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Abstract

The study develops Green’s function formalism for the description of the quan-

tum dot that is coupled to an arbitrary number of superconducting leads. Such

formalism allows computing the bound states and current numerically for arbitrary

combinations of the microscopic parameters. The Andreev levels and supercurrent

as a function of phase differences are shown for the two- and three-terminal Joseph-

son junctions with the quantum dot. The dependence of the levels on the change of

on-site energy of the dot, superconductive gap, and the coupling strength are plot-

ted. The results are approximated by analytical formulas for two- and three-terminal

junctions, and they are applied to calculate the diode efficiency of the latter. This

approach has been extended from the case of a dot to a general continuous three-

dimensional non-superconducting central domain with couplings to superconductors

at different points. The expression of density of states is provided. Our methods can

be applied to the analysis of spin-qubits and the creation of superconductive diodes.

Last compilation: April 24, 2025.
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Summary

The analysis of multiterminal Josephson junctions (MTJJ) is at the forefront of re-
search in condensed matter physics. The potential applications of such structures vary
from topological quantum computations to dissipationless nanoelectronics. This work
attempts to provide a framework, within which tunneling properties of MTJJ can be
obtained algorithmically beyond the tunneling limit. First, we review the fundamental
properties of superconductivity, such as Josephson relations, the BCS model, and Andreev
states. Then we provide an introduction to the methods for calculating current, discuss
the concept of Green’s function (GF) and Nambu notation, finishing the review with two
examples of MTJJ. After that, a detailed description of the GF formalism is presented,
which was developed by the authors for a quantum dot (QD) with Zeeman interaction
coupled to an arbitrary number of superconducting leads. By using the Nambu formal-
ism, we combine the effects of couplings to the superconductive terminals to the effective
self-energy, which allows us to obtain the full GF of the dot and superconductors. From
such formulas, the expressions of the tunneling density of states and the current are estab-
lished. The final formulas for numerical calculations and some examples of the code are
provided. The validity of our approach is tested in the case of two-terminal junctions by
finding the analytical expressions for the Andreev levels and the current as a function of
phase difference. Further, we establish these quantities for the three-terminal Josephson
junction and provide numerical results. Additionally, the diode efficiency as a function
of the transparency of the junction is calculated. Finally, we extend the GF formalism
to the case of continuous three-dimensional non-superconductive region and provide a
formula for the density of states. Our method allows one to determine the dependence
of the Zeeman splitting of bound states on the terminal phases, which can be applied to
analyze possible ways of manipulating the Andreev spin qubit.
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Introduction

Over the past century, the field of superconductivity has evolved from a niche interest
of a few specialists to a cornerstone of condensed matter physics, distinguished by eight
Nobel Prizes and the development of hundreds of methods and proposed applications.
Superconductivity (SC), a phenomenon characterized by persistent current or zero elec-
trical resistance at low temperatures, was first discovered in 1911 by the Dutch scientist
Kamerlingh Onnes. Since then several genius theoretical approaches had been proposed
before the most famous theory of condensed matter, the theory of superconductivity by
Bardeen-Cooper-Schrieffer (BCS), was formulated in 1957 [41]. This theory explained the
phenomenon by the new state of electrons, in which one of them pairs up with another
having the opposite spin and direction of movement (known as “Cooper pairs”). These
pairs are thousand times larger than the atomic difference of the material lattice and exist
only because of their effective interaction, mediated by the material. In the BCS frame-
work, the main parameter of a superconductor is a complex-valued function ∆ = ∆eiϕ,
called “the gap function”. Its amplitude ∆ is responsible for the minimal energy of exci-
tations of the condensate and the φ, called “the phase”, plays the same role as the phase
of a wave-function in quantum mechanics.

Soon it was realized that superconductive wires not only allow ow current to be trans-
ferred without energy loss, but also can be used to build special devices with unique prop-
erties. In 1962 Brian Josephson predicted the law of supercurrent flow through a weak
coupling between two superconductors [42]. Such current flows at equilibrium and depends
on the phases of the superconductors and such couplings are known as superconductor-
normal metal-superconductor (SNS) contacts. In 1963 Alexander Andreev proposed a
peculiar process of transformation of an electron to a hole (absence of an electron) if
it falls on the border between normal region and superconductor [43]. Such process pro-
duces lower energy states in the normal region between superconductors, similar to bound
states in potential wells in quantum mechanics. These discoveries were the fundamental
breakthrough and established a new part of condensed matter theory, which is sometimes
referred to as “mesoscopic physics of superconductors”. The development of this field
led to the creation of numerous gadgets, while more devices were theoretically predicted,
e.g. fast switches and transistors [94], semiconductors [58], nanotubes [87], ferromagnets
[86], graphene [85], topological insulators [84], quantum optics [55], high-speed digital
electronics [54] or creation of artificial atoms [51].

The important direction in the tunneling physics is the analysis of multiterminal
Josephson junctions (MTJJ). Such devices are the generalization of the SNS contact for
more than two superconductors, typically for three (3TJJ) or for four (4TJJ) terminals,
and for a different central region. They may be of interest for topological quantum infor-
mation processing applications [61, 60], provide a possibility of engineering topologically
protected matter of dimension higher than three [33, 34, 7], can be used for establishing
ultralong quantum correlations [28], and potentially be a part of magnetic field sensors
[35], thermal circulators [36], etc. Another hot-studied topic is the diode effect in the
MTJJ [7, 12]. This occurs in some configurations of phases, when the critical current in
one terminal is stronger than in the others (becomes direction-dependent), similar to an
electronic diode but without energy dissipation. Another recently proposed application
is connected to creation of Andreev spin qubits. In such setups, the Andreev levels are
brought to the state in which spin-1/2 persists over a long time, thus being a quantum
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bit [57]. Special materials with spin-orbit (SO) and Zeeman couplings allow for quan-
tum operations and read-out of spin states. In November 2024, it was proposed to make
an Andreev spin qubit with three-terminal Josephson junction and their coupling was
analyzed [37].

For achieving such engineering possibilities, several theoretical methods have been
developed. The best-known approaches can be categorized into three types. The first
one is the tight-binding numerical approach, when the mode is discretized into sites and
efficient matrix algorithms are used for the numerical solving of the discretized equations
of motion. It played a key role in the creation of the popular Python library for the
computation of electron transport Kwant [81, 82]. It is closely related to the second type
of methods: the Green’s function (GF) class of approaches [109, 108]. This is a vast class
of methods, ranging from quantum field theory applications to the tight-binding GF. The
third celebrated class of methods is the scattering matrices approach. It originates from
the 1980s, when the Bogoliubov equations, which directly follow from the BCS model,
were used to study reflectance at boundaries and bound states in junctions [80]. Further
on, in the 1990s, Carlo Beenakker proposed his celebrated determinantal method [71],
which has been successfully applied to describe uncountable number of models.

The present thesis pursues two main goals: to provide a general formalism that can
be applied systematically to any type of MTJJ and to obtain some non-trivial properties
of a three-terminal system. Methodology-wise, we describe a general approach to the
analysis of discrete and continuous multiterminal junctions, while application-wise we
demonstrate the method by revealing the physical properties of a QD coupled to several
SC leads. This is achieved through providing analytical and numerical results of the
bound states and current, showing the influence of microscopic input parameters of the
model on the macroscopic quantities. The knowledge of how exactly the spin splitting of
the levels depends on the phase differences of the SC leads can be used for a realization of
a spin qubit and properties of the tunneling current can be used for increasing the diode
efficiency.

The structure of the thesis is as follows. First, in Sec. 1, we provide an overview of
the most fundamental methods that will be used later in our work. Sec. 2 is dedicated
to the description of the multiterminal QD model. We show how GF formalism can be
developed and provide formulas for the bound states and the current. Then, we present
the numerical results for S-QD-S junction and 3-terminal junction. Later, in Sec. A, we
generalize our theory to continuous models. We start with a simplified model to make the
formulas comprehensible and then provide a version for a general case. Finally, several
supplementary sections are provided in Sec. B: the glossary in Sec. B.1 and a mind map of
the reviewed models in Sec. B.2, and the key formulas of our theory in Sec. B.3. We finish
by two reviews of scattering matrix approach B.4 and of Majorana states B.5, derivations
for the discrete B.6.1 and for continuous B.6.2 GF formalisms, and examples of the Python
code in Sec. B.7, which was used to obtain the plots.

Y. Holubeu is thankful to Dr. Kiryl Piasotski for introduction, guidance and clarifying
numerous issues. Besides, Y. Holubeu acknowledges Chat GPT’s assistance with the
Python code and text editing as well as work of numerous programmers and engineers
that provided us with an opportunity to find and type articles and communicate through
the Internet.
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1 A Short Review of Basic Concepts and Methods

In this section we will increase the arsenal to be used for our main attack: description
of the multiterminal junction (see Sec. 2 and Sec. A.2). However, due to the volume
restrictions of this thesis, only key points will be presented with references to the original
works.

1.1 The Basics of Superconductivity, Josephson Effect, Andreev

States

The Josephson Effect

The Josephson effect is typically discussed in the setup called SNS contact or Josephson
junction (JJ), which is shown in Fig. 1.1. On the left, we have a superconductor with
phase ϕL and density of Cooper pairs ns1 and the analogous one on the right. The normal
region between them is a short one, so the Cooper pairs from different SC “feel” each other.
By this we mean that their wavefunctions overlap, thus there can be a tunneling. Instead
of N there can be an insulator (I) or other materials, as will be reviewed later. There are

Figure 1.1: Josephson junction. Credit: [55]

two famous laws for a such supercurrent: the first Josephson equation (or current-phase
relation, or CPR) and the second Josephson equation (or voltage-phase relation), which
are as follows:

I = Ic sinφ, (1.1)

φ̇ =
2Ã

Φ0

V. (1.2)

Here Ic is the critical current, which can be obtained from the Josephson coupling energy
EJ of the junction Ic = (2e/ℏ)EJ ; the phase φ := ϕL − ϕR is the phase difference
of the two superconductors; V is a electrostatic potential difference, which can also be
applied; Φ0 = h/2e is the magnetic-flux quantum. This equations can be obtained in
several ways, ranging from solving Schrödinger equation for a 2×2 Hamiltonian [20, 49]
to the calculation of susceptibility by using Green’s functions of the microscopic theory
of superconductivity [107] (to be reviewed below). It is important to understand that
Josephson current takes place in thermodynamic equilibrium. Often JJ is realized when
the proximity effect occurs, which consists of the overlapping of the wavefunction of
Cooper pairs in the normal region. Such regions can also exhibit superconductivity, which
in these cases is referred to as a “proximity induced”.

The generalization of the equation (1.1) for the case of other contacts and accounting
for various phenomena is the result of hundreds of studies conducted over the past 60
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years. For example, the critical supercurrent Ic as a function of temperature is often
obtained by the prominent formula known as “Ambegaokar-Baratoff relation”:

I0 =
Ã∆

2eR
th

∆

2T
, (1.3)

where R is the resistance of N region. This is the maximal current that can occur in
the junction and often CPR are normalized to it (see Fig. 1.3) Besides, some junctions
have not a sine(φ), but a modification. For example, there are so-called “Ã-junctions”
or “φ-junctions” [45]. A detailed review of CPRs was done by Golubov et al. [68].
Another important physical effects can be seen by calculating and measuring current-
voltage curves, the review of which can be found in [67].

There are several reasons why Josephson junctions are important. With JJ, it is possi-
ble create superconducting circuits, which could realize qubits (make so-called “transmon
qubit”) and see the phenomena of their interaction with light. This field is known as
“circuit quantum electrodynamics”. A perfect introduction to it is provided by Blais et
al. [52]. Another important direction is that two JJ can be combined in a loop and
the penetration of flux through it, well-known SQUID, produces the flux quantization,
Fraunhofer pattern of the current and other effects [20]. This leads to many applications,
for example, in sensing of magnetic field, MRI in medicine etc.

The BCS Hamiltonian

The key idea of the BCS theory it is that at low temperature electrons in some metals
form a broad pairs (so-called Cooper pairs) because of the exchange of lattice vibra-
tion (which is described in the framework of condensed matter by special quasi-particle
“phonon”). This can be expressed by a famous mean-field Hamiltonian that effectively
describes interactions near the Fermi level. It can be constructed as follows. As usual, we
start by writing the first term of a kinetic energy, which we count from the Fermi level,
since at low temperatures the majority of electron states in metals are occupied. Then we
add a hermitian potential term with two parts. The first part has two creation operators
that create a Cooper pair, and the second one that annihilate the same pair. The BCS
Hamiltonian for 3D continuous superconductor has the form [41, 3]:

HBCS :=

ˆ

drÈ 
α(r)

[
1

2m∗

(
p−

e

c
A(p)

)2
− µ

]
Èα(r)−

−
1

2

ˆ

drdr′
{
È 
α(r)È

 
β(r

′)∆βα(r
′, r) + ∆̄αβ(r, r

′)Èβ(r
′)Èα(r)

}
. (1.4)

Here the operator1 È 
α(r) creates a normal electron with spin ´ = +,−; the momenta P =

p− e
c
A(p) takes into account existence of the vector potential A from an electromagnetic

field; µ is the Fermi energy. In this notation the second term uses the matrix order
parameter, which satisfies ∆̄αβ(r, r

′) = −∆αβ(r, r
′)∗, since the Hamiltonian is hermitian.

The ³, ´ ∈ {↑, ³} are the spin components, over which the summation is assumed. We will
refer to the BCS Hamiltonian as “s-wave superconductor”, because of the trivial angular
dependence (the notation is the same as in quantum mechanics, where there are s, p, d
orbitals).

1Relation of them to a wave-function is reviewed in Sec. 1.3.
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BCS Hamiltonian is often used in the discretized version, when it is assumed that
there are just points in space, like atoms, that can interact with each other with different
strength. This is especially useful for tunneling models, where it was applied, for example,
to create a popular software package [81]. The discrete version of the BCS Hamiltonian
looks as follows:

HBCS :=
∑

kσ

Àkc
 
kσckσ +

∑

k

(
∆c k↑c

 
−k³ + h.c.

)
. (1.5)

Here c kσ creates an electron with spin Ã at the single-particle energy level Àk. Usually
Àk is calculated from chemical potential, i.e. Àk := ϵk − µ, and ∆ν = |∆| exp (iϕ) is the
complex superconducting order parameter. The meaning of terms of a such Hamiltonian
is the same: c k↑c

 
−k³ creates a Cooper pair (two operators create two electrons), and the

h.c.(c k↑c
 
−k³) = ck↑c−k³ annihilates it. By indices k and ↑, ³ we mean a special value of

spin and momenta, so operators with these different indices cannot be obtained one from
another by any mathematical transformations. Such expression is more compact than the
previous one (1.4).

More details of the BCS theory and its extensions can be found in the celebrated
textbooks [106, 107, 117].

The Nambu Basis in Superconductivity

The BCS Hamiltonian and its extensions are usually written in the so-called “Nambu
basis”, which will be discussed now. This notation is often used in articles about tun-
neling models and makes the form of equations much more compact. To understand its
significance, one can attempt performing some calculations suggested in Appendix B.6.2
and B.6.1 in non-Nambu notation and compare the amount of writing.

The typical expression of the BCS Hamiltonian (1.4) is long. For the case of A = 0
we can rewrite it in a more compact way [1, 66]

H =

ˆ ∞

−∞

dxÈ̂ (x)h(0)È̂(x) +
1

2

ˆ ∞

−∞

dx

[
È̂ (x)∆̂(x)

(
È̂ (x)

)T
+ h.c.

]
, (1.6)

by a two-component spinor È̂(x) :=
(
È̂↑(x), È̂³(x)

)T
and h(0) := p2

2m
−µ. Spin components

Ã =↑, ³ of È̂(x) are the field operators obeying the fermionic anticommutation relations
{
È̂σ(x), È̂σ′ (x

′)
}
= 0,

{
È̂σ(x), È̂

 
σ′ (x

′)
}
= ¶σ,σ′¶ (x− x′) . (1.7)

It is more compact now, but it can be rewritten even in more symmetric form:

H =
1

2

ˆ ∞

−∞

dxÈ̂ (x)HÈ̂(x), H :=

(
p2

2m
− µ ∆

∆∗ − p2

2m
+ µ

)
. (1.8)

This formalism is called a “reduced Nambu basis” and Ψ̂(x) is called a “Nambu spinor”.
Now we have a definitely nice and compact expression.

For the discrete models, this notation can be introduced in a similar way2. Now the
discrete Nambu spinor is defined as

Èk :=

(
ck↑

c −k.³

)
. (1.9)

2See Sec. 14.4.1 in [111].
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Its conjugate is È 
k =

(
c k↑, c−k³

)
and both of them satisfy

{
Èkα, È

 
k′β

}
= ¶αβ¶k,k′ . The

kinetic energy in (1.5) can be written as

∑

k

ϵk

(
c k↑ck↑ − c−k³c

 
−k³

)
=
(
c k↑, c−k³

)[ ϵk 0
0 −ϵk

](
ck↑
c −k³

)
, (1.10)

where the minus in term c−k³c
 
−k³ originates from anticommutive change of the fermions.

The total Hamiltonian can be rewritten in terms of matrix multiplications by Pauli ma-
trices as:

ϵk
∑

σ

c kσckσ +
[
∆̄c−k³ck↑ + c k↑c

 
−k³∆

]
=
(
c k↑, c−k³

)[ ϵk ∆
∆̄ −ϵk

](
ck↑

c −k³

)

≡ È 
k

[
ϵk ∆1 − i∆2

∆1 + i∆2 −ϵk

]
Èk ≡

≡ È 
k [ϵkÄ3 +∆1Ä1 +∆2Ä2]Èk,

(1.11)

where we have introduced ∆1,∆2 such that ∆ ≡ ∆1 − i∆2, ∆̄ ≡ ∆1 + i∆2 and

Ä⃗ ≡ (Ä1, Ä2, Ä3) :=

([
0 1
1 0

]
,

[
0 −i
i 0

]
,

[
1 0
0 −1

])
. (1.12)

The Nambu notation is often referred to as “particle-hole space”, since here the first
component means particle, and the second one means a hole. A good example of models
analyzed with the help of this formalism can be found in [83, 4]. Another example of the
Hamiltonian in the Nambu space is the Eq. (B.71).

Now, suppose there is a term in Hamiltonian that also has spin-dependent terms (e.g.
(B.69)). Now, the so-called “extended Nambu notation” should be used, which is defined
as follows:

H =
1

2

∞̂

−∞

dx Ψ̂ (x)HΨ̂(x),

Ψ̂(x) :=

(
È̂(x)

iÃy(È̂
 (x))T

)
≡




È+

È−

È 
−

−È 
+


 ,

H :=

(
h(0) ∆(x)

∆∗(x) −Ãyh
(0)∗Ãy

)
.

(1.13)

Now the tensor product between two Pauli Ã- and Ä -matrices of different types is assumed
and the resulting matrix Hamiltonian has a 4×4 dimension. Another property, which is
widely used in derivations, it the relation of symmetry:

C
[
Ψ (x)

]T
= Ψ(x), C := ÄyÃy =




0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0


.

and the commutation relation:

{Ψa(x),Ψb (x
′)} = Cab¶ (x− x′) ,

{
Ψa(x),Ψ

 
b (x

′)
}
= ¶ab¶ (x− x′) .
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The Nambu fields of the same field do not satisfy the usual fermionic anticommutative
relations. Instead, the Cab¶(x− x′) matrix appears and this is used in many derivations.
The Hamiltonian possesses chiral symmetry:

CHn(p, x)C = −H∗
n
(p, x). (1.14)

All of this can be checked by easy matrix multiplications.
We will finish discussing Nambu notation with commenting on its features. There is a

second way of defying the spinor Ψ̂(x), the charge conjugation C and the Hamiltonian H

matrices: Ψ̂(x) :=
( ψ̂(x)

[ψ̂ (x)]
T

)
, C :=

(
0 1

1 0

)
and H(p, x) :=



[
p2

2m
− µ

]
i∆Ãy

−i∆∗Ãy −
[
p2

2m
− µ

]

,

were 1 is a unit matrix. Here the matrix iÃy is in another part. These definitions,
although valid, are not as popular as the ones presented above. Another feature is that
often transformations in the Nambu basis produce some constant terms, which we neglect,
since they do not play role in physics of the system. Also, there is a tricky minus in the
last component of the Nambu spinor in (1.13). To understand which role it plays and to
get used to the Nambu notation we have provided calculations for our model in Appendix
B.6.2 and B.6.1.

The Bogoliubov-de Gennes Equations

A typical way of obtaining some physical properties of the BCS model 1.4 is by trans-
forming the electron operators È to an expression with new fermion operators µn by the
famous Bogoliubov transformation. This transformation mixes the creation and anni-
hilation operators: Èα(r) =

∑
n

{
un(r, ³)µn + vn(r, ³)µ

 
n

}
. Here the {un(r, ³), vn(r, ³)}

are the wavefunctions of a particle and a hole, which form a complete set of orthogo-

nal states {un, vn}, and µ-s obey Fermion anti-commutation relations:
{
µn, µ

 
n′

}
= ¶n,n′

and {µn, µn′} = 0. This transformation diagonalizes the BCS Hamiltonian, H = Es +∑
n εnµ

 
nµn (here n runs over all positive energy states and Es is the ground-state energy).

They obey the Bogoliubov or Bogoliubov-de Gennes (BdG) equations:

εu(r, ³) = +

(
1

2m∗

(
φ−

e

c
A(r)

)2
− µ

)
u(r, ³) + ∆αβ(r, φ) v(r, ´), (1.15)

εv(r, ³) = −

(
1

2m∗

(
φ−

e

c
A(r)

)2
− µ

)
v(r, ³) + ∆ 

αβ(r, φ) u(r, ´) . (1.16)

Here ε is an eigenvalue (number) and in last term, the sum over ´ is assumed. These
equations are a mean-field qusiclassical approximation and provide a powerful tool for
numerous models (they allow one to take into account local electronic structure, disorder,
magnetic field, to name a few) [70].

The Andreev Reflection and States

An important simplification of the Bogoliubov equations can be obtained for the prob-
lem of heat transport of an inhomogeneous superconductor. For this case after transfor-
mation |φ(r)ð = eipF ·r/ℏ |Ψp(r)ð and some simplifications so-called Andreev equation can
be obtained [3, 97]:

[
εÄ̂3 − ∆̂(p, r)

]
|Ψp(r)ð+ iℏvp ·

(
∇− i

2e

ℏc
A(r)

)
|Ψp(r)ð = 0. (1.17)
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Here pF is the Fermi momenta, Ä̂3 is the third Pauli’s matrix, p = pF p̂ and vp = vF p̂,

vp is a Fermi momenta and velocity at different unit directions p̂, and ∆̂ is a matrix with
∆ parameters (it is different for different parity of the Cooper pairs). Finally, |Ψp(r)ð
should ba understood as the Andreev spinor |Ψp(r)ð := col (up↑(r) up³(r) vp↑(r) vp³(r)).

The Andreev equations and formulas for the Andreev levels are exact in the so-called
Andreev limit. In this limit, the chemical potential µ is considered to be the biggest
parameter of the system. This step is often made in the calculations: the calculation of
the GF model is followed by approximation, which is performed by setting non-leading
by µ terms to zero [1].

This equation opens a window to analyzing of one the most famous phenomena in
mesoscopic physics: Andreev reflection and Andreev bound states (ABS). There are two
types of solutions: one for propagating particles (for ε > |∆|) and another for sub-gap
states (for ε < |∆|). Knowing them, one can solve a problem of a contact between normal
metal (N) and superconductor (S). It turns out that there is a probability for an electron
from normal region to combine with electron from superconductive region and form a
Cooper pair, while a hole will be created and reflected back. This is called “Andreev
reflection”, which is illustrated in the center of Fig. 1.2. The probability of this reflection
is

|rA|
2 =

{ 1 , ε f |∆|,
|∆|2

(ε+
√
ε2 − |∆|2)2

, ε > |∆| .
(1.18)

The electron is changed to hole with unit probability for energies ε < ∆.

N I

v = v − 2n̂(n̂ · v)

−e ,v
p
, ε

−e ,vp , ε

n̂

SN

−
2e

+e ,−vp , ε

−e ,+vp , ε
n̂

NS S

∆ e
iϑR∆ e

iϑL h

e

Figure 1.2: Left: “electron-electron” reflection at an N-I boundary. Center: “electron-hole” reflection at
an N-S boundary. Right: Andreev bound state in SNS contact. Credit: [3].

If we combine two such NS interfaces into a SNS junction with normal length LN , the
following quantization condition for the discrete levels holds was first found by Kulik [44]:

φ− 2 arccos

[
E(φ)

∆

]
− 2

E(φ)

∆

LN
À

= 2Ãn, n ∈ Z, (1.19)

where À is the superconducting coherence length. For short junction LN j À limit, this
formula for a slightly general case is simplified as follows [63, 48, 105]:

Ei(φ) = ±∆

√
1− T iN sin2 φ

2
. (1.20)

Here we assume that there are several modes that are numerated by i and T iN is their
transparency. The explicit form of ABS (Eq. (1.20)) is one of the best-known formula
in mesoscopic physics and sometimes referred as “Beenakker’s formula”. The Eq. in
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the form (1.19) is sometimes generalizes to other setups, for instance, to three-terminal
junctions in [32].

Typical plots of Josephson currents and Andreev states for a point-contact junctions
are shown in Fig. 1.3. The current resembles the first Josephson equation I = Ic sinϕ,
but for the point contact there is a sharp jump at ϕ = Ã. The temperature effects can be
taken into account by typical Matsubara summation methods and make the CPR flatter.
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Figure 1.3: Left: Josephson current as a function of phase bias and temperature for a point contact. The

current is normalized in units of the Ambegaokar-Baratoff critical current at T = 0, Ic0 = π∆(0)
2eRN

. Right:
Branches of ABS of a point-contact JJ as a function of the phase ϑ. Credit: [3].

Finally, the informative comparison the effects of the Zeeman and SO interaction in
on the SNS states and reflection is shown in Fig. 1.4. If both terms are present and the
magnetic field is high, the bound states changes (this regime is called “topological”). Our
main theory will also demonstrate how Zeeman term and change of other parameters
influences the ABS. The detailed description of this effects can be found in [63].
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Applications of ABS arise if a quantum point contact is embedded in an rf-SQUID:
such configuration allows one to make an Andreev level qubit [50]. As a classical bit, it
can be used to host information, but also more peculiar processes like interaction with
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acoustic phonons can be taken into account for it [116]. Thus, Andreev states are a hot-
studied topic for quantum computing applications [53, 56, 57]. We will discuss some of
them below in the context of multiterminal junctions. Reviews of experimental techniques
for the detection of ABS can be found in [103, 63].

The Josephson Current

Supercurrent through junctions is the main quality of interest; therefore, it is necessary
to discuss the best-known and practical tools for analyzing it. It is connected to the
junction’s free energy F and the SC phase difference φ via the following fundamental
relation

I =
2e

ℏ

∂F

∂φ
. (1.21)

Usually, the calculations start with this formula or some of its consequence (e.g. (2.51)).
The energy of the junction can be thought about as usual energy of the wire E =

´ t

0
IsV dt.

Here the electrostatic potential is related to the phase by the second Josephson eq. φ̇ =
(

2π
Φ0

)

V . After the generalization of E to the Gibbs free energy F , both these formulas

give the (1.21).
Another way to see the current is to define it as an operator that acts on BdG Hamil-

tonian:

Îα = 2e
∂Ĥ

∂ϕα
, (1.22)

where ³ is the number of the lead in a multiterminal setup [33] and ℏ ≡ 1 is assumed.
Then, by calculating the expectation value, and solving the time-dependent Schrödinger
equation, one can get a more general expression, Iα(t) =

2e
ℏ

∂E
∂φα

− 2eϕ̇βB
αβ, where the last

term contains the Berry curvature Bαβ
k := −2 Im

[

∂φα ïφkσ| ∂φβ |φkσð
]

. This more general
formula was used, for example, for multiterminal systems in [23], or it can be applied
with Keldysh Green’s function [16], but in our main theory we will use the consequences
of (1.21). A more detailed proof can be found in sec. 2.2.3 of [10].

The free energy can be calculated using several approaches. For finite temperatures
there is a useful general relation in terms of special Matsubara Green function, it can be
expressed as [88]:

I = −
e

ℏ

∂

∂φ
T

∑

ω=2πT (n+1/2)

iÉ

ˆ

dx TrGω(x, x). (1.23)

Here T is the temperature and the Matsubara Green function is a matrix that satisfies
the equation (iÉ−H)Gω(x, x

′) = ¶(x− x′). Another, closely related and fertile direction
is to find the free energy by relating it to the density of states Ä(ε):

F = −kBT

ˆ ∞

0

dεÄ(ε) ln [2 cosh (ε/2kBT )] . (1.24)

Through this relation, the current is connected to the density of states. By expressing
the latter in terms of energy levels, the Eq. (1.24) leads to a well-known formula for short
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SNS junction with ∆L = ∆R = ∆:

I = −
e

ℏ

∂

∂φ

∑

i

Ei tanh
Ei
2T

, (1.25)

where Ei = ∆
√

1− Ti sin
2 φ/2 and Ti is a transmission probability of i-th channel [71, 88].

Another important related property - current noise - can be obtained by decomposing
current into Fourier harmonics and then averaging exponents. It was analyzed in a context
of creation topological mater by Riwar et al. [33]. More methods and formulas for
obtaining current can be found in [68, 111, 105].

1.2 Overview of Mesoscopic SC Methods and Models

Well-known Methods and Models of Junctions with SC

To be fully prepared to study the properties of multiterminal transitions, it is impor-
tant to have a broad picture of approaches, models and have references for their explana-
tions. The most notable ones are summarized below.

For a numerical analysis within the tight-binding approximation, the lattice Green’s
function method was developed by Wimmer et al. [82]. Alternatively, the famous nu-
merical methods are the numerical renormalization group (an example, of its application
to junction through the quantum dot is presented in [98, 99]) or quantum Monte Carlo
simulations (examples of applications to the similar systems can be found in [100, 101]).

The scattering matrix method is the best-known among the analytical methods, which
was developed on basis of the BdG equations (1.15). It was first applied to the SC
junctions in the celebrated work by Blonder, Tinkham, and Klapwijk [80], thus becoming
known as “the BTK approach” [79]. Later, it was further generalized by C. Beenakker to
the multichannel case in [71], which is currently known as the Beenakker’s determinant
method. Now this method is a classical approach in mesoscopic physics, theory of which
is well-developed for semiconductor nanostructures [119], systems with disorder [118], or
open systems [72]. An introduction, derivations, and examples of it can be found in [69]
and the example of calculation of Andreev reflection can be found in [105]. There are
many applications as well to junctions with semiconductive nanowires (which have SO and
Zeeman terms in Hamiltonian) [102]. An example of analyzed semiconducting nanowire
with scattering matrix can be found in [24]. A disadvantage of the scattering matrix
approach is that it cannot take into account all inelastic processes.

The second popular type of approach, the Green’s function method, plays an im-
portant role in condensed matter and is explained in numerous celebrated textbooks
[106, 107, 111]. It is especially well-known for applications to superconductive systems
by Gor’kov’s formalism, which is widely recognized for its famous diagrammatic interpre-
tation in condensed matter. In the 1970s and 1980s, it was also popular to be applied
to SC contacts, which led to the first exact expressions of the current and bound states
[44, 48]. Modern examples of calculation of the current through SN, SNS junction using
Gor’kov’s method can be found in [107]. For nonequilibrium problems and numerical
calculations, the NEGF method is often used. It was pioneered in the 1960s by the classic
work of Martin, Schwinger [47], Kadanoff, Baym [108], Keldysh [46], which is reviewed by
Danielewicz [112] and Mahan [114]. An example of applications of NEGF to electronic
transport can be found in [110]. The Keldysh formalism, which can also be considered
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as part of NEGF methods, provides a famous and powerful tool for analytical calcula-
tions of the current [96]. See [6, 14, 15] for examples of its applications to multiterminal
junctions. The overview would not be complete without mentioning the Eilenberger and
Usadel equations, famous superconductivity frameworks that also rely on quasiclassical
Green’s function. Both are also traditionally used for describing disorder and proximity
effects and are applied to tunneling problems, for example, for SFIFS, SNINS, and SIS
contacts [95]. The GF methods for disorder and superconductive contacts are profoundly
reviewed in [96]. Another typical generalization is the GF of the multilayered systems
[1, 97]. Finally, from the tunneling Hamiltonian the transport properties can be obtained
by using a special local representation and Keldysh’s GF, which was found by Caroli
et al. [92]. Within this method, a microscopic theory of Multiple Andreev reflections
(MAR) has been developed by Cuevas et al. [91]. A closely related method for arbitrary
heterostructures was proposed by Piasotski et al. [1], which had a strong influence on
the present work. For special junctions with several channels and Majorana states, a
generalized framework based on boundary Green’s function (BGF) is developed in [21].

The basic SNS contact can be generalized in a variety of ways. For instance, there
are numerous studies of a junction with various types of ferromagnets (SFS junctions)
[89, 74]. The description of S-QD-S and N-QD-S systems with a variety of numerical and
analytical methods is provided in [4, 104]. More details about the quantum dots that are
coupled to superconductors can be found in [5]. A description of the mean-field methods
for quantum dot can be learned from [75] and a discussion of the model, variation, and
alternative approaches is in [76]. The Andreev states and reflection for ferromagnets,
ferromagnetic insulators were fully investigated using the scattering matrix approach in
[74].

One of the most profoundly studied models is the that of junctions with quantum
dot (QD). Its applications range from the designing artificial atoms and molecules [8] to
quantum-coherent nanoscience [9]. The theoretical approaches for such systems developed
decades ago are still ongoing. The basic references for such models are works by Mart́in-
Rodero and Levy Yeyati [4, 5], where numerous properties of different models with QD
are examined. Another excellent description of the ABS with discussion diagrammatic
approach can be found in [10]3. An example of a modern research of a QD system that
uses an approach similar to ours (Sec. 2), is presented in [11], but it is focused on the
analysis of correlations.

Besides, in the last decades, the special direction blew up condensed matter physics.
It was predicted that special superconductors or special configurations of junctions could
host very stable (so-called “topologically protected”) states. Such states would be con-
structed out of Majorana fermions - special construction of electron and hole excitations
[63, 62]. A pair of Majorana has non-Abelian exchange statistics (rotate with neither with
spin 1 of spin 1/2) and a state of them called “Majorana bound states” (MBS), occur at
precisely zero energy. One of the requirements for such states to exist is that a strong
Zeeman interaction should appear. In such regime, the matter changes to a so-called
“topological state” (see Fig. 1.4, right panel). Such states are described by Majorana
operators, which are self-conjugate, µ = µ . This property means that ‘particle-equals-
antiparticle’, is exactly the same as Majorana fermions in field theory. The great interest
in them arose because of their potential role in quantum computation [59] as topological

3This paper is especially useful because of concise reviews of the methods and examples of derivations
in appendix.
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qubits. However, the process of their preparation is still a topic for debate, though sev-
eral methods were proposed (like the Shockley mechanism, chiral p-wave superconductors,
topological insulators, semiconductor heterostructures) [60]. Another challenge and a big
debate is the method of detection of Majorana bound states, and again, there are several
proposals (like nonlocal tunneling, celebrated 4Ã-periodic Josephson effect, thermal metal-
insulator transition, etc.). Discussion of experimental results by Josephson spectroscopy,
microwave spectroscopy, and tunneling spectroscopy can be found in an excellent review
by Prada et al. [63]. Such materials are called “topological superconductors” (TS) and
the junctions with them have already been studied theoretically (for instance, the current
of the S-TS junction was analyzed in [88]).

Overview of Multiterminal Junctions

The scattering matrix approach is often used for the analysis of the multiterminal
junctions [26]. It was proven that a special Kramers degeneracy of Andreev levels, which is
connected to time reversal symmetry, can be broken in multiterminal Josephson junctions,
which is a fundamental requirement for the creation of Majorana states [25]. Another
direction is to consider the overlap of ABS of two parts of the system (Andreev molecule)
[27, 29]. This approach was used in the data analysis of experiment [40]. Attempts of
generalizing this method are ongoing, for example, a graph theory was used to prove
that it is possible at all to obtain the ABS for any number of terminals [32]. For three-
terminal Josephson junctions with the scattering matrix approach the ABS and current
were calculated in [22], and Shapiro plateaus for case of time-dependent voltage were
analyzed in [23]. Such devices have finite energy band crossings and host a diode effect
(when current flows to one direction stronger than to another) with different phases [7].

There are several recognized Green’s function methods for multiterminal junctions as
well, which often differ from one model to another. The description of the S-QD-S-S
junctions with a variety of methods is done in [5, 75]. For the S-N-S-S contact the density
of states and proximity effect was analyzed in [13]. This model can be generalized by
taking into account topological wires, for which low-energy Green’s functions, as well
as conductance, noise correlations, and the supercurrent-phase relation, are discussed in
detail in [16]. The basic MTJJ with topological superconductors were first analyzed in
[14] and later by a mean-field approach in [17] by Zazunov et. al. More general models
that have also a quantum dot inside of a contact (like S-QD-TS-TS junction) were also
discussed by the same authors a year later [19]. Another big direction is an analysis of the
noise and correlations of the current in MTJJ with Green’s functions, which is reviewed in
[6]. Besides, MTJJ can be analyzed by the Usadel equation [30], which is a simplification
of Eilenberger’s equation and is used in the diffusive limit. With this method and by
Keldysh Green’s function pairing symmetry can be analyzed [31].

To imagine, how in experiments MTJJ looks like, let us look at one that was analyzed
in 2020 by Pankratova et al. [39]. A four-terminal junction on which the experiment was
conducted is shown in Fig. 1.5. On the left and central figures, the SEM images of the
junction and bigger part of the circuit (which forms a multi-SQUID) are depicted and the
right part illustrates the material components components. The normal two-dimensional
electron gas (2DEG) is confined near the crystalline interface between InAs semiconductor
(which is a typical 2DEG, that plays the role of N region) and a superconducting Al
film (as a typical SC). The SC terminals are electrically isolated by mesa etching. The
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Figure 1.5: Four-terminal junctions analyzed in the experiment of [39]. On the right, we see the material
components of the system.

junction’s scattering region was created by removing the Al layer. Examples of 3TJJ
that were analyzed by Matute-Cañadas et al. [2] are shown in Fig. 1.6. On the (a) a
similar superconductor-semiconductor heterostructure is proposed with similar materials.
Again, aluminium film is placed on InGaAs layer and induces SC by proximity. Along
the 2DEG the Al strings were etched (depicted with red lines), allowing terminals to
exchange Cooper pairs. Yellow elements indicate the gate electrodes, which control the
couplings. Panels (b,c) of Fig. 1.6 show two types of models that describe a trijunction.
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Figure 1.6: Different kinds of quantum circuits for multiterminal Josephson-Andreev junctions. Sub
figure (a) shows material components along the green dashed line. Credit: [2].

In (b), traveling through the middle region is modeled by hopping amplitudes. In (c),
the system is described by effective tunneling energies and is equivalent to 3-terminal-
triangle-Josephson junctions. It is a limit of (b). Parts (d, e, f) show the different types
of the rest of the circuit, that are used for manipulations of its dynamics. In (d), external
fluxes Φ1,2 can be used to fix the phases. In (e), the charging energies ECν of SC parts are
fixed by an applied voltage (so-called islands). In (f), two leads are connected in a loop
with capacitive and inductive energy, and the third lead is a SC island. Recently ABS of
3TJJ was spectroscopically investigated by Coraiola et al. [40] and a broad review of the
experimental methods and materials can be found in [38].
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1.3 Green’s Function Methods

Here we will review the GF methods that will be used in the main theory below.

Concept of Green’s Function

Suppose we have a many-body system that is governed by Schrödinger equation and
has a Hamiltonian of the form Ĥ = Ĥ0 + Ĥint , where second term is a perturbation to
the first one. Each state can be described by a multi-particle wavefunction Èi, where
i indicates, how many particles occupy the state. The set of all functions {Èi} is an
orthogonal one. We introduce the operators [107]

È̂(x) =
∑

i

âiÈi(x); È̂+(x) =
∑

i

â+i È
∗
i (x), (1.26)

where a, a are the creation and annihilation operators. The particles can be bosons and
fermions, and their operators satisfy commutation or anticommutation relations respec-
tively. Usually, the GF is applied to electrons, which are fermions (have spin 1/2), and
have the following anticommutative relations of the operators by definition:

[
a+i , aj

]
+
= a+i aj + aja

+
i = ¶ij, [ai, aj]+ =

[
a+i , a

+
j

]
+
= 0. (1.27)

[
È̂(x), È̂+ (x′)

]
+
= ¶ (x− x′) ,

[
È̂(x), È̂ (x′)

]
+
=
[
È̂+(x), È̂+ (x′)

]
+
= 0. (1.28)

Now, to work with Green’s function, we need to go to the interaction picture, i.e. we
transform:

Ĥint (t) := e(i/ℏ)Ĥ0tĤint e
−(i/ℏ)Ĥ0t È̃α(x) = eiĤ0tÈ̂α(r)e

−iĤ0t, È̃+
α (x) = eiĤ0tÈ̂+

α (r)e
−iĤ0t.

Here x ≡ (t, r) and we do it for both spin components ³. The so-called causal Green’s
function is defined as the average of the chronological ordering of the È operators taken
in the interaction picture:

Gc
αβ (x, x

′) = −i
〈
TÈ̃α(x)È̃

+
β (x′)

〉
.

Here, the brackets ï. . .ð mean that the matrix element
〈
Ŝ0

〉−1

ï0| . . . |0ð is taken from

the ground state of the system with the Hamiltonian Ĥ0, where the factor
〈
Ŝ0

〉
=

ï0|e−iĤ0t|0ðt→∞ is a usual normalization. The chronological ordering for Fermi-operators is

defined as TÂ(x)B̂ (x′) :=

{
Â(x)B̂ (x′) , t > t′,

−B̂ (x′) Â(x), t < t′
. In the case of bosons the expressions

are slightly different.
The causal GF is related to the retarded and advances GFs by

Gc (t, t′) =

{
GR (t, t′) , t > t′,

GA (t, t′) , t < t′.

If the temperature is finite, the Matsubara GF is used (which was seen in (1.23)),
which is defined as

G (r, r′, Ä, Ä ′) := −
〈
TτÈ(r, Ä)È

+ (r′Ä ′)
〉
T
.

19



Here the averaging is done over the thermodynamic ensemble:

ïÂ . . . B̂ðT :=
Tr
(
Â . . . B̂e−βĤ

)

Tr e−βĤ
≡
∑

n

wnïn|Â . . . B̂|nð, wn :=
e−βEn

Z
, Z :=

∑

n

e−βEn .

As usual, ´ = 1/kT . Here instead of the chronological ordering, the definition of the
Matsubara’s GF has ordering w.r.t. imaginary time (so-called Matsubara time Ä = it,
which ranges from -´ to +´). Examples of calculations with Matsubara GF and more
details can be found in [107, 106, 111].

The GF of the system is closely related to the density matrix of the system by

Äαβ (r, r
′, t) = ±i lim

t′→t+0
Gαβ (x, x

′) (1.29)

(“+” corresponds for bosons, “-” for fermions.) Such relation allows one to write the
particle and current density as

n(x) = ±i lim
t′→t+0
r
′→r

TrGαβ (x, x
′) ; j(x) = ± ℏ

2m
lim

t′→t+0
r
′→r

(∇r −∇r′) TrGαβ (x, x
′) ,

where Tr takes the trace by spin indices ³, ´. Taking the limit on t′ > t is necessary due
to the ambiguity of the definition of the Green’s function for t = t′. In our main theory
we will use the formula for the density of states as

Ä(É) = − 1

Ã
Im trG(É + i¸), (1.30)

where G is the full retarded GF of the system.
Most often GF are calculated by Fourier transformation,

Gαβ (x− x′) =

¨

Gαβ(ε,p)e
−iε(t−t′)+ip(r−r

′)dεd
3p

(2Ã)4
, (1.31)

which is substituted into another definition of the GF:

(E − Ĥ)G (r, r′) = ¶ (r − r
′) . (1.32)

This is a well-known quantum mechanical approach, which, for instance, gives the free

particle propagator G (r, r′) =
´

d3k
(2π)3

eik(r−r
′)

E− k2

2m

. For our tunneling models, this approach

will also be used, and instead of the free-particle Hamiltonian we will use the BCS Hamil-
tonian.

Another typical method is used in the systems with interactions (for example, if there
in an interaction with phonons). Interactions can effectively be described by another
operator, called self-energy Σ and the GF can be obtained from the so-called Dyson
equation:

G = G0 +G0ΣG. (1.33)

Here G0 is a GF of the system without interaction, which is often called “bare GF”. This
equation is obtained by decomposing G into a series of G0, and then noting that some
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terms with GF of the particle with which our particle interacts can be combined into Σ
and the rest series can be reexpressed through the original G. The introduction of Σ is one
of the most brilliant ideas in condensed matter, which allows one to describe numerous
of models and make the GF method usable. The main feature of the Dyson equation is
that the desired GF is on both sides.

Many other approaches for calculation of the GFs, self-energies and solving the Dyson
equations can be found in [107], and an example will be presented in our main theory.

Idea of Boundary Green’s Function and GF for Discrete Models

Finally, let us mention the idea of boundary Green’s function (BGF). This is a powerful
tool for many models of condensed matter (see, for example, other works by the authors
of [1]) In simple words, by knowing the GF of one part of a system, one can establish
the GF of the whole system by using some symmetric constructions. Often it is done in
tight-binding models, but here we will show an example of a continuous one. For instance,
for a 1D system with one barrier at the coordinate X, the GF can be expressed from the
bare GF G(0) by

GX(x,x
′) := G(0)(x,x′)−G(0)(x,X)

[
G(0)(X,X)

]−1
G(0)(X,x′). (1.34)

One needs just to plug different coordinates in G(0) and use the simple formula with them.
Now, suppose we have two barriers at the coordinates X, Y (for example, for Josephson
junction). Now we will have:

GX,Y (x,x
′) := G(0)(x,x′)−

−G(0)(x,X)
[
GY (X,X)

]−1
GY (X,x

′)−G(0)(x,Y )
[
GX(Y ,Y )

]−1
GX(Y ,x

′). (1.35)

Here the formula (1.34) is used (for coordinates X and Y ). These formulas vividly illus-
trate what the BGF method looks like. The usage can be exemplified by derivations in
Sec. B.6.1.

For the tight-binding models the GF methods are well-designed as well [82], which
will be presented in the main theory. The GF of such models ar connected to the GF of
continuous ones by limiting the distance between sites a to zero [1]:

x ≡ na, G (x, x′) = lim
a→0

1

a
Gn,n′ . (1.36)

Here x is the continuous coordinate and the n is the atomic site. The GF of the discrete
model (with Hamiltonian hnp′′) is defined between two sites n and n′ analogous to the
continuous case:

∑

p′′

(É¶np′′ − hnp′′)Gp′′n′ = ¶nn′ , (1.37)

whith a Kronecker-¶ function at the r.h.s. More details can be found in the original
article by Caroli et al. [92], where tunneling through a barrier was analyzed and further
generalizations are discussed in [93, 1].
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Green’s Function of BCS Superconductors

Since superconductive GFs are indispensable for many solutions, we deem necessary to
consider at least one textbook example of such GF . In the Nambu notation, in which the

Hamiltonian is HBCS =
∑

k
È 
k
h(k)Èk, where Èk :=

(
ck↑, c

 
−k³

)
, and h(k) := ϵkÃ

3 +∆Ã1,

the Green’s function is obtained just by inverting matrix:

G(É,k) = (É − h(k))−1 =
ÉÃ0 + ϵkÃ

3 +∆Ã1

É2 − ϵ2k −∆2
.

This nice, compact expression can be often seen in a slightly different form or as its
variations. For instance,

Ĝ0 = − 1

É2
n + À2 +∆2

(
(iÉn + Àp) ¶αβ −∆αβ

−∆+
αβ (iÉn − Àp) ¶αβ

)
; ∆αβ = i∆Ãyαβ.

(1.38)

This is a Matsubara GF, where É → iÉ was changed, and it is written in the extended
Nambu space. The Àp = vF (|p| − p0) is the electron spectrum linearized near the Fermi
level, which is a common approximation. Another frequently published expression takes
the form of

g(É) = − iÉÄ0 +∆Äx√
É2 +∆2

. (1.39)

One can think that this is a purely different GF, however, it is not. The integration (1.38)
over the momenta p gives this expression (we will see this explicitly in the main theory).
Finally, there is a third famous formula for the GF of the BCS with a different sing under
the square root. For example, for the transport properties of superconducting contacts
[91] the GF can be written as

ĝr,aLL(É) = ĝr,aRR(É) =
1

W
√

∆2 − (É ± i¸)2

(
−É ± i¸ ∆

∆ −É ± i¸

)
. (1.40)

Here W is connected to normal density of states at the Fermi level by Ä (ϵF ) ∼ 1/(ÃW ),
parameter ¸ → 0. This formula is for ordinary (non-Matsubara) and ± indicates where
the poles in the complex plane should be bypassed.

Finally, there is a simple trick for calculation of GF of SC with different phases [1]:
one can neglect them, and then restore by the transformation:

G (x, x′) = UG(0) (x, x′)U  , U := e
i
4
τzϕ. (1.41)

More practice can be found in such popular textbooks as [111, 107], or see the deriva-
tion of the GF without linearizing approximation in the Appendix F. of [1], and for the
topological SC in the Appendix of [16].

Green’s Function Method by Piasotski et al.

Recently the Green’s function formalism for continuous multi-layered
quasi-onedimensional junctions has been developed by Piasotski, Pletyukhov, Shnirman
[1]. This method takes into account several transport channels and allows one to analyze
transport balistically (more exact that in scattering matrix approach, beyond Andreev
limit), account for the effects of static disorder and local Coulomb interaction. Our final
results of the DOS and the current are similar to the ones reviewed below.
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Algorithm by Piasotski et al.

Suppose we have a 1D system with a several regions (which are numerated by m =
1, ..,M), and in each of which there are several channels of propagation4. Then the density
of bound states (with energy É) can be obtained by the formula

Ä(É) =
M∑

m=0

Äm(É)− 1

Ã
Im

∂

∂É
ln det d (É + i¸)

︸ ︷︷ ︸
≡δρ

. (1.42)

In other words, the DOS is a sum of a contribution from each region, plus the overlap
that is evaluated from the special d matrix, This is a NcM × NcM matrix, which is the
biggest challenge for calculation. Let us consider a double-barrier case, which corresponds
for example to Josephson junction. We will denote the coordinate of the barriers as 0
and W . Here the d matrix is obtained from the Green’s functions from the central
region G(C,0) (which is obtained directly from the central region’s Hamiltonian hc by

G(C,0) (x, x′; z) =
´∞
−∞

dk
2π

eik(x−x′)

z−hc(k) ) and special p0, pW matrices that are calculated from

strengths of barriers U(x) ≡ ∑
m Um¶ (x− xm), and functions LL,LR,LL→C ,LR→C . In

turn the LL,LR are calculated from terms form the left and right region’s Hamiltonian,
Greens’ functions and its derivatives respectively. The functions LL→C ,LR→C are obtained
from the same approach, but from the central region. This is a relatively complicated
algorithm, however the alternative approaches for multilayered systems are also quite
substantial. Let us state the formulas for reference.

d =

(
G(C,0)(0, 0) G(C,0)(0,W )
G(C,0)(W, 0) G(C,0)(W,W )

)−1

−
(
p0 0
0 pW

)
;

p0 = U1 + LL − LL→C ,

pW = U2 − LR + LR→C ,

LL→C :=
AC

2
G

(0,C)
1 (0−,0)[G(0,C)(0,0)]−1 +

i

2
BC ;

LR→C :=
AC

2
G

(0,C)
1 (0+,0)[G(0,C)(0,0)]−1 +

i

2
BC ;

LR :=
AR

2
G

(0,R)
1

(
0+, 0

) [
G(0,R)(0, 0)

]−1
+
i

2
BR;

LL :=
AL

2
G

(0,L)
1

(
0−, 0

) [
G(0,L)(0, 0)

]−1
+
i

2
BL.

Here A,B, C are the terms from the Hamiltonian Hm ≡ 1
2
Amp

2+Bmp+ Cm and index “1”

(in, for example, G
(0,C)
1 (0, 0)) means the derivative w.r.t. first argument. The derivation

is discussed in [1].
More importantly, for the SNS junction, the left and right parts have SC phases, so

we can introduce phase difference φ and ¶ will be also a function of it: ¶Ä(É,φ). Thus we
can use it to obtain the Josephson current from the Gibbs free energy by J(φ) := 2e

ℏ

dF
dϕ

and get the formula for Josephson current:

¶Ä(É,φ) = − 1

Ã
Im

∂

∂É
ln det d(É + i0+,φ), (1.43)

J(φ) = − 2e
ℏβ

∞́

0

dÉ ln
(
2 cosh βω

2

)
∂
∂ϕ
¶Ä(É,φ) = − 1

Φ0

Im
∞́

0

dÉ thβω
2

∂
∂ϕ

ln det d(É+i0+,φ),

(1.44)

where Φ0 := h
2e

(SC magnetic flux quantum) and we have integrated by parts to get rid
of ∂

∂ω
. Now we are left only with the calculation of d. The same setup is applicable for

junctions with Majorana wires, for tight-binding models.

4In another words, if there are Nc channels, the Hamiltonian of the separate region is Nc×Nc matrix.
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Josephson Junction by Piasotski’s et al. Method

To exemplify the use of this approach an example of Josephson Junction is presented.
We will start with writing the Hamiltonian for the left and right regions (¼ = R,L,) and
the delta-potential in the center in the reduced Nambu formalism:

H =
1

2

ˆ ∞

−∞
dxΨ̂ (x)HΨ̂(x) + U(x),

Ψ̂(x) =
(
È̂↑(x), È̂

 
³(x)

)T
, Hλ =

(
p2

2m
− µ ∆λ

∆∗
λ − p2

2m
+ µ

)
,

∆λ := ∆0e
iϕλ ,

φλ := ¼
φ

2
,

U(x) := ¶(x)V0Äz.

The normal (central) region will be modeled the same way, but with ∆ = 0. The key d
matrix after a long computations (where the first challenge is to obtain Green’s functions
for left, central and right region, ans the second is to substitute it into the d-matrix setup)
gives

d(z, φ) = −V0Äz + i
k(+)

m
Äz + i

k(−)

m

z −∆0 cos
ϕ
2
Äx

z
√

1−
(
∆0

z

)2 , (1.45)

where k(±) := kF
2

(√
1 + z

µ

√
1−

(
∆0

z

)2 ∓
√

1− z
µ

√
1−

(
∆0

z

)2
)

and kF :=
√
2mµ. For-

tunately, we can approximate this expression: in the Andreev limit µk ∆ we have

dA(z, φ) ≈ −V0Äz +
ikF
m

z −∆0 cos
ϕ
2
Äx

z
√

1−
(
∆0

z

)2 .

Now, from detd=0 we get the known ABS expression:

ÉA(φ) = ∆0

√
1−D sin2 φ

2
, D := 1/

[
1 + (mV0/kF )

2] ; (1.46)

For the Josephson junction the important simplification can be done to the general for-
mula (1.44) (using the residue theorem), and the current can by a much simpler formula
just from Andreev levels:

J = −2Ã

Φ0

tanh
´ÉA(φ)

2

dÉA(φ)

dφ
.

This formula underlines the connection of the ABS and the current. With this equation
we understand the final analytical expression of the current:

JABS(φ) =
Ã∆0

2Φ0

D tanh

[
β∆0

√
1−D sin2 ϕ

2

2

]

√
1−D sin2 ϕ

2

sinφ. (1.47)

These are the most important properties of the most typical SC junctions.
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1.4 Some Methods for Multiterminal Junctions

Now we will review two famous theoretical works regarding multiterminal junctions.
The first one is an example of a currently popular direction, for which our method can
potentially be used: analysis of topological multiterminal systems, and the other is closely
related to our main model.

Review of Multiterminal Topological Junctions

Let us show, how the formalism discussed in Sec. 1.3 can be applied to the models with
Majorana properties (see Sec. B.5), following Zazunov et al. [17]. We will briefly review
the model of topological SC - conventional SC -topological SC (TS-S-TS) junctions. These
models illustrate what the field of multiterminal junctions looks like currently and can be
used for applications of our main theory, which is a topic for future work. Let us consider
a general three-terminal junction, that is shown in Fig. 1.7. Here all superconductors

Figure 1.7: TS-S-TS junction setup. ¼L, ¼r, ¼LR are the coupling strengths. Credit: [17].

have different gap and order parameters and the couplings are denoted as ¼ g 0. We have
seen recently the Hamiltonians of uncoupled parts. The TS wires spin polarization axes
¹L, ¹R, however, all processes depend only on the relative angle ¹ = ¹L−¹R. The coupling
of the parts of the system can be described in Nambu notation as

Ht =
1

2
Φ 
LWLRΦR +

∑

j=L/R

Ψ WjΦj + h.c.,

WLR := ¼LRe
−iσzφ/2Ãz,

Wj := ¼je
iσzφj/2diag(³j,−´∗

j )
³j := cos(¹j/2)
´j := sin(¹j/2).

Here parameters ¼L/R g 0, and the prefactors ³j and ´j determine the weight of each
spin component through the angles ¹L/R. Φ is a Nambu wave function of a topological
superconductor (see Eq. (B.71)), and Ψ is of an ordinary one (see Eq. (1.8)). The meaning
of the tunneling Hamiltonian is simple: it destroys an excitation in on TS or S part and
creates an excitation in another part with different probability. The exact form on the
Hamiltonian is a result of non-trivial construction of it in ordinary (not Nambu) space
and can be found in [17, 18].

The full bGF, G(É), follows from the uncoupled bGFs as a solution of the Dyson
equation,

G−1(É) = G−1(É)− Σ(É), (1.48)

where G := diag(GL, GR) acts in TS lead space and the self-energy Σ(É) captures the
effects of interactions of TS and S. It can be obtained by integrating out the S lead. All
terms here are 4×4 matrices in lead-Nambu space. For applications of the model we
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review the result:

ΣLL/RR(É) = −
iÉ¼2L/R√
É2 +∆2

S

Ã0,

ΣLR(É) = WLR − ¼L¼R√
É2 +∆2

S

(
iÉ cos(¹/2)e−iφ/2 sin(¹/2)∆Se

−iφ̃/2

− sin(¹/2)∆Se
iφ̃/2 iÉ cos(¹/2)eiφ/2

)
,

With them the Josephson current is obtained by Matsubara summation:

Ij = −iT tr
∑

ω

Ãz [Σ(É)G(É)]jj . (1.49)

Here the trace operation goes in Nambu space.
For example, for S-TS-S junction with fixed ϕL = ϕR the current-phase relation ob-

tained numerically from (1.49) is shown in Fig. 1.8. There are different plots for different
spin angles 4¹/Ã = 4, 3, 2, 1, 0 (from top to bottom). Besides, the values ¼L = ¼R = 1,
∆S = ∆TS, T = 0.02∆TS are assumed. The analytical expression can be obtained in
the limit ∆S → ∞ and ¹ = Ã. It is given by I

(∆S→∞)
L/R (ϕ̃) = −∂EA

∂φ̃
tanh(EA/2T ) (where

EA(ϕ̃) :=
√
Ä(¹)∆TS cos(ϕ̃/2)) and depicted aa a red dashed curve.

−1
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L
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∆
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Figure 1.8: Current-phase relation of a TS-S-TS junction with fixed ϕL = ϕR from [17]. The upper panel
corresponds ¼LR = 0, the lower panel corresponds ¼LR = 1.

Besides, this method allows one to find the current for the case ϕL = ϕR in different
limits (∆S = 0,∆S → ∞,∆ → ∞), find the spin structure of Majorana states in the
TSs and analyze current-phase relation at topoligical transition (where V ≈ Vc) [17], but
these results are beyond this review.

Review of Analysis of Multiterminal Josephson Junctions by Matute-Cañadas,

et al.

The last method that we will review is a method from work by Matute-Cañadas, Tosi,
Levy Yeyati [2]. To our best knowledge, is the closest to our main theory.

The model is as follows. We have three leads with one channel per each, that are
connected to one two-level system. We denote by d σ the operator creating an electron
with spin Ã in that level, so its Hamiltonian is

∑
σ ϵd

 
σdσ. The full Hamiltonian will be

H =
∑

σ

ϵd σdσ+HT +
∑

ν

Hν , HT =
∑

ν,σ,k

tνe
−iφν/2d σcν,kσ+h.c.. (1.50)
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Here Hν is the BCS-type Hamiltonian for each ¿ = 1,2,3 terminal; ϕν is the supercon-
ducting phase on each lead. This model can be simplified by “integrating out” the leads,
so the effective action can be expressed in terms of a dot Hamiltonian and a self-energy
that is responsible for the interaction between the dot and leads.

Heff =
∑

σ

ϵnσ + Un↑n³ +
3∑

ν=1

[
Γνe

−iφνd ↑d
 
³ + h.c.

]
. (1.51)

Here ϵ is the position of the central level referred to the leads chemical potential, U is its
charging energy, and Γν is the tunneling rate to the lead ¿, which has a phase ϕν . This
model is further simplified in the limit where ∆ k É (Andreev limit), and for significant
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Figure 1.9: Top: transition energies E0,1 := E1 −E0 (up to a shift) of the Andreev states along the lines
in the bottom diagrams, with solid (dash-dotted) lines; solid lines: ϵ + U/2=0.5Γ1,2; dot-dashed lines:
ϵ = −U/2. Bottom: E01 versus the phase differences ϕ1,2 for Γ1=Γ2 and different Γ3. Left: Γ3 j Γ1,2;
right: Γ3 = Γ1 = Γ2. Phase ϕ3 is assumed equal to zero. Credit: [2].

Josephson couplings, when

Heff
even ≈ −(ϵ+ U/2)Äz + (ϵ+ U/2) +

∑

ν

Γν(cosϕνÄx − sinϕνÄy), (1.52)

Äi the Pauli matrices acting on the space {|0ðd , |↑³ðd}. From it the spectrum has a form:

E0,1({ϕν}) = −(ϵ+ U/2)∓

√√√√(ϵ+ U/2)2 +

∣∣∣∣
∑

ν

Γνe−iφν
∣∣∣∣
2

. (1.53)

This formula can be understood as follows. Let us assume that phase ϕ3 = 0 (we will count
other phases from it). In the limit Γ3=0 and for Γ1 = Γ2 the states are known Andreev

states (1.20) E0,1(ϕ12)+À = ∓
√
À2 + Γ2

√
1− T sin2(ϕ12/2) and T := (Γ2−¶Γ2)/(À2+Γ2),

where ¶Γ : =Γ1±Γ2. For this case the transition energies E01 = E1−E0 are shown on
the left in Fig. 1.9. The system, as expected, behaves as a junction between the first and
second SC, and depends on their phase difference ϕ1 − ϕ2. The case of Γ3 = Γ1 = Γ2 is
shown on the right in the same figure.

This method can be applied to all three-junction models from Fig. 1.6 and noise in
the external flux can be taken into account [2]. The “perfect phase bias” configuration
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Configuration Control parameters Features

Perfect phase bias

ϕ1e, ϕ2e

À, Γν

- Sensitivity of relaxation to

phase drop distribution

- Appearance of Weyl points

- Connection with Bi-SQUID

Charge islands

ngν

À, Γν

- Mapping to a discrete lattice:

platform for topology

- Controllable disjointness

Hybrid charge/flux

ϕe, ng3

À, Γν

- 0-Ã and bifluxon

in the tunnel limit

⇕
- Simultaneous noise protection to

relaxation and ng, ϕe-dephasing

Table 1: Typical circuit configurations of possible three-terminal junctions. Here À := ϵ + U/2 from the
model in Eq. (1.51). Credit: [2].

was briefly discussed above. For charge islands’ configuration, the total number of paired
electrons NT =

∑
ν Nν +nd is conserved (where Nν is the number of Cooper pairs in each

island, nd can be 1 or 2). The charge that is held because of finite capacitance can be
taken into account by several numbers n⃗g, which enter the island’s Hamiltonian directly.
The hybrid charge/flux configuration is a more general model of the previous ones, where
there is an inductance energy, which also depends on the phases. Charging effects for
Josephson junction with inductance are reviewed in [90]. The features of the junctions
are summarized in Table 1.

Now, having reviewed the methods and a few examples, we are prepared to delve into
the main theory.
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2 Multiterminal Junction: The Quantum Dot Model

2.1 Model and Bound States

The Hamiltonian of the Model

This part offers our analysis of a quantum dot (QD) that is coupled to N leads of one-
dimensional superconductors (SC). The geometry of the setup is illustrated in Fig. 2.1
and all SC are not coupled directly one with another. We will show how the bound states
and the currents in such system can be obtained. The total Hamiltonian of the system
has a form:

Htot = HD +HSC +HT , (2.1)

where the HD is the Hamiltonian of the dot, HSC is one of the all superconductors, HT

is one that couples the dot and superconductors.

dot

SC

SC

1

2
. . .

N

Figure 2.1: Illustration of a quantum dot, coupled to N one-dimensional SC leads.

The quantum dot will be described by

HD :=
∑

σ=±
(V + Ã∆Z)d

 
σdσ, (2.2)

where d σ and dσ are the creation and annihilation operators of fermions (Ã = +,− is
spin) on the quantum dot. The term Ã∆Z takes into account the Zeeman splitting, V,∆Z

are real parameters and non-indexed Ã is +1 or -1. The fermion operators by definition
satisfy

{dσ, dσ′} = {d σ, d σ′} = 0, {dσ, d σ′} = ¶σ,σ′ . (2.3)

Let us introduce a generalized Nambu spinor

D :=
(
d+ d− d − −d +

)T
, (2.4)
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which satisfies

{Da, Db} = {D 
a, D

 
b} = Pab, {Da, D

 
b} = ¶ab, P := ÄyÃy =

(
0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

)
.

(2.5)

This is evident from an examination of the components5. In terms of D we have

HD =
1

2
D 
[
V Äz +∆ZÃz

]
D + const. (2.6)

The proof is straightforward and can be found in Sec. B.6.1. As it was explained in 1.1,
here a matrix product between Nambu spinors and a tensor product between Ä and Ã-
matrices is assumed. This Hamiltonian takes the symmetric form after introduction of
hD:

HD =
1

2
D hDD + const, hD := V Äz +∆ZÃz. (2.7)

All N one-dimensional semi-infinite s-wave superconductors will be described by the
tight-binding case of the BCS model (see review in Sec. 1.1):

HSC :=
N∑

j=1

(
−tj

∞∑

n=1

∑

σ=±
(c n,σ,jcn+1,σ,j + c n+1,σ,jcn,σ,j) + ∆j

∞∑

n=1

(eiϕjc n,+,jc
 
n,−,j + h.c.)−

−µ
∑

σ=±

∞∑

n=1

c n,σ,jcn,σ,j

)
. (2.8)

Here index j tells us the number of the SC lead; term with ∆j is the usual BCS term
that generates the gap and Cooper pairs, and µ is the energy of the wire. The tj is the
hopping matrix element between the nearest-neighbor sites in the jth lead (it is responsible
for the traveling of excitations in the SC), the ∆je

iϕj is the order parameter in the jth SC
terminal, and µ ∼ t k ∆ is the filling factor that tells how many states are occupied6.
Note that at this stage we assume that j ̸= 0 (later we will associate j = 0 with the dot).
The fermionic operators cn,σ,j, as usual, satisfy

{cn,σ,j, cn′,σ′,j′} = {c n,σ,j, c n′,σ′,j′} = 0, {cn,σ,j, c n′,σ′,j′} = ¶n,n′¶σ,σ′¶j,j′ . (2.9)

The only difference between them, compared to the usual ones, is the two indexes n and
j, which determine the position of the point: the j terminal and the n site on it.

We will define the Nambu fermion for superconductor:

Cn,j :=
(
cn,+,j cn,−j c n,−j −c n,+j

)T
. (2.10)

It satisfies

{Cn,j,a, Cn′,j′,b} = Pa,b¶n,n′¶j,j′ , {Cn,j,a, C 
n′,j′,b} = ¶a,b¶n,n′¶j,j′ , P := ÄyÃy =

(
0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

)
.

(2.11)

5Note that index allows us not to bother about transforming the first D into a row to be multiplicable
to second D, which is a column.

6The real chemical potential corresponding to the continuous model can be obtained by adding and
subtracting 2t, then defining µreal := 2t+µ. This will be important for understanding the Andreev limit,
since soon in calculations we will set µreal → ∞, and not µ → ∞.
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These are the same as for D spinors, but with the obvious factors ¶n,n′¶j,j′ . In Nambu
notation, we will have

HSC =
1

2

N∑

j=1

(
−tj

∞∑

n=1

(C 
n,jÄzCn+1,j + C 

n+1,jÄzCn,j) + ∆j

∞∑

n=1

(eiϕjC 
n,jÄ+Cn,j + h.c.)−

(2.12)

−µ
∞∑

n=1

C 
n,jÄzCn,j

)
+ const.

The proof is again straightforward and is presented in Sec. B.6.1. We can introduce an
operator similar to hD, but with three indexes hn,n

′

SC,j:

HSC =
1

2

N∑

j=1

∞∑

n=1,n′=1

C 
n,j h

n,n′

SC,j Cn′,j, (2.13)

hn,n
′

SC,j := −Äz(tj¶n′,n+1 + tj¶n′,n−1 + µ¶n′,n) + (∆je
iϕjÄ+ +∆je

−iϕjÄ−)¶n′,n. (2.14)

This formula can be understood as follows: the ¶-functions select from the sum over n
only the needed7 terms for the sum over n′. Such a new double summation of Cn,j and
Cn′,j is equivalent to the single summation of Cn,j and Cn+1,j.

Finally, the tunneling will be described by the following hopping Hamiltonian

HT :=−
N∑

j=1

t′j
∑

σ=±
(c 1,σ,jdσ + d σc1,σ,j). (2.15)

The term for some j in all N superconducting leads is the usual hermitian term of the
coupled systems. It tells us that in one part of the system an excitation is annihilated
(by operators dσ and c1,σ,j) and created in another part (by operators d σ and c 1,σ,j).
The parameter t′j is responsible for the strength of the coupling. As above, index j is
numerating the SC leads. We assume the sign of the coupling constant t′j to be positive
to make gain in energy without interaction, though another sign works as well, as will
be shown below. Obviously, we impose anticommutative properties for the interchange of
fermions of different types (c and d). The coupling can also be rewritten in the Nambu
notation as

HT =− 1

2

N∑

j=1

t′j(C
 
1,jÄzD + h.c.). (2.16)

The proof is also straightforward and can be found in Sec. B.6.1.

Finally, it is easy to see by matrix multiplication that

PD T = D, PC T
nj = Cnj,

DTP = D , CT
njP = C 

nj,
P := ÄyÃy =

(
0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

)
. (2.17)

7To be more precise, we also need to agree that ¶n′0 for all n′ gives zero, since here for n = 1 we have
¶n′(1−1) which gives from

∑
n′ the term n′ = 0, which we don’t have. We assume that this is obvious.
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These identities allow us to replace daggered spinors with non-daggered, which is essential
derivations of formulas. If these formulas are written without indices, it is assumed that
we can take components from l.h.s. and r.h.s.8

PhDP = −h∗
D, Phk,lSC,pP = −hk,l∗SC,p, P ÄzP = −Äz.

Now, we will change our picture from Schrödinger to Heisenberg one by usual change
of all operators A → AH(t) ≡ A(t) = e

i
ℏ
tHAe−

i
ℏ
tH . We will omit index and understand

that we work in Heisenberg’s picture by time-dependence “(t)” of the operators. The
Nambu fields satisfy the following Heisenberg equation:

i
d

dt
Cnj(t) =

∑

l

hn,lSC,j Cl,j(t)− ¶n,1 t
′
j Äz D(t), (2.18)

i
d

dt
D(t) =hDD(t)−

∑

j=1

t′jÄzC1,j(t). (2.19)

The derivation is shown in Sec. B.6.1.

The Green’s Functions

To see which transport properties follow from this model, we introduce the position
space retarded Green’s functions9 of the combined system as multi-index function Gj,j′

n,n′ .
It will have for all j = 0 spinors of a dot and for j ̸= 0 the SC spinors:

[G0,0
0,0(t)]a,b := −iΘ(t) ï{Da(t), D

 
b(0)}ð , (2.20)

[Gj,j′

n,n′(t)]a,b := −iΘ(t) ï{Cn,j,a(t), C 
n′,j′,b(0)}ð , (2.21)

[G0,j
0,n(t)]a,b := −iΘ(t) ï{Da(t), C

 
n,j,b(0)}ð , (2.22)

[Gj,0
n,0(t)]a,b := −iΘ(t) ï{Cn,j,a(t), D 

b(0)}ð . (2.23)

Here, the lower index zero corresponds to an upper index zero and we have a 4×4 Gmatrix
for each fixed combination n, j, n′, j′. One can access its components by setting indices a, b,
thus all GF of non-Nambu fields are the elements of the matrix-GF G. Such definitions
allow us to see correlations between the dot and each point in every superconductor.

8However, if we have rows and columns, the understanding of positions of indices becomes important.
In some literature of field theory it is proposed to change the position of index by shifting xa → x•a, where
• fixes the empty position of column index (for example, (dx′)

α•
= Λα

•βdx
β•, see [115]). We will avoid

using this notation, as it would unnecessarily complicate the formulas and is not particularly necessary.
We assume the reader understands the context, and we have already agreed on the positioning: the first
index always means the n-th site, the second index means j-th lead, and the last index tells us which of
four components of the Nambu field we take.

9Sometimes they referred to as “Gorkov/Nambu Green’s functions”, but in our model they are only
similar to well-known Gorkov’s GF (see, for example, §17 of [117])
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These GF satisfy the following Dyson equations:

[
i
d

dt
− hD

]
G0,0

0,0(t) +
N∑

j=1

t′jÄzG
j,0
1,0(t) =¶(t), (2.24)

∑

n′′

[
i
d

dt
¶n,n′′ − hn,n

′′

SC,j

]
Gj,j′

n′′,n′(t) + ¶n,1t
′
jÄzG

0,j′

0,n′(t) =¶n,n′¶j,j′¶(t), j, j′ ̸= 0, (2.25)

[
i
d

dt
− hD

]
G0,j′

0,n′(t) +
N∑

j′′=1

t′j′′ÄzG
j′′,j′

1,n′ (t) =0, j′ ̸= 0, (2.26)

∑

n′′

[
i
d

dt
¶n,n′′ − hn,n

′′

SC,j

]
Gj,0
n′′,0(t) + ¶n,1t

′
jÄzG

0,0
0,0(t) =0, j ̸= 0, (2.27)

which can be seen by straightforward transformations (see proof in Sec. B.6.1). As usual
using GF, we will transform to Fourier space by

Gj,j′

n,n′(É) =

ˆ

dÉei(ω+iη)tGj,j′

n,n′(t). (2.28)

Here ¸ is a cut-off parameter that we will later set to zero ¸ → 0. Now, we have obtained
a set of four Dyson equations:

[z − hD]G
0,0
0,0(É) +

N∑

j=1

t′jÄzG
j,0
1,0(É) =1, (2.29)

∑

n′′

[z¶n,n′′ − hn,n
′′

SC,j]G
j,j′

n′′,n′(É) + ¶n,1t
′
jÄzG

0,j′

0,n′(É) =¶n,n′¶j,j′ , j, j′ ̸= 0, (2.30)

[z − hD]G
0,j′

0,n′(É) +
N∑

j′′=1

t′j′′ÄzG
j′′,j′

1,n′ (É) =0, j′ ̸= 0, (2.31)

∑

n′′

[z¶n,n′′ − hn,n
′′

SC,j]G
j,0
n′′,0(É) + ¶n,1t

′
jÄzG

0,0
0,0(É) =0, j ̸= 0, (2.32)

where we defined z := É + i¸. These equations can be understood as follows. In the first
equation, the dot’s system is described by the first term, and the coupling from each lead
gives contribution from each term in the sum. The index “1” means that SC is coupled
at its first site. In the second equation, two leads j, j′ and two points n, n′ on them are
chosen. It tells us how such points are correlated. The first sum runs over all points of
j-th superconductor and collects correlations, the second term is a manifestation of the
coupling at the point n = 0 (which is the location of the dot). The latter two equations
are understood in the same way. Note that in Eq. (2.30) and (2.32), there is no sum over
repeated j, since the j-th lead is fixed.

Now we will introduce a Green’s function of an uncoupled10 SC gjn′′,n′ (if t′j = 0 for all
j), as a solution of

∑

n′′

[z¶n,n′′ − hn,n
′′

SC,j]g
j
n′′,n′(É) =¶n,n′ . (2.33)

10This quite nontrivial though a natural approach was first introduced by Caroli et al. [92].
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We can view this equation as a product of two matrices. Thus, by multiplying by the
inverse to the first one we can obtain the gjn′′,n′(É). By doing the same transformation for
Eq. (2.32), the relation between the two GF in terms of bare GF is obtained:

Gj,0
n,0(É) = −gjn,1(É)t′jÄzG0,0

0,0(É), j ̸= 0. (2.34)

More detailed proof can be found in Sec. B.6.1.
Now, we can plug Gj,0

n,0(É) into Eq. (2.29) and rewrite it with the following self-energy
Σ(É):

[z − hD − Σ(É)]G0,0
0,0(É) = 1, Σ(É) :=

N∑

j=1

(t′j)
2Äzg

j
1,1(É)Äz. (2.35)

It should be kept in mind that this formula is written in the Nambu notation and Σ(É)
is a 4×4 matrix (the tensor product to Ã0 is omitted). We have transformed the Dyson
equation (2.29) to a form, where a dot’s GF is expressed from an effective function Σ(É)
that takes into account the contribution from all superconductors.

The Description of the coupled dot requires an expression for Σ(É), for which the for-
mula for gjn,n′(É) is needed. As a standard approach, we can use Lehmann representation

gn,n′ =
´ π

0
dkψk(n)ψk(n

′)
z−hk , where we have a basis functions Èk(n) =

√
2
π
sin(kn) for a model

with a wall (since the SC leads are modeled in such way). In (2.14) the terms ¶n′,n+1 and
¶n′,n−1 will give the 2 cos(k) in the spectrum11:

hjk := −Äz (2tj cos(k) + µ) + (∆je
iϕjÄ+ +∆je

−iϕjÄ−). (2.36)

The calculation of Σ(É) requires the evaluation of the integral

gjn,n′(É) =
2

Ã

ˆ π

0

dk
sin(kn) sin(kn′)

z + Äz

(
2tj cos(k) + µ

)
−∆j

[
eiϕjÄ+ + e−iϕjÄ−

] . (2.37)

First, we approximate it in the wide-band limit tj → ∞. As shown in Fig. 2.2, in this
limit the integral is obtained near Fermi points ±π

2
and the spectrum is linear. We set

µ j tj and k ≈ π
2
+ q, then sin(k) ≈ 1; cos(k) ≈ q. The wide-band limit corresponds to

µreal → ∞, where µreal := µ + 2t (see the description of the model) and thus we have an
Andreev limit. We will have:

gj1,1(É) ≈
2

Ã

ˆ π/2

−π/2

dq

z + Äz2tjq −∆j

[
eiϕjÄ+ + e−iϕjÄ−

] . (2.38)

Here the inverse matrix can be evaluated by M−1 = Adj(M)/ detM and by introduction
q̄ := 2tjqj the following formula can be obtained:

gj1,1(É) =
1

Ãtj

ˆ ∞

−∞

dq̄
(
z − Äz q̄ +∆j

[
eiϕjÄ+ + e−iϕjÄ−

])

z2 − q̄2 −∆2
j

. (2.39)

11More details about this step can be found in Sec. B.6.1.
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Figure 2.2: The spectrum (2.36) and its linearization near Fermi points. µ shows how many of the states
are filled. In our model lattice constant a=1. Credit: [113]

Now, we investigate the poles of the denominator:

z2 − q̄2 −∆2
j = −(q̄ − k+)(q̄ − k−); k± := ±

√
z2 −∆2

j .

Since z := É + i¸+, we have Im k+ > 0 and Im k− < 0. Explicitly, we have

k+(É + i¸+) =





√
(É + i¸+)2 −∆2

j , É > ∆j,

i
√

∆2
j − É2, |É| < ∆j,

−
√

(É + i¸+)2 −∆2
j , É < −∆j.

(2.40)

Also, the term in the integral with q̄ in the numerator after integration will vanish, since
the integral is odd12. Finally, we close the integration contour in the upper half-plane
(where there is only k+), and by the residue theorem obtain

gj1,1(É) = −2Ãi

Ãtj

(
z +∆j

[
eiϕjÄ+ + e−iϕjÄ−

])

2i
√

∆2
j − É2

= − 1

tj

z +∆j

[
eiϕjÄ+ + e−iϕjÄ−

]
√
∆2
j − É2

. (2.41)

Another derivation, which shows the methods of boundary Green’s function can be found
in Sec. B.6.1.

We return to the definition of Σ in Eq. (2.35) and obtain its approximation:

Σ(É) ≃ −
N∑

j=1

Γj
z −∆j[e

iϕjÄ+ + e−iϕjÄ−]√
∆2
j − z2

, Γj :=
(t′j)

2

tj
, z := É + i¸+, (2.42)

since ÄzÄ+Äz = −Ä+; ÄzÄ−Äz = −Ä−. We see that only combination of
(t′j)

2

tj
influences the

physics, not the t′j and tj separately.

12There are mathematical subtleties, which we will omit, since the argument of the odd integral still
holds. Another proof can be found in Sec. B.6.1
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The Spectrum

Now, having Σ, we can obtain the full GF of the superconductors to plug it into the
DOS formula (1.30). This is a long and beautiful computation, which can be seen in
Sec. B.6.1. As a result, the dispersion of Andreev bound states is given by

Ä(É) = Ä
(0)
SC(É) + Ä

(0)
D (É)︸ ︷︷ ︸

bare DOS

+

(
− 1

Ã
Im

∂

∂É
log det [1− gD(É)Σ(É)]

)

︸ ︷︷ ︸
tunneling contribution

. (2.43)

This is the main formula in our formalism. Here Σ is given by (2.35) and dot’s GF is
defined as a solution of [z − hD]gD(É) = 1. There is a peculiar similarity between the
DOS for heterostructures (1.42) and the DOS in the scattering matrix formalism (B.61),
though the expression under the determinant is different. A significant contribution to
tunneling arises from those É that satisfy the expression

det (É − hD − Σ(É)) = 0. (2.44)

This formula is used to obtain bound states numerically, as shown below. It is a similar
expression to a junctions with multilayered systems, which was reviewed in Sec. 1.3. An
analytical solution from this formula can be obtained only by assumptions.

Approximation of the Spectrum

An analytical solution can be obtained if we approximate the system: we linearize the
local dot’s Green’s function near the Fermi energy, in other words, we approximate as
follows:

Σ(É) ≃ Σ(0) + É
dΣ(É)

dÉ

∣∣∣∣
ω=0

, (2.45)

where

Σ(0) =
N∑

j=1

Γj[e
iϕjÄ+ + e−iϕjÄ−];

dΣ(É)

dÉ

∣∣∣∣
ω=0

=
N∑

j=1

Γj
∆j

. (2.46)

After the introduction of Z, which is proportional to unit 4×4 matrix,

Z := 1− dΣ(0)

dÉ
= 1 +

N∑

j=1

Γj
∆j

, (2.47)

we obtain:

É − hD − Σ(É) ≃ É − hD − Σ(0)− É
dΣ(0)

dÉ
= ZÉ − hD − Σ(0) = Z(É − heff); (2.48)

heff := Z−1
(
hD + Σ(0)

)
= Z−1

(
V Äz +∆ZÃz +

N∑

j=1

Γj[e
iϕjÄ+ + e−iϕjÄ−]

)
. (2.49)
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Eq. (2.44) tells us that we need to find eigenvalues of heff. This can be achieved, for exam-
ple, straightforwardly by writing 4×4 matrix13. We will parameterize the four eigenvalues
by indices Ä = 0, 1 and Ã = 0, 1 and write the analytical formula for the bound states as
follows:

Eτ,σ = Ä

[
1 +

N∑

j=1

Γj
∆j

]−1(√√√√V 2 + |
N∑

j=1

Γjeiϕj |2 + Ã∆Z

)
. (2.50)

Now the dependence of our system’s Andreev levels on the initial parameters of the model
Γj,∆j, φj, V,∆Z , t

′
j, tj (for each wire) by the combination Γj := (t′j)

2/tj plays role. The
simplification of this formula for the case of N = 2 and N = 3 will be presented shortly.

2.2 Josephson Current

The current can be determined from the Gibbs free energy, which, in its turn, is derived
from the density of states Ä (see review in Sec. 1.3). More precisely, Ä is obtained from
d matrix by Ä(É, φ) = − 1

π
Im ∂

∂ω
ln det d (É, φ), and the d matrix is obtained from GF of

the model by (2.43). Thus, the current in the jth lead can be determined by some careful
transformations:

Jj(φ) = − 2e

h´

ˆ ∞

0

dÉ ln

(
2 cosh

´É

2

)
∂

∂φ
¶Ä(É, φ)

i b p
=

Φ0=
h
2e

≡πℏ

e

(2.51)

= − 1

Φ0

Im

ˆ ∞

0

dÉ tanh
´É

2

∂

∂φ
ln det d (É + i¸, φ)

f(ω)= 1

eβω+1

= (2.52)

=
1

Φ0

Im

ˆ +∞

−∞
dÉf(É)tr

∂

∂φ
ln det(É + i¸ − hD − Σ(É + i¸)) = (2.53)

=
1

Φ0

Im

ˆ +∞

−∞
dÉf(É)tr

1

É + i¸ − hD − Σ(É + i¸)

∂Σ(É + i¸)

∂φj
= (2.54)

=
1

2iΦ0

ˆ

dÉf(É) tr
1

É + i¸ − hD − Σ(É + i¸)

∂Σ(É + i¸)

∂φj
− (2.55)

− 1

2iΦ0

ˆ

dÉf(É) tr
1

É − i¸ − hD − Σ(É − i¸)

∂Σ(É − i¸)

∂φj
.

(2.56)

The poles of the integrand allows one to make a simplification. The Fermi function
produces fermionic poles. The first integral because of É+i¸ has poles from the propagator
in the lower-half of the complex plane, thus we need to close the contour to the upper-
half. In this region we have only poles from Fermi’s function (when eβω = −1). It means,
´É = Ã + 2Ãn, n = 0, 1, 2, 3... The second integral should be closed in the lower part of
the plane, where the poles are ´É = Ã + 2Ãn, n = −1,−2,−3.., because of É − i¸ in it.

13Or by using Wolfram Mathematica, or by solving for ∆Z = 0 and then add the Zeeman splitting ∆Z

like in quantum mechanics.
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As a result,

Jj(φ) =
1

2iΦ0

· 2Ãi
∑

ωng0

res(f(É))︸ ︷︷ ︸
−1/β

tr
1

É + i¸ − hD − Σ(É + i¸)

∂Σ(É + i¸)

∂φj
− (2.57)

− 1

2iΦ0

· (−2Ãi)
∑

ωn<0

res(f(É))︸ ︷︷ ︸
−1/β

tr
1

É − i¸ − hD − Σ(É − i¸)

∂Σ(É − i¸)

∂φj
=

(2.58)

= − Ã

Φ0

1

´

∑

ωn

tr
1

iÉn − hD − Σ(iÉn)

∂Σ(iÉn)

∂φj
. (2.59)

At T = 0 the sum is changed to the integral14:

Jj(φ, T = 0) = − 1

2Φ0

ˆ

dÉ tr
1

iÉ − hD − Σ(iÉ)

∂Σ(iÉ)

∂φj
. (2.60)

From this equation, the Ambegoakar-Baratoff’s formula can be obtained if one neglects
Σ(iÉ) in the denominator (this is the tunneling limit). This is because Σ ∼ Γ, so after
decomposition of the denominator into series, the terms from Σ from the denominator
will be of the highest order in Γ.

To compute currents from j-th contact to j′-th we need to compute Jj−Jj′ . Soon the
results of this formula will be presented.

2.3 Two-Terminal Junction Revisited

Bound states of two terminal junction

Let us consider the special case of N = 2. The first step is to obtain the Andreev
levels of S-QD-S contact. We expect the same relation as (1.20), since short normal region
is similar to the quantum dot, at least to some limit. We define φ := φ2 − φ1 and the
formula (2.50) gives15:

Eτ,σ = ÄEJ

√
1−D sin2 φ

2︸ ︷︷ ︸
≡ωA

+ ÃEZ , (2.61)

where

EJ :=

√
V 2 + (Γ1 + Γ2)2

1 + Γ1

∆1
+ Γ2

∆2

, D :=
4Γ2Γ1

V 2 + (Γ1 + Γ2)2
, EZ :=

∆Z

1 + Γ1

∆1
+ Γ2

∆2

. (2.62)

Yes, this are precisely the Andreev levels, as was expected. And now we clearly see the
connection between the macroscopic EJ and D and the microscopic V , ∆ Γ (based on t′j
and tj) parameter of our theory. Such formulas are referred as “tunneling limit” for the
case of D ∼ 1

14See, for example, Eq. (89) in [1]
15The proof is straightforward, and is provided in Sec. B.6.1
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In the simplest symmetric case Γ1 = Γ2 ≡ Γ; ∆1 = ∆2 ≡ ∆; ∆Z = 0 the coefficients
are

EJ = ∆

√
V 2 + 4Γ2

∆+ 2Γ
≈
{
V, Γ j max{∆, V },
∆, Γ k max{∆, V };

D =
4Γ2

(V 2 + 4Γ2)
≈
{

4Γ2

V 2 , Γ j max{∆, V };
1, Γ k max{∆, V },

EZ = ∆Z
∆

∆+ 2Γ
≈
{
∆Z , Γ j max{∆, V },
∆Z

2Γ
, Γ k max{∆, V }.

(2.63)

Let us show that our approximation is indeed valid. We can plot the levels from the
Eq. (2.61) and from the determinant (Eq. (2.44)) for some parameters. To show this we
plot two configurations in Fig. 2.3. We see that the energy levels from both formulas are
very similar.

Figure 2.3: Comparison of ABS of the analytical (2.61) (red lines) and general (2.44) (yellow lines)
formulas.

Now we can demonstrate how the ABS changes as we vary parameters of our model.
First of all, if we set ∆Z = 0, V = 0, we will get a spectrum in Fig. 2.4. It crosses zero as
it was known [4].

Figure 2.4: Case of zero on-site energy of the dot V and zero Zeeman interaction.

Here we have only one level with positive energy, since the Zeeman splitting is absent.
Next, we will consider cases of ∆Z ̸= 0, so we will have a two levels (for each sign of
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energy): one with spin-up and one with spin-down. By varying the on-site energy V , the
bound states will slightly diverge, as shown in Fig. 2.5.

Figure 2.5: Changing of ABS by varying on-site energy of the dot V .

Fig. 2.6 shows the dependence of ABS on the superconductive gap ∆ of the one of
the terminals. The first two plots limit the levels to the lowest gap (which is ∆2). The
next plots are for ∆2 > ∆1 are levels between ∆1 = 1 are shown. The levels are slightly
narrow as the gap increases.

40



Figure 2.6: Changing of ABS by varying the gap ∆2 of the second SC.

Finally, the effect of the change of couplings between a SC and QD on the levels is
shown in Fig. 2.7. We have chosen the second SC and varied its Γ2. We se the divergence
of the levels from the central region. The big difference between two positive and two
negative energy levels is a result of a strong Zeeman energy (∆Z).

Figure 2.7: Changing of ABS by varying the coupling to the second SC Γ2.

Current of Two-terminal Junction

The general expression for the Josephson current (2.54) is allows one to determine the
current numerically. In case of D ∼ 1 and for not high temperatures ´ k 1 the current
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can be expressed analytically by

J1(φ) = =
DEJÃ

2Φ0

sinh
(

´EJ

√

1−D sin2 ϕ
2

)

cosh(´EZ) + cosh
(

´EJ

√

1−D sin2 ϕ
2

)
sinφ

√

1−D sin2 ϕ
2

. (2.64)

The index 1 means that this current is passing through the first (left) terminal, and,
obviously, the opposite one goes through the second one J2(φ) = −J1(φ). The proof is
done by transforming (2.54) with the help of (2.61) and can be found in B.6.1. This
formula for EZ = 0, is the Beenaker’s formula for Josephson current (1.47), but for the
QD instead of N region:

J1(φ) =
DEJÃ

2Φ0

tanh

(

´EJ

√

1−D sin2 φ

2
/2

)
sinφ

√

1−D sin2 ϕ
2

. (2.65)

For the tunneling regime Γ j max{∆, V }, the parameter D j 1 and

J1(φ) ≈ Ic sinφ, Ic =
DEJÃ

2Φ0

sinh(´EJ)

cosh(´EZ) + cosh(´EJ)
. (2.66)

Fig. 2.8 shows the comparison of the currents. The applicability of this formula de-
pends strongly on the regime. For low D the differences in currents are distinguishable.

Figure 2.8: Comparison of numerical and analytical currents of two-terminal junctions. Several parame-
ters, including ´, were varied.

More details about bound states and current of the S-QD-S model and calculation for
the continuum contribution can be found in [10].
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2.4 Three-Terminal Josephson Junction

Bound States of 3TJJ

The applications of the formalism presented above to the three-terminal Josephson
junctions is as follows. First of all, the phase differences between junctions will be denoted
by φ := φ1−φ3 and Ç := φ2−φ3. For simplicity we consider the symmetric setup, where
Γ1 = Γ2 = Γ3; ∆1 = ∆2 = ∆3. The general formula (2.50) gives

Eτ,σ =ÄEJ
√

1−DΦ(φ, Ç) + Ã∆̃Z , (2.67)

where

EJ :=

[

1 + 3
Γ

∆

]−1√
V 2 + 9Γ2, D :=

9Γ2

V 2 + 9Γ2
,

Φ(φ, Ç) :=
4

9

(
sin2 φ/2 + sin2 Ç/2 + sin2(φ/2− Ç/2)

)
, ∆̃Z:=

∆Z

1 + 3 Γ
∆

.

(2.68)

An easy calculation can be found in Sec. B.6.1.

Figure 2.9: Change of the ABS of symmetric 3TJJ for two values of couplings Γ, calculated from
Eq. (2.67).

Further this model will be analyzed in φ1 = φ/3; φ2 = −2φ/3; φ3 = φ/3. This is the
symmetric situation, since φ1 − φ2 = φ and φ3 − φ2 = φ. The ABS from Eq. (2.68) are
depicted in Fig. 2.9. For this plot, the ∆Z was set to zero, since it trivially adds a constant
splitting. We have seen this plot before (see Fig. 1.9). Similarly, one can imagine a line
in the plane of phases in Fig. 2.9 and obtain CPR in a form as in a previous section. Now
we clearly see that the levels become flatter if couplings between terminals are increased.

A similar situation is shown in Fig. 2.10, but by numerical computation. Now we
increase the coupling only to the third terminal, Γ3. In this case the levels from above
and below zero slightly diverge.
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Figure 2.10: Dependence of E(φ) for different strength of coupling to the third SC Γ3 (from 0 to 1.5).
Here φ1 = φ/3; φ2 = −2φ/3; φ3 = φ/3

Let us investigate the dependence on the gap ∆3. In this case the E(φ) will be
symmetric. The change of spectrum with increased ∆3 is shown in Fig. 2.11. After
passing the value ∆max, the increase of the ∆3 has no influence on the levels.

Figure 2.11: Dependence of E(φ) for different gaps of the third SC ∆3 (from 0 to 2). Here φ1 = φ/3,
φ2 = −2φ/3, φ1 = φ/3.

Current of 3TJJ

Following the example of two-terminal junction, the current of 3TJJ are obtained
the same way. There in no need to re-derive again the analytical expression, since the
spectral equation for 2TJJ (2.61) and for 3TJJ (2.67) have the same form. One needs to

44



just substitute at the last stage of the derivation sin → Φ. Thus, the following formula
for the critical current is obtained:

Ic(φ, Ç) :=
4

9

DEJÃ

2Φ0

sinh(´EJ
√

1−DΦ(φ, Ç))

cosh(´∆̃Z) + cosh(´EJ
√

1−DΦ(φ, Ç))

1
√

1−DΦ(φ, Ç)
. (2.69)

The most tricky part is to understand, w.r.t. which phase differences take the derivative in
the step (B.121), since in many terminals there are different phases and we usually define
some “effective combination of phases” to decrease the number of parameters. First, let
us set φ3 = 0, since there is a gauge possibility: we can count phases from any value.
Now, to get the current through the first terminal J1(φ, Ç), we take the derivative w.r.t
φ (the definitions were φ := φ1 −φ3 and Ç := φ2 −φ3). The expressions for J2(φ, Ç) and
J3(φ, Ç) are obtained in a similar way. The result is

J1(φ, Ç) =Ic(φ, Ç)[sin(φ) + sin(φ− Ç)], (2.70)

J2(φ, Ç) =Ic(φ, Ç)[sin(Ç)− sin(φ− Ç)], (2.71)

J3(φ, Ç) =− Ic(φ, Ç)[sin(φ) + sin(Ç)]. (2.72)

These are the final formulas for the current in the three-terminal junction. The currents
obey the Kirchoff’s law

J1(φ, Ç) + J2(φ, Ç) + J3(φ, Ç) = 0, (2.73)

which is intuitive: no parts of the current disappears. Fig. 2.12 shows the current J1 as
functions of phase differences for the symmetric 3TJJ. The plots are quite similar16 The

Figure 2.12: Comparison of numerical (from (2.59)) and analytical (from (2.70)) expressions of current
in 3TJJ.

equation (2.69) allows one to see the effective dependence on the ∆-s and Γ-s through
just one parameter D.

For the case T = 0 and EJ > ∆̃z, second fraction in (2.69) disappears and the current
has a much simpler form:

Ic(φ, Ç, T → 0) →EJÃ

2Φ0

D
√

1−DΦ(φ, Ç)
. (2.74)

We see a non-trivial dependence only on the transparency D.

16The plot for analytical expressions was multiplied by (-1). We relate it to the choice of phases.
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Diode Efficiency for 3TJJ

The diode effect, which consists of stronger current to one direction than to another
(see e.g. [7], is described by the diode efficiency. To obtain it, the critical currents in the
first and second leads should be introduced as

Ic+(Ç) :=max
ϕ

(J1(φ, Ç)− J2(φ, Ç)) , (2.75)

Ic−(Ç) :=min
ϕ

(J1(φ, Ç)− J2(φ, Ç)) . (2.76)

Whichever Ç is chosen, the system by design cannot have current higher than Ic+(Ç) and
lower than Ic−(Ç) for some phase difference φ(Imax) and φ(Imin) respectively. Thus, the
diode efficiency can be defined as a difference between currents in

¸1,2(Ç) :=
|Ic+(Ç)| − |Ic−(Ç)|
|Ic+(Ç)|+ |Ic−(Ç)| . (2.77)

Here labels 1,2 indicate the first and the second terminal. The ¸1,2(Ç) reflects the relative
difference between maximal and minimal possible current (analogous to interferometric
visibility in optics). If there were no dependence on φ, the ¸1,2(Ç) would be 0, which means
that it is not possible manipulate the system (if the device is created). The ¸1,2(Ç) = 1
means that we can tune the system in a way that no current flows (set φ(Imax)) or,
opposite, allow the system to have the maximal possible current that can be achieved
with such materials and design (by setting φ(Imax)).

The properties of ¸ for case T = 0, in which the formula (2.74) is applicable, are as
follows. In this limit, ¸ is dependent only on D := 9Γ2/(V 2 + 9Γ2) (not on EJ and ∆Z).
This can be seen in Fig. 2.13. We see that only for D around 1 the diode efficiency is
distinguishable from sine.

Figure 2.13: Diode efficiency as a function of phase difference Ç := φ2 −φ3. The transparency is defined
as D := 9Γ2/(V 2 + 9Γ2).

We can also find the dependence of the maximum value of ¸1,2(Ç) for all Ç on D. Thus,
we can see how the possibility of tuning the setup is dependent on the input parameters
(coupling constants Γ-s and gaps ∆-s). This is shown in Fig. 2.14. We see that the ¸
vanishes if D goes to the maximal value.
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Figure 2.14: Maximal value of the diode efficiency for all φ, ¸ as a function of D := 9Γ2/(V 2 + 9Γ2).

The interpretation of it in terms of microscopic parameters of model is as follows.
By decreasing the on-site energy of the dot V , the D increases and the “diode” becomes
less effective. For the case V ≳ Γ, if the couplings between terminals and the dot Γ are
increased, the diode loses its efficiency. However, if V j Γ, the efficiency is no longer lost
(since D∼const if the Γ increases).

2.5 Other Results

Many Junctions Example

Our model in Sec. 2.1 and our code in Sec. B.7 allows one to find the Andreev levels for
arbitrary parameters and arbitrary numbers of junctions. To show it ones more, the ABS
of seven junctions with parameters are shown in Fig. 2.15. This model incorporates seven
different phases, different gaps ∆ and different couplings Γ. Here, the code that displays
energy levels is not able to distinguish levels around 2Ã/3, as this is not a property of
the levels. Now we are the first in the world to see how the bound states for the seven
terminal JJ look for such the configuration in Fig. 2.15.

Figure 2.15: Seven-terminal junction with different parameters.

Of course, such model is not physically motivated and provides only an illustration of
our method.
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Conclusion and Future Work

This study has presented the promising Green’s function formalism for the description
of multiterminal Josephson junctions. The fundamental concepts of superconductivity
have been reviewed: the BCS model, BdG equations, Andreev states and reflection. We
introduced methods that were used as the building blocks for our research: ways of calcu-
lating current, Nambu notation, and definitions of Green’s functions. We have developed
a GF theory for the model of a quantum dot that is coupled to an arbitrary number of
superconductive leads. Additionally, the dependence of the bound states and the super-
current on phases of superconductors for a general number of terminals has been provided.
For the tree-terminal system the diode efficiency has been established.

Several directions for future research and applications emerge from this work. Within
the analyzed models the exact dependence of the levels splitting parameters is yet to
be explored. Such dependence can play a crucial role in the spin-qubit applications,
as the ability to manipulate spin splitting opens the way to decoding and reading the
information contained in them. The calculations of the diode efficiency at the finite
temperature and for more realistic configurations are still the next steps in the creation
of the superconductive diode. Moreover, the diode efficiency in analogous models can be
analyzed and ways of its improvement by changing parameters can be established.

Another promising direction lies in refining the methodology. Additional effort is
required to make the method more accessible and applicable to a broader range of models.
Currently, the introduction to the method requires further elaboration and applications
without strong background in condensed matter physics are problematic. Such work
will systematize the analyzed models, popularize the essential methods of mathematical
transformations.

The extension of the formalism to the continuous systems opens a window to a broad
range of models. The general formulas for the bound states in terms of microscopic param-
eters for such systems are nearly ready to be used. The remaining inputs for computation
are the Green’s functions of the uncoupled systems, the coupling strengths, and the po-
sitions of the contacts. The hardest part of applying the method is the calculation of the
full Green’s function for a non-superconductive central region. However, for some systems
these functions have already been published in books and articles. Further development
of the formalism will allow one to calculate the current and its noise correlations for more
complicated, continuous models.

We hope that these ideas will inspire future studies and lead to their successful imple-
mentation.
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A Formalism for Multiterminal Continuous Junctions

A.1 General Formalism for Many Terminals, Simplified Version

This section provides a simplified version of a real formalism from Sec. A.2, which is
created with a purpose of making understanding it better. It is more complicated than
main theory in Sec. 2.1, since we now consider continuous models and we do not specify
the non-SC Hamiltonian, but easier than Sec. A.2, since the SC are 1D, not 3D and the
terminal is only one.

The Model

We consider a one-dimensional system, which is coupled to one one-dimensional su-
perconductive leads. The biggest disadvantage of this model is that the lead is just one,
however, adding another lead is straightforward and only make proofs bigger in length.
Besides, this model provides a simplification compared to the model in the main part 2.1,
since in formulas there will be no sum over all leads (for example,

∑

j), so it will help in
understanding. We model the system by the following Hamiltonian:

Htot = Hn +HSC +HT, (A.1)

where Hn - a term for a normal system, HSC - a term for a superconductive leads, HT - a
term for coupling. By “normal system” we mean not superconductive system; it can be,
for example, a metal, semiconductor, Majorana wire, insulator.

The local quantum system described by a set of fermion fields {È̂σ(x)}, where x ∈
Ω ¢ R is the position-space quantum number, Ã = ± is the spin projection, and Ω is the
volume occupied by the system. Here we assume Schrödinger picture, however, we later
will transform it into Heisenberg one. By fields we mean an operators that annihilate or
create (if È̂ 

σ(x)) an excitation with a quantum number x. Fermionic fields satisfy the
following anticommutative algebra:

{È̂σ(x), È̂σ′(x′)} = 0, {È̂σ(x), È̂ 
σ′(x

′)} = ¶σ,σ′¶(x− x′). (A.2)

We assume that such fields evolve under the following effective single-particle Hamiltonian

Hn =
∑

σ,σ′=±

ˆ

Ω

dx È̂ 
σ(x) hσ,σ′(p, x) È̂σ′(x). (A.3)

Here hσ,σ′(p, x) for each index is a hermitian complex operator (for example, in trivial
case it is a Hamiltonian of a free fermion). The first-quantized momentum operator p
has the usual form: p = −i∇. We require for all Fermi fields È̂σ(x) to respect the open
boundary conditions at the system’s surface, which have the form:

È̂σ(x)
∣
∣
x∈∂Ω = 0. (A.4)
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This means that all fields propagate only inside of our material, but don’t leave it. The
normal system in the extended Nambu basis looks like:

Hn ≡ 1

2

ˆ

Ω

dxΨ̂ (x)Hn(p, x)Ψ̂(x), (A.5)

(A.6)

Hn(p, x) : =

(
h(p, x) 0

0 −Ãyh∗(p, x)Ãy

)

, h(p, x) :=
∑

σ,σ′=±
hσ,σ′(p, x) |Ãð ïÃ′| ;

Ψ̂(x) : =

(
È̂(x)

iÃy

[

È̂ (x)
]T

)

, È̂(x) :=
∑

σ=±
È̂σ(x) |Ãð .

(A.7)

The proof is straightforward and can be found in App. B.6.2.
The electrodes will be modeled as one-dimensional semi-infinite s-wave superconduc-

tors, described by the following set of Fermi field operators {Çσ(x)} governed by the
BCS-type Hamilton operator:

HSC :=
∑

σ=±

ˆ ∞

0

dxÇ̂ 
σ(x)

[
p2

2m
− µ

]

Ç̂σ(x) +

ˆ ∞

0

dx
[

∆Ç̂ 
+(x)Ç̂

 
−(x) + ∆∗Ç̂−(x)Ç̂+(x)

]

.

(A.8)

Note that here ∆ is a complex function and SC phase is assumed in it. Here the super-
conductive fields Ç are fermions, they obey anticommutative relations:

{Ç̂σ(x), Ç̂σ′(x′)} = 0, {Ç̂σ(x), Ç̂ 
σ′(x

′)} = ¶σ,σ′¶(x− x′).

In the Nambu basis we will have:

HSC =
1

2

ˆ ∞

0

dxΥ̂ (x)HSC(p, x)Υ̂(x), HSC(p, x) =





[
p2

2m
− µ

]

∆

∆∗ −
[
p2

2m
− µ

]



 , (A.9)

Υ̂(x) =

(
Ç̂(x)

iÃy
[
Ç̂ (x)

]T

)

, Ç̂(x) =
∑

σ=±
Ç̂σ(x) |Ãð , (A.10)

and Ãy = −i (|+ð ï−| − h.c.) is an ordinary Pauli matrix (for several channels it will be
a generalization of a Pauli matrix, as we will see in the next section). The proof is
straightforward and can be found in App. B.6.2

To describe the particle tunneling between them, we propose the following “point-
hopping” Hamiltonian

HT =
∑

σ,σ′=±
Wσ,σ′Ç̂

 
σ(a)È̂σ′(R̃) + h.c., R̃ :=

{

R, R /∈ ∂Ω,

R− a, R ∈ ∂Ω.
(A.11)

The coordinate R̃ is the fixed point of the contact. We can have any points, where we
can connect the SC and normal electrodes (inside the latter), but if we connect at the
boundary ∂Ω, the are no non-SC fermions, so to make sense, we shift it back by the
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introduced distance a. The a (so-called “short-distance cut-off”) is the outward-pointing
normal to the surface ∂Ω at the point R. The Ç̂ 

σ(a) means that the SC lead is coupled
at distance a → 0 at its end. The Wσ,σ′ is a phenomenological numerical constant of
dimensions [Energy]× [Length]−1, describing the tunneling rate of quasi-particles. It can
be obtain by a first-principles microscopic study by, for example, analyzing the Wannier-
function overlap integral of the Coulomb interaction vertex, but for our formalism this is
an input-constant of the model.

And for their tunneling we have:

HT =
1

2
Υ̂ (a)WΨ̂(R̃) + h.c., W :=

(
W 0
0 −W ∗

)

, W :=
∑

σ,σ′=±
Wσ,σ′ |Ãð ïÃ′| .

(A.12)

Let us emphasis again, that here Υ̂ (a) means creating an excitation in SC electrode at
a distance to its end and Ψ̂(R̃) means annihilating excitation at the normal material at
coordinate R inside it. At the last stage of our transformations we will take the limit
a→ 0.

Symmetries, Commutators, Equations of Motion

There are some properties of the introduced formalism. The extended Nambu fields
have a charge conjugation constraint

C
[
Ψ (x)

]T
= Ψ(x), C

[
Υ (x)

]T
= Υ(x), C := ÄyÃy =

(
0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0

)

.

(A.13)

Field operators have the following commutation relations:

{Ψa(x), Ψb(x
′)} =Cab¶(x− x′), {Ψa(x), Ψ

 
b(x

′)} = ¶ab¶(x− x′), (A.14)

{Υa(x), Υb(x
′)} =Cab¶(x− x′), {Υa(x), Υ

 
b(x

′)} = ¶ab¶(x− x′). (A.15)

and the Hamiltonian possesses chiral symmetry:

CHn(p, x)C = −H∗
n(p, x), CHSC(p, x)C = −H∗

SC(p, x), CWC = −W∗, (A.16)

as was reviewed before. All this is obviously seen by do matrix multiplications.
Now, we will transform to Heisenberg’s picture and for new field we will have t-

dependence. The Heisenberg equations of motion for the Nambu field operators are:







i
d

dt
Υ̂(x, t) =HSC(p, x)Υ̂(x, t) + ¶(x− a)WΨ̂(R̃, t),

i
d

dt
Ψ̂(x, t) =Hn(p, x)Ψ̂(x, t) + ¶(x− R̃)W Υ̂(a, t).

(A.17)

(A.18)

Note that in the rhs. in the second term we have a value of the field at a fixed point (the
contact), and is not a function of coordinates. The derivation is done in Sec. B.6.2.
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Green’s Functions, Dyson Equations

Now we define the following set of Green’s functions

[GNN(x, x
′|t)]ab :=− iΘ(t) ï{Ψ̂a(x, t), Ψ̂

 
b(x

′, 0)}ð , (A.19)

[GSS(x, x
′|t)]ab :=− iΘ(t) ï{Υ̂a(x, t), Υ̂

 
b(x

′, 0)}ð , (A.20)

[GNS(x, x
′|t)]ab :=− iΘ(t) ï{Ψ̂a(x, t), Υ̂

 
b(x

′, 0)}ð , (A.21)

]GSN(x, x
′|t)]ab :=− iΘ(t) ï{Υ̂a(x, t), Ψ̂

 
b(x

′, 0)}ð . (A.22)

By taking the derivative d
dt

from them and using the Heisenberg equations (A.18), one
can show that they satisfy the following set of Dyson’s equations:

(

i
d

dt
−Hn(p, x)

)

GNN(x, x
′|t) =¶(x− R̃)W GSN(a, x

′|t) + ¶(t)¶(x− x′),

(

i
d

dt
−HSC(p, x)

)

GSS(x, x
′|t) =¶(x− a)WGNS(R̃, x

′|t) + ¶(t)¶(x− x′),

(

i
d

dt
−HSC(p, x)

)

GSN(x, x
′|t) =¶(x− a)WGNN(R̃, x

′|t),
(

i
d

dt
−Hn(p, x)

)

GNS(x, x
′|t) =¶(x− R̃)W GSS(a, x

′|t).

(A.23)

(A.24)

(A.25)

(A.26)

Now, by Fourier transforming F̃ (z) =
´∞
0
dteiztf(t) we find

(z −Hn(p, x))GNN(x, x
′) =¶(x− R̃) W GSN(a, x

′) + ¶(x− x′), (A.27)

(z −HSC(p, x))GSS(x, x
′) =¶(x− a) W GNS(R̃, x

′) + ¶(x− x′), (A.28)

(z −HSC(p, x))GSN(x, x
′) =¶(x− a) W GNN(R̃, x

′), (A.29)

(z −Hn(p, x))GNS(x, x
′) =¶(x− R̃) W GSS(a, x

′). (A.30)

The derivation can be found in App. B.6.2.

Bare GF-s g and m and Expression of Coupled GF-s in Terms of D and M
We got the set of equation that describe the system with coupling. To move forward we

can notice, that we know everything for uncoupled systems, so we know Green’s function
for uncoupled Hamiltonians. Let us denote them as g for superconductor and m for
normal metal:

[
z −Hn(p, x)

]
m(x, x′) =¶(x− x′). (A.31)

[
z −HSC(p, x)

]
g(x, x′) =¶(x− x′). (A.32)

We assume that g and m are also z-dependent, but for compactness we don’t write
it17. From them by multiplying on the inverse operators we get the following system of

17Note that functions m, g are in general not symmetric by interchange x and x′, since only one
argument in the Hamiltonian.
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equations:






GNN(x, x
′) =m(x, x′) +m(x, R̃) W GSN(a, x

′),

GSS(x, x
′) =g(x, x′) + g(x, a) W GNS(R̃, x

′),

GSN(a, x
′) =g(a, a) W GNN(R̃, x

′),

GNS(R̃, x
′) =m(R̃, R̃) W GSS(a, x

′).

(A.33)

(A.34)

(A.35)

(A.36)

This is done by rewriting terms as ones that are expressed in terms of m and g18.
From it we get

{

GNN(x, x
′) =m(x, x′) +m(x, R̃) W g(a, a) W GNN(R̃, x

′),

GSS(x, x
′) =g(x, x′) + g(x, a) W m(R̃, R̃) W GSS(a, x

′).

(A.37)

(A.38)

Now we are one step before the final formula. We will introduce two 4×4 matrices D and
M:

D := 1−m(R̃, R̃)W g(a, a)W , (A.39)

M := Wm(R̃, R̃)W , (A.40)

with which we will find the final expression of a spectral density. Since all bare GF here
depend only on the point of contact, these matrices are matrices of constants that are
calculated from the construction of the model (positions of contacts, types of subsystems
and coupling strengths).

The first equation (A.37) after plugging x = R̃ will give us

DGNN(R̃, x
′) =m(R̃, x′), (A.41)

then

GNN(R̃, x
′) = D−1m(R̃, x′), (A.42)

and by plugging it back in (A.37) we get

GNN(x, x
′) =m(x, x′) +m(x, R̃)W g(a, a)WD−1m(R̃, x′). (A.43)

Now, the second equation (A.38) can be rewritten as:

GSS(x, x
′) = g(x, x′) + g(x, a)MGSS(a, x

′), (A.44)

From it by plugging x = a we get

GSS(a, x
′) = [1− g(a, a)M]−1g(a, x′), (A.45)

thus by plugging it in (A.38) we get

GSS(x, x
′) = g(x, x′) + g(x, a)M[1− g(a, a)M]−1g(a, x′). (A.46)

To conclude, we have obtained the exact equations for full Green’s functions of the
normal part and the electrode by Eq. (A.43) and (A.46). The D and M matrices are
determined by a setup (the coordinates of a point of a contact, types of uncoupled systems,
coupling strength). The Green’s function of the system will give us information about its
properties (density of states, current), as we will se below.

18In the Eq. (A.35) we also set x = R̃ in Eq.(A.32) to plug g, then set x = R̃ to get the final expression.
Analogously was done in the Eq. (A.36)
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Spectral Density

The spectral density of the non-SC Än(É) ans SC system ÄSC(É) can be obtained with
a help of (A.43) and (A.46):

Än(É) :=− 1

Ã
Im

ˆ

Ω

dxtrGNN(x, x) = Ä(0)n (É) +
1

Ã
Im trW g(a, a)WD−1∂m(R̃, R̃)

∂É
,

(A.47)

ÄSC(É) :=− 1

Ã
Im

ˆ ∞

0

dxtrGSS(x, x) = Ä
(0)
SC(É) +

1

Ã
Im trD−1m(R̃, R̃)

∂W g(a, a)W
∂É

.

(A.48)

The derivation is in Sec. B.6.2.
Finally, the total spectral density is a sum of two contributions above:

Ä(É) =Ä(0)SC(É) + Ä
(0)
n (É) + 1

π
Im trW g(a, a)WD−1 ∂m(R̃,R̃)

∂ω
+ 1

π
Im trD−1m(R̃, R̃)∂W

 g(a,a)W
∂ω

=

=Ä
(0)
SC(É) + Ä(0)n (É) +

1

Ã
Im trD−1

∂
(

W g(a, a)Wm(R̃, R̃)
)

∂É
= (A.49)

=Ä(0)n (É) + Ä
(0)
SC(É)−

1

Ã
Im trD−1∂D

∂É
. (A.50)

Finally, using the identity19 ∂
∂ω

ln det d = tr
{
d−1 ∂d

∂ω

}
, we have:

Ä(É) =Ä(0)n (É) + Ä
(0)
SC(É)−

1

Ã
Im

∂

∂φ
ln detD. (A.51)

This is our final formula for the spectral density. It tells us that Ä(É) gets big contributions
from tunneling for regimes, where D is close to zero and changes significantly, since there
− logD is enormous. One can see that this expression is similar to (2.43).

A.2 General Formalism for Many Terminals

Here we will discuss the general model of multiterminal contacts with 3D supercon-
ductors and many channels for tunneling. If something is not clear, one can see Sec. A.1,
which is a simplified version of this framework that is created to make understanding eas-
ier. The derivations here are also similar to the Sec. A.1, thus they will not be discussed
much.

Model

We consider a d-dimensional local quantum system described by a set of fermion fields
{È̂α,σ(x)}, where x ∈ Ω ¢ R

d is the position-space quantum number, ³ ∈ {1, . . . , Nc}
is the channel20 (Nc - number of channels), Ã = ± is the spin projection, and Ω is the
volume occupied by the system. The Ne superconducting electrodes attached to Ne points
Rj ∈ Ω, inside the normal region Ω (here j = 1, . . . , Ne). This is illustrated in Fig. A.1.

19This was used, for example, in [1], Eq. (89).
20One can see discussion of channels on the example in [88].
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Figure A.1: Illustration of a multiterminal model.

As always, these satisfy the following Fermion algebra:

{È̂ασ(x), È̂α′σ′(x′)} = 0, {È̂ασ(x), È̂ 
α′σ′(x

′)} = ¶α,α′¶σ,σ′¶
(d)(x− x′). (A.52)

We assume that such fields evolve under the following effective single-particle Hamiltonian

Hn =
Nc∑

α,α′=1

∑

σ,σ′=±

ˆ

Ω

d(d)xÈ̂ 
ασ(x)hασ,α′σ′(p, x)È̂α′σ′(x). (A.53)

For each set of indices hασ,α′σ′(p, x) is a function, such that the total matrix-Hamiltonian
is hermitian. As before, index n means non-SC, and exact model we do not specify,
the formalism is applicable for any of it. Here the Fermi fields È̂ασ(x) respect the open
boundary conditions

È̂ασ(x)
∣
∣
x∈∂Ω = 0, (A.54)

at the system’s surface. Depending on the structure of hασ,α′σ′(p, x), we may need to
further specify the conditions on higher-order derivatives as well, but this goes beyond
this thesis. As usual, p := −i∇ is a first-quantized momentum operator.

As before, we model the electrodes as one-dimensional semi-infinite s-wave supercon-
ductors, described by the following set of Fermi field operators {Çασ,j(x)} governed by
the BCS-type Hamilton operator:

HE =
Ne∑

j=1

Nc∑

α=1

∑

σ=±

ˆ ∞

0

dxÇ̂ 
ασ,j(x)

[
p2

2mj

− µj

]

Ç̂ασ,j(x)+

+
Ne∑

j=1

Nc∑

α=1

ˆ ∞

0

dx
[

∆jÇ̂
 
α+,j(x)Ç̂

 
α−,j(x) + ∆∗

j Ç̂α−,j(x)Ç̂α+,j(x)
]

,

where the SC operators satisfy

{Ç̂ασ,j(x), Ç̂α′σ′,j′(x′)} = 0, {Ç̂ασ,j(x), Ç̂ 
α′σ′,j′(x

′)} = ¶α,α′¶σ,σ′¶j,j′¶(x− x′).

Each channel from all Nc channels just adds another BCS term to the Hamiltonian. Let
us emphasis again, the the electrodes (as follows from the name) are a wires, they are
effectively one dimensional, thus always the argument is non-bold.
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The tunneling will be described in the point of the contact with the following “point-
hopping” Hamiltonian

HT =
Nc∑

α,α′=1

∑

σ,σ′=±

Ne∑

j=1

W
(j)
ασ,α′σ′Ç̂

 
ασ,j(a)È̂α′σ′(R̃j) + h.c.. (A.55)

Here a is the short-distance cut-off (real little constant), which penetrates the SC and R̃j

is just Rj the point of the contact, but in the case of the contact on the boundary, it is
shifted:

R̃j =

{

Rj, Rj /∈ ∂Ω,

Rj − anj, Rj ∈ ∂Ω,
(A.56)

with nj being the outward-pointing normal to the surface ∂Ω at the point Rj. TheW
(j)
ασ,α′σ′

is a phenomenological numerical constant of dimensions [Energy] × [Length]−d/2−1/2, de-
scribing the tunneling rate of quasi-particles.

Now we rewrite the Hamiltonian in the extended Nambu basis. We hope that by this
point the reader have seen it several times, so the generalization for a 3D model and
several channels of expressions from Sec. A.1 is obvious. Now the size of the Nambu field
is Nc times bigger. The normal part looks as follows:

Hn =
1

2

ˆ

Ω

d(d)xΨ̂ (x)Hn(p, x)Ψ̂(x), Hn(p, x) =

(
h(p, x) 0

0 −h∗(p, x)

)

,

(A.57)

Ψ̂(x) =

(
È̂(x)

iÃy

[

È̂ (x)
]T

)

, È̂(x) =
Nc∑

α=1

∑

σ=±
È̂ασ(x) |³Ãð , (A.58)

h(p, x) =
Nc∑

α,α′=1

∑

σ,σ′=±
hασ,α′σ′(p, x) |³Ãð ï³′Ã′| , (A.59)

For superconductors we have:

HE =
1

2

Ne∑

j=1

ˆ ∞

0

dxΥ̂ 
j(x)Hj(p, x)Υ̂j(x), Hj(p, x) :=





[
p2

2mj
− µj

]

∆j

∆∗
j −

[
p2

2mj
− µj

]



 ,

(A.60)

Υ̂j(x) =

(
Ç̂j(x)

iÃy

[

Ç̂ 
j(x)

]T

)

, Ç̂j(x) =
Nc∑

α=1

∑

σ=±
Ç̂ασ,j(x) |³Ãð , Ãy = −i

Nc∑

α=1

(|³+ð ï³−| − h.c.) ,

(A.61)

Here we will use index j for j-th superconducting electrode, since this is the only index
that numerates them. Same is true for fields Υj, with fixed index j we mean the field-
operator of the j-th superconductor. The SCs are differ with the effective mass and
chemical potential.
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The tunneling will be as:

HT =
1

2

Ne∑

j=1

Υ̂ 
j(a)W (j)Ψ̂(R̃j) + h.c., W (j) =

(
W (j) 0
0 −W (j)∗

)

, (A.62)

W (j) =
Nc∑

α,α′=1

∑

σ,σ′=±
W

(j)
ασ,α′σ′ |³Ãð ï³′Ã′| . (A.63)

We again see that adding the channels increases the dimension of a coupling matrix, since
in general it is possible for a particle to hop from one to any channel with any spin value.
There are as many coupling matrices as many SC terminals (they are numerated by j).

We note that extended Nambu fields satisfy the following charge conjugation constraint

C2Nc

[
Ψ (x)

]T
= Ψ(x), C2Nc

[

Υ 
j(x)

]T

= Υj(x), C2Nc = [ÄyÃy]2Nc . (A.64)

Here C2Nc is a straightforward generalization of C for one channel. Furthermore, the
following commutation relations are in due

{Ψa(x), Ψb(x
′)} =Ca,b ¶(d)(x− x′), {Ψa(x), Ψ

 
b(x

′)} = ¶a,b¶
(d)(x− x′), (A.65)

{Υa,j(x), Υb,j′(x
′)} =Ca,b ¶j,j′¶(x− x′), {Υa,j(x), Υ

 
b,j′(x

′)} = ¶a,b¶j,j′¶(x− x′). (A.66)

Here a, b indicate different components of the Nambu fields, and j, j′ indicate different
superconductors.

We note that the Hamiltonian possesses chiral symmetry

C2NcHn(p, x)C2Nc = −H∗
n(p, x), C2NcHj(p, x)C2Nc = −H∗

j (p, x), C2NcW (j)C2Nc = −W (j)∗.

(A.67)

Now, we go to Heisenberg’s representation and consider the Heisenberg equations of
motion for the Nambu field operators

i
d

dt
Υ̂j(x, t) =Hj(p, x)Υ̂j(x, t) + ¶(x− a)W (j)Ψ̂(R̃j, t), (A.68)

i
d

dt
Ψ̂(x, t) =Hn(p, x)Ψ̂(x, t) +

Ne∑

j=1

¶(d)(x− R̃j)W (j) Υ̂j(a, t). (A.69)

Green’s functions and their properties

We define the following set of Gorkov/Nambu Green’s functions

[GSS(x,x
′|t)]ab :=− iΘ(t) ï{Ψ̂a(x, t), Ψ̂

 
b(x

′, 0)}ð , (A.70)

[Gj,j′(x, x
′|t)]ab :=− iΘ(t) ï{Υ̂a,j(x, t), Υ̂

 
b,j′(x

′, 0)}ð , (A.71)

[GS,j′(x, x
′|t)]ab :=− iΘ(t) ï{Ψ̂a(x, t), Υ̂

 
b,j′(x

′, 0)}ð , (A.72)

[Gj,S(x,x
′|t)]ab :=− iΘ(t) ï{Υ̂a,j(x, t), Ψ̂

 
b(x

′, 0)}ð . (A.73)

The definition is the same as for the simplified case, but now a, b have much more values,
since the dimension of the spinors is bigger. We see again that there are 3D arguments
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and 1D, since the non-SC part is 3D and the SC leads are 1D. Also, the the total number
of the GFs is much bigger, singe there is an each GF for each two SC, etc. We want to
emphasis that S means non-SC system, and the SC-s are numerated by j.

These satisfy the following set of Dyson’s equations

(

i
d

dt
−Hn(p, x)

)

GSS(x,x
′|t) =

Ne∑

j=1

¶(d)(x− R̃j)W (j) Gj,S(a,x
′|t) + ¶(t)¶(d)(x− x′),

(A.74)
(

i
d

dt
−Hj(p, x)

)

Gj,j′(x, x
′|t) =¶(x− a)W (j)GS,j′(R̃j, x

′|t) + ¶(t)¶(x − x′)¶j,j′ ,

(A.75)
(

i
d

dt
−Hj(p, x)

)

Gj,S(x,x
′|t) =¶(x− a)W (j)GSS(R̃j,x

′|t), (A.76)

(

i
d

dt
−Hn(p, x)

)

GS,j′(x, x
′|t) =

Ne∑

j=1

¶(d)(x− R̃j)W (j) Gj,j′(a, x
′|t). (A.77)

These are exactly the same equations as before, but with some bold arguments ans sum
over SC electrodes. By Fourier transforming the equations we find

(z −Hn(p, x))GSS(x,x
′) =

Ne∑

j=1

¶(d)(x− R̃j)W (j) Gj,S(a,x
′) + ¶(d)(x− x′), (A.78)

(z −Hj(p, x))Gj,j′(x, x
′) =¶(x− a)W (j)GS,j′(R̃j, x

′) + ¶(x − x′)¶j,j′ , (A.79)

(z −Hj(p, x))Gj,S(x,x
′) =¶(x− a)W (j)GSS(R̃j,x

′), (A.80)

(z −Hn(p, x))GS,j′(x, x
′) =

Ne∑

j=1

¶(d)(x− R̃j)W (j) Gj,j′(a, x
′). (A.81)

Bare Green’s functions g and m and the matrix form by D and M matrices

The bare GF will help. We define the following Green’s functions

[z −Hj(p, x)]gj(x, x
′) =¶(x − x′), (A.82)

(z −Hn(p, x))m(x,x′) =¶(d)(x− x′). (A.83)

For each SC there is an each gj. Now, we can rewrite

GSS(x,x
′) =m(x,x′) +

Ne∑

j=1

m(x, R̃j)W (j) gj(a, a)W (j)GSS(R̃j,x
′), (A.84)

Gj,j′(x, x
′) =¶j,j′gj(x, x

′) + gj(x, a)
Ne∑

j′′=1

W (j)m(R̃j, R̃j′′)W (j′′) Gj′′,j′(a, x
′), (A.85)

Gj,S(a,x
′) =gj(a, a)W (j)GSS(R̃j,x

′), (A.86)

GS,j′(R̃j, x
′) =

Ne∑

j′′=1

m(R̃j, R̃j′′)W (j′′) Gj′′,j′(a, x
′). (A.87)
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We can introduce a matrix Dj,j′ , which has for fixed j, j′ a size of the introduced
Green’s functions:

Dj,j′ := ¶j,j′ −m(R̃j, R̃j′)W (j′) gj′(a, a)W (j′). (A.88)

Now, from the first equation (A.84) we have

Ne∑

j′=1

Dj,j′GSS(R̃j′ ,x
′) =m(R̃j,x

′). (A.89)

One hence has

GSS(R̃j,x
′) =

Ne∑

j′=1

[D−1]j,j′m(R̃j′ ,x
′), (A.90)

and

GSS(x,x
′) =m(x,x′) +

Ne∑

j,j′=1

m(x, R̃j)W (j) gj(a, a)W (j)[D−1]j,j′m(R̃j′ ,x
′). (A.91)

The second equation (A.85) in matrix form becomes

Ĝ(x, x′) = ĝ(x, x′) + ĝ(x, a)MĜ(a, x′). (A.92)

where here we have “hatted” matrices

[Ĝ(x, x′)]j,j′ := Gj,j′(x, x
′), [ĝ(x, x′)]j,j′ = ¶j,j′gj(x, x

′), Mj,j′ = W (j)m(R̃j, R̃j′)W (j′) .
(A.93)

The M matrix combines the property of the interactions in contacts W (j) and their
position in the non-SC system. Now we evaluate

Ĝ(a, x′) = [1− ĝ(a, a)M]−1ĝ(a, x′), (A.94)

and get the final expression of SC GF in terms of the bare GF and the properties of
interaction between parts of the system:

Ĝ(x, x′) = ĝ(x, x′) + ĝ(x, a)M[1− ĝ(a, a)M]−1ĝ(a, x′). (A.95)

Spectral density

From the first equation, we infer the spectral density of the local system

Än(É) =− 1

Ã
Im

ˆ

Ω

d(d)xtrGSS(x,x) (A.96)

=− 1

Ã
Im

ˆ

Ω

d(d)xtrm(x,x)

︸ ︷︷ ︸

=ρ
(0)
n (ω)

−

− 1

Ã
Im

ˆ

Ω

d(d)xtrW (j) gj(a, a)W (j)[D−1]j,j′

ˆ

Ω

d(d)xm(R̃j′ ,x)m(x, R̃j) =

(A.97)

=Ä(0)n (É) +
1

Ã
Im trW (j) gj(a, a)W (j)[D−1]j,j′

∂m(R̃j′ , R̃j)

∂É
. (A.98)
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From the second equation, we get

ÄSC el-d(É) = − 1

Ã
Im

ˆ ∞

0

dxtr{Ĝ(x, x)} = (A.99)

= − 1

Ã
Im

ˆ ∞

0

dxtr{ĝ(x, x)}
︸ ︷︷ ︸

=:ρ
(0)
SC el-d(ω)

− 1

Ã
Im tr

{

M[1− ĝ(a, a)M]−1

ˆ ∞

0

dxĝ(a, x)ĝ(x, a)

}

(A.100)

= Ä
(0)
SC el-d(É) +

1

Ã
Im tr

{

[1− ĝ(a, a)M]−1∂ĝ(a, a)

∂É
M
}

(A.101)

= Ä
(0)
SC el-d(É) +

1

Ã
Im tr[D−1]j,j′m(R̃j′ , R̃j)

∂W (j) gj(a, a)W (j)

∂É
. (A.102)

Combining the results together we find the total spectral density

Ä(É) =Ä(0)n (É) + Ä
(0)
SC el-d(É)−

1

Ã
Im tr[D−1]j,j′

∂[D]j′,j
∂É

(A.103)

=Ä(0)n (É) + Ä
(0)
SC el-d(É)−

1

Ã
Im

∂

∂É
tr log [D] . (A.104)

Applications of these formulas for particular systems, and obtaining formula for the
current is a topic for another research.
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B Supplementary Information

B.1 Glossary

• ABS - Andreev states

• MBS - Majorana states

• DOS - density of states

• GF - Green’s function

• BGF - boundary Green’s function

• bare GF - Green’s function of an un-
coupled system

• NEGF - non-equilibrium Green’s
function

• BCS - model of superconductivity by
Bardeen, Cooper, Schrieffer

• BdG - Bogoliubov-de-Gennes equa-
tions

• BTK - method from Blonder, Tin-
kham, Klapwijk

• JJ, - Josephson junction

• JC - Josephson current

• S - superconductor

• TS - topological superconductor

• non-SC - not a superconductive sys-
tem

• SNS - junction between superconduc-
tor, normal metal and superconductor

• SIS, S-QD-S, SNS, TS-S-TS, ... -
other junctions, where another mate-
rial is placed instead of normal region
and instead of conventional supercon-
ductor, a topological one

• 3TJJ, MTJJ - three-terminal Joseph-
son junction, multiterminal Josephson
junction

• QD - quantum dot

• SO, SOI - spin orbit, spin-orbit inter-
action

• SM - semiconductor

• CPR - current-phase relation

• SQUID - superconducting quantum
interference device

• := - equals by definition, we often use
it to emphasis that here we introduce
the object (or when we use the equa-
tion, that defines the object);

• ≡ - equals “from another side”, we use
it to emphasis that the object can also
be expressed by another parameter.
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B.2 Mind Map

Reviewed

Methods

Green’s
function

BCS
GF [1.3]

Nambu
notation

[1.1]

Piasotski’s
et al.
[1.3]

GF
funda-
mentals

[1.3]

MTJJ
methods

TS-S-TS
juncitons

[1.4]

S-QD-S
juncitons

[1.4]

Majorana
states [B.5]

Scattering
matrix

Beenak-
ker’s

method
[B.4]

BTK
method

NS re-
flection
[B.4]

S1NS2

junction
[B.4]

SNS
junction

with
impurity

[B.4]

Basics

Josephson
Effect
[1.1]

Andreev’s
reflec-
tion,

ABS [1.1]

Andreev’s
reflection

[1.1]

BCS [1.1]

Current
[1.1]

Figure B.1: Mindmap of methods that are used or reviewed in this paper. Abbreviations are described
in Sec. B.1. Numbers in links refer to the paragraphs, where a method is described.
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B.3 List of Key Formulas

Formulas for General Multiterminal Josephson Junction with QD

Hfull = HD +HSC +HT , (B.1)

HD =
1

2
D hDD, hD := V Äz +∆ZÃz. (B.2)

HSC =
1

2

N∑

j=1

∞∑

n=1,n′=1

C 
n,j h

n,n′

SC,j Cn′,j, (B.3)

hn,n
′

SC,j := −Äz(tj¶n′,n+1 + tj¶n′,n−1 + µ¶n′,n) + (∆je
iϕjÄ+ +∆je

−iϕjÄ−)¶n′,n. (B.4)

HT =− 1

2

N∑

j=1

t′j(C
 
1,jÄzD + h.c.). (B.5)

[G0,0
0,0(t)]a,b := −iΘ(t) ï{Da(t), D

 
b(0)}ð , (B.6)

[Gj,j′

n,n′(t)]a,b := −iΘ(t) ï{Cn,j,a(t), C 
n′,j′,b(0)}ð , (B.7)

[G0,j
0,n(t)]a,b := −iΘ(t) ï{Da(t), C

 
n,j,b(0)}ð , (B.8)

[Gj,0
n,0(t)]a,b := −iΘ(t) ï{Cn,j,a(t), D 

b(0)}ð . (B.9)

[z − hD − Σ(É)]G0,0
0,0(É) = 1, Σ(É) :=

N∑

j=1

(t′j)
2Äzg

j
1,1(É)Äz. (B.10)

Σ(É) ≃ −
N∑

j=1

Γj
z −∆j[e

iϕjÄ+ + e−iϕjÄ−]
√

∆2
j − z2

, Γj :=
(t′j)

2

tj
, (B.11)

det (É − hD − Σ(É)) = 0. (B.12)

Eτ,σ = Ä

[

1 +
N∑

j=1

Γj
∆j

]−1(
√
√
√
√V 2 + |

N∑

j=1

Γjeiϕj |2 + Ã∆Z

)

. (B.13)

Jj(φ) = − Ã

Φ0

1

´

∑

ωn

tr
1

iÉn − hD − Σ(iÉn)

∂Σ(iÉn)

∂φj
. (B.14)

Jj(φ, T = 0) = − 1

2Φ0

ˆ

dÉ tr
1

iÉ − hD − Σ(iÉ)

∂Σ(iÉ)

∂φj
. (B.15)
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Formulas for Two-Terminal Junction

Eτ,σ = ÄEJ

√

1−D sin2 φ

2
+ ÃEZ , (B.16)

EJ :=

√

V 2 + (Γ1 + Γ2)2

1 + Γ1

∆1
+ Γ2

∆2

, D :=
4Γ2Γ1

V 2 + (Γ1 + Γ2)2
, EZ :=

∆Z

1 + Γ1

∆1
+ Γ2

∆2

. (B.17)

J1(φ) = =
DEJÃ

2Φ0

sinh
(

´EJ

√

1−D sin2 ϕ
2

)

cosh(´EZ) + cosh
(

´EJ

√

1−D sin2 ϕ
2

)
sinφ

√

1−D sin2 ϕ
2

. (B.18)

Formulas for Three-Terminal Junction

For φ := φ1 − φ3; Ç := φ2 − φ3; Γ1 = Γ2 = Γ3; ∆1 = ∆2 = ∆3.

Eτ,σ(φ, Ç) =ÄEJ
√

1−DΦ(φ, Ç) + Ã∆̃Z , (B.19)

EJ :=

[

1 + 3
Γ

∆

]−1√
V 2 + 9Γ2, D :=

9Γ2

V 2 + 9Γ2
,

Φ(φ, Ç) :=
4

9

(
sin2 φ/2 + sin2 Ç/2 + sin2(φ/2− Ç/2)

)
, ∆̃Z :=

∆Z

1 + 3 Γ
∆

.

(B.20)

Formulas for Multiterminal Josephson Junction with a General non-SC Sys-

tem

Hn =
1

2

ˆ

Ω

d(d)xΨ̂ (x)Hn(p, x)Ψ̂(x), Hn(p, x) =

(
h(p, x) 0

0 −h∗(p, x)

)

,

(B.21)

Ψ̂(x) =

(
È̂(x)

iÃy

[

È̂ (x)
]T

)

, È̂(x) =
Nc∑

α=1

∑

σ=±
È̂ασ(x) |³Ãð , (B.22)

h(p, x) =
Nc∑

α,α′=1

∑

σ,σ′=±
hασ,α′σ′(p, x) |³Ãð ï³′Ã′| , (B.23)

HE =
1

2

Ne∑

j=1

ˆ ∞

0

dxΥ̂ 
j(x)Hj(p, x)Υ̂j(x), Hj(p, x) :=





[
p2

2mj
− µj

]

∆j

∆∗
j −

[
p2

2mj
− µj

]



 ,

(B.24)

Υ̂j(x) =

(
Ç̂j(x)

iÃy

[

Ç̂ 
j(x)

]T

)

, Ç̂j(x) =
Nc∑

α=1

∑

σ=±
Ç̂ασ,j(x) |³Ãð , Ãy = −i

Nc∑

α=1

(|³+ð ï³−| − h.c.) ,

(B.25)
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HT =
1

2

Ne∑

j=1

Υ̂ 
j(a)W (j)Ψ̂(R̃j) + h.c., W (j) =

(
W (j) 0
0 −W (j)∗

)

, (B.26)

W (j) =
Nc∑

α,α′=1

∑

σ,σ′=±
W

(j)
ασ,α′σ′ |³Ãð ï³′Ã′| . (B.27)

R̃j =

{

Rj, Rj /∈ ∂Ω,

Rj − anj, Rj ∈ ∂Ω,
(B.28)

i
d

dt
Υ̂j(x, t) =Hj(p, x)Υ̂j(x, t) + ¶(x− a)W (j)Ψ̂(R̃j, t), (B.29)

i
d

dt
Ψ̂(x, t) =Hn(p, x)Ψ̂(x, t) +

Ne∑

j=1

¶(d)(x− R̃j)W (j) Υ̂j(a, t). (B.30)

[GSS(x,x
′|t)]ab :=− iΘ(t) ï{Ψ̂a(x, t), Ψ̂

 
b(x

′, 0)}ð , (B.31)

[Gj,j′(x, x
′|t)]ab :=− iΘ(t) ï{Υ̂a,j(x, t), Υ̂

 
b,j′(x

′, 0)}ð , (B.32)

[GS,j′(x, x
′|t)]ab :=− iΘ(t) ï{Ψ̂a(x, t), Υ̂

 
b,j′(x

′, 0)}ð , (B.33)

[Gj,S(x,x
′|t)]ab :=− iΘ(t) ï{Υ̂a,j(x, t), Ψ̂

 
b(x

′, 0)}ð . (B.34)

[z −Hj(p, x)]gj(x, x
′) =¶(x − x′), (B.35)

(z −Hn(p, x))m(x,x′) =¶(d)(x− x′). (B.36)

Dj,j′ := ¶j,j′ −m(R̃j, R̃j′)W (j′) gj′(a, a)W (j′). (B.37)

[Ĝ(x, x′)]j,j′ := Gj,j′(x, x
′), [ĝ(x, x′)]j,j′ = ¶j,j′gj(x, x

′), Mj,j′ = W (j)m(R̃j, R̃j′)W (j′) .

Ĝ(x, x′) = ĝ(x, x′) + ĝ(x, a)M[1− ĝ(a, a)M]−1ĝ(a, x′). (B.38)

Ä(É) =Ä(0)n (É) + Ä
(0)
SC el-d(É)−

1

Ã
Im

∂

∂É
tr log [D] . (B.39)
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B.4 Review of Scattering Matrix Methods

Here we will review some typical junctions with superconductors in the scattering
matrix approach and the celebrated Beenakker’s determinant equation. Such methods
are classical ones that provide more understanding of SC junctions and often appear in
articles about MTJJ.

BTK Formalism and Basic Contacts

NS Boundary

The “classical” for tunneling problems framework, is the famous method by Blonder,
Tinkham and Klapwijk or BTK method [80, 79, 78]. Considers the NS boundary with
¶-potential barrier on it. What will be the reflectance amplitudes and how the current
will change thought it if the voltage is applied? To get the answer the BTK method tells
us: one needs to write BdG equations, then apply a plane wave ansatz and determine
amplitudes by the matching conditions (like in basic quantum mechanics). In more details,
the method works as follows. First of all, for the spatially varying gap ∆(x) the one-
dimensional BdG equations for the spinor wave function of a superconducting electrons
Èk = [uk(x.t), vk(x, t)]

T looks as follows:

[

− ℏ
2

2m
∇2 + V (x)− µ(x)

]

uk(x, t) + ∆(x)vk(x, t) = iℏ
∂uk(x, t)

∂t
(B.40)

−
[

− ℏ
2

2m
∇2 + V (x)− µ(x)

]

vk(x, t) + ∆∗(x)uk(x, t) = iℏ
∂vk(x, t)

∂t
, (B.41)

where V (x) is the potential. In general, it can be an arbitrary function that is significant
near the boundary, but we will model the strength of the barrier by a delta-potential,
so we will consider V (x) = H¶(x), where H is the parameter for the strength of the
barrier21. Now, we can consider two particular cases of it. Deep in the superconducting
region ∆(x), µ(x), and V (x) are constants, and the solutions are time-independent plane
waves. Thus we use ansatz uk(x, t) ≡ uke

ikx−iEkt/ℏ and vk(x, t) ≡ vke
ikx−iEkt/ℏ and from

BdG equations for V (x) = 0, we get the spinor-amplitudes of the wavefunctions for S
and N regions with fixed energy. For each energy Ek, there are 4 corresponding k values,

±k±, where
ℏ2k2±
2m

= µ±
√

E2
k − |∆|2. The obtained amplitudes give us the reason to use

the following ansatz:

ÈNinc =

[
1
0

]

eik+x, (B.42)

ÈNrefl = a

[
0
1

]

eik−x + b

[
1
0

]

e−ik+x, (B.43)

ÈStrans = c

[
u20
v20

]

eik+x + d

[
v20
u20

]

e−ik−x, (B.44)

where v0, u0 are such that 1 − v20 = u20 = 1
2

(

1 +
(E2−∆2)

1/2

E

)

and a, b, c, d are some

parameters. This ansatz is illustrated in Fig. B.2. On the region of normal metal, the

21Notation of H as a parameter of a barrier, not a Hamiltonian originates from [80].
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spectrum is linear and in SC region the spectrum is parabolic and gaped from zero (the
main feature of the superconductors is that only above the gap ∆ the excitations can
exist).

Figure B.2: Schematic diagram of energy vs momentum at NS interface. The ◦ denote holes, and • -
electrons; the arrows point in the direction of movement. (0) - incident electron, (2, 4) - transmitted and
(5, 6) reflected particles. Credit: [80].

The boundary conditions ÈN(0) = ÈS(0) = È(0) and ℏ

2m
dψS(0)
dx

− ℏ

2m
dψN (0)
dx

= HÈ(0)
will allow us to get the Andreev reflection A(E) and normal reflection B(E) amplitudes.
For example, for E < ∆

A(E) = |a(E)|2 = ∆2

E2 + (∆2 − E2) (1 + 2Z2)2
; (B.45)

B(E) = |b(E)|2 = 1− A; (B.46)

where Z := mH/ℏ2kF is the dimensionless barrier height. The reflection amplitudes and
bound states are closely related to the current as we will discuss below. If the voltage V
is applied, the current can be obtained by

INS(V ) ∝
ˆ ∞

−∞
[f(E − eV )− f(E)]

[
1 + |a(E)|2 − |b(E)|2

]
dE, (B.47)

where f(E) is the Fermi distribution function. Physically, it tells us that Andreev re-
flection increases, while the normal reflection reduces tunneling current and the number
of tunneling electrons is obtained by a Fermi distribution. Totally, for different values
of Z := mH/ℏ2kF the behavior of the current, which is obtained by the BTK method,
is shown in Fig. B.3. This plot has an intuitive explanation: if there is no barrier, the
Andreev reflection gives an electron and a hole, thus the current is twice as classical one.
When potential is increased, electrons start to give excitation over the SC gap, thus they
lose energy and the current diminishes. Then, the strength of the barrier is increased,
fewer electrons can tunnel, and with strong Z only excitations with voltage higher than
gap can appear. Also, as a very typical in SC and in experimental articles, one can plot
the derivative dI

dV
versus V and see exactly the position of the gap.

Supercurrent Through a S1NS2 Junction

The easiest generalization of SNS junction is the junction between SC with different
gaps (S1NS2). We will choose ∆2 > ∆1 and review it shortly following [77]. The BdG
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Figure B.3: Current vs voltage for various barrier strengths Z := mH/ℏ2kF at T = 0. These curves
attain their asympototic limits only for very high voltages. For example, the tunnel junction (Z = 50)
curve will be within 1% of the normal-state curve (dotted line) only when eV g 7∆. Credit: [80].

equations for this case are

(
H(x)− µ ∆(x)
∆∗(x) − [H∗(x)− µ]

)(
u(x)

v(x)

)

= E

(
u(x)

v(x)

)

,

∆(x) =







∆1e
iφ1 , x < 0,

0, 0 < x < L,
∆2e

iφ2 , x > L;

H(x) := − ℏ
2

2m

d2

dx2
.

The amplitudes u(x), v(x) can be obtained with the usual BTK method by plane waves
ansatzes. These will be used in the Josephson current, which can be computed by counting
currents from electrons with a certain energy:

JQ(x) = e
∑

n

fn · {Jun(x) + Jvn(x)} (B.48)

where n numerates states, fn := f (En) = 1
1+eEn/kBT , and the Jun(x), Jvn(x) are

Schrödinger currents carried by the waves un(x) and vn(x):
Jun(x) = ℏ

m
Im {u∗

n(x) [∇un(x)]}; Jvn(x) = ℏ

m
Im {v∗n(x) [∇vn(x)]}. But what are the

allowed energy for this model? Since there are two different gaps ∆1,∆2, there are three
regions: below the lowest ∆, between them and higher then highest ∆. Thus the total
current is sum of three terms:

I(ϕ) = I1(ϕ)
︸ ︷︷ ︸

|E|<∆1

+ I2(ϕ)
︸ ︷︷ ︸

E1<|E|<∆2

+ I3(ϕ)
︸ ︷︷ ︸

|E|>∆2

. (B.49)

Here the ϕ =: ϕ2−ϕ1 is a phase difference, the most only parameter that we can vary if we
constructed the junction. The Andreev levels are obtain from th transmission amplitude,
by analyzing its poles. For E g 0 they are given by

− arccos

(
E

∆1

)

− arccos

(
E

∆2

)

+
2LE

ℏvF
± ϕ = 2Ãn, (B.50)

where L is the length of a contact, n is an integer, vF :=
√

2µ/m is the Fermi velocity.
This is a generalization of Eq. (1.19).

For a reference we give also a formula for terms of the total currents, each of which
can be obtained from Eq. (B.48). The current from purely Andreev levels is:

I1(ϕ) =
∑

n {I+n (ϕ)f (E+
n (ϕ)) + I−n (ϕ)f (E

−
n (ϕ))} ; I±n (ϕ) = ∓ evF

L+ξ1(E±
n (φ))+ξ2(E±

n (φ))
,

(B.51)
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where À1,2(E) := À1,2
∆1,2√
∆2

1,2−E2
and À1,2 := ℏvF/2 |∆1,2|. Currents I2(ϕ)and I3(ϕ) are from

continuous part of the spectrum, and can be expressed as:

I2(ϕ) =
2e

h

(
ˆ ∆2

∆1

−
ˆ −∆1

−∆2

)
∣
∣u21 − v21

∣
∣

(
1

D(E,−ϕ) −
1

D(E, ϕ)

)

f(E)dE; (B.52)

I3(ϕ) =
e

h

(
ˆ −∆2

−∞
+

ˆ ∞

∆2

)
(∣
∣u21 − v21

∣
∣+
∣
∣u22 − v22

∣
∣
)
(

1

D′(E,−ϕ) −
1

D′(E, ϕ)

)

f(E)dE;

(B.53)

where

D(E, ϕ) := u21 + v21 − 2u1v1 cos

[ |E|
∆1

L

À1
+ ϕ− arccos

( |E|
∆2

)]

; (B.54)

D′(E, ϕ) := u21u
2
2 + v21v

2
2 − 2u1u2v1v2 cos

[ |E|
∆1

L

À1
+ ϕ

]

; (B.55)

and 2u21,2 = 1 +

√
E2−∆2

1,2

E
; 2v21,2 = 1 −

√
E2−∆2

1,2

E
(coherence factors from BCS theory).

Formula for I3 tells us that for a point contact there is no current from purely continuous
spectrum at all (term I3(Lj À1, À2) = 0). These explicit expressions allow us to plug there
ϕ and use simple mathematics to obtain the current (since all parameters ∆ are fixed, and
we have just functions of ϕ). One can see that these formulas are big, which is a typical
feature of scattering matrix approaches and the biggest its disadvantage. Generalization

Figure B.4: Left: ABS for point-contact junction with ∆2/∆1 = 1.5 (solid) and ∆2/∆1 = 1.0 (dashed).
Right: ABS for a long SNS contact with ∆2/∆1 = 1.5. Credit: [77].

to a higher number of channels, terminals is a challenge. For us it is good to see these
formulas once, however, some works use this approach and obtain a generalization of these
formulas for multiterminal case [32].

Let us finish this example by showing physics. As in SNS case, for a point-contact
junction the Andreev levels from Eq. (B.50) is not much changed compared to symmetric
contact. They are expressed by

E± = ± ∆1∆2 sin(ϕ)
√

∆2
1 +∆2

2 − 2∆1∆2 cos(ϕ)
(B.56)

and depicted in Fig. B.4. We see again the typical Andreev levels. The another typical
case, for a long junction is shown on the right of the same figure. In this case, there are
much more levels.
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Also, formulas (B.51), (B.52) and (B.53) provide an answer on a question: from which
regions of energy there is more contribution to the current, from discrete or from contin-
uum? The plot of these exact expressions for a point-contact junction is shown in Fig. B.5.
At nearly symmetric case there are major contributions from the Andreev levels (I1), and
in very asymmetric from continuous spectra (I2). Currents for finite temperature can be

Figure B.5: Total supercurrent I(φ) (solid) through a point-contact junction at T = 0 when the asym-
metry is (a) ∆2/∆1 = 1.5 and (b) ∆2/∆1 = 200. The critical current in (b) is much bigger than in (a),
and the CPR is changed. Credit: [77].

obtained with the same formulas. All these total currents are the generalization of the
basic Josephson relation I = Ic sinϕ, which for this case has a discontinuity at ϕ = Ã,
since carriers are changed from left-going to right-going.

SNS Junction with Impurity

The simplest multiterminal structure one can imagine is just an SNS contact with
something that scatters, and the most basic candidate is a ¶-potential. Andreev levels of
such model can be obtained from the BdG equations[73]:

(
H(x)− µ ∆(x)
∆∗(x) − [H∗(x)− µ]

)(
u(x)

v(x)

)

= E

(
u(x)

v(x)

)

,

H(x) :=
1

2m

(

−iℏ d
dx

− eA(x)

)2

+ V (x);

V (x) := Vs¶(x− a), 0 f a f L;

∆(x) :=







∆eiφ1 , x < 0,

0, 0 < x < L,

∆eiφ2 , x > L.

(B.57)
Here we state that that particle is described by the usual quantum mechanical hamil-
tonian, that there is a ¶-potential at distance a from the left boundary inside the SNS
junction, and that order parameter is different by phase at the left and at the right
boundary. Now the equation for the Andreev levels (1.19) will be modified:

2 arccos

(
E

∆

)

+
L

À0

E

∆
± ³ = 2Ãn, (B.58)

where À0 = ℏvF/2∆ and “effective phase” ³ is such that

cos(³) = T cos(ϕ) + R cos
[(

L−2a
ξ0

) (
E
∆

)]

, ℏkF :=
√
2mµ and µ is the Fermi energy Here

the transmission probability T = 1 − R = 1
1+(mVs/ℏ2kF )2

obtained from the well-known
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quantum mechanical problem of scattering on ¶-potential. In the limit T → 1 we recover
the Andreev levels for the clean junction, since ³ → ϕ. In the opposite limit of small
transmission, where T → 0, ³ also becomes small and is nearly independent of the actual
phase difference ϕ. If the junction is long compared to the healing length (L > À0), and
if an impurity is present (T ̸= 1), ³ also depends on the particle’s energy and the
impurity position |L− 2a|.

The Josephson current can be obtained as in the previous model, but the formulas
become even bigger. We have again the contributions from discrete and continuous spec-
trum. The first one is a generalization of (B.51) and the second it an Eq. (B.53), but with
u1 = u2, since the junction is symmetric. Instead of providing large formulas, we will
review some physics. For the short junction the Eq. B.58 gives the well-known formula
for the Andreev levels

E± = ±∆cos(³/2) = ±∆
√

1− T sin2(ϕ/2), (B.59)

where cos(³) = T cos(ϕ) +R. The ¶-potential induces R ̸= 0 and the gap Egap = 2∆
√
R

appears (see Fig. B.6, left). For the current at zero temperature and for short junction

Figure B.6: Left: ABS for a short junction. Right: Josephson current with impurity (solid) and unper-
turbed junction (dotted) Credit: [73].

we also have a simple formula:

I(ϕ) =
e∆

ℏ
T sin(³/2)

sin(ϕ)

sin(³)
, (B.60)

where effective phase ³ was introduced above and T is a transmission amplitude. We
can see on the right of Fig. B.6, that current is strongly suppressed from the case of no
impurity.

Beenakker’s Determinant Equation

Now we will make a very short review of famous and fertile Beenakker’s approach [71],
which has been used for numerous junctions, including multiterminal ones. For example,
analysis of the first observation of Josephson effect in 3- and 4-terminal junctions was
done by it [39]. The main idea is that the DOS Ä of the SC junction can be obtained by
the determinantal expression

Ä(ε) = − 1

Ã
Im

d

dε
ln det

[
1−RA(ε+ i0+)SN(ε+ i0+)

]
+ Ä0(ε). (B.61)

Here Ä0 is the ϕ-independent terem, RA is the Andreev reflection matrix, SN is the scat-
tering matrix of the junction in the normal state (see below); ε > 0 is the excitation
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energy of Bogoliubov quasiparticles (superpositions of electrons and holes). We assume
that both left and right gaps are ∆0 and phase is ±ϕ/2. Because of electron and hole
degree of freedom, the scattering matrices have a block structure, where two blocks are
uncoupled and related by particle-hole symmetry:

SN(ε) :=

(
s0(ε) 0
0 s∗0(−ε)

)

, (B.62)

Any normal reflection at the NS interface is taken into account in SN. The Andreev
reflection matrix has the block structure

RA(ε) := i³(ε)

(
0 rA
r∗A 0

)

, rA :=

(
eiφ/2Ãy 0

0 e−iφ/2Ãy

)

,

³(ε) = e−i arccos(ε/∆0) = ε/∆0 − i
√

1− ε2/∆2
0. (B.63)

The blocks r∗A and rA describe Andreev reflection from, respectively, electron to hole
and hole to electron, in opposite spin bands. Another formula for DOS that is obtained
from (B.61) by substituting terms is:

Ä(ε) = − 1

Ã
Im

d

dε
ln det

[
1−M(ε+ i0+)

]
+ Ä0(ε), M(ε) := −³(ε)2r∗As∗0(−ε)rAs0(ε).

(B.64)

As was shown in Sec. 1.1, the free energy is F = −kBT
´∞
0
dε Ä(ε) ln

[
2 cosh(ε/2kBT )

]
,

thus we can express also it in terms of M :

F =
i

4Ã

ˆ ∞

−∞
dε tanh(ε/2kBT ) ln det

[
1−M(ε+ i0+)

]
+ F0, (B.65)

where F0 the ϕ-independent term. The rest of this method is the calculation of this setup
for the analyzed model. There are several famous ways to do it. For example, one can
proceed by summing over Matsubara frequencies:

F = −kBT
∞∑

p=0

ln det [1−M (iÉp + iµ)] , Ép = (2p+ 1)ÃkBT. (B.66)

More importantly, we see that the bound stated can be obtained by equating the
det
[
1−M(ε+ i0+)

]
to zero, since its (−1)log[ ] will be infinite. This is a famous starting

point for calculation of ABS for any junction, ans especially for multiterminal ones. For
example, this approach gives ABS for three-terminal JJ by [22, 23]:

E

∆
= ±1

2

√

1 + Tr (SeiφS∗e−iφ), (B.67)

where e
±iφ a diagonal matrix with the phases in each lead and S is the scattering matrix

of the inner region. This can be simplified to

E = ±∆

2

√

1 +
∑

l,j

Tlje−i(φl−φj), (B.68)
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where Tlj are the transmission probabilities for the quasiparticle that travel from the l’th
lead to the j’th terminal and connected to the elements of the S-matrix by Tlj = |slj|2.

A proper review of Beenakker’s determinant method and its application can take
hundreds of pages, so let us finish with the example. As mentioned above, the current
also can be obtained by the determinant formula. For example, for Hamiltonian H =(

−iÃzv̂∂/∂x ∆
∆∗ −− iÃzv̂∂/∂x

)

with help of Matsubara Green function one can obtain

I = − e

ℏ

∂

∂φ
T
∑

ω

ln det [1− SNSA(É)] ,

where

SN :=

(
S 0
0 −S∗

)

, S :=

(
rL tLR
tRL rR

)

SA = −i
(

0 rA
r∗A 0

)

rA :=

(
e−θL+iϕL 0

0 e−θR+iϕR

)

, ¹ := arcsinh ω
∆
.

Where rR, rL, tRL, tLR are blocks that contain reflection and transmission amplitudes re-
spectively. The formulas are big, but they can be simplify to the Eq. 1.25 (see [88]).

B.5 Review of Majorana Fermions

As mentioned in the introduction, Majorana states and the models that contain them
are very important concepts in modern condensed matter physics. Since some models
of MTJJ were proposed to host Majorana states and our method can be generalized to
different Hamiltonians of normal region, we can not but mention some main concepts.
This short review will be used in the following section, where we will discuss topological
multiterminal junctions and potentially can be a background for further research with our
method. We will follow [63].

The most famous model is a models of a SC-SM-SC junction (superconductor-
semiconductor-superconductor). The SM and SC Hamiltonians are:

Hw : =
1

2

ˆ

dxΨ (x)H(x)Ψ(x), Hw(x) :=

(

−ℏ
2∂2x
2m∗ − µ− i³∂xÃy

)

Äz + VZÃx;

(B.69)

HSC=

ˆ ∞

−∞
dx
(

∆(x)È 
↑(x)È

 
³(x)+h.c.

)

. (B.70)

The SM Hamiltonian takes into account the so-called Rashba spinorbit (SO) interaction
(term i³∂xÃy) and the existence of parallel to the nanowire axis magnetic field B (term
VZÃx, where VZ = 1

2
gµBB is the usual Zeeman energy with effective g-factor). The usual

Nambu notation is assumed (for example, the wave function Ψ(x) = (È 
↑, È

 
³, È³,−È↑) is

a Nambu spinor).
Another model with Majoranas that will be used in our review and for which our

method can be applicable is a model of topological superconductors They can be modeled,
for example, as a low-energy limit of a Kitaev chain, and its Hamiltonian looks as follows:

HTS =

ˆ ∞

0

dxΨ 
TS(x) (−ivF∂xÃz +∆Ãy)ΨTS(x). (B.71)
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Here the pairing gap ∆ is induced by proximity effect and can be considered as real

and positive; ΨTS(x) =
(

cr, c
 
l

)T

is the Nambu spinor, it contains right- and left-moving

fermion operators cr,l(x). One can see that the difference between the conventional SC is
the dispersion relation.

The model (B.69) has a discretized version, which looks as follows [17]:

Hwire =
1

2

∑

j

[

Ψ 
jĥΨj +

(

Ψ 
j t̂Ψj+1 + h.c.

)]

,

ĥ := (2t− µ)ÃzÄ0 + VxÃ0Äx +∆ÃxÄ0,

t̂ := −tÃzÄ0 + i³ÃzÄz,

ΨT
j =

(

cj↑, cj³, c
 
j³,−c

 
j↑

)

.

Here ĥ is responsible for a on-site energy and the t̂ is a hopping matrix. Often the
discretized models are analyzed more conveniently, and after one can take a continuous
limit (as done in the main part of this thesis).
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Figure B.7: Wavefunction of the lowest energy state ψ0 in a uniform L = 1µm Majorana nanowire for a
trivial VZ = 0.5V c

Z (a) and a non-trivial VZ = 1.4V c
Z (b) cases. (c,d) Wavefunctions of the corresponding

Majorana components uM1,2(x) in the Majorana basis. In the trivial regime the left (red) and right
(blue) Majorana components strongly overlap (c), whereas in the topological regime they move apart and
concentrate at the ends of the nanowire (d). Credit: [63].

One can find a lot of physics from these Hamiltonians, was was reviewed in the in-
troduction. The excitations of this model can be described by self-conjugation opera-
tors (which are known from field theory as Majorana operators) µ1 := µ 

1 and µ2 :=
µ 
2. These can be obtained from unitary rotation µ1 := È 

0 + È0, µ2 := i(È 
0 − È0),

where the later operators are defined from the wave function in the model as Èn :=
´

dx
∑

σ

[
unσ(x)Èσ(x) + vnσ(x)È

 
σ(x)

]
. Here and unσ(x), vnσ(x) are the wavefunctions of

electron and hole. The “big” value of VZ is crucial for having the localization of the
Majorana modes: if VZ > V c

Z then we have a non-trivial topological regime and the
wave-functions are localized. If VZ < V c

Z then the regime is non-topological and the
wave-functions are overlap strongly. This is illustrated in Fig. B.7.

The GF approach is very useful for a theoretical description of Majorana wires. The
computation of the Green’s function of the discrete model is discussed in the [17] and the
example of application can be found in [16]. They are given by

G(Ä) := −ïTτΨTS(Ä)Ψ
 
TS(0)ð0 = T

∑

ω

e−iωτGj(É); G(É) =
1

iÉ

(√
É2 +∆2 Ä0 +∆Äx

)

.

Here ΨTS = (È È )T is a Nambu spinor and Tτ is the time-ordering operator. The
frequencies É are the fermionic Matsubara frequencies (É = 2Ã(n+1/2)/´). This function
can be used for description of multiterminal junctions with topological superconductors.

74



A good review of numerous models that host Majoranas is done by Alicea [61] and
experimental detection schemes are discussed in [60, 63, 65]. Example of Majorana states
in Josephson junction with special properties can be found in [64] and the analysis of the
junction during topological phase transition was done by Murthy et al. [24]. Multiterminal
junctions with Majorana wires are analyzed in [16, 17].
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B.6 Some Derivations

B.6.1 Derivations for the Main Theory

Derivation of dot’s Hamiltonian in Nambu formalism

Here we will show that

HD :=
∑

σ=±
(V + Ã∆Z)d

 
σdσ, ô HD =

1

2
D 
[
V Äz +∆ZÃz

]
D + const; D :=




d+
d−
d −
−d +


 .

Let us do it in the opposite direction.

HD =
1

2
D 
[
V Äz +∆ZÃz

]
D =

=
1

2

(
d + d − d− −d+

)



∆Z + V 0 0 0
0 V −∆Z 0 0
0 0 ∆Z − V 0
0 0 0 −∆Z − V







d+
d−
d −
−d +


 =

=
1

2

(
(∆Z + V )d +d+ + (V −∆Z)d

 
−d− + (∆Z − V )d−d

 
− + (−∆Z − V )(−d+)(−d +)

)
=

=
1

2

(
(∆Z + V )d +d+ + (V −∆Z)d

 
−d− + (∆Z − V )(1− d−d

 
−) + (−∆Z − V )(1− d+d

 
+)
)
=

= (∆Z + V )d +d+ + (V −∆Z)d
 
−d− − V.

Thus with const=V we got the initial Hamiltonian (2.2).

Derivation of SC’s Hamiltonian in Nambu formalism for the discrete model

Here we will show that

HSC :=
N∑

j=1

(
−tj

∞∑

n=1

∑

σ=±
(c n,σ,jcn+1,σ,j + c n+1,σ,jcn,σ,j) + ∆j

∞∑

n=1

(eiϕjc n,+,jc
 
n,−,j + h.c.)−

−µ
∑

σ=±

∞∑

n=1

c n,σ,jcn,σ,j

)

is equivalent to one in terms of Cn,j :=
(
cn,+,j cn,−j c n,−j −c n,+j

)T
:

HSC =
1

2

N∑

j=1

(
−tj

∞∑

n=1

(C 
n,jÄzCn+1,j + C 

n+1,jÄzCn,j) + ∆j

∞∑

n=1

(eiϕjC 
n,jÄ+Cn,j + h.c.)−

−µ
∞∑

n=1

C 
n,jÄzCn,j

)
+ const.
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We will do in the opposite direction and by each part in the sum over j. The first part:

1

2
(C 

n,jÄzCn+1,j + C 
n+1,jÄzCn,j) =

= 1
2
(c n,+,j c

 
n,−j cn,−j −cn,+j)




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1







cn+1,+,j

cn+1,−j
c n+1,−j
−c n+1,+j


+ 1

2
(c n+1,+,j c

 
n+1,−j cn+1,−j −cn+1,+j)




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1







cn,+,j
cn,−j
c n,−j
−c n,+j


 =

=
1

2

(
c n,+,jcn+1,+,j + c n,−jcn+1,−j−cn,−jc n+1,−j−(−cn,+j)(−c n+1,+j)+

+ c n+1,+,jcn,+,j + c n+1,−jcn,−j−cn+1,−jc
 
n,−j−(−cn+1,+j)(−c n,+j)

)
=

= c n+1,+,jcn,+,j + c n+1,−jcn,−j−cn+1,−jc
 
n,−j−cn+1,+jc

 
n,+j.

This the exactly the term we needed. All was easy, since all operators in each term
commute (the key transformation is the anticommutation relation). Now, the second
part:

1

2
(eiϕjC 

n,jÄ+Cn,j + h.c.) =

= 1
2
eiϕj(c n,+,j c

 
n,−j cn,−j −cn,+j)




0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0







cn,+,j
cn,−j
c n,−j
−c n,+j


+ 1

2
e−iϕj(c n,+,j c

 
n,−j cn,−j −cn,+j)




0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0







cn,+,j
cn,−j
c n,−j
−c n,+j


 =

=
1

2
eiϕj
(
c n,+,jc

 
n,−j + c n,−j(−c n,+j)

)
+

1

2
e−iϕj

(
cn,−jcn,+,j + (−cn,+j)cn,−j

)
=

=
1

2
eiϕj
(
c n,+,jc

 
n,−j + c n,+,jc

 
n,−j
)
+

1

2
e−iϕj

(
cn,−jcn,+,j + cn,−jcn,+,j

)
=

= eiϕjc n,+,jc
 
n,−j + e−iϕjcn,−jcn,+,j.

Another, slightly simpler way is to obtain only the first term and then to take h.c. of it to
get the second term. Also, note that this is the place where we wee exactly, why there is
a minus sign in the last component of the Nambu spinor, it generates the essential minus
to obtain the required term. Finally, the last term:

1

2
C 
n,jÄzCn,j =

1

2

(
c n,+,j c n,−j cn,−j −cn,+j

)



1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1







cn,+,j
cn,−j
c n,−j
−c n,+j


 =

=
1

2

(
c n,+,jcn,+,j + c n,−jcn,−j − cn,−jc

 
n,−j − (−cn,+j)(−c n,+j)

)
=

=
1

2

(
c n,+,jcn,+,j − cn,+jc

 
n,+j + c n,−jcn,−j − cn,−jc

 
n,−j
)
=

=
1

2

(
c n,+,jcn,+,j − (−c n,+jcn,+j + 1) + c n,−jcn,−j − (−c n,−jcn,−j + 1)

)
=

= c n,+,jcn,+,j + c n,−jcn,−j − 1.

And this is the term in the initial Hamiltonian (2.8) (as usual, we neglect the constant
term). Thus all terms coincide and the Hamiltonians are equivalent.
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Derivation of tunneling Hamiltonian in Nambu formalism for the discrete

model

Here we will prove that

HT := −
N∑

j=1

t′j
∑

σ=±
(c 1,σ,jdσ + d σc1,σ,j). ô HT = −1

2

N∑

j=1

t′j
∑

σ=±
(C 

1,jÄzD +D ÄzC1,j).

We do it again from the opposite direction:

HT = −1
2
(c 1,+,j c

 
1,−j c1,−j −c1,+j)




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1







d+
d−
d −
−d +


− 1

2
(d + d − d− − d+)




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1







c1,+,j
c1,−j
c 1,−j
−c 1,+j


 =

= −1

2

(
c 1,+,jd++c

 
1,−jd−−c1,−jd −−c1,+jd + + d +c1,+,j+d

 
−c1,−j−d−c 1,−j−d+c 1,+j

)
=

= −1

2

(
c 1,+,jd++c

 
1,−jd−−c1,−jd −−c1,+jd +

)
.

This is the term in non-Nambu formalism (2.15).

Derivation of the Heisenberg equations for the discrete model

Here we will derive the Heisenberg equations for the Nambu fields Cn,j and D.
We will use i d

dt
Cn,ja(t) = [Cn,ja(t), Htot] and we will change the names of inner indices

j → p, n→ k, n′ → l, we compute:

[Cnja, HD] =
1

2

(
CnjaD

 
bh

bc
DDc −D 

bh
bc
DDcCnja = CnjaD

 
bh

bc
DDc − (−1)2D 

bh
bc
DDcCnja

)
= 0;

[Cn,ja, HSC ] =
1

2

[
Cn,ja

∑

p,k,l

C 
k,pb [h

k,l
SC,p]

bc Cl,pc −
∑

p,k,l

C 
k,pb [h

k,l
SC,p]

bc Cl,pcCn,ja

]
=

= 1
2



∑

p,k,l(−C
 
k,pbCn,ja + ¶kn¶pj¶ab) [h

k,l
SC,p]

bc Cl,pc −
∑

p,k,l C 
k,pb︸︷︷︸

=Ck,prPrb

[hk,lSC,p]
bc (Pac¶jp¶nl − Cn,jaCl,pc)


 =

= 1
2

[
− ∑

p,k,l

C 
k,pbCn,ja [hk,lSC,p]

bc Cl,pc+
∑
l

[hn,lSC,j]
ac Cl,jc −

∑
k

Ck,jr Prb [h
k,n
SC,j]

bc Pac︸ ︷︷ ︸
=−[hk,nSC,j ]

ra∗=−[hk,nSC,j ]
ar

+
∑
p,k,l

C 
k,pb [h

k,l
SC,p]

bc Cn,jaCl,pc

]
=

=
∑

l

[hn,lSC,j]
ac Cl,jc =

[∑

l

[hn,lSC,j] Cl,j

]
a
.

Let us remind, that here each hk,lSC,p operator is a matrix of 4×4 dimensions, so two extra
indices mean taking the row’s and column’s element. At the last step of the transformation
we notice that the first and the fourth terms are the same but with different sign.
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[Cn,ja, HT ] =−1
2

[
Cn,ja

∑
p=1

t′pC
 
1,pbÄ

bc
z Dc + Cn,ja

∑
p=1

t′pD
 
bÄ
bc
z C1,pc −

∑
p=1

t′pC
 
1,pbÄ

bc
z DcCn,ja −

∑
p=1

t′pD
 
bÄ
bc
z C1,pcCn,ja

]
=

=− 1

2

[∑

p=1

t′p(−C 
1,pbCn,ja + ¶n,1¶pj¶ab)Ä

bc
z Dc +

∑

p=1

t′p(−D 
bCn,ja)Ä

bc
z C1,pc−

−
∑

p=1

t′pC
 
1,pbÄ

bc
z DcCn,ja︸ ︷︷ ︸

=−Cn,jaDc

−
∑

p=1

t′p D 
b︸︷︷︸

=DdPdb

Ä bcz C1,pcCn,ja

]
=

=− 1

2

[
t′j¶n,1Ä

ac
z Dc−

∑

p=1

t′pDdPdbÄ
bc
z Pca︸ ︷︷ ︸

−τdaz

¶n1¶pj

]
=

=[−¶n,1 t′j Äz D]a.

After restoring t-dependence and summing terms, we have

i
d

dt
Cnj(t) =

∑

l

hn,lSC,j Cl,j(t)− ¶n,1 t
′
j Äz D(t).

And this is the (2.18). The Eq. (2.19) is derived by exactly the same approach.

Derivation of the Dyson equation for Green’s functions for the discrete model

The Dyson equation for [G0,0
0,0(t)]a,b := −iΘ(t) ï{Da(t), D

 
b(0)}ð is derived as follows.

We evaluate:

i
d

dt
[G0,0

0,0(t)]a,b = ¶(t) ï{Da(t), D
 
b(0)}ð︸ ︷︷ ︸

=δ(t)ï{Da(0), D
 
b(0)}ð=δabδ(t)

− iΘ(t) ï{idDa(t)

dt
, D 

b(0)}ð

= ¶(t)¶ab − iΘ(t) ï{hacDDc(t), D
 
b(0)}ð − iΘ(t) ï{

∑

j=1

(−1)t′jÄ
ac
z C1,jc(t), D

 
b(0)}ð =

= ¶(t)¶ab − iΘ(t)hacD ï{Dc(t), D
 
b(0)}ð︸ ︷︷ ︸

=[G0,0
0,0(t)]a,b

−
∑

j=1

t′jÄ
ac
z (−i)Θ(t) ï{C1,jc(t), D

 
b(0)}ð︸ ︷︷ ︸

=[Gj,0
1,0(t)]cb

.

Thus, in the matrix form we will get
(
i
d

dt
− hD

)
G0,0

0,0(t) +
∑

j=1

t′jÄzG
j,0
1,0(t) = ¶(t)

Now, to use transformation F [f ](z) :=
´∞
0
dteiztf(t), the formulas below are used:

F [i
d

dt
[G0,0

0,0(t)]a,b](z) =

ˆ ∞

0

dteizti
d

dt
[G0,0

0,0(t)]a,b =

= ieizt[G0,0
0,0(t)]a,b|∞0 − i ·iz

ˆ ∞

0

dteizt[G0,0
0,0(t)]a,b = z[G0,0

0,0(z)]a,b,

F [hD[G
0,0
0,0(t)]a,b](z) = hD[G

0,0
0,0(z)]a,b,

F [
∑

j=1

t′jÄz[G
j,0
1,0(t)]ab](z) =

∑

j=1

t′jÄz[G
j,0
1,0(z)]ab.

F [¶(t)](z) = 1,
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and we will have:

[z − hD]G
0,0
0,0(É) +

N∑

j=1

t′jÄzG
j,0
1,0(É) =1,

Now, we will derive the Dyson eq. for [Gj,j′

n,n′(t)]a,b := −iΘ(t) ï{Cn,j,a(t), C 
n′,j′,b(0)}ð ,

we evaluate:

i
d

dt
[Gj,j′

n,n′(t)]a,b = ¶(t)ï{Cn,j,a(t), C 
n′,j′,b(0)}ð︸ ︷︷ ︸

=δnn′δjj′δab

− iΘ(t) ï{idCn,j,a(t)
dt

, C 
n′,j′,b(0)}ð =

= ¶(t)¶nn′¶jj′¶ab +
∑

l(−iΘ(t)) ï{[hn,lSC,j]ad Cl,jd(t), C 
n′,j′,b(0)}ð − (−iΘ(t)) ï{¶n,1t′jÄadz Dd(t), C

 
n′,j′,b(0)}ð =

= ¶(t)¶nn′¶jj′¶ab +
∑

l[h
n,l
SC,j]

ad (−iΘ(t)) ï{Cl,jd(t), C 
n′,j′,b(0)}ð︸ ︷︷ ︸

=[Gj,j′

l,n′
]db

− ¶n,1t
′
jÄ
ad
z (−iΘ(t)) ï{Dd(t), C

 
n′,j′,b(0)}ð︸ ︷︷ ︸

=[G0,j′

0,n′
]db

.

Also, i d
dt
[Gj,j′

n,n′(t)]a,b ≡
∑
l

i d
dt
[Gj,j′

l,n′(t)]a,b¶l,n, thus in matrix notation we will have:

∑

l

i
d

dt
Gj,j′

l,n′(t)¶l,n = ¶(t)¶nn′¶jj′¶ab +
∑

l

hn,lSC,j G
j,j′

l,n′ − ¶n,1t
′
jÄzG

0,j′

0,n′ (B.72)

∑

l

[
i¶l,n

d

dt
− hn,lSC,j

]
Gj,j′

l,n′ + ¶n,1t
′
jÄzG

0,j′

0,n′ = ¶(t)¶nn′¶jj′ . (B.73)

The Fourier transform is done exactly as for the example above.
The other two Dyson equations (2.24) can be derived the same way.

Assumed formulas for the main derivation of bare Green’s function gj1,1 for the

discrete model

In quantum mechanics, we can set any set of basis vectors. For the case of a boundary
the following set of functions is sufficient

Èk(n) =

√
2

Ã
sin(kn), k ∈ [0, Ã], n ∈ N. (B.74)

These satisfy

∞∑

n=1

Èk(n)È
 
k′(n) = ¶(k − k′),

ˆ π

0

dkÈ 
k(n)Èk(n

′) = ¶n,n′ . (B.75)

These are the completeness and the orthogonality relations. After acting with the Hamil-
tonian hn,n

′

SC,j := −Äz(tj¶n′,n+1 + tj¶n′,n−1 + µ¶n′,n) + (∆je
iϕjÄ+ + ∆je

−iϕjÄ−)¶n′,n on these
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vectors, with help of sin x+ sin y = 2 sin x+y
2

cos x−y
2

one has:

∞∑

n′=1

hn,n
′

SC,jÈk(n
′) =

√
2

Ã

∞∑

n′=1

[
− Äz(tj¶n′,n+1 + tj¶n′,n−1 + µ¶n′,n) sin(kn

′)+

+ (∆je
iϕjÄ+ +∆je

−iϕjÄ−)¶n′,n sin(kn
′)
]
=

=

√
2

Ã

[
− Äztj(sin(k(n+ 1)) + sin(k(n− 1))) + µ sin(kn) + (∆je

iϕjÄ+ +∆je
−iϕjÄ−) sin(kn)

]
=

=

√
2

Ã

[
− Äztj · 2 sin(kn) cos(k) + µ sin(kn) + (∆je

iϕjÄ+ +∆je
−iϕjÄ−) sin(kn)

]
=

= hjkÈk(n), hjk := −Äz (2tj cos(k) + µ) + (∆je
iϕjÄ+ +∆je

−iϕjÄ−).

Now, we obtain the expression of the Green’s function, that is defined as a solution of

zGn,n′ −
∞∑

n=1

hn−n′′Gn′′,n′ = ¶n,n′ . (B.76)

If we decompose as

Gn,n′ =

ˆ π

0

dkÈk(n)Gk(n
′), (B.77)

we will have

zGk(n
′)− hjkGk(n

′) = Èk(n
′), (B.78)

Gk(n
′) =

Èk(n
′)

z − hjk
, (B.79)

hence

Gn,n′ =

ˆ π

0

dk
Èk(n)Èk(n

′)

z − hjk
. (B.80)

This is called Lehmann’s representation. This is how the (2.37) was obtained.

Derivation of Gj,0
n,0(É) in terms of −gjn,1(É)

We define gjn′′,n′(É) as a solution of

∑

n′′

[z¶n,n′′ − hn,n
′′

SC,j]g
j
n′′,n′(É) =¶n,n′ . (B.81)

To work with the it we need to understand this equation well. Here only n, n′ are external
indices, we can treat them as a matrix indices and imagine l.h.s. as a product of a matrix
[z − hSC,j] and a vector-column gj(É), and the r.h.s. as the identity matrix. Thus, in
this notation, gj(É) = [z − hSC,j]

−1 and has a type of a matrix (or in index notation
[gj(É)]n,n′′ = gjn,n′′(É) =

[
[z−hSC,j]−1

]
n,n′

). Another important feature of gjn′′,n′(É) is that
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it doesn’t have same number of indices as Gj,j′

n′′,n′(É). This is because it describes only two
pints (n and n′) in j-th SC lead. Now, the Eq. (2.32) can be transformed as

∑

n′′

[z¶n,n′′ − hn,n
′′

SC,j]G
j,0
n′′,0(É) = −¶n,1t′jÄzG0,0

0,0(É), (B.82)

∑

n

gjn′,n(É) ·
∑

n′′

[
z¶n,n′′ − hn,n

′′

SC,j

]
Gj,0
n′′,0(É) = −

∑

n

gjn′,n(É) ¶n,1 t
′
j ÄzG

0,0
0,0(É) (B.83)

∑

n′′

∑

n

[
z¶n,n′′ − hn,n

′′

SC,j

]
gjn′,n(É)G

j,0
n′′,0(É) = −

∑

n

gjn′,n(É) · ¶n,1 t′j ÄzG
0,0
0,0(É) (B.84)

∑

n′′

¶n′,n′′G
j,0
n′′,0(É) = −

∑

n

gjn′,n(É) ¶n,1 t
′
j ÄzG

0,0
0,0(É) (B.85)

Gj,0
n′,0(É) = −gjn′,1(É)t′jÄzG

0,0
0,0(É) (B.86)

Gj,0
n,0(É) = −gjn,1(É)t′jÄzG0,0

0,0(É), j ̸= 0. (B.87)

At the second line we multiplied the whole sum (with fixed n) by gjn′,n(É) (with some
unknown fixed n′) and then summed all possible l.h.s. and r.h.s. over all n. Thus
the (2.34) is proven.

Derivation of the bare Green’s function gj1,1 for the discrete model

The BGF approach proposes the calculation of the GF by the following formula

G1,1 = G
(0)
0 −G

(0)
1 [G

(0)
0 ]−1G

(0)
−1 (B.88)

where the translationally invariant SC GF is

G
(0)
n−n′(z) :=

ˆ π

−π

dk

2Ã

eik(n−n
′)

z − (−2t cos k − µ)Äz −∆j

[
eiϕjÄ+ + e−iϕjÄ−

] . (B.89)

Here compared to main theory we have a basis of plane waves |Èð = eikn√
2π

. For only

this calculation we will introduce ∆̄ := ∆j

[
eiϕjÄ+ + e−iϕjÄ−

]
to make formulas shorter.

Considering this integral in the wide-band limit tk ∆j, we approximate it by linearizing
near the Fermi points µ = 0, k = ±π

2
:

G
(0)
n−n′(z) ≈ ei

π
2
(n−n′)

ˆ ∞

−∞

dq

2Ã

eiq(n−n
′)

z − 2tqÄz − ∆̄
+ e−i

π
2
(n−n′)

ˆ ∞

−∞

dq

2Ã

eiq(n−n
′)

z + 2tqÄz − ∆̄
. (B.90)

We are interested in

G
(0)
0 (z) ≈ 1

t

ˆ ∞

−∞

dq̄

2Ã

z + ∆̄

z2 − q̄2 −∆2
j

= −1

t

ˆ ∞

−∞

dq̄

2Ã

z + ∆̄

(q̄ − k+)(q̄ − k−)
; k±(z) := ±z

√
1− ∆2

0

z2
.

(B.91)

The inversion is done the same way like in the main derivation. Closing the integration
contour in the upper half-plane, we obtain

G
(0)
0 (z) ≈ − i

2t

z + ∆̄

k+
= − i

2t

1 + ∆̄

z√
1− ∆2

j

z2

; [G
(0)
0 (z)]−1 = 2ti

1− ∆̄

z√
1− ∆2

j

z2

. (B.92)
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Analogously,

G
(0)
1 (z) ≈ iÄz

t

ˆ ∞

−∞

dq̄

2Ã

q̄ei
q̄
2t

z2 − q̄2 −∆2
j

= − iÄz
t

ˆ ∞

−∞

dq̄

2Ã

q̄ei
q̄
2t

(q̄ − k+)(q̄ − k−)
≈ Äz

2t
; (B.93)

G
(0)
−1(z) ≈ − iÄz

t

ˆ ∞

−∞

dq̄

2Ã

q̄e−i
q̄
2t

z2 − q̄2 −∆2
j

= G
(0)
1 (z), (B.94)

where the last equality is obtained by re-defining the integration variable q̄ → −q̄. Col-
lecting together all the contribution, we have

G1,1 = − i

2t

1 + ∆̄

z√
1− ∆2

j

z2

− Äz
2t
2ti

1− ∆̄

z√
1− ∆2

j

z2

Äz
2t

= − i
t

1 + 1
z
∆j

[
eiϕjÄ+ + e−iϕjÄ−

]

√
1− ∆2

j

z2

. (B.95)

And this is the same result (2.41).

Derivation of the equation of ABS

Here we will derive the DOS for the QD model (2.43). The density of states Ä(É) =
´

¶(É − Es) can be obtained by the fundamental relation (1.30), which for our discrete
model looks like:

Ä(É) = − 1

Ã

∑

∀m
Im tr Ĝm,m(É + i¸). (B.96)

Here the trace is taken over the spin and particle-hole indices, and Ĝm,m′(É+i¸) is the full
retarded (z = É + i¸) Green’s function of the system. In another words, in this notation
we consider m and m′ as all allowed points in our “sun-junction” 2.1, so

Ä(É) = − 1

Ã
Im trG0,0

0,0(É + i¸)− 1

Ã

N∑

j=1

∞∑

n=1

Im trGj,j
n,n(É + i¸). (B.97)

To calculate it, we continue to exploit the Dyson equations (2.29), (2.30),(2.31) and
(2.32). From them we have

Gj,j′

n,n′(É) =g
j
n,n′(É)¶j,j′ − t′jg

j
n,1(É)ÄzG

0,j′

0,n′(É), (B.98)

G0,j′

0,n′(É) =− gD(É)
N∑

j′′=1

t′j′′ÄzG
j′′,j′

1,n′ (É), (B.99)

where the dot’s GF is defined as a solution of

[z − hD]gD(É) = 1. (B.100)

Derivation of (B.98) is easily done by looking at l.h.s. of (2.30) as on matrix equation
and by inverting matrices. Together these equations give

Gj,j′

n,n′(É) =g
j
n,n′(É)¶j,j′ +

N∑

j′′=1

t′jt
′
j′′g

j
n,1(É)ÄzgD(É)ÄzG

j′′,j′

1,n′ (É). (B.101)
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From this, we find by setting n = 1 that

Gj,j′

1,n′(É) =g
j
1,n′(É)¶j,j′ +

N∑

j′′=1

gj1,1(É) · t′jt′j′′ÄzgD(É)Äz ·Gj′′,j′

1,n′ (É). (B.102)

Now, we switch to the fully matrix notation. We define the block matrices

ĝj,j′(n, n
′) := gjn,n′(É)¶j,j′ , t̂j,j′′ := t′jt

′
j′′ÄzgD(É)Äz, Ĝj,j′(n, n

′) := Gj,j′

n,n′(É).

(B.103)

We think about arguments in brackets as indices of the matrix, that is determined by
each j and each j′. The sum in (B.102) is a tensor contraction by index j′′, thus in matrix
notation it is a multiplication of a matrix to the hatted Ĝ. Thus we write a solution as

Ĝ(1, n′) =(1− ĝ(1, 1)t̂)−1ĝ(1, n′), (B.104)

This formula in matrix notation gives the GF from (B.98) as

Ĝ(n, n′) =ĝ(n, n′) + ĝ(n, 1)t̂(1− ĝ(1, 1)t̂)−1ĝ(1, n′). (B.105)

Now we are ready to compute the DOS. We substitute the known already (2.35) and the
Ĝ(n, n′) and transform:

Ä(É) =− 1

Ã
Im tr[z − hD − Σ(É)]−1 − 1

Ã

∞∑

n=1

ImTrĜ(n, n) =

=Ä
(0)
SC(É)−

1

Ã
Im tr[z − hD − Σ(É)]−1 − 1

Ã
ImTr

[
t̂(1− ĝ(1, 1)t̂)−1

∞∑

n=1

ĝ(1, n)ĝ(n, 1)

]
=

=Ä
(0)
SC(É)−

1

Ã
Im tr[g−1

D (É)− Σ(É)]−1 +
1

Ã
ImTr

[
t̂(1− ĝ(1, 1)t̂)−1∂ĝ(1, 1)

∂É

]
.

(B.106)

Here we have used the widely-known for GF specialists identity
∑N

n=1G1,nGn,1 = −∂G1,1

∂ω

(see[1]). Now we do the final transformation. We define Tj := t′jÄz and rewrite

t̂ ≡ T gD(É)T T . (B.107)

Now indices of t̂ are distributed between Tj matrices. The sign “transpose” makes the
column-vector Tj a row, such that by indices j, j′′ we have a number (1×1 object). Now,
by applying Woodbury matrix identity22 and identifying Σ(É) := T T ĝ(1, 1)T (in the

previous notation the definition looked like Σ(É) :=
∑N

j=1

(
t′j
)2
Äzg

j
1,1(É)Äz) the multiplier

under trace will be

(1− ĝ(1, 1)T gD(É)T T )−1 = (ĝ−1(1, 1)− T gD(É)T T )−1ĝ−1(1, 1) =

= 1 + ĝ(1, 1)T (g−1
D (É)− T T ĝ(1, 1)T )−1T T = (B.108)

= 1 + ĝ(1, 1)T (g−1
D (É)− Σ(É))−1T T .

22(A+ UCV )−1 = A−1 −A−1U
(
C−1 + V A−1U

)
−1
V A−1
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And we do the final step of the final transformation:

Ä(É) =Ä
(0)
SC(É)−

1

Ã
Im tr[g−1

D (É)− Σ(É)]−1+

1

Ã
Im tr

[
gD(É)

(
1 + Σ(É)(g−1

D (É)− Σ(É))−1
)∂Σ(É)

∂É

]
=

(B.109)

=Ä
(0)
SC(É)− 1

π
Im tr



(
g−1
D (É)− Σ(É)

)−1 ∂g
−1
D (É)

∂É︸ ︷︷ ︸
≡1


+ 1

π
Im tr

[(
g−1
D (É)− Σ(É)

)−1 ∂Σ(ω)
∂ω

]
=

=Ä
(0)
SC(É)−

1

Ã
Im tr

[
∂

∂É
log
(
g−1
D (É)− Σ(É)

)]
=

=Ä
(0)
SC(É)−

1

Ã
Im

∂

∂É
log det

[
g−1
D (É)− Σ(É)

]
=

= Ä
(0)
SC(É) + Ä

(0)
D (É)︸ ︷︷ ︸

bare DOS

+

(
− 1

Ã
Im

∂

∂É
log det [1− gD(É)Σ(É)]

)

︸ ︷︷ ︸
tunneling contribution

. (B.110)

Thus we have proven (2.43).

Derivation of spectrum in two terminals for the discrete model

Eτ,σ = Ä

[
1 +

Γ1

∆1

+
Γ2

∆2

]−1(√
V 2 + |Γ1eiϕ1 + Γ2eiϕ2 |2 + Ã∆Z

)
= (B.111)

=
Ä

1 + Γ1

∆1
+ Γ2

∆2

√
V 2 + Γ2

1 + Γ2
2 + 2Γ1Γ2 cos(φ1 − φ2) + Ã

∆Z

1 + Γ1

∆1
+ Γ2

∆2

(B.112)

=
Ä

1 + Γ1

∆1
+ Γ2

∆2

√
V 2 + (Γ1 + Γ2)2 − 2Γ1Γ2 + 2Γ1Γ2 cos(φ1 − φ2) + ÃEZ , (B.113)

=

√
V 2 + (Γ1 + Γ2)2Ä

1 + Γ1

∆1
+ Γ2

∆2

√
1− 2Γ1Γ2

1

V 2 + (Γ1 + Γ2)2
· 21− cosφ

2
+ ÃEZ , (B.114)

= ÄEJ

√
1−D sin2 φ

2
+ ÃEZ , (B.115)

where

EJ :=

√
V 2 + (Γ1 + Γ2)2

1 + Γ1

∆1
+ Γ2

∆2

, D :=
4Γ2Γ1

V 2 + (Γ1 + Γ2)2
, EZ :=

∆Z

1 + Γ1

∆1
+ Γ2

∆2

. (B.116)

This is the (2.61).
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Derivation of the approximation of the current for two terminals

The general expression for the Josephson current (2.54) can be simplified for the case
of two terminals by usage of the Sokhotski–Plemelj theorem as follows:

I1 =
1

Φ0

Im

ˆ +∞

−∞
dÉf(É)tr

1

É + i¸ − hD − Σ(É)

∂Σ(É + i¸)

∂φ1

= (B.117)

= − Ã

Φ0

∑

τ,σ=±

ˆ

dÉf(É)¶ (É − ÄÉA − ÃEZ)
∂

∂φ1

(
Σ(0) + É

dΣ(É)

dÉ

∣∣∣∣
ω=0

)
= (B.118)

= − Ã

Φ0

(
f(ÉA + EZ) + f(ÉA − EZ)− f(−ÉA + EZ)− f(−ÉA − EZ)

) ∂

∂φ1

ÉA =

(B.119)

= − Ã

Φ0

(
− 2sh(´ÉA)

ch(´ÉA) + ch(´EZ)

) ∂

∂φ1

ÉA = (B.120)

=
2ÃEJ
Φ0

sh(´ÉA)

ch(´ÉA) + ch(´EZ)

∂
√
1−D sin2 ϕ

2

∂φ1

ϕ:=ϕ2−ϕ1
= (B.121)

=
2ÃEJ
Φ0

sh(´ÉA)

ch(´ÉA) + ch(´EZ)

D · 2 sin ϕ
2
cos ϕ

2

4
√

1−D sin2 ϕ
2

= (B.122)

=
ÃDEJ
2Φ0

sh(´ÉA)

ch(´ÉA) + ch(´EZ)

sinφ√
1−D sin2 ϕ

2

. (B.123)

Thus we have (2.64).

Derivation of spectrum in three terminals for the discrete model

Eτ,σ = Ä

[
1 + 3

Γ

∆

]−1(√
V 2 + Γ2(3 + 2 cos(φ− Ç) + 2 cosφ+ 2 cosÇ) + Ã∆Z

)
=

= Ä

[
1 + 3 Γ

∆

]−1(√
V 2 + 3Γ2 − 4Γ2

(
−3

2
+ 1−cos(ϕ−χ)

2
+ 1−cosϕ

2
+ 1−cosχ

2

)
+ Ã∆Z

)
=

= Ä

[
1 + 3

Γ

∆

]−1(√
V 2 + 9Γ2 − 4Γ2

(
sin2 (φ− Ç)

2
+ sin2 φ

2
+ sin2 Ç

2

)
+ Ã∆Z

)
.

Thus

Eτ,σ =ÄEJ
√

1−DΦ(φ, Ç) + Ã∆̃Z , (B.124)
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where we introduce Φ(φ, Ç) and D with special coefficients, such that D ∈ [0, 1],

EJ :=

[
1 + 3

Γ

∆

]−1√
V 2 + 9Γ2, (B.125)

D :=
9Γ2

V 2 + 9Γ2
, (B.126)

Φ(φ, Ç) :=
4

9

(
sin2 φ/2 + sin2 Ç/2 + sin2(φ/2− Ç/2)

)
, (B.127)

∆̃Z :=
∆Z

1 + 3 Γ
∆

. (B.128)

And we have (2.67). Note that with ore definition, the function Φ(φ, Ç) has a maximal
value of 1, and the D is allowed to be from 0 to 1.

B.6.2 Derivations for Sec. A.1

Derivation of normal Hamiltonian in Nambu space for the continuous model

Here we will prove that

Hn =
∑

σ,σ′=±

ˆ

Ω

dxÈ̂ 
σ(x)hσ,σ′(p, x)È̂σ′(x) ô Hn ≡ 1

2

ˆ

Ω

dx Ψ̂ (x)Hn(p, x)Ψ̂(x),

where Hn(p, x) :=

(
h(p, x) 0

0 −Ãyh∗(p, x)Ãy

)
; h(p, x) :=

∑
σ,σ′=±

hσ,σ′(p, x) |Ãð ïÃ′| ; Ψ̂(x) :=

(
È̂(x)

iÃy

[
È̂ (x)

]T
)
; È̂(x) :=

∑
σ=±

È̂σ(x) |Ãð .

We will omit the arguments (p, x), (x) and prove to the other direction:

Ψ̂ HnΨ̂ =
(
È̂ 
+ È̂ 

− È̂− −È̂+

)



h++ h+− 0 0
h−+ h−− 0 0
0 0 −h−− h∗

−+

0 0 h∗
+− −h++







È̂+

È̂−
È̂ 

−
−È̂ 

+


 =

=
(
È̂ 
+h++ + È̂ 

−h+− È̂ 
+h−+ + È̂ 

−h−− −È̂−h−− − È̂+h
∗
−+ È̂−h

∗
+− − (−È̂+)h++

)




È̂+

È̂−
È̂ 

−
−È̂ 

+


 =

= È̂ 
+h++È̂+ + È̂ 

−h+−È̂+ + È̂ 
+h−+È̂− + È̂ 

−h−−È̂− − È̂−h−−È̂
 
−−È̂+h

∗
−+È̂

 
−−È̂−h

∗
+−È̂

 
+−È̂+h++È̂

 
+ =

= 2
(
È̂ 
+h++È̂+ + È̂ 

−h+−È̂+ + È̂ 
+h−+È̂− + È̂ 

−h−−È̂−

)
+ const·¶(0),

where at the last step we used anticommutative identities and the hermiticity of the
Hamiltonian (H = H∗T )23. We remind that h-s are just complex functions, so È-s can go
through it. Then, the factor 2 cancels with factor 1/2 from the Nambu Hamiltonian and
we get the exactly the term under the integral of non-Nambu Hamiltonian (2.2).

23Because of which, for example, h∗
−+ = h+−
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Derivation of SC Hamiltonian in Nambu space for the continuous model

Here we will prove that

HSC :=
∑

σ=±

ˆ ∞

0

dxÇ̂ 
σ(x)

[
p2

2m
− µ

]
Ç̂σ(x) +

ˆ ∞

0

dx
[
∆Ç̂ 

+(x)Ç̂
 
−(x) + ∆∗Ç̂−(x)Ç̂+(x)

]

is equivalent to

HSC =
1

2

ˆ ∞

0

dxΥ̂ (x)HSC(p, x)Υ̂(x), HSC(p, x) =



[
p2

2m
− µ

]
i∆Ãy

−i∆∗Ãy −
[
p2

2m
− µ

]

 ,

where Υ̂(x) =

(
Ç̂(x)

iÃy
[
Ç̂ (x)

]T
)
, Ç̂(x) =

∑
σ=± Ç̂σ(x) |Ãð. We will omit dependence on

(p, x), (x) and do as before:

Υ̂ HSCΥ̂ =
(
Ç̂ Ç̂T (−iÃy)

)


[
p2

2m
− µ

]
∆

∆∗ −
[
p2

2m
− µ

]


(

Ç̂
iÃyÇ̂

 T

)
=

=
(
Ç̂ 
[
p2

2m
− µ

]
+ Ç̂T (−iÃy)∆∗ Ç̂ ∆− (Ç̂T (−iÃy))

[
p2

2m
− µ

])( Ç̂
iÃyÇ̂

 T

)
=

= Ç̂ 
[
p2

2m
− µ

]
Ç̂+ Ç̂T (−iÃy)∆∗Ç̂+ Ç̂ ∆(iÃyÇ̂

 T )− (Ç̂T (−iÃy))
[
p2

2m
− µ

]
(iÃyÇ̂

 T ) =

= Ç̂ 
[
p2

2m
− µ

]
Ç̂+∆∗ (Ç+ Ç−

)(0 −1
1 0

)(
Ç+

Ç−

)
+∆

(
Ç 
+ Ç 

−
)( 0 1

−1 0

)(
Ç 
+

Ç 
−

)
−
[
p2

2m
− µ

] (
Ç+ Ç−

)(Ç 
+

Ç 
−

)
=

=
[
p2

2m
− µ

]
(Ç 

+Ç+ + Ç 
−Ç−) + ∆∗(Ç−Ç+ − Ç+Ç−) + ∆(−Ç 

−Ç
 
+ + Ç 

+Ç
 
−) +

[
p2

2m
− µ

]
(−Ç+Ç

 
+ − Ç−Ç

 
−) =

= 2

([
p2

2m
− µ

]
(Ç 

+Ç+ + Ç 
−Ç−) + ∆Ç 

+Ç
 
− +∆∗Ç−Ç+

)
.

Now the equivalence with (A.8) is obvious. Also, this formula can also be found, for
example, in [1] and the similar one in [66].

Derivation of the Heisenberg equations for the continuous model

Here we will derive the Heisenberg equations for the Nambu fields Ψ̂ and Υ̂. We will

use i d
dt
Υ̂(x, t) =

[
Υ̂(x, t), Htot

]
and for it we compute:

[
Υ̂a(x), Hn

]
=

ˆ

Ω

dx′Υ̂a(x)
1

2
Ψ̂ 
b(x

′)Hbc
n (p

′, x′)Ψ̂c(x
′)−
ˆ

Ω

dx′1

2
Ψ̂ 
b(x

′)Hbc
n (p

′, x′)Ψ̂c(x
′)Υ̂a(x) =

=

ˆ

Ω

dx′Υ̂a(x)
1

2
Ψ̂ 
b(x

′)Hbc
n (p

′, x′)Ψ̂c(x
′)−
ˆ

Ω

dx′(−1)2
1

2
Υ̂a(x)Ψ̂

 
b(x

′)Hbc
n (p

′, x′)Ψ̂c(x
′) = 0;
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[
Υ̂a(x), HSC

]
= Υ̂a(x)

ˆ

dx′1

2
Υ̂ 
b(x

′)Hbc
SC(p

′, x′)Υ̂c(x
′)−
ˆ

dx′1

2
Υ̂ 
b(x

′)Hbc
SC(p

′, x′)Υ̂c(x
′)Υ̂a(x) =

=

ˆ

dx′1

2
(−Υ̂ 

b(x
′)Υ̂a(x) + ¶ab¶(x− x′))Hbc

SC(p
′, x′)Υ̂c(x

′)−

−
ˆ

dx′1

2
Υ̂ 
b(x

′)Hbc
SC(p

′, x′)(−Υ̂a(x)Υ̂c(x
′) + Cca¶(x− x′)) =

= −
ˆ

dx′1

2
Υ̂ 
b(x

′)Υ̂a(x)Hbc
SC(p

′, x′)Υ̂c(x
′) +

1

2
Hac

SC(p, x)Υ̂c(x)+

+

ˆ

dx′1

2
Υ̂ 
b(x

′)Hbc
SC(p

′, x′)Υ̂a(x)Υ̂c(x
′)− 1

2
Υ̂ 
b(x)Hbc

SC(p, x)Cca =

= −
ˆ

dx′1

2
Υ̂ 
b(x

′)Υ̂a(x)Hbc
SC(p

′, x′)Υ̂c(x
′) +

ˆ

dx′1

2
Υ̂ 
b(x

′)Hbc
SC(p

′, x′)Υ̂a(x)Υ̂c(x
′)

+
1

2
Hac

SC(p, x)Υ̂c(x)−
1

2
Υ̂ 
b(x)︸ ︷︷ ︸

=Υ̂dCbd

Hbc
SC(p, x)Cca =

=

ˆ

dx′1

2
Υ̂ 
b(x

′)
[
Hbc

SC(p
′, x′), Υ̂a(x)

]
︸ ︷︷ ︸

=0

Υ̂c(x
′) +

1

2
Hac

SC(p, x)Υ̂c(x)−
1

2
Υ̂dCbdHbc

SC(p, x)Cca︸ ︷︷ ︸
=−Hda∗

SC
=−Had

SC

=

= Hac
SC(p, x)Υ̂c(x) ≡ [HSC(p, x)Υ̂(x)]a.

Here we used the fact that each component Hbc
SC is a scalar function, so it commutes with

spinor Υ̂c(x) and that from charge-symmetry properties (CabΥ̂
 
b = Υ̂a) we have24 Υ̂bCab =

Υ̂ 
b, since C 

ab = Cab. Also, it is important to use the fact that that HSC is Hermitian, since
this is the main property to use the transformations like CbdHbc

SC(p, x)Cca = −Hda∗
SC = Had

SC.

[
Υ̂a(x), HT

]
=
1

2

(
Υ̂a(x)Υ̂

 
b(a)WbcΨ̂c(R̃) + Υ̂a(x)Ψ̂

 
b(R̃)︸ ︷︷ ︸

=−Ψ̂ 
b(R̃)Υ̂a(x)

W bcΥ̂c(a)−

− Υ̂ 
b(a)WbcΨ̂c(R̃)Υ̂a(x)︸ ︷︷ ︸

=−Υ̂a(x)Ψ̂c(R̃)

−Ψ̂ 
b(R̃)W bcΥ̂c(a)Υ̂a(x)

)
=

=
1

2

(
¶ab¶(x− a)WbcΨ̂c(R̃)−Ψ̂ 

b(R̃)W bcCab¶(x− a)
)
=

=
1

2

(
¶ab¶(x− a)WbcΨ̂c(R̃)− Ψ̂r(R̃) CbrW bcCab︸ ︷︷ ︸

−Wra∗=−War

¶(x− a)
)
=

= ¶(x− a)WacΨ̂c(R̃) ≡ [¶(x− a)WΨ̂(R̃)]a

After collecting terms and restoring t-dependence, we got

i
d

dt
Υ̂(x, t) =HSC(p, x)Υ̂(x, t) + ¶(x− a)WΨ̂(R̃, t),

24To be more mathematically strict, one can also agree about the positions of row and column indices
of spinors (Ψ and Υ). We are not fixing much attention to it, since in case of doubt one can imagine
matrices, rows, columns. Also, we omit upper-lower position of indices and agree that we sum over each
repeated index despite its position.
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which is the Eq. (A.17). Analogous we get the Eq. (A.18). There is no value of writing
the analogous derivation and as the one before, it is straightforward and bulky.

Derivative of the Dyson equations for the continuous model

Here we will find the Dyson equation for
[GNN(x, x

′|t)]ab := −iΘ(t) ï{Ψ̂a(x, t), Ψ̂
 
b(x

′, 0)}ð. We evaluate:

i
d

dt
[GNN(x, x

′|t)]ab = ¶(t) ï{Ψ̂a(x, t), Ψ̂
 
b(x

′, 0)}ð︸ ︷︷ ︸
=δ(t)ï{Ψ̂a(x,0),Ψ̂

 
b(x

′,0)}ð=δ(t)δ(x−x′)δab

− iΘ(t) ï{idΨ̂a(x, t)

dt
, Ψ̂ 

b(x
′, 0)}ð =

= ¶(t)¶(x− x′)¶ab − iΘ(t) ï{Hac
n (p, x)Ψ̂c(x, t), Ψ̂

 
b(x

′, 0)}ð − iΘ(t) ï{¶(x− R̃)W acΥ̂c(a, t), Ψ̂
 
b(x

′, 0)}ð =
= ¶(t)¶(x− x′)¶ab +Hac

n (p, x)(−iΘ(t)) ï{Ψ̂c(x, t), Ψ̂
 
b(x

′, 0)}ð︸ ︷︷ ︸
=[GNN (x,x′|t)]cb

+ ¶(x− R̃)W ac(−iΘ(t)) ï{Υ̂c(a, t), Ψ̂
 
b(x

′, 0)}ð︸ ︷︷ ︸
=[GSN (a,x′|t)]cb

.

Note that purely the expression ï{Ψ̂a(x, t), Ψ̂
 
b(x

′, 0)}ð is in general case complex to eval-
uate and the ¶(t) and Θ(t) allow us to proceed. Also, we consider the Hamiltonian as a
complex function, thus we can easily take it out of averaging. Thus in matrix form, we
have

(
i
d

dt
−Hn(p, x)

)
GNN(x, x

′|t) =¶(x− R̃)W GSN(a, x
′|t) + ¶(t)¶(x− x′). (B.129)

Exactly the same way other Dyson Eq. (A.23) can be proven. To use transformation
F [f ](z) :=

´∞
0
dteiztf(t), we prepare, for example, like

F [i
d

dt
GNS](z) =

ˆ ∞

0

dteizti
d

dt
GNS(t) = ieiztGNS(t)|∞0 − i · iz

ˆ ∞

0

dteiztGNS = zGNS(z),

F [HnGNS](z) = HnGNS(z),

F [¶(x− R̃)W GSS](z) = ¶(x− R̃)W GSS(z).

Now, the eq.
(
i d
dt
−Hn(p, x)

)
GNS(x, x

′|t) = ¶(x − R̃)W GSS(a, x
′|t) will be transformed

as
(z −Hn)GNS(z) = ¶(x− R̃)W GSS(z).

Other Dyson eq. (A.27) are transformed the same way.
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Derivation of spectral density for the continuous model

Here we will find the formula for the Än(É). Fist, we notice that (we use z := É+i¸, ¸ →
0)

∂

∂z

[
z −Hn(p, x)

]
m(x, x′) =

∂

∂z
¶(x− x′),

m(x, x′) +
[
z −Hn(p, x)

]∂m(x, x′)

∂z
= 0,

∂m(x, x′)

∂z
= − 1[

z −Hn(p, x)
]m(x, x′)

∂m(x, x′)

∂z
¶(x′ − x) = − ¶(x′ − x)[

z −Hn(p, x)
]m(x, x′)

∂m(x, x′)

∂z
¶(x′ − x) = −m(x′, x)m(x, x′).

Here we see the importance of m(x′, x) ̸= m(x, x′) Analogously, the same formula for g
is obtained. Now, with the help of GNN(x, x

′) = m(x, x′)+
+m(x, R̃)W g(a, a)WD−1m(R̃, x′) we will find the formula for Än(É):

Än(É) =− 1

Ã
Im

ˆ

Ω

dxtrGNN(x, x)

=− 1

Ã
Im

ˆ

Ω

dxtrm(x, x)

︸ ︷︷ ︸
=:ρ

(0)
n (ω)

− 1

Ã
Im tr

[
m(x, R̃)W g(a, a)WD−1

ˆ

Ω

dxm(R̃, x)
]

=Ä(0)n (É)− 1

Ã
Im tr

[
m(x, R̃)W g(a, a)WD−1

ˆ

Ω

dxm(R̃, x)
]
=

=Ä(0)n (É)− 1

Ã
Im

ˆ

Ω

dxtr
[
W g(a, a)WD−1

ˆ

Ω

dxm(R̃, x)m(x, R̃)
]
=

=Ä(0)n (É)− 1

Ã
Im tr

[
W g(a, a)WD−1

ˆ

Ω

dxm(R̃, x)m(x, R̃)
]
=

=Ä(0)n (É) +
1

Ã
Im tr W g(a, a) W D−1 ∂m(R̃, R̃)

∂z
.

Thus we have proven the (A.48).

Now, with the help of GSS(x, x
′) = g(x, x′) + g(x, a)M[1− g(a, a)M]−1g(a, x′) find a
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formula for the ÄSC(É):

ÄSC(É) = − 1

Ã
Im

ˆ ∞

0

dxtr{GSS(x, x)} =

= − 1

Ã
Im

ˆ ∞

0

dxtr{g(x, x)}
︸ ︷︷ ︸

=:ρ
(0)
SC

(ω)

− 1

Ã
Im

ˆ ∞

0

dxtr
[
g(x, a)M[1− g(a, a)M]−1g(a, x)

]

= Ä
(0)
SC(É)−

1

Ã
Im tr

[
M[1− g(a, a)M]−1

ˆ ∞

0

dxg(a, x)g(x, a)
]

= Ä
(0)
SC(É) +

1

Ã
Im tr

[
M[1− g(a, a)M]−1∂g(a, a)

∂É

]

= Ä
(0)
SC(É) +

1

Ã
Im tr

[
Wm(R̃, R̃)W [1− g(a, a)Wm(R̃, R̃)W ]−1∂g(a, a)

∂É

]
.

Finally, one needs to use (ABC)−1 = C−1B−1A−1 to simplify the expression under tr:

Wm(R̃, R̃)W [(m(R̃, R̃)W )−1m(R̃, R̃)W − (m(R̃, R̃)W )−1m(R̃, R̃)W g(a, a)Wm(R̃, R̃)W ]−1 ∂g(a,a)
∂ω

]
=

= Wm(R̃, R̃)W (m(R̃, R̃)W )−1[1−m(R̃, R̃)W g(a, a)W ]−1(m(R̃, R̃)W )
∂g(a, a)

∂É
=

= WD−1m(R̃, R̃)W ∂g(a, a)

∂É

and finish our little proof:

ÄSC(É) = Ä
(0)
SC(É) +

1

Ã
Im tr

[
WD−1m(R̃, R̃)W ∂g(a, a)

∂É

]
. (B.130)

= Ä
(0)
SC(É) +

1

Ã
Im trD−1m(R̃, R̃)

∂W g(a, a)W
∂É

. (B.131)

We hope that by this point reader felt the whole beauty of the mathematical transforma-
tions.

92



B.7 Programming Code

Below there is a Python .ipynb code. created with the help of Chat GPT. We will
omit not essential parts of the code not comment much, since this is a technical part of
the thesis.

Preparation:

1 import numpy as np; import matplotlib.pyplot as plt; import matplotlib as mpl

2

3 S0=np.array ([[1 ,0] ,[0 ,1]]); S1=np.array ([[0 ,1] ,[1 ,0]]);

S2=np.array ([[0,-1j],[1j ,0]]);

4 S3=np.array ([[1 ,0] ,[0 , -1]]); Spl=np.array ([[0 ,1] ,[0 ,0]]);

Smn=np.array ([[0 ,0] ,[1 ,0]]);

The code for two terminals is as follows.

1 def h(v, dz):

2 return v*np.kron(S3 ,S0)+dz*np.kron(S0,S3)

3

4 def sigm_two(g1,d1,ph1 , g2,d2,ph2 , om):

5 return -np.kron(

6 (g1/( np.sqrt(d1*d1 -om*om) ) )*(om*S0 - d1*(np.exp(ph1*1j)*Spl +

np.exp(-ph1*1j)*Smn) )

7 +

8 (g2/( np.sqrt(d2*d2-om*om)))*(om*S0 - d2*(np.exp(ph2*1j)*Spl +

np.exp(-ph2*1j)*Smn) ),S0)

9

10 def d_det_two(v, dz, g1 ,d1,ph1 , g2,d2,ph2 , om):

11 return np.linalg.det( om*np.kron(S0,S0) - h(v, dz) - sigm_two(g1 ,d1,ph1 , g2,d2,ph2 ,

om) )

1 precision_phi = 600; precision_z = 400

2

3 ve2= 1; g1e2 =1.3; g2e2 =1.4;

4 dze2 =0.3; d1e2 =1.4; d2e2 =1.4;

5

6 Zran=np.linspace(-min(d1e2 ,d2e2)+0.0001 , min(d1e2 ,d2e2) -0.0001, precision_z)

7 Phran=np.linspace(0, 2*np.pi , precision_phi)

8

9 def d_det_exp_two(phi):

10 return np.array ([ d_det_two(ve2 , dze2 , g1e2 ,d1e2 ,phi/2, g2e2 ,d2e2 ,-phi/2, om)

11 for om in Zran])

1 res=np.array ([ d_det_exp_two(phi) for phi in Phran ])

2 res_two=np.swapaxes(res , 0, 1)

1 cs_two = plt.contourf(Phran , Zran , np.where(np.log(np.abs(res_two))< -3, 50,

np.log(np.abs(res_two))), 500)

The code for three terminals is analogous. Full versions of both codes is available by

double clicking25 on . The code of the current for 3TJJ is available here: . To

play with ABS of 7 terminals one can double click on: .

25Using Adobe Acrobat Reader

93


{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "389ab4fa",
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "import time\n",
    " \n",
    "import matplotlib as mpl\n",
    "from matplotlib import rc\n",
    "import matplotlib.colors as colors\n",
    "\n",
    "\n",
    "%config Completer.use_jedi = False\n",
    "\n",
    "from numpy import linalg as LA\n",
    "import multiprocessing as mp\n",
    "import scipy\n",
    "from scipy.linalg import expm\n",
    "\n",
    "from sympy import Matrix\n",
    "from sympy import latex\n",
    "\n",
    "import cmath as cm\n",
    "from tqdm.notebook import tqdm\n",
    "\n",
    "np.set_printoptions(suppress=True, precision=4)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "b5e5f9cf-cc96-4a8c-8b86-e94522893be5",
   "metadata": {},
   "outputs": [],
   "source": [
    "S0=np.array([[1, 0], [0, 1]])\n",
    "S1=np.array([[0, 1], [1, 0]])\n",
    "S2=np.array([[0, -1j], [1j, 0]])\n",
    "S3=np.array([[1, 0], [0, -1]])\n",
    "Spl=np.array([[0, 1], [0, 0]])\n",
    "Smn=np.array([[0, 0], [1, 0]])"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a2e9da87-d968-4442-956b-c5ba7043a6f3",
   "metadata": {},
   "source": [
    "tau -first, sigma - second"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "804f82c1-a3e6-445d-a410-eaddbbb27542",
   "metadata": {},
   "outputs": [],
   "source": [
    "def h(v, dz):\n",
    "    return v*np.kron(S3,S0)+dz*np.kron(S0,S3)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "cec15010-117c-422c-a7f9-66056112b3f9",
   "metadata": {},
   "source": [
    "# TWO TERMINALS "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "a6f78025-b5a3-461d-a390-b650c1d317cc",
   "metadata": {},
   "outputs": [],
   "source": [
    "def sigm_two(g1,d1,ph1, g2,d2,ph2, om):\n",
    "    return -np.kron( (g1/( np.sqrt(d1*d1-om*om) ) )*(om*S0 - d1*(np.exp(ph1*1j)*Spl + np.exp(-ph1*1j)*Smn) ) \n",
    "                   + \n",
    "                   (g2/( np.sqrt(d2*d2-om*om)))*(om*S0 - d2*(np.exp(ph2*1j)*Spl + np.exp(-ph2*1j)*Smn) ),S0)\n",
    "\n",
    "def d_det_two(v, dz, g1,d1,ph1, g2,d2,ph2, om):\n",
    "    return LA.det( om*np.kron(S0,S0) - h(v, dz) - sigm_two(g1,d1,ph1, g2,d2,ph2, om) )"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a6a8622a-74a7-4f6f-a56d-9bc2c1946c5b",
   "metadata": {},
   "outputs": [],
   "source": [
    "precision_phi = 600\n",
    "precision_z = 400\n",
    "\n",
    "ve2= 1\n",
    "dze2=0.3\n",
    "\n",
    "g1e2=1.3\n",
    "d1e2=1.4\n",
    "\n",
    "g2e2=1.4\n",
    "d2e2=1.4\n",
    "\n",
    "Zran=np.linspace(-min(d1e2,d2e2)+0.0001, min(d1e2,d2e2)-0.0001, precision_z)\n",
    "Phran=np.linspace(0, 2*np.pi, precision_phi)\n",
    "\n",
    "\n",
    "def d_det_exp_two(phi):\n",
    "    return np.array([d_det_two(ve2, dze2, g1e2,d1e2,phi/2, g2e2,d2e2,-phi/2, om) \n",
    "                     for om in Zran])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "1ffd591e-fc67-4724-b6af-e44a076fc6b9",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "--- 42.37621712684631 seconds ---\n"
     ]
    }
   ],
   "source": [
    "start_time = time.time()\n",
    "\n",
    "res=np.array([ d_det_exp_two(phi) for phi in Phran])\n",
    "\n",
    "print(\"--- %s seconds ---\" % (time.time() - start_time))\n",
    "\n",
    "res_two=np.swapaxes(res, 0, 1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "id": "a40b562d-4206-4a9b-a977-6ed5897133eb",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<matplotlib.colorbar.Colorbar at 0x2436ebb7d90>"
      ]
     },
     "execution_count": 19,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "",
      "text/plain": [
       "<Figure size 640x480 with 2 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "cs_two = plt.contourf(Phran, Zran, np.where(np.log(np.abs(res_two))< -3, 50, np.log(np.abs(res_two))), 500)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "750644ad-4690-41cf-a6b9-a48e6d05392c",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0f592da4-79e6-4f3f-b856-4fef812f1f39",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "eebe167b-24b9-4a1f-8c08-7d817057757c",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "12d32280-1543-426e-b07f-dca5f9f553b8",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "33831734-9315-41a8-a616-71df0a9577cc",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "id": "548770ef-7ef5-456c-9f36-1c7f507a59e0",
   "metadata": {},
   "source": [
    "### Comparison with analytic expression"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "255c84a2-e7d5-4dfd-89cb-5b3528e4fd33",
   "metadata": {},
   "outputs": [],
   "source": [
    "def eanalyt2(tau, sigm, v, dz,     g1,d1,ph1,   g2,d2,ph2, ):\n",
    "    return (tau/(1 + g1/d1 + g2/d2) )*(np.sqrt(\n",
    "        v**2 + np.abs(\n",
    "            g1 *np.exp(ph1*1j) + g2 *np.exp(ph2*1j) )**2) + sigm*dz)\n",
    "\n",
    "def eanalytE2(ph, tau, sigm):\n",
    "    return eanalyt2(tau, sigm,      ve2, dze2,     g1e2,d1e2, ph/2,         g2e2,d2e2, -ph/2);"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "48fca652-5d86-47e7-a7d1-43e495ee26e7",
   "metadata": {},
   "outputs": [],
   "source": [
    "fig, ax = plt.subplots()\n",
    "\n",
    "contour = ax.contourf(Phran, Zran, np.where(np.log(np.abs(res_two))< -4, \n",
    "                                   40, np.log(np.abs(res_two))), 300)\n",
    "\n",
    "\n",
    "x_vals = np.linspace(0, 2*np.pi, 500)\n",
    "f1 = eanalytE2(x_vals, 1, 1)\n",
    "f2 = eanalytE2(x_vals, 1, -1)\n",
    "f3 = eanalytE2(x_vals, -1, 1)\n",
    "f4 = eanalytE2(x_vals, -1, -1)\n",
    "\n",
    "\n",
    "ax.plot(x_vals, f1, color='red', linewidth=2)\n",
    "ax.plot(x_vals, f2, color='red', linewidth=2)\n",
    "ax.plot(x_vals, f3, color='red', linewidth=2)\n",
    "\n",
    "plt.ylabel(r'$E$', fontsize=20)\n",
    "plt.xlabel(r'$\\varphi$', fontsize=20)\n",
    "plt.xticks([0, np.pi/2, np.pi, np.pi*3/2, 2*np.pi], labels=[r'$0$',r'$\\pi/2$',r'$\\pi$', r'$2\\pi/3$', r'$2\\pi$'], fontsize=15)\n",
    "\n",
    "\n",
    "ax.set_ylim(-min(d1e2,d2e2)+0.2, min(d1e2,d2e2)-0.2)\n",
    "\n",
    "\n",
    "plt.grid(color='gray', linestyle='--', linewidth=0.5, alpha=0.7)\n",
    "\n",
    "plt.figtext(0.10, -0.20, param_text, fontsize=10, ha='left', va='top', transform=plt.gca().transAxes)\n",
    "\n",
    "plt.show()\n",
    "file_name = f\"V={ve2:.1f}dz={dze2:.1f}g1={g1e2:.1f}d1={d1e2:.1f}g2={g2e2:.1f}d2={d2e2:.1f}\"\n",
    "fig.savefig(f'{file_name}_compare.png', dpi=300, bbox_inches='tight')\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4a73ac26-7397-4c39-a14c-ce596c2bc0b5",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "39ca3166-3bf6-44b4-81d9-a80f2619f090",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5c7d8172-4a7e-42d3-a04d-ae8c8ebc9c41",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b4ec9126-85c5-4885-9844-06d3e2b9544a",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "cba6ad76-ab1a-46cf-8612-0d903e2de37d",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "85cf3952-bda6-4fc2-9d66-246fbd5b3213",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d57e58df-3a8f-4b66-a02e-146719d680d7",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "id": "e6926824-0b23-449c-995a-eadfbf21f045",
   "metadata": {},
   "source": [
    "# THREE TERMINALS "
   ]
  },
  {
   "cell_type": "markdown",
   "id": "585ddaa3-fa29-4a40-b3ef-0b1ae61f1fa7",
   "metadata": {},
   "source": [
    "### Calculating spectryms for a change of one parameter in a cycle "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "d17a0006-1105-40a3-a1da-c5b6d9b0dc78",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "--- 47.920494079589844 seconds ---\n",
      "Saving file as: 3TV=1.4dz=0.0g1=1.2d1=2.0g2=1.2d2=2.0g3=0.2d3=2.0vp3-2vp3+vp3.png\n",
      "--- 42.3837525844574 seconds ---\n",
      "Saving file as: 3TV=1.4dz=0.0g1=1.2d1=2.0g2=1.2d2=2.0g3=1.0d3=2.0vp3-2vp3+vp3.png\n",
      "--- 45.099848985672 seconds ---\n",
      "Saving file as: 3TV=1.4dz=0.0g1=1.2d1=2.0g2=1.2d2=2.0g3=1.8d3=2.0vp3-2vp3+vp3.png\n"
     ]
    }
   ],
   "source": [
    "import numpy as np\n",
    "import time\n",
    "import matplotlib.pyplot as plt\n",
    "from numpy import linalg as LA\n",
    "\n",
    "# here always phi / 3, -2*phi / 3, phi/3,\n",
    "\n",
    "S0 = np.array([[1, 0], [0, 1]])\n",
    "S1 = np.array([[0, 1], [1, 0]])\n",
    "S2 = np.array([[0, -1j], [1j, 0]])\n",
    "S3 = np.array([[1, 0], [0, -1]])\n",
    "Spl = np.array([[0, 1], [0, 0]])\n",
    "Smn = np.array([[0, 0], [1, 0]])\n",
    "\n",
    "def sigm_three(g1, d1, ph1, g2, d2, ph2, g3, d3, ph3, om):\n",
    "    # Ð�Ñ�Ð¾Ð²ÐµÑ�Ñ�ÐµÐ¼ Ð·Ð½Ð°Ñ�ÐµÐ½Ð¸Ñ� Ð¿Ð¾Ð´ ÐºÐ¾Ñ�Ð½ÐµÐ¼ Ð´Ð»Ñ� ÐºÐ°Ð¶Ð´Ð¾Ð³Ð¾ Ñ�ÐµÑ�Ð¼Ð¸Ð½Ð°\n",
    "    sqrt_val1 = np.sqrt(d1 * d1 - om * om) if d1 * d1 - om * om > 1e-6 else 10\n",
    "    sqrt_val2 = np.sqrt(d2 * d2 - om * om) if d2 * d2 - om * om > 1e-6 else 10\n",
    "    sqrt_val3 = np.sqrt(d3 * d3 - om * om) if d3 * d3 - om * om > 1e-6 else 10\n",
    "\n",
    "    # Ð�Ñ�Ñ�Ð¸Ñ�Ð»Ñ�ÐµÐ¼ Ñ�Ð¸Ð³Ð¼Ñ� Ñ� Ñ�Ñ�ÐµÑ�Ð¾Ð¼ Ð¿Ñ�Ð¾Ð²ÐµÑ�Ð¾Ðº\n",
    "    return -np.kron(\n",
    "        (g1 / sqrt_val1) * (om * S0 - d1 * (np.exp(ph1 * 1j) * Spl + np.exp(-ph1 * 1j) * Smn)) +\n",
    "        (g2 / sqrt_val2) * (om * S0 - d2 * (np.exp(ph2 * 1j) * Spl + np.exp(-ph2 * 1j) * Smn)) +\n",
    "        (g3 / sqrt_val3) * (om * S0 - d3 * (np.exp(ph3 * 1j) * Spl + np.exp(-ph3 * 1j) * Smn)),\n",
    "        S0\n",
    "    )\n",
    "\n",
    "\n",
    "def d_det_three(v, dz, g1, d1, ph1, g2, d2, ph2, g3, d3, ph3, om):\n",
    "    # Ð�Ñ�Ð¾Ð²ÐµÑ�Ñ�ÐµÐ¼ Ð·Ð½Ð°Ñ�ÐµÐ½Ð¸Ñ� Ð¿Ð¾Ð´ ÐºÐ¾Ñ�Ð½ÐµÐ¼ Ð´Ð»Ñ� ÐºÐ°Ð¶Ð´Ð¾Ð³Ð¾ Ñ�ÐµÑ�Ð¼Ð¸Ð½Ð°\n",
    "    sqrt_val1 = d1 * d1 - om * om\n",
    "    sqrt_val2 = d2 * d2 - om * om\n",
    "    sqrt_val3 = d3 * d3 - om * om\n",
    "\n",
    "    # Ð�Ñ�Ð»Ð¸ Ñ�Ð¾Ñ�Ñ� Ð±Ñ� Ð¾Ð´Ð¸Ð½ Ð¸Ð· ÐºÐ¾Ñ�Ð½ÐµÐ¹ Ð½Ðµ Ñ�Ñ�Ð¸Ñ�Ð°ÐµÑ�Ñ�Ñ�, Ð²Ð¾Ð·Ð²Ñ�Ð°Ñ�Ð°ÐµÐ¼ Ð±Ð¾Ð»Ñ�Ñ�Ð¾Ðµ Ð·Ð½Ð°Ñ�ÐµÐ½Ð¸Ðµ\n",
    "    if sqrt_val1 < 1e-6 or sqrt_val2 < 1e-6 or sqrt_val3 < 1e-6:\n",
    "        return 10  # Ð�Ð¾Ð·Ð²Ñ�Ð°Ñ�Ð°ÐµÐ¼ Ð±Ð¾Ð»Ñ�Ñ�Ð¾Ðµ Ð·Ð½Ð°Ñ�ÐµÐ½Ð¸Ðµ Ð¿Ñ�Ð¸ Ð½ÐµÐ²Ð¾Ð·Ð¼Ð¾Ð¶Ð½Ð¾Ñ�Ñ�Ð¸ Ð²Ñ�Ñ�Ð¸Ñ�Ð»Ð¸Ñ�Ñ� ÐºÐ¾Ñ�ÐµÐ½Ñ�\n",
    "\n",
    "    # Ð�Ñ�Ñ�Ð¸Ñ�Ð»Ñ�ÐµÐ¼ Ð´ÐµÑ�ÐµÑ�Ð¼Ð¸Ð½Ð°Ð½Ñ� Ð² Ð¿Ñ�Ð¾Ñ�Ð¸Ð²Ð½Ð¾Ð¼ Ñ�Ð»Ñ�Ñ�Ð°Ðµ\n",
    "    return LA.det(om * np.kron(S0, S0) - h(v, dz) - sigm_three(g1, d1, ph1, g2, d2, ph2, g3, d3, ph3, om))\n",
    "\n",
    "\n",
    "def d_det_exp_three(phi):\n",
    "    # Ð�Ñ�Ñ�Ð¸Ñ�Ð»Ñ�ÐµÐ¼ Ð·Ð½Ð°Ñ�ÐµÐ½Ð¸Ñ� Ð´ÐµÑ�ÐµÑ�Ð¼Ð¸Ð½Ð°Ð½Ñ�Ð° Ð´Ð»Ñ� Ð²Ñ�ÐµÑ� Ð·Ð½Ð°Ñ�ÐµÐ½Ð¸Ð¹ om Ð¸Ð· Zran\n",
    "    result = np.array([\n",
    "        d_det_three(ve2, dze2, g1e2, d1e2, phi / 3, g2e2, d2e2, -2*phi / 3, g3e2, d3e2, phi/3, om)\n",
    "        for om in Zran\n",
    "    ])\n",
    "\n",
    "    # Ð�Ñ�Ð¾Ð²ÐµÑ�Ñ�ÐµÐ¼ Ð½Ð° NaN Ð¸Ð»Ð¸ Inf, ÐµÑ�Ð»Ð¸ Ñ�Ð°ÐºÐ¸Ðµ Ð·Ð½Ð°Ñ�ÐµÐ½Ð¸Ñ� Ð¿Ð¾Ñ�Ð²Ð»Ñ�Ñ�Ñ�Ñ�Ñ�, Ð²Ð¾Ð·Ð²Ñ�Ð°Ñ�Ð°ÐµÐ¼ Ð±Ð¾Ð»Ñ�Ñ�Ð¾Ðµ Ñ�Ð¸Ñ�Ð»Ð¾\n",
    "    if np.any(np.isnan(result)) or np.any(np.isinf(result)):\n",
    "        return 10\n",
    "    return result\n",
    "\n",
    "\n",
    "def h(v, dz):\n",
    "    return v * np.kron(S3, S0) + dz * np.kron(S0, S3)\n",
    "\n",
    "# Ð�Ð°Ñ�Ñ�Ñ�Ð¾Ð¹ÐºÐ¸\n",
    "precision_phi = 600\n",
    "precision_z = 400\n",
    "\n",
    "\n",
    "ve2= 1.4;\t\t\tg1e2=1.2;\t\tg2e2=1.2;     g3e2=1.2;\n",
    "dze2=0.2;\t\t    d1e2=2;\t\t    d2e2=2;     d3e2=2;  \n",
    "\n",
    "\n",
    "\n",
    "# Ð¡Ð¾Ð·Ð´Ð°ÐµÐ¼ Ñ�Ð¸Ð¼Ð¼ÐµÑ�Ñ�Ð¸Ñ�Ð½Ñ�Ð¹ Ð¼Ð°Ñ�Ñ�Ð¸Ð² Zran Ñ� Ð´Ð¸Ð°Ð¿Ð°Ð·Ð¾Ð½Ð¾Ð¼ Ð¾Ñ� -max(d1e2, d2e2) Ð´Ð¾ max(d1e2, d2e2)\n",
    "Zran = np.linspace(-max(d1e2, d2e2), max(d1e2, d2e2), precision_z)\n",
    "Phran = np.linspace(0, 2 * np.pi, precision_phi)\n",
    "\n",
    "\n",
    "\n",
    "for g3e2 in np.arange(0.2, 2.1, 0.8):\n",
    "    start_time = time.time()\n",
    "    \n",
    "    # Ð�Ñ�Ñ�Ð¸Ñ�Ð»ÐµÐ½Ð¸Ðµ Ð´ÐµÑ�ÐµÑ�Ð¼Ð¸Ð½Ð°Ð½Ñ�Ð° Ð´Ð»Ñ� Ð²Ñ�ÐµÑ� Ð·Ð½Ð°Ñ�ÐµÐ½Ð¸Ð¹ phi\n",
    "    res = np.array([d_det_exp_three(phi) for phi in Phran])\n",
    "    print(\"--- %s seconds ---\" % (time.time() - start_time))\n",
    "    \n",
    "    # Ð¢Ñ�Ð°Ð½Ñ�Ð¿Ð¾Ð½Ð¸Ñ�Ð¾Ð²Ð°Ð½Ð¸Ðµ Ñ�ÐµÐ·Ñ�Ð»Ñ�Ñ�Ð°Ñ�Ð¾Ð²\n",
    "    res_three = np.swapaxes(res, 0, 1)\n",
    "    \n",
    "    \n",
    "    # Ð�Ð¾Ñ�Ñ�Ñ�Ð¾ÐµÐ½Ð¸Ðµ Ð³Ñ�Ð°Ñ�Ð¸ÐºÐ°\n",
    "    cs_three = plt.contourf(\n",
    "        Phran, \n",
    "        Zran, \n",
    "        np.where(np.log(np.abs(res_three)) < -2, 50, np.log(np.abs(res_three))), \n",
    "        500\n",
    "    )\n",
    "    \n",
    "    # Ð�Ð°Ñ�Ñ�Ñ�Ð¾Ð¹ÐºÐ° Ð¾Ñ�ÐµÐ¹\n",
    "    plt.ylabel(r'$E$', fontsize=20)\n",
    "    plt.xlabel(r'$\\varphi$', fontsize=20)\n",
    "    plt.xticks(\n",
    "        [0, np.pi / 2, np.pi, np.pi * 3 / 2, 2 * np.pi],\n",
    "        labels=[r'$0$', r'$\\pi/2$', r'$\\pi$', r'$3\\pi/2$', r'$2\\pi$'], \n",
    "        fontsize=15\n",
    "    )\n",
    "    \n",
    "    # Ð¢ÐµÐºÑ�Ñ� Ð¿Ð°Ñ�Ð°Ð¼ÐµÑ�Ñ�Ð¾Ð² Ð½Ð° Ð³Ñ�Ð°Ñ�Ð¸ÐºÐµ\n",
    "    param_text = (\n",
    "        f\"$V = {ve2:.1f}, \\ \\Delta_Z = {dze2:.1f}, \\ \\ \\ \\Gamma_1 = {g1e2:.1f}, \\ \\Delta_1 = {d1e2:.1f}, \\ \\ \\ \\Gamma_2 = {g2e2:.1f}, \\ \\Delta_2 = {d2e2:.1f}, \\ \\ \\ \\Gamma_3 = {g3e2:.1f}, \\ \\Delta_3 = {d3e2:.1f}$\"\n",
    "    )\n",
    "    plt.grid(color='gray', linestyle='--', linewidth=0.5, alpha=0.7)\n",
    "    plt.figtext(0.0, -0.20, param_text, fontsize=10, ha='left', va='top', transform=plt.gca().transAxes)\n",
    "    \n",
    "    # Ð¡Ð¾Ñ�Ñ�Ð°Ð½ÐµÐ½Ð¸Ðµ Ñ�Ð°Ð¹Ð»Ð°\n",
    "    \n",
    "    # Ð¤Ð¾Ñ�Ð¼Ð¸Ñ�Ð¾Ð²Ð°Ð½Ð¸Ðµ Ð¸Ð¼ÐµÐ½Ð¸ Ñ�Ð°Ð¹Ð»Ð°\n",
    "    file_name = (f\"V={ve2:.1f}dz={dze2:.1f}g1={g1e2:.1f}d1={d1e2:.1f}g2={g2e2:.1f}d2={d2e2:.1f}g3={g3e2:.1f}d3={d3e2:.1f}vp3-2vp3+vp3\")\n",
    "    print(f\"Saving file as: 3T{file_name}.png\")\n",
    "    plt.savefig(f'3T{file_name}.png', dpi=300, bbox_inches='tight')\n",
    "    plt.close()  # Ð�Ð°ÐºÑ�Ñ�Ð²Ð°ÐµÑ� Ñ�ÐµÐºÑ�Ñ�Ñ�Ñ� Ñ�Ð¸Ð³Ñ�Ñ�Ñ�\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "bf74759d-988e-468e-8406-2a74765b0cc6",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "87708cd6-d84d-4484-89f4-a8e77b9a914b",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "id": "ef3cc797-327c-4f9c-ba35-ce4fda0a83fc",
   "metadata": {},
   "source": [
    "### ABS of 3TJJ"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b005311d-4b2e-411a-abe6-a8d3404551d5",
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "# Ð¡Ð¾Ð·Ð´Ð°ÐµÐ¼ Ñ�ÐµÑ�ÐºÑ� Ñ�Ð¾Ñ�ÐµÐº Ð´Ð»Ñ� x Ð¸ y\n",
    "ph = np.linspace(0, 2*np.pi, 50)\n",
    "ch = np.linspace(0, 2*np.pi, 50)\n",
    "ph, ch = np.meshgrid(ph, ch)\n",
    "\n",
    "\n",
    "D=0.3\n",
    "\n",
    "\n",
    "z = np.sqrt(1-D*(np.sin(ph/2)**2+ np.sin(ch/2)**2 +np.sin(ph/2-ch/2)**2)*4/9 )\n",
    "\n",
    "\n",
    "plt.xticks([0, np.pi/2, np.pi, 3*np.pi/2, 2*np.pi], \n",
    "           ['0', r'$\\frac{\\pi}{2}$', r'$\\pi$', r'$\\frac{3\\pi}{2}$', r'$2\\pi$'])\n",
    "plt.yticks([0, np.pi/2, np.pi, 3*np.pi/2, 2*np.pi], \n",
    "           ['0', r'$\\frac{\\pi}{2}$', r'$\\pi$', r'$\\frac{3\\pi}{2}$', r'$2\\pi$'])\n",
    "\n",
    "plt.imshow(z, origin='lower', extent=[0, 2*np.pi, 0, 2*np.pi],cmap='viridis')\n",
    "\n",
    "# Ð�Ð¾Ð±Ð°Ð²Ð»Ñ�ÐµÐ¼ Ð¿Ð¾Ð´Ð¿Ð¸Ñ�Ð¸ Ð¸ Ð·Ð°Ð³Ð¾Ð»Ð¾Ð²Ð¾Ðº\n",
    "plt.xlabel(r'$\\chi$')\n",
    "plt.ylabel(r'$\\varphi$')\n",
    "plt.title('3TJJ')\n",
    "\n",
    "plt.colorbar()\n",
    "# Ð�Ð¾ÐºÐ°Ð·Ð°Ñ�Ñ� Ð³Ñ�Ð°Ñ�Ð¸Ðº\n",
    "plt.show()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "08208088-24e6-4fce-aa64-e3ef456eaab6",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "458f9d6b-4208-4d98-990d-65ce24c8453f",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0d33a1f8-ec85-42f2-acd8-760c1f8c9ed1",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ad156515-532b-4ab2-923f-0e692c758742",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4633773d-9077-4a58-9571-9e543a046326",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}



{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "6b9a8c1d-f9f7-49ae-a31d-d8a465239a60",
   "metadata": {},
   "source": [
    "## Currents 3TJJ"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 72,
   "id": "204f35d1-c343-4f44-9af5-2f5a444eb23d",
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "from numpy.linalg import inv\n",
    "\n",
    "\n",
    "# Определяем матрицы\n",
    "S0 = np.eye(2)\n",
    "S3 = np.array([[1, 0], [0, -1]])\n",
    "Spl = np.array([[0, 1], [0, 0]])\n",
    "Smn = np.array([[0, 0], [1, 0]])\n",
    "\n",
    "\n",
    "# Задаем параметры\n",
    "Phi_0 = 0.5  # постоянная Флюкса\n",
    "\n",
    "Delta_Z = 0  # энергия Delta_Z\n",
    "V = 5.0  # энергия V\n",
    "\n",
    "\n",
    "\n",
    "beta = 2  # обратная температура (иногда называют \\beta)\n",
    "\n",
    "Gamma = 1.2  # all Gammas\n",
    "\n",
    "Delta = 2  # all Deltas\n",
    "\n",
    "\n",
    "varphi_3 =0 # this was set and don't appear further\n",
    "\n",
    "Gamma_1=Gamma\n",
    "Gamma_3=Gamma\n",
    "Gamma_2=Gamma\n",
    "\n",
    "Delta_1= Delta \n",
    "Delta_2= Delta \n",
    "Delta_3= Delta "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 77,
   "id": "854f0c72-d747-4adc-80c0-8aa0cff8c359",
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "\n",
    "# сумма по Мацуб частотам\n",
    "\n",
    "\n",
    "n_max=20 # указываем, сколько н считать\n",
    "\n",
    "def h(V, Delta_Z):\n",
    "    return V * np.kron(S3, S0) + Delta_Z * np.kron(S0, S3)\n",
    "\n",
    "def sigm_three(vp,ch, om):\n",
    "    term1 = (Gamma_1 / np.sqrt(Delta_1 * Delta_1 - om * om)) * (om * S0 - Delta_1 * (np.exp(1j * vp) * Spl + np.exp(-1j * vp) * Smn))\n",
    "    term2 = (Gamma_2 / np.sqrt(Delta_2 * Delta_2 - om * om)) * (om * S0 - Delta_2 * (np.exp(1j * ch) * Spl + np.exp(-1j * ch) * Smn))\n",
    "    term3 = (Gamma_3 / np.sqrt(Delta_3**2 - om * om)) * (om * S0 - Delta_3 * ( Spl +  Smn))\n",
    "    return -np.kron(term1 + term2+term3, S0)\n",
    "\n",
    "def deriv1_sigm_three(vp, om):\n",
    "    term1 = (Gamma_1 / np.sqrt(Delta_1 * Delta_1 - om * om)) * (-Delta_1 * (1j * np.exp(1j * vp) * Spl - 1j * np.exp(-1j * vp) * Smn)) \n",
    "    term2 = np.zeros_like(term1)  # Параметр varphi_2 не зависит от varphi_1\n",
    "    return -np.kron(term1 + term2, S0)\n",
    "\n",
    "def deriv2_sigm_three(ch, om):\n",
    "    term1 = (Gamma_2 / np.sqrt(Delta_2 * Delta_2 - om * om)) * (-Delta_2 * (1j * np.exp(1j * ch) * Spl - 1j * np.exp(-1j * ch) * Smn)) \n",
    "    term2 = np.zeros_like(term1)  # Параметр varphi_2 не зависит от varphi_1\n",
    "    return -np.kron(term1 + term2, S0)\n",
    "\n",
    "\n",
    "def trace3(om, vp,ch):\n",
    "    matrix = 1j * om * np.kron(S0, S0) - h(V, Delta_Z) - sigm_three(vp,ch, 1j * om)    \n",
    "    deriv = deriv1_sigm_three(vp, 1j * om) \n",
    "    #- deriv2_sigm_three(ch, 1j*om) # HERE I SAY THAT WE SUBTRACT FROM ONE TO ANOTHER CURRENT\n",
    "    return ( -np.pi / (beta * Phi_0) )*np.trace(inv(matrix) @ deriv)\n",
    "\n",
    "\n",
    "def mats3_before(func, beta, vp,ch, n_max):\n",
    "    frequencies = np.array([(2 * n + 1) * np.pi / beta for n in range(-n_max, n_max + 1)])\n",
    "    return np.sum([func(om, vp,ch) for om in frequencies])\n",
    "\n",
    "    \n",
    "def mats3(vp,ch):\n",
    "   return  mats3_before(trace3, beta, vp,ch, n_max)\n",
    "\n",
    "    \n",
    "\n",
    "# Создаем сетку значений для vp и ch\n",
    "vp = np.linspace(0, 2*np.pi, 50)\n",
    "ch = np.linspace(0, 2*np.pi, 50)\n",
    "vp_grid, ch_grid = np.meshgrid(vp, ch)\n",
    "\n",
    "# Вычисляем значения функции для каждой точки сетки\n",
    "z = np.real(np.vectorize(mats3)(vp_grid, ch_grid))\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c219fdc5-3d57-4f05-83c4-ab9fa9bfd875",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "13fe7144-a3e6-4c0e-9a39-1e6350f46f2f",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "id": "9f41991c-08bf-403a-89fb-c0c0447b8c4b",
   "metadata": {},
   "source": [
    "### Analyt formula for current\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 78,
   "id": "ef18ab43-2e80-4469-be21-9afcec2f9b76",
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "D = 9 *Gamma**2/(V**2 +9*Gamma**2) \n",
    "\n",
    "E_J =np.sqrt(V**2 + 9*Gamma**2) / (1 + 3*Gamma / Delta )\n",
    "\n",
    "dZ= Delta_Z / (1 + 3*Gamma / Delta)\n",
    "\n",
    "\n",
    "\n",
    "def sqrt3(ph,ch):\n",
    "    return np.sqrt(1-D*(np.sin(ph/2)**2+ np.sin(ch/2)**2 +np.sin(ph/2-ch/2)**2)*4/9 )\n",
    "\n",
    "def J3_c(ph,ch):\n",
    "    return ((D * E_J * np.pi) / (2 * Phi_0) ) *(np.sinh(beta *E_J* sqrt3(ph,ch)) / (np.cosh(beta * dZ) + np.cosh(beta *E_J* sqrt3(ph,ch))) ) / sqrt3(ph,ch)\n",
    "\n",
    "def J3(ph,ch):\n",
    "    # return J3_c(ph,ch)*(2*np.sin(vp-ch)+np.sin(vp)-np.sin(ch))*4/9\n",
    "    return J3_c(ph,ch)*(np.sin(vp-ch)+np.sin(vp))*4/9\n",
    "\n",
    "\n",
    "    \n",
    "vp = np.linspace(0, 2*np.pi, 50)\n",
    "ch = np.linspace(0, 2*np.pi, 50)\n",
    "vp_grid, ch_grid = np.meshgrid(vp, ch)\n",
    "\n",
    "# Вычисляем значения функции для каждой точки сетки\n",
    "z_an = J3(vp_grid, ch_grid)\n",
    "\n",
    "\n",
    "plt.xticks([0, np.pi/2, np.pi, 3*np.pi/2, 2*np.pi], \n",
    "           ['0', r'$\\frac{\\pi}{2}$', r'$\\pi$', r'$\\frac{3\\pi}{2}$', r'$2\\pi$'])\n",
    "plt.yticks([0, np.pi/2, np.pi, 3*np.pi/2, 2*np.pi], \n",
    "           ['0', r'$\\frac{\\pi}{2}$', r'$\\pi$', r'$\\frac{3\\pi}{2}$', r'$2\\pi$'])\n",
    "\n",
    "plt.imshow(z_an, origin='lower', extent=[0, 2*np.pi, 0, 2*np.pi],cmap='viridis')\n",
    "\n",
    "# Добавляем подписи и заголовок\n",
    "plt.xlabel(r'$\\varphi$')\n",
    "plt.ylabel(r'$\\chi$')\n",
    "plt.title(r'$J_{1,2}$ in 3TJJ, analytic')\n",
    "\n",
    "plt.colorbar()\n",
    "# Показать график\n",
    "plt.close()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "da6539d6-a965-4df9-ae58-54077fb9d2ed",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "db54f4d3-4d7c-4d39-b066-d6674c29d77a",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 89,
   "id": "d96aab5e-8368-47ea-9d82-b34f997aefd9",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "",
      "text/plain": [
       "<Figure size 1200x500 with 4 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "fig, axes = plt.subplots(1, 2, figsize=(12, 5))  # 1 строка, 2 столбца\n",
    "\n",
    "# Первый график\n",
    "img1 = axes[0].imshow(z_numer, origin='lower', extent=[0, 2*np.pi, 0, 2*np.pi], cmap='viridis')\n",
    "axes[0].set_title(f'Numerical')\n",
    "axes[0].set_xlabel(r'$\\chi$')\n",
    "axes[0].set_ylabel(r'$\\varphi$')\n",
    "axes[0].set_xticks([0, np.pi/2, np.pi, 3*np.pi/2, 2*np.pi])\n",
    "axes[0].set_xticklabels(['0', r'$\\frac{\\pi}{2}$', r'$\\pi$', r'$\\frac{3\\pi}{2}$', r'$2\\pi$'])\n",
    "axes[0].set_yticks([0, np.pi/2, np.pi, 3*np.pi/2, 2*np.pi])\n",
    "axes[0].set_yticklabels(['0', r'$\\frac{\\pi}{2}$', r'$\\pi$', r'$\\frac{3\\pi}{2}$', r'$2\\pi$'])\n",
    "fig.colorbar(img1, ax=axes[0])\n",
    "\n",
    "# Второй график\n",
    "img2 = axes[1].imshow(-z_an, origin='lower', extent=[0, 2*np.pi, 0, 2*np.pi], cmap='viridis')\n",
    "axes[1].set_title(f'Analytical')\n",
    "axes[1].set_xlabel(r'$\\chi$')\n",
    "axes[1].set_ylabel(r'$\\varphi$')\n",
    "axes[1].set_xticks([0, np.pi/2, np.pi, 3*np.pi/2, 2*np.pi])\n",
    "axes[1].set_xticklabels(['0', r'$\\frac{\\pi}{2}$', r'$\\pi$', r'$\\frac{3\\pi}{2}$', r'$2\\pi$'])\n",
    "axes[1].set_yticks([0, np.pi/2, np.pi, 3*np.pi/2, 2*np.pi])\n",
    "axes[1].set_yticklabels(['0', r'$\\frac{\\pi}{2}$', r'$\\pi$', r'$\\frac{3\\pi}{2}$', r'$2\\pi$'])\n",
    "fig.colorbar(img2, ax=axes[1])\n",
    "\n",
    "# Общий заголовок\n",
    "fig.suptitle('Current of Three-Terminal Junction\\n', fontsize=20)\n",
    "\n",
    "# Настройка расстояния между подграфиками\n",
    "plt.tight_layout()\n",
    "\n",
    "\n",
    "plt.grid(color='gray', linestyle='--', linewidth=0.5, alpha=0.7)\n",
    "\n",
    "\n",
    "# Текст для добавления на график\n",
    "tx = (r\"$\\Delta_Z$ = {Delta_Z:.1f}, $V$ = {V:.1f}, $\\beta$ = {beta:.1f}, \"\n",
    "      r\"$\\Gamma$ = {Gamma:.1f}, $\\Delta$ = {Delta:.1f}\").format(\n",
    "          Delta_Z=Delta_Z, V=V, beta=beta, Gamma=Gamma, Delta=Delta\n",
    "      )\n",
    "\n",
    "# Добавляем текст на график\n",
    "plt.text(0.5, -0.04, tx, transform=plt.gcf().transFigure, fontsize=12,\n",
    "         verticalalignment='center', horizontalalignment='center',\n",
    "         bbox=dict(facecolor='white', alpha=0.5))\n",
    "\n",
    "\n",
    "\n",
    "filename = (f\"3T_DZ={Delta_Z:.1f}_V={V:.1f}_beta={beta:.1f}_\"\n",
    "            f\"Gamma={Gamma:.1f}_Delta={Delta:.1f}.png\")\n",
    "\n",
    "# Сохраняем файл\n",
    "plt.savefig(filename, dpi=400, bbox_inches='tight')\n",
    "# Показать графики\n",
    "plt.show()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8ae48ea0-9b9f-47c0-8ae7-e0bdcb78eea1",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}



{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "dfa86458-644f-4cf2-9f2f-794207769c36",
   "metadata": {},
   "source": [
    "# Code for ABS of seven-terminal junction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "59c271f4-2a95-4657-944b-40089e917516",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "--- 61.9214882850647 seconds ---\n",
      "Saving file as: C:\\Users\\Yury\\Downloads\\7t_V1.5dz0.2g12.2d12.1g21.3d22.2g31.1d31.9g41.2d42.0g51.1d52.1g61.4d62.0g71.2d72.1p10.10p20.90p30.30p40.15p5-0.25p62.35p70.40.png\n",
      "Parameters used for calculation:\n",
      "V = 1.5, ΔZ = 0.2\n",
      "g1 = 2.2, d1 = 2.1, phi1 = 0.1 * phi\n",
      "g2 = 1.3, d2 = 2.2, phi2 = 0.9 * phi\n",
      "g3 = 1.1, d3 = 1.9, phi3 = 0.3 * phi\n",
      "g4 = 1.25, d4 = 2.0, phi4 = 0.15 * phi\n",
      "g5 = 1.15, d5 = 2.15, phi5 = -0.25 * phi\n",
      "g6 = 1.35, d6 = 2.05, phi6 = 2.35 * phi\n",
      "g7 = 1.2, d7 = 2.1, phi7 = 0.4 * phi\n"
     ]
    }
   ],
   "source": [
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "import time\n",
    "import os\n",
    "# COPY THIS FILE TO THE BEGINNING OF THE DIRECROTY, SINCE THE TITLE WILL BE LONG\n",
    "# Получение текущей рабочей директории\n",
    "current_directory = os.getcwd()\n",
    "\n",
    "# Пользователь вводит параметры\n",
    "ve2 = 1.5  # v\n",
    "dze2 = 0.2  # ΔZ\n",
    "\n",
    "# g1, g2, ..., g7 и d1, d2, ..., d7\n",
    "g_values = [2.2, 1.3, 1.1, 1.25, 1.15, 1.35, 1.2]  # GAMMAS\n",
    "d_values = [2.1, 2.2, 1.9, 2.0, 2.15, 2.05, 2.1]   # DELTAS, GAPS\n",
    "\n",
    "# Коэффициенты для фаз\n",
    "phi_coeffs = [0.1, 0.9, 0.3, 0.15, -0.25, 2.35, 0.4]  # Коэффициенты для каждой фазы\n",
    "\n",
    "# Инициализация матриц\n",
    "S0 = np.array([[1, 0], [0, 1]])\n",
    "S1 = np.array([[0, 1], [1, 0]])\n",
    "S2 = np.array([[0, -1j], [1j, 0]])\n",
    "S3 = np.array([[1, 0], [0, -1]])\n",
    "Spl = np.array([[0, 1], [0, 0]])\n",
    "Smn = np.array([[0, 0], [1, 0]])\n",
    "\n",
    "# Функция для расчёта сигм для 7 источников\n",
    "def sigm_seven(g_values, d_values, phis, om):\n",
    "    terms = []\n",
    "    for i in range(7):\n",
    "        g = g_values[i]\n",
    "        d = d_values[i]\n",
    "        phi = phis[i]\n",
    "        \n",
    "        # Вычисление значения для каждого источника\n",
    "        sqrt_val = np.sqrt(d**2 - om**2) if d**2 > om**2 else 1e6  # Ограничение корня, если значение невалидно\n",
    "        term = (g / sqrt_val) * (om * S0 - d * (np.exp(phi * 1j) * Spl + np.exp(-phi * 1j) * Smn))\n",
    "        terms.append(term)\n",
    "        \n",
    "    return -np.kron(sum(terms), S0)\n",
    "\n",
    "# Детеминант для 7 источников\n",
    "def d_det_seven(v, dz, g_values, d_values, phi, om):\n",
    "    # Генерация фаз с параметром phi\n",
    "    phis = [coeff * phi for coeff in phi_coeffs]\n",
    "    \n",
    "    hamiltonian = v * np.kron(S3, S0) + dz * np.kron(S0, S3)\n",
    "    sigma = sigm_seven(g_values, d_values, phis, om)\n",
    "    return np.linalg.det(om * np.kron(S0, S0) - hamiltonian - sigma)\n",
    "\n",
    "# Пример использования функции для расчёта\n",
    "precision_phi = 600\n",
    "precision_z = 400\n",
    "\n",
    "Zran = np.linspace(-max(d_values) + 0.0001, max(d_values) - 0.0001, precision_z)  # Ограничения для Zran\n",
    "Phran = np.linspace(0, 2 * np.pi, precision_phi)  # Углы phi\n",
    "\n",
    "# Вычисление детерминантов для каждого значения phi\n",
    "start_time = time.time()\n",
    "res = np.array([[d_det_seven(ve2, dze2, g_values, d_values, phi, om) for om in Zran] for phi in Phran])\n",
    "print(\"--- %s seconds ---\" % (time.time() - start_time))\n",
    "\n",
    "res_two = np.swapaxes(res, 0, 1)\n",
    "\n",
    "# Построение графика\n",
    "\n",
    "# Формирование имени файла\n",
    "file_name = (\n",
    "    f\"7t_V{ve2:.1f}dz{dze2:.1f}\"\n",
    "    + \"\".join([f\"g{i+1}{g_values[i]:.1f}d{i+1}{d_values[i]:.1f}\" for i in range(7)])\n",
    "    + \"\".join([f\"p{i+1}{phi_coeffs[i]:.2f}\" for i in range(7)])\n",
    ")\n",
    "file_path = os.path.join(current_directory, f'{file_name}.png')\n",
    "\n",
    "cs_two = plt.contourf(Phran, Zran, np.where(np.log(np.abs(res_two)) < 0.3, 50, np.log(np.abs(res_two))), 500)\n",
    "\n",
    "# Подписи и сохранение файла\n",
    "plt.ylabel(r'$E$', fontsize=20)\n",
    "plt.xlabel(r'$\\varphi$', fontsize=20)\n",
    "plt.xticks([0, np.pi / 2, np.pi, np.pi * 3 / 2, 2 * np.pi],\n",
    "           labels=[r'$0$', r'$\\pi/2$', r'$\\pi$', r'$2\\pi/3$', r'$2\\pi$'], fontsize=15)\n",
    "\n",
    "# Формирование текстовой таблицы параметров\n",
    "header_text = f\"$V = {ve2:.1f}, \\ \\Delta_Z = {dze2:.1f}$\\n\"\n",
    "param_text = \"\\n\".join([\n",
    "    f\"$\\\\Gamma_{i+1} = {g_values[i]:.1f}, \\ \\Delta_{i+1} = {d_values[i]:.1f}, \\ \\phi_{i+1} = {phi_coeffs[i]:.2f} \\\\phi$\"\n",
    "    for i in range(7)\n",
    "])\n",
    "\n",
    "plt.grid(color='gray', linestyle='--', linewidth=0.5, alpha=0.7)\n",
    "plt.figtext(1.01, 0.8, header_text + param_text, fontsize=12, ha='left', va='top', transform=plt.gca().transAxes)\n",
    "\n",
    "# Сохранение файла\n",
    "print(f\"Saving file as: {file_path}\")\n",
    "plt.savefig(file_path, dpi=300, bbox_inches='tight')\n",
    "plt.close()\n",
    "\n",
    "# Вывод параметров\n",
    "print(f\"Parameters used for calculation:\")\n",
    "print(f\"V = {ve2}, ΔZ = {dze2}\")\n",
    "for i in range(7):\n",
    "    print(f\"g{i+1} = {g_values[i]}, d{i+1} = {d_values[i]}, phi{i+1} = {phi_coeffs[i]} * phi\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3e179172-5677-476c-8187-4b4dc6651f0c",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
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   "display_name": "Python 3 (ipykernel)",
   "language": "python",
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  },
  "language_info": {
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    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
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   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
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