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Аннотация

В настоящей работе исследуются эффекты волновой оптики в гравитационном линзировании

для некоторых простых моделей бинарных гравитационных линз. В приближении геометрической

оптики результаты линзирования могут быть предсказаны на основе теории особенностей лагран-

жевых отображений. Для изучение эффектов волновой оптики вычисляется фактор усиления гра-

витационной линзы, который определяется сильно осциллирующим двукратным интегралом по

вещественным переменным с подынтегральной функцией, содержащей комплексную флуктуирую-

щую фазу. Согласно теории Пикара-Лефшица, такой интеграл эквивалентен сумме интегралов по

специальным многообразиям в комплексном пространстве, так называемым наперсткам Лефшица,

каждый из которых имеет фиксированный комплексный фазовый множитель. В работе фактор

усиления для бинарных гравитационных линз был получен с использованием численного интегри-

рования по наперсткам Лефшеца. Были построены графики интенсивности при разных значениях

параметров моделей рассматриваемых гравитационных линз.

Abstract

In the present work, we investigate the effects of wave optics in gravitational lensing for some simple

models binary gravitational lenses. In the geometrical optics approximation, lensing results can be

predicted based on the theory of Lagrangian maps. To study the effects of wave optics, the amplification

factor of the gravitational lens is calculated, which is determined by an oscillating double integral over

real variables with an integrand, containing a complex fluctuating phase. According to the Picard-

Lefshitz theory, such an integral is equivalent to the sum of integrals over special manifolds in a complex

space, the so-called Lefshitz thimbles, each of which has a fixed complex phase factor. In this work,

the amplification factor for binary gravitational lenses was evaluated using numerical integration over

Lefschetz thimbles. For considered models of gravitational lenses intensity plots were obtained with

different values of parameters.
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Введение

Метод гравитационного линзирования позволяет получить информацию о гравирующих объектах

по картине искажения лучей света в их гравитационном поле. С помощью гравитационного линзирова-

ния можно измерять гравитационный потенциал вне зависимости от того, какое вещество его создает. В

частности, в результате анализа искажения образов удаленных галактик вследствие гравитационного

линзирования был сделан вывод о существовании темной материи.

В 1936 г. А. Эйнштейн сделал оценку линзирующего действия звезды при отклонении света в

ее гравитационном поле и пришел к выводу, что "нет никакой надежды наблюдать это явление.

напрямую"[6]. Тем не менее, первая гравитационная линза была открыта 1979 году Уолшем, Карр-

свеллом и Вейманом [13]. С тех пор теория гравитационного линзирования стала быстро развиваться.

В своем расчете Эйншейн рассматривал звезду как точечную массу. В настоящее время существу-

ют разные модели гравитационных линз. Рассматривается гравитационное линзирование не только

отдельными звездами, но и галактиками и скоплениями галактик. При этом модель линзы выбирается

в соответствии с наблюдательными данными [15].

Для конкретной модели линзы результаты линзирования могут быть предсказаны на основе теории

лагранжевых особенностей, развитой в работах В.И. Арнольда [2]. Можно предсказать число и вид

изображений линзируемого объекта.

С другой стороны, анализируя данные астрономических наблюдений, можно делать выводы о рас-

пределении линзирующей материи и ее массе. При интерпретации результатов гравитационного линзи-

рования можно пользоваться геометрической оптикой, что соответствует пределу бесконечной часто-

ты. Однако, приближение геометрической оптики не работает вблизи сингулярности отображения линз

(каустики), где это приближение дает бесконечную яркость для точечного источника. Эту проблему

можно обойти, применяя волновую оптику.

При расчете интенсивности излучения в задачах гравитационного линзирования, а также в других

задачах волновой оптики и квантовой механики, приходиться иметь дело с интегралами от быстро

осциллирующих функций. Согласно теории Пикара-Лефшица интеграл по вещественным переменным

с подынтегральной функцией, содержащей комплексную флуктуирующую фазу, эквивалентен сум-

ме интегралов по специальным многообразиям в комплексном пространстве (”наперстки Лефшица”),

каждый из которых имеет фиксированный комплексный фазовый множитель [1].

Интерес к теории Пикара-Лефшеца возрос после статьи Е. Виттена [14] о новом подходе к вычис-

лению интеграла по путям в квантовой механике. Обсуждаются, например, приложения этой теории к

вычислению лоренцевых континуальных интегралов в задачах квантовой теории поля [5] и квантовой

космологии [7].

В данной работе метод Пикара-Лефшеца используется в приложении к задаче гравитационного

линзирования. Для того чтобы найти фактор усиления гравитационной линзы, вычисляется силь-

но осциллирующий двукратный интеграл типа интеграла Френеля-Киргхофа [4]. Рассматриваются

несколько моделей гравитационных линз. Для каждой модели численно находятся наперстки Лефше-

ца, после чего вычисляется фактор усиления и строятся распределения интенсивности, возникшие в

результате гравитационного линзирования.

Бакалаврская работа во многом опирается на статьи Дж. Фельбрюгге и Н. Турока с соавторами

[10], [7], идея которых публиковалась достаточно давно в [3]. Также большое влияние на работу оказа-

ла статья T. Накамуры и др. [12]. Предмет изучался также по [20], [19], были рассмотрены некоторые

экспериментальные статьи, такие как [11], [8]. Была сделана попытка дополнить недавнее исследование

этих авторов, посвященное линзированию в бинарных системах [9], а также развить, разработанные

ими вычислительные методы [см. https://p-lpi.github.io/glwo.html]. Их программный код, предо-

ставленный на сайте [см. https://p-lpi.github.io/], лег в основу кода, численно моделирующего
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дифракционных картин линзирования в представленной бакалаврской работе. Физическая теория, ис-

пользуемая в работе, обсуждается, например, в [18], [17], математическая - в книге Арнольда В. И. и

др. [1].

Перед бакалаврской работой были поставлены цели:

1. Изучить явление гравитационного линзирования. Познакомиться с последними исследованиями

эффектов волновой оптики в гравитационном линзировании;

2. Изучить простейшие модели гравитационных линз, такие как одиночная и одиночная со сдвиго-

вым потенциалом точечные линзы;

3. Познакомиться с теорией особенностей дифференцируемых отображений и ее применением в

задачах гравитационного линзирования;

4. Используя теорию Пикара-Лефшица, научиться приближенно вычислять многократные интегра-

лы от сильно осциллирующих функций; Научиться вычислять дифракционный интеграл Френеля-

Кирхгофа, используя интегрирование по “наперсткам Лефшица”, и и строить графики интенсив-

ности в зависимости от конфигурации системы;

5. Описать одну новую бинарную линзирующую систему и исследовать ее свойства.
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1 Физические и математические основы

Общая теория относительности предсказывает отклонение лучей света в поле гравитирующих объ-

ектов, а следовательно, и существование гравитационных линз. С одной стороны, теория гравитаци-

онного линзирования аналогична теории распространения света в веществе, показатель преломления

которого может зависеть от координат и от частоты. С другой стороны, для описания среды, показа-

тель преломления которой меняется в пространстве, можно ввести метрический тензор и использовать

риманову геометрию.

В этой главе соберем необходимые физические и математические основы, которые будут приме-

няться далее в вопросах линзирования.

1.1 Волновое уравнение в искривленном пространстве-времени

Первая конструкция, которую мы рассмотрим, в виду ее фундаментальности и простоты - это

конструкция волнового уравнения. Именно она поможет нам строить волновую теорию в следующей

главе.

Волновое уравнение

Задачи оптики и гравитационного линзирования формулируются для электромагнитного поля. Мы

для просторы будем рассматривать безмассовое скалярное поле, на примере которого можно проде-

монстрировать основные идеи и методы. Действие безмассового скалярного поля в пространстве с

метрикой gµν имеет вид

S = −
∫

d4x
√−g

[

1

2
gβν∂βφ∂φν + V(φ),

]

(1.1)

Варьируя по полю φ, найдем уравнение движения

∂

∂xα

∂L
∂φ,α

− ∂L
∂φ

=
(√−ggαβφ,β

)

,α
+
∂V

∂φ

√−g = 0. (1.2)

Определив оператор Лапласа-Бельтрами

4LB = ∇α∇α =
1√−g

∂

∂xα

(√−ggαβ ∂

∂xβ

)

, (1.3)

перепишем уравнение (1.2) в явно ковариантном виде,

4LBφ+
∂V(φ)

∂φ
= 0. (1.4)

В случае нулевого потенциала получаем волновое уравнение:

4LBφ(x) = 0. (1.5)

Метрика Шварцшильда

Типичный пример искривленной метрики- это сферически симметричная метрика Шварцшильда,

которая описывает искривленное пространство вне объекта массы M , например, черной дыры . Она

имеет вид

ds2 = −
(

1 − rg
r

)

dt2 +
(

1 − rg
r

)−1

dr2 + r2dΩ2, (1.6)

в сферических координатах dΩ2 =
(

dθ2 + sin2 θdϕ2
)

, rg = 2GM
c2 − это так называемый радиус Шварц-

шильда, или гравитационный радиус, M− масса, создающая гравитационное поле, G− гравитационная

постоянная, c− скорость света. Здесь и далее используется сигнатура метрики (− + ++).

Введем гравитационный потенциал U(r), тогда −g00 ≡ 1 − 2U(r). На больших расстояниях от тела

потенциал U равен своему ньютоновскому значению. Для точечной массы U(r) = −GM/ |r − rM |.
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Рассмотрим малые возмущения метрики Минковского линзирующим объектом, то есть U(r) � 1.

Тогда метрика имеет вид

ds2 = −(1 + 2U)dt2 + (1 − 2U)dr2. (1.7)

Будем решать волновое уравнение (1.8) для метрики (1.7) с точностью до первого порядка по U(r).

Волновое уравнение в терминах фактора усиления амплитуды

Рассмотрим монохроматическую волну частоты ω. Волновое уравнение для амплитуды волны φ(~r, t) =

φ̃(~r)e−iωt, имеет вид:
(

∇2 + ω2
)

φ̃ = 4ω2Uφ̃ (1.8)

Для задач гравитационного линзирования, удобно записать его в терминах фактора усиления волны

F (~r) = φ̃(~r)/φ̃0(r), где φ̃0(r) = Aeiωr/r есть волна, распространяющаяся без линзирующего объекта.

Для фктора усиления волновое уравнение примет вид:

∂2F

∂r2
+ 2iω

∂F

∂r
+

1

r2
∇2

θF = 4ω2UF.

Здесь ∇2
θ = ∂2/∂θ2 + θ−1∂/∂θ + θ−2∂2/∂ϕ2. - это угловая часть оператора Лапласа в сферических

координатах.

Действительно, в уравнении
(

∇2 + ω2
)

φ̃ = 4ω2Uφ̃ запишем лапласиан явно, а также домножим для

получения фактора усиления, волновое уравнение получим в виде:
[

∂2

∂r2
+

2

r

∂

∂r
+

1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

r2 sin2 θ

∂2

∂ϕ2
+ ω2

]

(

Fφ̃0

)

= 4ω2UFφ̃0

Сгруппируем, введем оператор ∇2
θ и упростим, считая углы малыми, получим:

[

∂2

∂r2
+

2

r

∂

∂r
+ ω2 +

1

r2
∇2

θ

]

(

Fφ̃0

)

= 4ω2UFφ̃0

Осталось лишь посчитать производные, помня явный вид φ̃0(r) = Aeiωr/r:

∂φ̃0
∂r

= iωr−1eiωr − r−2eiωr = φ̃0(iω − r−1)

∂2φ̃0
∂r2

= −ω2r−1eiωr − 2iωr−2eiωr + 2r2eiωr = φ̃0(−ω2 − 2iωr−1 + 2r−2)

∂

∂r

(

Fφ̃0

)

= φ̃0

(

F (iω − r−2) +
∂F

∂r

)

∂2

∂r2

(

Fφ̃0

)

= φ̃0
∂2F

∂r2
+ 2

∂F

∂r

∂φ̃0
∂r

+ F
∂2φ̃0
∂r2

=

= φ̃0

(

F (−ω2 − 2iωr−1 + 2r−2) + 2
∂F

∂r
(iω − r−1) +

∂2F

∂r2

)

После подстановки этих производных в уравнение выше, многие слагаемые сокращаются и полу-

чаем уравнение
∂2F

∂r2
+ 2iω

∂F

∂r
+

1

r2
∇2

θF = 4ω2UF (1.9)

Именно это уравнение далее и будет решаться в линзировании.

1.2 Элементы особенностей дифференцируемых отображений

Типичный анализ гравитационного линзирования приходит к тому, что появляется некоторый ос-

циллирующий интеграл, зависящий от нескольких параметров, график которого представляет неко-

торую каустику. Теория каустик и их классификация крайне важны для понимания происходящего,

однако останавливаться на них возможности нет, поэтому при случае далее просто нужное отображе-

ние будем называть, не вдаваясь в классификацию. Для анализа каустик имеются некоторые методы,

на которых остановимся в этой главе.
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Отображение Лагранжа и интенсивность света после линзирования

Простейшее аналитическое исследование свойств потенциала может быть проведено с помощью так

называемого отображения Лагранжа. Отображение Лагранжа ξ : X → M переводит координатного

пространства x ∈ X = R
N в точки пространства параметра β ∈M согласно уравнению на критические

точки

∇xφ(x;β)|β=ξ(x) = 0.

То есть по сути за счет приравнивания к нулю градиента фазы, мы и находим нужную зависимость

параметров от координат. Так как в нашем случае ∇xφ(x;β) = 2(x− β) + ∇ϕ(x), то

β = ξ(x) = x+
1

2
∇ϕ(x)

Отображение Лагранжа ξ определяет оптические лучи, давая чисто геометрическое описание лин-

зирования. Получается, что каждая точка x отображается в точку β в пространстве наблюдаемых

параметров.

В общем случае, точка β ∈ M может быть получена из нескольких точек x ∈ X, такие области

в β называются n-точечными областями. В многоточечных областях интенсивность больше, чем в

малоточечных за счет вкладов каждого путя, ведь на нем вычисляется гауссов интеграл и в итоге

получается нормированная интенсивность:

I(β;∞) =
∑

x∈ξ−1(β)

2

|λ1(x)| . . . |λN (x)|

где ξ−1 это прообраз изображения при отображении Лагранжа и λ1, . . . , λN это собственные значения

деформационного тензора:

Mij(x) =
∂2φ(x;β)

∂xi∂xj
= 2

∂ξi(x)

∂xj
,

вычисленного в соответствующих критических точках x = (x1, x2, . . . , xN ). Также для обратной вели-

чины этого тензора в этой работе используется обозначение γ.

Ниже мы изучим эти многоточечные области в деталях, при конечных ν, где происходят интер-

ференционные картины. На границах между областями с разными числом изображений как минимум

одно из собственных значений λi должно обнулиться. Таким образом, мы видим бесконечный пик на

графике, изображающим нормированную интенсивность, из таких пиков и формируется каустика.

По сути отображение Лагранжа ξ формирует каустику на координатах xc ∈ X, в которых дефор-

мационный тензор сингулярен, так как в них определитель обнуляется. В то же время пространство

параметров системы X не наблюдается. В пространстве наблюдаемых параметров M , каустика на xc

появляется в точке βc = ξ (xc).

Для одномерной линзы каустики появляются в изолированных точках, однако в случае более вы-

сокой размерности определитель тензора деформации обращается в нуль на многообразии Xc = {x ∈
X‖M(x) = 0}, которое отображается в каустическое множество Mc = ξ (Xc) в пространстве парамет-

ров. Правда, в общем случае Mc, как правило, не является многообразием, поскольку оно включа-

ет каустики более высокого порядка, например, “cusp” и “ласточкин хвост”, в которых многообразие

недифференцируемо и, следовательно, Mc не является локально гомеоморфным евклидову простран-

ству. Именно в таких точках линзирующий интеграл демонстрирует наиболее интересное поведение.

Пример: определение особенностей для “elliptic umbilic D−
4 ”

На широко известном примере отображения “elliptic umbilic D−
4 ” безотносительно линзирования,

продемонстрируем методы анализа каустик, изложенных выше. Аналогичный метод был применен
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в третьей главе в каждом из примеров для получения соответствующих результатов. Рассмотрим

интеграл вида

Ψ(β; ν) =
ν

π

∫

R2

ei(x
3
1−3x1x

2
2−β3(x2

1+x2
2)−β2x2−β1x1)νdx1dx2

Аналитическое продолжение экспоненты iφ(x;β)ν имеет четыре седловые точки x̄i, заданные кор-

нями двух квадратных уравнений

3x21 − 3x22 − 2β3x1 − β1 = 0

−6x1x2 − 2β3x2 − β2 = 0

В зависимости от β две или четыре седловые точки являются реальными. Комплекснозначные седло-

вые точки всегда находятся в сопряженных парах, так как φ(x;β) является вещественным значением

для реального x. Решая эти уравнения для β1 и β2 мы получаем лагранжево отображение как функцию

β3,

ξβ3
(x1, x2) =

(

3x21 − 3x22 − 2x1β3,−2x2 (3x1 + β3) , β3
)

.

В геометрическом пределе мы формируем поверхность fold и три линии cusp. Поверхность fold в базовое

пространство X = R
2 задается

AX
2 (β3) =

{(

β3
3

cos θ,
β3
3

sin θ

)

|θ ∈ [0, 2π)

}

,

который представляет собой цилиндр с радиусом β3

3 , удовлетворяющий уравнению |M| = 0, в котором

тензор деформации имеет вид

M =

[

∂2φ(x;β)

∂xi∂xj

]

i,j=1,2

=

(

6x1 − 2β3 −6x2

−6x2 −6x1 − 2β3

)

Три линии cusp являются прямыми линиями и лежат на поверхности fold,

AX
3 (β3) =

{(

β3
3
, 0

)

,

(

β3
3

cos
2π

3
,
β3
3

sin
2π

3

)

,

(

β3
3

cos
4π

3
,
β3
3

sin
4π

3

)}

в пространстве X.

В пространстве M после отображения ξβ3
эллиптическая точка пуповины расположена в начале

координат. Поверхность fold задается

A2 =

{(

β2
3

3

(

∓2 cos θ + cos(2θ),−2β2
3

3
(±1 + cos(θ)) sin(θ),±β3

)

|θ ∈ [0, 2π), β3 ∈ R

}

где две ветви ±, дают две отдельные части, соответствующие двум собственным значениям M. Линии

особенности cusp задаются

A3 =
{

(

t2, 0, t
)

,
(

−t2/2,
√

3t2/2, t
)

,
(

−t2/2,−
√

3t2/2, t
)

|t ∈ R

}

.

1.3 Континуальный интеграл

Фундаментальную роль в понимании процесса линзирования играет континуальный интеграл. Об-

судим его конструкцию и преобразования вкратце, так как в следующей главе эти же идеи потребуются

на первых же страницах.

Построение континуального для волновой функции

Есть некоторая типичная конструкция перехода к континуальному интегралу, скорее всего знако-

мая читателю, на которой здесь остановимся.
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Рассмотрим одномерную квантовую систему, описываемую волновой функцией, зависящей от обоб-

щенной координаты q′. В начальный момент времени t′ обозначим:

|Ψt=t′〉 = |q′〉 .

Хорошо известно из квантовой механике, что состояние в момент времени t получается в результате

разбиения всего интервала t − t′ на N → ∞ отрезков, и действием оператора эволюции Û (t, t′) =

T̂ exp
{

− i
~

∫ t

t′
Ĥdt

}

на начальное состояние

|Ψ(t)〉 = Û (t, t′) |Ψ(t′)〉

В соответствии с таким разбиением интервала dt = (t− t′) /N → 0 при N → ∞, бесконечно малый

сдвиг по времени t′ → t1 = t′ + dt = t′ + (t− t′)/N дает

|Ψ (t′ + dt)〉 = exp

{

− i

~
Ĥ(q̂, p̂, t1)dt

}

|q′〉 + O
(

dt2
)

.

Ключевая идея состоит в подстановке единичных операторов в координатном и импульсном пред-

ставлениях, таким образом, делаем шаг вперед:

|Ψ (t1)〉 =

∫

dq1 |q1〉 〈q1|p1〉
dp1
2π~

〈p1| exp

{

− i

~
Ĥ (q̂, p̂, t1) dt

}

|q′〉 + O
(

dt2
)

Для квадратичных по импульсу гамильтонианов вида

Ĥ(q̂, p̂, t) =
p̂2

2m
+ V (q̂, t)

очевидно,

〈p|Ĥ(q̂, p̂, t)|q〉 = H(q, p, t)〈p|q〉

где H(q, p, t)− гамильтониан классической системы. Поэтому, опуская члены второго порядка малости

по инкременту времени, с учетом известного соотношения,

〈p|q〉 = e
i
~
pq

получаем

|Ψ (t1)〉 =

∫

|q1〉
dq1dp1

2π~
e

i
~
[p1(q1−q0)−H(q1,p1,t1)dt]

где q0 = q′. Повторяя эту процедуру N раз, приходим к выражению

|Ψ(t)〉 = lim
N→∞

∫

|qN 〉
N
∏

k=1

dqkdpk
2π~

e
i
~
[pk(qk−qk−1)−H(qk,pk,tk)dt]

Введем скорость на каждом из интервалов:

q̇ (tk) =
qk − qk−1

dt

Тогда множество точек {qk} образуют ломаную траекторию, точно также вводится и траектория в

импульсном пространстве {pk} → p(t).

Тогда произведение экспоненциальных факторов сводится к

exp

{

i

~

∫ t

t′
[p(t)q̇(t) −H(q(t), p(t), t)]dt

}

= exp

{

i

~
S (t′, t)

}

где S (t′, t)− классическое действие на траектории в фазовом пространстве {q(t), p(t)} с граничными

условиями в координатном пространстве q (t′) = q′ и q(t) = qN .
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В итоге выражение для состояния имеет вид:

|Ψ (t′′)〉 = lim
N→∞

∫

|qN 〉
N
∏

k=1

dqkdpk
2π~

e
i
~
S(t′,t′′),

его называют интегралом по траекториям и вводят обозначение

|Ψ (t′′)〉 =

∫

dqN |qN 〉
∫

DqDpe i
~
S[q,p;t′,t′′]

где мера интегрирования получается при предельном переходе к континууму:

DqDp =
dpN
2π~

lim
N→∞

N−1
∏

k=1

dqkdpk
2π~

В итоге матричный элемент 〈q′′|Ψ (t′′)〉, за счет того, что интегрирование по qN «снимется» вслед-

ствие 〈q′′|qN 〉 = δ (q′′ − qN ), запишется в виде

〈q′′|Ψ (t′′)〉 =

∫

DqDpe i
~
S(t′,t′′).

Переход к двумерному интегралу

Остановимся на одном ключевом преобразовании, без которого использование континуального ин-

теграла в линзировании было бы невозможно, а именно, преобразовании, которое сможет свести кон-

тинуальный интеграл к интегралу по поверхности. Ключевым в этом переходе является присутствие

потенциала только в плоскости линзы, что в рамках нашей модели мы и рассматриваем. Для получе-

ния нужного перехода, сделаем шаг назад, рассмотрим выражение для континуального интеграла до

перехода к континуальной мере, то есть выражение вида:

F (~r0) =





N−1
∏

j=1

∫

d2θj
Aj



 exp







iω



ε

N−1
∑

j=1

rjrj+1

2

∣

∣

∣

∣

θj − θj+1

ε

∣

∣

∣

∣

2

− ψ̂ (θl)











,

где обозначено Aj = 2πiε/ (ωrjrj+1), чтобы было F = 1, если ψ̂ = 0. Такой вид, конечно, отличен от

рассмотренного выше, однако несложно заметить, что суть его такая же. Обозначения здесь специально

изменены для того, чтобы позже удобно было ими пользоваться.

Для задач линзирования интересен случай, когда ключевой в интеграле является только одна плос-

кость, поэтому для этого выведем его переход к лишь двойному, а именно, к выражению вида

F (~r0) =
ω

2πi

rlr0
rl0

∫

d2θl exp

{

iω

[

rlr0
2rl0

|θl − θ0|2 − ψ̂ (θl)

]}

.

Сделать это несложно, достаточно заметить, что первые l − 1 интегралы от j = 1 до l − 1 это

гауссовы интегралы и дают единицу, так что j = 1 под
∏

и
∑

могут быть заменены на j = l. Далее

достаточно протсо рассмотреть равенства, которые доказываются по индукции:

N−1
∑

j=l

rjrj+1 |θj − θj+1|2 = ε
rlr0
rl0

|θl − θ0|2 +

N−1
∑

j=l+1

r2j
rl,j+1

rlj
|θj − ulj |2

где r0 = rN , rlj = rj − rl и ulj = [rlθl + (j − l)rj+1θj+1] / (jrl,j+1).

В итоге лишние интегралы факторизуются

F (~r0) =

∫

d2θl
Al

exp

{

iω

[

rlr0
2rl0

|θl − θ0|2 − ψ̂ (θl)

]}

×





N−1
∏

j=l+1

∫

d2θj
Aj



 exp





iω

2ε

N−1
∑

j=l+1

r2j
rl,j+1

rlj
|θj − ulj |2 ,





и вторая часть после “×”, представляющая из себя гауссовы интегралы, легко считается. Обозначив ее

как B, имеем:

B =

N−1
∏

j=l+1

1

Aj

2πiε

ωr2j

rlj
rl,j+1

=

N−1
∏

j=l+1

rj+1

rj

rlj
rl,j+1

=
r0
rl+1

ε

rl0
.
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В итоге получаем очень полезный ответ, который нам позже пригодится

F (~r0) =
ω

2πi

rlr0
rl0

∫

d2θl exp

{

iω

[

rlr0
2rl0

|θl − θ0|2 − ψ̂ (θl)

]}

.

1.4 Вычисление осциллирующих интегралов

Как будет продемонстрировано в дальнейшем, модельные задачи линзирования сводятся к расчету

различных осциллирующих интегралов. Для преодоления этого последнего этапа перед получением

результатов, обсудим актуальный метод вычисления интегралов.

Упомянем, что кроме этого метода ранее и сейчас используются также и другие методы, например,

основанные на Фурье преобразовании. В данной работе использовался метод, основанный на глубо-

ком понимании теории комплексных особенностей дифференцируемых отображений, метод Пикара-

Лефшица.

1.4.1 Прикладной метод Пикара-Лефшица

Ключевой во многих концепциях современной физики и этой работе является метод Пикара-Лефшица,

позволяющий вычислить и аналитически проанализировать осциллирующие интегралы. Рассмотрим

теорию в её самом тривиальном случае, хотя в равной степени она может применяться и в более

высоких измерениях и даже, в принципе, в бесконечномерном, то есть в интеграле по траекториям.

Суть прикладного метода Пикара-Лефшица

Теория Пикара-Лефшица имеет дело с осциллирующие интегралами вида

I =

∫

D

dxeiS[x]/~.

Здесь ~ является просто вещественным параметром, а действие S[x] - вещественной функцией. Ин-

теграл берется по вещественной области D, обычно определяемой особенностями подынтегрального

выражения. Ставится вопрос о поведении интеграла при малых значениях параметра ~, например,

такое становится актуально при переходе к классическим моделям из квантовых: мы устремляем ~ к

нулю.

Идея состоит в том, чтобы рассмотреть S[x] как голоморфную функцию x ∈ C, комплексной плос-

кости. Теорема Коши позволяет нам деформировать контур интегрирования из области D на веще-

ственной оси x в область C в комплексной x-плоскости, сохраняя при этом его конечные точки фик-

сированными. Мы стремимся деформировать C в контур “наискорейшего спуска”, проходящий через

один или более критические точки S[x], т. е. точки, где ∂xS = 0. Из уравнений Коши-Римана следует,

что действительная часть экспоненты, Re[iS[x]], которая и вносит решающий вклад в подэкспоненци-

альное выражение, имеет седловую точку в вещественной двумерной (Re[x], Im[x])-плоскости. Нужный

нам контур спуска через седловую точку определяется как путь, по которому Re[iS[x]] уменьшается

как можно быстрее. Ввиду его важности, он приобретает специальное название: наперсток Лефшица,

и обозначается как Jσ.

Нисходящий поток и получение контура

Запишем показатель степени I = iS/~ и его аргумент x в терминах их действительной и мнимой

частей, I = h+ iH и x = u1 + iu2. Нисходящий поток затем определяется

dui

dλ
= −gij ∂h

∂uj
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с параметром λ вдоль потока и gij римановой метрикой, введенной в комплексной плоскости. Действи-

тельная часть показателя h нзывается Морсовой функцией и убывает на такой поток вдали от критиче-

ских точек, потому что d
dλ =

∑

i
∂h
∂ui

dui

dλ = −
∑

i

(

∂h
∂ui

)2
< 0, с наиболее быстрой скоростью уменьшения

в направлении наискорейшего спуска, которая максимизирует величину градиента. Определение по-

следнего требует, чтобы мы ввели метрику. Для простых примеров, которые мы здесь обсуждаем,

достаточно тривиальной метрики ds2 = |dx|2. Определяя комплексные координаты как

(u, ū) = ((Re([x] + i Im[x]), (Re[x] − i Im[x])),

метрика становится вида guu = ḡū = 0, guū = gūu = 1/2.

Тогда h = (I + I)/2 и можно записать

du

dλ
= −∂I

∂ū
,

dū

dλ
= −∂I

∂u
.

Мнимая часть экспоненты H = Im[iS/~] сохраняется вдоль этих потоков, так как

dH

dλ
=

1

2i

d(I − I)

dλ
=

1

2i

(

∂I
∂u

du

dλ
− ∂I
∂ū

dū

dλ

)

= 0.

Таким образом, подынтегральное выражение eiS[x]/~, которое было сильно колеблющемся в исход-

ном интеграле, полностью прекращает колебания при смещениях по этому наперстку, зато монотонно

уменьшается, так что интеграл сходится абсолютно и “как можно быстрее”.

Для нисходящего потока, возникающего в седловой точке, λ пробегает значения от −∞ в седло-

вой точке до положительных значений по мере уменьшения h. Аналогично, восходящие потоки Kσ

определяются через
dui

dλ
= +gij

∂h

∂uj
,

при H также постоянной вдоль этих потоков. Каждая критическая точка имеет восходящий поток.

Есть также некоторый случай, который не представляет собой проблему, однако о нем следует

упомянуть. Может так быть, что контур наискорейшего спуска из одной седловой точки pσ попадет на

вторую седловую точку p′σ, при λ → ∞, так что он совпадает с крутой подъем контура от p′σ. Такая

ситуация в целом маловероятна, но она может возникнуть в результате симметрии. Это может быть,

если на контуре, соединяющим две точке функция Морса отлична, а мнимая часть H постоянна. Такой

случай не представляет проблему и метод Пикара-Лефшица учитывает его.

Контура и интеграл по ним

Итак, наша цель состоит в том, чтобы деформировать исходный интеграл в такой, который вычис-

ляется по сумме наперстков Лефшица, которые можно пронумеровать с помощью σ, новая область

примет вид

C =
∑

σ

nσJσ,

где целые числа nσ могут принимать значения 0 или ±1 при смене ориентации контура по каждому

наперстку. Из этих уравнений следует, что nσ = Int (C,Kσ) = Int (D,Kσ), где K - контур наискорейшего

подъема, а Int - номер пересечения.

Так как пересечение - число топологическое, при деформации контура C обратно на вещественную

область D, оно постоянно.

Таким образом, необходимым и достаточным условием для того, чтобы данный наперсток Jσ был

нужным, является то, что самый крутой подъем из критической точки pσ пересекает исходную, веще-

ственную область интеграции D. В единичной комплексной размерности это работает так, что исход-

ный интеграл вдоль вещественной оси x деформируется в ряд контуров.

13



При соответствующем выборе ориентации соседние наперстки заканчиваются и начинаются на осо-

бенностях функции Морса h, так что нет никаких препятствий для деформации объединенного кон-

тура обратно на вещественную ось x. Общий контур, представляющий из себя сумму по наперсткам,

пробегает все сингулярности h в направлении, определяемом самым большим потоком. В итоге наши

преобразования контура записываются в виде:

I =

∫

D

dxeiS[x]/~ =

∫

C

dxeiS[x]/~ =
∑

σ

nσ

∫

Jσ

dxeiS[x]/~,

также для удобства анализа выделить функцию Морса и записать

I =
∑

σ

nσe
iH(pσ)

∫

Jσ

ehdx ≈
∑

σ

nσe
iS(pσ)/~ [Aσ + O(~)]

где Aσ есть лидирующий порядок гауссового интеграла в критической точке pσ. Последующие члены

могут быть получены с помощью теории возмущений по ~.

Дополнительное описание поведения и свойства интеграла можно найти в [7], нам для применения

этого метода достаточно понимать, что если определить длину вдоль кривой как l =
∫

|dx|, то условие

на сходимость интеграла имеет вид: h(x(l)) < − ln(l) +A, для некоторой константы A, при l → ∞, что

является довольно слабым требованием, поэтому этот метод имеет большое распространение.

1.4.2 Алгоритм и программная реализация

Программирование описанных выше методов представляет из себя задачу не многим проще, чем

глубокое осознание их самих. Приведем пару ключевых указаний, которые позволят реализовать идеи

выше численно.

Алгоритм для 1d интеграла

Ключевой алгоритм, по которому работает код представлен ниже.

Требуется: Разбивка изначальной области интегрирования на отрезки [a, b] X = R сеткой pi =

a+ i∆x с шагом ∆x = b−a
n для некоторого n ∈ Z>0.

while Вариация мнимой части H в точках pi более чем T1 do

Перенести точки: pi 7→ pi −∇h (pi) ∆t

if h-функция в точках pi менее T2, удалить эти точки

end if

if Длина отрезка (pi, pi+1) превышает T3 then

Разделить отрезок на двое:
(

pi,
pi+pi+1

2

)

,
(

pi+pi+1

2 , pi+1

)

.

end if

end while

Здесь требуются параметры a, b, T1, T2, T3 ∈ R, и n ∈ Z>0.

Алгоритм для 2d интеграла

Алгоритм вычисления двумерных интегралов крайне схож с одномерным, чего не сказать о его

программной реализации. Также сложность его исполнения заметно возрастает, как и сложность ви-

зуализации итоговых наперстков. Приведем вкратце этот алгоритм, чтобы убедиться, что идейно всё

аналогично.

Требуется: Подмножество исходной области интегрирования X представить квадратной сеткой,

состоящей из клеток Vi, с точками pi,1, pi,2, . . .

while Вариация мнимой части H в точках pi,j превосходит пороговое значение T1 do

Перенести точки по алгоритму: pi,j 7→ pi,j −∇h
(

pi,j

)

∆t
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if h-функция в точке pi менее чем T2 then

Удалить соответствующую клетку

end if

if Размер клетки Vi превосходит T3 then

Разделить клетку на подклетки

end if

end while

Параметры тут абсолютно такие же: a, b, T1, T2, T3 ∈ R, и n ∈ Z>0.

Обзор программной реализации

Программирование играет ключевую роль в моделировании графиков интенсивности в зависимости

от параметров системы, так что важно вкратце обсудить этот раздел, чтобы незнакомый с программи-

рованием на профессиональном уровне читатель имел некоторые ориентиры и понимал пару важных

моментов. Особенно это актуально для двумерных интегралов в виду необычности графиков и услож-

нения задачи в разы в сравнении с одномерным случаем.

Программы удобно строить, используя принципы объектно-ориентированного программирования,

создавая класс отрезков или клеток, а из них делать массив, позже для него применять алгоритмы

выше и получать нужные наперстки. Для класса следует прописать методы переноса, интегрирования,

записи в бинарный файл, а также уменьшения наперстка в случае, если частота большая. Считывать

данные и визуализировать удобно с помощью Wolfram Mathematica, с функциями которой и построены

все графики в данной работе.

В одномерном случае для интегрирования удобно использовать обычную формулу трапеций, в то

время как для двумерной она слишком сложна, поэтому эффективнее использовать интегрирование

Ромберга. Также для уточнения хорошо используется экстраполяция Ричардсона. Делая циклы, важно

проследить, чтобы при данном малом шаге сдвига наперстков, количества циклов хватило для прихода

к финальному наперстку, по которому ведется интегрирования. Также рекомендуется использовать

многопоточность, фиксацию в названии файлов всех параметров, а также вывода времени вычислений,

что следует делать и в любых вычислительных проектах. И наконец, очень удобно поместить все

параметры в отдельный файл, а на потенциалы сделать файл с их каталогом, откуда их удобнее всего

будет брать.
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2 Методы описания гравитационного линзирования

В данной главе вкратце приведены ключевые выкладки теории линзирования, которая используется

для моделирования в последней части, а также разобраны минимальные примеры для иллюстрации.

Поскольку волновая оптика является более фундаментальной, чем геометрическая оптика, начнем

построение теории гравитационных линз на основе именно ее и без привязки ко второй.

Основные формулы типичного волнового линзирования

Ввиду достаточной трудоемкости различных преобразований, многогранности волнового описания,

большого количества моделей и связей с другими теории начнем с акцентирования итогового фор-

мализма, выводу которого посвящена эта глава. Из нижеперечисленных идей будет следовать, что

итоговая формула амплитуды фактора усиления интенсивности света при линзировании по отноше-

нию к свету, прошедшему при отсутствии линзирующего объекта, в простейшем и общем случае имеет

вид:

Ψ[β] =
Ω

2πi

∫

eiΩ( 1
2
|x−β|2+ϕ(x))d2x

Здесь Ω = 4GMω - параметр, играющий роль частоты; x - приведенные обезразмеренные одномерные

или двумерные угловые координаты; ϕ(x), - фаза, зависящая от приведенных координат, воплощаю-

щая в себе особенность каждой модели; β - набор параметров, соответствующих геометрии системы.

Подэкспоненциальный множитель часто называют функцией временной задержки и является одним

из ключевых объектов исследования.

Соответственно, фактор усиления интенсивности определяется как:

I(β) = |ψ(β)|2,

и является главным параметром, который ищется в работах о линзировании, в том числе, в данной

работе о бинарных системах.

Изложенный ниже метод получения и вычисления моделей сводится к тому, что берется некоторая

фаза, например, для одномерного случая в работе исследована фаза вида

ϕ(x) =
α

1 + x2
,

являющийся типичными простейшим примером плазменной линзы, для двумерного случая можно

брать различные фазы, например

ϕ(x) =
α

1 + x41 + x22
,

которые далее могут быть использованы как потенциалы для бинарных систем, например, для двух

массы, фаза запишется в ивде

ϕ(x) = −f1 log |x− r| − f2 log |x + r|.

2.1 Простой вывод уравнения линзы

Приведем очень короткий вывод уравнения линзы и укажем самые ключевые его особенности.

Получение формулы линзы в двух словах

Есть достаточно простой способ получить основные формулы линзирования, который обсудим в

этом разделе. Другому,более фундаментальному выводу, использующему свойства континуального ин-

теграла и переходу к геометрической оптике в волновом уравнении посвящен следующий раздел.
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Рис. 1: модель гравитационного линзирования то-

чечной массой

Рассмотрим ситуацию, изображенную на рис.

3. В нашей модели есть наблюдатель (observer),

источник света (source), находящийся в другой

части вселенной, а также линза (lens), пред-

ставляющая собой тонкий сферический слой, ко-

торый как раз и обеспечивает увеличение или

уменьшение интенсивности.

Рассмотрим движение когерентного монохро-

матического света с частотой ω с точки зрения

квантовой механики, с помощью интеграла по

траекториям при постоянной энергии E = ~ω.

Амплитуда, имеет знакомый вид из первой главы интеграла по траекториям

Ψ[β] =

∫

eiS/~,

где действие следует записать согласно принципу Мопертью,

S =

∫

p · dr.

Учтем в действии вид простейшей метрики

ds2 = −(1 + 2U(r))dt2 + (1 − 2U(r))dr2,

в котором U(r) - гравитационный потенциал. Сделать это можно, выразив импульс при учете движения

фотона, которое в гравитационном поле имеет вид:

p2/(1 − 2U) +m2 = E2/(1 + 2U)

при m→ 0. Поэтому в первом порядке по U действие становится:

S ≈ E

∫

|dr|(1 − 2U(r)).

Разобьем действие на два слагаемых, первый S1 ≈ E
∫

|dr| - это по сути увеличение евклидовой

длины пути света, прошедшего линзу в сравнении с прямой длины от источником к наблюдателю.

Если рассмотреть точку A на поверхности линзы, то в приближении малых улов |θ − θi|
∫

dr, где

θi - координаты i-го линзирующего объекта, можно записать с помощью несложных геометрических

выкладок:

rsAo − rso = rsA − (rso − rlo) =

√

(rso − rlo)2 + rloros |θ − θi|2 − (rso − rlo) =
1

2

rloros
(rso − rlo)

|θ − θi|2 .

В итоге первый вклад запишется в виде:

S1 ≈ E

∫

|dr| ≈ rloros
(ros − rlo)

|θ − θi|2 .

Второй вклад в действие можно записать, перейдя к конкретной метрике: возьмем гравитирующий

потенциал U = −GMi/ |r − ri| для массы Mi в координате ri для малых |θ − θi|, только логарифм,

поэтому действие станет в виде:

S2 ≈ −E
∫

|dr|2U(r) ≈ 2GMi ln |θ − θi| ,

с точностью до константы.

Удобно было бы сделать переобозначения, учитывающие геометрию, чтобы остаться с параметра-

ми, которые играют ключевую роль, поэтому выразим это всё в известных углах Эйнштейна θE =
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√

4GM (ros − rlo) / (rloros), где M - общая масса. То есть перейдем к безразмерным угловым коорди-

натам x, β следующим образом: θ ≡ θEx и θls ≡ θEβ. Задача нормировки амплитуды для обеспечения

унитарности тривиальна и решается введением фактора Ω
2πi . По итогу амплитуда запишется в виде

Ψ[β] =
Ω

2πi

∫

x

eiΩ( 1
2
|x−β|2+α ln|x−xi|),

где Ω ≡ 4GMω, здесь и далее будет использовано обозначение интеграла
∫

x
≡
∫

d2x для укорочения

записи. Фазовое слагаемое ϕ(x) зависит от параметра α, учитывающего геометрию и массу системы, в

произвольном случае его можно находить определенные поправки к потенциалу одинокой массы. Для

бинарных систем можно записывать фазовое слагаемое просто как взвешенную сумму нескольких

потенциалов, например, по аналогии с случаем, рассмотренным выше, оно может иметь вид ϕ(x) =

−
∑

i fi log |x− xi|.

Некоторые свойства амплитуды

Для лучшего понимания полученных выражений а также дальнейших вычислений обсудим неко-

торые их свойства. Если гравитирующие массы перемещаются по небу с помощью параметра t, то

xi → xi + χt, соответственно выражение для амплитуды также будет меняться : Ψ[β] → Ψ[β − χt].

Обозначим как A площадь сферы с центром в источнике света, на которой линза. Полная интен-

сивность, дошедшая до линзы
∫

β
|Ψ[β]|2 = A, не зависит от ϕ(x). Она унитарная, что соответствует

сохранению полного потока энергии.

Можно сделать пару аналитических преобразований для поиска интенсивности. Умножим Ψ[β] на

его комплексно сопряженное выражение, с x → x′, и сделаем замены u = 1
2 (x′ + x), ∆ = 1

2 (x′ − x),

получим

I =
Ω2

4π2

∫

u,∆

e−iΩ(ϕ(u+∆)−ϕ(u−∆)+2∆·(u−β)).

Разложение в ряд тейлора экспоненты по ∆ и изменение масштаба ∆ → ∆/Ω дает линейный,

независимый от Ω член, который преобладает при больших Ω. Для удобства, обозначим как ранее,

Переобозначим u как x, теперь получим:

I(β) ≈
∫

x

δ(∇ϕ(x) + x− β) =
∑

s

1

|M (xs(β))| .

где M(x) = det (δij + ∂i∂jϕ(x)) , i, j = 1, 2, а сумма пробегает решения xs(β) уравнения

∇ϕ(x) + x− β = 0,

то есть уравнения на стационарные точки амплитуды I. При приближении больших Ω, интенсивность

сохраняет нормированность на единицу, как можно видеть, проинтегрировав левую часть равенства

по всем β.

В первом порядке по ϕ уравнение имеет решения x ≈ β. Далее D(β) ≈ 1 + ∇2ϕ(β) и уравнение

на стационарные точки становится подобием уравнения Пуассона −∇2ϕ(β) ≈ I(β) − 1. Получается,

что в высокочастотном случае в слабом линзирующим режиме можно получить фазу линзирования

из интенсивности.

Для гравитационных линз существует дальнейшее упрощение, а именно, если I(β) − 1 можно ап-

проксимировать суммой дельта-функций, которые выбираются чтобы совпасть с их мультипольными

моментами, решение для ϕ, которое представляет из себя сумму логарифмов, будет хорошо аппрок-

симировано точным нелинейным решением. Далее при больших Ω таким же методом итерационного

алгоритма можно найти ϕ по амплитуде.

Более того, есть методы, по которым также может быть найден Ω, о них можно подробнее почитать

в [9]. Факт, который позволяет это сделать, состоит в том, что амплитуду можно рассматривать как
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унитарное преобразование фазы eiΩϕ(x) вида

(Ω/2πi)

∫

x

ei
1
2
Ω(x−β)2 .

В таком случае обратное преобразование i
∫

β
e−i 1

2
Ω(z−β)2 . Применяя его к Ψ[β], получаем eiΩϕ(z), с

полностью равномерной интенсивностью для любых ϕ(z). Здесь видно, что амплитуда линзы способна

восстановить Ω.

2.2 Фундаментальный вывод уравнения линзы

Более фундаментальный вывод уравнения линзы состоит в рассмотрении волнового уравнения и

решения его методом континуального интеграла, хорошо изученных в прошлой части. Произведем

его и далее будем рассматривать линзирование в рамках этого формализма. В данном разделе будем

пользоваться системой единиц c = 1.

Описание модели

Рассмотрим точечный источник, излучающий монохроматические волны частоты ω, часть кото-

рых распространяются через гравитационную линзу и достигают наблюдателя на далеком расстоянии.

Данная модель изображена на рис. (2).

Рис. 2: Модель геометрии гравитационного линзирования

Для данной модели пространство разбирается на участки длиной ε, в остальном геометрия нас из

прошлой части уже хорошо знакома.

Метрика пространства-времени имеет хорошо известный вид:

ds2 = −(1 + 2U)dt2 + (1 − 2U)d~r 2.

Вывод формулы линзы через континуальный интеграл

Запишем волновое уравнение в терминах фактора усиления амплитуды (1.9):

∂2F

∂r2
+ 2iω

∂F

∂r
+

1

r2
∇2

θF,= 4ω2UF

где ∇2
θ = ∂2/∂θ2 + θ−1∂/∂θ + θ−2∂2/∂ϕ2.

Предполагая, что

ω/|∂ lnF/∂r| ∼ (масштаб изменнеияF )/(длина волны) � 1,

пренебрежем членом ∂2F/∂r2 в сравнении со вторым. Третий член отбросим ввиду сферической сим-

метричности задачи.

Тогда мы получаем уравнение

2iω
∂F

∂r
= 4ω2UF,
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которое имеет вид уравнения Шредингера, разве что “ время” это r, “масса частицы” - ω, и “зависящий

от времени потенциал” это 2ωU(r, θ).

Уравнение Шредингера известно тем, что решение формально можно записать, используя лагран-

жиан, соответствующий данной модели:

L(r,θ, θ̇) = ω

(

1

2
r2|θ̇|2 − 2U(r,θ)

)

,

где θ̇ = dθ/dr, через формализм интеграла по траекториям:

F (~r0) =

∫

Dθ(r) exp

{

i

∫ r0

0

drL[r,θ(r), θ̇(r)]

}

Это выражение используется следующим образом:

i) Следует подобрать конкретный вид функции θ(r), представляющей собой путь от источника к

наблюдателю на ~r0 = (r0, θ0);

ii) Вычислить интеграл в курсивных скобках по этому выбранному пути, таим образом, добыв

“фазу” как функцию от θ(r);

iii) Суммировать все эти фазы для всевозможных θ(r).

Для осуществления этого, подобно тому, как делалось в типичном континуальном интеграле, раз-

делим расстояние r0 между источником и наблюдателем на малые отрезки ε = r0/N за счет бесконечно

большого числа N и выберем путь θ(r) за счет введения координат θj = θ (rj) (j = 1, · · · , N) на j-й

сфере радиуса rj = jε. Пусть линза будет находиться на l-й сфере (плоскость линзы), то есть rl = lε

есть расстояние между источником и плоскостью линзы.

Введем “приближение тонкой линзы”, формально за счет вида записи потенциала как U(r, θ) =
1
2δ (r − rl) ψ̂(θ). То есть через новый параметр

ψ̂(θ) = 2

∫ r0

0

drU(r,θ).

Такое приближение не означает, что линза бесконечно тонкая, но означает, что пути, дающие вклады

в фазовый интеграл хорошо аппроксимируются за счет постоянного вектора θ(r) ' θl в узкой области

U(~r) 6= 0 в сравнении с большими r0 и rl.

Теперь у нас уходит интегрирование по потенциалу, а также континуальный интеграл возвращается

в свою дискретную аппроксимацию:

F (~r0) =





N−1
∏

j=1

∫

d2θj
Aj



 exp







iω



ε

N−1
∑

j=1

rjrj+1

2

∣

∣

∣

∣

θj − θj+1

ε

∣

∣

∣

∣

2

− ψ̂ (θl) ,











здесь множители нормировки Aj = 2πiε/ (ωrjrj+1), то есть они обеспечивают F = 1 при ψ̂ = 0. Из

первой части нам известно, что такой интеграл можно сделать двумерным, так что сразу перейдем к

приятному виду:

F (~r0) =
ω

2πi

rlr0
rl0

∫

d2θl exp

{

iω

[

rlr0
2rl0

|θl − θ0|2 − ψ̂ (θl)

]}

(2.1)

где rl0 расстояния между линзой и наблюдателем.

Таким образом, за счет приближения тонкой линзы мы можем ограничить произвол функций θ(r)

теми, пути которых идут прямо от источника в “точку отклонения” θl и снова пойти прямо от θl к

наблюдателю. Первый член квадратных скобок это разница длин пути между прямым путем и от

источника к наблюдателю и отклоненным путем и отклоненным, проходящим через плоскость линзы

в θl. Второй член это задержка времени, получающаяся за счет гравитационного поля вокруг линзы.
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Итоговые уравнения

Перепишем фактор усиления амплитуды 2.1 в более удобном виде за счет введения характерного уг-

лового масштаба, знакомого нам угла Эйнштейна θE =
(

4GMrl0
rlr0

)1/2

∼ 3µ arcsec
(

M
M�

)1/2 (
rlr0/rl0
Gpc

)−1/2

и, определив безразмерные величины

x = θl/θE , β = θ0/θE , w =
rlr0
rl0

θ2E , ω

ψ(x) =
rl0
rlr0

θ−2
E ψ̂ (θEx) , T (x,β) =

1

2
|x− β|2 − ψ(x),

получим вид, который будет использоваться во всех моделях в этой работе ниже:

F (w,β) =
w

2πi

∫

d2x exp[iwT (x,β)].

Из нее легко вычислить сам фактор усиления, как |F |2. Таким образом, видна зависимость от частоты

w и позиции источника β. Отдельным достоинством этого метода, является то, что скалярный волновой

анализ применим для волн любой поляризации, если вращением её направления можно пренебречь.

Если линзирующий объект сферически симметричный, то ψ(x) зависит только от x = |x| и величина

F (~r0) может быть выражена через функцию Бесселя J0 как

F (w, β) = −iweiwβ2/2

∫ ∞

0

dxxJ0(wxβ) exp

{

iw

[

1

2
x2 − ψ(x)

]}

.

Геометрическое описание точечного источника

Зачастую удобнее работать просто с геометрическим подходом, забыл в волном, именно это и ис-

пользовалось учеными до развитого более общего подхода. В принципе, можно было бы об этом сказать

и в первой главе, потому что для перехода к этому пределу у нас всё готово было еще тогда. Передел

геометрической оптики по сути является переходом от

F (w,β) =
w

2πi

∫

d2x exp[iwT (x,β)]

к более простому, в то же время отличному выражению вида

F =
∑

j

|γ (xj)|1/2 exp [iwT (xj) − iπnj ] ,

где γ(x) = 1/ det [∂a∂bT (x)] = 1/ det [δab − ∂a∂bψ(x)], который мы и рассмотрим сейчас подробнее, дав

все минимальные обоснования.

Представим функцию временной задержки двумерной поверхностью T (x) = 1
2 |x − β|2 − ψ(x) над

x-плоскостью для фиксированного β. В случае коротких длин волн w → ∞, подынтегральное выраже-

ние в факторе усиления F (w,β) = w
2πi

∫

d2x exp[iwT (x,β)] сильно осциллирующая функция, поэтому

величина F получается в основном за счет вкладов стационарных точек поверхности T (x). Запишем

∂T (x) = 0,

что есть уравнение для стационарных точек или уравнение на обнуление отображения лагранжа, или,

в координатах,

β = x− ∂ψ(x) или θ0 = θl −
rl0
r0

α (θl)

где ∂ = ∂/∂x и α (θl) = r−1
l ∂ψ̂/∂θl.

Эти стационарные точки соответствуют изображения геометрической оптики, и условие ∂T (x) = 0

выражает принцип геометрический Ферма. То есть по сути мы получили уравнение линзы, которое

определяет координаты изображения x ( или θl) для данных координат источника β ( или θ0 ) с углом

отклонения α от нулевых геодезических.
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Для более “сильной” линзы, потенциал ψ(x) таков, что число изображений более, чем одно.

Разложим T (x) в окрестности j-го изображения xj(β) как

T (x) = T (xj)+
1

2

∑

ab

(x−xj)a(x−xj)b(x−xj)a∂bT (xj)+
1

6

∑

abc

(x−xj)a(x−xj)b(x−xj)c(x−xj)∂b∂cT (xj)+· · ·

где индексы abc . . . пробегают значения 1 и 2. Предел геометрической оптики, означает большие ча-

стоты w, то есть можно записать условие

w
∣

∣∂2T
∣

∣

3 �
∣

∣∂3T
∣

∣

2
, w

∣

∣∂2T
∣

∣

2 �
∣

∣∂4T
∣

∣ , · · · ,

можно пренебречь третьим и более высокими членами разложения.

Учитывая все изображения j с координатами xj , можно записать гауссов интеграл в приближении

геометрической оптики как

F =
∑

j

|γ (xj)|1/2 exp [iwT (xj) − iπnj ]

где

γ(x) = 1/ det [∂a∂bT (x)] = 1/ det [δab − ∂a∂bψ(x)]

и nj = 0, 1/2, 1 - когда xj это минимум, седловая точка и максимум T (x), соответственно.

Уравнение для F выражает, что наблюдаемая волна это суперпозиция волн от каждого изображе-

ния, с соотношением амплитуд |γ (xj)|1/2 и фазовым сдвигом wT (xj) − πnj .

Усиление интенсивности волны принимает вид:

|F |2 =
∑

j

|γj | + 2
∑

j<k

|γjγk|1/2 cos (wTjk − πnjk) (2.2)

где γj = γ (xj) , Tjk = T (xk)−T (xj) это средняя временная задержка между k-м и j-м изображениями,

и njk = nk − nj .

Обратите внимание, что в геометрической оптике коэффициент увеличения размера изображения

для бесконечно малого источника задается как якобиан линзирующего отображения β 7→ x.

γ(x) = 1/ det[∂ ⊗ β] = 1/ det[δab − ∂a∂bψ(x)]

Исходя из сохранения поверхностной яркости в геометрической оптике, это увеличение изобра-

жения равно усилению интенсивности источника. Поэтому первый член в уравнении (2.2) содержит

результат геометрической оптики, в котором величина |γj | это фактор усиления от j-го изображения.

Второй член выражает “интерференцию” между изображениями, которое создает различные интер-

ференционные картины. Уравнение (2.2) по сути есть квазиклассическая аппроксимация квантовой

механики.

2.3 Волновая модель одиночной линзы

Прежде чем изучать сложные модели, проиллюстрируем нашу теорию на самом тривиальном слу-

чае - случае одиночной массы. И хотя этот чисто иллюстративный, ведь, как будет показано далее,

даже небольшое возмущение способно в корне изменить полученный график интенсивности, уже изло-

женные ниже методы могут предсказывать такие известные явления, как кольцо или крест Эйнштейна,

на которых в этой работе останавливаться нет возможности.

Начнем анализ этой модели с вида фактора усиления для сферически симметричного случая

F (w,β) = −iweiwβ2/2

∫ ∞

0

dxxJ0(wxβ) exp

{

iw

[

1

2
x2 − ψ(x)

]}

(2.3)

Подставим это в выражение ψ̂(θ) = 2
∫ r0
0
drU(r,θ), через потенциал

U(r, θ) = −GM/
(

r2 − 2rlr cos θ + r2l
)1/2

,
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где M обозначает ее массу.

и, используя приближение θ � 1, получаем линзирующий потенциал в виде ψ̂ (θl) = 4GM ln θl+

const, где постоянный член не важен, так как он вклад дает во все фазы F .

Масштабируя углы по углу Эйнштейна θE , подобно тому, как это было в прошлом разделе, получаем

выражения

ψ(x) = lnx, w = 4GMω ∼ 105 (M/M�) (ν/GHz).

Заметим, что w ∼ (гравитационный радиус от массивной линзы) / (длина волны) - это большая

величина в типичных задачах астрофизики. Подставляя эти величины в (2.3), несложно разглядеть

решение в виде известной гипергеометрической функции 1F1, то есть в итоге для фактора усиления

имеем

|F |2 =
πw

1 − e−πw

∣

∣

∣

∣

1F1

(

1

2
iw, 1;

1

2
iwβ2

)∣

∣

∣

∣

2

. (2.4)

В пределе больших длин волн w → 0, фактор усиления равен единице, и усиление не происходит, то

есть по сути волна игнорирует линзу. В противоположном пределе, когда w � 1, фактор усиления точ-

но оценивается квазиклассическим приближением, которое работает, пока β � 1/w, и |F |2 ' πwJ2
0 (wβ)

справедливо, пока β � w−1/2.

Рис. 3: График интенсивности для линзирования

точечной массой при ν = 50.

Функция временной задержки T (x) = 1
2 |x −

β|2 − lnx имеет две стационарных точки, точку

минимума x1 и стационарную точку x2 :

x1,2 =
β

2β

(

β ±
√

β2 + 4
)

, γ1,2 =
1

2
± β2 + 2

2β
√

β2 + 4

Эти точки соответствуют двум классическим лу-

чам, один из которых идет через x1, на той же

сторона, что и источник, вне кольца Эйнштейна

x = 1. Этот луч дает решающий вклад в интен-

сивность в режиме слабого линзирования. Дру-

гой луч идет через x2 = −x1/x
2
1, на обратной сто-

роне от линзы и внутри круга Эйнштейна. Функ-

ция временной задержки, соответственно, прини-

мает вид

T12 =
1

2
β
√

β2 + 4 + ln

√

β2 + 4 + β
√

β2 + 4 − β
, n12 =

1

2

И в итоге квазиклассическое приближение решения волнового уравнения для точечной линзы запи-

шется как:

|F |2 =
β2 + 2 + 2 sin (wT12)

β
√

β2 + 4
(2.5)

В случае β � 1, получаем выражение

|F |2 ' [1 + sin(2wβ)]/β.

Член с синусом выражает интерференцию от двух изображений, за счет него появляются круговые

дифракционные кольца.

Критическая кривая радиуса x = 1 формирует знаменитое кольцо Эйнштейна в плоскости лин-

зы, а каустика в этой модели это всего лишь точка β = 0 в плоскости источника, в которой |F |2 в

геометрическом подходе, согласно (2.5), расходится. Понятно, что в настоящем волновом описании

максимальное значение |F |2 далеко не бесконечность, а πw/ (1 − e−πw), ведь выражение для него нам

известно (2.4). В зависимости от частоты, максимальное усиление ' πw по порядку пропорционально

отношению гравитационного радиуса к длине волны, заметно больше, чем единица.
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3 Линзирование бинарными системами и другие модели

В рамках формализма, изложенного в предыдущей главе рассмотрим простейшие модели, не зада-

ваясь физическими интерпретациями ввиду их громоздкости.

3.1 Простейшие модели

3.1.1 Одномерная плазменная линза

Одномерная плазменная линза - простейший и крайне показательный пример одномерного грави-

тационного линзирования, на котором можно понять идейные закономерности, проявляющиеся также

и в более сложных примерах.

Модель плазменной линзы

В модели плазменной линзы вычисляется функция Ψ(β; ν), зависящая от параметров β и ν, имею-

щую вид интеграла:

Ψ(β; ν) =

√

ν

π

∫ ∞

−∞

e
i
(

(x−β)2+ α

1+x2

)

ν
dx

В данной модели дробь в фазе есть рациональное приближение гауссовой экспоненты. что также с

некоторой точностью может описывать сгусток плазмы.

Анализ функции плазменной линзы

Модель плазменной линзы хороша тем, что на ней удобно изучать метод Пикара-Лефшица, игра-

ющий ключевую роль в численном вычислении осциллирующих интегралов.

Плазменная линза сполна была исследована в [9], поэтому здесь только в целях полноты представ-

ления о методах и об этой модели воспроизведем ключевые ее свойства.

Несложно программными методами найти седловые точки, построить контура постоянной фазы и

области убывания функции, которые приведены ниже на рис. 4. Итоговые графики приведем в качестве

иллюстрации только для α = 0.5, потому что этого достаточно, чтобы понять метод и особенности, в

то же время не сместить акцент с бинарных систем, можно увидеть на рисунке ниже.

(a) (b) (c)

Рис. 4: Контура убывания, наперсток Лефшица в комплексной плоскости для плазменной линзы для

α = 0.5. Представлены случаи (a) µ = −0.4, (b) µ = 0, (c) µ = 0.4.

.

Здесь серые линии - контура постоянной фазы, серые области - области, в которых функция крайне

мала. Синие контура - те самые наперстки Лефшица для одномерного случая, именно по ним происхо-

дит интегрирование. Разве что алгоритм интегрирования, описанный в теории уменьшает их, учитывая
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то, что при больших осцилляциях, убывание подэкспоненциальной функции во многих областях слиш-

ком быстрое, чтобы их учитывать. Также на (a) и (c) можно наблюдать известное так называемое

явление Стокса - изменение вида наперстка Лефшица при прохождении седловой точки.

Интенсивность функций 1D плазменной линзы

Приведем характерные графики интенсивности. Для низких частот на рис. 5 представлены три

характерных режима, а для высоких частот - имеются схожие, но более выраженные режимы, изоб-

раженные на 6.

(a) (b) (c)

Рис. 5: Интенсивность плазменной линзы при ν = 50. (a) для α = 0.5, (b) для α = 1, (c) для α = 2.

(a) (b) (c)

Рис. 6: Интенсивность плазменной линзы при ν = 500. (a) для α = 0.5, (b) для α = 1, (c) для α = 2.

Для α < 1 имеется пик разной степени вытянутости. При увеличении α пик становится уже и уже,

а после прохождения α = 1 происходит изменение вида графика интенсивности: появляется каустика,

изображенная на рис. 6(c).

- При α < 1 имеется только область с одним изображением. Нормализованный профиль интенсив-

ности не колеблется и, кроме того, не зависит от частоты ν.

- Для α = 1 линза образует каустику cusp. Она соответствует пику при βc = 0.

При увеличении частоты ν, пик усиливается и становится более и более узким. В эйкональном

пределе ν → ∞ нормализованная интенсивность расходится как ν1/2 в каустике βc. При α > 1 линза

создает область тройного изображения, ограниченную каустиками fold, находящихся на (−βc, βc), где

βc ≈ 0.206751. Колебания в области одного изображения являются результатом взаимодействия между

вещественной и мнимой седловыми точками. При увеличении ν, колебания становятся всё сильнее и

сильнее, а в краевых точках интенсивность начинает возрастать больше и больше. Такое поведение,

согласно последним работам, может быть важно для объяснения природы FRB-ов.

3.1.2 Двумерная одиночная линза со сдвиговым потенциалом

Перейдем к более полезной на практике модели, к двумерной одиночная линза со сдвиговым потен-

циалом. Реальные астрофизические объекты представляют собой часто несколько тел, а, возможно,
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даже некоторое распределение материи, поэтому отличие метрики от метрики точечной массы очень

вероятно. Эта модель является типичным примером, показывающим, что даже небольшие изменения

в фазе могут давать принципиально новый вид графиков интенсивности. Простейшая такая модель,

рассмотренная в [9] и [12], обсуждается в этом разделе.

Описание модели сдвигового потенциала

В формализме гравитационного линзирования в амплитуде интенсивности Ψ(β; ν), зависящей от

параметров β = (β1, β2) и ν, имеющей вид интеграла по приведенным координатам x = (x1, x2), в

случае сдвигового потенциала амплитуда интенсивности имеет вид:

Ψ(β; ν) =

√

ν

π

∫ ∞

−∞

ei((x−β)2−ln |x|− γ
2
(x2

1−x2
2))dx.

Другими словами, рассматривается случай искажения метрики, такой, что фаза в амплитуде имеет

вид

ϕ(x) = − ln |x| − γ

2
(x21 − x22).

Этот случай можно рассматривать как упрощенная модель некоторой бинарной системы, где вто-

рая масса, находящаяся на расстоянии γ−1/2 от линзы, учитывается как поправка к первоначальной

фазе. В геометрическом приближении одиночная линза со сдвиговым потенциалом создает Лагранже-

во отображение

ξ(x) =

(

1 − 1

‖x‖

)

x + γ(−x1, x2),

которое отображает точки от плоскости линзы на экран. Критическая кривая в данном случае имеет

вид

M =

{

r(cos θ, sin θ)

∣

∣

∣

∣

r =
1

√

1 − γ2

√

√

1 − γ2 sin2 2θ − γ cos 2θ где θ ∈ [0, 2π)

}

и представляет из себя в зависимости от γ эллипс разной степени вытянутости. Отображение Лагран-

жа ξ(M) для такой линзы создает кривую, состоящую из четырех изогнутых гладких линий между

четырьмя пиковыми точками, то есть формирует искривленный ромб.

Интенсивность линзы со сдвиговым потенциалом

Используя метод Пикара-Лефшица, несложно получить графики интенсивности, приведенные на

рис. 7. Как мы и привыкли, при увеличении частоты график интенсивности приобретает вид каустики,

разделяя пространство графика на дву области разного количества изображений. Напомним, что в

отсутствии данной добавки, имелись просто интерференционные круги, по виду почти совпадающие с

кругам вне каустики.
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(a) (b) (c)

Рис. 7: Графики интенсивности для одиночной линзы со сдвиговым гравитирующим потенциалом, при

(a) γ = 0.2, ν = 75, (b) γ = 0.2, ν = 50, (c) γ = 0.2, ν = 25.

.

3.2 Типичные модели двумерных систем

Владея методами описания линзирования и рассмотрев простейшие примеры, займемся уже ис-

следованными двумерными гравитационными линзами, ведь именно они могут составлять различные

бинарные системы. Как и одномерные, двумерные сводятся к осциллирующим интегралам, имеющим

фазовое слагаемое, за счет которого график интенсивности имеет определенный каустический вид,

исследованию которых посвящены многие работы. Можно представлять, что каждый потенциал есть

некоторая спадающая функция, и есть обобщение модели плазменной лизы на случай разных рас-

пределений масс. Изучим интерференционные картины некоторых известных двумерных линз вблизи

каустик, демонстрируя результаты описанного метода Пикара-Лефшица и его алгоритма уже для дву-

мерного случая.

3.2.1 Система “generic peak”

Простейшее обобщение одномерной плазменной линзы - система “generic peak”, с которой мы и

начнем.

Описание модели “generic peak”

В формализме гравитационного линзирования в амплитуда фактора усиления интенсивности Ψ(β; ν),

зависящей от параметров β = (β1, β2) и ν, имеющей вид интеграла по приведенным координатам

x = (x1, x2), в случае сдвигового потенциала амплитуда интенсивности имеет вид:

Ψ(β; ν) =

√

ν

π

∫ ∞

−∞

e
i

(

(x−β)2+ α

1+x2
1
+2x2

2

)

dx.

Другими словами, рассматривается случай искажения метрики, такой, что фаза в амплитуде имеет

вид

ϕ(x) =
α

1 + x21 + 2x22
.

Эта модель - прямое обобщение плазменной линзы на двумерный случай, разве что множитель 2

вставлен для придания некоторой вытянутости, которую можно видеть на графиках.

Каустики появляются в начале координат (β1, β2) = (0, 0) для параметра α = 1
2 , представляя собой

особенность типа cusp, соответствующая собственным значениям λ1. При α = 1 создается новая точка

A3, обозначая появление собственных значений λ2.
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Для 1 < α < 64
49 точка A3 образует линию типа cusp (A2) с двумя выступами (A3) вверху и внизу.

При α = 64
49 две линии fold сливаются в

(

D+
4

)

при (β1, β2) = (0,±1/
√

14). Для α > 64
49 две линии fold

продолжают двигаться наружу, где линия, соответствующая λ1, имеет четыре особенности cusp, в то

время как линия сгиба, соответствующая λ2, не содержит ни одного.

За пределами линий fold имеется область с одним изображением. Внутри - при увеличении α есть

сперва область тройного изображения, а позже появляется и другая, из пяти изображений.

Графики интенсивности для “generic peak”

Пара типичных графиков интенсивности приведена на рис. 8.

(a) (b) (c)

Рис. 8: “Generic peak” для разных α = 1 и частот: (a) γ = 4, ν = 300, (b) γ = 0.7, ν = 300, (c)

γ = 2.0, ν = 200.

3.2.2 Система “degenerate peak”

Как и прошлая система “generic peak”, данная система имеет фазовое слагаемое типа слагаемого

плазменной линзы, однако графики интенсивности имеют более нестандартных характер, что может

означать, что этот потенциал имеет больше отношения к реальным случаям, чем предыдущий.

Описание модели “degenerate peak”

Запишем амплитуду фактора усиления интенсивности Ψ(β; ν), зависящую от параметров β =

(β1, β2) и ν, имеющую вид интеграла по приведенным координатам x = (x1, x2), в случае сдвигового

потенциала:

Ψ(β; ν) =

√

ν

π

∫ ∞

−∞

e
i

(

(x−β)2+ α

1+x4
1
+x2

2

)

dx,

то есть рассмотрим случай искажения метрики, такой, что фаза в амплитуде имеет вид

ϕ(x) =
α

1 + x41 + x22
.

Для α = 1 можно видеть две отделенных друг от друга компоненты, которые соединяются при α =

1.5 и образуют нетривиальные графики при α = 2 и α = 2.5 и большем, двое из которых изображены

на 9.

В α = 2 мы снова найти каустику (D+
4 ) в двух точках, в которых cusp-ы, соответствующие первому и

второму собственному значению λ1, λ2 совпадают. Таким образом, мы видим, что не только структура

на пике, но и уменьшение изменения фазы ϕ важно при изучении каустик линзованных изображений.

Каустическая структура, как правило, чувствительна к гессиану фазы ϕ, т. е. производным второго

порядка.
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Графики интенсивности для “degenerate peak”

Приведем лишь пару характерных графиков интенсивности в качестве иллюстрации модели. Более

подробно о ней можно почитать в [9] или в [16].

(a) (b) (c)

Рис. 9: “degenerate peak” (a) α = 2.5, ν = 600, (b) α = 0.5, ν = 50, (c) α = 2.5, ν = 50.

При увеличении α между двумя изображенными значениями, происходит сближение пиков ин-

тенсивности, изображенных на первом рисунке, а далее после их пересечения формирования новой

каустики, итоговый вид которой изображен на втором рисунке.

3.2.3 Система типа “elliptic umbilic”

Система “elliptic umbilic” отлична от двух предыдущих тем, что фазовый потенциал уже менее

напоминает плазменную линзу, а графики интенсивности имеют более необычный вид.

Описание модели “elliptic umbilic”

В модели “elliptic umbilic” амплитуда фактора усиления интенсивности Ψ(β; ν), зависящая от пара-

метров β = (β1, β2) и ν, имеющая вид интеграла по приведенным координатам x = (x1, x2), записыва-

ется как

Ψ(β; ν) =

√

ν

π

∫ ∞

−∞

e
iν

(

(x−β)2+
α(x3

1
−3x1x2

2)
1+x2

1
+x2

2

)

dx,

то есть ее особенность в наличие фазового множителя вида.

ϕ(x) =
α
(

x31 − 3x1x
2
2

)

1 + x21 + x22
.

Свойства ее следующие. Для небольших α < 1, 4, линза состоит из трех толстых линий, так назы-

ваемых блинов Зельдовича, с треугольной симметрией. Три острия едкой точки указывают на начало

пространства параметров. При α = 1.4 мы наблюдаем, что три блина соединены тремя линиями сгиба,

образующими треугольную структуру. При α > 1.4, треугольник отделяется от трех блинов Зельдо-

вича. Три оставшиеся линии fold удаляются от начала координат, и треугольник сжимается до точки.

Точка, в которой треугольник сжимается до точки, является каустикой elliptic umbilic. Область, за-

ключенная в большой треугольник, представляет собой 5-точечную область, а та, которая внутри

маленького треугольника, представляет собой область с 7 изображениями.
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Графики интенсивности для “elliptic umbilic”

Приведем в иллюстративных целях пару графиков интенсивности для некоторых значений α. В

целях компактности в данной работе приведены лишь пара частных случаев интерференционных кар-

тин.

(a) (b) (c)

Рис. 10: “Eliptic umbilic” при α = 1 для разных частот. (a) ν = 1000, (b) ν = 200, (c) ν = 100.

Обратите внимание, что здесь специально сделан разный масштаб, чтобы посмотреть внимательно

на центр "рождения треугольника". Видим, что при изменении частот действительно, качественно

меняется вид графика, а также формируется каустика.

Для α = 1.5 имеются достаточно похожие графики, приведенные ниже. В отличие от предыдущего

случая три блина Зельдовича в случае геометрической оптики уже пересекаются.

(a) (b) (c)

Рис. 11: “Eliptic umbilic” при α = 1.5 для разных частот. (a) ν = 1000, (b) ν = 200, (c) ν = 100.

3.3 Некоторые бинарные модели

В этой главе используем модели выше для создания к бинарных систем. Делается это совершенно

за счет добавления обоих линзирующих объектов, расположенных в разных приведенных координатах.

Результаты вычисляются в точности теми же методами, которые использовались выше.

3.3.1 Бинарная система из двух масс

Простейший случай бинарной системы - это случай двух масс, расположенных на расстоянии друг

от друга. Удивительно, что хотя одна масса давала несложные графики интенсивности, для двух масс
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получаются достаточно интересные картины, на которых здесь остановимся.

Модель бинарной линзы из двух масс

Амплитуда фактора усиления интенсивности Ψ(β; ν), зависящая от параметров β = (β1, β2) и ν,

имеющая вид интеграла по приведенным координатам x = (x1, x2),

Ψ(β; ν) =

√

ν

π

∫ ∞

−∞

eiν((x−β)2+ϕ(x))dx,

в случае системы двух масс имеет фазовое слагаемое вида

ϕ(x) = −f1 log |x− r| − f2 log |x + r|,

при параметрах f1 + f2 = 1, соответствующим приведенным массам. Здесь r = (a1, a2) - расстояние от

центра плоскости до линзирующих масс.

Рассмотрим случай нахождения одной в координатах (a, 0), и другой в (−a, 0), а также их массовом

соотношении f1 = 2f2. Потенциал примет упрощенный вид:

ϕ(x) = −f1 log
√

(x1 − a)2 + x22 − f2 log
√

(x1 + a)2 + x22,

В таком случае каждого β, имеется пять корней x, все они вещественные для β внутри C.

Так как β подходит к C изнутри, мы имеем особенность типа fold, где две точки экстремума пере-

крываются, или особенность типа cusp, когда пересекаются три точки.

На таких особенностях интенсивность от лучевой оптики расходится.

Если β находится вне каустической кривой C, интенсивность падает очень быстро с I ∝ (∆β)−1.

Самые левые и самые правые точки каустики самые яркие.

Интенсивность простейшей модели бинарной линзы

Применяя описанные выше методы, приведем интенсивность в такой простейшей модели. Видим,

что в отличие от одиночной линзы, в геометрическом подходе присутствуют немалые области, в кото-

рых число изображений больше обычного. Волновая картина, то есть картина при низких частотах,

позволяет видеть, что если отдалить центры друг от друга, то мы получим результирующую картину,

как будто нет волнового дополнительного влияния обоих масс на свет, за счет их близкого расположе-

ния.

(a) (b) (c)

Рис. 12: Интенсивность системы из двух масс с соотношением f1 = 2
3 , f2 = 1

3 для разных частот. (a)

ν = 1000, (b) ν = 800, (c) ν = 70.
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Видим, что при больших частотах формируется каустика, а при малых - интерференционная кар-

тина, соответствующая волновому описанию линзирования.

3.3.2 Бинарная система типа “double eliptic umbilic”

Возможна ситуация, когда оба линзирующих объектов - плазма, распределенная по типу "eliptic

umbilic находятся на близком расстоянии друг от друга.

В этом случае следует решать задачу линзировании бинарной системой типа eliptic umbilic, чем мы

и займемся в этом разделе.

Модель “double eliptic umbilic”

Запишем амплитуду фактора усиления интенсивности Ψ(β; ν), зависящую от параметров β =

(β1, β2) и ν, имеющая вид интеграла по приведенным координатам x = (x1, x2),

Ψ(β; ν) =

√

ν

π

∫ ∞

−∞

eiν((x−β)2+ϕ(x))dx

при метрике, созданной астрофизической плазмой, состоящей из двух частей, каждая из которых сама

по себе искажает пространство-время по типу "elliptic umbilic".

Пусть центры одной находятся в приведенных координатах на плоскости линзы, r1 = (a1, a2), а

второй - в противоположных: r2 = (−a1,−a2). Тогда фаза в осциллирующем интеграле примет вид:

ϕ(x) = f1
α((x1 − a1)3 − 3(x1 − a1)(x2 − a2)2

1 + (x1 − a1)2 + (x2 − a2)2
+ f2

α((x1 + a1)3 − 3(x1 + a1)(x2 + a2)2

1 + (x1 + a1)2 + (x2 + a2)2

где коэффициенты f1 + f2 = 1.

Для примера разместим центры на координатной оси от центра: r1 = (a, 0), r2 = (−a, 0). Фаза в

осциллирующем интеграле примет более простой вид:

ϕ(x) = f1
α((x1 + a)3 − 3(x1 + a)x22

1 + (x1 + a)2 + x22
+ f2

α((x1 − a)3 − 3(x1 − a)x22
1 + (x1 − a)2 + x22

,

Интенсивность модели “double eliptic umbilic”

Рассмотрим случай с геометрией f1 = 0.4, f2 = 0.6, и a = 0.5. Параметр обоих “eliptic umbilic”

положим α = 1.

Применяя описанные выше методы, нетрудно получить графики интенсивности, которые для α = 1

представлены на рис. 13.

(a) (b) (c)

Рис. 13: Бинарная система “double eliptic umbilic” при α = 1 для разных частот. (a) γ = 4, ν = 1000, (b)

γ = 0.7, ν = 200, (c) γ = 2.0, ν = 50.
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В соответствии с теорией волнового линзирования, видим, что при увеличении частоты, наблюда-

ется каустика, а при уменьшении - волновая дифракционная рябь, которую как раз позволяют наши

вычислительные методы изобразить. Как и для случая двух масс, каустический график далеко не

такой, какой был в случае линзирования каждой фазой поотдельности.

Несколько другая ситуация становится, если увеличить параметр до α = 2, ее представим на рис.

14. Здесь при уменьшении частоты каустический изогнутый треугольник дополняется еще одним. В

приделе низких частот появляется знакомая волновая рябь.

(a) (b) (c)

Рис. 14: Бинарная система “double eliptic umbilic” при α = 2 для разных частот. (a) ν = 800, (b) ν = 200,

(c) ν = 50.
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4 Заключение

Гравитационное линзирование - актуальный метод, применяющийся в интерпретации астрономи-

ческих результатов для поиска экзопланет, определения параметров галактик и квазаров, изучения

черных дыр или темной материи, являющийся темой многих современных статей. Особенно актуальна

тема стала при изучении быстрых радиовсплесков, или FRB-ов, природа которых всё еще не объяснена.

В отличие от геометрического подхода, который сильно был развит в конце прошлого века, волновой

подход, который используется в этой работе, всё еще не приобрел массовое применение ввиду сложно-

сти вычислений и необходимости в отдельной математической подготовке. В данной работе приводит-

ся простой алгоритм моделирования одиночных и двойных линзрующих систем в рамках волнового

подхода. Используемый в данной работе метод Пикара-Лефшица находит применение в космологии,

оптике, квантовой механике, физическом моделировании, за счет его широких границ применимости.

В работе продемонстрировано, как с помощью метода Пикара-Лефшица определить, а затем вы-

числять простейшие одномерные и двумерные осциллирующие интегралы, изображать результаты в

виде графиков интенсивности. Были исследованы одиночные системы “generic peak”, “degenerate peak”,

“elliptic umbilic”, а также бинарная система из двух масс, и бинарная система из двух объектов типа

“elliptic umbilic”.

Обобщение полученных результатов на трехмерный случай, статистический анализ графиков нор-

мализованных интенсивностей, вызванных реалистичными ансамблями плазменных линз, являются

актуальными темами дальнейших исследований.
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