Second (a) and fourth order (b,c,d,e) corrections to the phonon GF. The phonon GF
in the Migdal approximation, (f).

Thin straight and wavy lines correspond to G(0) and D(0) respectively, a vertex (circle)
corresponds to the interaction matrix element γ(q)

√
ωq/N and bold lines represent G and D.

The Fröhlich interaction is a sum of two operators describing the emission and absorption
of a phonon. Both events are taken into account by the definition of D. Therefore wavy lines
have no direction. There are no first or higher odd-order corrections to D because the Fröhlich
interaction is off-diagonal with respect to phonon occupation numbers. The second order term
ofD, Fig.3a includes a so-called polarisation loop Π0

e, which is a convolution of two G(0). Among
different fourth order diagrams the diagram Fig.3.1b with two polarisation loops is the most
’dangerous’. Different from others it is proportional to 1/q2, which is large for small q. On the
other hand the singularity of internal vertices is integrated out in the diagrams Fig.3.1c,d,e.
The sum of all ’dangerous’ diagrams is given in Fig.3f, or in the analytical form

Π(q, ω) =
|γ(q)|2ωq

N
Πe(q, ω) (3.41)

where
Πe(q, ω) = Π0

e(q, ω) (3.42)

with
Π0

e(q, ω) = − 2i

(2π)4

∫
dkdϵG(0)(k+ q, ϵ+ ω)G(0)(k, ϵ) (3.43)
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The additional 2 in the phonon self-energy is due to the contribution to the polarisation
loop from two electron spins. It is convenient first to integrate over frequency in Eq.(3.43) with
the following result:

Π0
e(q, ω) =

1

4π3

∫
dk

Θ(ξk)−Θ(ξk+q)

ω + ξk − ξk+q + i0+ sgn (ξk+q)
(3.44)

Because of adiabaticity ω is small, ω ≪ µ. Thus one can take ω = 0 in ℜΠ0
e and the first

order term in ω in ℑΠ0
e to obtain

ℜΠ0
e(q, ω) = −mekF

2π2
h

(
q

2kF

)
(3.45)

ℑΠ0
e(q, ω) = −m2

e

2πq
|ω|Θ(2kF − q) (3.46)

with h(x) = 1 + 1−x2

2x
ln
∣∣1+x
1−x

∣∣ and the Fermi momentum kF =
√
2meµ = (3π2n)

1/3.
One should also take into account the Coulomb correlations because the corresponding vertex is
singular in the long wave limit, Vc(q) = 4πe2/q2. This leads to a drastic renormalisation of the
long wave behavior of Πe. In the ’loop’ or random phase (RPA) approximation we obtain Fig.3.2
as in the case of the electron-plasmon interaction, Fig.3.1f, but with the Coulomb (dashed) line
instead of the wavy phonon line.

Fig.3.2. Screened polarisation loop $\Pi_{e}(\mathbf{q}, \omega)$.

In the analytical form

Πe(q, ω) =
Π0

e(q, ω)

1− 4πe2

q2
Π0

e(q, ω)
(3.47)

As a result in the long wave limit q ≪ qs one obtains

Πe(q, ω) = −mekF
π2

q2

q2s
(3.48)

where qs =
√

4mekF e2/π is the inverse Debye radius. This is in contrast with Π0
e, which is

finite at q → 0.
(this is a bad theory, because before it was written that Πe(q, ω) = Π0

e(q, ω). Maybe it is
meant Π(q, ω))

With the RPA expression, Eq.(3.41) and γ(q) determined in Eq.(3.30) with ωq,νωi the
phonon Green’s function is

D(q, ω) =
ω2
i

ω2 − ω̃2
q

(3.49)

A pole of D determines a new phonon dispersion and a damping Γ due to the interaction
with electrons
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ω̃q =
ωi√

ϵ (q, ω̃q)
(3.50)

where
ϵ(q, ω) = 1− 4πe2

q2
Π0

e(q, ω) (3.51)

is the electron dielectric function.
(some formalism is assumed here. write it better! why polarization operator is connected

to the dielectric function?)
In the long wave limit

ϵ(q, 0) = 1 +
q2s
q2

(3.52)

so one obtains a sound wave as the real part of ω̃

ω̃q = sq (3.53)

with the sound velocity s = ZkF/
√
3Mme, and a small damping as the imaginary part

Γ ∼ s

vF
ω̃ ≪ ω̃ (3.54)

The damping is small because the ratio of the sound velocity to the Fermi velocity vF is
adiabatically small, s/vF ∼

√
me/M .

Electrons screen the bare ion-ion Coulomb repulsion. The residual short range dynamical
matrix has the sound wave linear dispersion of eigenfrequencies in the long wave limit. We
conclude that the Fröhlich Hamiltonian and the Migdal approach describe perfectly well the
phonon frequency renormalisation in metals if the bare phonons are properly defined and the
correlations between electrons are taken into account in the RPA approximation (for a review
and relevant references see Geilikman (1975)). This is at variance with some earlier assessments
of the applicability of the Fröhlich interaction to phonons in metals.

5.3.3 3.3 Effect of the Fröhlich interaction on electrons in a metal

Theory

The lowest contribution to the electron self-energy is given by two second order diagrams,
Fig.3.3a,b. The diagram Fig.3.3b is proportional to |γ(q)|2 with q ≡ 0, which is zero according
to Eq.(3.30).

Fig.3.3. Second-order electron self-energy.
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Higher order RPA diagrams are taken into account through the replacement of the bare
ionic plasmon GF for the renormalised one, Eq.(3.49) and the bare electron-phonon interaction
constant γ for a screened one, γsc as shown in Fig.3.4. In the analytical form the diagram Fig.
3.4 corresponds to

γsc(q, ω) = γ(q) +
4πe2

q2
Π0

e(q, ω)γsc(q, ω) (3.55)

or

γsc(q, ω) =
γ(q)

ϵ(q, ω)
(3.56)

Fig.3.4.Screened electron-phonon interaction (dark circle).

For low-energy excitations ω ≪ µ the static approximation of the dielectric function,
Eq.(3.52) is appropriate. Instead of D and γsc given in Eq.(3.49) and Eq.(3.56) one can intro-
duce the acoustic phonon GF

D̃(q, ω) =
ω̃2
q

ω2 − ω̃2
q

(3.57)

and the electron-acoustic phonon vertex γ̃(q)
√

ω̄q
N

with

γ̃(q) =
γ(q)

ϵ(q, 0)

(
ωi

ω̃q

)3/2

(3.58)

Finally one obtains the diagram, Fig.3.5 for the electron self-energy as a result of the
summation of the ’most divergent’ RPA diagrams (????)

Σ(k, ϵ) =
2i

(2π)4N

∫
dqdωEpG(k− q, ϵ− ω)D̃(q, ω) (3.59)

with

2Ep = |γ̃(q)|2ω̃q =
2µ

Z (1 + q2/q2s)
(3.60)

Fig.3.5. Electron self-energy in the Migdal approximation.

Because Z is of order of unity the electron-acoustic phonon interaction Ep is generally not
small being of the order of the Fermi-energy in a metal. (??)
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Therefore one has to consider fourth and higher order diagrams with the crossing phonon
lines as in Fig.3.6, which are absent from Fig.3.5. (??)

Fortunately, as shown by Migdal their contribution is adiabatically small (∼ s/vF ) compared
with Eq.(3.59). Moreover, the main contribution to the integral in Eq.(3.59) for Σ comes from
the region q ∼ kF ≫ qs. In this region the dimensionless coupling constant

λ = 2EpN(0) (3.61)

is small

λ ≃ rs ≪ 1 (3.62)

so the second order is sufficient for Σ. Here

N(0) =
1

N

∑
k

δ (ξk − µ) (3.63)

is the density of states (DOS) per cell at the Fermi level.

Fig.3.6. Adiabatically small corrections to the electron self-energy.

A new quasiparticle spectrum renormalised by the interaction is determined as a pole of the
electron GF :

Ẽk = µ̃+ vF (k − kF ) + δEk (3.64)

where

δEk = Σ
(
k, Ẽk − µ̃

)
− Σ (kF , 0) (3.65)

and µ̃ = µ + Σ(kF , 0) is the renormalised Fermi energy. The adiabatic condition allows
one to simplify the self-energy further by replacing the exact GF in the integral Eq. (3.59)
by G(0). This is appropriate for all quasiparticle energies with the exception of a very narrow
region ≪ ωDs/vF near the Fermi level, where the difference between G and G(0) appears to be
essential for the damping. As a result one obtains

δEk =
2iEp

(2π)4

∫
dqdω

(
G(0)(k− q, ξ̃ − ω)−G(0) (kF − q,−ω)

)
D̃(q, ω) (3.66)

To simplify the calculations we take Ep independent of momentum, apply the Debye ap-
proximation for acoustic phonons ω̃q = sq for q < qD where qD ≃ π/a is the Debye momentum,
and consider a half-filled band, kF ≃ π/2a with the energy independent DOS near the Fermi
level N(0) = mea

2/4π.
The main contribution to the integral Eq.(3.66) comes from the momentum region close to

the Fermi-surface:

|k− q| ≃ kF (3.67)
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This makes it convenient to introduce a new variable k′ = |k − q| instead of the angle Θ
lietween k and q and extend the integration to ±∞ with the variable ξ = vF (k′ − kF ). Thus
the angular integration in Eq.(3.66) becomes:∫

dΘsinΘ(. . .) ∼
∫ ∞

∞
dξ

ξ̃[
ξ̃ − ω − ξ + i0+ sgn(ξ)

]
[ω + ξ − i0+ sgn(ξ)]

(3.68)

This integral is non-zero only if ξ̃ > ω > 0 or ξ̃ < ω < 0. It is −2πi in the first region and
2πi in the second one. Taking into account that D̃ is an even function of ω one obtains

δEk =
2Ep

(2π)2vFN

∫ qD

0

dqq

∫ |ξ̄|

0

dω sgn(ξ̃)
ω̃2
q

ω2 − ω̃2
q + i0+

(3.69)

The real and imaginary parts of Eq.(3.69) determine respectively the renormalised spectrum
and the life time of quasiparticles

ℜ (δEk) =
Ep

4π2vFN

∫ qD

0

dqqω̃q ln

∣∣∣∣∣ ω̃q − ξ̃

ω̃q + ξ̃

∣∣∣∣∣ (3.70)

ℑ (δEk) =
Ep

4πvFN

∫ qm

0

dqqω̃q sgn(ξ̃) (3.71)

with qm = |ξ̃|/s if |ξ̃| < ωD and qm = qD if |ξ̃| > ωD. For the excitations far away from the
Fermi surface with |ξ̃| ≫ ωD we find

ℜ (δEk) = −λω
2
D

2ξ̃
(3.72)

Here ωD = sqD is the Debye frequency. For low-energy excitations with |ξ̃| ≪ ωD

ℜ (δEk) = −λξ̃ (3.73)

which means an increase of the effective mass of the excitation due to the electron-phonon
interaction

ξ̃ =
kF
m∗ (k − kF ) (3.74)

The renormalised effective mass is

m∗ = (1 + λ)me. (3.75)

Thus the excitation spectrum of a metal has two different regions with two different values
of the effective mass. The thermodynamic properties of a metal at low temperature T ≪ ωD

involve m∗, but the optical properties in a frequency range ν ≫ ωD are determined by the
high-energy excitations, where according to Eq.(3.72) corrections are small and the mass is
equal to the band mass me.

The damping has just the opposite behavior. The integral Eq.(3.71) yields

ℑ (δEk) =
sgn(ξ̃)πλωD

3
(3.76)

if |ξ̃| > ωD, and
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ℑ (δEk) =
sgn(ξ̃)πλ|ξ̃|3

3ω2
D

(3.77)

for |ξ̃| ≪ ωD.
These expressions describe the rate of decay of the quasiparticles due to emission of phonons.
In the immediate neighborhood of the Fermi surface |ξ̃| ≪ ωD the
decay is small compared with the quasiparticle energy |ξ̃| even for a relatively strong coupling
λ ∼ 1, so that the concept of well-defined quasiparticles has a definite meaning. Hence, within
the Migdal approximation the electron-phonon interaction does not destroy the Fermi-liquid
behavior of electrons. The Pauli exclusion principle is responsible for the stability of the Fermi
liquid. In the intermediate-energy region |ξ̃| ∼ ωD, however, the decay is comparable with the
energy and the quasiparticle spectrum looses its meaning. In the high-energy region |ξ̃| ≫ ωD

the decay remains the same in absolute value but again becomes small in comparison with |ξ|
and the quasiparticle concept recovers its meaning.

To go beyond Migdal’s approximation one has to consider adiabatically small higher order
diagrams which is the same as to solve the Hamiltonian of free electrons and acoustic phonons
coupled through the effective Fröhlich interaction

He−ph =
1√
2N

∑
k,q,s

γ̃(q)ω̃qc
†
k,sck−q,sd̃q + h.c. (3.78)

with d̃q the acoustic phonon operator. From our consideration it follows that applying this
Hamiltonian to electrons one should not consider the acoustic phonon self-energy. Acoustic
phonons in a metal appear as the result of the electron-plasmon coupling and the Coulomb
screening, so their frequency includes already the self-energy effect as discussed in section 3.2.

5.3.4 3.4 Broken gauge symmetry and the BCS ground state

(summary of BCS model)
(where is Broken gauge symmetry?)

Theory

The Migdal approach is justified if the ground state is stable versus a phase transition.
Frohlich (1950) realised that the electron-phonon interaction, Eq.(1.48) leads to an attraction
between two electrons and Cooper (1957) discovered that any attraction between degenerate
electrons leads to their pairing; it does not matter how weak it in. Pairs are bosons, which
undergo a Bose-Einstein condensation at some critical temperature Tc. The condensed state
is described by the classical field, which is an average of the product of two annihilation field
operators F ∼ ⟨ψψ⟩ or two creation operators F+ ∼

〈
ψ†ψ†〉. This average is macroscopically

large below Tc in an open system. The appearance of the ’anomalous’ averages brakes the gauge
symmetry of the bare Hamiltonian, Eq.(3.19) and cannot be described perturbatively. Following
Hardeen, Cooper and Schrieffer (1957) one has to go beyond the Migdal approximaNon, Fig.
3.5 including the anomalous averages in the ground state. This can be done milfonsistenly using
the same self-energy diagram Fig. 3.5 as for the normal state but with the matrix electron GF
(Eliashberg (1960)). At finite temperature the diagram in himique can be formulated for the
’temperature’ GF defined by Matsubara(1955)

g(k, τ) = −
〈〈
Tτck(τ)c

†
k

〉〉
, (3.79)
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will ck(τ) = exp(Hτ)ck exp(−Hτ) and 0 < τ < 1/T a ’thermodynamic’ time. The imidie
angular brackets correspond to the quantum as well as a statistical average willi the Cibbs
distribution:

⟨⟨. . .⟩⟩ =
∑
ν

e
Ω−Eν

T ⟨ν| . . . |ν⟩ (3.80)

where Ω is the thermodynamic potential and |ν⟩ the eigenstates ofH−µN with the eigenval-
ues Eν . Because the thermodynamic time is restricted by 1/T the temperature GF is expanded
in the Fourier series:

g(k, τ) = T
∑
ωn

e−iωnτg (k, ωn) (3.81)

with the discrete Matsubara frequencies ωn = πT (2n + 1), n = 0,±1,±2, . . . .. For free
electrons one obtains

g(0) (k, ωn) =
1

iωn − ξk
(3.82)

and for phonons

d̃(0) (q, ωn − ωn′) = −
ω̃2
q

[ωn − ωn′ ]2 + ω̃2
q

. (3.83)

To take into account the Cooper pairing of two electrons with the opposite momentum and
spin one can introduce, following Gor’kov (1958) and Nambu (1960) the matrix GF:

ĝ(k, τ) = −

 〈〈
Tτck,↑(τ)c

†
k,↑

〉〉
⟨⟨Tτck,↑(τ)c−k,↓⟩⟩〈〈

Tτc
†
−k,↓(τ)c

†
k,↑

〉〉 〈〈
Tτc

†
−k,↓(τ)c−k,↓

〉〉  . (3.84)

The matrix self-energy

Σ̂ (k, ωn) =
(
ĝ(0) (k, ωn)

)−1 − ĝ−1 (k, ωn) (3.85)

with ĝ(0) (k, ωn) = (iωnτ0 − ξkτ3)
−1. Here τ0,1,2,3 is a set of the Pauli matrices:

τ0 =

(
1 0
0 1

)
τ1 =

(
0 1
1 0

)
τ2 =

(
0 −i
i 0

)
τ3 =

(
1 0
0 −1

)
The generalized equation for the matrix Σ̂ is given by the same diagram as in the normal

state, Fig.3.5, with only substitution γ̃(q)τ3 instead of γ̃(q) and summation over Matsubara
frequencies instead of integration:

Σ̂ (k, ωn) = −T
∑
ωn′

∫
dq

(2π)3
|γ̃(q)|2ω̃qτ3ĝ (k− q, ωn′) τ3d̃ (q, ωn − ωn′) (3.86)

The most important difference of Eq.(3.86) compared with the normal state Eq.(3.59) is
the possibility of obtaining a finite value of the off-diagonal matrix elements ∼< cc > within
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the self-consistent solution, Fig.3.7. In the second
(
ĝ → ĝ(0)

)
or in any finite order of the

perturbation theory there are no anomalous averages from Eq.(3.86). That means that within
the perturbation theory there is no superconducting phase transition. However if one sums all
diagrams of Fig.3.7 which means solving Eq.(3.86)
self-consistently, one obtains the finite anomalous averages. To illustrate this we adopt a
particular momentum dependence of the interaction constant as in the previous section and an
approximate form of the phonon Green’s function:

d̃ (q, ωn − ωn′) ≃ −1 (3.87)

Fig.3.7. Normal G and anomalous F GFs of the BCS superconductor.

If there is no current in the system the phase of the order parameter can be chosen to be
zero. In this case Σ̂ is a sum of three Pauli matrices τ0,1,3 with the coefficients (1 − Z)iωn,∆
and χ respectively, which are the functions of frequency and momentum:

Σ̂ (k, ωn) = (1− Z)iωnτ0 +∆τ1 + χτ3. (3.88)

Thus

ĝ−1 (k, ωn) = Ziωnτ0 −∆τ1 − ξ̃τ3 (3.89)

and

ĝ (k, ωn) = −Ziωn +∆τ1 + ξ̃τ3

Z2ω2
n + ξ̃2 +∆2

(3.90)

with ξ̃ = ξ + χ. Substitution of Eq.(3.87,90) into the master equation (3.86) yields

(1− Z)iωn = −λT
∫
dξ̃
∑
ωn′

iωn′Z

Z2ω2
n′ + ξ̃2 +∆2

= 0 (3.91)

χ = −λT
∫
dξ̃
∑
ωn′

ξ̃

Z2ω2
n′ + ξ̃2 +∆2

= 0 (3.92)

∆ = λT

∫
dξ̃
∑
ωn′

∆

Z2ω2
n′ + ξ̃2 +∆2

(3.93)

It follows from Eq. (3.91, 92) that Z = 1 and χ = 0. Applying the formula for tanh to the
sum in Eq.(3.93) we obtain the familiar BCS equation for the order parameter

1 =
λ

2

∫
dξ√

ξ2 +∆2
tanh

√
ξ2 +∆2

2T
(3.94)
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where the integration is restricted by the region |ξ| < ωD because of the approximation,
Eq.(3.87) for d̃ (q, ωn − ωn′).

There is no direct physical meaning of poles of the temperature GF. To derive the one-
particle excitation spectrum one has to calculate the real-time GF determined at finite temper-
ature as

G(k, t) = −i
〈〈
Ttck(t)c

†
k

〉〉
, (3.95)

with the real time t. One can use the retarded GR and advanced GA Green functions:

GR(k, t) = −iΘ(t)
〈〈[

ck(t)c
†
k

]〉〉
(3.96)

GA(k, t) = iΘ(−t)
〈〈[

ck(t)c
†
k

]〉〉
(3.97)

where [. . .] is an anticommutator. They are analytical in the upper or lower half-plane of ω
correspondingly. There is a simple connection between the Fourier components of G and GR,A

GR,A(k, ω) = ReG(k, ω)± i coth
( ω
2T

)
ImG(k, ω) (3.98)

from one side and between those of GR,A and g from another

GR (k, iωn) = g (k, ωn) (3.99)

for ωn > 0 and

g (k,−ωn) = g∗ (k, ωn) (3.100)

In our case the temperature GF is

g(k, ω) =
u2k

iωn − ϵk
+

v2k
iωn + ϵk

(3.101)

where u2k, v
2
k = (ϵk ± ξk) /2ϵk and ϵk =

√
ξ2k +∆2. The analytical continuation of this

expression to the upper half-plane yields

GR(k, ω) =
u2k

ω − ϵk + i0+
+

v2k
ω + ϵk + i0+

(3.102)

and with Eq.(3.98) one obtains

G(k, ω) = Re

(
u2k

ω − ϵk
+

v2k
ω + ϵk

)
− iπ tanh

( ω
2T

) (
u2kδ (ω − ϵk) + v2kδ (ω + ϵk)

)
(3.103)

At T = 0, tanh
(

ω
2T

)
= sgn(ω) and

G(k, ω) =
u2k

ω − ϵk + i0+
+

v2k
ω + ϵk − i0+

(3.104)

The poles of GF yield the BCS-quasiparticle energy

ϵk =
√
ξ2k +∆2(0) (3.105)

Thus the Migdal-Eliashberg theory reproduces the BCS results if a similar approximation
for the attraction between electrons is made. The critical temperature and the BCS gap are
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adiabatically small (∼ ωD) compared with the Fermi energy. Therefore, one can worry about
the ’crossing’ diagrams as in Fig. 3.6, which are neglected with the master equation, Eq.(3.86).
However, the BCS state is essentially the same as the normal one outside the narrow momentum
region around the Fermi surface. The outside region contribute mainly to the integrals in the
crossing diagrams, which makes them small in the BCS state as well as in the normal one.

Within a more general consideration the master equation (3.86) takes properly into account
the phonon spectrum, retardation and realistic matrix element of the electron-phonon inter-
action (Scalapino (1969)). In particular, it is useful in a study of the effect of the Coulomb
repulsion on the pairing. There is no adiabatic parameter for this interaction. Nevertheless,
in a qualitative analysis one can adopt the same contribution to the electron self-energy from
the Coulomb interaction as from phonons replacing |γ̃(q)|2ω̃qd̃ (q, ωn − ωn′) in Eq.(3.86) for
the Fourier component of the Coulomb potential 4πe2/q2ϵ. The Coulomb interaction is non-
retarded for the frequencies less or compared with the Fermi energy, so the equation for the
order parameter becomes

∆(ωn) = T

∫
dξ
∑
ωn′

K (ωn − ωn′)
∆ (ωn′)

ω2
n′ + ξ2 +∆2 (ωn′)

(3.106)

where the kernel K is given by

K (ωn − ωn′) = λΘ(ωD − |ωn − ωn′|)− µcΘ(µ− |ωn − ωn′ |) (3.107)

with µc the product of the Fourier component of the Coulomb potential and the normal
density of states at the Fermi level. At T = Tc one can neglect the second power of the order
parameter in Eq.(3.106) and integrating over ξ obtain

∆(ωn) = πTc
∑
ωn′

K (ωn − ωn′)
∆ (ωn′)

|ωn′ |
(3.108)

To solve this equation we adopt the BCS-like parametrization of the kernel

K (ωn − ωn′) ≃ λΘ(2ωD − |ωn|)Θ (2ωD − |ωn′|)
− µcΘ(2µ− |ωn|)Θ (2µ− |ωn′|) (3.109)

and replace the summation by the integration

πTc
∑

→
∫ ∞

πTc

dω (3.110)

lecause Tc ≪ ωD, µ. The solution can be found in the form

∆(ω) = ∆1Θ(2ωD − |ω|) + ∆2Θ(2µ− |ω|)Θ (|ω| − 2ωD) (3.111)

with constant but different values of the order parameter below (∆1) and above (∆2) the
cul-off energy 2ωD. Substitution of Eq.(3.109,111) into Eq.(3.108) yields for ∆1,2.

∆1

[
1− (λ− µc) ln

2ωD

πTc

]
+∆2µc ln

µ

ωD

= 0 (3.112)

∆1µc ln
2ωD

πTc
+∆2

[
1 + µc ln

µ

ωD

]
= 0 (3.113)
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The condition of the existence of a nontrivial solution of these coupled equations gives for
Tc

Tc =
2ωD

π
exp

(
− 1

λ− µ∗
c

)
(3.114)

where

µ∗
c =

µc

1 + µc ln (µ/ωD)
(3.115)

is the Coulomb pseudopotential (Tolmachev (1958), Morel and Anderson (1962)). This is
a remarkable result. It shows that even a large Coulomb repulsion µc > λ does not destroy
Cooper pairs because its contribution is suppressed down to the value ∼ 1/ ln µ

ωD
≪ 1. The

retarded attraction mediated by phonons acts well after two electrons meet each other. This
time delay is sufficient for two electrons to be separated by the relative distance, at which the
Coulomb repulsion is small.

In the normal state the Coulomb correlations lead to a damping of excitations of order
ξ2/µ, which is relevant only in a narrow region around the Fermi surface of order ωD

√
me/M .

Outside this region the damping due to the Fröhlich interaction dominates.
For metals and their alloys the empirical McMillan (1968) formula for Tc is adopted:

Tc =
ωD

1.45
exp

(
− 1.04(1 + λ)

λ− µ∗
c(1 + 0.62λ)

)
(3.116)

which works well for low- Tc materials even if the estimated λ is large (> 1) as in Pb.
However, already in materials with a moderate Tc ∼ 20K as in A−15 compounds (Nb3Sn, V3Si)
the discrepancy between the values of λ estimated with Eq.(3.116) and the direct band-structure
calculations exceeds by several times the limit allowed by the experimental and computation
accuracy (Klein et al. (1978)) and therefore the credibility of the canonical BCS approach to
these materials is low.

The Migdal-Eliashberg theory is based on the assumption that the Fermi liquid is stable and
the adiabatic condition µ ≫ ωD is satisfied. In original papers Migdal (1958) and Eliashberg
(1960) restricted the region of the applicability of their approach by the value of the coupling
λ < 1. We show in this book that the proper extension of the BCS theory to the strong coupling
region λ > 1 inevitably involves small polaron formation.

5.3.5 3.5 Bloch states in semiconductors: Effective mass approxima-
tion

(this may be important since we always consider semiconductors)

Theory

Electron wave functions in semiconductors and narrow band metals differ significantly from
plane waves, Eq.(3.26). Therefore, in general the band structure has to be calculated numeri-
cally. However, in doped semiconductors states in the vicinity of special points of the Brillouin
zone matter only at low temperatures and doping. These are points where the energy dispersion
Ek,n,s of the conduction band has its minimum and the valence band energy has its maximum.
While their positions and band edges are determined experimentally or with the numerical
LDA calculations, the energy dispersion nearby can be determined analytically with ’ k · p ’
perturbation theory. (what is it??)

To show this we consider a simple cubic lattice having a nondegenerate band of s or d-like
symmetry at k = 0(Γ) point lying above by an energy Eg three p-like bands degenerate at k = 0
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and transforming at this point like x, y and z under the rotation of the crystal space group.
There is no spin-orbit interaction in this example, so spin is irrelevant. The Bloch theorem
states that

ϕk,n(r) = eik·ruk,n(r) (3.117)

where uk,n(r) is periodic in r and satisfies to(
− 1

2me

(
∇2 + 2ik · ∇

)
+ V (r)

)
uk,n(r) =

(
Ek,n −

k2

2me

)
uk,n(r) (3.118)

At the point k = 0 this equation for u0,n(r) is(
− 1

2me

∇2 + V (r)

)
u0,n(r) = E0,nu0,n(r) (3.119)

Thus u0,n has the symmetry of the crystal space group. For small k one can expand uk,n in
series

uk,n(r) =
∑

n′=s,x,y,z

ak,n′u0,n′(r) (3.120)

to obtain the secular equation

det

∣∣∣∣∣∣∣∣∣
Eg +

k2

2me
− Ek

kxp
me

kyp

me

kzp
me

kxp
me

k2

2me
− Ek 0 0

kyp

me
0 k2

2me
− Ek 0

kzp
me

0 0 k2

2me
− Ek

∣∣∣∣∣∣∣∣∣ = 0 (3.121)

with by symmetry p ≡ ⟨s| − i∇x|x⟩ = ⟨s| − i∇y|y⟩ = ⟨s| − i∇z|z⟩. Different bra and ket
correspond to the four different Γ-point Bloch functions u0,n(r). There are four solutions. Two
of them correspond to conduction (c) and light hole (lh) valence bands

Ek,c,lh =
k2

2me

+
Eg

2
±

√
E2

g

4
+
k2p2

m2
e

(3.122)

and the other two, which are degenerate, correspond to heavy holes (hh)

Ek,hh =
k2

2me

(3.123)

One can split two degenerate heavy hole bands and change the sign of their effective mass
if one includes states at Γ point split off from those under consideration by an mergy large in
comparison with Eg, as shown with a thin line in Fig.3.8. The effective approximation follows
from Eq.(3.122) for small k ≪ meEg/p

Ek,c − Eg ≃
k2

2mc

(3.124)

and

Ek,lh ≃ − k2

2mlh

(3.125)

with the effective mass
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mc,lh

me

=
1

p2

meEg
± 1

(3.126)

In many semiconductors the interband dipole moment is large and the band gap is small so
p2 ≫ meEg. Therefore the band electron and hole masses can be significantly smaller than the
bare mass,

mc

me

≃ mlh

me

≪ 1. (3.127)

As a result when experiment does not show very heavy carriers it does not necessary follow
that the electron-lattice coupling is small, and the polaronic renormalisation of the band mass
is absent.

Fig.3.8. $\mathbf{k} \cdot \mathbf{p}$ energy band dispersion near the Γ point in a cubic
lattice.

The effective mass approximation, Eq.(3.124,125) as well as k · p perturbation theory dis-
cussed above can be applied if the external field varies slowly in time and smoothly in space and
the electron-phonon and electron-electron interactions are relatively weak, as in the case of large
polarons, Chapter 1. If the external or internal fields are strong and contain high frequency
and (or) short wave Fourier components they involve large momenta of order of the reciprocical
lattice constant making all states of the electron band to be relevant to the problem. In this
case a tight-binding approach is more appropriate.

5.3.6 3.6 Tight-binding approximation

Theory

For narrow band semiconductors and metals it is convenient to replace the Bloch states for
the Wannier states with the canonical linear transformation of electron operators

ci =
1√
N

∑
k

eik·mck,s, (3.128)

where i = (m, n, s) includes both site m, band n and spin s quantum numbers. Of course, i
in the exponent is the imaginary i and not an index. The Wannier wave function, corresponding
to the one-particle state {i} is given by the linear combination of the Bloch states
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wi(r) =
1√
N

∑
k

e−ik·mϕk,n,s(r). (3.129)

In the new representation the periodic Hamiltonian He is written as

He =
∑
i,j

(T (m− n)δs,s′δn,n′ − µδi,j) c
†
icj (3.130)

with the bare hopping integral

T (m) =
1

N

∑
k

Ek,ne
ik·m (3.131)

i = (m, n, s) and j = (n, n′, s′).
(check!!!)
The idea behind the tight-binding approximation is to fit calculated numerically bands by

using a finite number of the hopping integrals.
Many electronic structures, in particular perovskite ones can be fitted with only nearest-

neighbor matrix elements between s, p and d-like orbitals (Harrison (1989)). (check that it is
true in that paper)

The second-neighbor matrix elements are somewhat problematic. Their estimate from the
nearest-neighbor formulae by scaling with the inter-site distance turns out to be inappropriate.
(why??? some people use such models... )

Therefore one will not have occasion to use again the second-neighbor hopping integrals
fitting well one particular band structure. (not explained, why?)

The hopping integrals could not be calculated by using tabulated atomic wave functions
and potentials (which potentials?) estimated for the various solids. True atomic orbitals are
not orthogonal for different sites and they do not provide a quantitative description of bands
in solids. On the other hand atomiclike Wannier orbitals, Eq.(3.129) can provide a very good
description already in the tight-binding (nearest-neighbor) approximation. For a nondegenerate
band in a cubic lattice this approximation yields (derive???)

Ek =
∑
|m|=a

T (m)e−ik·m

= 2T (a) [cos (kxa) + cos (kya) + cos (kza)] (3.132)

if the middle of the band is taken to be zero, T (0) = 0. If the nearest-neighbor matrix
element is negative, the bottom of the band lies at k = 0, where the dispersion is parabolic
with the band mass (why??)

m =
1

2a2|T (a)|
(3.133)

The half bandwidth is D = z|T (a)|, where the nearest- neighbor number z = 6 in this
example. (???)

The electron-phonon interaction as well as the Coulomb correlation energy have a sim-
ple form in the Wannier representation if the corresponding matrix elements depend on the
momentum transfer only, Eq.(3.23)

He−ph =
∑
q,i

ωqn̂i (ui(q)dq + h.c.) (3.134)

He−e =
1

2

∑
i,j

Vc(m− n)n̂in̂j (3.135)
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with the matrix element of the electron-phonon interaction

ui(q) =
1√
2N

γ(q)eiq·m (3.136)

and the Coulomb interaction

Vc(m) =
1

N

∑
q

Vc(q)e
iq·m (3.137)

Here n̂i = c†ici is the density operator.
It follows from Eq.(3.134,135) that taking the interaction matrix elements depending only on

the momentum transfer one neglects (why????) the terms of the electron-phonon and Coulomb
interactions, containing the overlap of different site orbitals, which is a good approximation
for narrow bands (why????), whose bandwidth 2D is less than the characteristic value of the
crystal field.

As a result the Hamiltonian appropriate for semiconductors and narrow band metals is given
by

H =
∑
i,j

(T (m− n)δs,s′ − µδi,j) c
†
icj +

∑
q,i

ωqn̂i (ui(q)dq + h.c.)

+
1

2

∑
i,j

Vc(m− n)n̂in̂j +
∑
q

ωq

(
d†qdq + 1/2

)
(3.138)

We have just collected the terms above.
For narrow band metals this Hamiltonian can be treated at best as the bare one, in which

all matrix elements and phonon frequencies have no direct physical meaning.
Phonons and the interaction matrix elements should be determined using a self-consistent

LDA approach as described above. Fortunately, in doped semiconductors one can separate
’carriers’ from ’inner’ electrons. In this case parent dielectric compounds exist with well defined
bare phonons ωq and the electronic band structure Ek.

The effect of carriers on the crystal field and on the dynamical matrix is negligible while
the carrier density is much below the atomic one.

Therefore one can use the band structure and the crystal field of a parent insulator to
calculate the parameters of the Hamiltonian, Eq.(3.138). (how???)

Depending on the particular phonon mode the interaction constant γ(q) has different q−
dependence. For example, as discussed above

γ(q) ∼ 1

q
,

∼ constant ,

∼ 1
√
q

(3.139)

for optical, molecular (ωq ∼ constant) and acoustic (ωq ∼ q) phonons, respectively in the
long wave limit.

Example: values of coefficients of tight-binding model from other parameters of a
model

(?????????? how to obtain them???)
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5.4 4 The multi-polaron problem

5.4.1 4.1 Small-polaron instability within the Migdal approach

(this chapter relies on the ch. 3, so it is better start with it)

Theory

In doped semiconductors the carriers become small polarons or bipolarons at the interme-
diate value of the coupling constant λ ≥ 0.5, Chapter 2. (why???)

However, within the adiabatic Migdal description of electrons and phonons coupled by the
linear electron-phonon interaction there is no instability at any value of λ if the bare ionic
plasmon mode is replaced by the acoustic phonon mode as described in Chapter 3. (what is
known about such instabilities?)

The corrections to the normal state spectrum due to the coupling are adiabatically small
(∼ ωD/EF ). In particular, the critical temperature of the BCS superconductor is adiabatically
small, Tc/EF < ωD/EF ≪ 1 for all relevant values of λ. (why is it "adiabatically"?)

The self-consistent Migdal-Eliashberg approach does not allow for the possibility to study
the small-(bi)polaron formation in the intermediate and strong-coupling regime because of the
following reason. The basic assumption of the canonical theory that GF is translationally
invariant, thus G (r, r′, t) = G (r− r′, t). This assumption excludes the possibility of the local
violation of the translational symmetry due to the lattice deformation followed by the self-
trapping. To enable the electron to relax into the lowest polaron state, one can introduce
an infinitesimal translationally noninvariant potenlial, which should be set equal zero only in
the final solution for GF (Alexandrov and Mazur (1989)). (it is not clear, how translational
invariance is related to the possibility of change of state)

As in the case of the off-diagonal superconducting order parameter (when can it be???) a
small potential, violating a translational symmetry drives the system into a new ground state
at sufficiently large λ.

Setting it equal to zero in the solution to the equation of motion restore the translational
symmetry but in a new polaronic band rather than in the electron one, which turns out to be
an excited state. (why???)

In the Holstein model (????), in which electrons interact with the local (molecular) phonons
(what are they?) one can notice the polaronic instability of the Fermi liquid at λ ∼ 1 already
within Migdal’s diagrams for the electron self-energy.

The electron self-energy Σ in the Migdal approximation contains two contributions, ΣM ,
Fig.3.3a and Σµ, IIg.3.3b. ΣM ≃ λω. (derive??!! add these figures also here)

Therefore it remains adiabatically small compared with the bandwidth 2D ≃ N(0)−1 in
the relevant region of the coupling (λ < D/ω), which guarantees the self-consistency of the
approach. (read cheaper 3, learn why?)

On the other hand for the optical or molecular phonons Σµ ≃ Dλn is not small and it turns
out to be comparable or larger than the Fermi energy already at λ ∼ 1 for any filling of the
band (n is the electron density per cell). (why???)

As a rule this diagram, which is momentum and frequency independent, is included in the
definition of the chemical potential µ. (why??)

While this is justified for a weak-coupling regime, Σµ leads to an instability for a strong
coupling. (why??)

To show this let us consider a one-dimensional chain in the tight-binding approximation
with the nearest-neighbor hopping integral D/2. The renormalised chemical potential is given
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by (why??)

µ = D sin

(
π(n− 1)

2

)
− 2Dλn (4.1)

The system is stable if dµ/dn is positive (never heard about this criterion), which yields the
following region for the stability of the Migdal solution:

λ <
π

2
cos

(
π(n− 1)

2

)
(4.2)

For two and three-dimensional lattices the numerical coefficient is different, but the critical
value of λ remains of the order of unity. (????)

In doped semiconductors and metals optical phonons are screened and the diagram Σµ with
the phonon momentum q ≡ 0 vanishes as for the acoustical phonons. (check)

In that case one has to violate the translational symmetry to observe the instability of the
bare band. Because the polaron level shift Ep is independent of the ion mass, the polaronic
instability is essentially an adiabatic effect. Therefore, to see how the same self-energy diagram
Σµ leads to the polaronic collapse independent of the type of phonons we consider the extreme
adiabatic limit of the classical deformation field ϕ(r) coupled with electrons,

H = He +

∫
drdr′

[
g (r− r′)ϕ (r′)

{
ψ†(r)ψ(r)− n0(r)

}
+ h.c.

]
+ s2|∇ϕ(r)|2 (4.3)

Here s is the sound velocity, g(r) is the coupling constant with the Fourier component gq =

ω
3/2
q γ(q)/

√
2N, n0(r) is the periodic density of carriers respecting the translational symmetry,

as defined by Eq.(3.9), and ωq = sq. Minimising Eq.(4.3) with respect to the classical field
ϕ∗(r) we obtain

s2∇2ϕ(r) =

∫
dr′g∗ (r− r′)

{
n (r′)− n0 (r′)

}
(4.4)

The solution is

ϕ(r) = −
∑
q

g∗q
s2q2

eiq·r
{
nq − n0

q

}
(4.5)

where nq is the Fourier component of the electron density n(r) ≡
〈
ψ†(r)ψ(r)

〉
. Substituting

Eq.(4.5) into the Hamiltonian Eq.(4.3) we find that the adiabatic lattice deformation leads to
the lowering of the electron energy by the value

δµ(r) = −2
∑
q

|gq|2

ω2
q

eiq·r
{
nq − n0

q

}
(4.6)

If the electron density is periodic, nq = n0
q the shift of the energy is zero. Otherwise, it is

not. For example, one can consider a random statistically uncorrelated distribution
with the ansamble average ⟨nqnq′⟩ = Nn2δq,−q′ . In that example the chemical potential is
shifted by the value

⟨|δµ|⟩ = n

[
1

N

∑
q

|γ(q)|4ω2
q

]1/2
≃ 2nλD, (4.7)

which is the same as in Eq.(4.1). However, now λD ≡ Ep = (1/2N)
∑

q |γ(q)|2ωq depends
on the phonon spectrum, integrated over all Brillouin zone rather than on zero momentum
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phonons. Breaking of the translational symmetry lowers the energy by the value 2Ep per
particle. The corresponding increase of the deformation energy is Ep. Therefore, the system
prefers to relax into the selftrapped state if Ep > D. The vertex corrections neglected within
the Migdal approach are not so crucial if the adiabatic parameter ω/D is small and λ < D/ω.

This consideration shows that the extension of the Migdal approximation to the strong-
coupling region λ > 1 is unacceptable. In the following we show that depending on the value
of the Coulomb repulsion a many electron system strongly coupled with any bosonic field is a
polaronic Fermi liquid or a bipolaronic Bose liquid.

5.4.2 4.2 Exact solution of the multi-polaron problem for λ→ ∞
Theory

In the case of large polarons the multi-polaron problem can be solved within the Migdal-
Eliashberg approach discussed in Chapter 3. This is the weak coupling regime λ < 1, where
large bipolarons, if they exist, transform into Cooper pairs at finite density.

In the small polaron regime, λ ≥ 1 the kinetic energy remains smaller than the interaction
energy and a self-consistent treatment of a many polaron system is possible with the ’ 1/λ′
expansion technique (Alexandrov (1992b)). (learn, what is it?)

This possibility results from the fact, known for a long time, that there is an exact solution
for a single electron in the strong-coupling limit λ→ ∞. (where does it originates??)

Following Lang and Firsov (1962) one can apply the canonical transformation to diagonalise
the tight-binding Hamiltonian of electrons and phonons if hopping coefficient between electrons
T (m) = 0 (or λ = ∞)

H =
∑
q,i

ωqn̂i (ui(q)dq + h.c.) +
1

2

∑
i,j

Vc(m− n)n̂in̂j +
∑
q

ωq

(
d†qdq + 1/2

)
(3.138)

by the transformation:

H̃ = eSHe−S; S =
∑
q,i

n̂i (ui(q)dq − h.c. ) (4.9)

The electron operator transforms as

c̃i = ci exp

(∑
q

ui(q)dq − h.c.

)
(4.10)

and the phonon one as:

d̃q = dq −
∑
i

n̂iu
∗
i (q) (4.11)

From Eq.(4.11) it follows that the Lang-Firsov canonical transformation is the displacement
transformation, Eq.(1.81) for the multi-polaron system shifting ions to the new equilibrium
positions. (read ch. 1, understand it!)

In a more general sense it changes the boson vacuum. (????)
As a result:

H̃ =
∑
i,j

(σ̂ij − µδi,j) c
†
icj − Ep

∑
i

n̂i +
1

2

∑
i,j

vijc
†
ic

†
jcjci +

∑
q

ωq

(
d†qdq + 1/2

)
(4.12)
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where

σ̂ij = T (m− n)δs.s′ exp

(∑
q

[ui(q)− uj(q)] dq − h.c.

)
(4.13)

is the new hopping integral depending on the phonon variables,

vij = Vc(m− n)− 2
∑
q

ωq

(
ui(q)u

∗
j(q)

)
(4.14)

is the polaron-polaron interaction comprising the direct Coulomb repulsion and the attraction
via a nonretarded lattice deformation (second term of Eq.(4.14)).

(in which materials there is such a strong coupling???)

Proof. (???????)

In the extreme strong-coupling limit λ → ∞ one can neglect the hopping term of the
transformed Hamiltonian. The rest has analytically determined eigenstates and eigenvalues.
The eigenstates |Ñ⟩ = |ni, nq⟩ are classified with the polaron nm,s and phonon nq occupation
numbers and the energy levels are:

E = (T (0)− Ep − µ)
∑
i

ni +
1

2

∑
i,j

vijninj +
∑
q

ωq (nq + 1/2) (4.15)

where ni = 0, 1 and nq = 0, 1, 2, 3, . . .∞. The interaction term does not include the on-site
interaction i = j for parallel spins because of the Pauli principle.

Thus we conclude that the Hamiltonian Eq.(3.138) in zero order of the hopping describes
localised polarons and independent phonons which are vibrations of ions relative to new equilib-
rium positions depending on the polaron occupation numbers. The phonon frequencies remain
unchanged in this limit. The middle of the electronic band T (0) falls down by Ep as a result of
a potential well produced by the lattice deformation due to the self-trapping (see Fig.4.1).

Fig.4.1. Polaron collapse of the electron band (a); bipolaron band (b).

5.4.3 4.3 Polaron band and self-energy

Theory

With the finite hopping term polarons tunnel in a narrow band because of the degeneracy of
the zero order Hamiltonian relative the site position of a single polaron in a regular lattice. To
show this self-consistently one can apply perturbation theory using 1/λ as a small parameter.
Because of the degeneracy terms of the first order in T (m) should be included in a zero order
Hamiltonian H0 :
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H0 =
∑
i,j

(σ(m− n)− µδi,j) c
†
icj +

∑
q

ωq

(
d†qdq + 1/2

)
(4.16)

where

σ(m− n) = ⟨⟨σ̂ij⟩⟩ = T (m− n)δs,s′ exp
[
−g2(m− n)

]
(4.17)

is the hopping integral averaged with the phonon equilibrium distribution. It is calculated
by the use of the relation

eA+B = eAeBe−[AB]/2 (4.18)

which is valid for any operators A,B with a c-number commutator. For zero temperature
one obtains

σ(m− n) = T (m− n)e−g2(m−n)

× ⟨0| exp

[
−
∑
q

[
u∗i (q)− u∗j(q)

]
d†q

]
exp

[∑
q

[ui(q)− uj(q)] dq

]
|Q⟩ (4,19)

where

g2(m− n) =
1

2

∑
q

(
|ui(q)|2 + |uj(q)|2 − 2u∗i (q)uj(q)

)
(4.20)

The bracket in Eq.(4.19) is equal unity for T = 0. The straightforward generalisation for
finite temperatures yields

g2(m) =
1

2N

∑
q

|γ(q)|2 coth
(ωq

2T

)
[1− cos(q ·m)] (4.21)

The renormalised position of the middle of the electron band is taken to be zero, so that
T (0)− Ep = 0.

The interaction term in the transformed hamiltonian H̃ = H0 +Hint includes the residual
interaction Hp−ph of polarons with phonons and the polaron-polaron interaction Hp−p :

Hint = Hp−ph +Hp−p (4.22)

Hp−ph =
∑
i,j

[σ̂ij − σ(m− n)] c†icj (4.23)

Hp−p =
1

2

∑
i,j

vijc
†
ic

†
jcjci (4.24)

where
and

The polaron-phonon interaction leads to the polaron bandwidth and phonon frequency
renormalisations and to the scattering of polarons. The polaron-polaron correlations are re-
sponsible for the scattering and in case of the attraction for the bipolaron formation. If the
temperature is well above the temperature for the formation of bipolarons (see below) one can
treat Hp−ph with the 1/λ perturbation expansion and Hp−p with the canonical random phase
approximation (RPA). We consider first the effect of Hp−ph on the polaron self-energy Σp.

Because of the translation symmetry H0 is diagonal in the Bloch-representation Eq.(3.128):
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H0 =
∑
k,s

(ϵk − µ) c†k,sck,s +
∑
q

ωqd
†
qdq (4.25)

with a polaronic band

ϵk =
∑
m

σ(m)eik·m (4.26)

From Eq.(4.26) we conclude that the polaronic band has the bandwidth 2w exponentially
reduced compared with the bare electronic bandwidth as in the Holstein model, Chapter 1

w = De−g2 (4.27)

where g is determined in Eq.(4.21) for the nearest neighbor hopping |m| = a. An increase
of the effective mass m∗ = 1/wa2 is due to the phonon cloud surrounding a small polaron.
The renormalisation factor exp (−g2) is closely related to the wellknown Debye-Waller factor,
determined by the mean-square displacement of atoms from their equilibrium positions.

To derive the polaron self-energy one can solve perturbatively the equation of motion for
the polaronic temperature Green’s function defined in the Wannier representation as

g̃ij(τ) = −
〈〈
Tτci(τ)c

†
j

〉〉
(4.28)

with ci(τ) = eH̃τcie
−H̃τ . The double angular brackets correspond now to the quantum as

well as statistical average over the eigenstates of the transformed Hamiltonian. Differentiating
Eq.(4.28) we obtain

dg̃ij(τ)

dτ
− µg̃ij(τ) = −δ(τ)δi,j +

∑
i′

〈〈
Tτ σ̂ii′(τ)ci′(τ)c

†
j

〉〉
(4.29)

where σ̂ii′(τ) = eH̃τ σ̂ii′e
−H̃τ .

For the Fourier component we have:

ˆ̃g−1 (ωn) =
(
ˆ̃g(0) (ωn)

)−1

− Σ̂ (ωn) (4.30)

where ˆ̃g and Σ̂ are matrices with respect to site indices i, j. The free polaron GF in deter-
mined by (

g̃(0) (ωn)
)−1

ij
= (iωn + µ) δi,j − σ(m− n) (4.31)

and the polaron self-energy by

Σij (ωn) =
∑
i′,j′

Γi′j′

ii′ (ωn) ˆ̃g
−1
j′j (ωn) (4.32)

where Γ̂ (ωn) is the Fourier component of the polaron-phonon correlation function

Γjj′

ii′ (τ) = −
〈〈
Tτ [σ̂ii′(τ)− σ (m−m′)] cj(τ)c

†
j′

〉〉
. (4.33)

This correlation function comprises the second and higher order terms with respect to the
hopping integral, as follows from the corresponding equation of motion:

dΓjj′

ii′ (τ)

dτ
− µΓjj′

ii′ (τ) =
∑
i′′

〈〈
Tτ [σ̂ii′(τ)− σ (m−m′)] cj(τ)c

†
i′′σ̂i′′j′

〉〉
. (4.34)
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To obtain Eq.(4.34) one can differentiate the function

Γjj′

ii′ (−τ) = −
〈〈
Tτ [σ̂ii′ − σ (m−m′)] cjc

†
j′(τ)

〉〉
. (4.35)

In the second order of the perturbation theory one can replace H̃ in Eq.(4.34) for H0 to
obtain

Σij (ωn) = T
∑
ωn′

∑
i′,i′′,j′

Φ̃i′′j′

ii′ (ωn − ωn′) g̃
(0)
i′i′′ (ωn′)

(iωn + µ) δj′,j − σ (n− n′)

iωn + µ
(4.36)

where

Φ̃jj′

ii′ (Ωn) = Φjj′

ii′ (Ωn)−
1

T
σ (m−m′)σ (n− n′) δΩn,0 (4.37)

and Φjj′

ii′ (Ωn) is a Fourier component of the multiphonon correlator

Φjj′

ii′ (τ) = ⟨⟨Tτ σ̂ii′(τ)σ̂jj′⟩⟩ (4.38)

with H̃ = H0. Direct calculations yield

Φjj′

ii′ (τ) = σ(a)σ(b) exp

(
1

N

∑
q

γ2(q)fq
cosh

[
ωq

(
1
2T

− |τ |
)]

sinh ωq

2T

)
(4.39)

where 2fq = cos(q · [c − a]) + cos(q · [c + b]) − cos(q · c) − cos(q · [c − a + b]) with
a = m − m′,b = n − n′ and c = n′ − m′. To simplify Eq.(4.36) further one can neglect all
terms, containing a small exponent e−g2 ≪ 1. Omitting small terms the nelf-energy is diagonal,
Σij ≃ Σδi,j where

Σ = T
∑
ωn′

∑
a

Φ̃a (ωn − ωn′)

iωn′ + µ
(4.40)

and

Φ̃a (Ωn) =
1

2

∫ 1/T

−1/T

dτeiΩnτ Φ̃i′i
ii′(τ) (4.41)

with Ωn = 2πnT ;n = 0,±1,±2, . . .. This Fourier component is readily calculated in the
case of dispersionless phonons ωq = ω expanding the exponent in Eq.(4.39)

Φ̃a (Ωn) =
2σ2(a)

ω

∞∑
k=1

k∑
p=0

(
k

p

)
sinh[(k − 2p)ω/2T ]

2kk! sinhk(ω/2T )

×

(
1

N

∑
q′

γ2 (q′) [1− cos (q′ · a))k (k − 2p)ω2

(k − 2p)2ω2 + Ω2
n

(4.42)

The main frequency independent contribution is

Φ̃a (Ωn) ≃
T 2(a)

g2(a)ω0

(4.43)

Summation over frequencies in Eq.(4.40) yields
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−T
∑
ωn′

1

iωn′ + µ
=

1

2
tanh

µ

2T
(4.44)

The chemical potential is determined via the atomic density of carriers n

2

N

∑
k

nk = n (4.45)

with the Fermi-Dirac distribution function

nk =
1

exp [(ϵk − µ) /T ] + 1
≃ 1

2

(
1 + tanh

µ

2T

)
(4.46)

By the use of Eq.(4.45) one obtains

tanh
µ

2T
≃ n− 1 (4.47)

and

Σ ≃ −(1− n)
∑
a

T 2(a)

2ω0g2(a)
(4.48)

or in the nearest neighbor approximation with the definition D = z|T (a)|

Σ ≃ −(1− n)Ep

2zλ2
(4.49)

This expression is a result of the summation of the second order in Hp−ph multiphonon
diagrams as shown in Fig.4.2a. The contribution of the second order being negative lowers the
polaron energy and increases the effective mass further (to show this one should calculate the
frequency derivative of Σ(ω)). Gogolin (1982) in the framework of a single polaron problem
estimated also the third and higher order contributions to Σ, Fig. 4.2 b

Σ(3) ∼ +
Ep

λ3
(4.50)

The third order contribution is positive and leads to the reduction of the effective mass.
Because the dispersion is exponentially small one can sum all diagrams, including the crossing
ones. These results show that the consistent perturbation expansion in 1/λ exists with the
small parameter

1

2zλ2
≪ 1 (4.51)

where z is the nearest neighbor number. Therefore if the coupling constant λ > 1/
√
2z,

small polarons are stable and they tunnel in a narrow band, Eq.(4.26). This condition of the
small polaron formation is independent of the adiabatic ratio ω/D. However, the term in front
of the exponent in the bandwidth depends on this parameter. For the adiabatic small polaron
(ω/D ≪ 1) it is different from D as follows from the numerical calculations, section 1.8.



5.4 4 The multi-polaron problem 61

Fig.4.2. Polaron self-energy.

5.4.4 4.4 Temperature collapse of the polaron band

Theory

The self-energy effect is small at T = 0 if λ is of the order of unity or larger. However, the
polaron bandwidth depends on the temperature according to Eq.(4.21). For high temperatures
T ≫ ω/2 the band shrinks exponentially with increasing temperature

w ≃ D exp

(
−2EpT

ω2

)
(4.52)

On the other hand the scattering of polarons within their narrow band becomes more impor-
tant with the increasing temperature because of the simultaneous phonon emission and absorp-
tion. The absorption or emission of a single high-frequency phonon is forbidden by the energy
conservation for the nonadiabatic small polaron with the bandwidth 2w ≤ ω. However, two-
phonon processes, Fig.4.3 with the simultanecum emission and absorption of different phonons
are allowed at finite temperatures. These incoherent events tend to destroy the coherent po-
laron tunneling in the band. the corresponding scattering rate is given by the Fermi-golden
rule, which for dis-
persionless phonons is

1

τ
= 2π

〈∑
q,q′

∣∣∣∣∣ ⟨nq − 1, nq′ + 1;k+ q− q′|Hp−ph |nq, nq′ ;k⟩

∣∣∣∣∣
2

δ (ϵk − ϵk+q−q′)

〉
(4.53)

where |nq;k⟩ is an eigenstate of a noninteracting small polaron propagating with momentum
k and nq phonons.

Fig.4.3. Two-phonon scattering of the small polaron.

Expanding σ̂ij operators in Hp−ph in powers of the phonon creation and annihilation op-
erators by the use of Eq.(4.13) one obtains the estimation for the matrix element of the two
phonon scattering
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⟨nq − 1, nq′ + 1;k+ q− q′|Hp−ph |nq, nq′ ;k⟩ ∼ 1

N
wγ2

√
nq

√
nq′ + 1 (4.54)

Substituting this estimate into Eq.(4.53) and using the definition of the density of states in
the polaron band

Np(ξ) ≡
1

N

∑
k

δ (ξ − ϵk) ≃
1

2w
(4.55)

we have

1

τ
≃ wγ4nω (1 + nω) (4.56)

where nω = [exp(ω/T )− 1]−1 is the phonon distribution function. The matrix element γ is
taken momentum independent. The polaron band is well defined if

1

τ
< w (4.57)

which is the case in a wide temperature range

T ≤ ω

ln γ4
(4.58)

below ca. half of the characteristic phonon frequency for the reasonable values of γ2 ≤ 5.
At higher temperatures the incoherent thermally activated hopping dominates in the polaron

motion. Then the polaronic states cannot be classified with the momen tum.

5.4.5 4.5 Phonons in a strong-coupling system

Theory

An essential question, which arises within the adiabatic Migdal approach is that of the
phonon instability and the applicability of the Fröhlich hamiltonian. Taking into account the
polaron formation we show in this section that the phonon frequency softening is small and
therefore the Fröhlich hamiltonian is applicable also in the strong coupling regime. The first and
different second order diagrams in Hp−ph contributing to the phonon self energy Σph = ωqΠ/2
are shown in Fig.4.4a-d:

Σph (q,Ωn) = Σ
(1)
ph + Σ

(2a)
ph (q,Ωn) + Σ

(2b)
ph (q) + Σ

(2c)
ph (q). (4.59)

With exponential accuracy, e−g2 ≪ 1

Σ
(1)
ph = Σ

(2c)
ph = 0 (4.60)

and

Σph (q,Ωn) = −n(2− n)|γ(q)|2

2

∑
a

(Φa (Ωn)− Φa(0)) [1− cos(q · a)] (4.61)

By the use of the Fourier component of the multiphonon correlator, Eq.(4.42) one obtains
the main nonexponential contribution

Σph (q,Ωn) =
Ω2

nn(2− n)|γ(q)|2

2ω3

∑
a

T 2(a)[1− cos(q · a)]
g6(a)
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Fig. 4.4. Phonon self-energy in the strong-coupling limit.

The analytical continuation to the real frequencies is found by the simple substitution

iΩn → ω̃ + i0+ (4.63)

with the following result for the renormalised phonon frequency, which is a pole of the
phonon GF:

ω̃q ≃ ω −∆(q) (4.64)

The phonon frequency softening

∆(q) =
n(2− n)|γ(q)|2

2ω

∑
a

T 2(a)[1− cos(q · a)]
g6(a)

(4.65)

is small compared with the frequency as 1/λ2 ≪ 1. This result is consistent with the phonon
frequency renormalisation in the two-site Holstein model, section 1.7. Phonons are stable in the
strong-coupling regime. The ions change their equilibrium positions due to the electron-phonon
coupling retaining their vibration frequencies practically unchanged.

5.4.6 4.6 Screening and polaronic plasmon

Theory

Polarons are coupled not only with phonons via the residual interaction Hp−ph but also
between themselves. At sufficiently high temperatures above the bipolaronic instability (see
Chapter 5) the effect of Hp−p is described by the dielectric response function ϵ(q,Ω), for which
the canonical random phase approximation is adopted

ϵ(q,Ω) = 1− 2v(q)
∑
k

nk+q − nk

Ω− ϵk + ϵk+q

(4.66)

One can apply this expression to describe the response of small polarons to a perturbation
of a frequency Ω < ω, when phonons in the polaronic cloud are not excited. Here v(q) is the
Fourier component of the polaron-polaron interaction

v(q) =
4πe2

ϵq2
− |γ(q)|2ωq (4.67)

For the optical phonons in the long-wave limit we have
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|γ(q)|2ω =
4πe2

(
ϵ−1 − ϵ−1

0

)
q2

(4.68)

Therefore at large distances the polaron-polaron interaction is the Coulomb repulsion,

vij =
e2

ϵ0|m− n|
(4.69)

in an ionic crystal, and

vij =
e2

ϵ|m− n|
(4.70)

in an atomic or molecular solid. At short distances it might be repulsive or attractive
depending on the value of a short range ϵ.

In the static limit at large distances (or q → 0) we obtain the usual Debye screening due to
the repulsion with the static dielectric function

ϵ(q, 0) = 1 +
q2s
q2

(4.71)

where qs =
√

2πe2n(2− n)/Tϵ0. This result is obtained for the temperature larger than the
polaronic bandwidth using the expansion of the polaron distribution function:

nk ≃ n

2

(
1− (2− n)ϵk

2T

)
(4.72)

The polaron response becomes dynamic for a rather low frequency ω > w,

ϵ(q, ω) = 1−
ω2
p(q)

ω2
(4.73)

with the temperature dependent plasma frequency

ω2
p(q) = 2v(q)

∑
k

nk (ϵk+q − ϵk) (4.74)

which is proportional to the inverse temperature if T ≫ w. This expression is applied
to the polaronic plasmon with a frequency below or of the order of the characteristic phonon
frequency, which is quite feasible due to a large value of the background dielectric constant and
the enhanced effective mass. Otherwise, one should take into account the phonon shakeoff in
the dielectric response function.

5.4.7 4.7 Many-body polaronic effect in the phonon spectrum

Theory

The effect of polarons on phonons is small as 1/λ2 for any density. However, if the polaronic
plasmon frequency is close to the optical (molecular) phonon frequency the polaron-phonon
interaction can produce a mixture of both, so called ’plasphon’ (Alexandrov (1992b)). One can
obtain this resonance effect by replacing in all diagrams Fig. 4.4 the small-polaron polarisation
loop Π0

iji′j′ , which is a convolution of two polaron GFs, for a screened one, Πiji′j′ (Ωn). The
screened polarisation loop obeys the same equation

Πiji′j′ = Π0
iji′j′ +

∑
l,p

Π0
ijllv(l− p)Πppi′j′ (4.75)
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as in Fig.3.2, but with the polaron-polaron interaction v(m) rather than with the bare
Coulomb repulsion. The Matsubara frequency Ωn, which is the same in all terms is omitted.
The frequency dependent part of the phonon self-energy given by the diagram Fig.4.4b takes
now the form

Σ
(2a)
ph (q,Ωn) = −T

∑
Ωn′

∑
iji′j′

[
u∗i (q)− u∗j(q)

]
[ui′(q)− uj′(q)] Φ

i′j′

ij (Ωn′)Πiji′j′ (Ωn′ − Ωn) .

(4.76)
According to Eq.(4.37) the Fourier component of the phonon correlation function comprises

the part Φ, which is almost frequency independent for Ωn ≪ Ep, and the
exponentially small term, which is nonzero only for Ωn = 0. The contribution of this second
term to the self-energy is enhanced, however, if the resonance condition ωp ≃ ω is met. By the
use of Eq.(4.37) one obtains

Σph (q,Ωn) = Σres
ph (q,Ωn)−∆(q) (4.77)

where
Σres

ph (q,Ωn) = −
∑

iji′j′

[
u∗i (q)− u∗j(q)

]
[ui′(q)− uj′(q)]σ(m− n)σ (m′ − n′)Πiji′j′ (−Ωn).

The solution to Eq.(4.75) is obtained with the Fourier transformation of the polarisation
loop

Πiji′j′ =
1

N

∑
k,k′,g

Π(k,k′,g) exp [−ik · (m′ − n) + ik · (n′ −m) + ig · (m′ − n′)] (4.79)

The Fourier transformation of Eq.(4.75) yields

Π(k,k′,g) = Π0 (k,k′)

[
Nδg,0 + v (k− k′)

∑
g′

Π(k+ g′ − g,k′ + g′ − g,g′)

]
(4.80)

where

Π0 (k,k′) = 2
nk − nk′

iΩn + ϵk − ϵk′
(4.81)

One can replace k, k′ for k + g and k′ + g, respectively to obtain

Π(k+ g,k′ + g,g) = Π0 (k+ g,k′ + g) [Nδg,0 + v (k− k′)A (k,k′)] (4.82)

where A (k,k′) ≡
∑

g′ Π(k+ g,k′ + g′,g′) is found by taking the sum in Eq.(4.80) over g

A (k,k′) = N
Π0 (k,k′)

ϵ (k− k′, iΩn)
(4.83)

As a result we find

Π(k,k′,g) = NΠ0 (k,k′)

[
δg,0 + v (k− k′)

Π0 (k,k′)

ϵ (k− k′, iΩn)

]
(4.84)

and
Σres

ph (q,Ωn) =
γ2(q)
2N2

∑
k,g (ϵkϵk−q−g + ϵk−qϵk−g − ϵk−gϵk−q−g − ϵkϵk−g)Π(k,k− q,g).

One can expand the unscreened polarisation Π0 (k,k′) in powers of a small parameter
w/ω ≪ 1 as
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Π0 (k,k′) = 2 (nk − nk′)

[
1

iΩn

+
ϵk − ϵk′

Ω2
n

+ . . .

]
(4.86)

With this expansion we have

Σres
ph (q,Ωn) = −

β(q)ω4
p(q)

ω
[
Ω2

n + ω2
p(q)

] (4.87)

where β(q) = ω|γ(q)|2/v(q) is the dimensionless plasmon-phonon coupling constant. The
dispersion relation for the plasmon-phonon mixture is obtained by carrying out the analytical
continuation of Σph (q,Ωn) to real frequencies by the substitution iΩn → Ω,

Ωq = ω −∆(q) +
β(q)ω4

p(q)

ω
[
Ω2

q − ω2
p(q)

] (4.88)

There are three solutions to Eq.(4.88)

Ω1 =
ω̃

3
+

2

3
cos
(α
3

) [
ω̃2 + ω2

p

]1/2 (4.89)

Ω2,3 =
ω̃

3
− 2

3
cos

(
α± π

3

)[
ω̃2 + ω2

p

]1/2 (4.90)

with ω̃ = ω −∆ and cosα =
[
ω̃3 − 9ω̃ω2

p + 27βω4
p/2ω

]
/
[
ω̃2 + 3ω2

p

]3/2. The dependence on
q of all parameters is assumed. Only two solutions, Ω1,2 are real and positive. Consequently, in-
stead of a single phonon mode, strongly coupled to carriers there are two branches of excitations
describing the propagation of coupled phonon and polaronic plasmon, so called ’plasphons’. If
the plasmon-phonon coupling is weak, β ≪ 1 their dispersion is described by

Ω1,2 ≃
1

2

[
ω̃ + ωp ±

√
(ω̃ − ωp)

2 + 2βω3
p/ω

]
(4.91)

In the limit β → 0Ω1,2 describe the renormalised phonon with the frequency ω̃ and the
polaronic plasmon ωp. However, for a finite β and ω̃ ≃ ωp they are mixed and both contribute
to the phonon GF

D(q,Ω) =
3∑

i=1

Pi(q)

Ω− Ωi(q)
(4.92)

The ratio of weights of two contributions is

P2

P1

=

(
Ω2

2 − ω2
p

)
(Ω3 − Ω1)(

Ω2
1 − ω2

p

)
(Ω3 − Ω2)

(4.93)

It can be of the order of unity if the polaronic plasmon and phonon frequencies are close to
each other.

5.4.8 4.8 Polaron thermodynamics

Theory

In the normal state for sufficiently high temperatures the polaron-polaron correlations are
not very important and in the first approximation the small polaron heat capacity as well as the
magnetic susceptibility are those of narrow band fermions. Moreover in the temperature range
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T < ω/2 the polaron bandwidth is temperature independent. For a narrow band Fermi-gas one
obtains the heat capacity Cp :

Cp = 2T

∫ w−µ

−w−µ

dξNp(ξ)
df

dξ

(
ξ

T

dµ

dT
− ξ2

T 2

)
(4.94)

where f(ξ) =
(
exp

(
ξ
T

)
+ 1
)−1

. This expression yields a linear temperature dependence
Cp(T ) for low temperatures T < 0.4w if the polaron density of states is energy independent,
Np = 1/2w

Cp =
π2T

3w
(4.95)

and a power law decrease (∼ T−2) for T > w :

Cp =
w2n(2− n)

6T 2
. (4.96)

The numerical calculations in the intermediate temperature region reveal only a small change
in the position Tm of the maximum of Cp(T ) with the variation of the filling factor n, Tm ≃ 0.4w,
and a gradual increase of the maximum value from Cm

p = 0.2 at n = 0.2 to Cm
p = 0.6 at n = 1.

The temperature dependence of the heat capacity is similar to the Schottky anomaly except
for the low temperature region with the linear Cp instead of the exponential one of two-level
systems.

In the polaronic system the narrow band includes all states of the Brillouin zone rather
than a small part of them under a peak of the density of states as in a so-called ’van -Hove
scenario’ of high- Tc. This fact provides us with the possibility to get an absolute value of the
spin susceptibility of polarons considerably higher than those of wide band electrons

χs = −µ
2
B

w

∫ w−µ

−w−µ

dξ
df

dξ
(4.97)

where µB is the Bohr magneton. The chemical potential is determined through the density
of polarons

µ = T ln
exp nw

T
− 1

exp w
T
− exp (n−1)w

T

, (4.98)

and

χs =
µ2
B

w

(
exp nw

T
− 1
) (

exp (2−n)w
T

− 1
)

exp w
T
− 1

. (4.99)

Eq.(4.99) yields the Curie law in the high-temperature limit, T ≫ w

χs ≃
µ2
Bn(2− n)

2T
, (4.100)

and a temperature independent susceptibility enhanced due to the polaron narrowing of the
band for T < w :

χs =
µ2
B

w
(4.101)

with w instead of D as in ordinary metals. The enhancement is the same as that of the
specific heat ratio γ = Cp/T , Eq.(4.95) in contrast with the ordinary metals, where only the
electronic heat capacity is increased by the electron-phonon interaction while the magnetic
susceptibility remains unaffected.
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5.4.9 4.9 Polaron kinetics: hopping transport

Theory

Transport properties of polarons depend strongly on the temperature. For temperature
lower than the Debye temperature (or the characteristic phonon energy) polarons tunnel
through the narrow band, however at higher temperatures the polaronic band collapses as
discussed in section 4.4 and their transport is diffusive via thermally activated hopping (see
e.g. Mott and Davis (1979)). There is extensive literature on the hopping transport of small
polarons, in particular, the excellent reviews by Appel (1969) and Firsov (1975) and books by
Klinger (1979) and Böttger and Bryksin(1985). Böttger and Bryksin also discussed in detail
the hopping polaron transport in a random potential. These and other studies elucidated the
value of the activation energy of the conductivity as well as the sign and the temperature
behavior of the Hall effect in the hopping regime, T ≫ ω/2. In this regime the transport is
due to thermally activated jumps of polarons from site to site. For such processes the
diffusion coefficient is given by D ≃ a2W , where W is the hopping probability. The only term
in the polaronic Hamiltonian, which changes the phonon occupation numbers is the
polaron-phonon interaction Hp−ph. Applying the perturbation theory with respect to this
interaction up to the second order one estimates the nearest neighbor hopping probability
with the Fermi golden rule as

W = 2π

〈∑
j

∣∣∣∣∣ ⟨j|Hp−ph|i⟩

∣∣∣∣∣
2

δ

(∑
q

ωq

(
nj
q − ni

q

))〉
, (4.102)

where |i⟩ and |j⟩ are the eigenstates of H0 corresponding to the polaron on site i with ni
q

phonons in each phonon mode and the polaron on the neighboring site j with nj
q phonons,

respectively. Representing the δ function in Eq.(4.102) by the integral and using the definition
of the Heisenbeg operators we obtain in the second order with respect to the bandwidth

W =

∫ ∞

−∞
dt
[
Φn,m

m,n(t)− σ2(a)
]
e−i0+|t| (4.103)

A real time multiphonon correlation function Φi′j′

ij (t) is the same as the Matsubara one,
Eq.(4.39) with the substitution |τ | → it. Thus, we have

Φn,m
m,n(t) = σ2(a) exp

(
1

N

∑
q

|γ(q)|2[1− cos(q · a)]
cosh

[
ωq

(
i
2T

+ t
)]

sinh ωq

2T

)
. (4.104)

Substituting this expression into Eq.(4.103) and shifting the integration contour one obtains

W = T 2(a)e−2g2(a)

∫ ∞

−∞
dt

[
exp

(
1

N

∑
q

|γ(q)|2[1− cos(q · a)]cos (ωqt)

sinh ωq

2T

)
− 1

]
e−i0+|t| (4.105)

The integrand here is an oscillating function. The integration with respect to t is performed
by the use of the saddle-point approximation. This approximation is jusiified if a finite dis-
persion of the phonon frequency δω is taken into account and the lemperature is so high that
T > ω2/2γ2δω. If this inequality is satisfied the integrand
decreases rapidly with increasing time. Then one can expand in the exponent cos(ωt) in powers
with respect to t up to the second order term. The unity in the integrand, Eq.(4.105), which
compensates the divergence for t→ ∞ can be neglected. As a result one finds
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W ≃ T 2(a)e−Ea/T

∫ ∞

−∞
dte−δt2 (4.106)

where the activation energy is

Ea =
T

N

∑
q

|γ(q)|2[1− cos(q · a)] tanh (ωq/4T ) , (4.107)

and

δ =
1

2N

∑
q

|γ(q)|2[1− cos(q · a)]
ω2
q

sinh (ωq/2T )
(4.108)

The activation energy is half of the polaronic level shift Ep, Eq.(1.98) if there is no dispersion
of ωq and γ(q). The dispersion diminishes the value of Ea further. By means of the Einstein
relation σ = ne2D/T the hopping conductivity in the hopping region T ≫ ω/2 is found to be

σh = ne2a2
√
πT 2(a)

2T
√
EaT

e−Ea/T (4.109)

The hopping mobility µh ≡ σh/ne ∼ exp (−Ea/T ) can be below ea2 ≃ 1cm2/V s, which is
the lowest limit for the Boltzmann theory to be applied. Within the Boltzmann theory such a
low mobility corresponds to the mean free path l < a, which is not a reasonable result.

To calculate the transverse conductivity σxy and the Hall coefficient RH = σxy/Hσ
2
xx of

polarons one can introduce the vector potential A(r) of the external field with the Peierls
substitution (Peierls (1933))

T (m− n) → T (m− n)e−ieA(m)·(m−n) (4.110)

which is a fair approximation if the magnetic field is weak compared with the atomic field

eHa2 ≪ 1. (4.111)

Here A(r) is the vector potential which can be also time dependent. Within the Boltzmann
theory the sign of the Hall coefficient RH ≃ ±1/en depends on the type of carriers (holes
or electrons) and the Hall mobility µH ≡ RHσxx is the same as the drift mobility µt up to
numerical factor of the order of unity. The calculations of a hopping Hall current similar to
those of the hopping conductivity (Friedman and Holstein (1963), Friedman (1995)) shows that
the Hall mobility depends on the symmetry of the crystal lattice and has nothing in common
with the hopping mobility, neither with respect to the temperature dependence and even nor
with respect to the sign. Thus, for hexagonal lattices three -site hops yield

µH = ea2
√
πT (a)√
12EaT

e−Ea/3T (4.112)

with the same sign for electrons and holes. The activation energy of the Hall mobility is
three times less than that of the hopping mobility. In cubic crystals, the hopping Hall effect
is governed by four-site hops. For the four-site case calculations by Emin (1971) gave a Hall
mobility even more temperature independent with the sign depending on the type of carriers.
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5.4.10 4.10 MIR conductivity of polarons

Theory

One of the hallmarks of polarons is the frequency and temperature dependence of their mid-
infrared (MIR) conductivity σ(ν). In the low frequency and low temperature region, where the
tunneling band transport operates the conductivity has the canonical Drude form

σ(ω) =
neµt

1 + (ντ)2
, (4.113)

where the transport relaxation time τ may be frequency dependent because of the narrow
band. For high mid-infrared frequencies well above the polaron bandwidth but below the inter-
band gap the Drude law breaks down. In this frequency region one can apply the generalised
Einstein relation σ(ν) = eD(ν)/ν, where D(ν) = a2W (ν) and W (ν) is the hopping probability
of the absorption of the energy quantum ν. The number of nearest neighbor transitions per
second with the absorption of photon of the energy ν is given by the Fermi-golden rule

W− = 2π

〈∑
j

∣∣∣∣∣ ⟨j|Hp−ph|i⟩

∣∣∣∣∣
2

δ

(∑
q

ωq

(
nj
q − ni

q

)
− ν

)〉 , (4.114)

and with the photon emission

W+ = 2π

〈∑
j

∣∣∣∣∣ ⟨j|Hp−ph|i⟩

∣∣∣∣∣
2

δ

(∑
q

ωq

(
nj
q − ni

q

)
+ ν

)〉 . (4.115)

As a result one gets

W (ν) = W− −W+ = 2T 2(a)e−2g2(a) sinh(ν/2T )

×
∫ ∞

−∞
dte−iνt

[
exp

(
1

N

∑
q

|γ(q)|2[1− cos(q · a)]cos(ωt)
sinh ωq

2T

)
− 1

]
(4.116)

An in the case of the dc hopping conductivity the integral over t is calculated using the
saddle-point approximation (Böttger and Bryksin (1985)). The saddle point is lying on the
imaginary axis, say, at t = −iy. Setting at this point the derivative of the exponent with
respect to t equal zero one gets the following equation for y

ν =
1

N

∑
q

|γ(q)|2[1− cos(q · a)]ωq sinh (ωqy) . (4.117)

If the frequency is not too high, ν ≪ 4EpT/ω we can expand sinh in powers of ωy io find

y =
ω

2δ
, (4.118)

where δ is defined by Eq.(4.108). Expanding the exponent in Eq.(4.116) in powers of t near
the point t = −iy and shifting the integration contour such that it passes through this point
one obtains

σ(ν) = σh
T sinh(ν/2T )

ν
eν

2/4δ. (4.119)

For high temperatures, T ≫ ω/2, this expression becomes
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σ(ν) = ne2a2
√
πT 2(a)

[
1− e−ν/T

]
2ν

√
EaT

exp

[
−(ν − 4Ea)

2

16EaT

]
. (4.120)

Consequently, the frequency dependence of the MIR conductivity has a form of an asym-
metric Gaussian peak centered at ν = 4Ea ≃ 2Ep with the half-width 4

√
EaT (Eagles (1963),

Klinger (1963), Reik (1963)), Fig.4.6. According to the Franckthe principle, the position of
the ions is not changed during an optical transiion. Therefore the frequency dependence of
the Mir conductivity can be understood Fig.1.3. The polaron, say in the left adiabatic levels
on two-site holstein model, Fig.1.3. tical transition ange in the the the the photon energy
required to the from the sum of σ(ν), Eq. (4.120). The main control the order of max(T then
comes the thin lines near the bottom with the energy of he of 2Ep ±

√
ines in Fig.4.5. The

corresponding photon energies are lying in the interval 2Ep ±
√

8EpT in agreement with the
obtained formula. For low temperatures T < ω/2 the half-width of the MIR maximum is of
the order

√
Epω rather than ∼

√
EpT .

Fig.4.5. Optical transition between adiabatic levels of the two-site Holstein model.

The MIR absorption is due to the optical multiphonon transition within a single electron
band. In the case of large polarons or electrons the MIR conductivity is much lower, if any.
The analysis by Emin (1973, 1993) beyond the saddle-point approxima tion shows a more
asymmetric and less temperature dependent MIR absorption of
large polarons compared with that of small polarons. Many perovskites have an intermediate
value of the electron-phonon coupling λ ∼ 1. It is, therefore, important to extend the theory
of the MIR conductivity to the transition region from large to small polaron.
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Fig.4.6. Small polaron MIR conductivity as a function of the frequency for different values of
the electron-phonon coupling λ.

Such an extension is possible through the numerical calculations of σ(ν) of the finite size
Holstein model by the exact diagonalisation procedure in the truncated space up to 50 excited
phonons for the two site Holstein model and up to 20 phonons per each mode for the four site
model (Alexandrov et al (1994b)). Conductivity occurs as energy is transferred between the
electromagnetic field and the phonons via the charge carriers. The vibration energy must be
capable of being dissipated. One has to introduce a continuous phonon density of states, which
is not the case within the cluster model. However, one can avoid this problem introducing a
lifetime τph of phonons, which smears a δ-like density of their states, assuring the finite MIR
conduclivity. The spectral shape of σ(ν) for the two-site Holstein model in the intermediate
cegime (ω = 0.5J) is shown in Fig.4.6 for τphω = 2. The main conclusions based on the
numerical calculations are:

There is an agreement between the ’exact’ σ(ν) and the analytical formula Eq.(4.119) in
the strong coupling limit as far as the smooth part of the frequency dependence is concerned
(dashed line).

The MIR conductivity is much more asymmetric in the intermediate coupling maion than
that in the strong coupling regime;

The MIR conductivity shows an additional oscillating superstructure correspondling to a
different spectral weight of the states with a different number of the virtual phanoms in the
polaron cloud (section 4.12).

5.4.11 4.11 Polaron kinetics: band tunneling transport

Theory

The drift mobility µt along CuO 2 plane in high Tc copper oxides like La2−xSrxCuO4 is
about 3 cm2/V s at room temperature. By the use of the transport relaxation time τ = µtm

∗/e
one can estimate the mean free path l ≃ µtℏkF/e, where ℏkF is the Fermi momentum. For
the optimally doped La2−xSrxCuO4 with the hole density n = x = 0.15 per chemical unit
of the volume Ω ≃ 95A3 one estimates kF ≃ 0.35 × 108A−1 and l ≃ 6A, which is about
twice of the lattice constant. Therefore carriers in high Tc oxides are in the band tunneling
regime below 300K. On the other hand, their effective mass m∗ is erhanced up to m∗ ≃ 5me

as estimated from the London penetration depth and the hole band is narrow (Chapter 8)
suggesting small polarons (Alexandrov and Mott(1994)). Therefore, the tunneling transport in
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the narrow polaron band is particular important for the high temperature superconductors like
copper oxides or doped fullerenes.

Polaron kinetics at low temperatures T < ω/2 is described by the Boltzmann equation for
the distribution function f(r,k, t) of polarons in the real r and momentum k space. The
number of polarons in an elementary volume of this space at time t is determined by
2f(r,k, t)dkdr/(2π)3. In the equilibrium state one has

f(r,k, t) = nk ≡ 1

exp ϵk−µ
T

+ 1
(4.121)

The Boltzmann equation for polarons in an external electric E and magnetic H fields reads
as

∂f

∂t
+ v

∂f

∂r
− e(E+ v ×H)

∂f

∂k
=

(
∂f

∂t

)
c

(4.122)

where v = ∂ϵk/∂k is the group velocity. The collision integral for any elastic scattering is
given by (

∂f

∂t

)
c

= 2π
∑
q

V 2
sc(q)δ (ϵk − ϵk+q) [f(r,k+ q, t)− f(r,k, t)] (4.123)

where Vsc(q) is the Fourier component of the scattering potential. The form of this integral
does not depend on the statistics of particles because terms nonlinear in fk are canceled. For
a weak homogeneous electric and magnetic fields the Boltzmann equation can be solved by the
substitution

f(r,k, t) = nk −
∂nk

∂ϵk
F (ϵk) · v (4.124)

We consider the case when the transport relaxation time defined as

1

τ (ϵk)
≡ 2π

∑
k′

(1− cosΘ)V 2
sc (k

′ − k) δ (ϵk′ − ϵk) (4.125)

depends only on the energy. Here Θ is the angle between v′ and v. Then the Boltzmann
equation for F(ϵ) becomes

F(ϵ) · v = −eτ(ϵ) [E · v − F(ϵ) · (v ×H · ∇k)v] (4.126)

If the magnetic field is not too high, µtH ≪ 1, one can keep only terms linear in H with
the following result for the nonequilibrium part of the distribution function

F(ϵ) · v = −eτ(ϵ) [E · v + eτ(ϵ)E · (v ×H · ∇k)v] (4.127)

By the use of the current

j = −2e
∑
bfk

∂nk

∂ϵk
v · F (ϵk) or cy7cis yer cnopu(4.128)

we obtain the drift mobility

µt = − e

n

∑
k

∂nk

∂ϵk
τ (ϵk) v

2
x (4.129)

as well as the Hall mobility
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µH ≡ RHσxx = e

∑
k

∂nk

∂ϵk
τ 2 (ϵk)

(
v2ym

−1
xx − vyvxm

−1
yx

)∑
k

∂nk

∂ϵk
τ (ϵk) v2x

(4.130)

Here m−1
αβ = ∂2ϵ(k)/∂kα∂kβ is the polaron effective mass tensor.

The temperature dependence of the mobilities is determined not only by the temperature de-
pendence of the relaxation time but also by the energy dispersion ϵk within the polaron band.
At intermediate temperatures w < T < ω/2 the finite bandwidth w becomes important. There
are several (quasi)elastic scattering mechanisms, which normally restrict the relaxation time.
In the strongly coupled electron-phonon sys1 cm the scattering due to the residual polaron-
phonon interaction Hp−ph is primarily important. As we have discussed in section 4.4 two-
phonon scattering due to the interaction with the high frequency phonons responsible for the
polaron formadion becomes less effective at low temperatures T ≪ ω/2 because there are no
such phonons available. On the other hand, impurities and thermal phonons contribute to Ule
relaxation rate giving rise to the power temperature dependence of the polaronic mobilities
rather than to the exponential one. Here we consider the scattering of twodimensional non-
degenerate small polarons by the acoustical phonons (Alexandrov (1092c)). In this example,
which is important for the normal state kinetics of high- Tc comper oxides the characteristic
acoustic phonon frequency is ωq ≤ s

√
2m∗T because Whe phonon momentum in the scattering

is of the order of the polaron momentum 0
√
2m∗T . The relevant phonon frequency turns out

to be small compared with the temperature

ωq

T
≃
√
m∗s2

T
≪ 1 (4.131)

Euri lor rather low temperatures of the order of 10K if m∗ < 10me. Therefore the instituing
is practically elastic with the square of the matrix element independent of line momentum and
linear in temperature

V 2
sc(q) =

1

2N
|γac(q)ωq|2 nωq ∼ T (4.132)

Here nωq ≃ T/ωq ≫ 1 is the distribution function of thermal phonons. By the use of the
isotropic spectrum ϵk = ϵk one obtains

1

τac
∼ Tk

dk

dϵk
(4.133)

The 2D density of states is energy independent, kdk/dϵk = m∗ and so is τac. As a result
the drift mobility of 2D nondegenerate carriers scattered by acoustic phonons is inversely
proportional to the temperature and the resistivity is linear in temperature

ρ ∼ 1/µt ∼ T (4.134)

if the number of polarons is temperature independent.
Consequently, there is a duality of the kinetic properties of small polarons. At high temperatures
they behave as localised particles propagating through the crystal by the thermally activated
hopping. On the other hand at low temperatures they are in the Bloch states with well defined
momenta propagating by tunneling. This duality can be seen in the temperature dependence of
resistivity. In particular, at high temperatures the activation exponential drop of resistivity is
expected, while below some characteristic temperature resistivity follows the power law, which
is sensitive to the scattering mechanism and the polaron band dispersion. In high Tc oxides
and doped fullerenes the high temperature activation region is ill defined because the relevant
phonon frequency and the activation energy are of the same order, ca. 500 − 1000K. On
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the other hand, in several nonsuperconducting oxides with the lower phonon frequencies the
crossover between the band tunneling and the hopping is observed, Chapter 8.

5.4.12 4.12 Electron Green’s function and ARPES of polaronic sys-
tems

Theory

The extended-localised duality of small polarons and the band narrowing effect can be seen
in the electron spectral function (Alexandrov and Ranninger (1992b)). The intensity of the
coherent (i.e. angle-dependent) contribution to the spectral weight is expected to be strongly
reduced due to a factor exp (−g2) which plays the role of a step ’ Z ’ of the Fermi distribution
function, while the broad featureless incoherent background should appear due to the phonon
cloud, which constitutes a small polaron. To see these features we calculate the temperature
electron Green’s function under the condition of the polaron band narrowing

g (k, ωn) = −1

2

∑
m

∫ 1/T

−1/T

dτeiωnτ+ik·m 〈〈Tτc0(τ)c†m〉〉 (4.135)

For convenience we omit spin. Applying the Lang-Firsov canonical transformation and
neglecting the residual polaron-phonon coupling Hp−ph one obtains

g (k, ωn) =
T

N

∑
ωn′ ,m,k′

σ (m, ωn′ − ωn) e
i(k−k′)·m

iωn′ − ξk′
(4.136)

with the Fourier component σ (m, ωn) of the correlation function, determined as

σ(m, τ) = exp

(
1

2N

∑
q

|γ(q)|2fq(m, τ)

)
, (4.137)

with

fq(m, τ) = [cos(q ·m) cosh (ωq|τ |)− 1] coth
ωq

2T
+ cos(q ·m) sinh (ωq|τ |)
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Fig 4.7 Polaron angle-resolved photoemission for three different angles and different cou-
pling; ϵ is measured in units of ω.

Calculating the Fourier component of σ(m, τ) one obtains for the case of dispersiculess
phonons (ωq = ω) and a constant |γ(q)|2 = 2g2

g (k, ωn) =
e−g2

iωn − ξk
+
e−g2

N

∞∑
l=1

g2l

l!

×
∑
k′

(
nk′

iωn − ξk′ + lω
+

1− nk′

iωn − ξk′ − lω

)
(4.138)

In the polaron regime the electron Green’s function consists of two different contrihutiona.
The first coherent term arises from the polaron band motion. The second is independent
contribution describes the excitations accompanied by the emission
and absorption of phonons. It is this term which is responsible for the asymmetric background
of the optical conductivity, Fig.4.6 and of the photoemission spectra (see below). We notice
that the spectral density in the second term spreads over a wide frequency range of order of
the polaron level shift 2g2ω or more. On the contrary the coherent term shows an angular
dependence in a frequency range of order of the polaron bandwidth 2w.

The angle-resolved photoemission spectroscopy (ARPES) measures the imaginary part of
the retarded Green’s function integrated with a Gaussian instrumental resolution function
F (ϵ, ϵ′) and with the Fermi-Dirac distribution function nk ≡ n(ϵ)

I(k, ϵ) = − 1

π

∫ ∞

−∞
dϵ′n (ϵ′)F (ϵ, ϵ′) ImGR (k, ϵ′) (4.139)

where F (ϵ, ϵ′) = (1/δ
√
2π) exp

(
− (ϵ− ϵ′)2 /2δ2

)
with the instrumental resolution δ ≃ 10

meV.
GR is obtained using g (k, ωn) with the substitution iωn → ϵ+ i0+. As a result
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I(k, ϵ) =
n (ξk) e

−g2

δ
√
2π

exp

(
−(ϵ− ξk)

2

2δ2

)
+ e−g2

∫
dϵ′F (ϵ, ϵ′)

×
∑
l

g2l

l!
Np (ϵ

′ + lω)n (ϵ′ + lω) (4.140)

with Np the density of states in the polaron band. The photoemission spectra calculated
with the Gaussian form of Np are shown in Fig 4.7. The broadened asymmetric line shape
occurs already at g2 = 1. For g2 > 2 and the bare half bandwidth D = 200meV the polaron
bandwidth 2w is compared or less than the phonon frequency. In this regime the second term in
Eq.(4.140) oscillates as a function of the binding energy just as the optical conductivity, Fig.4.6.
The characteristic angular dispersion of ARPES gives an estimate of the polaron bandwidth.

5.5 2 Large and small bipolaron

5.5.1 What Is Going On With Theories of Bipolarons?

(??? Virtor said that they are dead. So I’ll write something about them)

5.5.2 2.1 Strong-coupling large bipolaron

Theory

Approaching the many polaron problem we first consider two carriers on a deformable
lattice. As in the case of a single polaron we distinguish a strong and intermediatecoupling
large bipolaron, formed by two large polarons in an ionic solid and a small bipolaron, formed
by two small polarons in any solid if the electron-phonon interaction is sufficiently strong. A
possibility of pairing of two large polarons was considered by Pekar (1951). He found that a
large bipolaron does not exist for any value of the crystal parameters, ϵ and ϵ0. Physically,
one can reach this conclusion by scaling arguments (Emin (1995)) similar to those applied to a
small polaron in the Introduction. The long range interaction with optical phonons is Coulomb
like at large distances. Then the total energy, which must be minimised for a large polaron is

Ep(r) =
π2

2mr2
− e2

2κr
(2.1)

The first term in Eq.(2.1) is the minimum kinetic energy of a particle confined in a sphere
of radius r, while the second term is the potential plus the deformation energy. Minimising
Eq.(2.1) with respect to r one obtains the polaron radius

rp = 2π2aB

and the energy

Ep = − 1

4π2
α2ω. (2.3)

The numerical coefficient in Eq.(2.3) (≃ −0.025) should be compared with a more realistic
variational estimation -0.109 , Eq.(1.42). For a state of two carriers sharing the same orbital
state within a common potential well the corresponding functional is

Eb(r) = 2
π2

2mr2
− 4

e2

2κr
+
e2

ϵr
(2.4)
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where the first term is twice the polaron kinetic energy, the second term is four times the
corresponding term for a polaron because the polarisation is twice as large as that for a polaron,
and the last term describes the Coulomb repulsion between two
carriers. Minimising Eq.(2.4) we obtain for the bipolaron radius

rb = rp
ϵ0 − ϵ

ϵ0 − 2ϵ
(2.5)

with rp determined by Eq.(2.2). Thus a large bipolaron can only form if ϵ0 > 2ϵ. The
ground state energy is

Eb = − 1

2π2
α2ω

(
ϵ0 − 2ϵ

ϵ0 − ϵ

)2

(2.6)

The large bipolaron is energetically stable with respect to dissociation into two separate
large polarons if the binding energy is positive:

∆ ≡ 2Ep − Eb > 0 (2.7)

This however is not the case because

∆ = 2 |Ep|

[(
1− ϵ

ϵ0 − ϵ

)2

− 1

]
< 0 (2.8)

While a large portion of the Coulomb repulsion is neutralised by the Fröhlich interaction,
this long-range interaction alone remains insufficient to produce a bound state. Approaching
the problem from the weak-coupling limit Takada (1982) reached the same conclusion for the
three-dimensional case. He introduced the effective retarded interaction between electrons with
the Fourier component V (q, ν) determined as

V (q, ν) =
4πe2

q2ϵ(q, ν)
(2.9)

The dielectric function ϵ(q, ν) = ϵ0 (ω
2 − ν2) / (ω2 − ϵ0ν

2/ϵ) takes into account the retarded
attraction, mediated by polar-optic phonons in a wide frequency region ωϵ/ϵ0 < ν < ω. By
the use of the two-particle vertex part one can derive the BetheSalpeter equation for the wave
function ϕp, describing the relative motion of two electrons in the momentum representation(

p2

m
+∆

)
ϕp +

∑
p′

4πe2

|p− p′|2 ϵ
(p2 + p′2 + 2m∆+ 2mωϵ/ϵ0)

(p2 + p′2 + 2m∆+ 2mω)
ϕp′ = 0 (2.10)

There are no solutions to this equation with a positive binding energy ∆ in three dimensions.
As is known from an elementary problem in quantum mechanics, a bound state can be formed
more easily when the dimensionality is decreased. Since the state of the large bipolaron can
be considered as the linear combination of longwave plane waves, the density of one-particle
states near the bottom of the conduction band enters the problem. It should be large in order
to bind two electrons. In a 3D system, however, the density of states vanishes at the bottom
of the band and thus the bound state cannot be formed. Compared with a 3D system, a 2D
system has a better chance to provide the bound state, because in a 2D system, the density
of states is finite at the bottom of the band. In a 1D system, one can expect an even larger
binding energy, because the density of states at the bottom of the band is infinite in this case.
Takada found that in 1D and 2D system there is indeed a
bound solution of the Bethe-Salpeter equation with rather low binding energy. One can prove
the absence of a bound state in three dimensions for any direct retarded interaction between elec-
trons with the Fourier component of the form of Eq.(2.9) if the static dielectric function ϵ(q, 0)
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is positive for all q (Khomskii (1995)). In the general case, however, the static electron-electron
interaction can be attractive, which formally corresponds to the negative sign of ϵ(q, 0) for fi-
nite q. This happens in some simple metals and, in particular, in complex compounds because
short-wave acoustic and local vibration modes contribute to the electron-electron interaction.
There are arguments, that a negative short-wave static dielectric function does not necessarily
lead to a global instability (Dolgov et al (1981)). Moreover in a strongly polarisible lattice with
ϵ0/ϵ ≫ 1 the bipolaron radius, Eq.(2.5) is close to the polaron one. The absolute value of the
binding energy |∆| in units of twice the polaron binding energy calculated by scaling is very
small

|∆|
2 |Ep|

≃ 2
ϵ

ϵ0
≪ 1 (2.11)

Therefore one can expect that two polaron wave functions strongly overlap and the quantum
exchange interaction can stabilise Pekar’s bipolaron even without any other attraction except
the Fröhlich one. This was first realised by Vinetskii and Giterman (1958). The functional,
which must be minimised is now

Jb (Ψ (r1, r2)) =

∫
dr1

∫
dr2

[
|∇1Ψ(r1, r2)|2

2m
+

|∇2Ψ(r1, r2)|2

2m
+

|Ψ(r1, r2)|2

ϵ |r1 − r2|

]

− 4

2maB

∫∫
dr1dr

′
1

∫∫
dr2dr

′
2

|Ψ(r1, r2)|2 |Ψ(r′1, r
′
2)|

2

|r1 − r′1|
(2.12)

The minimum of Eq.(2.12) should be compared with twice of the minimum of a polaron
functional J(ψ(r)), Eq.(1.9). Then the bipolaron binding energy is

∆ = 2min(J)−min (Jb) (2.13)

Vinetskii and Giterman selected the variational singlet function in a symmetric form similar
to that of the hydrogen molecule

ψ (r1, r2) = A [ψ (r1 − a/2)ψ (r2 + a/2) + ψ (r2 − a/2)ψ (r1 + a/2)] (2.14)

where A is the normalisation factor and ψ(r) is a single polaron function. Correlations
between polarons are taken into account by assuming a nonzero distance |a| between them. For
a small distance the polarisation attraction force depends differently on the distance compared
with the Coulomb repulsion. Therefore the separation of two polaron clouds can stabilise a
bipolaron. The simplest form of ψ(r) as for Pekar’s polaron, section 1.1

ψ(r) =
1√
πr3p

e−r/rp (2.15)

yields a positive binding energy if

ϵ

ϵ0
≤ 0.05 (2.16)

The maximum binding energy at ϵ/ϵ0 → 0 is small:

∆

2 |Ep|
= 0.08 (2.17)

and the distance between two polarons is about 1.5 of the polaron radius rp. Vinetskii and
Pashitskii (1983) extended this approach to a crystal having two-dimensional or one-dimensional
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anisotropy of the carrier mass, either for easy movement in a plane m∥ < m⊥ or for easy
movement along an axis m∥ > m⊥. Here m∥is the in-plane and m⊥ is the out-of-plane mass. A
variational polaron wave function was taken in the Gaussian form

ψ(r) = β1/2β′
(
2

π

)3/4

e−β2z2−β′2ρ2 (2.18)

where β, β′ are variational parameters, z is the coordinate perpendicular to the plane and
ρ2 = x2 + y2. The effective mass anisotropy widens the range of existence of Pekar’s bipolaron
and increases its binding energy as shown in Fig.2.1 for the easy movement along the axis.

Fig.2.1. Dependence of the bipolaron binding energy on $\epsilon / \epsilon_{0}$ for different
values of the anisotropy

ξ, related to m∥/m⊥ by
2ξ3
[
ξ ln

(√
ξ2 − 1 + ξ

)
−
√
ξ2 − 1

]
/
[
ξ
√
ξ2 − 1− ln

(√
ξ2 − 1 + ξ

)]
= m∥/m⊥.

It is seen from Fig.2.1 that when m∥/m⊥ ≫ 1(ξ ≫ 1) a one - dimensional bipolaron can
exist for a considerably larger ratio ϵ/ϵ0 compared with the 3D case.

The variational approach to Pekar’s bipolaron was improved by Mukhomorov (1982) and
by Suprun and Moizhes (1982). Mukhomorov represented the two-particle wave function of the
singlet state as a series of different polaron configurations including |1s2⟩ , |1s2p⟩ and |2p2⟩

Ψ(r1, r2) = A
[∣∣1s2〉+ C1|1s2p⟩+ C2

∣∣2p2〉] (2.19)

where different terms are symmetrised products of s-wave ψs ∼ (1 + βr) exp(−βr) and
p-wave ψp ∼ rY10(Θ) exp (−β′r) one-particle functions centered at the same site rather than
at two different sites. This refinement of the variational wave function with four variational
parameters C1,2, β and β′ increases the binding energy up to ∆/2 |Ep| = 0.195 and the range of
existence of the bipolaron up to ϵ/ϵ0 ≤ 0.1. Suprun and Moizhes found a simpler trial function
with only two variational parameters β, β′

Ψ(r1, r2) ∼ ψs (r1)ψs (r2) (1 + β′ |r1 − r2|) , (2.20)

which gives a lower binding energy and a wider region ϵ/ϵ0 ≤ 0.14 than those determined
with Eq.(2.19). It can thus be expected that, if the electron correlations are taken into account,
a large bipolaron can exist with rather low binding energy.

5.5.3 2.2 Intermediate-coupling large bipolaron

Theory

As in the case of the large polaron the continuum approximation for the lattice polarisation
is unacceptable for low and intermediate values of the electron-phonon coupling constant α.
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There is another problem with the variational estimation of the bipolaron binding energy in
section 2.1 where the single-polaron energy Ep is estimated with the same shape of the polaron
trial function as for the bipolaron one. Adamowskii (1989) noticed that the values of 2 |Ep|
obtained by the Pekar strongcoupling method were much too low compared with the best
estimates based on the path-integral approach. After recalculating the variational results for
∆ of section 2.1 with the use of the best estimate of a single polaron ground state energy
|Ep| one obtains no binding of two polarons, with an exception of very large α. Consequently,
there is no reliable conclusion concerning the existence of a large bipolaron within the strong-
coupling variational analysis. A more reliable conclusion can be reached by applying the LLP
and displacement canonical transformations as in the case of a single intermediate-coupling
polaron, section 1.4 (Bassani et al (1991)).

Here two electrons in interaction with a phonon field are described by the following Hamil-
tonian

H =
∑
j=1.2

[
−
∇2

j

2m
+
∑
q

(
Vqdqe

iq·rj + h.c.
)]

+
e2

ϵ |r1 − r2|
+
∑
q

ωq

(
d†qdq + 1/2

)
(2.21)

Since the Hamiltonian commutes with the total linear momentum one can eliminate the
center-of-mass coordinate and classify the relative motion of two polarons with the angular
momentum L. Both linear and angular momenta include the phonon contribution. Their con-
servation constrains a possible shape of the trial functions. Introducing the relative coordinate
r = r1−r2 and the position of the center of mass R = (r1 + r2) /2 one can write the Hamiltonian
in the form

II = −∇2
R

4m
− ∇2

r

m
+ 2

∑
q

[
Vqdq cos(q · r/2)eiq·R + h.c.

]
+
e2

ϵr
+
∑
q

ωq

(
d†qdq + 1/2

)
(2.22)

The unitary LLP transformation expSLLP with

SLLP = i
∑
q

(q ·R)d†qdq (2.23)

diminates the center of mass coordinate from the Hamiltonian. To classify the eigenstates
by the total angular momentum one can introduce new phonon operators

dq,l,m =
q

(2π)3/2

∫
dΩqY

∗
l,m (Ωq) dq (2.24)

where dΩq is the element of solid angle Ωq of q and Yl,m is a spherical harmonic. The
variational trial state |L,M⟩, which is an eigenstates of L and M ≡ Lz, is constructed
by the use of the displacement operator expS(r) as

|L,M⟩ = RL(r)YL,M (Ωr) expS(r) (2.25)

Here

S(r) =
∑
l.m

∫ ∞

0

dq [gq,l(r)Yl.m (Ωr) dq,l,m − h.c.] (2.26)

and

RL(r) = Arβe−r/rb (2.27)
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The energy ⟨L,M |eSLLPHe−SLLP |L,M⟩ is minimised with respect to the variational pa-
rameters rb, β and the variational function gq,l(r). The latter can be expressed analytically
through the confluent hypergeometric functions. The total energy is calculated numerically
and compared with twice the intermediate coupling polaron the two-dimensional case with the
three-dimensional interaction Vq ∼ 1/

√
q as well.

Fig.2.2 Dependence of the bipolaron binding energy on the coupling constant α in the
threedimensional case for ϵ/ϵ0 = 0 and L = 0, 1(a) and in the two-dimensional case for different
values of η ≡ ϵ/ϵ0(b).

Compared with the Pekar’s variational approach there are several new features of the bipo-
laron formation in the intermediate coupling regime.

1. The large bipolaron exists (∆ > 0) only if the electron-phonon coupling constant α
is greater than a critical value αc, which is ∼ 6 in three dimensions and ∼ 2 in two
dimensions. The change in dimensionality increases the normalised binding energy by at
least one order of magnitude as shown in Fig.2.2 a,b;

2. The largest value of ϵ/ϵ0 for which ∆ > 0 depends on the coupling constant α being of
the order of 0.05 in three dimensions and 0.4 in two dimensions.

3. The bipolaron radius is always of the order of a few polaron radii, i.e., in practical cases,
of a few Å.

The latter means that a small bipolaron approach taking into account a finite bandwidth is
more appropriate even in the case of the Fröhlich interaction.

5.5.4 2.3 Path integral approach to large bipolaron

Theory

A drawback of the variational formulation based on the canonical transformation is that
it does not permit us to study well the bipolaron stability since the estimations of the single
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polaron energy are poor compared to the path integral calculations. The variational method in
the form of the path integral applied to the Fröhlich polaron by Feynman (1955) is known to
give a very good variational estimates of the polaron ground state in the intermediate coupling
regime. A large bipolaron problem was treated with path integrals by Kochetov et al (1977) in
the 3D strong coupling limit, by Hiramoto and Toyozawa (1985) in three dimensions for optical
and acoustic phonons and by Verbist et al (1991) for the whole coupling range in both two and
three dimensions.

The path integral method allows for an exact elimination of the phonon coordinates. All
thermodynamic quantities are known if one can calculate the partition function Z = Tr

[
e−βH

]
,

where β = 1/T is the inverse temperature in energy units (kB = 1). The Hamiltonian at
hand, Eq.(2.21) is the quadratic form with respect to the displacement (phonon) coordinates.
Consequently, phonons can be eliminated exactly

Z = Zb

∏
q

[
2 sinh

(
βωq

2

)]−1

(2.28)

where the bipolaron partition sum Zb is a path integral in only the electron coordinates

Zb =
∏
j=1.2

∫
dxj

∫∫ rj(β)=xj

rj(0)=xj

Drj(t)e
S[r1(t),r2(t)] (2.29)

The bipolaron action S [r1(t), r2(t)] includes the kinetic energies, the retarded self and inter-
electron attractive interaction, mediated by phonons, and the Coulomb repulsion

S [r1(τ), r2(τ)] = −
∫ β

0

dτ

(
m

2
ṙ21(τ) +

m

2
ṙ22(τ) +

U

|r1(τ)− r2(τ)|

)
+

∑
j,l=1,2;q

ω−1
q |Vq|2

∫ β

0

dτ

∫ β

0

dsd (ωq, τ − s) eiq·[rj(τ)−rl(s)], (2.30)

where U = e2/ϵ is a measure for the repulsion strength, and

d(ω, τ) =
ω cosh

(
βω
2
− ω|τ |

)
2 sinh

(
βω
2

) (2.31)

is the phonon Green’s function, which Fourier component is defined in Chapter 3. The
resulting path integral Zb cannot be evaluated. However, the upper bound to the free energy
Fb = −T lnZb can be estimated by the use of any trial quadratic action δ0

Fb ≤ F0 −
1

β
⟨S − S0⟩ , (2.32)

where F0 = −T lnZ0 is the free energy corresponding to the trial action S0, and brackets
denote an average with weight expS0 defined as

⟨. . .⟩ = Z−1
0

∏
j=1.2

∫
dxj

∫∫ rj(β)=xj

rj(0)=xj

Drj(t)(. . .)e
S0[r1(t),r2(t)] (2.33)

While Hiramoto and Toyozawa used the quadratic action S0 with four variational parame-
ters, Verbist et al allowed two polarons to fluctuate around a mean distance
a from each other. The Coulomb repulsion was approximated by a quadratic one with strength
K. In analogy with the Feynman trial action for a single polaron, each electron interacts
quadratically with a fictitious particle of mass M and oscillator strength k. Furthermore, a
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quadratic interaction, with an oscillator strength k′, between each electron and the oscillator
of the other electron is also allowed. The Hamiltonian H0 describing the model is

H0 =
∑
j=1,2

[
−
∇2

j

2m
−

∇2
Rj

2M
+
k

2
(rj −Rj)

2

]

+
k′

2

[
(r1 −R2 − a)2 + (r2 −R1 + a)2

]
− K

2
(r1 − r2 − a)2 (2.34)

In analogy with the elimination of the phonon variables, the oscillator coordinates Rj can
be eliminated to construct the trial action

S0 [r1(t), r2(t)] = −
∑
j=1,2

∫ β

0

dτ
m

2
ṙ2j(τ)

− (k2 + k′2)

4Mν2

∑
j=1,2

∫ β

0

dτ

∫ β

0

dsd(ν, τ − s) [rj(τ)− rj(s)]
2

−
∫ β

0

dτ

∫ β

0

ds [r1(τ)− r2(s)− a]2

×
[
K

2
δ(τ − s)− kk′d(ν, τ − s)

Mν2

]
(2.35)

where ν =
√

(k + k′) /M is the frequency of the free oscillator. The electrons now exhibit
a quadratic self-interaction, the second term in Eq.(2.35).

Fig.2.3. The stability region for large bipolaron formation in 3D and 2D (Verbist et al (1991)).
Large bipolaron is formed below the curves, but above the shaded area.

They are bound together at an average distance |a| if the retarded attraction (the last
term) is larger than the direct instanteneous repulsion, which is governed by the constant K.
Minimising the right hand side of Eq.(2.34) with respect to the parameters M,k, k′, K and |a|
Verbist et al obtained a lower bipolaron energy
than with the canonical transformation method. The critical value of the coupling constant was
found to be αc ≃ 6.8 in three dimensions. The path integral method gives not only a consistent
description of a single polaron and bipolaron within the same physical picture, but also allows
for a scaling relation for the free energy between different dimensions in the case when a = 0

F2D(α, U, β) =
2

3
F3D

(
3π

4
α,

3π

4
U, β

)
. (2.36)
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This means that the free energy in two dimensions can be calculated from the free energy
in three dimensions by scaling the coupling constant α as well as the repulsion strength U with
a factor 3π/4. As a result the critical value of α in two dimensions is about 2.9. The space
(α, ϵ/ϵ0) in which large bipolaron exists in two (dashed curve) and three (solid curve) dimensions
is presented in Fig. 2.3, where the nonphysical part is shaded. Our general conclusion is that
the Fröhlich interaction can lead to a bound state if the coupling constant is sufficiently large
and the ratio ϵ/ϵ0 is sufficiently small. This is rather surprising because the Fröhlich interaction
never overscreens the Coulomb repulsion. Nevertheless, a bound state can be formed due to
the quantum exchange.

One can expect that the interaction with acoustic phonons and local vibrations acts to help
the bipolaron formation against the direct Coulomb repulsion. In fact it plays a dominant role
giving rise to the total direct attraction of two electrons.

Fig.2.4 The critical acoustic phonon coupling constant for the small bipolaron formation as a
function of the adiabatic ratio for three different values of the normalised Coulomb repulsion
u.

As in the case of a single polaron, the deformation potential leads to the formation of small
bipolarons rather than large bipolarons. By use of the path integral method and the effective
mass (continuum) approximation for electrons Hiramoto and Toyozawa (1985) estimated the
strength of the deformation potential, which binds two polarons. The continuum approach is
sufficient for qualitative estimations if the Debye wave number qD ∼ π/a is introduced as an
upper limit cut-off in all sums in momentum space. The matrix element of the deformation
potential depends on the momentum as Vq = Ed

√
q/2NMs. The acoustic phonon frequency

is ωq = sq, where Ed the deformation potential, M the mass of a unit cell and s is the sound
velocity. Applying the trial quadratic action similar to that with optical phonons Hiramoto
and Toyozawa found the critical value of the acoustic phonon coupling

λ =
Ep

D
, (2.37)

sufficient to form the small bipolaron. Here Ep = E2
d/2Ms2 is the polaron level shift

calculated with Eq.(1.98) and D = q2D/2m plays a role of the half bandwidth. When the
characteristic Coulomb repulsion is small compared with the half bandwidth, u ≡ 2e2qD/πϵD ≪
1 the transition between two free electrons and a small bipolaron occurs at λ ≃ 0.537 that is a
half of the critical value of λc at which the transition from large to small polaron takes place,
λc ≃ 1.075 in the extreme adiabatic limit, sqD ≪ D. The effect of the adiabatic ratio sqD/D
on the critical value of λ was found to be small, Fig.2.4. The bipolaron mass was estimated to
be enormous compared to the band mass in the extreme adiabatic limit while it is of the order
of the band mass for sqD/D > 1 as long as λ = O(1). The deformation potential was found
to be more effective for the bipolaron formation compared with the Fröhlich interaction. The
mean distance between the two electrons in a bipolaron is usually about the lattice constant a.
Consequently, the continuum approach does not work well in this type of problems. One would
have to use a lattice small bipolaron model taking into account the finite bandwidth (Chapter
6).
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5.5.5 2.4 Small bipolaron

Theory

Scaling arguments similar to those applied to the small polaron in the Introduction provide
us with an elegant simple method of studying the formation of a small bipolaron (Cohen et al
(1984)). The energy of two electrons confined in a sphere of radius r, including their Coulomb
repulsion and the deformation energy is estimated as

Eb(u, r) = 2
π2

2mr2
+
e2

ϵr
− 2xω

√
2MEp +

Mω2x2

2

(r
a

)3
(2.38)

Minimising this expression with respect to the local lattice displacement x we obtain

Eb(r) = 2
π2

2mr2
+
e2

ϵr
− 4Ep

(a
r

)3
(2.39)

It follows from Eq.(2.39) that two electrons are bound into a small bipolaron of radius
r = a (Eb(a) < 0) if the interaction with local and (or) acoustic vibrations is sufficiently strong

λ ≥ 0.5 + u/8 (2.40)

where λ = 2ma2Ep/π
2 and u is the relative strength of the Coulomb repulsion, introduced

in section 2.3. For sufficiently weak Coulomb interaction, the small bipolaron forms at twice
lower coupling constant λ ≃ 0.5 than the small polaron, for which the critical value of λ
estimated by scaling is about unity. This estimate is in perfect agreement with the path
integral variational calculations, Fig.2.4. In ionic solids with a high value of the static dielectric
constant ϵ0 ≫ 1 polar optic phonons screen the Coulomb repulsion, rather than binds two
electrons. Consequently, even the intermediate coupling, λ > 0.5 with acoustic phonons or
(and) local vibrations is sufficient to form the small bipolaron in ionic solids, because u is
replaced for uϵ/ϵ0 ≪ 1.

Screening in solids and coupling with phonons are ill defined at large wave numbers of the
order of the reciprocical lattice constant. Therefore, one has to postulate the existence of small
bipolarons to explain some exotic properties of particular compounds rather than derive them
from the first principles. Along this line Anderson
(1975) and Street and Mott (1975) introduced the concept of a small on-site localised bipo-
laron in glassy semiconductors (chalcogenide glasses) to explain their magnetic and electric
properties. Though the ESR measurements did not reveal any considerable amount of localised
states, other experiments showed their density about 1018 per cm3. To explain these contra-
dicting observations Street and Mott and Anderson proposed that the local lattice distortion
is sufficiently strong for the reaction

2D0 → D+ +D− (2.41)

to be exothermic. As a result in the ground state of chalcogenide glasses all donors are
positively or negatively charged and D0 are produced only by thermal excitation. The state
D−can be seen as a small bipolaron localised by the random potential.

Taking perturbatively into account the small polaron tunneling Alexandrov and Ranninger
(1981a,b) introduced small bipolarons into the theory of superconductivity. This allowed for
the prediction of the high Tc value about 100K (Alexandrov (1983), Alexandrov and Kabanov
(1986)) and for the explanation of a number of kinetic and thermodynamic properties of high
Tc superconducting oxides (Alexandov and Mott(1994), Chapter 8). The advantage of the
perturbative approach is that in zero order the ground state can be studied without taking
into account the electron kinetic energy, which is small perturbation due to the polaron band
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narrowing (section 1.6 and Chapter 4). Consequently, one can obtain the binding energy and
the size as well as geometry of the small bipolaron from the first principles by the use of the
static lattice minimisation techniques (Catlow(1989)).

5.5.6 2.5 Small bipolaron in perovskite structures

Theory

Lattice minimisation techniques are used very extensively in modeling the energies of defects
and impurities in ionic and semi-ionic insulators. Interactions between atoms in the lattice are
presented by an effective potential including both Coulomb and short-range terms.

Fig. 2.5. $\mathrm{CuO}_{6}$ unit in La2CuO4.

This yields an equilibrium structure and phonon dispersion curves which are close to those
observed experimentally. In their modeling of small bipolarons in doped Ca3CuO4 Zhang and
Catlow (1991) treated holes as Cu3+ or O−species placed in
the dielectric matrix with the CuO6 unit, Fig.2.5. The energy of a region of the crystal sur-
rounding the hole or the hole pair is then minimised with respect to the coordinates of the ions
within the region containing ca. 200-300 ions.
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Table 1Cu3− − Cu3+ pairs: configurations and energies
configuration number separation of pair d/A binding energy −Eb, eV Coulomb repulsive energy Er/eV

intralayer

Cu(1) 3.81 0.414 0.135
Cu2− Cu(2) 5.41 0.254 0.095
c. 2+ Cu(4) 8.54 0.092 0.060

Cu(5) 10.81 0.120 0.048
interlayer

Cu(6) 7.10 0.046 0.073

Cu(7) 10.74 0.036 0.058

The response of the more distant regions of the crystal is calculated using approximate
procedures based on a continuum model employing the relative permittivity of the material.
With a proper choice of the inter-atomic potentials one can find the binding energy of the small
bipolaron of different geometry with accuracy within 0.01 eV. The pairing was studied for a
variety of separations in three types of possible bipolaron (Cu3+ − Cu3+,Cu3+ −O−and O− −
O−pair). Intercopper and copper-oxygen intersite bipolarons are unstable both for interlayer
and intralayer pairing, as one can see from Tables 1-3, where the binding energy is negative for
all separations studied. The sum of the binding energy and the Coulomb repulsive energy in
the Tables yields an estimate of the lattice distortion contribution to the pairing. If the sum is
negative the lattice opposes bipolaron formation together with the Coulomb repulsion, and it
favors bipolarons when the sum is positive.

The results of O−−O−pairing studies are shown in Table 4. Three stable bipolaron config-
urations were found. For configuration O(1), the bipolaron is bound by ca. 0.06 eV , whereas
bipolaron configuration O(2) is bound by ca.0.12eV. These two bound oxygen pairs are situated
at the nearest-neighbor sites (d = 2.66Å) and next-nearest-neighbor sites (d = 3.11Å). There
is also a lightly bound bipolaron O(4)
with a binding energy of 0.001 eV at d = 3.58Å. When d is larger than 3.81Å all the configu-
rations are energetically unfavorable.

In order to distinguish pairing from the phase separation of holes one can calculate in
addition to the binding energy of two holes ∆, the binding energy of four holes ∆4 with respect
to hole pairs. If ∆4 is positive then phase separation would be expected. In the nearest-neighbor
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site pair and next-nearest-neighbor site pair Zhang and Catlow found, however, a positive ∆
and a negative ∆4, which promote bipolaronic superconductivity (Chapter 6) without phase
separation.
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Table 2Cu3+ −O−pairs (intralayer): configurations and energies
configuration number separation of pair d/A binding energy −Eb/eV Coulomb repulsive energy Er/eV

OCu(1) 1.91 1.010 0.270

OCu(2) 2.46 0.228 0.210

OCu(3) 4.31 0.237 0.120

OCu(4) 4.64 0.129 0.111

OCu(S) 5.72 0.114 0.090

OCu(6) 5.79 0.053 0.089

OCu(7) 6.89 0.145 0.075
OCu(8) 7.87 0.078 0.066

OCu(9) 7.89 0.137 0.065

OCuitos 9.53 0.092 0.054
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Compared to the Coulomb repulsive energy the non-Coulombic lattice contribution is larger
being ca. 0.2− 0.3eV for the intersite oxygen pairs. It was found that after latLice relaxation,
the distance between O−species decreases by 0.674Å in configuration O(1) and by 0.564Å in
configuration O(2). The relative change of the pair distances in 25% for configuration O(1) and
18% for configuration O(2). This enhanced attraction is due to the covalent interaction between
two O−species. An important feature of the bipolaron formation in perovskite structures is that
the bound state of the in-plane oxygen hole with the apex hole is more favorable. The binding
energy of small bipolaron is strongly related not only to the distance of the pair but also to the
detailed geometry of the site where the polaron is situated. Therefore, it is necessary to study
the pairing mechanism of doped La2CuO4 using three-dimensional rather than two-dimensional
models. The lattice contribution to the binding energy
is estimated to be larger than the characteristic antiferromagnetic exchange energy of the order
of 0.1 eV. However, the latter is of the order of the binding energy ∆ of the bipolaron and
favors pairing further (Mott(1990)).

Table 3Cu3∗ −O+pairs (interlayer): configurations and energies
configuration number separation of pair d/A binding energy −Eb/eV Coulomb repulsive energy Er, eV

OCu(11) 4.92 0.061 0.105
OCu(12) 6.75 0.006 0.076

OCu(13) 7.23 0.096 0.071

OCu(14) 7.76 0.079 0067

OCu(15) 10.17 0.041 0.060

configuration number separation of pair d/A binding energy −Eb/eV Coulomb repulsive energy Er/eV

Ox(2̂) 2.66 -0.059 0.194

Ox(2) 3.11 -0.119 0.166

Ox(3) 3.17 0.036 0.163

Ox(4) 3.58 -0.001 0.144

Ox(5) 3.81 0.228 0.135

Ox(6) 3.81 0.127 0.135

In a similar study Allan and Mackrodt (1990) observed the difference in the bipolaron
formation for Nd2CuO4 compared with La2CuOO4. They found no confining interactions in
Nd2CuO4. It seems that the difference in bipolaron results for these two materials may arise
from their structural difference (there is a CuOO6 layer in La2CuO4 whereas there is a CuO4

plane in Nd2CuO4). The detailed lattice structure may play an important role in the small
bipolaron formation. As an example, the similar calculations performed on hole interactions in
NiO revealed a much larger
repulsive interactions, and no configurations were found in which hole pairing might be ex-
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pected. The lattice minimisation techniques show that the La2CuO4 structure is especially
effective at screening of the Coulomb repulsion and the formation of intersite small bipolarons.

5.5.7 2.6 Effect of the kinetic energy on small-bipolaron formation

There is a finite probability for an electron to tunnel from one site of the lattice to the
neighboring sites. The corresponding kinetic energy and the Coulomb repulsion oppose the
small bipolaron formation. When the coupling constant is relatively large λ > 1, the hopping
integrals are exponentially small as in the Holstein two-site model, section 1.6. Then the kinetic
energy is a small perturbation and the static minimisation technique discussed above works
perfectly well. However, in the intermediate coupling region λ ≤ 1 the tunneling competes
with the selftrapping and with the binding, trying to destroy both. The effect of the kinetic
energy on the formation of small bipolaron depends on the lattice structure and geometry of the
pair, because the binding energy is strongly related to them. In the case of a non-Bravais lattice
such as the CuOO2 plane of high Tc copper oxides some specific difficulties appear because of
the multiband energy structure. A reasonable estimate of the kinetic energy effect on the small
bipolaron can be obtained by solving a discrete Schrödinger equation for two electrons in the
nearest neighbor approximation for a realistic crystal structure (Alexandrov and Kornilovitch
(1993)). In this section we consider the solution of the two-particle problem on the CuO2 plane
modeling the repulsion by the positive Hubbard U term on copper, and the lattice mediated
attraction by the negative term −V on plane oxygen.

Within the discrete approach two electrons (holes) with opposite spins on the CuO2 plane are
described by the nine-component wave function ϕβγ (m1,m2). Each component is a probability
amplitude to find one electron on a copper site (β = 1) or on two different plane oxygen sites
(β = 2, 3) of the cell Fig.2.5 (the lattice vector m1), and the other electron on the site γ = 1 or
2,3 in the cell m2. The discrete Schrödinger equation is the infinite system of linear algebraic
equations

Eϕβγ (m1,m2) = −
∑
α,1

(−1)lx/2+ly/2 [ϕαγ (m1 + 1,m2) + ϕβα (m1,m2 + 1)]

+ Uβδβγδm1,m2ϕβγ (m1,m2) (2.42)

where U1 ≡ U > 0 and U2 = U3 ≡ −V < 0 and all energies are measured in units of
the copper-oxygen nearest neighbor hopping integral J̃ renormalised by the electron-phonon
interaction according to Eq.(1.118). The energy levels of p oxygen and d copper orbitals are
taken to be equal for simplicity. The coefficient (−1)lx/2+ly/2 of the kinetic energy term is due
to the symmetry of two different px,y oxygen in-plane orbitals hybridised with the dx2−y2 copper
orbital. The nearest Cu − O distance is conveniently taken as unity, so the size of the cell is
2× 2. Then the Fourier transform of Eq. (2.42) is(

Ĥ0 − E
)
ϕ̂ (k1,k2) = Ĉ(K) (2.43)

where

ϕ̂ (k1,k2) =
1

N2

∑
m1,m2

ϕβγ (m1,m2) e
−ik1·m1−ik2·m2 (2.44)

is the nine-component Fourier component of the wave function,

Ĉ(K) = −Uβδβγ
∑
q

ϕγγ(q,K− q) (2.45)
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is the interaction term with K = k1+k2 being conserving total momentum of the bipolaron.
The kinetic energy of two electrons is given by the 9× 9 matrix

Ĥ0 =

 T̂2 2iÎ sin k1y −2iÎ sin k1x
−2iÎ sin k1y T̂2 0

2iÎ sin k1x 0 T̂2

 (2.46)

with

T̂2 =

 0 2i sin k2y −2i sin k2x
−2i sin k2y 0 0
2i sin k2x 0 0

 (2.47)

and Î being a unitary 3 × 3 matrix. Substitution of a formal solution of Eq.(2.43) into
Eq.(2.45) yields three coupled equations with respect to C11, C22 and C33. From their consis-
tency we find the standard secular equation for the eigenvalues E(K)

det

∣∣∣∣∣∣
Ud1 − 1 V d2 V d3
−Ud2 −V d5 − 1 V d4
−Ud3 V d4 −V d6 − 1

∣∣∣∣∣∣ = 0, (2.48)

where

d1 =
1

4

∑
q

[R11 +R33 +R13 +R31]

d2 =
∑
q

sin qy sin (Ky − qy)

EqEK−q

[R11 +R33 −R13 −R31]

d3 = d2(y → x),

d4 = 4
∑
q

sin qx sin (Kx − qx) sin qy sin (Ky − qy)

E2
qE

2
K−q

× [2 (R12 +R32 +R23 +R21)−R11 −R33 −R13 −R31 − 4R22]

d5 =
∑
q

4 sin2 qy sin
2 (Ky − qy)

E2
qE

2
K−q

(R11 +R33 +R13 +R31)

+
8 sin2 qy sin

2 (Kx − qx)

E2
qE

2
K−q

(R12 +R32)

+
1

E2
qE

2
K−q

[
8 sin2 qx sin

2 (Ky − qy) (R21 +R23) + 16 sin2 qx sin
2 (Kx − qx)R22

]
d6 = d5(y → x). The one-particle spectrum is determined by

−E1(k) = E3(k) ≡ E(k) = 2
√

sin2 kx + sin2 ky;E2(k) = 0, (2.49)

and by

Rβγ =
1

E − Eβ(q)− Eγ(K− q)
, (2.50)

which is a free two-particle propagator. The bipolaron forms if the binding energy

∆(K) = min
[
Eβ (k1) + Eγ (k2]− E(K) = −4

√
2− E(K) > 0. (2.51)
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The numerical solution of the secular equation, Eq.(2.48) shows that the pairs with K = 0
are more stable, Fig.(2.6). For the center of the Brillouin zone, K = 0, the bipolaron exists if

V ≥ 8
√
2U

4
√
2 + 3U

(2.52)

Therefore, there is a critical value of the attraction V ≃ 3.8 above which the bound state
exists for any repulsion U .

Fig.2.6. The energy of the bound state in units of the hopping integral versus the attractive
potential V for (1) K = U = 0; (2) K = 0, U = 1000; (3) K = (π/2, π/2) and U is arbitrary.
The dashed line is the minimum of the kinetic energy of two electrons (−4

√
2).

The binding energy of a pair with the total momentum near the corners of the Brillouin
zone does not depend on the repulsive potential at all, Fig.2.6. The reason for this is that near
these points two particles interact on sites of only one and the wame type, so the repulsion on
neighboring sites of another type does not affect the pairing.

The solution of the Schrödinger equation for two electrons enables us to calculate the bipo-
laron size rb The space extension of the bipolaron wave function is determined by the sum

ϕK (r1, r2) ∼
∑
q

eiq·r1+i(K−q)·r2

E2 − [Eq + EK−q]
2 . (2.53)

To derive the asymptotics at ρ =
√
x2 + y2 → ∞ one can apply the substitution

1

E
= −i

∫ ∞

0

dξe(iE−0+)ξ (2.54)

to the sum, Eq.(2.53), which allows us to integrate over q with the following result for K = 0

ϕ0(x, y) ∼
∫ ∞

0

dξe(i[E
2/8−2]−0+)ξJx/2(ξ)Jy/2(ξ). (2.55)

Here Jr(ξ) is the Bessel function and x = x1−x2, y = y1−y2. For the direction along x = y
we obtain

ϕ0(x, x) ∼ Qx/2−1/2

([
E2/8− 2

]2
/2− 1

)
(2.56)

where Qν(z) is the associated Legendre function with the exponential asymptotics for ν →
∞

ϕ0(x, x) ∼ e−|x|/rb (2.57)

The bipolaron radius is smaller than two lattice constants
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rb =
2

arccosh
(
[E2/8− 2]2 /2− 1

) ≤ 4 (2.58)

if the binding energy is not extremely small, ∆ = |E+4
√
2| > 0.01. Thus we conclude that

the bipolaron is small in the relevant region of on-site correlations within the CuO2 plane. The
on-site Coulomb repulsion (Hubbard U), no matter how strong, cannot prevent the bipolaron
formation if the effective attraction on oxygen sites is relatively large V ≃ 3.8.

In the multi-polaron system the interaction of polarons with each other and with the lattice
results not only in the bipolaron formation. Because of the bosonic character of bipolarons their
Bose-Einstein condensation and consequently, the bipolaronic superconductivity are feasible.
At a large polaron density the charge and (or) magnetic ordering compete with the supercon-
ducting ground state. Our intention for the remaining part of the book is to discuss cooperative
properties of self-trapped carriers on a lattice paying special attention to the bipolaronic su-
perconductivity as the natural explanation for high Tc metal oxides and doped fullerenes. In
the next Chapter we introduce the general formalism for the many electron-phonon problem
Chapter we introduce the generar BCS and apply it to normal metals and BCS superconductors.

5.6 5 Phase transformations of the polaronic Fermi-liquid

At low temperatures and (or) at high densities the residual polaron-phonon Hp−ph and
polaron-polaron Hp−p interactions lead to phase transformations of the polaronic Fermi-liquid.
There are several major instabilities. The polaronic Fermi-liquid is unstable versus the bipo-
laron formation followed by the Bose-Einstein condensation if Hp−p is attractive at short dis-
tances. If the density of carriers is of the order of the atomic density the commensurate or
incommensurate charge-density wave (CDW) develops competing with the superfluid ground
state. If the Coulomb repulsion is atrong the polaronic Fermi liquid undergoes the metal-
insulator Mott transition. The ground state for the half-filled band is an antiferromagnetic
insulator, which, if doped, has spin-lattice small (bi)polarons as the charge carriers.

5.6.1 5.1 Bipolaronic instability

Theory

The polaron-polaron interaction is the sum of two large contributions of the opposite Aign,
Eq.(4.14). It is generally large compared with the polaron bandwidth. This is just the opposite
regime to that of the BCS superconductor where the Fermi energy in the largest one. In
polar solids the Coulomb repulsion is perfectly screened by the lons. Then the acoustical and
(or) molecular phonons make the short-range interaction between polarons to be attractive. As
discussed in Chapter 2 two polarons furm a small bipolaron at intermediate value of the electron-
phonon coupling λ ≥ 0.5, practically independent off the value of the Coulomb potential. In
the multi-polaron matem the formation of bipolarons is manifested as a pole in the two-particle
vertex part at large q corresponding to the pairing of small polarons. For a short distance (large
q) the Fourier component of the interaction v(q) ≡ U might be positive or (???)live. Because the
polaron bandwidth is normally smaller than |U | we can consider this static dielectric function
defined by Eq.(4.66). For (T ≫ w) we have

ϵ(q, 0) = 1 +
n(2− n)U

2T
(5.1)

A screened short-range interaction is given by
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Ũ =
U

ϵ(q, 0)
=

UT

T ± T ∗∗ (5.2)

with the characteristic temperature

T ∗∗ =
|U |n(2− n)

2
(5.3)

The upper sign corresponds to the repulsion U > 0 while the lower sign (-) to the attraction,
U < 0. One can see that in the temperature region w < T ≪ T ∗∗ the short range repulsion
is sufficiently suppressed by the screening. The two-body correlations lead to a modification
of polaron trajectories, which reduces the Coulomb self-energy to a magnitude of the order of
the polaronic bandwidth if T ≃ w. In the case of the attraction the pole occurs in the effective
interaction Ũ at T = T ∗∗. Therefore, in this case T ∗∗ is the critical temperature of the bipolaron
formation. For a half-filled band (n ≃ 1)T ∗∗ is of order of the attraction itself and might be as
high as 103K, section 2.5.

5.6.2 5.2 Cooper pairing of nonadiabatic carriers

Theory

For an intermediate value of λ ≃ 1 the effective interaction of polarons can be comparable or
even less than the polaron bandwidth, both being less or of the order of the characteristic phonon
frequency. If a pair binding energy ∆ is small compared with the renormalised bandwidth 2w,
polarons constituting a pair tunnel through many sites during the characteristic time 1/∆.
Therefore a pair spreads over a large number of sites. Such ’extended’ bipolarons consisting
of two small polarons are overlapped similar to Cooper pairs if their density is compared with
the atomic one. This is a narrow region of the coupling where the BCS approach is applied to
nonadiabatic carriers with a nonretarded attraction. Bipolarons are then Cooper pairs formed
by two small polarons (Alexandrov (1983)). The appropriate Hamiltonian is the extended
Hubbard Hamiltonian taking into account the polaron narrowing of the band

Hp =
∑
i,j

(σ(m− n)− µδi,j) c
†
icj +

1

2
vijc

†
ic

†
jcjci

)
(5.4)

where σ(m) is determined with Eq.(4.17) for the nonadiabatic system (ω > D/z), or with
Eq.(1.135) in the opposite case. For simplicity one can keep only the on-site v0 and the nearest
neighbor intersite v1 interactions. At least one of them should be attractive to ensure the
superconducting ground state. By introducing two order parameters

∆0 = −v0 ⟨cm,↑cm,↓⟩ (5.5)
∆1 = −v1 ⟨cm,↑cm+a,↓⟩ (5.6)

and transforming to k -space one arrives at the usual BCS Hamiltonian

Hp =
∑
k,s

ξkc
†
k,sck,s +

∑
k

[
∆(k)c†k,↑c

†
−k,↓ + h.c.

]
(5.7)

where ξk = ϵk − µ is the kinetic energy of the polaron tunneling with momentum k and

∆(k) = ∆0 −∆1
ξk + µ

w
(5.8)
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is the order parameter corresponding to a singlet pairing. In general a triplet p-wave pairing
is also possible with the Hamiltonian, Eq.(5.4).

Applying the standard diagonalisation procedure to the Hamiltonian one obtains for the
order parameter

⟨ck,↑c−k,↓⟩ =
∆(k)

2
√
ξ2k +∆(k)2

tanh

√
ξ2k +∆(k)2

2T
(5.9)

and with the definition Eq.(5.5,6)

∆0 = −v0
N

∑
k

∆(k)

2
√
ξ2k +∆(k)2

tanh

√
ξ2k +∆(k)2

2T
(5.10)

∆1 = − v1
Nw

∑
k

∆(k) (ξk + µ)

2
√
ξ2k +∆(k)2

tanh

√
ξ2k +∆(k)2

2T
(5.11)

The last two equations are equivalent to the BCS one for ∆(k) = ∆(ξ) with the potential
depending on energy and with the half bandwidth w as a cutoff of the integral instead of the
Debye temperature,

∆(ξ) =

∫ w−µ

−w−µ

dξ′Np (ξ
′)V (ξ, ξ′)

∆ (ξ′)

2
√
ξ′2 +∆(ξ′)2

tanh

√
ξ′2 +∆(ξ′)2

2T
(5.12)

with V (ξ, ξ′) = −v0 − zv1
(ξ+µ)(ξ′+µ)

w2 . The polaron density of states is enhanced due to the
polaron narrowing effect:

Np(ξ) ≡
1

N

∑
k

δ (ξ − ξk) (5.13)

luing of order of 1/2w instead of 1/2D for a bare band. The on-site and intersite interaction
terms are both attractive (< 0) or one of them (on-site) may be repulsive.

5.6.3 5.3 High Tc polaronic superconductivity

Theory

The critical temperature Tc of a polaronic superconductor is determined from the Imo
linearised equations in the limit ∆0,1 → 0 :

(
1 + A

(
v0
zv1

+
µ2

w2

))
∆− Bµ

w
∆1 = 0 (5.14)

−Aµ
w

∆+ (1 +B)∆1 = 0 (5.15)

where ∆ = ∆0 −∆1
µ
w

and

A =
zv1
2w

∫ w−µ

−w−µ

dξ tanh ξ
2Tc

ξ
(5.16)

B =
zv1
2w

∫ w−µ

−w−µ

dξξ tanh ξ
2Tc

w2
(5.17)
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These equations are applied only for a weak and intermediate polaron-polaron coupling
|v0,1| < w. In the limit of the weak coupling one obtains from Eq.(5.14,15)

Tc ≃ 1.14w

√
1− µ2

w2
exp

(
2w

v0 + zv1
µ2

w2

)
(5.18)

The expression Eq.(5.18) plays the same role in the polaronic superconductivity as the BCS
one for the low temperature superconductors. It predicts superconductivity even in the case
of on-site repulsion v0 > 0 if this repulsion is less than the total intersite attraction z |v1|. It
also predicts a nontrivial dependence of Tc on the doping. With the constant density of states
within the polaron band the Fermi level µ is expressed through the number of polarons per
atom n

µ = w(n− 1) (5.19)

and

Tc ≃ 1.14w
√
n(2− n) exp

(
2w

v0 + zv1(n− 1)2

)
(5.20)

Tc has two maxima as a function of n separated by a deep minimum for the half filled band
(n = 1) when the nearest neighbor contributions to the pairing are mutually compensated.

The basic phenomenon that allows a high value of Tc is that the polaronic narrowing of
the band, which eliminates the small exponential factor in the BCS or McMillan’s formula
Eq.(3.116). To show this we rewrite Eq.(5.20) in a slightly differ ent form separating the
phonon mediated attraction and the Coulomb repulsion and taking explicitly into account the
polaronic narrowing effect:

Tc ≃ D̃ exp

(
−g2 − exp (−g2)

λ− µc

)
(5.21)

where D̃ = 1.14D
√
n(2− n),

λ =
2Ep + z(n− 1)2

∑
m=a γ

2(q)ωqe
iq·m

2D
(5,22)

and

µc =
U + z(n− 1)2Vc

2D
(5.23)

with U and Vc the onsite and intersite Coulomb repulsion, respectively. There are four
independent parameters which determines the value of Tc, in particular the bare bandwidth D,
the polaronic level shift Ep, the number of phonons g2 in a polaronis
cloud, and the Coulomb repulsion µc. They correspond to the four independent parameters
of the Fröhlich Hamiltonian: the electron kinetic energy EF ∼ D, the matrix element of the
electron-phonon interaction γ ∼ g, the characteristic phonon frequency ω = Ep/g

2, and the
Coulomb (pseudo)potential. Because only g2 (or ω) depends on the ion mass one can determine
the maximum value of Tc with respect to g2 keeping D,λ and µ constant. Differentiating
Eq.(5.21) with respect to g2 we obtain for the maximum T ∗

c

T ∗
c = D̃

λ− µc

e
(5.24)

The applicability of this formula is restricted by the intermediate region of the interaction
constant λ − µc < 1 because of the formation of bipolarons in the large λ limit (Chapter 6).
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However, if bipolarons are intersite and their effective mass is of the order of the polaron effective
mass the expression Eq.(5.21) also describes the Bose-Einstein condensation of bipolarons, as
we discuss in Chapter 6.

Fig.5.1. Critical temperature of a polaronic superconductor (in units of D̃) as a function
of the interaction constant g2 for two different values of the attraction between polarons, a =
1/ (λ− µc).
T ∗
8 is limited by the condition of the small polaron formation λ > 1/

√
2z (section (1)), which

restricts the maximum value of D in Eq.(5.24). The value of g2, at which Ic reaches its
maximum is g2 = ln (λ− µc)

−1, so

D <
√
2zω ln (λ− µc)

−1 (5.25)

and

T ∗
c < ω

√
2z (λ− µc) ln (λ− µc)

−1

e
(5.26)

Une maximum value of the critical temperature of order of ω/3 is reached in the Inimon
of the intermediate coupling g2 ≃ 1, Fig.5.1, where on the contrary the BCS superconductor
has rather low Tc of order of 0.1ω. The absolute value depends on Wand can be as high as
200− 300K depending on the value of the optical phonon
frequency. At large value of the coupling Tc of the bipolaronic superconductor drops because
carriers become very heavy. Therefore we conclude that the highest Tc is in the transition
region from polaronic to bipolaronic superconductivity. The fact that due to the polaron
nonadiabaticity the short-range Coulomb pseudopotential µc is not suppressed contrary to the
BCS case with µ∗

c rather than µc does not change this conclusion if λ− µc is positive.
With the formula for Tc, Eq.(5.21) interpolating between polaronic and bipolaronic super-

conductivity one can explain the unusual oxygen isotope effect in superconducting oxides, in
particular its large value in low Tc oxides, an overall trend to lower value as Tc increases, and a
negative α at high Tc, Fig.5.2. As it is shown below negative values of the isotope effect suggest
that in some high- Tc oxides polaronic (rather than bipolaronic) superconductivity may exist.
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Fig.5.2. Oxygen isotope effect:(o) La2−xCaxCuO4, (△)La2−xSrxCuO4, (∗)La2−xBaxCuO4

(Craw ford et al. (1990)); (∇) Y1−xPrxBa2Cu3O6.92 (Franck et al. (1991)); (+)
YBa2Cu4−xNixO8 (Bornemann et al. (1991a)); (□) Bi− Pb− Ca− Sr− Cu−O (Bornemann
et al. (1991b)). Theoretical curve after Alexandrov (1992a).

As far as the oxygen mass dependence is concerned the formula Eq.(5.21) is applied both
to the BCS-like polaronic superconductor and to the Bose-Einstein condensation of intersite
bipolarons with the effective mass depending exponentially on the electron-phonon coupling
g : m∗∗ ≃ m∗ ∼ exp (g2) (Chapter 6). As mentioned above the only quantity, which depends
on the oxygen isotope mass M is g :

g2 = const
√
M + g2s (5.27)

where g2s is a possible contribution to the mass renormalisation from the vibrations of other
ions and from spin fluctuations. Differentiating Eq.(5.21) one obtains

α =
βg2

2

(
1− e−g2

λ− µc

)
, (5.28)

where β = 1− g2s/g
2 measures the relative contribution of oxygen to the small polaron

cloud. Expressing Tc in units of D̃ we find

Tc = exp

(
−g2 − e−g2

λ− µc

)
(5.29)

With the equations (5.28, 29) one can analyse the correlation between the critical tempera-
ture and the isotope shift, Fig.5.2. It follows from our considerations that with the isotope ef-
fect one can distinguish the BCS like polaronic superconductivity α < 0 from the Bose-Einstein
condensation of small bipolarons α > 0. With the increasing ion mass in the bipolaronic su-
perconductor the bipolaron mass increases and the Bose-Einstein condensation temperature Tc
decreases. On the contrary in polaronic superconductors the increase of the ion mass leads to
the band narrowing and to the enhancement of the polaron density of states and therefore of
Tc. The value of β ≃ 1/3 obtained from the fit to the experiment, Fig.5.2 shows that more than
30% of the cloud around polaron comes from oxygen vibrations, the rest is due to vibrations of
other ions and (or) due to spin fluctuations, as proposed by Mott (1990).
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5.6.4 5.4 Polaronic CDW

Theory

At substantial band-filling the global structural and charge density wave instability driven
by the electron-phonon interaction can develop. A charge density wave (CDW) together with
a static lattice distortion is known to occur at a wave vector q = 2kF in one-dimensional
systems (Peierls (1955)). Peierls pointed out that a one-dimensional metal turns to an insulator
because an energy gap opens at the Fermi level due to the doubling of the unit cell. This is an
electronically induced lattice instability accompanied by a modulation of the electronic density.
In the case of the weak electron-phonon coupling CDW develops also in 2D and 3D Fermi-
liquids with the ’nested’ Fermi surface. The theory has been worked out in the adiabatic and
weak coupling approximations for both ω/D and λ being small. In the strong coupling limit the
CDW ground state was discussed by Alexandrov and Ranninger (1981a). The central question
is the electron excitation spectrum. The ground state is a charge ordered state of on-site
small bipolarons. Taking into account the nonadiabatic corrections one should expect that the
lowest charge excitation mode corresponds to the bipolaron conneling to the nearest neighbor
site as discussed in Chapter 6. The dimerization of a half-filled Holstein chain of molecules
in the strong coupling regime has been studied by Hirsch and Fradkin (1983) by means of
the Monte-Carlo simulations. One of their conclusions is that the CDW order parameter is
reduced gradually with the increasing adiabatic ratio ω/D due to the quantum fluctuations.
Nasu (1985, 1991) and Zheng et al (1989) developed the variational approach to the Holstein
1D HamilImian describing the multi-electron system locally coupled to dispersionless phonons

′′ = −t
∑
i

(
c†ici+1 + h.c.

)
− gω

∑
i

(n̂i − 1/2)
(
d†i + di

)
+ ω

∑
i

(
d†idi + 1/2

)
. (5.30)

Here n̂1 = c†1ci and t is the value of the nearest neighbor hopping integral. The muilibrium
position of every oscillator is taken ±g

√
2/Mω, 0 if nm↑ + nm↓ = 0, 2, 1,

respectively. One can apply three successive unitary transformations with three variational
parameters. The first one is a coherent state transformation for every phonon mode,

expS1 = exp

[∑
i

(−1)i+1m0

√
Mω/2

(
d†i − di

)]
(5.31)

where m0 is the first variational parameter, which measures the phonon-staggered ordering.
As a result of the first transformation the equilibrium position of molecules becomes (−1)i+1m0

(for
∑

s ni = 1). The second transformation is

expS2 = exp

[
δ
∑
i

g (n̂i − 1/2)
(
d†i − di

)]
(5.32)

which is an ’incomplete’ Lang-Firsov polaronic transformation referring to the phononstag-
gered ordering state rather to the original homogeneous liquid. The variational parameter δ ≤ 1
measures the thickness of the phonon cloud around polaron, presumably allowing to consider
the weak-coupling Migdal and polaron regimes within the same variational approach. However,
differently from the displacement transformation of the Lee-Low-Pines theory (Chapter 1) or
from the complete Lang-Firsov transformation, applied within the 1/λ expansion technique
(Chapter 4), the ’incomplete’ transformation, Eq.(5.32) leaves the substantial part ∆He−ph of
the strong electron-phonon interaction in the transformed Hamiltonian

∆He−ph = −gω(1− δ)
∑
i

(n̂i − 1/2)
(
d†i + di

)
(5.33)
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Finally, one can partly offset the polaronic narrowing effect, which is less favorable in the
multi-polaron system compared with a single polaron one, by the third unitary transformation,
the so-called ’squeezing’ transformation (Zheng (1988))

expS3 = exp

[
α
∑
i

(
d†id

†
i − didi

)]
(5.34)

This transformation generates a two-phonon coherent state with α being a third variational
parameter. At this point Nasu and Zheng et al neglect the off-diagonal interaction ∆He−ph

averaging the transformed Hamiltonian with respect to phonons. Thus the polaron and the
phonon subsystems are decoupled with the effective Hamil tonian

H̃eff ≡
〈
eS3eS2eS1He−S1e−S2e−S3

〉
ph

= −ρt
∑
i

(
c†ici+1 + h.c.

)
+
∑
i

n̂i

[(
2δ − δ2

)
g2ω + (−1)i+1(1− δ)gωm0

√
2Mω

]
− 2

(
2δ − δ2

)
g2ω

∑
i

n̂m↑n̂m↓ +NEd (5.35)

where

ρ = exp
[
−g2δ2e−4α

]
(5.36)

is a new band narrowing factor and

Ed =
ω cosh(4α)

2
+
Mω2m2

0

2
+
(
δ2 − 2δ

)
g2ω (5.37)

is the deformation energy per site. The effective Hamiltonian can be diagonalised with the
Bloch representation for electrons. The ground state energy is minimised with respect to m0, δ
and α. It appears from the results of these calculations that because of the multi-polaron nature
of the problem and the squeezing effect the band narrowing is not so dramatic as in a single
polaron system. No order-disorder transition has been found and CDW ordering prevails for
the half-filling for all values of the adiabatic ratio ω/D. This result is in agreement with the
Monte Carlo simulations. However, the excitation spectrum is less reliable because the large
off-diagonal interaction ∆He−ph is neglected in the effective variational Hamiltonian. It can
have a drastic effect on the excitation spectrum.

As in the case of the polaronic Fermi-liquid the phonon excitation spectrum of the polaronic
CDW state can be studied analytically by the use of the 1/λ expansion technique (Göbel et al
(1994)). The CDW state of the half-filled chain of molecules in the strong coupling adiabatic
regime has the following configuration

$$
$$
The phonon operators are now replaced by new operators describing the vibrations around

the new equilibrium positions: di → di + αi. After the substitution the Hamiltonian reads as

H = −t
∑
i

(
c†icj + h.c.

)
− 2gω

∑
i

n̂iαi − gω
∑
i

(n̂i − αi/g)
(
d†i + di

)
+ ω

∑
i

(
d†idi + 1/2 + α2

i

)
(5.38)
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The last term represents the energy of the frozen distortion. The remaining terms give rise
to the definition of two new electronic energy bands resulting from the broken symmetry of
the ground state. The interaction terms are now supplemented by a term involving phonon
operators only. The reason is that due to the buildup of CDW the occupation number ni no
longer has lattice periodicity. The supplemented term serves to cancel the expectation value of
the interaction energy

ni − αi/g = 0 (5.39)

IIy defining α2i ≡ α and α2i+1 = β the new band structure is obtained by reverting to the
reciprocical space shrinking the Brillouin zone from 2π to π (the lattice constant is taken as
unity):

Et
k = −g(α− β) +

tk + tk+π

2
±

[
(tk − tk+π)

2

4
+ g2ω2(α− β)2

]1/2
(5.40)

Where th = −2 tcos k and the momentum k has range [−π/2, π/2]. The parameters α, β
Hacribing the distortion are now to be determined self-consistently. By minimising
the total energy with respect to α and β the lattice distortion depending on the coupling can
be calculated. The contribution from the interaction term is expected to be small if Eq.(5.39)
is satisfied. The amount of symmetry breaking is measured by ∆ ≡ (α−β)/g. Introducing the
familiar coupling constant λ = g2ω/2t we obtain as a result of the minimisation of ⟨H⟩

∆ =
4

π

∫ π/2

−π/2

dk
λ∆

[cos k + λ2∆2]1/2
(5.41)

Fig.5.3. Distortion with (a) and without (b) nesting.
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Fig.5.4. Electron energy bands of $1 D \mathrm{CDW}$ insulator for λ≫ 1.

Besides the trivial solution ∆ = 0 there is a nonvanishing one for every value of λ which gives
the global minimum of the energy, Fig.5.3a. For large values of λ > 1 we have ∆ ≃ 2− 1/8λ2.
In this range of λ the two energy bands become very flat and are separated by a huge ’Peierls’
gap of the order of 4g2ω, Fig.5.4. The immediate breaking of symmetry regardless of the value
of λ, Fig.5.3a is an artificial feature particularly pertinent to one dimension. It is related to
Fermi surface nesting and completely removed in higher dimensions with the realistic Fermi
surface. To see the
general picture one can consider two dimensions with a pattern of symmetry breaking of the
form

⊙ ⊙ ⊙ ⊙ ⊙ ⊙ ⊙
⊙ ⊙ ⊙ ⊙ ⊙ ⊙ ⊙ ⊙

⊙ ⊙ ⊙ ⊙ ⊙ ⊙ ⊙
⊙ ⊙ ⊙ ⊙ ⊙ ⊙ ⊙ ⊙

After symmetry breaking there will now arise four energy bands. However, the coupling
must exceed a critical value λc for symmetry breaking to take place unless there is Fermi surface
nesting. This can be verified with the bare kinetic energy dispersion of the form

Ek = −2t (cos kx + cos ky) + t̄ (cos 2kx + cos 2ky) (5.42)

For t̄ = 0 there is Fermi surface nesting and symmetry is broken for every value of the
coupling, Fig.5.3a. On the other hand the general case t̄ ̸= 0 shows no such pathological feature,
Fig.5.3b. By expanding the static ground state energy about the equilibrium value of ∆ up to
the second order one finds for λ > 1 the renormalised phonon frequency ω̃ = ω (1−O (1/λ2))
similar to that of the two-site Holstein model, Eq.(1.129). With increasing λ the phonon
frequency decreases to the left of the critical point λ < λc, vanishes at the phase transition
and increases rapidly afterwards, as shown in Fig.5.5. This behavior of the phonon frequency
is reminiscent of that of the finite size cluster, Fig.1.6. The spurious kink in the curve ω̃(λ)
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immediately after the phase transition, Fig.5.5 is due to a static approximation for the energy.
Calculation done with the polarization loop (GF) smoothes out this part of the curve. The
static energy result are then reproduced with the lowest order in the adiabatic parameter ω/t.

Iig.5.5. Renormalisation of the phonon frequency.

5.6.5 5.5 Small polarons in doped Mott insulators

Theory

I he formation and dynamics of polarons and bipolarons in strongly correlated narrow hand
metals became fascinating topics because of renewed importance on account of its application
to the high temperature superconductors. The behavior of a doped ’Mott’ insulator - that is
an antiferromagnetic material in which the moments have value S = 1/2 is still an unsolved
problem; but we do not consider this to be the case for the antiferromagnetic materials in
general. In magnetic materials the carriers in the conduction band form spin polarons - some-
times called ferrons (Nagaev (1979)); that is a group of moments oriented antiparallel to that
of the carrier. This entity has a mass increasing exponentially with the number of moments it
contains. One can assume that this remains so for the simple Mott insulator such as La2CuO4,
if holes in the oxygen 2p band are introduced by doping with strontium. Then polarons must
be of complex hybrid type. In the centre is a spin polaron, containing perhaps from 4 to 8
moments. But-in these highly dielectric materials, they will polarise the lattice. Both spin
and lattice will contribute to the mass enhancement (Mott (1993)). Consequently, the prob-
lem combines aspects of coupled fields with distinct time scales (electrons, phonons and spin
fluctuations), electron-electron interaction, lattice discreteness and, in real solids, competition
between trapping in a random potential and the self-trapping.

The qualitative effects of the lattice- and spin-polaronic distortion upon doping into an
antiferromagnetic stoichiometric background can be studied with the extended Peierls-Hubbard
model (Bishop and Salkola (1995)). In particular case of CuO 2 plane of high- Tc copper oxides,
Fig. 2.5 the model takes into account both the electron-phonon interaction (via the modulation
of the atomic level Ei as well as the hopping integral Tij) and the on-site (Hubbard U) and
nearest-neighbor repulsion terms (V )

H =
∑
i

Ei(u)n̂i +
∑
⟨i ̸=j⟩

Tij(u)c
†
icj +

∑
m

Umn̂m↑n̂m↓ +
∑
⟨i ̸=j⟩

Vijn̂in̂j

+
∑
q

ωq

(
d†qdq + 1/2

)
(5.43)

where u is the lattice displacement. The electron-phonon interaction is introduced by the
expansion of Ei(u) and Tij(u) up to linear terms in ion displacements u. The three-band
approximation is normally applied taking into account holes in Cudx2−y2Opx and Opy orbitals
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interacting with each other and coupled with the motion of oxygen ions along the Cu − O
bonds. Bishop and co-workers made their calculations on large clusters (6× 6 unit cells) with
periodic boundary conditions by the use of a Hartree-Fock technique for the electronic part and
a classical adiabatic treatment for the lattice part. Therefore, the polaron bandwidth or mass
remains outside of these calculations. When the electron-lattice coupling is absent, each added
hole in localised primarily on a single Cu site and four surrounding O sites. The spin density
at this Cu site is flipped so that a small ferron is formed. The spin densities at the four O sites
are small and in the opposite direction to the central Cu spin. As the electron-phonon coupling
is turned on, the Cu magnetic moment is reduced and the O atoms are displaced toward the
central Cu. At the Cu site, where a small polaron resides, reduction of the magnetic moment
results in strong mixing of the four O with the Cu. Then, substantially below a critical value
of the electron-phonon coupling λ ≤ 1 for destruction of the global antiferromagnetic state
the magnetic moment of the central Cu collapses. Finally, above the critical value of λ the
antiferromagnetic undoped ground state is replaced by a non-magnetic (lattice) small polaron
state.

Under certain conditions the three-band Hubbard model discussed above in to
duced to a single-band t−J model, in which the hole, constrained to a projected Hilbert space
without double occupancy of sites, interacts with the spin density (for references see Dagotto
(1994)). The formation of small polarons and bipolarons in the Holstein t − J model was
examined by Fehske et al (1995) by means of a variational diagonalisation technique on finite
square lattices, up to 18 effective sites in size. The Hamiltonian of the 2D Holstein t−J model
is given by

H = −t
∑

⟨i ̸=j⟩,s=s′⟩

(
c†icj + h.c.

)
+ J

∑
⟨i ̸=j⟩

(
Si · Sj −

1

4
n̂in̂j

)
− gω

∑
i

hi

(
d†i + di

)
+ ω

∑
i

(
d†idi + 1/2

)
. (5.44))

0.04

Fig.5.6. Dependence of the transfer amplitude on the electron-phonon coupling for the
onehole (a) and two- hole (b) cases. The solid, chain-dashed, long-dashed, and dashed curves
refer to ω/l = 0.1, 0.8, 3.0, 10.0, respectively. At ω = 0.1t, the corresponding dependence for
noncorrelated carriers is presented by the dotted curve.
II acts in a Hilbert space without double occupancy, where n̂i =

∑
s c

†
m,scm,s,

Hi = (1/2)
∑

ss′ c
†
m,sτss′cm,s′ , and hi = 1− n̂i denotes the hole number operator. The linet two

terms represent the standard t − J model, where J measures the antiferromagnelic exchange
interaction and t denotes hopping processes between nearest-neighbor colls on a square
lattice. The third and fourth terms take the electron-phonon interaction and the phonon
energy into account. The physics of the Holstein t − J model 10 governed by two effects: the
strong Coulomb correlations (due to J/t and the consiraint of no double occupancy), and the
polaronic band renormalisation depending in λ = g2ω/4t and ω/t. Including static
displacement field, ’incomplete’ polaron diccasing and squeezing effect and averaging over the
transformed phonon vacuum as
described above, Fehske et al investigate numerically the ground state properties of the
resulting polaronic t − J model. As a measure of the phonon- induced band renormalisation
the effective transfer amplitude

teff =
Et(g, J)

Et(0, J)
(5.45)
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is introduced. Here

Et = −ρt
N

〈∑
⟨ij⟩

(
c†icj + h.c.

〉
(5.46)

denotes the kinetic energy with the reduction factor ρ, determined in Eq.(5.36). The effective
transfer amplitude, calculated for J/t = 0.4 is shown in Fig 5.6a for the one hole case and
in Fig.5.6b for the two hole case for different values of the adiabatic ratio ω/t. As in the
noncorrelated system for low frequencies (ω < t), one can distinguish the free hole if λ ≤ 0.2
and the adiabatic small polaron for larger coupling with phonons. Increasing the electron-
phonon interaction, the mobility of the hole (∼ teff ) is strongly reduced when the small polaron
is formed. To discuss the effect of the electronic correlations on the self-trapping transition,
the noncorrelated case of spinless fermions is also considered. Obviously, the transition from
large to small polaron is obtained at a much larger critical value of λc ≃ 1, which corresponds
to the polaronic shift of the order of half the bare bandwidth, Fig.5.6a,b (dotted line). For
the nonadiabatic case (ω ≥ t) there are small polarons at all values of λ, and the transfer
amplitude decreases smoothly with increasing λ. As we have mentioned in section 5.4 the
drawback of the variational approach is that a large part of the electron-phonon interaction
is neglected because of the averaging with respect to phonons. However, the conclusion that
the critical coupling strength λ for the selftrapping of the carriers in the doped Mott insulator
is considerably reduced by the antiferromagnetic exchange interaction seems to be reasonable.
Both lattice and spin distortions drive the system towards localisation. Therefore a rather weak
electron-phonon interaction (λ ≥ 0.2) can cause polaron band narrowing in strongly correlated
phoriz electron system supporting a prominent role of the lattice degree of freedom in the
cuprates.

5.7 6 Bipolaronic liquid

As we have mentioned in Chapter 5 the onsite or intersite attractive energy of two small
polarons is generally larger than the polaron bandwidth. At this condition real space pairs
of polarons i.e. small bipolarons form if temperature is not very high, T < T ∗∗. Then the
polaronic Fermi liquid transforms into a bipolaronic liquid. The latter is stable at low density
of bipolarons because the effective bipolaron-bipolaron interaction is repulsive for all distances
(see below). At large density the bipolaronic CDW state competes with the superfluid.

5.7.1 6.1 Coherent tunneling and repulsion of bipolarons

A small parameter w/∆ ≪ 1 where ∆ is the bipolaron binding energy, of order of the attrac-
tive energy provides us with a consistent treatment of the bipolaronic systems (Alexandrov and
Ranninger (1981a,b)). Under this condition the hopping term in the transformed Hamiltonian
H̃ is a small perturbation to the ground state of immobile bipolarons and free phonons:

H̃ = H0 +Hpert , (6.1)

where

H0 =
1

2

∑
i,j

vijc
†
ic

†
jcjci +

∑
q

ωq

(
d†qdq + 1/2

)
(6.2)

and
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Hpert =
∑
i,j

σ̂ijc
†
icj (6.3)

Under the condition ∆ ≫ w there are no unbound polarons in the ground state, and
the bipolaron motion can be described with a new canonical transformation exp (S2). This
transformation eliminates the first order of Hpert , which destroys the bipolaron and therefore
has no diagonal contribution:

(S2)f,p =
∑
i,j

⟨f |σ̂ijc†icj|p⟩
Ef − Ep

(6.4)

where Ef,p and |f⟩, |p⟩ are the energy levels and the eigenstates of H0. Neglecting the terms
of higher order than (w/∆)2 one obtains

(Hb)ff ′ =
(
eS2H̃e−S2

)
ff ′

(6.5)

(Hb)ff ′ ≃ (H0)ff ′ −
1

2

∑
ν

∑
i,i′;j,j′

⟨f |σ̂ii′c†ici′|ν⟩⟨ν|σ̂jj′c
†
jcj′ |f ′⟩

×
(

1

Eν − Ef ′
+

1

Eν − Ef

)
(6.6)

The nonzero matrix elements of S2 act between a localised bipolaron state and a state of two
unpaired polarons localised in different cells or sites (in case of on-site pairs). The expression
(6.6) determines the matrix elements of the transformed (bipolaronic) Hamiltonian Hb in the
subspace |f⟩, |f ′⟩ without unpaired polarons. On the other hand |ν⟩ refers to configurations
involving two unpaired polarons, so that

Ef − Eν = −∆+
∑
q

ωq

(
nf
q − nν

q

)
(6.7)

where nf,ν
q are the phonon occupation numbers (0, 1, 2, 3 . . .). This equation is an explicit

definition of the bipolaron binding energy ∆, which takes into account the interaction between
bipolarons as well as between two unpaired polarons. The lowest eigenstates of Hb are in the
subspace which involves only doubly occupied c†m,sc

†
m,s′ |0⟩ or empty |0⟩ states. The bipolaron

tunneling takes place via a transition to a virtual unpaired state implying a single polaron
tunneling to the adjacent cell. The subsequent tunneling of a second polaron of a pair restores
the initial energy state of the system. Because the bipolaron band is narrow (see below) there
are no high-frequency phonons emitted or absorbed. Hence one can average Hb with the phonon
density matrix

Hb = H0 − i
∑

i,i′;j,j′

c†ici′c
†
jcj′

∫ ∞

0

dte−i∆tΦjj′

ii′ (t) (6.8)

with the real time t in the multiphonon correlator Φ determined in section 4.3. The difference
between the ’exact’ and averaged Hamiltonians can be treated perturbatively as the bipolaron-
phonon interaction (section 6.3). Taking into account that there are only bipolarons in the
subspace in which Hb operates one can rewrite the bipolaron Hamiltonian in terms of the
creation b†i = c†m↑c

†
m,↓ and annihilation singlet bipolaron operators
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Hb = −
∑
m

(
∆+

1

2

∑
m′

v
(2)
m,m′

)
nm

+
∑

m ̸=m′

(
−tm,m′b†mbm′ +

1

2
v̄m,m′nmnm′

)
(6.9)

where nm = b†mbm is the bipolaron occupation number operator,

v̄m, m′ = 4vm, m′ + v
(2)
m, m′ (6.10)

is the bipolaron-bipolaron interaction including the direct (density-density) Coulomb repul-
sion (Vc), the attraction via phonons between two small polarons in different cells and a second
order correction

v
(2)
m,m′ = 2i

∫ ∞

0

dtΦm′m
mm′(t) exp(−i∆t) (6.11)

which is repulsive. The origin of this repulsion is that a virtual hop of one of the polarons
of a pair is forbidden when the neighboring cell is occupied by another pair. The bipolaron
transfer integral is of the second order in the electron kinetic energy T (m)

tm,m′ = 2i

∫ ∞

0

dtΦmm′

mm′(t) exp(−i∆t) (6.12)

To calculate t and v(2) one can use the explicit form of the multiphonon correlator, Φm′m
mm′ ,

Eq.(4.104). For Φm′

mm′ the expression is the same, but with the opposite sign of the argument of
the second exponent. If T = 0 and phonons are dispersionless the calculation yields (Alexandrov
and Kabanov (1986))

tm,m′ =
2T 2(a)

∆
e−2g2

∞∑
k=0

(−2g2)
k

k!(1 + kω/∆)
(6.13)

and

v
(2)
m,m′ =

2T 2(a)

∆
e−2g2

∞∑
k=0

(+2g2)
k

k!(1 + kω/∆)
(6.14)

with a = m−m′. If ∆ < ω both the bipolaron hopping and the second order repulsion are
about w2/∆. However, for large binding energy ∆ ≫ ω the bipolaron bandwidth dramatically
decreases being proportional to e−4g2 in the limit ∆ → ∞. This limit is, however, not realistic
because ∆ ≃ 2Ep − Vc ≤ 2g2ω. Therefore, a more realistic regime is ω < ∆ < 2g2ω, where

tm,m′ ≃ 2
√
2πT 2(a)√
ω∆

exp

[
−2g2 − ∆

ω

(
1 + ln

2g2ω

∆

)]
(6.15)

On the contrary the bipolaron-bipolaron repulsion increases, v(2) ∼ D2/∆ in the limit
∆ → ∞. For dispersionless molecular or optical phonons the intermolecular attraction via
phonons (the second term in Eq.(4.14)) is zero. Therefore the direct Coulomb and the second
order v(2) repulsive terms lead to a total repulsive interaction between bipolarons, preventing
the formation of droplets. At finite temperatures the denominator of the second order terms of
the bipolaronic Hamiltonian, Eq.(6.6) turns out to be zero if the resonance condition Nω = ∆
is met (N = 1, 2, 3, . . .). This divergence is eliminated by taking into account the phonon
frequency dispersion and (or) by including the higher terms of the 1/λ perturbation expansion.
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The high temperature behavior of the bipolaron transfer integral is just opposite to that of
the small polaron bandwidth. While the polaron band collapses with increasing temperature
as described in section 4.4 the bipolaron band becomes wider 24 found by Bryksin and Gol’tsev
(1988)

tm, m′ ∼ T−1/2 exp

[
−Ep +∆

2T

]
(6.16)

for T > ω.
In the case of inter - site bipolarons, which are the bound states of two small polarons on
neighboring sites, there are two additional points. First of all an intersite bipolaron can be
formed with a nonzero spin S = 1 (triplet state) and with the energy J ∼ w2/U above the
singlet state S = 0. This should be taken into account by introducing additional spin quantum
numbers S = 1; l = 0,±1 in the definition of bm. The second point is that in a simple
square or cubic lattice the inter-site bipolaron tunnels via the next neighbor hopping of a single
polaron rather than via two-particle (Josephson-like) tunneling, described with Eq.(6.12). This
’crablike’ tunneling results in a bipolaron bandwidth of the same order as the polaron one. In
the perovskite structures the apex bipolaron is the ground state as discussed in section 2.5. Its
band structure is described below. In general, Hb in the form of Eq.(6.9) is applied not only to
on-site bipolarons but also to inter-site or more extended nonoverlapping pairs if m includes
the spin, and tm,m′ is considered as a phenomenological parameter. The site index m should
be generally considered as a position of the centre of mass of the bipolaron.

5.7.2 6.2 Bipolaron anisotropic flat bands in high- Tc copper oxides

Consideration of particular lattice structures shows that small inter-site bipolarons can be
perfectly mobile even when the electron-phonon coupling is strong and the bipolaron binding
energy is large (Alexandrov (1995)). Here we analyse the important case of copper based high-
Tc oxides. The existence of the ’parent’ Mott insulators suggest that high- Tc superconductors
are in fact doped semiconductors with narrow electron bands. Therefore, different types of
bipolarons can be found with computer simulation techniques based on the minimization of
the ground state energy, Eq. (4.15) without the kinetic energy term, section 2.5. The intersite
pairing of the in-plane oxygen hole with the apex one is energetically favorable in the perovskite
structures with the binding energy ∆ = 0.119eV for La2CuO4, Table 4. Obviously, this apex
bipolaron can tunnel from one cell to another via a direct single polaron tunneling from one
apex oxygen to its apex neighbor as shown in Fig.6.1.

Fig.6.1. Apex bipolaron tunneling in perovskites.
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To show this we consider the model Hamiltonian, including the oxygen-oxygen and
oxygen-copper hopping integrals

H =
∑
i,j

Tijc
†
icj +

∑
q,j

ωqn̂j (uj(q)dq + h.c.)

+
∑
q

ωq

(
d†qdq + 1/2

)
+
∑
i,j

Vijn̂in̂j (6.17)

where Tij determines the bare band structure in the site representation; ci, cj are hole
annihilation operators for oxygen or copper sites i, j; n̂j = c†jcj is the number operator, Vij is
the direct Coulomb repulsion, which does not include the on-site term i = j for parallel spins.
Oxides are strongly polarizable materials, so coupling with optical phonons dominates in the
electron-phonon interaction

γ(q) = − i
√
8πα√

Ω(2mω)1/4q
(6.18)

The lattice polarization is coupled with the electron density, therefore the interaction is
diagonal in the site representation and the coupling constant does not depend on the particular
orbital. In doped oxides optical phonons are partially screened. Then molecular and acoustical
phonons also contribute to the interaction. The canonical displacement transformation elim-
inates an essential part of the electron-phonon interaction. The transformed Hamiltonian is
given by

H̃ = SHS−1 = (Tp − Ep)
∑
i(p)

ni(p) + (Td − Ed)
∑
i(d)

ni(d) +
∑
i ̸=j

σ̂ijc
†
icj

+
∑
q

ωq

(
d†qdq + 1/2

)
− 1

2

∑
q,i,j

(
2ωqui(q)u

∗
j(q)− Vij

)
n̂in̂j (6.19)

The first oxygen (p) and the second copper (d) diagonal terms include the polaronic level
shift, which is the same for oxygen and copper ions

Ep = Ed =
∑
q

|uj(q)|2 ωq (6.20)

The transformed hopping term involves phonon operators

σ̂ij = Tij exp

(∑
q

u∗i (q)d
†
q − h.c.

)
exp

(∑
q

uj(q)dq − h.c.

)
. (6.21)

There are two major effects of the electron-phonon interaction. The first one is the band
narrowing due to a phonon cloud surrounding the hole. In case of a large charge Iransfer gap
Eg ≫ ω the bandwidth narrowing factor is the same for the direct tpp′ and the second order
via copper t(2)pp′ oxygen-oxygen transfer, Fig.6.2a,b

tpp′ ≡ ⟨0|σ̂pp′ |0⟩ = Tpp′e
−g2

pp′ (6.22)

t
(2)
pp′ ≡

∑
ν

⟨0|σ̂pd|ν⟩⟨ν|σ̂dp′|0⟩
E0 − Eν

≃
T 2
pd

Eg

e
−g2

pp′ , (6.23)
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where |ν⟩, Eν are eigenstates and eigenvalues of the transformed Hamiltonian, Eq.(6.19)
without the third hopping term, |0⟩ the phonon vacuum, and the reduction factor is

g2pp′ =
1

2N

∑
q

|γ(q)|2 (1− cos [q · (mp −mp′)]) (6.24)

These expressions are the result of the straightforward calculations described below. The
direct hopping is given by

tpp′ = Tpp′⟨0| exp

(∑
q

u∗p(q)d
†
q − h.c.

)
exp

(∑
q

up′(q)dq − h.c.

)
|0⟩ (6.25)

With the help of eA+B = eAeBe−[AB]/2 one obtains

tpp′ = Tpp′e
−g2

pp′ ⟨0| exp

(∑
q

u∗p(q)d
†
q

)
exp

(
−
∑
q

up′(q)d
†
q

)
|0⟩ (6.26)

where

g2ij =
1

2

∑
q

(
|ui(q)|2 + |uj(q)|2 − 2u∗i (q)uj(q)

)
(6.27)

The bracket in Eq.(6.26) is equal to unity. Then Eq.(6.22) follows from Eq.(6.26) using the
definition of uj(q).

Taking into account that Eν − E0 = Eg +
∑

q ωqnq the second order indirect hopping
Eq.(6.23) is written as

t
(2)
pp′ = i

∫ ∞

0

dte−iEgt⟨0|σ̂pd(t)σ̂dp′ |0⟩ (6.28)

where

σ̂pd(t) = Tpd exp

(∑
q

u∗p(q, t)d
†
q − h.c.

)
exp

(∑
q

ud(q, t)dq − h.c.

)
(6.29)

Here uj(q, t) ≡ uj(q) exp (iωqt) and nq = 0, 1, 2, . . . the phonon occupation numbers. Cal-
culating the bracket in Eq.(6.28) one obtains

⟨. . .⟩ = e−g2pde
−g2

dp′ exp

(
−
∑
q

[up(q)− ud(q)]
[
u∗d(q)− u∗p′(q)

]
e−iωqt

)
(6.30)

If ωq is q-independent, the integral in Eq.(6.28) is calculated by the expansion of the expo-
nent in Eq.(6.30):

t
(2)
pp′ =

T 2
pd

Eg

e−g2pde
−g2

dp′

∞∑
k=o

(−1)k
(∑

q [up(q)− ud(q)]
[
u∗d(q)− u∗p′(q)

])k
k! (1 + kω/Eg)

(6.31)

Then Eq.(6.23) is obtained in the limit Eg ≫ ω.
Substitution of Eq.(6.18) into Eq.(6.24) yields

g2pp′ , g
2 =

Ep

ω

(
1− Si (qdm)

qdm

)
(6.32)
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if the Debye approximation for the Brillouin zone is applied. Here Si(x) =
∫ x

0
sin(t)dt/t,

m = a/
√
2 and m = a for the in-plane reduction factor g2pp′ and for the apex-reduction factor

g2, respectively. For LSCO with qd ≃ 0.7Å
−1

and a ≃ 3.8Å one obtains g2pp′ ≃ 0.2Ep/ω and
g2 ≃ 0.3Ep/ω where Ep is given by Eq.(1.99). Because the nearest neighbor oxygen-oxygen
distance in copper oxides is less than the lattice constant the calculations yield a remarkably
lower value of g2pp′ ≃ 0.2Ep/ω than one can expect with a naive estimate (≃ Ep/ω).

The other effect of the electron-phonon coupling is the attraction between two polarons
given by the last term in Eq.(6.19). For the Fröhlich interaction the polaron level shift in
La2−xSrxCuO4 is estimated to be as large as Ep ≃ 0.6eV, section 1.5. Then with ω = 0.06eV
one obtains g2pp′ ≃ 2. As a result a large attraction between two polarons of the order of
2Ep ≥ 1eV is possible accompanied by only one order of magnitude mass enhancement. Such
a possibility is a result of the particular lattice structure and the phonon dispersion.

The bipolaron hopping integral t is obtained by projecting the Hamiltonian, Eq.(6.19) onto
the reduced Hilbert space containing only empty or doubly occupied elementary cells. The
wave function of the apex bipolaron localised, say in the cell m is written as

|m⟩ =
4∑

i=1

Aic
†
ic

†
apex|0⟩ (6.33)

where i denotes the px,y orbitals and spins of the four plane oxygen ions in the cell m , Fig.
2.5 and c†apex is the creation operator for the hole on one of the three apex oxygen orbitals with
the spin, which is same or opposite to the spin of the plane hole, depending on the total spin
of the bipolaron. The probability amplitudes Ai are normalised by the condition |Ai| = 1/2
because only four plane orbitals px1, py2, px3 and py4 are relevant within the three band model.
The matrix element of the Hamiltonian Eq.(6.19) of the first order with respect to the transfer
integral responsible for the bipolaron tunneling to the nearest neighbor cell (m+ a) is

t = ⟨m|H̃|m+ a⟩ = 1

4
T apex
pp′ e−g2 (6.34)

where T apex
pp′ is the single polaron hopping between two apex ions,

g2 =
1

2N

∑
q

|γ(q)|2 [1− cos (qxa)] (6.35)

is the polaron narrowing factor, and a is the in-plane lattice constant, which is also the
nearest neighbor apex-apex distance. As a result the hole bipolaron energy spectrum in the
tight binding approximation consists of two bands Ex,y formed by the overlap of ps and py apex
polaron orbitals, respectively, Fig.6.2b:

Ex
k = −t cos (kx) + t′ cos (ky) (6.36)

Ey
k = t′ cos (kx)− t cos (ky) (6.37)

where the in-plane lattice constant is taken to be a = 1, t is the renormalized hopping
integral, Eq.(6.34) between p orbitals of the same symmetry elongated in the direction of the
hopping (ppσ) and t′ is the renormalised hopping integral in the perpendicular
direction (ppπ). Their ratio t/t′ = T apex

pp′ /T appex
pp′ = 4 as follows from the tables of hopping

integrals in solids (Harrison (1989)).
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Fig.6.2. Counterplot of the ’x’-bipolaron dispersion $E_{\mathbf{k}}ˆ{x}$. Dark regions
correspond to the bottom of the band. Ey

k energy surfaces are obtained by π/2 rotation.
Three-band model (a) and two-band

apex bipolaron model (b).
Two different bands are not mixed because T apex

px,p′y
= 0 for the nearest neighbors. The random

potential does not mix them either if it varies smoothly on the lattice scale. Consequently, we
can distinguish ’ x ’ and ’ y ’ bipolarons with a lighter effective mass in x or y direction,
respectively. The apex ’ z ’ bipolaron, if formed, is ca. four times less mobile than the x and
y bipolarons. The bipolaron bandwidth is of the same order as the polaron one, which is a
specific feature of the inter-site bipolaron discussed above. For a large part of the Brillouin
zone near (0, π) for ’ x ’ and (π, 0) for ’ y ’ bipolaron, Fig.6.2 one can adopt the effective mass
approximation

Ex,y
k =

k2x
2mx,y

+
k2y

2my,x

(6.38)

with kx,y taken relative to the band bottom positions and mx = 1/t,my = 4mx. The
bipolaron mass anisotropy has an important impact on the value of the Hall effect in high- Tc
oxides (Chapter 8).

5.7.3 6.3 Bipolaron kinetics

As in the case of small polarons discussed in Chapter 4, bipolarons interact with phonons
via the residual bipolaron-phonon interaction, which is a difference of the
exact and averaged with respect to phonons bipolaronic Hamiltonians
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Hb−ph =
∑

m ̸=m′

(
tm,m′ − t̂m,m′

)
b†mbm′

+
1

2

∑
m ̸=m′

(
v
(2)
m,m′ − v̂

(2)
m,m′

)
nm (1− nm′) (6.39)

where

t̂m,m′ = i

∫ ∞

0

e−(i∆+0+)t [σ̂m,m′(t)σ̂m,m′ + σ̂m,m′σ̂m,m′(−t)] (6.40)

and

v̂
(2)
m,m′ = i

∫ ∞

0

e−(i∆+0+)t [σ̂m,m′(t)σ̂m′,m + σ̂m,m′σ̂m′,m(−t)] . (6.41)

The interaction is of the second order in the transfer integral T (m), so it can be treated
perturbatively by the 1/λ expansion technique. In particular, one can calculate the hopping
conductivity of bipolarons in the high temperature regime T > ω/2 (Bryksin and Gol’tsev
(1988)). As in the case of small polarons the hopping bipolaron contribution to the conductivity
is expressed in terms of the diffusion coefficient Db = 2a2Wb. Then the drift mobility is
found from the Einstein relationship µb = 2eDb/T , where an additional 2 appears because the
bipolaron charge is 2e. The probability Wb of a jump to the nearest neighbor site per second
in the lowest fourth order with respect to the hopping integral T (m) is found by the use of the
Fermi-golden rule with the interaction term Hb−ph rather than with Hp−ph

Wb =

∫ ∞

−∞
dt
[〈
t̂m,n(t)t̂n,m

〉
− t2m,n

]
e−0+|t| (6.42)

Here |m − n| = a and t̂m,n(t) = exp (iHpht) t̂m,n exp−iHpht is the Heisenberg hopping
operator. If there is a phonon frequency dispersion, only the first saddle-point contributes to
the integral in Eq.(6.42) with the following result

µb ≃ ea2
64π3/2T 4(a)

ω2
√
TEa (∆ + 4Ea)

exp

[
− (∆ + 4Ea)

2

16EaT

]
, (6.43)

where Ea is a single polaron activation energy, determined in Eq.(4.107). Because of the
small exponential term in Eq.(6.43) the on-site bipolaron hopping mobility is lower compared
with the contribution of the thermally excited polaron despite the fact that the polaron density
is exponentially small (∼ exp(−∆/2T )) compared with the bipolaron one. The on-site bipolaron
contribution to the dc conductivity is small compared with the polaron contribution as σb/σp ∼
exp (−∆2/16EaT ). However, as the frequency of the electric field increases, the dominant role
in conductivity is gradually transferred to bipolarons, as discussed in the next section. In
the absence of the Coulomb repulsion the bipolaron binding energy is ∆ ≃ 2Ep ≃ 4Ea and
consequently, the bipolaron mobility obeys the law µb ∼ exp (−4Ea/T ). This has a simple
explanation because in this case the bipolaron jump is equivalent to a single polaron jump
but with a double coupling constant with phonons. Of course, internite bipolarons with the
activation energy of the same order as the single polaron activation energy dominate both in
the dc and ac transport at all temperatures T < T " . Also, at low temperatures T < ω/2 we
expect that the tunneling mechanism
will play the dominant role. In this temperature range bipolaron kinetics is that of charged
bosons on a lattice, while the tunneling contribution of the thermally excited single polarons is
frozen out. Low temperature bipolaron kinetics is discussed in Chapter 7.
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5.7.4 6.4 MIR conductivity of small bipolarons

The frequency dependence of the MIR bipolaron conductivity can be estimated using the
two-site Holstein model with two electrons and the Franck-Condon principle, which states that
optical transitions take place instantaneously without any change in the nuclear configuration.
Consequently, the optical transition between adiabatic levels takes place vertically as in the case
of a single polaron, Fig.4.5. The corresponding qualitative analysis by Bryksin and Voloshin
(1984) shows that the absorption coefficient of light by the on-site bipolaron has three Gaussian
peaks located at frequencies ν1 = 4Ea, 8Ea −U and 16Ea. The lowest peak corresponds to the
absorption by single thermally excited polarons. The highest peak is due to the shakeoff of
phonons without dissociation of the bipolaron while the main central peak is the absorption
involving dissociation. The value of the lowest single polaron peak is exponentially small
(∼ exp (−2Ea/T )) compared with the two high frequency absorption maxima, while the highest
peak is smaller compared with the main central peak due to an additional factor ∼ J2. The
width of the high-frequency peak, which is ∼ 8

√
EaT is twice the width of the two low-frequency

peaks. If the on-site Coulomb repulsion is absent, U = 0 the main maximum of the MIR
conductivity is shifted relative to the maximum of the single polaron conductivity, section 4.10
by the value ≃ 2Ep towards the high frequency region. The explanation is that the polaron
shift of the atomic level is proportional to the square of the ion displacement, as is always
the case in the harmonic approximation. Consequently, the polaron shift becomes 4Ep for two
electrons on the same site compared with 2Ep when the electrons occupy different sites.

The exact diagonalisation of the two-site Holstein model in the truncated Hilbert space up
to 50 phonons allows us to carry out the quantitative analysis of the bipolaronic MIR conduc-
tivity (Alexandrov et al (1994b)). In the case of two electrons in a two-site cluster the ground
state changes essentially due to the formation of a bipolaron. If the electron-electron repulsion
is weak optical properties will be determined by the excitation of a bipolaron in the state of
two unpaired electrons. On the other hand, in the case of strong Hubbard U , the ground state
corresponds to unpaired electrons and the main peak in σ(ν) is expected to be for ν ∼ U . The
evolution of σ(ν) with increasing for two-site cluster with two electrons is shown in Fig.6.3 for
T = 0. For U = 0 (Fig.6a) we found one peak in σ(ν) in the high energy region ν ≃ 4Ep. This
peak also shows the additional phonon superstructure, Other peaks are absent. If U increases,
peak in σ(ν) shifts to the lower value of ν. This is due to the fact that the finite value of U
reduces the binding energy of the the peak has well defined asymmetry (Fig. Further increase
of U round

state. It leads to the appearance of an additional peak
in σ(ν). These two peak (Fig.6c,d) correspond to the excitation of an electron from the un-
paired ground state to bonding and antibonding paired states |ϕ±⟩ ∼

(
c+1↑c

+
2↓ ± c+1↓c

+
2↑
)
|0⟩. The

lineshape in that case is also asymmetric. The observed spectral shape of the spectrum and
the
phonon superstructure strongly suggest small lattice polarons as the common origin of the MIR
conductivity in all perovskite materials, Chapter 8. If one accepts that the high energy MIR
maximum at ν ≃ 0.7eV in the high- TcY BCO is due to inter-site bipolarons and the gap,
observed with the tunneling, IR reflectivity, photoemission, and with the electron energy loss
spectroscopy 2∆ ≃ 8Tc is the bipolaron binding energy one can estimate Ep and the character-
istic inter-site Coulomb repulsion Vc. If we adopt in a qualitative analysis a similar shape of the
on-site and the inter-site bipolaron absorption the position of the maximum of the inter-site
bipolaron absorption is given by ν = 4Ep − Vc and 2∆ = 2Ep − Vc. With ν = 0.7eV and
2∆ = 0.07eV we obtain Ep ≃ 0.3eV and Vc = 0.5eV. This value of Ep is close to that obtained
with ther the appropriate electron-phonon interaction constant (λ ∼ 1− 2). The value of Vc is
close to the estimation of the inter-site Coulomb repulsion with the high-frequency dielectric
constant ϵ = 5.
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Fig.6.3. Two-site bipolaronic optical conductivity for different values of the on-site Hubbard
repulsion U, ω = 0.5J , and λ = 0.8.

5.7.5 6.5 Effect of superconducting phase transition on MIR conduc-
tivity

It is difficult to study the temperature dependence of the MIR conductivity on the temper-
ature scale compared with the critical temperature of the superconducting phase transition Tc
within the finite cluster model. Also, in the qualitative connideration of the preceding section
the tunneling transport of bipolarons is ignored. Nevertheless, the temperature dependence of
the integrated bipolaronic MIR conductivity can be studied by the use of the Kubo sum rule
(Alexandrov et al (1993)). Let us discuss first a simple but rather general model which show
a hundred percent decrease of the optical absorption while temperature changes from Tc to
zero: an ideal gas of molecules, composed of two identical particles (electrons) on a lattice. To
stabilize their bound state one should assume that the pair attraction operates, compensating
the Coulomb repulsion. All molecules are in the ground internal state
with the binding energy being much higher than temperature. The periodic crystal field is
assumed to be large compared with the binding energy, so all molecular states, including con-
tinuum, are built from the single-band single-electron Bloch wave functions.

Because of the translation symmetry the molecular wave function is a two-particle Bloch
function described with the total quasi-momentum K :

Ψi,f (r1, r2) = exp(iK ·R)U i,f
K (R, r) (6.44)

where R = (r1 + r2) /2, r = r1 − r2, and UK(R, r) is periodic with the lattice translations.
At low temperatures only states with small K (near Γ point) are relevant, so one can expand
UK in a series of K :

U i,f
K (R, r) ≃ U i,f

0 (R, r) +K ·Di,f (R, r) (6.45)

with D = limK→0∇KUK. A linear interaction of a molecule with light is described by the
Hamiltonian:

Hint =
−ieE
mν

(∇1 +∇2) (6.46)

where E denotes an electric field. If the frequency is high enough the molecule is excited
or dissociated by light, absorbing one photon to the final state f . The matrix element of the
transition is given by:
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⟨f |Hint|i⟩ =
−ieE ·K
mν

Dif (6.47)

where Dif = 1
3

∫
dRdr

(
U f
0 (R, r)

∗∇R ·Di(R, r)− U i
0(R, r)∇R ·Df (R, r)∗

)
. As usual one

can neglect a field inhomogeneity (photon momentum). From Eq.(6.47) the rate of the optical
absorption is proportional to the kinetic energy of a molecule, and an immobile molecule,
composed from two identical particles cannot absorb, which is a trivial consequence of parity
and spin conservation. The dipole matrix element for the Γ point is equal zero because all
singlet states of a molecule with K = 0 are even and all triplets are odd under the inversion
transformation, R, r → −R,−r, for a lattice with the inversion symmetry. This is similar to the
dipole-forbidden singleelectron transitions in semiconductors. The matrix element, Eq.(6.47),
increases with increasing K. It is now the essence of our argument that the occupancy at
K ̸= 0 is a thermodynamic function, which ’sees’ the Bose condensation and, thus, allows us
to measure the condensation directly via optical absorption. The Fermi-golden rule yields the
optical conductivity:

σ(ν) =
4πe2

3mν
Ek

∑
f

∣∣Dif
∣∣2 δ (ϵf − ϵi − ν) (6.48)

where ϵi,f is the energy spectrum of a single molecule, including its continuous part and

Ek =
∑
K

K2

4m
n(K) (6.49)

is the kinetic energy of all molecules, which obey the Bose-Einstein distribution with the

chemical potential µ, n(K) =
(
exp K2/4m−µ

T
− 1
)−1

. Integrating Eq.(6.48) over the
frequency we obtain the conductivity sum rule for our system:

I(T ) =

∫ ∞

0

dνσ(ν) = πe2a2Ek (6.50)

where

a2 =
4

3m

∑
f

∣∣Dif
∣∣2

ϵf − ϵi
(6.51)

and a is a temperature independent characteristic length of the order of the molecular radius
(a cubic lattice is assumed).

Thus the optical absorption in our ’toy’ model shows a drastic temperature dependence,
being proportional to T 5/2 below the Bose-Einstein condensation temperature Tc = 3.3n2/3/2m
and linear well above Tc, Fig. 6.4 (n is the molecular concentration),

I(T )

I (Tc)
=

τ 5/2

Γ(5/2)ζ(5/2)

(∫ ∞

0

x3/2dx

exp(x− µ)− 1

)
(6.52)

where τ = T/Tc is the reduced temperature and µ = 0 for τ < 1. In the normal state
(τ > 1) the following equation holds for µ :∫ ∞

0

x1/2dx

exp(x− µ)− 1
= τ−3/2Γ(3/2)ζ(3/2) (6.53)

The temperature derivative of the integrated optical conductivity (or absorption), dI(T )/dT
is proportional to the heat capacity of an ideal Bose-gas. The condensed fraction of molecules,
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composed of two identical particles, does not absorb light, if bosons are condensed at the Γ
point of the lattice with the inversion symmetry.

Toy model

Fig.6.4. Temperature dependence of the integrated optical absorption of free bosons com-
posed from two identical particles on a lattice.

To analyse the temperature dependence of the integrated MIR conductivity of bipolarons
we apply the Kubo (1957) sum rule. The real part of the conductivity is

σxx(ν) = π
∑
f

|⟨0|Jx| f

〉
|2 δ (ν − Ef + E0)

Ef − E0

(6.54)

where |0⟩ and |f⟩ are the ground and excited states of the total Hamiltonian, including the
electron-phonon interaction term. The current operator is

J = ie
∑

m,m′,s

(m′ −m)T (m−m′) c†m,scm′,s (6.55)

It satisfies the equation

J = ie[H,X] (6.56)

where X is the sum of the position operators of the electrons:

X =
∑
m,s

mc†m,scm,s (6.57)

Integrating over frequency Eq.(6.54) and using the identity Eq.(6.56) one obtains:∫ ∞

0

σxx(ν)dν =
ieπ

2
⟨0| [X, Jx] |0⟩ (6.58)

which yields after the direct substitution of Eq.(6.55,57)

I(T ) =
πe2a2

2

〈
−
∑

m,m′,s

T (m−m′) c†m,scm′s

〉
(6.59)

where a is the lattice constant. To calculate the kinetic energy of the strongly coupled
electron-phonon system up to the second order in the transfer integral with the accuracy ∼ 1/λ2

one can apply the polaronic S and bipolaronic S2 canonical transformations to Eq.(6.59) with
the following result:
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I(T ) =
πe2a2

2

(
2v(2) (n− ⟨nmnm+a⟩) + 2

〈∑
m,m′

tm,m′b†mbm′

〉)
(6.60)

with v(2) = zv
(2)
m,m+a, z the coordination number (for simplicity we consider cubic or

quadratic lattice and the nearest neighbor hopping) and n the bipolaron atomic density.
The conductivity sum rule, Eq.(6.60), includes optical absorption due to the bipolaron dis-

sociation with and without phonon emission and absorption. It includes also the low-frequency
Drude conductivity of small bipolarons tunneling in the bipolaron narrow band (the half-
bandwidth t = ztm,m′ ≪ ∆) due to their scattering by phonons, impurities and by each other
without their dissociation. If one is interested only in the optical part Iopt (ν ≃ ∆ or higher ) one
should subtract the bipolaronic Drude contribution IDrude from the total absorption intensity:

I(T ) = Iopt (T ) + IDrude (T ) (6.61)

To derive the integrated bipolaronic Drude conductivity, IDrude one can apply the sum rule
to the bipolaronic Hamiltonian, Eq.(6.9), keeping in mind that bipolarons have charge 2e

IDrude (T ) =
4πe2a2

2

〈∑
m,m′

tm,m′b†mbm′

〉
(6.62)

Subtracting Eq.(6.62) from Eq.(6.60) one obtains:

Iopt = πe2a2

[
v(2) (n− ⟨nmnm+a⟩)−

〈∑
m,m′

tm,m′b†mbm′

〉]
(6.63)

Let us consider a low-density regime. As we shall discuss in section 6.7 the ground state of
our system is a homogeneous Bose-liquid, in which the tendency to charge order is suppressed
by quantum fluctuations if n < nc. The critical value of the dencity nc above which the
charge density wave develops turns out to be independent of the repulsion if the latter is
strong v + v(2) ≫ t, where t = zt(a) is the half width of the bipolaronic band. For a cubic
lattice nc ≃ 0.08. If the repulsion between bipolarons has a moderate value v + v(2) < 3t the
homogeneous Bose-liquid is stable versus the charge ordering practically in the whole density
region. In a homogeneous repulsive Bose-liquid the short range pair correlation function g(r) =
⟨n(0)n(r)⟩/n2 is small. As example in liquid He4g(r) < 0.2 for r < 2.5A. The temperature
dependent part of this correlator is even smaller. Thus the contribution to the conductivity
sum rule, Eq.(6.63) of the term quadratic in the bipolaron density is practically temperature
independent and negligible for the homogeneous strongly repulsive Bose-liquid. In the dilute
limit one can also neglect the corrections to the free particle energy spectrum, which are small
while the gas parameter is small. These simplifications yield:

Iopt(T ) = πe2a2
[(
v(2) − t

)
n(T ) +

∫ 2t

0

ϵNb(ϵ)dϵ

y−1 exp(ϵ/T )− 1

]
(6.64)

where Nb(ϵ) is the density of states in a narrow bipolaronic band, and

n(T ) =

∫ 2t

0

Nb(ϵ)dϵ

y−1 exp(ϵ/T )− 1
(6.65)

is the bipolaron atomic density determined by the chemical potential µ, y = exp(µ/T ).
The first term in Eq.(6.64) describes the incoherent absorption of light accompanied by emission
and absorption of many phonons discussed in section 6.4. The second term is due to the coherent
tunneling contribution and is identical to that discussed above within the ’toy’ model. This
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term is responsible for the influence of the superconducting transition on the optical absorption.
In the limit of very high diaracteristic phonon frequencies ω ≫ ∆ phonons can not be emitted
or absorbed in the relevant frequency range. In this limit v(2) = t, as it was shown in section
6.1. If v(2) = t the incoherent contribution to Iopt turns to be zero, and the integrated optical
absorption is just identical to that of the ’toy model’, Eq.(6.52), at least in the low-temperature
region, when the band energy dispersion is practically parabolic. In diis case Iopt (0) = 0. On
the other hand if the phonon frequencies are comparable or leas than the bipolaron binding
energy, v(2) does not contain the polaronic narrowing factor and is larger than t. In this more
realistic case the absorption at T = 0 is finite and the coherent contribution is not very large,
less than 10% of the total intensity.

To describe the temperature dependence of the infrared absorption in a wide temperature
range in the normal state, compared with ∆ one has to take into account the Inermal dissoci-
ation of the bipolaron on two small polarons. Restricting ourselves by
the quasi two-dimensional lattice with the constant density of polaronic and bipolaronic states
within the polaronic and bipolaronic bands Np(ϵ) = 1/2w,Nb(ϵ) = 1/2t respectively, one ob-
tains

Iopt(T )

Iopt(0)
=

2n(T )

ne

+ δc
T 2

T 2
c

∫ 2t/T

0

xdx

y−1 exp(x)− 1
(6.66)

with

δc =
T 2
c

t (v(2) − t)ne

. (6.67)

The parameter δc determines the relative contribution of the coherent motion to the kinetic
energy of the system and because normally v(2) ≫ t > Tc/ne this parameter is small, of the
order of 0.1 or less. Here ne is the electron (hole) atomic density, which is assumed to be
temperature independent. Taking into account the upper polaronic band with the half band-
width w = tm∗∗/m∗ one obtains the following equation for the chemical potential in the normal
state (T > Tc):

ln

(
1− y exp(−2t/T )

1− y

)
+
m∗

m∗∗ ln

(
1 +

√
y exp(−∆/2T )

1 +
√
y exp (−∆/2T − 2tm∗∗/m∗T )

)
=
tne

T
. (6.68)

Fig.6.5. Temperature dependence of the integrated optical absorption of onsite small bipolarons

The ratio of the polaronic m∗ and bipolaronic m∗∗ effective masses is small in the case of
onsite bipolarons. This fact enables us to neglect the polaronic contribu tion to the integrated
optical absorption. The polaronic absorption is shifted to the low-frequency (Drude) region. In
the superconducting phase T < Tc the chemical potential is zero, so y = 1. The temperature
dependence of the integrated intensity
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Iopt(T )

Iopt(0)
= 1− m∗T

2tm∗∗ ln

(
1 +

√
y exp(−∆/2T )

1 +
√
y exp (−∆/2T − 2tm∗∗/m∗T )

)

+δc
T 2

T 2
c

∫ 2t/T

0

xdx

y−1 exp(x)− 1
(6.69)

calculated for three different values of the binding energy ∆/Tc is shown in Fig.6.5. Because
the relative density of states in the polaronic band is small (∼ m∗/m∗∗) the temperature
dependence of the on-site bipolaron concentration is weak except in the case of a very low
binding energy.

It is well known that for frequencies much higher than the superconducting energy gap
no change with temperature in optical absorption is expected within the BCS theory. How-
ever, a rather significant change with temperature of the MIR absorption is expected at the
superconducting transition as a result of the Bose-Einstein condensation of small bipolarons in
bipolaronic superconductors.

5.7.6 6.6 Pseudospin representation of the bipolaronic Hamiltonian

Bipolarons are not perfect bosons. In the subspace of pairs their commutation relations are
those of Pauli matrices. Therefore, the ’pseudospin’ representation of the bipolaronic Hamilto-
nian is convenient (Alexandrov and Ranninger (1981a)). We rewrite the bipolaronic Hamilto-
nian for a perfect lattice in the form

Hb = −µ
∑
m

nm +
∑

m ̸=m′

(
1

2
v̄mm′nmnm′ − tmm′b†mbm′

)
, (6.70)

where the energy of a single localised bipolaron is included in the definition of the bipolaron
chemical potential µ. The bipolaron operators obey the mixed commutation rules in a subspace
of empty or doubly occupied sites (cells)

bmb
†
m + b†mbm = 1 (6.71)

and

bmb
†
m′ − b†m′bm = 0 (6.72)

for m ̸= m′. This makes useful the pseudospin analogy

b†m = Sx
m − iSy

m (6.73)

and

b†mbm =
1

2
− Sz

m (6.74)

with the spin( pseudo )1/2 operators Sx,y,z = 1
2
τ1,2,3. Sz = 1/2 corresponds to an empty

cell and Sz = −1/2 to a cell occupied by a bipolaron. The spin operators preserve the bosonic
character of bipolarons if they are on different cells and their fermionic (or hard core) internal
structure. Replacing bipolarons for the spin operacore we transform the bipolaronic Hamilto-
nian into the familiar anisotropic Heisenberg Hamiltonian

Hb = µ
∑
m

Sz
m +

∑
m ̸=m′

(
1

2
v̄mm′Sz

mS
z
m′ − tmm′ (Sx

mS
x
m′ + Sy

mS
y
m′)

)
(6.75)
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with the bipolaron chemical potential playing the role of an external magnetic field. This
Hamiltonian has been investigated in detail as a relevant form for magnetism and also for
quantum solids like a lattice model for He4. However, while in those cases the magnetic field
is an independent thermodynamic variable, in our case it is fixed by the total ’magnetization’
because the bipolaron density n is conserved

1

N

∑
m

⟨⟨Sz
m⟩⟩ =

1

2
− n (6.76)

That leads to an important difference in the phase diagram and the excitation spectrum.

5.7.7 6.7 Superfluid versus charged ordered ground state

For the ground state one can apply a mean field approach introducing an average magnetic
field Hm acting on a spin m. In the nearest-neighbor approximation

Hm = − (µ+ 2v̄ ⟨Sz
m′⟩) e+ 2t

〈
S⊥
m′

〉
(6.77)

where v̄ = z
2
v̄mm′ , t = ztmm′ ,m′ = m+ a, e is a unit vector in the z-direction, and S⊥

m is a
spin component perpendicular to z. In the absence of the macroscopic current ⟨Sy⟩ = 0 and at
T = 0

⟨Sz
m⟩ =

1

2
cosΘ (6.78)

⟨Sx
m⟩ =

1

2
sinΘ (6.79)

where Θ is the angle between z-axis and spin. The ground state has ⟨Sm⟩ parallel to Hm

and we arrive at the following set of equations for Θ and µ

sinΘ =
t sinΘ′√

(µ+ v̄ cosΘ′)2 + t2 sin2Θ′
(6.80)

cosΘ = − µ+ v̄ cosΘ′√
(µ+ v̄ cosΘ′)2 + t2 sin2Θ′

(6.81)

cosΘ + cosΘ′ = 2(1− 2n) (6.82)

where Θ′ is the angle for the nearest neighbors.
Two solutions to Eq.(6.80-82) are possible. The first one is a ’ferromagnetic’ solution

cosΘ = cosΘ′ = 1− 2n (6.83)

and

µ = −(1− 2n)(v̄ + t) (6.84)

In the ’ferromagnetic’ state bipolarons are distributed uniformly over the lattice willi the
density per site n. The total energy of this state

Ef

N
= − t

4

(
1 + (1− 2n)2

(
1 +

v̄

t

))
(6.85)

The second solution is an ’antiferromagnetic’ one with two sublattices with different Θ and
Θ′,
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cosΘ = 1− 2n+

√
1 + (1− 2n)2 − 2(1− 2n)v̄√

v̄2 − t2
(6.86)

cosΘ′ = 1− 2n−

√
1 + (1− 2n)2 − 2(1− 2n)v̄√

v̄2 − t2
(6.87)

It exists if only v̄ > t and the density is sufficiently high

n > nc =
1

2

(
1−

√
v̄ − t

v̄ + t

)
(6.88)

In the region of its existence the ’antiferromagnetic’ state is a ground state because

Ea = − v̄N
4

< Ef (6.89)

The conclusion is that the bipolarons exist at T = 0 in two states: as a homogeneous
quantum liquid resembling He4 or at high density as a mixture of an inhomogeneous Bose-
Einstein condensate (sinΘ ̸= sinΘ′ ̸= 0) and a charge density wave cosΘ ̸= cosΘ′. At a
very low density the Wigner crystallization of charged bipolarons is feasible because of their
long-range Coulomb repulsion.

5.7.8 6.8 Excitation spectrum of the bipolaronic liquid

One can expect that the excitation spectrum is similar to that of a Heisenberg magnet and
one-particle excitations are ’magnons’. At T = 0 one can write down the equation of the ’spin’
motion

dSm

dt
= Hm × Sm (6.90)

We allow each ’spin’ besides its static component Eq. (6.78, 79) to have a small time and
space dependent part

δS exp(ik ·m− iωt) (6.91)

Irom Eq.(6.90) one obtains

−iωδSx = −tδSy sinΘ′ cotΘ + (t− Ek) δS
′y cosΘ (6.92)

−iωδSy = tδSx sinΘ′ cotΘ− (t− Ek) δS
′x cosΘ

− tδSz sinΘ′ − v̄

t
(t− Ek) δS

′z sinΘ (6.93)

−iωδSz = tδSy sinΘ′ − (t− Ek) δS
′y sinΘ (6.94)

Where Ek =
∑

m′ tmm′ [1− exp (ik · (m−m′))] is the energy dispersion of a single hipu-
laron on a lattice. The condition of the existence of a nontrivial solution yields Hee excitation
spectrum of the ’ferromagnetic’ ground state ω = ϵk :

ϵk =

√
Ek

(
t+ [v̄ − (1− 2n)2(v̄ + t)]

(
1− Ek

t

))
(6.95)



5.7 6 Bipolaronic liquid 125

with k varying in the first Brillouin zone (for intersite bipolarons in a simple lattice it is
half of the original one). In the long-wave limit k → 0 this spectrum is sound-like like as in
He4, Fig.6.6f,

ϵk = sk (6.96)

with the ’sound’ velocity

s = 2a

√
t(v̄ + t)n(1− n)

z
(6.97)

The linear dispersion is, of course, the consequence of the nearest neighbor approximation,
used here. The long-range Coulomb interaction yields the plasma gap in three dimensions and
the square root dispersion in 2D (Chapter 7).

When the density is critical n = nc, the spectrum is given by

ϵk =
√
Ek (2t− Ek) (6.98)

and the critical velocity vc = min
ϵk
k

is zero, Fig 6.6f.

Fig.6.6. The excitation spectrum (solid lines) of BS(f) and M(a) ground states. Dashed line
refers to a single bipolaron, dotted line to $n=n_{c}$.

Above nc the charge density wave develops and the excitation spectrum consists of two
branches

ϵ±k =

√
γ2t2 + Ek (2t− Ek)± γt

√
γ2t2 + 2Ek (2t− Ek) (6,99)

with

γ2 = 2
v̄2 − t2

t2

(
1 + (1− 2n)2 − 2(1− 2n)

v̄√
v̄2 − t2

)
(6.100)

and k varying in a new Brillouin zone, Fig.6.6a. In the long-wave limit
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ϵ+ = tγ
√
2 (6.101)

and

ϵ− ∼ k2 (6.102)

The gap in the spectrum is of order of v̄ if v̄ ≫ t.

5.7.9 6.9 T − n phase diagram of the bipolaronic liquid

At finite temperatures thermal as well as quantum fluctuations are important. It is clear
that under the condition v̄ ≫ t the off-diagonal long range order (ODLRO) (i.e. the Bose-
Einstein condensate) disappears first with increasing temperature at T ∼ t, followed by the
disappearance of the charge ordered state (DLRO) at T ∼ v̄. At temperatures v̄ < T < T ∗∗

an unusual metal of nondegenerate bipolarons exists with an elementary charge 2e. As a result
the T − n phase diagram of a bipolaronic liquid consists of four phases. Two of them are the
low-temperature phases: a bipolaronic superfluid (BS) and a mixed phase (M) with ODLRO,
described above and two high-temperature phases, one of them is an unusual metal (N) and
the other is a charge-ordered state (CO).

Fig.6.7. Mean-field T − n phase diagram of bipolarons, $\bar{v} / t=2$.

In an extreme limit of a very high phonon frequency ω ≫ ∆ the bipolaron liandwidth t and
a short-range component of the repulsion v(2) are of the second under in the polaron bandwidth
w for on-site bipolarons. In this limit the on-site hipolaron Hamiltonian can be mapped on the
negative U Hubbard Hamiltonian if the long-range Coulomb interaction is screened. In a more
realistic case of long-range butica and (or) ω < ∆ no such mapping is possible. Nevertheless in
a qualitative analysis of the phase diagram we can use the finite temperature mean-field (MFA)
anil random phase approximations (RPA), developed for the negative U Hubbard IInmiltonian
by Robaszkiewicz et al (1981).

The MFA phase diagram is shown in Fig.6.7 for v̄ = 2t. Quantum fluctuations (’magnons’),
which can be taken into account with the RPA equation of motion for the ’spin-spin’ correlation
function lead to a significant modification of the critical density nc. Quantum fluctuations
extend the region of the existence of the BS phase, which turns out to be the ground state
(T = 0) even in the limit v̄/t→ ∞ if the density is low,

n < 0.078 (6.103)
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for a simple cubic lattice.

Fig.6.8. Hard-core correction (solid line) to the critical temperature of the ideal Bose gas
(dashed line).
Tc is determined by (Alexandrov et al. (1986))

n

1− 2n
=

1

N

∑
k

[
exp

(1− 2n)Ek

Tc
− 1

]−1

(6.104)

With the density of states in the bipolaronic band

Nb(E) =
1

N

∑
k

δ (E − Ek)

this equation takes the form of the condition for the Bose-Einstein condensation of the ideal
Bose gas if n≪ 1,

n =

∫
dE

Nb(E)

exp (E/Tc)− 1
(6.105)

At higher density a hard core correction appears, Fig.6.8,

Tc ≃
3.31n2/3

m∗∗a2
(
1− 0.54n2/3

)
(6.100)

Tc is independent of the dynamical repulsion of bipolarons v̄. This is an artifact of the
random phase and nearest neighbor approximations.Taking into account the next neighbor
interaction Kubo and Takada (1983) found two new phases of bipolaronic liquid: an incom-
mensurate CO phase and an incommensurate M phase. A detailed study of the charge ordered
bipolaronic states is given by Aubry (1995) in the adiabatic limit ω = 0.

We believe, however, that in real solids the long range Coulomb repulsion of bipolarons is the
only relevant term for low-energy kinetics and thermodynamics. That favors the homogeneous
charged Bose-liquid for all realistic values of the Coulomb interaction and densities. A mapping
of the bipolaronic Hamiltonian on a charged Bose gas is useful in this case.

5.7.10 6.10 Mapping on a charged Bose gas

One can transform the bipolaronic Hamiltonian to a representation containing only Bose
operators am, a†m
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bm =
∞∑
k=0

βka
†k
ma

k+1
m (6.107)

b†m =
∞∑
k=0

βka
†k+1
m akm (6.108)

with

ama
†
m′ − a†m′am = δm,m′ (6.109)

The first few coefficients βk are determined with the substitution of Eq.(6.107,108) into the
commutation rules, Eq.(6.71,72)

β0 = 1, β1 = −1, β2 =
1

2
+

√
3

6
(6.110)

We introduce further the field bipolaron and boson operators

ϕ(r) =
1√
N

∑
m

δ(r−m)bm (6.111)

ψ(r) =
1√
N

∑
m

δ(r−m)am (6.112)

where δ(r−m) is the eigenfunction of the coordinate operator. The transformation for the
field operators takes the form

ϕ(r) =

(
1− ψ†(r)ψ(r)

N
+

(1/2 +
√
3/6)ψ†(r)ψ(r)ψ(r)

N2
+ . . .

)
ψ(r) (6.113)

The bipolaronic Hamiltonian is now

Hb = −
∫
drdr′ψ†(r) [t (r− r′) + µ]ψ (r′) +Hint (6.114)

with

Hint = Hl +Hs (6.115)

where Hl is the dynamic part of the interaction,

Hl =
1

2

∫
drdr′v̄ (r− r′)ψ†(r)ψ† (r′)ψ(r)ψ (r′) (6.116)

Hs describes the kinematic hard-core effect,

Hs =
2

N
t (r− r′)

(
ψ†(r)ψ† (r′)ψ (r′)ψ (r′)

+ψ†(r)ψ†(r)ψ(r)ψ (r′)
)
+H(3) (6.117)

Here
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t (r− r′) =
∑
k

(t− Ek) e
ik·(r−r′) (6.118)

v̄ (r− r′) =
1

N

∑
k

v̄ke
ik·(r−r′) (6.119)

and v̄k =
∑

m′ ̸=m v̄m,m′ exp(ik · m) is the Fourier component of the bipolaron repulsion.
The term H(3) contains powers of the field operators higher than four. The essential physics
of bipolarons is controlled by the two-particle interaction, which includes a short-range kine-
matic part t (r− r′) as well. Because v̄ contains also the short range part v(2) this kinematic
contribution can be included in the definition of v̄. As a result Hb is the Hamiltonian of the
interacting charged bosons tunneling in a band.

5.7.11 6.11 Bipolaron electrodynamics

To describe electrodynamics of bipolarons one can take into account the vector potential
A(r) of the external field with the Peierls substitution (Peierls (1933))

tm,m′ → tm,m′e−i2eA(m)·(m−m′) (6.120)

which is a fair approximation if the magnetic field is weak compared with the atomic field

eHa2 ≪ 1 (6.121)

Here A(r) is a vector potential, which can be also time dependent. This yields in real space

t (r, r′) =
∑
k

(t− Ek+2eA) e
ik·(r−r′) (6.122)

If the condition Eq.(6.121) is satisfied one can expand Ek in the vicinity of k = 0 to obtain

t (r, r′) ≃
(
t+

[∇− 2ieA(r)]2

2m∗∗

)
δ (r− r′) (6,121)

where

1

m∗∗ =
d2Ek

dk2

at k → 0. As a result the Hamiltonian of fermions strongly coupled with any bosonic field
(i.e. phonons) reduces to

Hb = −
∫
drψ†(r)

[
(∇− 2ieA(r))2

2m∗∗ + µ

]
ψ(r)

+
1

2

∫
drdr′v̄ (r− r′)ψ†(r)ψ† (r′)ψ(r)ψ (r′) (6.124)

if three-body and higher order interactions are neglected. The hard core effect is taken into
account by the definition of the repulsion v̄ as described above, and the constant t in Eq.(6.122)
is included in the chemical potential µ. At large distances the bipolaron-bipolaron interaction
is the Coulomb one (v̄ ∼ 1/ϵr in the atomic solids or v̄ ∼ 1/ϵ0r in the ionic compounds).

We have shown in this Chapter that the Fermi-liquid behavior is destroyed by the strong
electron-phonon interaction. The ground state of carriers strongly coupled with phonons in a
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doped band and Mott insulators is the bipolaronic charged Boseliquid. We proposed bipolarons
as a key element for the understanding of the high- Tc phenomenon in metal oxides and doped
fullerenes (Alexandrov and Mott (1994)). The key point for the bipolaronic mechanism of
high- Tc superconductivity is the possibility of the coherent tunneling of (bi)polarons with a
reasonable value of the effective mass. Several authors assert that their bandwidth should not
exceed 10−4−10−5eV, and then the maximal Tc attainable with small bipolarons should be a few
K or less. However, we believe this is an erroneous conclusion based on an incorrect estimate
of the bipolaron mass. For the intermediate value of the coupling constant λ ≃ 1 and the
high-frequency phonons ω ≃ 0.1eV. the polaron binding energy is large (Ep = 0.2−0.6eV) and
the value of the bare electronic bandwidth compatible with the small polaron formation is large
enough being of the order of 1.0 eV. In this case the estimate of the small polaron bandwidth
yields the value of w as large as a few hundred K and the same for Tc. Taking into account the
phonon frequency dispersion in the the perovskite crystal structure one can find the effective
mass of intersite small bipolarons of the order of 10me as discussed in section 6.2. Of course, a
short-range intersite Coulomb repulsion should be below 2Ep to ensure the formation of mobile
intersite bipolarons. That is quite feasible because the highfrequency dielectric constant in
metal oxides is large, normally ϵ ∼ 5 and larger. The low-frequency dielectric constant is
extremely large in oxides. As a result, optical phonons perfectly screen the Coulomb repulsion.
Then the deformation potential as well as molecular vibrations give rise into a net short-range
attraction between small polarons as discussed in Chapter 2.

At low temperatures T < ω/2, T ∗∗ and low frequencies of an external field ν ≪ ω the inter-
nal structure of the bipolaron including its phonon cloud can not be observed. Therefore their
low-temperature and low-frequency kinetics is that of charged bosons. An we have discussed
(Alexandrov and Mott (1994)) the internal symmetry of the hipolaron should be distinguished
from that of the macroscopic off-diagonal order parameter ψ0(r) (see below). While the inter-
nal symmetry depends on the short-range allraction between two polarons and the unit cell
geometry, the ’external’ symmetry of 1/0 is determined by the long-range repulsion between
bipolarons. Also the excitaIon spectrum of the superfluid bipolaronic liquid depends on the
bipolaron-bipolaron mpulsion rather than on the internal bipolaron structure. Therefore, as an
example, (lie nymmetry observed by the Josephson tunneling may be different from that ob-
served with another technique. Low-energy physics of bipolarons can be studied within a sim-
plified charged Bose-gas model. The Coulomb repulsion between bipolarons is significantly
reduced in oxides by the ionic screening and the dimensionlees interaction rs is not large even
for heavy particles.

5.8 7 Charged Bose gas

A charged Coulomb Bose-gas (CBG) is a fundamental reference system in manyparticle
physics with a superfluid phase transition. It has been studied by several authors and recently
became of particular interest motivated by the bipolaron theory of high temperature super-
conductivity. As we have discussed in Chapter 6 the long-wave excitations of the bipolaronic
liquid are those of charged bosons with the Coulomb repulsion between them. Schafroth (1955)
demonstrated that an ideal gas of charged bosons exhibits the Meissner-Ochsenfeld effect (ex-
pulsion of a magnetic field) below the ideal Bose-gas condensation temperature. Later on the
one-particle excitation spectrum at T = 0 was calculated by Foldy (1961), who worked at zero
temperature using the Bogoliubov (1947) approach. The Bogoliubov method leads to the re-
sult that the ground state of the system has a negative correlation energy, whose magnitude
increases with the density of bosons. Perhaps more interesting is the fact that the elementary
excitations of the system have, for small momenta, energies characteristic of plasma oscillations
which pass over smoothly for large momenta to the energies characteristic of single particle ex-
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citations. Further investigations have been carried out at or near Tc, the transition temperature
for the gas. These works has been concerned with the critical exponents (Bishop (1974)) and
the change in the transition temperature from that of the ideal gas (Bishop (1974), Fetter
(1971)). The RPA dielectric response function and screening in CBG have been studied in
the high-density limit (Hore and Frankel (1975, 1976), including a low-dimensional (2D) CBG
(Hines and Frankel (1979), Gold (1991)). In this Chapter we verify superfluid properties of
charged bosons with the Bogoliubov-de Genes type equations derived for CBG by Alexandrov
and Beere (1995) and discuss superconducting as well as normal state CBG kinetics.

5.8.1 7.1 Bogoliubov-de Gennes equations for CBG

The superfluid properties of charged bosons as well as their excitation spectrum and the
response function can be studied by the use of the Bogoliubov-de Genes (BdG) type equations,
fully taking into account the interaction of quasiparticles with the condensate. The Hamilto-
nian for a system of charged bosons on an oppositely charged liar ckround (to ensure charge
neutrality) in an external field is given by

H =

∫
drψ†(r)

[
−(∇− i2eA)2

2m∗∗ + µ

]
ψ(r)

+
1

2

∫
dr

∫
dr′V (r− r′)ψ†(r)ψ(r)ψ† (r′)ψ (r′) (7.1)

For 3D charged bosons the Fourier component of the Coulomb potential V (r) is V (k) =
16πe2/k2ϵ0 with ϵ0 a dielectric constant of the background and bosonic charge 2e. For 2D
system with a three dimensional interaction V (k) = 8πe2/kϵ0. To respect electroneutrality one
takes V (k ≡ 0) = 0.

The equation of motion for the field operator, ψ, is derived using this Hamiltonian,

i
∂

∂t
ψ(r, t) = [H,ψ(r, t)] =

[
−(∇− i2eA)2

2m∗∗ + µ

]
ψ(r, t)

+

∫
dr′V (r− r′)ψ† (r′, t)ψ (r′, t)ψ(r, t) (7.2)

If the interaction is weak one can expect that the occupation numbers of one-particle states
are not very much different from those in the ideal Bose-gas. In particular the state with
zero momentum k = 0 remains to be macroscopically occupied and the corresponding Fourier
component of the field operator ψ(r) has anomalously large matrix element between the ground
states of the system containing N + 1 and N bosons. It is convenient to consider a grand
canonical ansamble, introducing a chemical potential µ. In this case the quantum state is a
superposition of states |N⟩ with slightly different total numbers of bosons. The weight of each
state is a smooth function of N which is practically constant near the average number N̄ on
the scale ±

√
N . Because ψ changes the number of particles only by one its diagonal matrix

element coincides with the off-diagonal, calculated for the states with fixed N = N + 1 and
N = N̄ . Following Bogoliubov (1947) one can separate the large diagonal matrix element ψ0

from ψ by treating the rest ψ as a small fluctuation

ψ(r, t) = ψ0(r, t) + ψ̃(r, t). (7.3)

The anomalous average ψ0(r, t) = ⟨ψ(r, t)⟩ is equal to
√
n0 in a homogeneous system, where

n0 is the condensate density.
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Substituting the Bogoliubov displacement transformation, Eq.(7.3) into the equa tion of
motion and collecting c - number terms of ψ0, and supracondensate boson operators ψ̃ we
obtain a set of the BdG-type equations. The macroscopic condensale wave function, which
plays the role of the order parameter obeys to the following equation

i
∂

∂t
ψ0(r, t) =

[
−(∇− i2eA)2

2m∗∗ + µ

]
ψ0(r, t)

+

∫
dr′V (r− r′)n (r′, t)ψ0(r, t) +

∫
dr′V (r− r′)

×
[〈
ψ̃† (r′, t) ψ̃(r, t)

〉
ψ0 (r

′, t) +
〈
ψ̃ (r′, t) ψ̃(r, t)

〉
ψ∗
0 (r

′, t)
]

(7.4)

Taking explicitly into account the interaction of supracondensate bosons with the con den-
sate and applying the Hartree approximation for the interaction between super
condensate particles we obtain

i
∂

∂t
ψ̃(r, t) =

[
−(∇− i2eA)2

2m∗∗ + µ

]
ψ̃(r, t) +

∫
dr′V (r− r′)n(r, t)ψ̃(r, t)

+

∫
dr′V (r− r′)

[
ψ∗
0 (r

′, t′)ψ0(r, t) +
〈
ψ̃† (r′, t) ψ̃(r, t)

〉]
ψ̃ (r′, t)

+

∫
dr′V (r− r′)

[
ψ0 (r

′, t)ψ0(r, t) +
〈
ψ̃ (r′, t) ψ̃(r, t)

〉]
ψ̃† (r′, t)

+

∫
dr′V (r− r′)

[
ψ̃† (r′, t) ψ̃ (r′, t)−

〈
ψ̃† (r′, t) ψ̃ (r′, t)

〉]
ψ0(r, t)

+

∫
dr′V (r− r′)

[
ψ̃† (r′, t) ψ̃(r, t)−

〈
ψ̃† (r′, t) ψ̃(r, t)

〉]
ψ0 (r

′, t)

+

∫
dr′V (r− r′)

[
ψ̃ (r′, t) ψ̃(r, t)−

〈
ψ̃ (r′, t) ψ̃(r, t)

〉]
ψ∗
0 (r

′, t) (7.5)

Here

n(r, t) = |ψ0(r, t)|2 +
〈
ψ̃†(r, t)ψ̃(r, t)

〉
(7.6)

is the boson density.
In the high density limit rs ≪ 1 for the temperature close to zero the number of bosons ñ
pushed up from the condensate by the repulsion is small. Therefore the contribution of terms
nonlinear in ψ̃ is negligible. Applying a linear Bogoliubov transformation for ψ̃

ψ̃(r, t) =
∑
n

un(r, t)αn + v∗n(r, t)α
†
n (7.7)

where αn and α†
n are bosonic quasiparticle operators for the one-particle quantum state

n, and omitting nonlinear terms we obtain two coupled Schrödinger equations for the wave
functions u(r, t) and v(r, t)

i
∂

∂t
u(r, t) =

[
−(∇− i2eA)2

2m∗∗ + µ

]
u(r, t)

+

∫
dr′V (r− r′)

[
|ψ0 (r

′, t)|2 u(r, t) + ψ∗
0 (r

′, t)ψ0(r, t)u (r
′, t)
]

+

∫
dr′V (r− r′)ψ0 (r

′, t)ψ0(r, t)v (r
′, t) (7.8)
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and

−i ∂
∂t
v(r, t) =

[
−(∇+ i2eA)2

2m∗∗ + µ

]
v(r, t)

+

∫
dr′V (r− r′)

[
|ψ0 (r

′, t)|2 v(r, t) + ψ0 (r
′, t)ψ∗

0(r, t)
]
v (r′, t)

+

∫
dr′V (r− r′)ψ∗

0 (r
′, t)ψ∗

0(r, t)u (r
′, t) (7.9)

There is also the sum rule,∑
n

[un(r, t)u
∗
n (r

′, t)− vn(r, t)v
∗
n (r

′, t)] = δ (r− r′) , (7.10)

which retain the Bose commutation relations for all operators. The set of BdG equadions
(7.4,8-10) plays the same role as the time-dependent Ginzburg-Landau equations for the BCS
superconductors.

5.8.2 7.2 Excitation spectrum and ground state energy of CBG

For the homogeneous case and A = 0 the excitation wave functions are plane waves

uk(r, t) = uke
ik·r−iϵkt (7.11)

and

vk(r, t) = vke
ik·r−iϵkt (7.12)

The condensate wave function is (r, t) independent, ψ0 =
√
n0, so the solution to Eq.(7.4) is

µ = 0 (7.13)

Substitution of Eqs.(7.11-13) into the BdG set yields

ϵkuk =
k2

2m∗∗uk + n0V (k) [uk + vk] (7.14)

− ϵkvk =
k2

2m∗∗vk + n0V (k) [uk + vk] (7.15)

and from Eq.(7.10)

|uk|2 − |vk|2 = 1. (7.16)

As a result we find

u2k =
1

2

(
1 +

ξk
ϵk

)
(7.17)

v2k = −1

2

(
1− ξk

ϵk

)
(7.18)

ukvk = −V (k)n0

2ϵk
(7.19)
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where ξk = k2/2m∗∗ + V (k)n0. The elementary excitation energy is

ϵk =

√
k4

4 (m∗∗)2
+
k2V (k)n0

m∗∗ . (7,20)

With the Fourier component of the Coulomb interaction this makes (Foldy (1961))

ϵk =

√
k4

4 (m∗∗)2
+ ω2

p0 (7,21)

with a gap ωp0 =
√
16πe2n0/ϵ0m∗∗, which is the classical plasma frequency for 4 plasma

of density n0, Fig.7.1a. In a two-dimensional system V (k) = 8πe2/c0k and the Bogoliubov
spectrum is gapless, Fig.7.1b,

ϵk = Es

√
k/qs + k4/q4s (7, µ)

with Es = q2s/2m
∗∗, qs = (32πe2n0/ϵ0)

1/3 a two-dimensional screening wave-number and
n0 is the 2D density. The density of bosons pushed up from the condensate by the Coulomb
repulsion at T = 0 is

ñ =
〈
ψ̃†(r)ψ̃(r)

〉
=
∑
k

v2k (7.23)

which is small compared with the total density n,

ñ

n
≃ 0.2r3/4s ∼ 1 rs =

s

a0

if the latter is high, so rs ≪ 1.

Fig.7.1. Excitation spectrum of a 3D(a) and 2D(b) charged Bose gas at T = 0.
The ground state |0⟩ is a vacuum for the elementary excitations, αk|0⟩ = 0. The ground

state energy E0 is obtained by substitution of Eq.(7.7) into the Hamiltonian and neglecting
higher order terms than quadratic in α,
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E0 ≡ ⟨0|H|0⟩ = 1

2

∑
k

(ϵk − ξk) (7.25)

This can be written per particle in terms of the plasma frequency ωp0

E0

n
=

23/2

31/4π
ωp0r

3/4
s

∫ ∞

0

dkk2
[√

k4 + 1− k2 − 1/2k2
]
≃ −0.23ωp0r

3/4
s (7.26)

The negative value of the ground state energy is due to the oppositely charged background.
That can be shown by a simple estimation. The ground state energy is estimated as the
zero-point energy of supracondensate bosons plus the potential energy arising from statistical
fluctuations of their density. The zero-point energy is calculated as the kinetic energy of a single
supracondensate boson confined to the average volume occupied of each of them (∼ 1/ñ). This
produces an energy per unit volume of

Ek ≃
ñ5/3

2m∗∗ (7.27)

From classical thermodynamics the statistical fluctuation of the number of bosons in a
given volume goes as the square root of the total number of bosons within that volume. No
fluctuations can occur in the oppositely charged background, producing a potential energy
associated with these fluctuations. The fluctuation in the number of particles is δn =

√
n/ñ.

This results in a potential energy per unit volume of

Ep ≃ −4e2(δn)2

ϵ0
ñ1/3ñ = −4e2

ϵ0
nñ1/3 (7.28)

The sum of the potential and kinetic energies

E0 ≃
ñ5/3

2m∗∗ − 4e2

ϵ0
nñ1/3 (7.29)

is then minimised with respect to the supracondensate density, ñ, producing the solution

ñ = 0.72nr3/4s (7.30)

and the ground state energy per particle

E0

n
≃ −0.31ωp0r

3/4
s (7.31)

This estimation of the ground state energy yields the correct exponent of rs and the numer-
ical coefficient is reasonably close to that obtained with the Bogoliubov transformation. The
value of |E0| is considered as a gain in the total energy due to condensation of interacting bosons
with respect to the ground state energy (= 0) of an ideal Bose gas. Therefore |E0| plays the
same role as the condensation energy of the BCS superconductor. The theory of CBG beyond
the lowest order in r

3/4
0 was discussed by Lee and Feenberg (1965) and by Brueckner (1967).

They obtained the next order correction to the ground state energy. Woo and Ma (1967) found
numerically the correction to the Bogoliubov excitation spectrum.

5.8.3 7.3 Linear-response function

The linear response function is defined as

Jm(q, ω) = Kmn(q, ω)an(q, ω) (7.32)
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where J(q, ω) and a(q, ω) are the Fourier transforms of the current and vector potential, re-
spectively. It is important that the vector potential A is defined as an external vector potential.
The internal Coulomb field is explicitly taken into account by the Bogoliubov transformation.
The use of the effective internal field A rather than the external one results in reducible di-
agrams for the polarisation, and thus in the double counting of the Coulomb interaction. To
calculate the response to the leading order of the condensate density, n0, we need only consider
equation Eq.(7.4) with ψ̂ = µ = 0

i
∂

∂t
ψ0(r, t) = −(∇− i2eA)2

2m∗∗ ψ0(r, t)

+

∫
dr′v (r− r′) |ψ∗

0 (r
′, t)|2 ψ0(r, t) (7.33)

Using a perturbed wave function,

ψ0(r, t) =
√
n0 + ϕ(r, t) (7.34)

and keeping only terms linear in A one obtains by the Fourier transformation

νϕ(q, ν) =
q2

2m∗∗ϕ(q, ν) + n0V (q) {ϕ(q, ν) + ϕ∗(−q,−ν)} −
2e
√
n0

2m∗∗ q · a(q, ν) (7.35)

For a real potential a(q, ν) = a∗(−q,−ν) the solution is

ϕ(q, ν) + ϕ∗(−q,−ν) = −
2e
√
n0

m∗∗
ν

ν2 − ϵ2q
q · a(q, ω) (7.36)

ϕ(q, ν)− ϕ∗(−q,−ν) = −
2e
√
n0

m∗∗
2m∗∗

q2
ϵ2q

ν2 − ϵ2q
q · a(q, ω) (7.37)

The expectation value of the current is given by the partial derivative of the Hamiltonian
with respect to the vector potential,

J(r, t) = − ie

m∗∗ [ψ
∗
0(r, t)∇ψ0(r, t)− ψ0(r, t)∇ψ∗

0(r, t)]−
4e2n0

m∗∗ A(r, t) (7.38)

Applying the perturbed wavefunction, we obtain the Fourier transform of the current as,

J(q, ν) =
e
√
n0

m∗∗ q [ϕ(q, ν)− ϕ∗(−q,−ν)]− 4e2n0

m∗∗ a(q, ν) (7.39)

Hence

Kmn(q, ν) =
4e2n0

m∗∗

[
δmn ν2

ϵ2q − ν2
+
(
qmqn − δmnq2

) ϵ2q

q2
(
ϵ2q − ν2

)] (7.40)

This response function has been split into a longitudinal Kl ∼ δmn and transverse K1 ∼
(qmqn − δmnq2) parts.

The longitudinal response to the field (D∥q) is expressed in terms of the so-called external
conductivity σex as

Jl(q, ν) = σex(q, ν)D(q, ν) (7.41)

where D is the external electric field. By the use of Eq.(7.40) we find
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σex(q, ν) =
Kl

iν
=

iϵ0νω
2
p0

4π
(
ν2 − ϵ2q

) (7.42)

The Kubo conductivity sum rule is satisfied∫ ∞

0

dνℜσex(ν) =
πe2n0

2m∗∗ (7.43)

The conductivity in the transverse electromagnetic field (D ⊥ q) is

σt =
i

4πλ2Hν
(7.44)

where

λH =

[
m∗∗

16πe2n0

]1/2
(7.45)

This expression is the same as that for the BCS superconductor. Combined with the Maxwell
equation it describes the Meissner-Ochsenfeld effect in CBG with the London penetration depth
λH . Consequently, a charged Bose gas is a superconductor.

5.8.4 7.4 Collective excitations and screening

The dielectric response function ϵ(q, ν) is defined as

1

ϵ(q, ν)
= 1 +

ρ(q, ν)

ρex(q, ν)
(7.46)

The Fourier component of the boson charge density ρb(q, ν) obeys the continuity equation

qJl(q, ν)− νρb(q, ν) = 0 (7.47)

Combining the Maxwell

iqD(q, ν) = 4π
ρex
ϵ0

(7.48)

and continuity equations we find the total density ρ = ρex + ρb and the dielectric function
of CBG

1

ϵ(q, ν)
= 1− 4π

Kl(q, ν)

ν2
(7,49)

or

ϵ(q, ν) = 1−
ω2
p0

ν2 − q4/4 (m∗∗)2
(7.50)

This expression is the same as derived for an ideal charged Bose gas by Hore and Frankel
(1975).

The zeros of ϵ(q, ν) describe collective excitations of the system. These turn out to be the
same as the Bogoliubov single-particle excitations in agreement with the
general arguments (Pines (1961)). The screening in the condensed CBG goes like ϵ(q, 0) ∼ 1/q4

in the long-wave limit. It produces a screened potential, which goes as

Ṽ (r) ∼
cos
(
qsr/

√
2

r
e−qsr/

√
2 (7.51)
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where qs =
√

2m∗∗ωp0 is the inverse screening length.
For two-dimensional condensed bosons (T = 0) the dielectric response function can easily be
derived in the same way,

ϵ(q, ν) = 1− E2
sq/qs

ν2 − E2
sq

4/q4s
(7.52)

Zeros of ϵ(q, ω) yield the gapless collective branch, which is the same as the Bogoliubov
mode, Eq.(7.22).

There is a direct analogy between excitations of CBG and of the BCS superconductor.
The only difference is that in the former the plasmon mode is identical with the Bogoliubov
quasiparticle, while in the BCS superconductor the collective plasmon mode lies well above the
BCS quasiparticle gap.

5.8.5 7.5 Superconducting kinetics of CBG: 2D heat superconductor

The long-wave excitations are responsible for the kinetic properties of CBG at low temper-
atures differently from normal metals or BSC superconductors where the characteristic wave-
length is of the order of the lattice constant. As we have discussed above the condensate screens
perfectly well the scattering potential. Therefore, in CBG one can expect a strong enhance-
ment of the scattering rate below Tc. For near 2D bosons this leads to an infinite thermal
conductivity (Alexandrov and Mott (1993)).

The elastic scattering of excitations is described by the Hamiltonian:

Hs =
∑
k,k′

v (k,k′)α†
k′αk (7.53)

with

v (k,k′) =
v0 (k− k′) (ukuk′ + vkvk′)

ϵ (k− k′, 0)
(7.54)

a screened scattering potential and the coherence factors uk, vk determined by Eq.(7.1719).
Here v0(q) is the Fourier component of a bare (unscreened) boson -impurity or boson- acoustic
phonon interactions. Because the characteristic excitation energy is of the order of temperature
the boson-acoustic phonon scattering is practically elastic if the temperature is not extremely
low, T > m∗∗s2/2 as we have discussed in section 4.11. The static dielectric function of 2D
charged bosons ϵ(q, 0) depends on q at low temperatures as

ϵ(q, 0) = 1 +

(
qs
q

)3

(7.55)

With the Fermi golden rule and the Boltzmann equation one obtains the elastic transport
relaxation rate for excitations in the usual way:

1/τ(k) = 2π
∑
k′

kx − k′x
kx

v2 (k,k′) δ (ϵk − ϵk′) (7.56)

or

1/τ(k) =
k

π

dk

dϵk

(
u2k + v2k

)2 ∫ π

0

dϕ(1− cos(ϕ))
v20(k

√
2(1− cos(ϕ))

ϵ2(k
√

2(1− cos(ϕ), 0)
(7.57)

For the scattering by acoustic phonons (or by point defects) v0 is independent of q. For
charged impurities v20(q) ∼ 1/q2.
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By the use of the spectrum of low-energy 2D Bogoliubov excitations with k < qs, ϵk =
Es

√
k/qs we obtain for the acoustic phonon

τ sac(k) ∼
(qs
k

)9/2
(7.58)

and

τ sim(k) ∼
(qs
k

)5/2
(7.59)

for the impurity scattering. Both τac and τim are infinite in the long-wave limit k → 0
because of screening and of a large group velocity of the 2D Bogoliubov mode, dϵ/dk, which is
divergent as k−1/2 in this limit. Due to this singularity of the group velocity, which is a common
feature of surface waves, and the due to the screening by the condensate the 2D Bogoliubov
mode is a perfect heat carrier. In fact, the thermal conductivity is infinite. To show this we
write the expression for the heat flow, taking into account that in the superconducting state
both the chemical and the electrical potentials are zero:

Q = −
∑
k

dϵk
dk

ϵk
∂n(k)

∂T
τ s(k)

(
dϵk
dk

∇T
)

(7.60)

where n(k) is the Bose-Einstein distribution function with zero chemical potential and

τ s =
τ sacτ

s
im

τ sac + τ sim
(7.61)

Substitution of Eq.(7.61) into Eq.(7.60) yields the superconducting-state thermal conduc-
tivity:

Ks ∼
1

T 8

∫ Es/T

0

dx
1

x2 sinh2(x) (x4 + η/T 5)
= ∞ (7,62)

where η is a temperature independent constant, proportional to the ratio of the iii purity
and phonon scattering cross-sections. The infinite thermal conductivity it 2D+ ϵCBG is quite
unexpected compared with the usual s-wave BCS supercon ductor, which has exponentially
suppressed thermal conductivity due to a gap the excitation spectrum. Three-dimensional
corrections to the spectrum cancel ii
’infrared’ divergence of Ks. As a result the temperature shape of the thermal conductivity curve
of near 2D bosons below their condensation temperature is controlled by the simultaneous
increase of ’diffusivity’ of the Bogoliubov excitations due to the screening of the scattering
potential as well as due to the long-wave singularity of the group velocity and by the decrease of
the heat capacity, Cb ∼ T 4. This shape is in global qualitative agreement with the experimental
data for high- Tc copper oxides which show the in-plane thermal conductivity enhancement in
the superconducting state.

5.8.6 7.6 BEC of charged bosons in a random potential

Kinetic properties of charged bosons in real solids depend on their localization in a random
potential. The intuitive picture of hard - core bosons filling up all localized single-particle states
and Bose-condensing into the first extended state is known in the literature. To calculate the
density of localised bosons nL(T ) one should take into account the repulsion between them. One
cannot ignore the fact that the localization length ξ generally varies with energy and diverges
at the mobility edge. One would expect that the number of hard - core bosons in a localized
state near the mobility edge diverges in a way similar to the localization length. Therefore,
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it is still not clear how the hard-core bosons form a true (extended) Bose-Einstein condensate
(BEC) in the random field.

However, in the case of CBG the Coulomb repulsion restricts the number of bosons in each
localised state, so that the distribution function will show a mobility edge Ec (Mott (1993)).
The number of bosons in a single potential well is determined by the competition between their
long-range Coulomb repulsion ≃ 4e2/ξ and the binding energy Ec− ϵ. If the localization length
diverges with the critical exponent ν < 1 :

(
ξ ∼ (Ec − ϵ)−ν), one can apply a ’single well-single

particle’ approximation assuming that one can place only one boson in each potential well. In
doped semiconductors the exponent ν depends on the degree of compensation varying from
ν = 0.5 in SiP to ν ≃ 1.0 in amorphous NbSi. In an extreme case of the hydrogen atom the
average clectron-nucleus distance is proportional to the inverse binding energy, i.e. ν = 1.

In two dimensions any random potential yields localised states, independent of its strength.
Here we consider BEC of quasi-two dimensional bosons by the use of the ’single well-single
particle’ approximation (Alexandrov et al (1994)). Within this approximation localized charged
bosons obey the Fermi-Dirac statistics:

nL(T ) =

∫ Ec

−∞

NL(ϵ)dϵ

exp
(
ϵ−µ
T

)
+ 1

(7.63)

where NL(ϵ) is the density of localized states. Near the mobility edge it remains constant
NL(ϵ) ≃ nL

γ
with γ of order of a binding energy in a single random potential well and nL the

total number of localized states per unit cell. We chose the position of the mobility edge as
zero, Ec = 0. Then for n ≥ nL the number of empty localised states turns out to be linear as a
function of temperature in a wide temperature range T < γ, 2t because the chemical potential
is pinned in this temperature region to the mobility edge, µ ≃ Ec = 0 (2t is the bandwidth).
This follows from the conservation
of the total number of bosons n = nb(T ) + nL(T ), which yields for the chemical potential:

T

2t
ln

1

1− y
− nLT

γ
ln
(
1 + y−1

)
= n− nL (7.64)

If T ≪ (γ, 2t), the solution of this equation is y ≃ 1 with an exception of a very narrow
region of concentration n−nL ≪ T/2t, where y decreases to about 0.6. The density of extended
bosons nb depends on y logarithmically,

nb(T ) =
T

2t
ln

(
1− ye−2t/T

1− y

)
(7.65)

Therefore its temperature dependence remains practically linear up to T ≃ γ :

nb(T ) = n− nL + nLbT, (7.66)

with temperature independent b = ln 2/γ.
It turns out that the decrease of the density of extended bosons with the temperature lowering
(up to zero for T = 0 and nL = n) does not prevent the Bose-Einstein condensation. There
is no true Bose condensate in two dimensions. Therefore we introduce a three-dimensional
correction to the free boson energy spectrum as

Ek =
k2∥

2m∗∗ + 2t⊥ (1− cos (k⊥d)) (7.67)

Then the density of the extended states N(ϵ) is given by

N(ϵ) =
1

2tπ
arccos

(
1− ϵ

2t⊥

)
(7.68)
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for 0 < ϵ < 4t⊥ and N(ϵ) = 1/2t for 4t⊥ < ϵ < 2t with t⊥ ≪ t the inter-plane hopping, d
the interplane distance, and m∗∗ ≃ π/ta2 the in-plane effective mass.

The BEC temperature is found by the use of

nb(T ) =

∫ ∞

0

dE
N(E)

exp(E/T )− 1
, (7.69)

which for Tc ≪ 2t can be written as

Tc
2tπ

∫ 4t⊥/Tc

0

dx
arccos (1− xTc/2t⊥)

exp(x)− 1
− Tc

2t
ln

[
1− exp

(
−4t⊥
Tc

)]
= n− nL +

TcnL ln 2

γ

This equation is simplified if Tc ≫ t⊥ :

Tc
2t

ln

[
Tc exp (1− 2nLt ln 2/γ

2t⊥

]
= n− nL (7.71)

Depending on the ’compensation’, n− nl, Tc changes from

Tc =
2t (n− nL)

L
(7.72)

for

n− nL ≫
t⊥ exp

(
2nLt ln 2

γ
− 1
)

t
(7.73)

with

L = ln

(n− nL) texp
(
1− 2nLt ln 2

γ

)
t⊥

 (7.74)

to

Tc ≃ 2t⊥ exp

(
2nLt ln 2

γ
− 1

)
(7.75)

if n = nL.Tc depends on the compensation n− nL practically linearly, Fig.7.2.

Fig.7.2. $T_{c}$ of CBG in a random potential as a function of the compensation n− nL.

In general, statistics of localised bosons is different from both the Fermi and BoseEinstein
statistics. The shallow potential wells can accommodate more than one boson, so the profile of
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the density of states just below the mobility edge is important for the low temperature CBG
kinetics.

Charged bosons like ordinary carriers in doped semiconductors screen the random potential.
The screening radius at T = 0 is given by the value q−1

s =
√

2m∗∗ωpo. Therefore, we would
expect that the Mott criterion for the metal-insulator transition

n
1/3
im aB ≃ 0.26, (7.76)

to be valid with 2nim instead of nim and aB ≃ ϵ0/m
∗∗(2e)2. With ϵ0 ∼ 100 and m∗∗ ∼ 10me

this yields nim ∼ 1022 cm−3.

5.8.7 7.7 BEC of charged bosons in a magnetic field

As noted by Schafroth(1955) an ideal charged Bose-gas in a magnetic field cannot be con-
densed because of the one-dimensional character of particle motion within the
lowest Landau level. However, the interacting charged Bose-gas is condensed in a field lower
than a certain critical value H∗ because the interaction with impurities or between bosons
broadens the Landau levels and thereby eliminates the one-dimensional singularity of the den-
sity of states (Alexandrov (1993)). As we discuss below the critical field of BEC has an unusual
positive curvature near Tc0, H∗(T ) ∼ (Tc − T )3/2. At low impurity concentration it diverges at
T → 0. The localization can drastically change the low-temperature behavior of H∗(T ), so at
high concentration of impurities the re-entry effect to the normal state occurs.
H∗ is determined as the field in which the first nonzero solution of the linearized stationary
equation for the macroscopic condensate wave function ψ0(r) = ⟨N |ψ̂(r, τ) | N + 1⟩, (N →
∞, N/V = n = const ) appears:[

− 1

2m
(∇− 2ieA(r))2 + Uimp(r)

]
ψ0(r) = µψ0(r) (7.77)

where Uimp(r) is the random potentials.
We suppose that the particle-particle interaction is taken into account within the Hartree
approximation and included in the chemical potential, so the main origin of the broadening of
Landau levels lies in the impurity scattering. This definition of H∗ is identical to that of the
upper critical field Hc2 of BCS superconductors. Therefore H∗ determines the upper critical
field of any ’bosonic’ superconductor.

In general the energy spectrum of the Hamiltonian Eq.(7.77) contains discrete levels (lo-
calized states) and a continuous part (delocalised states). The density of delocalised states
Ñ(ϵ,H) ∼ ℑΣ(ϵ) and the lowest delocalised energy Ec (the mobility edge, Ñ (Ec, H) = 0) can
be found with the random phase (’ladder’) approximation for the one-particle self-energy:

Σ(ϵ) =M2

∫
N (ϵ′, H) dϵ′

ϵ− ϵ′ − Σ(ϵ)
(7.78)

where M2 is the squared matrix element for the boson-impurity scattering multiplied by
the impurity density, and

N(ϵ,H) =

√
2 (m∗∗)3/2 ω

4π2
ℜ

∞∑
N=0

1√
ϵ− ω(N + 1/2)

(7.79)

is the density of states for a noninteracting system with ω = 2eH/m∗∗.
The solution of Eq.(7.78) yields for the lowest Landau level (N = 0)
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Ñ0(ϵ,H) =

√
6 (m∗∗)3/2 ω

8π2
√
Γ0

( ϵ̃3
27

+
1

2
+

√
ϵ̃3

27
+

1

4

)1/3

−

(
ϵ̃3

27
+

1

2
−
√
ϵ̃3

27
+

1

4

)1/3
 (7.80)

and

Ec =
ω

2
− 3Γ0

22/3
(7,81)

Here Γ0 = 0.5
(
2M2eH

√
m∗∗/π

)2/3 is the characteristic broadening of the lowest Lan dau
level and ϵ̃ = (ϵ− ω/2)/Γ0.

Because the singularity of the density of states is integrated out for all levels except N = 0,
one can neglect their quantization using the zero field density of states for ϵ > ω,

N(ϵ) ≃ (m∗∗)3/2
√
ϵ√

2π2
(7.82)

The first nontrivial extended solution of Eq.(7.77) appears at µ = Ec. Thus the critical curve
H∗(T ) is determined from the conservation of the number of particles nb under the condition
that the chemical potential coincides with the mobility edge:∫ ∞

Ec

Ñ0 (ϵ,H
∗) dϵ

exp
(
ϵ−Ec

T

)
− 1

= n

[
1− (T/Tc0)

3/2 − nL(T )

n

]
(7.83)

The left-hand side of Eq.(7.83) is the number of bosons on the lowest Landau level, while
the second term of the right - hand side is the number of bosons on all upper Landau levels,
calculated with the classical density of states. Substitution of Eq.(7.80) and Eq.(7.63) into
Eq.(7.83) yields the expression for the critical field of BEC:

H∗(T ) = Hd (Tc0/T )
3/2

[
1− (T/Tc0)

3/2 − TnL

γn
β(T/γ)

]3/2
(7.84)

with

β(x) =
∞∑
k=0

(−1)k

x+ k
(7.85)

and temperature independent Hd = ϕ0/2πξ
2
0 . Here Tc0 ≃ 3.3n2/3/m∗∗ is the BEC tempera-

ture of an ideal Bose gas with the density n. The ’coherence’ length ξ0 is determined by both
the mean free path l = π/M2 (m∗∗)2 and the inter-particle distance as

ξ0 ≃ 0.8(l/n)1/4 (7.86)

Here ϕ0 = π/e is the flux quantum.
Using the asymptotic β(x) ≃ (2x)−1 at temperature T > γ one obtains:

H∗ = Hd

√
1− nL

2n

(
1

τ
−

√
τ

)3/2

(7.87)

where τ ≡ T/Tc is the reduced temperature and

Tc = Tc0

(
1− nL

2n

)2/3
(7.88)
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is the critical temperature of BEC in a random potential for zero magnetic field.
Thus H∗(T ) has the positive ’ 3/2 ’ curvature near Tc. This curvature is a universal feature
of CBG, which does not depend on a particular scattering mechanism and on approximations
made. The number of bosons at the lowest Landau level is proportional to the density of
states near the mobility edge Ñ0 ∼ H/

√
Γ(H), where the ’width’ of the Landau level is also

proportional to the same density of states Γ(H) ∼ H/
√
Γ(H). Hence Γ(H) ∼ H2/3 and the

number of condensed bosons is proportional to H2/3. On the other hand this number in the
vicinity of Tc should
be proportional to Tc − T (the total number minus the number of thermally excited bosons).
That gives the ’ 3/2 ’ law for H∗(T ).

At low temperatures T ≪ γ the temperature dependence of H∗ turns to be different for
different impurity concentration. If 0 < nL < n the critical field diverges at T → 0,

H∗ ≃ Hd (Tco/T )
3/2
(
1− nL

n

)3/2
(7.89)

because the number of localized states is smaller then the number of bosons. In this case only
the paramagnetic limit restricts the value of H∗(0) if bosons are composed from two fermions
with the opposite spins. If nL = n the critical field reaches its maximum at T = 0 :

H∗ ≃ Hd (Tc0 ln 2/γ)
3/2

(
1− π2T

8γ ln 2

)
. (7.90)

And finally, if n < nL < 2n there is a re-entry effect to the normal state at temperature
below some T ∗, so H∗ = 0 for T < T ∗, Fig.7.3.

If the number of localized states is large, nL > 2n Bose condensation is impossible: Tc = 0.
Deriving Eq.(7.84) for H∗ we expand the exponent in the left hand side of Eq.(7.83) and

assume that the scattering amplitude is energy independent. The ultra-low (T ≪ Γ0) tem-
perature behavior of H∗ depends on these assumptions. In this temperature regime one can
expect T−9/2 behavior of H∗ rather than T−3/2. It depends also on the shape of the localised
level distribution NL(ϵ) as we shall discuss in Chap ter 8. However, the gross features like the
divergent behavior at T → 0 and the re-entry effect for the sufficiently large impurity density
(nL > n) are independent of the model and approximation made.

In contrast to the Fermi liquid, in which the long-range Coulomb interaction in screened
and high-energy plasmons are not relevant for the low-frequency kinetic,
allowance for the Coulomb interaction at finite temperatures in CBG is a more complicated
matter because plasmon and one particle excitation are essentially the same in the long-wave
limit. However, the residual interaction between low-energy excitations of CBG is also screened,
if we integrate out the high-energy excitations from the action. Therefore, one can assume that
the mixed state of CBG in an external magnetic field can be described by the equation similar to
that of the Ginsburg-Landau (GL) theory for the BCS superconductors, which is obtained from
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the BdG set if we replace the long-range Coulomb potential for a short-range one v0(r) ≃ vqδ(r)
and neglect fluctuations of the order of ψ̃2 (Alexandrov et al (1987))[

− 1

2m
(∇− 2ieA(r))2 − µ+ v0 |ψ0(r)|2

]
ψ0(r) = 0 (7.91)

This equation is supplemented by the expression for the superfluid current, Eq.(7.38) and
by the Maxwell equation. Recognizing that the chemical potential of a homogeneous system is
µ = nv0, the characteristic lengths in the problem are

λH =

√
m∗∗

16πne2
, (7.92)

which is the field penetration depth and

ξ =
1√

2m∗∗nv0
(7.93)

the GL coherence length. The GL ratio is κ ≡ λH/ξ = m∗∗ (v0/8πe
2)

1/2. Because
(v0/16πe

2)
1/2 is of the order of the screening radius q−1

s the GL ratio is very large

κ ∼ m∗∗c

qs
≫ 1, (7.94)

where c is the light velocity. Therefore CBG is the extreme type -II superconductor. The
lower critical field, in which a first normal vortex appears is given by the canonical Abrikosov
(1957) expression

Hc1(0) ≃
ϕ0 lnκ

4πλ2H
(7.95)

In particular, for T = 0 we estimate

Hc1(0) ≃
4πen

m∗∗ lnκ (7.96)

In order to calculate the thermodynamic critical field Hc, in which the homogeneous su-
perconducting state is in the thermal equilibrium with the normal phase, we assume that the
ground state energy E0 is determined by the interaction energy in both phases. The normal
state is a homogeneous phase, in which bosons are on the lowest Landau level. Allowance for
only the interaction energy in this state is equivalent to neglecting of small diamagnetism. The
kinetic energy of the superconducting phase is small because the supracondensate density is
small. Thus for the normal state we obtain per unit volume

En
0 = n2v0 (7.97)

and

Es
0 =

1

2
n2v0 (7.98)

for the superconducting state. Doubling the energy of the normal state compared with the
superconducting state is explained by the exchange contribution in the normal state, which is
positive, in contrast to the Fermi gas. As a result, the thermodynamic critical field is

Hc(0) ≡
√
8π (En

0 − Es
0) = (4πv0)

1/2 n (7.99)
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One can compare Hc of CBG with that of noninteracting charged bosons, calculated by
Schafroth (1955), H0 = 2πne/m∗∗. Their ratio is

Hc

H0

∼ κ≫ 1 (7.100)

Thus the diamagnetic energy is negligible.

5.8.8 7.8 Normal state kinetics of CBG

Above Tc the boson gas is nondegenerate. Therefore their kinetic properties are those of
the nondegenerate carriers in doped semiconductors and can be studied by solving the Boltz-
mann equation taking into account the scattering by acoustical phonons, by each other and by
unscreened random potential. As a result one obtains the canonical expressions for the Hall
coefficient RH and the resistivity ρ :

RH =
⟨τ 2⟩

2enb(T )⟨τ⟩2
(7.101)

ρ =
m∗∗

4e2nb(T )⟨τ⟩
(7.102)

where ⟨. . .⟩ means an average with energy and the derivative of the Bose-Einstein distribu-
tion function

⟨A(E)⟩ ≡
∫
dEN(E)EA(E)n′(E)∫
dEN(E)En′(E)

(7.103)

for the simplest case of isotropic energy spectrum with the density of states N(E). Here
n′(E) = ∂n(E)/∂E.

The case of quasi-two dimensional bosons is important for high- Tc copper oxides. In the
normal state the characteristic boson momentum is large compared with the inverse screening
length q > qs and therefore the scattering potential is not screened, ϵ(q, 0) = 1. The transport
relaxation rate due to the two-dimensional acoustic phonon scattering is energy independent
and linear in temperature (Section 4.11)

1

τb−ac

= m∗∗CacT (7.104)

where the constant Cac is proportional to the deformation potential.

In case of the classical statistics umklapp scattering can be neglected, so the scattering
between bosons in extended states does not contribute to the resistivity. However, in the
random potential the inelastic scattering of an extended boson by localised bosons makes a
contribution because the momentum is not conserved in two-particle collisions. Therefore the
boson-boson scattering contributes to the transport relaxation rate in disordered solids. In a
’single well-single particle approximation’ the role of the Pauli exclusion principle is played by
the dynamical repulsion between bosons. That is why the boson-boson relaxation rate has the
same temperature dependence as the fermion-fermion scattering. In particular, the relaxation
rate is proportional to the temperature squared because only localized bosons within the energy
shell of the order of T near the mobility edge contribute to the scattering and because the
number of the final states is proportional to temperature,

1

τb−b

=
αe2bnL

m∗∗ T 2 (7.105)
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with α a constant.
As a result one obtains

RH =
1

2e (n− nL + bnLT )
(7.106)

ρ =
[
(m∗∗)2Cac/4e

2
] T + σbT

2

n− nL + bnLT
(7.107)

where σb = αe2bnL/ (m
∗∗)2Cac is the relative boson-boson scattering cross-section. The

density of extended bosons is temperature dependent as discussed in section 7.6, which leads
to the temperature dependent Hall constant and to the linear resistivity. The boson-phonon
scattering is mainly responsible for the linear temperature dependence of ρ at low temperatures
while the boson-boson scattering and the temperature dependent density nb(T ) are responsible
for the linear ρ at higher temperatures. The residual resistivity is taken to be zero. Any
nondegenerate carriers on a two-dimensional lattice have the same temperature and doping
dependencies of their kinetic properties, so decomposition of the boson into two fermions at
high temperatures does not change the temperature dependencies of RH and ρ. As regards the
Hall angle ΘH above Tc the number of carriers increases linearly with T , while the boson-boson
scattering gives the relaxation rate 1/τ ∼ nT , so that ρ ∼ 1/nτ ∼ T and cotΘH ∼ 1/τ ∼ T 2

in full agreement with many experimental observations in highTc copper oxides (Alexandrov
and Mott (1994)). At high temperatures (T ≫ γ) the density of extended bosons eventually
saturates, as measurements of the Hall coefficient in several copper oxides show.

Finally, we calculate the thermal conductivity Kn of 2D bosons in the normal state applying
the standard kinetic theory, developed for metals and semiconductors, by replacing the Fermi
distribution function for the Bose function. As a result one obtains the Wiedemann-Franz law

Kn = LBσT (7.108)

where σ is the normal state conductivity, and

LB =

(
kB
2e

)2
3B0(z)B2(z)− 4B2

1(z)

B2
0(z)

(7.109)

is a bosonic Lorentz number with

Bν(z) =

∫ ∞

0

xνdx

exp(x− z)− 1
(7.110)

Here zT is the chemical potential and kB is the Boltzmann constant. The transport re-
laxation time is assumed to be energy independent. In the classical high-temperature limit,
T ≫ Tc we obtain:

LB = 2

(
kB
2e

)2

(7.111)

The boson Lorentz number, Eq.(7.109), should be compared with the electron one, Le =
π2k2B/3e

2, which does not depend on the scattering mechanism or on the dimensionality for
degenerate carriers. Their ratio is very small mainly due to the double elementary charge of a
boson. It is given by

LB

Le

=
6

4π2
(7.112)
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which is approximately 0.152. Taking this into account one can explain the near equal-
ity of the thermal conductivity of superconducting and insulating crystals of Y BCO in the
temperature range above 100 K (Alexandrov and Mott (1993)).

5.9 8 Evidence for mobile small polarons and bipolarons

5.9.1 8.1 Small versus large polarons

Over the last decades many materials with rather high density of carriers n ≥ 1020 cm−3

and low mobility of the order or even less than the Mott-Ioffe-Regel limit (ea2/ℏ ∼ 1cm2/V s)
were discovered. In our book we have put forward the multipolaron theory of low-mobility
solids, which cannot be understood within the framework of the canonical theory of metals.
This Chapter is intended to discuss several experiments supporting the theory.

There is some confusion in the literature, particularly about the use of the terms ’large’
and ’small’ polarons and bipolarons. Some authors define the ’large polaron’ as a mobile
electron moving together with the self-induced extended polarization in an ionic crystal and
the ’small polaron’ as an immobile object completely localised within a unit cell (site). This
is physically and historically incorrect. It has been known for four decades starting from
pioneering work by Tjablikov (1952) and Holstein (1959) that the small polaron can tunnel
in a narrow band because of the translational symmetry. Now a clear ’borderline’ between
large and small polarons and bipolarons is established with the scaling analysis, Monte-Carlo,
cluster, variational and analytical calculations as we have discussed in Chapters 1,2 and 4. If
one determines a dimensionless coupling constant

λ =
Ep

D
(8.1)

which is essentially the same as the BCS one, large bipolarons can exist in ionic crystals at

λ ≤ 0.5 (8.2)

and small bipolarons exist in all crystals at

λ ≥ 0.5 (8.3)

Here Ep ≡ g2ℏω is the Frank-Condon (or polaronic) shift, D is a bare half-bandwidth and
ω is the characteristic phonon frequency. Therefore, 1/λ characterises the size of a polaron.
The second dimensionless constant g2 = Ep/ℏω, which is the number of
phonons in a cloud around the polaron, determines the small polaron half-bandwidth w

w ∼ D exp
(
−g2

)
(8.4)

This is definitely nonzero and can be as high as several hundred K if high frequency phonons
ω0 ∼ 0.05− 0.1eV are involved in the polaron formation and the bare adiabatic ratio D/ℏω is
not very large: D/ℏω < 10. Moreover, the calculations of the bandwidth beyond the Holstein
model show that the narrowing factor g2 is considerably reduced compared with a naive estimate
(≃ Ep/ω) because of the dispersion. As we have discussed in section 6.2, g2 ∼ 0.2Ep/ω is quite
feasible in copper based oxides.

As stressed by Shluger and Stoneham (1993) much of the single polaron theory is based
on highly idealised models, often essentially a continuum description with a single vibrational
frequency. These models ignore much of the wealth of the experimental data, which find
interpretation in many atomistic simulations. The continuum description leads to the collapse
of large polarons at an intermediate value of the coupling λ ∼ 1. As a result, one can discuss
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large polarons in ionic crystals only if the coupling with phonons is not large. The carrier
density should also be small to avoid the overlap of the extended deformation fields as well
as their screening. We believe that when the density of carriers is about 1021 cm−3 or higher,
so the number of polarons per unit cell is above few percent, large bipolarons cannot survive
because of screening. A simple estimation of the screening length rs yields for the quasi-two
dimensional Fermi gas

rs ≃
ℏ
2

√
ϵ0d

m∗e2
< 4Å (8.5)

with the static dielectric constant ϵ0 ∼ 100,m∗ = 5me and the interplane distance d ∼ 5A.
This estimate remains valid also for three dimensions if the carrier density n ≥ 1021 cm−3.
Therefore any extended lattice distortion and large polarons are ruled out by screening. In this
case the many body effects including superconductivity should be described by the Migdal-
Eliashberg theory, so the superconducting state at λ ≤ 0.5 is the BCS superconductor.

On the other hand small mobile polarons form in the strong coupling regime λ > 0.5 at any
doping. Their hallmarks are

• a low but finite mobility,

• the coherent band motion at temperatures below the characteristic phonon frequency and
the activated mobility above it,

• a mid-infrared maximum of optical conductivity with a descrete multiphonon structure,

• the polaron band narrowing.

Being rather heavy they readily form small bipolarons if a short range attraction due to the
local lattice deformation overcomes the Coulomb repulsion. Because in ionic solids the essential
part of the Coulomb repulsion is screened by optical phonons, the deformation potential and
molecular vibrations can easily bind two small polarons at a short distance. The hallmarks of
small bipolarons are those of small polarons, plus

• superfluid phase transition similar to that of He4,

• spin gap in the magnetic susceptibility, that is χs → 0 at T → 0 if a singlet is the ground
state ,

• electrodynamics of the charged Coulomb Bose gas,

• double elementary charge 2e in the normal state.

However, the absence of some of these properties does not tell us that carriers are not small
(bi)polarons. As an example, proceeding from the absence of the activated mobility in doped
copper oxides and from an estimation of the effective mass based on a Drude-like fit to the
optical conductivity some workers interpret kinetic and optical data for copper oxides in terms
of large polarons with m∗ ≃ 2me or free electrons. However, the value of the effective mass
itself cannot be used to distinguish large and small polarons. In case of small polarons the mass
enhancement is the same as the band narrowing factor, and is generally larger than an increase
of the band mass due to the large polaron formation. However, in both cases the band mass
can be and often is significantly smaller than the free electron mass me as discussed in section
3.5. Therefore, the absolute value of the effective mass does not yield the value of the band
mass renormalisation. Moreover, a low effective mass of the order of 2me might be, in our view,
an artifact of the Drude-like fit to the optical conductivity which definitely fails to describe
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the multiphonon midinfrared maxima. The Drude formula is meaningless if the effective mass
as well as the relaxation rate are frequency dependent. Their frequency dependence is itself
a small polaronic feature. Low field measurements of the London penetration depth in high-
Tc superconductors consistently yield larger m∗ for polarons(≃ 5me) and m∗∗ ≥ 10me for
bipolarons. With a low value of the effective mass (∼ 2me) one fails to explain a low value
of the dc mobility. Also the absence of the activation law in oxides at high temperatures
is compatible with small polarons because the characteristic phonon frequency is very high
(∼ 1000K), of the order of the activation energy, so the activation hopping can not be verified.

Here we present a discriminating selection of kinetic, optical, and photoemission experimen-
tal data, which unequivocally show that carriers in different insulating and superconducting
oxides are small polarons and small bipolarons.

5.9.2 8.2 Small-polaron transport in TiO2 and NiO

The comprehensive investigation of the small polaron transport has been performed in rutile
TiO2 by Bogomolov et al (1967). The small polaron transport mechanism was also proposed
for NiO (Appel (1968), Austin and Mott (1969)). From experimental investigation of the drift
and Hall mobilities, the infrared absorption, the thermoelectric power and comparison with the
small polaron theory one gets quite convincing evidence for the small polaron transport in TiO2.
Figure 8.1 shows the drift and Hall mobilities for lightly reduced rutile above 100K. The small
value of the mobility is the most characteristic feature of TiO2. For conduction perpendicular to
the c axis the drift mobility shows an increase above room temperature with an activation energy
of 0.13 eV. For conduction along the c axis the activation energy is 0.07 eV. The curve of the drift
mobility has a minimum around room temperature, which is characteristic of small polarons
if the activation region of parameters, ω < T ≪ E0 is realised. The Hall depends depends on
temperature, which is also characterister agreement with that in the high temperature region
µH/µd < 1 is in agreement with that expected for
the adiabatic small polaron (Böttger and Bryksin (1985)). Normally, the activated behaviour
of µH sets in at higher temperatures than for µd with a smaller activation energy. Thus the
absence of an activated temperature dependence of µd only indicates that its activation region
is not reached in the experiment. A striking feature in TiO2 is that the Hall mobility is very
small (∼ 1 cm2/V s) above room temperature but rises to large value at temperatures below
about 50K. The drift mobility increases also with the temperature lowering up to the value
about 50 cm2/V s at 30 K , which also with the which, he explanation was given by Austin and
Mott (1969). As we have discussed in Chapter 4 the polaron behaves like a heavy particle in a
narrow band below T ∼ ωD/2, and the relaxation time is determined by phonon and impurity
scattering. The estimated polaron bandwidth is very small in rutile (see below), therefore
single-phonon optical scattering is prohibited and twophonon contribution is frozen out. Thus
a large increase in mobility is predicted at low temperatures, if the impurity scattering is not
too strong.
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Fig.8.1. Hall $\mu_{H}$ and drift µd mobilities in TiO2 as a function of the inverse tempera-
ture.

Semiconducting samples of TiO2 show an absorption peak at ∼ 0.8eV which correlates in
intensity with the magnitude of the conductivity. At temperatures above 50 K a single peak
in the absorption is independent of the nature of the donor centres and attributed to small
free polarons. Below 10K, a single peak is observed at ∼ 1eV, the exact position depending
on the nature of the donor centres, and this is attributed to bound polarons. The frequency
and temperature dependence of the absorption coefficient of TiO2 doped with Nb , measured
by Kudinov et al (1969) agrees well with the MIR conductivity of small polarons (Böttger and
Bryksin (1985)). From the analysis of the optical data the estimated characteristics of the small
polaron are

Ep ≃ 0.4eV;Ea ≃ 0.2eV; g2 = 4. (8.6)

With the value of the transfer integral T (a) ≃ 0.1eV estimated from band structure calcu-
lations one obtains by the use of the non-adiabatic small polaron theory (Chapter 4)

σ(a) = T (a)e−g2 ≃ 2meV, (8.7)

and the effective mass enhancement

m∗

me

≃ 150 (8.8)

The measurements of the line width of ESR on defect centres in TiO2 for different carrier
densities confirmed this estimation of the effective mass (Bogomolov et al (1968)).

As it was discussed by Austin and Mott (1969) nickel oxide is a Mott insulator, which
becomes a p-type semiconductor when doped with lithium or partially reduced. The measured
values of the drift and Hall mobilities are below 1 cm2/V s at room temperature. However,
because ωD/2 is rather high (about 400K) the thermally activated hopping is hardly expected.
Nevertheless, there is some evidence of hopping conduction to the thermally activated polaron
hopping in Li-doped NiO. The estimated value of the polaronic level shift is ∼ 0.7eV, the
polaron radius is 1Å, the bare transfer integral T (a) is estimated at 0.3 eV contrasted with 0.1
eV for TiO2. The polaron transfer integral is σ(a) < 12meV which corresponds to m∗ > 30me.
The study of the polaronic transport in doped nickel oxide is complicated by the magnetic
fluctuations. In NiO, µH shows an anomalous behaviour near the Neel point and the Hall
constant changes sign. It seems certain that the sign reversal is associated with the onset of
magnetic disorder cal absorption measurements are complicated by the state between 1 and 5
eV. An observed NIR absorptions
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Fig.8.2. The absorbance of $\mathrm{WO}_{3-x}$ at low temperatures. Upon cooling poor
metal δ −WO3−x transforms into (bi)polaronic semiconductor ϵ−WO3−x.

5.9.3 8.3 Mobile polarons and bipolarons in WO3−x

Tungsten oxide, WO3−x, studied in detail by a Cambridge group (Salje (1995)) shows prop-
erties of charge carrier transport, which cannot be described by those of free electrons. It is
an almost ideal model compound for studies of polaronic transport because carriers can easily
be generated or destroyed by chemical reactions or doping of WO3 with H,V,Mo or implan-
tation/removal of oxygen. They are not pinned to structural defects in crystals with reduced
oxygen content because point defects are locally compensated. Formation of small polarons is
specific for some structural
phases of WO3−x but not for all. At room temperature and above δ−WO3−x behaves as a poor
metal. Its electronic transport is due to carriers with slightly enhanced mass and the Hall coef-
ficient well in agreement with the predictions of almost free carriers with weak electron-phonon
coupling, i.e. large polarons.

Fig.8.3. The conductivity of $\epsilon-W O_{3-x}$ perpendicular (top) and parallel (bottom)
to the c-axis.
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Fig.8.4. The energy dependence of the ESR photoeffect. ∆R/R is the relative change in ESR
signal generated by illumination through splitting of bipolarons into pairs of small polarons
(T = 20K).

The optical properties are dominated by Drude absorption and a fundamental absorption
edge with Eg = 2.77eV, Fig.8.2. At temperatures close to 250 K , the crystal transforms
on cooling into ϵ −WO3−x, which is insulating with a larger gap Eg = 3.05eV. The Drude
absorption disappears. Instead, the optical absorption spectra display the (bi)polaronic profile,
as shown in Fig.8.2. The experimentally observed profile shows a maximum at 0.71 eV , which
corresponds to Ep ≃ 0.3eV, if
the IR conductivity is due to small polarons. The phonon energy results from the linewidth
(section 4.11) and ω = 0.07eV, i.e. in the expected spectral range of phonon modes of the WO6

octahedra. The dc conductivity of ϵ−WO3−x clearly shows the small (bi)polaron characteristics.
The transport is thermally activated at T ≥ 100K with the activation energy ca.Ep/2 and
tunneling in a (bi)polaronic band appears to occur at lower temperatures, Fig.8.3. When
WO3 is cooled in the dark, no ESR signal is observed in the ϵ-phase. This experimental
result shows that all spins are paired in the ground state. The optical absorption shows a
signal similar to that of polarons but shifted to higher energies about 1 eV. Single polarons
are either generated thermally or, more conveniently, by photoexcitation of bipolarons. The
fingerprint of single polarons is a strong ESR signal under illumination of ϵ−WO3−x with the
spectral dependence shown in Fig.8.4. The maximum efficiency occurs near 1 eV. The close
similarity between the low-temperature absorption spectra and the spectral dependence of the
ESR photoeffect suggests that the optical absorption is due to excitation of bipolarons. As the
transport properties are highly two-dimensional (σab > 100σc), it appears that bipolarons are
confined to the a − b plane, favoring the idea of disc-shaped bipolarons rather than spherical
ones.

5.9.4 8.4 Small polarons in high- Tc oxides

According to Bednorz and Müller (1988) the guiding idea in searching for high- Tc super-
conductivity was influenced by the Jahn-Teller polaron model. Based on the experience from
studies of isolated JT ions in the perovskite insulators, their assumption was that the model
would also apply to the oxides, if they could be turned into conductors. This is possible if
’an electron and a surrounding lattice distortion with a high effective mass can travel through
the lattice as a whole, and a strong electron-phonon coupling exists’. As we have discussed in
’High Temperature Superconductors and Other Superfluids’ (Taylor & Francis (1994)) there
is now a large body of experiments suggesting that small (bi)polarons are responsible for the
phenomenon of high temperature superconductivity. In this section we discuss several recent
observations supporting the same conclusion.
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5.9.5 8.4.1 High- Tc oxides are doped semiconductors

The existence of ’parent’ Mott insulators, which are spin ’ 1/2 ’ antiferromagnets suggest
that high- Tc superconductors are, in fact, doped semiconductors. There is now a growing
consensus that the dopant-induced charge carriers in high Tc oxides exhibit a significant dressing
due to spin and lattice distortion. Studies of strongly correlated models like the Holstein
t − J model show that the critical electron-phonon coupling strength for polaron formation
is considerably reduced by an antiferromagnetic exchange interaction compared to that in the
uncorrelated model (section 5.5).

On the other hand, it has been suggested that optimally doped and overdoped oxides are
metals with a large Fermi surface as follows from ARPES, the T 2 temperature dependence of
resistivity, and from the small value of the Hall constant. However, the progress in elucidating
the normal state of the prototypical cuprate La2−xSrxCuO4 (Batlogg et al (1995), Hwang et al
(1994)) leads us to the conclusion that optimally doped and overdoped copper oxides remain
to be semiconductors. In
particular, semiconductor-like scaling with x of dc conductivity in La2−xSrxCuO4 for a wide
temperature and doping region, Fig.8.5, has been observed.

Fig.8.5. Resistivity of $\mathrm{La}{2-x} \mathrm{Sr}{x} \mathrm{CuO}_{4}$ multiplied
by x covering the wide span of hole concentration from under to overdoping (Batlogg et al
(1995)).

A plot of resistivity ρ multiplied by x brings ρ(T ) for various values of x on a similar scale,
suggesting that the in-plane conductivity is dominated by holes, introduced with Sr, and that
copper electrons remain localized even in overdoped oxides because of the large Hubbard U on
copper and the local lattice deformation, which prevents their hopping.

Sometimes it is argued that unusual features of overdoped high- Tc oxides can be understood
as a result of a strong magnetic pair-breaking if the spin-flip mean free path ls is shorter than
the coherence length ξ0. However high- Tc oxides are at a ’clean’ limit, the mean free path l
is larger than ξ0. This makes the magnetic pair breaking irrelevant for high- Tc because the
strong inequality ls ≪ l is unrealistic; normally ls ≫ l.

5.9.6 8.4.2 Low mobility

A low value of the in-plane mobility in high- Tc copper oxides is now well established. The
Hall coefficient, dc conductivity, and hence the mobility in the CuO 2 planes were reported
by MIT group (Chen et al (1995)) for single crystals of the prototypical cuprate La2CuO4

containing a few holes (∼ 0.2% per mole). In particular, they presented transport measurements
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for current in the CuO 2 planes for two crystals. One of them, La2CuO4+y, referred to as
LCO−1 in Fig.8.6, contained only enough oxygen accet a acce istic of undoped La2CuO4. The
other, La1.998Sr0.002CuO4 labeled as LSCO(295 K), has been reduced after growth to eliminate
all excess oxygen. It contained about the same density of acceptors as LCO − 1 and had
almost the same Néel temperature. The in-plane mobilities are shown in Fig.8.6. Despite the
different magnitudes of the mobilities the temperature dependencies are very similar and the
absolute values are about 1 cm2/V s in the relevant temperature range near the superconducting
transition in doped samples. A low effective mass of the oxygen-induced hole of only ∼ 2me, as
suggested by the Drude-like fit to the optical conductivity requires a surprisingly short scattering
time and the concentration of ionized acceptors ten times larger than expected. Therefore, we
believe that the effective mass of (bi)polarons in LSCO should be enhanced up to 10me or
more and (bi)polarons are small. This
conclusion is confirmed by the observation of an oxygen isotope effect on the Néel temperature
in the insulating La2CuO4 suggesting the oxygen-mass dependence of the superexchange J
(Zhao et al (1994))

Fig.8.6. The in-plane mobilities of LCO − 1 and LSCO(295K) determined from Hall and
conductivity measurements by Chen et al (1995).
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The latter is determined by the bandwidth and because of the small polaron band narrowing
it depends on the phonon spectrum. This clear-cut experiment verified the crucial role of
apex oxygen ions for the bipolaron formation in LSCO in agreement with the first-principles
calculations by Zhang and Catlow (1991), section 2.5. On the other hand, Mott (1995) has
argued, that the polarons will necessarily produce also excited holes, which could be observed
as light carriers.

The Hall mobilities of superconducting poly and single-crystals of L2−xSrxCuO4 were mea-
sured by Hwang et al (1994) over a wide temperature (4 − 500 K) and composition (0 < x <
0.35) range, Fig.8.7. For x ≤ 0.15, the data follows a T 2 fit for T > 100K, with the systematic
trend that the coefficient of the T 2 term increases with doping. This is in line with the bipo-
laron 2D kinetics as discussed in
section 7.8. The mobility value is between 1 cm2/V s and 5 cm2/V s for all measured tem-
peratures and compositions. The Mott-Ioffe-Regel limit for the in-plane CuO2 mobility is
ea2/ℏ ≃ 2.5 cm2/V s(a ≃ 3.8Å). Therefore carriers are small polarons or bipolarons both in
insulating and superconducting crystals of LSCO.

5.9.7 8.4.3 MIR conductivity of high- Tc oxides

Studies of photoinduced carriers in the dielectric ’parent’ compounds like La2CuO4,
Y Ba2Cu3O6 and others demonstrate the formation of self-localised small polarons or
bipolarons (Kim et al. (1988), Taliani et al. (1990)). In these experiments the sample was
pumped by a laser beam and the net change in the absorption coefficient was determined
from the photoinduced change in transmission. New photoinduced phonon modes were found
indicating the formation of a localised structural distortion around a photogenerated carrier.
In addition, a broad peak of photoinduced absorption in the electronic region of frequencies
was observed, indicating the formation of localised electron states deep inside the
semiconducting energy gap. These two aspects of the data confirm the formation of
self-localised polarons and provide direct evidence of the importance of the electron-phonon
interaction in metal oxides.
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Fig.8.8 The photoinduced MIR conductivity in the insulator precursors for $\mathrm{Tl}{2}
\mathrm{Ba}{2} \mathrm{CaCu}{2} \mathrm{O}{8}$ (top), YBa2Cu3O7 (middle), and
La2−xSrxCuO4 (bottom) compared with the polaron MIR conductivity (dashed line) (a); b
: superconducting samples (dashed lines) compared with (a).

Mihailovic et al. (1990) described the spectral shape of the photoconductivity with the
small polaron transport theory. They also argued that the similar spectral shape and systematic
trends in both photoconductivity of optically doped dielectric samples and infrared conductivity
of chemically doped high- Tc oxides indicate that carriers in the concentrated (metallic) regime
retain much of the character of carriers in the dilute (photoexcited) regime. The measured
photoinduced infrared conductivity σ(ν) (solid lines) in the insulating parent compounds is
compared with the small-polaron MIR conductivity (dashed lines) in Fig.8.8a. The infrared
conductivity of the high- Tc superconductors (dashed lines) is compared with the photoinduced
infrared conductivity (solid lines) in respective insulator precursors in Fig.8.8b. One of the
qualitative observations, which follow from comparison of MIR conductivities of insulating
and superconducting materials is that in all perovskite exhibiting superconductivity, the peak
energy shifts toward lower energy as Tc of the material increases. The polaron masses estimated
from the MIR conductivity peak are

m∗

me

= 23(LSCO)

= 13(Y BCO)

= 11 (T l2Ba2CaCu2O8) (8.9)

The critical temperature of the superconducting transition turns out to be inversely propor-
tional to m∗ in full agreement with the bipolaron theory of high- Tc superconductivity. That
implies that the charge carriers in the normal state of high- Tc cuprates are small bipolarons.
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Photon Energy ($\mathrm{cm}ˆ{-1}$)

Fig.8.9. MIR reflectivity R(ν) for BSYCO single crystal at three different temperatures.
It follows from two upper curves of Batlogg’s scaling of resistivity with x, Fig. 8.7 that

the self-trapped (bi)polarons can be trapped by impurities. Falk et al (1993) measured the
temperature dependence of the MIR reflectivity of lightly-doped La2CuO4. They found the
large difference between the optical 0.13 eV and thermal 0.035 eV ionization energy. This
observation as well as the line shape and the temperature dependence of the MIR peak are
consistent with absorption from polaronic impurity states.

Calvani et al (1994, 1995) in a series of papers reported a fine structure of the MIR
conductivity in several copper oxides, as predicted by the numerical calculations of the optical
conductivity of the Holstein clusters (Alexandrov et al (1994b)), Fig.4.6. As an example, the
MIR reflectivity of a single crystal of insulating Bi2Sr2YCu2O8(BSY CO) is shown in Fig. 8.9
for three different temperatures. Therein, a strong infra-red band is observed, with a clear and
T - dependent fine structure, together with the phonon peak at 610 cm−1. Starting from 300K,
the amplitude of the IR band increases by a factor of two for T decreasing to 200K, then it
saturates. For the same temperature variation, the phonon peak at 640 cm−1 increases by less
than 20%. The fine structure has been explained in terms of overtones of additional modes,
which strongly depend on doping and temperature. These modes correspond to vibration of
the locally perturbed lattice and are quite general features, as they appear also in the metallic
phases of several high- Tc oxides. The finding that in the metallic phases of many cuprates
the polaron band in the optical absorption is superimposed on a normal Drude term, implies
that the carriers, responsible for superconductivity could represent either a normal Fermi liquid
coexisting with a substrate of small polarons, or the coherent part of a small-polaron fluid. The
correlation of the position of the MIR peak with the value of Tc favors the second scenario.

5.9.8 8.5 Small bipolarons in high- Tc oxides

We now shall discuss several features of cuprate superconductors which show that their
ground state is similar to a superfluid charged Bose gas, as predicted by the bipolaron theory
of superconductivity.
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5.9.9 8.5.1 λ-point in high- Tc oxides

The specific heat near the transition temperature of the superfluid Bose liquid differs signif-
icantly from that of the superfluid Fermi liquid. Bose liquids (or more precisely He4) show the
characteristic λ-point singularity of their specific heat. Superfluid Fermi liquids (He3 and the
BCS superconductors), on the contrary, exhibit a sharp second order transition accompanied
by a finite jump in the specific heat.

It has been established beyond doubt (Fisher et al. (1988), Loram et al. (1988), Inderhees
et al. (1988), Junod et al. (1989), Schnelle et al. (1990)) that in high Tc superconductors the
anomaly in the specific heat spreads to about |T − Tc| /Tc ∼ 0.1 or larger, Fig.8.10.

The estimations with the canonical gaussian fluctuations yield an unusually small coherence
volume, Table 8.1, comparable with the unit cell volume, Ω ≃ 167Å

3
in Y BCO (Loram et al.

(1992)). That means that the overlap of pairs is small (if any). Moreover it was stressed by
Salamon et al (1990) that the heat capacity anomaly is logarithmic, and consequently, cannot
be adequately treated by gaussian corrections to the mean field BCS heat capacity.

On the other hand one can rescale the absolute value of the specific heat and the temperature
to compare the experimentally determined specific heat of He4 with that of high- Tc oxides
(Alexandrov and Ranninger (1992a)), Fig.8.10. The specific heat per boson in the two high Tc
oxides practically coincides with that of He4 (nb = 1) in the entire region of the λ singularity.
In fact for the 2223 compound the λ shape is experimentally better verified than in He4 itself
because of the fifty times larger value

Table 8.1: The coherence volume Ω in $\dot{A}ˆ{3}$, the in-plane ξab and out- of- plane ξc
coherence lengths derived from a Ginzburg-Landau analysis of the specific heat (Loram et al.
(1992)).

Compound Ω ξ2ab,
(
Å

2
)

ξc, (Å)

Y Ba2Cu3O7 400 125 3.2
Y Ba2Cu3O7−0.025 309 119 2.6
Y Ba2Cu3O7−0.05 250 119 2.1
Y Ba2Cu3O7−0.1 143 119 1.2
Ca0.8Y0.2Sr2T l0.5Pb0.5Cu2O7 84 70 1.2
T l1.8Ba2Ca2.2Cu3O10 40 < 0.9

of the critical temperature. The density of nonlocalised bosons nb (Tc) determined from the
heat capacity fit to He4 is very close to that determined from the Hall measurements:

nb ≃ 1.8× 1021 cm−3 (8.10)

in the optimally doped Y BCO. The specific heat of a single crystal of Y Ba2Cu3O7 was
measured with the magnetic fields up to 8T providing strong evidence for the critical exponents
consistent with those observed in He4 (Overend et al. (1994)).
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Fig.8.10. Heat capacity anomaly in two high- $T_{c}$ oxides compared with He4 (nb = 1),
solid line

and with the BCS curve, dashed line.

5.9.10 8.5.2 Doping dependence of RH , Tc and λH

The two-band bipolaron model discussed in section 6.2 allows us to explain an outstanding
problem of the metal-semiconductor duality of overdoped copper oxides and the doping depen-
dence of the critical temperature and the London penetration depth (Alexandrov (1995)).

It is well known that the effective mass anisotropy of energy ellipsoids in a square (or cubic)
lattice diminishes the value of the Hall constant as in Si or Ge. In the presence of disorder an
’ x ’ -bipolaron can be localized in the y direction tunneling
practically freely along x and a ’ y ’-bipolaron can be localized in the x direction remaining free
along y. That gives a very low metallic-like RH , which presumably is due to bipolarons with the
energy above the Hall mobility edge, E > EcH . At the same time the dc conductivity remains
proportional to the number of bipolarons above the mobility edge, which lies below, Ec < EcH .
To support this conclusion quantitatively one can adopt the effective mass approximation, Fig.
6.2

Ex,y
k =

k2x
2mx,y

+
k2y

2my,x

(8.11)

with mx = 1/t and my = 4mx. The Boltzmann equation in the relaxation time approxima-
tion yields (section 4.11)
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where n′ (En
k) is the derivative of the distribution function. Counting bipolarons (n0), with

the energy above EcH in the numerator and above Ec in the denominator of Eq.(8.12) one
obtains

2eRH =
4mxmyn0

[(mx +my)n0 +myn1]
2 (8.13)

where n0 = x/2 − nL is the number of bipolarons with the energy above EcH , which are
free in both directions; nL is the number of bipolarons localized at least in one direction, and
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n1 is the number of bipolarons localized only in one direction. The number of bipolarons per
cell localized at least in one direction is proportional to the number of random potential wells
with the depth U larger than t′ ∼ 1/my

nL = B

∫ −t′

−∞
exp

(
−U2/γ2

)
dU (8.14)

The coefficient B is determined by the condition that all states of the Brillouin zone should
be localized (nL = 1) if the random potential is very large, γ ≫ t′. The average depth γ
of random wells is proportional to the relative fluctuation of the dopant density, which is the
square root of the mean density x

γ = γ0
√
x. (8.15)

Here γ0 is the characteristic binding energy independent of the dopant density. That yields
B = 2

γ
√
π

and

n0 = x/2 + erf(κ/
√
x)− 1 (8.16)

with κ = t′/γ0. The number of bipolarons, n0+n1, above the mobility edge Ec contributing
to the longitudinal conductivity remains practically equal to the chemical density x/2 in a wide
range of κ which can be verified with Eq.(8.14) replacing t′ for t = 4t′. As a result, the Hall
density nH = 1/2eRH to the chemical density ratio is given by

nH

x/2
=

[5x+ 2 erf(κ/
√
x)− 2]2

16x[x+ 2 erf(κ/
√
x)− 2]

(8.17)

with erf(z) = 2√
π

∫ z

0
exp (−ξ2) dξ. The agreement with the experiment is almost perfect

for κ = 0.57, Fig.8.11. Due to the mass anisotropy the low temperature ’physical’ density nH

remains c.1.6 times larger than the chemical x/2 even for low doping when nL ≪ x/2. The
dc conductivity scales with x in overdoped samples as observed, Fig.8.5. because n0 + n1 ≃
x/2 for all x. On the contrary, the density n0 of carriers extended in both directions falls
rapidly in overdoped samples, Fig.8.11 (inset), due to increasing random potential fluctuations,
proportional to

√
x. The mass anisotropy of the order of 4 can be seen commonly in doped

semiconductors. However the anisotropy increases rapidly in overdoped samples. In fact, we
believe that the large Hall to chemical density ratio, Fig.8.11 is a measure of this anisotropy
and has nothing to do with a large Fermi surface.

Fig.8.11. The ratio of the Hall $n_{H}=1 / 2 e R_{H}$ to chemical x/2 densities in
La2−xSrxCuO4 as a function of doping compared with experiment (Hwang et al (1994)) at
40K. Inset represents the theoretical dependence of the density of extended bosons n0, of Tc
and of the penetration depth (in relative units).
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The critical temperature for the condensation of CBG is proportional and the London
penetration depth squared is inversely proportional to the density n0 of delocalised bosons in
2 + ϵ dimensions. Therefore

Tc ∼ x+ 2 erf(κ/
√
x)− 2

and

λ2H(0) ∼
1

x+ 2 erf(κ/
√
x)− 2

(8.19)

With these equations one can easily explain the doping dependence of Tc(x) in supercon-
ducting oxides as well as the so-called ’Uemura’ plot Tc ∼ 1/λ2H verified experimentally in
underdoped and overdoped samples (Uemura (1995)), Fig.8.11 (insert).

As a result the metallic value of the Hall effect and the semiconducting scaling of dc conduc-
tivity in overdoped high- Tc oxides as well as the doping dependence of the critical temperature
and of the London penetration depth can be explained by taking into account the localization
of bipolarons in a random potential. Then both underdoped and overdoped high- Tc oxides are
doped semiconductors with oxygen bipolarons as carriers partly localized by disorder.

5.9.11 8.5.3 NIR absorption in Y BCO

Another piece of evidence for bipolarons in high - Tc oxides and their Bose-Einstein con-
densation comes from the near infrared (NIR) absorption in the high frequency region (ν ∼
0.5−0.7eV) (Afexandrov et al. (1993)). It is well known that for frequencies much higher than
the superconducting energy gap no change with temperature in optical absorption is expected
within the BCS theory. However, Dewing and Salje (1992) observed the effect of the supercon-
ducting phase transition on the near infrared absorption and reflectivity with the characteristic
frequency ν ≃ 0.7eV in Y Ba2Cu3O7−δ, Fig.8.12. The relative change of the integrated optical
absorption (frequency window 2000 cm−1−10000 cm−1) at the superconducting transition was
as high as 10%.

Temperature (K)

Fig.8.12. The temperature dependence of the NIR absorption near 5000 cm−1 in
Y Ba2Cu3O7.



5.9 8 Evidence for mobile small polarons and bipolarons 163

This observation is in line with the temperature dependence of the optical bipolaronic con-
ductivity, as discussed in section 6.5. The effect of the superconducting phase transition on
NIR absorption is explained by the Bose-Einstein condensation of small bipolarons. Triplet
intersite bipolarons, which are thermally activated, are responsible for the temperature depen-
dence of the NIR conductivity in the normal state. The temperature dependence of the MIR
and NIR reflectance and transmittance of thin Y BCO films was found to be consistent with
the powder absorbance measurements (Yagil et al (1995)). In these regimes the optical energy
is much higher than both temperature and superconducting energy gap, therefore the temper-
ature dependence in the normal and in the superconducting states is anomalous and cannot be
explained within a normal Fermi liquid approach.

5.9.12 8.5.4 Upper critical field of high- Tc oxides

The superconducting transition in a magnetic field for a wide temperature range
starting from mK-level up to Tc has been reported by Mackenzie et al. (1993) in overdoped
T l-based cuprate. Resistively determined Hc2 values from T/Tc = 0.0025 to T/Tc = 1 in a
Tc = 20 K single crystal of Tl2Ba2CuO6+δ follow the temperature dependence that is in good
qualitative agreement with the type of curve for CBG, Fig.7.3 for nL/n ≃ 1.

Fig.8.13. The upper critical field of $\mathrm{Tl}{2} \mathrm{Ba}{2}
\mathrm{CuO}_{6+\delta}$ compared with the critical field H∗(T ) of CBG.

Osofsky et al. (1993) also observed the divergent upward temperature dependence of the up-
per critical fieldHc2(T ) for thin BSCO films, which was 5 times that expected for a conventional
superconductor at the lowest temperature. The observed dependencies of Hc2(T ) are remark-
ably different from that predicted with the canonical Ginzburg-Landau theory, Hc2 ∼ Tc − T .
The unusual temperature dependence of Hc2 of a ’low Tc ’ overdoped Tl2Ba2CuO6+δ can be
quantitatively described by the formula for the BEC critical field, derived in section 7.7 ,

H∗(T ) = constant ×
(

1− 2nL(τ)/x

τ [1− 2nL(1)/x]
−
√
τ

)3/2

(8.20)

Here τ = T/Tc with Tc the experimental critical temperature, x is the chemical polaron
density determined in Tl2Ba2CuO6+δ by the excess oxygen content δ, x = 2δ, and nL(τ) is the
number of localized bipolarons. x/2 − nL should be very small. In fact, at zero temperature
the condition 2nL(0)/x = 1 is satisfied because each bipolaron is localised on the excess oxygen
ion. In the ’single well-single particle’ approximation
the number of localised bipolarons is determined by

nL(τ) =

∫ 0

−∞
dϵ

NL(ϵ)

exp(ϵ/T ) + 1
(8.21)
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where NL(ϵ) is the density of localised states.

T (K)

Fig.8.14. C-axis resistivity of single -crystal Bi2Sr2CaCu2O8 in a magnetic field (A) nor-
malised with respect to the normal state resistivity (B).

The positive curvature of H∗(T ) on the temperature scale of the order of Tc does not depend
on the particular shape of NL(ϵ). However, at mK temperatures shallow potential wells are
important. Therefore the low-temperature behaviour of H∗(T ) is sensitive to the shape of NL(ϵ)
just below the mobility edge. One can model

NL(ϵ) = 0.5nL(0)

[
eϵ/γ

γ
+ δ (ϵ+ E0)

]
(8.22)

to imitate both the discrete levels with the energy E0 and the exponential shallow tail
due to the randomness of the impurity potential. Then one can quantitatively describe the
experimental curve Hc2(T ) with Eq.(8.20) and γ/Tc = 0.13 and E0/Tc = 0.3 for three decades
of temperature, Fig.8.13. This equation was also applied by Osofsky et al (1993, 1994) to
describe Hc2( T) of Bi2Sr2CuOy with an excellent agreement for the critical temperature.

However, in the highest Tc cuprates the in-plane superconducting transition is known to
display pronounced broadening in a magnetic field, with the top of the
transition having a much weaker field dependence than in the region near the bottom. This
together with the high values of Hc2 have made an experimental determination of Hc2 very
difficult in materials with Tc > 60K, with the consequence that widely varying values of Hc2(0)
have been estimated based on different models. The out-of-plane resistive transition shows a
different behaviour in a magnetic field. An increasingly pronounced maximum (peak) developes
below Tc and shifts to lower temperature rather than broadened with increasing field. By the
use of the out-of-plane resistivity of BSCCO-2212 crystals measured in the field up to 15T (H∥c)
Alexandrov et al (1995) proposed a procedure for extrapolating the values of the resistive upper
critical field Hc2(T ) which is independent of the background normal resistance. The typical
out-of-plane resistive transition in a magnetic field up to 15T is shown in Fig.8.14 (H∥c). No
significant c -axis magnetoresistance at temperatures well above the peak is observed. Therefore
RN(T ) is independent of the field and can be represented by a single function obtained by
extrapolating the R(T ) curves from temperatures well above the transition, Fig.8.14A. After
dividing the R(T ) curves taken at different fields by RN(T ), the resultant curves (Fig.8.14B)
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show a nearly parallel shift of the transition, particularly at high fields. Not surprisingly
H∗(T ) obtained for different R/RN values has a similar shape. To determine Hc2(T ) one can
extrapolate H∗(T ) up to R −→ RN . The extrapolated Hc2(T ) is shown in Fig.8.15 as the upper
limit of H∗(T ). The uncertainty in determining Hc2(T ) due to fluctuations as R(T ) approaches
RN(T ) near the top of the transition are represented by different experimental points for the
same temperature. As a result the measured Hc2(T ) does not follow the conventional model,
which predicts a zero or positive curvature very close to Tc and negative at lower temperatures.
Just the opposite behaviour is observed, which we believe is related to a very small coherence
volume in high- Tc oxides as discussed above. The temperature dependence of Hc2(T ) is that
of the CBG critical field (solid line).

Fig.8.15. Resistive upper critical field of high- $T_{c}$ BSCCO - 2212 single crystals.

5.9.13 8.6 Polaronic ARPES in high- Tc oxides and fullerene

Small- polaron features of the energy spectrum and the formation of bipolarons can be
verified by the angle resolved photoemission spectra (ARPES) as discussed in section 4.12. We
believe that the high resolution ARPES (Gofron et al (1994)) shows such features, Fig.8.16.
The extremely flat anisotropic bands have been measured in several copper high- Tc oxides
which display at least an order of magnitude less dispersion than the first-principles band
structure methodology can provide (Fig.8.16b). This flatness is due to the polaron narrowing
of the band, and the anisotropy is due to the remarkable difference of px overlaps in x and
y direction, respectively. If bipolarons are formed the spectral weight is shifted down by half
of the bipolaron binding energy with respect to the chemical potential. This could provide
an explanation why the flat band observed with ARPES in Y Ba2Cu4O8 does not cross the
Fermi level. It lies approximately 20 meV below the chemical potential which means that the
bipolaron binding energy is about ∆ ≃ 40meV in this material.
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Fig.8.16. (a) Ultrahigh energy resolution ARPES in $\mathrm{YBa}{2} \mathrm{Cu}{4}
\mathrm{O}_{8}$ along Γ − Y direction of the Brillouin zone. (b) Corresponding first-
principles computed intensities.

The calculations by Zhang and Catlow (1991) show that the bipolaron binding energy
depends on details of the perovskite crystal structures. As we have discussed in Chapter 2 the
binding energy of small bipolarons is strongly related not only to the size of the pair but also to
the detailed geometry of the site where the polaron is situated and to the dielectric properties
of the matrix. It is not surprising that the bipolaron binding energy is not universal among
different copper oxides.

Doped fullerene MxC60 is an ideal system to observe mobile small polarons and bipolarons
because the bare electron band is narrow (D ∼ 0.2eV) and there are phonon frequencies of the
same order. However, the final answer to the question on the nature of the superconductivity in
these compounds depends not only on the adiabatic ratio ω/D but on the coupling constants
as well. If a relatively weak coupling (λ ≤ 0.5) with low-frequency phonons dominates, the
Migdal-Eliashberg theory can be applied with the BCS ground state. On the other hand, if
the coupling is strong or high-frequency phonons are involved, our bipolaron theory should be
applied. The photoemission spectroscopy of a molecule C−

60(Gunnarsson et al (1995)) allows us
to estimate the relative contribution of different phonon modes to the electron-phonon
interaction (Alexandrov et al (1995b)). The Hamiltonian at hand, describing three degenerate
t1u electron states coupled with phonons, is diagonalised with respect to the coupling with the
Ag2-vibration mode using the canonical Lang-Firsov displacement transformation exp(S) with
the following result

H̃ = −EAg2

p

3∑
m=1

ψ†
mψm +

8∑
ν=1

gνων

3∑
n,m=1

ψ†
nM

ν
nmψm +

8∑
ν

5∑
µ=1

ωνnν,µ (8.23)

where EAg2
p =

(
gAg2

)2
ωAg2 is the polaron shift due to the Ag2 mode, M̂ν is the Hermitian

dimensionless coupling matrix (of order of unity) for the five-fold degenerate Hg modes, and
nν,µ are the phonon occupation numbers for Hg modes.
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Fig.8.17. Polaron theory fit (full line) to the experimental PES (Gunnarsson et al (1995))
(dashed line). Frequencies $\omega=\omega_{\nu}$, coupling constants g = gν , and the
contribution to the ground state energy E = Eν

p for different modes are shown in the inset. For
comparison the variational fit is represented by the coupling constants g[1], (inset) and by the
dotted line.

The spectral function Ipol(ω) of the Hamiltonian is calculated by the numerical diagonalisa-
tion in truncated Hilbert space for the Hg modes and integrated with the Gaussian instrumental
resolution function of width ∼ 41meV as described in section 4.12. Thus one can fit the PES
in a wide energy region as shown in Fig.8.17 with
gν being the fitting parameters. Due to an exact treatment of Ag(2) mode the highenergy part
of PES including the maximum at ca.3000 cm−1 is better represented compared with the vari-
ational analysis by Gunnarsson et al. The coupling with high frequency phonons ων ≥ 0.096eV
dominates in the electron-phonon interaction as one can see in the inset of Fig.8.17, where the
coupling to the Ag(2) high-frequency mode turns out to be most important. This fact as well
as the observation of the phononsided bands in PES by itself suggest that the nonadiabatic
small polaron theory of this book rather than the adiabatic Migdal-Eliashberg approach should
be applied to MxC60.

5.10 Conclusion

In this book we have put forward a multi-polaron theory of low-mobility solids. We believe
that this theory is the only possibility for a description of what happens to the BCS model for
superconductivity, in which

kBTc ≃ ℏω exp(−1/λ) (8.24)

with λ = V N (EF ), if λ becomes greater than unity. Some time ago Noziéres and Schmitt-
Rink (1985) described how the width in real space of the Cooper pairs would decrease and
the binding energy increase with the increasing attraction between electrons and (or) with the
decreasing density. This evolution can be modeled through a Hubbard Hamiltonian with a
negative Hubbard U < 0. But it is not correct to apply such a model to a system of carriers
strongly coupled with phonons or any other bosonic field. As we discussed in our book λ ≥ 1
is the condition for small polaron formation and λ ≥ 0.5 is the condition for small bipolarons.
Therefore at λ ∼ 1 there should be a narrowing of the whole electron band and a nearly
discontinuous increase in the effective mass together with a strong attractive force between the
carriers, now polarons, if

λ > µc (8.25)
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where µc is the bare Coulomb (pseudo)potential. We argue that the basic phenomenon
that allows the high Tc value is that of the polaron narrowing of the band canceling the small
exponential factor in the BCS formula as discussed in section 5.3. Carriers become heavy due
to the phonon cloud surrounding each of them, and heavy particles readily form real-space
bound pairs well above the critical temperature Tc. Therefore the transition to a charged Bose
liquid is firmly predicted.

Is it obvious that λ in high- Tc materials is large enough to form small polarons and λ >
µc ? They are doped Mott insulators. Except for the fact that the undoped materials are
antiferromagnets and of high dielectric constant the nature of the carriers will be similar to
that in Si : B : holes tunneling in a narrow band. The strong correlations will further decrease
the bandwidth and therefore increase the bare N(E) in a rigid lattice - just the condition
for large λ. This conclusion is perfectly confirmed by the numerical calculations within the
Holstein t− J model, as discussed in section 5.5. One can argue that the Coulomb repulsion is
not suppressed in narrow bands because there is no retardation contrary to the wide-band BCS
superconductors. But it is well established for some simple metals that λ > µc even without
retardation and the static dielectric constant ϵ(q, 0) is negative for finite q. Many models with
a pure ’electronic’ mechanism of pairing have been discussed in the literature during the last
decade. To the best of our knowledge none of them has explained how to
overcome the direct Coulomb repulsion by the exchange Coulomb attraction. This is quite
unlikely at the small distance of the order of two lattice constants, which is the characteristic
size of pairs in high- Tc oxides. In contrast, the question does not arise for the electron-phonon
interaction. The Coulomb repulsion in ionic solids is screened by polar optical phonons and
the deformation potential rather easily makes λ > µc.

We take the point of view that the carriers in a doped Mott insulator are small bipolarons
surrounded by the spin and lattice polarised region. Both spin and lattice polarisation con-
tribute to the high effective mass m∗∗ > 10me, but only the latter to the isotope effect. In
general, bosons and unbound electrons (or holes) can coexist, but trapping of bosons in a
random field explains alone the metal-semiconductor duality of overdoped copper oxides.

According to the Fermi liquid (FL) scenario high- Tc superconductors are metals with a
large Fermi surface of copper electrons. Within this scenario the pronounced deviation from the
canonical FL behavior are due to the Fermi surface anisotropy and a large damping. We believe
that the existence of the Mott parent insulators suggests just the opposite scenario according to
which high- Tc superconductors are doped semiconductors with hole carriers bound into small
bipolarons. All thermodynamic and kinetic properties favor this model.

Some direct evidence that these materials contain a charged 2e Bose liquid would be highly
desirable. We have discussed the thermal conductivity; the contribution from the carriers given
by the Wiedemann-Franz ratio depends strongly on the elementary charge as ∼ (e∗)−2 and
should be significantly suppressed in case of e∗ = 2e compared with the Fermi-liquid contribu-
tion. The evidence for e∗ = 2e is strong, but perhaps not entirely convincing because one has to
subtract the much larger phonon contribution to the heat transport. Stronger evidence comes
from the measurements by Dewing and Salje (1992) of the temperature dependent infrared
absorption band, centered at ∼ 0.5 − 0.7eV as discussed in section 8.5.3. The intensities of
absorption and transmission show a pronounced change of the slope of the temperature depen-
dence at T = Tc, which is unusual at frequencies as high as 20 times of an estimated BCS
gap. We have explained this observation assuming that below Tc a macroscopic proportion of
singlets are condensed into the state with zero total momentum and hence with zero dipole
moment. Possibly the most striking evidence for the charged Bose-liquid in high- Tc oxides
comes from the unusual temperature dependence of the upper critical field Hc2 as discussed in
section 8.5.4. The direct experiment could be the classical Aharonov-Bohm interference above
Tc in a mesoscopic oxide with low Tc at low temperatures where the inelastic mean free path is
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large.
In using this model, we have to realise that the insulating properties of a Mott insulator

do not depend on the ordering of the spins; they persist above the Neel temperature, and
arise because the on-site Coulomb repulsion is larger than the polaron bandwidth. From the
observation by Morris and co-workers (Zhao et al (1994)) of the oxygen isotope effect on the
Néel temperature in La2CuO4 we know that the polaron band narrowing takes place also in
the Mott insulators.

The problem of low-mobility conductors became a challenging problem about half a century
ago, when the low mobility was observed in transition-metal oxides. The
explanation was found with polarons. With the discovery of high- Tc superconductors this
problem received renewed attention. We believe that bipolarons are the explanation.
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Part VII

Experiments: Main Articles
6 Application of the polaron-transport theory to σ(ω) in

Tl2Ba2Ca1−xGdxCu2O8,YBa2Cu3O7−8, and
La2−xSrxCuO4 by D. Mihailovic, Foster, Voss, Heeger

Abstract

We analyze the frequency-dependent photoinduced infrared conductivity, σP (ω),
obtained from photoinduced absorption measurements of the insulators
Tl2Ba2Ca0.98Gd0.02Cu2O8,YBa2Cu3O6.3, and La2CuO4 in terms of σPT(ω) calculated
from nonadiabatic polaron-transport theory. The calculated σPT(ω) is in good agreement
with the experimental σP (ω) in the midinfrared. We also compare σP (ω) with the
infrared conductivity, σ(ω), of the high- Tc superconductors Tl2Ba2CaCu2O8,
YBa2Cu3O7, and La1.85Sr0.15CuO4. The similar spectral shape and systematic trends in
both σP (ω) and σ(ω) indicate that the carriers in the concentrated (metallic) regime
retain much of the character of the carriers in the dilute (photoexcited) regime.
Together, these results imply that in the superconducting cuprates and in their "parent"
insulators, the carriers are polarons dressed with a phonon polarization cloud.

6.0.1 I. INTRODUCTION

An extensive body of infrared reflectance data has established that the normal-state
frequency-dependent conductivity σ(ω) of the high-temperature superconductors,
Tl2Ba2CaCu2O8,YBa2Cu3O7, and La1.85Sr0.15CuO4 consists of a narrow,
temperature-dependent, Drude-like peak centered at zero frequency, and a broad,
temperature-independent excitation in the midinfrared, the so-called "mid-ir" feature. 1−5

The systematic appearance of the mid-ir feature in σ(ω) and the direct correlation of its
intensity with doping has been established experimentally for many perovskites (including
Ba1−x PbxBiO3,La2−xSrxNiO4, SrTiO3, and BaTiO3) .

6−9 In the cuprate perovskites, similar
correlations exist between the mid-ir peak and high-temperature superconductivity at
moderate doping levels (less than ≈ 0.5 holes /Cu).1 Further doping into a metallic phase
reduces the intensity of the mid-ir feature 10 as well as Tc.11,12 This close correspondence of
the mid-ir intensity with Tc in cuprate perovskites suggests that the origin of σ(ω) in the
mid-ir warrants further investigation, particularly in relation to the mechanism for
high-temperature superconductivity.

The mid-ir feature in high- Tc superconductors has been interpreted by many groups. In the
case of YBa2Cu3O7−δ, it has been attributed to a direct electronic transition distinct from the
Drude-like free carrier contribution at low frequency, 2 to a contribution from free holes, but
with an ω-dependent scattering rate arising from either a polaron shakeoff of dressed carriers
(which are renormalized by strong interactions with phonons, spin waves, etc.), 2,4 or to an
intrinsic ω dependence of the scattering mechanism. 3,13

In systems which have large electronic bandwidth, carrier transport can be accurately de-
scribed by adiabatic processes in which the crystal lattice is assumed to be
static with respect to carrier motion (i.e., the Drude model, Fermi liquid theory, etc.). In nar-
rower band systems, carrier motion becomes nonadiabatic. When the sound velocity becomes
comparable to the Fermi velocity, as has been shown to be the case in the cuprates, 14 carrier
motion is intimately linked to lattice vibrations. In doped titanates, for example, BaTiO3 and
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SrTiO3, the origin of mid-ir features in σ(ω) and their relationship to transport mechanisms
has been a subject of study for many years. 9,15−20 Both adiabatic and nonadiabatic mecha-
nisms have been proposed for modeling the transport properties. The application of polaron
transport theory (PTT), in which carriers move nonadiabatically with respect to the lattice,
eventually proved successful as a model of carrier transport in these materials. 9,15−20

In nonadiabatic PTT, carriers interact with both optical and acoustic phonons; the acoustic
phonons determine the temperature-dependent contribution to σ(ω) near zero frequency 16 and
the optical phonons give rise to a broad temperature-independent "shakeoff" peak in σ(ω) in the
midinfrared for temperatures T < TD, where TD is the Debye temperature. 15,19,20 In addition
to successfully describing the shape of the mid-ir peak in σ(ω) upon doping, 17,18 the model
also correctly predicted the dc transport properties 16,18 of the doped titanates.

In this paper, we apply PTT as a model of the frequency-dependent transport process
experimentally observed as the mid-ir features in σ(ω) in the high- Tc cuprates, restricting
ourselves to carrier interactions with optical phonons. 15,17 The calculated σPT(ω) is fit to the
photoinduced infrared conductivity, σP (ω), obtained from photoinduced absorption (PIA)
measurements of the insulating precursor materials, 21−24 where the carrier concentration is in
the dilute limit and carrier-carrier interactions are thus assumed to be negligible. These
spectra are compared to the infrared conductivity σ(ω) obtained from Kramers-Kronig
analysis of reflectivity mea-
surements in the doped, metallic (superconducting) materials. The similar spectral shape and
consistent trend toward lower energy of the mid-ir peak in both σp(ω) and σ(ω) indicate that
carriers in the concentrated (metallic) regime retain much of the character of carriers in the
dilute (photoexcited) regime. We conclude that the mid-ir absorption in
Tl2Ba2CaCu2O8,YBa2Cu3O7−δ, and La2CuO4 can be assigned to nonadiabatic polaron (or
possibly bipolaron) transport and suggest that the differences between σP (ω) and σ(ω) can be
attributed to the onset of carrier-carrier interactions in the concentrated regime. Since we
cannot make any experimental distinction between polaron or bipolaron transport, we refer to
the carriers simply as polarons.

6.0.2 II. CALCULATION OF σ(ω) AND COMPARISON WITH EX-
PERIMENTAL RESULTS

The theoretical treatment of polaron transport is based on Holstein’s molecular crystal
Hamiltonian; 25σPT(ω) is calculated 15,16,19 in both the low-temperature ( T → 0 ) and high-
temperature limit ( kBT > ωD/2 ), where ωD is the Debye frequency and kB is Boltzmann’s
constant. The σPT(ω) spectrum reflects the shakeoff of the optical phonon cloud (the localized
distortion) from the polaron as a result of nonadiabatic transport from site to site, with the
peak 19 in the spectrum corresponding approximately to 2Eb, where Eb is the polaron binding
energy. Whereas the original calculation was done by Reik 15,17 in the limit of strong coupling,
[i.e., with (2Eb/kBT ) (a/r)

3 ≫ 1, where kB is Boltzmann’s constant, a is the lattice constant,
and r is the polaron radius], the theory has been extended by Emin 19 to the weak-coupling
regime to include large polarons where the range of the polaron extends beyond one unit cell.

In PTT, the polarons are considered as noninteracting particles 15−20 in the dilute limit. We
can probe the transport of such isolated carriers by measurements of σP (ω), and we can probe
the transport of carriers in the concentrated regime from measurements of σ(ω). However, we
expect departures from the theoretically calculated σPT(ω) in a system with a high density of
carriers exhibiting collective phenomena (e.g., superconductivity), as is the case in the high- Tc
cuprates where σ(ω) is the response of the carriers at a density in the range of 0.1 − 0.5 per
unit cell.

In the PIA technique, σP (ω) is derived from (−∆T/T ) of the insulating precursor com-



174

pounds of the same materials, where T is the transmission, and ∆T is the change in trans-
mission upon photoexcitation with weak laser light ( ∼= 40 mW/cm2 ). In the insulator limit,
where ϵ1 ≫ ϵ2, the photoinduced infrared conductivity σP (ω) is related to −∆T/T by

σP (ω) = (nc/4πd)(−∆T/T )

where n =
√
ϵ1 is the refractive index, d is the absorption length, and c is the speed of light.

The response of the system in the dilute limit, σP (ω), should correspond closely to the idealized
theoretical model. Thus we compare σP (ω) with the predictions of PTT. We fit σPT(ω)
to the mid-ir σP (ω) in Tl2Ba2Ca0.98Gd0.02Cu2O8, 23YBa2Cu3O6.3,

22 and La2CuO4.
21 This ap-

proach is justified because of the observation of infrared active vibrational features in the PIA
(which imply the existence of localized lattice distortions) and because the experimentally
determined effective masses in the cuprates 21−24 (see Table I) are similar to the titanates (
3 < m∗/me < 30 ) (Refs. 9 and 26) and thus suggest polaron formation.

The frequency-dependent conductivity σPT(ω, T → 0) in the low-temperature limit is given
by 15,17

σPT(ω, T → 0)

=

√
2πt2e2N

ℏ3ω2
0

e−η
(ω0

ω

)(ω/ω0+2/3)

e(ω/ω0)ηω/ω0 (1)

where η is the number of phonons in the polaron polarization cloud, ω0 is an averaged
phonon frequency, t is the electronic resonance overlap integral, ℏ is Planck’s constant, and N
is the number density of carriers of charge e; η and ω0 are parameters describing the electron-
phonon interaction and are related to the electron-phonon coupling constant αj(q) through the
relations
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)
ωj(q) (3)

with the sum over the wave vector q of the j th optical phonon branch. The characteristic
frequency ω0 represents an averaged phonon frequency involved in the carrier hopping, weighted
by the electron-phonon interaction αj(q). If the phonon dispersion is not too large, formula
(3) can be approximated by the more familiar form, 17

η ≈
∑
j,q

2αj(q) sin
2

(
1

2
q

)
(4)

which represents a weighted average of αj(q) over the Brillouin zone. The two parameters
η and ω0 essentially determine the shape of the spectrum, and the prefactor is a constant
proportional to the square of t.

The dashed curves in Fig. 1 show the calculated σPT(ω) [Eq. (1)] using the parameters η
and ω0 listed in Table I. The fits to σP (ω) for Tl2Ba2CaCu2O8 and YBa2Cu3O7−δ [Figs. 1(a)
and 1(b)] are excellent over the entire frequency range. The value of ω0 = 200 cm−1 is

consistent with calculated values of αj(q) obtained recently from a linearized-augmented-
plane-wave calculation 27 for YBa2Cu3O7−δ as well as with experimental evidence for strong
coupling of the low-frequency modes from infrared spectroscopy. 28 In addition to the polaron
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TABLE I. Effective masses and parameters describing the electron-phonon interaction.

m∗/me η ω0 ( cm
−1)

La2−xSrxCuO4 23 10 450
YBa2Cu3O7 13 7 200
Tl2Ba2CaCu2O8 11 5.6 200

shakeoff, we observe structure from photoinduced localized phonon modes in all three systems;
for Tl2Ba2CaCu2O8 and YBa2Cu3O7−δ, they 21−24 distort the low-frequency edge of the peak
in σP (ω). These vibrational modes are not described by Eqs. (1)-(3) (which are valid only
above ω > ωD/2 ) and will therefore be discussed elsewhere. In La2CuO4, the fit is good
for ω > 3000 cm−1. The deviations at lower frequency possibly arise from the fact that the
La2CuO4 PIA experiments 21 were carried out before highest quality materials were available.

In agreement with polaron theory, the values of η and ω0 obtained from the theoretical fits
for the three systems scale with the polaron effective masses obtained from the PIA data 24 (see
Table I) reflecting a trend in αj(q). In addition, as η and ω0 (and the effective mass) decrease,
Tc of the system increases. We have previously shown 24 that Tc is inversely proportional to m∗

for the cuprates. This behavior is consistent with theories of bipolaronic super-
conductivity which predict kBTc ∼= ℏ2n2/3m∗ (Ref. 29), where n is the number of bipolarons

of effective mass m∗.
In Fig. 2, we compare the frequency-dependent conductivity σ(ω), obtained from reflec-

tivity measurements of Tl2Ba2CaCu2O8 thin films 4 (Tc = 100 K) ,YBa2Cu3O7 single crystals
5 (Tc = 90 K), and La2−xSrxCuO4 ceramic samples 30 (Tc = 35 K), with the photoinduced in-
frared conductivity σP (ω). The similar spectral shape and the consistent trend of the mid-ir
peak toward lower energy in both σP (ω) and σ(ω) indicate that carriers in the concentrated
(metallic) regime retain much of the character of carriers in the dilute (photoexcited) regime.

6.0.3 III. DISCUSSION

A number of qualitative observations follow from the comparison of σ(ω) and σP (ω) :
(i) In all perovskites exhibiting superconductivity, the peak energy in both σ(ω) and σP (ω)
shifts toward lower energy as Tc of the material increases; from ∼= 1.2eV (12000 cm−1) in
Ba1−x PbxBiO3( Refs. 6 and 31) to ≃ 0.5eV (4000 cm−1) in La2−xSrxCuO4 (Refs. 1, 21,
and 30) to 0.13eV (1300 cm−1) in YBa2Cu3O7( Refs. 1-3, 5, and 22) and to 0.09eV (950 cm−1)
in Tl2Ba2CaCu2O8 (Refs. 4 and
23) (see Table II).
(ii) The concurrent shift in energy of both σ(ω) and σP (ω) from system to system implies that
both are intrinsic features of the frequency-dependent conductivity and that the origin of the
mid-ir feature is the same in both the dilute and concentrated limits.
(iii) The primary difference between σP (ω) (the dilute limit) and σ(ω) (the concentrated limit)
is the broadening of the mid-ir peak which we expect to occur as the carrier concentration
increases to a level at which the exclusion principle and polaron-polaron interactions become
important.

The differences between the experimental spectra obtained in the concentrated and the
dilute limits (Fig. 2) imply that polaron-transport theory ceases to provide an accurate de-
scription of σ(ω) in the concentrated limit and emphasizes the need for generalization of the
PTT to the concentrated regime appropriate to the metallic phases of the high- Tc cuprates.

In a given cuprate system, the energy of the mid-ir peak shifts only slightly to higher energy
with increased carrier concentration. However, the intensity of the mid-ir peak significantly
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FIG. 1. The photoinduced infrared conductivity $\sigma_{P
(\omega)$ (solid lines) in the insulator precursors for Tl2Ba2CaCu2O8 (top), YBa2Cu3O7

(middle), and La2−xSrxCuO3 (bottom) compared with fits to polaron-transport theory σPT(ω)
as calculated using Eq. (1) (dashed lines).}

increases until the maximum Tc is reached at approximately 0.12 − 0.25 holes /Cu.1,11,30 A
similar dependence of σ(ω) and Tc with doping concentration is seen in the titanates and
bismuthates. 6,8,9 Recent data on La2−xSrxCuO4 show that upon further doping into the metallic
region (x > 0.2), Tc decreases 10,12 concurrent with a reduction of the intensity of the mid-ir
feature. Table II compares the energy ( ≈ 2Eb ) of the mid-ir peak and Tc for some cuprate,
titanate, and bismuthate superconductors.

In the present analysis, we have not explicitly considered the effect of spin-wave "shakeoff"
resulting from coupling of carriers to spin excitations (rather than phonons) as a source of
σ(ω) in the mid-ir. The similarity of the line shapes of the σ(ω) spectra and the two-magnon
spectra observed in Raman scattering of Tl2Ba2CaCu2O8,

32YBa2Cu3O7−δ,
33 and La2CuO4

(Ref. 34) suggest that spin-polaron shakeoff might provide a contribution. A strong spin-
lattice interaction has recently been suggested by the temperature dependence of the two-
magnon relaxation 35 via coupling to the lattice as inferred from Raman scattering experiments.
However, since the electron-phonon interaction arises from the spatial dependence of the transfer
integral t, it is expected to be larger than the spin-phonon interaction which originates in the
spatial dependence of d ∼= t2/4U , where d is the magnetic coupling and U is the on-site Coulomb
interaction strength. 36 Thus, any contribution to σ(ω) arising from magnon shakeoff should
be significantly weaker

than the direct contribution to σ(ω) arising from electron-phonon coupling.
We have not discussed in detail the low-frequency, temperature-dependent part of the σ(ω)
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FIG. 2. The infrared conductivity σ(ω) (dashed lines) for $\mathrm{Tl
{2} \mathrm{Ba}{2} \mathrm{CaCu}{2} \mathrm{O}{8}$ (top), YBa2Cu3O7 (middle),
and La2−xSrxCuO4 (bottom) compared with the photoinduced infrared conductivity σP (ω)

(solid lines) in their respective insulator precursors.}

spectra, 1−5 which has been attributed to free carriers scattering in the weak-coupling limit
of a quasimetallic system. In the context of polaron transport theory, these free carriers are
dressed polarons with dc transport lifetime (and mean free path) limited by acoustic mode
scattering for kBT < ℏωD and by a combination of acoustic and optical-mode scattering at
higher temperatures.

6.0.4 IV. CONCLUSION

We conclude that the photoinduced infrared conductivity of dilute carriers photoinjected
into Tl2Ba2CaCu2O8,YBa2Cu3O7−δ, and La2CuO4 is well described by nonadiabatic polaron
hopping (polarontransport theory). The similar spectral shape and systematic trends in both
σP (ω) and σ(ω) indicate that carriers in the concentrated (metallic) regime retain much of the
character of carriers in the dilute (photoexcited) regime implying that the charge carriers in
the normal state of high- Tc cuprates are polarons or bipolarons. This is in a general sense
consistent with the evidence of ferroelectric distortions (doping-induced distortions correlated
from cell to cell) in the high Tc cuprates. 37 Furthermore, the absence of a shift 2,4 in the mid-ir
feature in σ(ω) at the superconducting transition suggests that if bipolaronic superconductivity
is present in the cuprates, bipolarons are formed above Tc.

1 For a review, see T. Timusk and D. B. Tanner, in Physical Properties of High Temperature
Superconductors I, edited by Donald M. Ginsberg (World Scientific, Singapore, 1989), p.
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Tc( K) Mid-ir peak (eV)
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La2CuO4 34 0.5
YBa2Cu3O7 93 0.13
Tl2Ba2CaCu2O8 110 0.09
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