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Duality is discussed in details, especially duality in QFT, Strings by Álvarez-Gaumé Zamora,

and Electromagnetic Duality for Children by J. M. Figueroa-O’Farrill. Problems and solutions are
provided.

Duality was a topic that I studied in 2024 in the scope of the course “Advanced Field Theory” in
KU Leuven. Later maybe I’ll continue learning it, but it is too specific, big, and deep subject to study
it without related research.

Before continuing this research I want to spend 1 week on differential geometry and 1 week on
general preparation for special field theories.
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Preface

1 Preface

Description of the note

Overview of applications

We will specify the applications
(I’ll reveal it later)

Main motivation

Обсудим самые типичные причины, зачем изучать дуальность?

Amazing facts (I’ll reveal it later)

Puzzles for motivation

Обсудим теоретические задачи, которые мотивируют изучать дуальность.

Why Pauli-Lubanski vector works? (напишу, что мол до группы Пуанкаре можно
то дойти, а вот что дальше делать - непонятно, а с помощью дуальности можно догадаться
до Паули-Любанского вектора и так построить казимиры. Почему такое работает?)
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Part I

Duality in a Nutshell
2 Main dual constructions and formulas

2.1 Main formulas and ideas of duality

Main idea of duality (!??!?!?)

(тут самые важные общие слова! потом напишу их)

F̃µν =
1

2
εµνρσF

ρσ,

Main formulas of Duality

Main basic properties of dual tensors

For now the convection is: H̃µν := −1

2
iεµvρσHρσ

H±
µν :=

1

2

(
Hµν ± H̃µν

)
, H±

µν :=
(
H∓
µν

)∗
.

−1

2
iεµνρσH̃ρσ = Hµν .

−1

2
iεµν

ρσH±
ρσ = ±H±

µν .

G+µvH−
µν = 0,

G±ρ(µH±ν)
ρ = −

1

4
ηµνG±ρσH±

ρσ, G+
ρ[µH

−
ν]
ρ = 0,

G̃ρµH̃v
ρ = −1

2
ηµvGρσHρσ −GρvHµ

ρ.

F G̃ = F̃G.

This is because FG̃ ≡ 1
2
F µνεµνρσG

ρσ = 1
2
GρσερσµνF

µν = F̃G.

For any symmetric matrix B (B = BT ) and arbitrary matrix Gs

∂(GBG̃)

∂χ
= 2

∂G

∂χ
BG̃, ⇔ ∂G

∂χ
BG̃ =

1

2

∂(GBG̃)

∂χ

Proof:

GB
∂G̃

∂χ
≡ GµνB

1

2
εµνρσ

∂Gρσ

∂χ
=
∂Gµν

∂χ
B
1

2
εµνρσG

ρσ =
∂G

∂χ
BG̃

8



2.1 Main formulas and ideas of duality

1

2

∂(GBG̃)

∂χ
=

1

2

(
∂G

∂χ
BG̃+GB

∂G̃

∂χ

)
=
∂G

∂χ
BG̃

5. For (?? which matrices???)
F̃BG = G̃BTF.

Proof:

F̃BG =
1

2
εµνρσF

aρσBabGbµν =
1

2
ερσµνF

aµνBabGbρσ =
1

2
ερσµνG

bρσBT baF aµν = G̃BTF.

F TAT
δS

δF
= (F+T+F−T )µνA

T (−i)
2
G̃µν = (F+T+ F−T )µνA

T (−i)
2

(G+µν−G−µν) =
(−i)
2
F+TATG+ + h.c.

Dual tensors are not independent form original one,

δF+
µν

δFρσ
=

δ

δFρσ

1

2

(
Fµν +

−i
2
εµντϕF

τϕ

)
=

1

2

(
δρσµν +

−i
2
εµν

ρσ

)

Duality for one free electromagnetic field We know that ∂µF µν = 0, ∂µF̃
µv = 0.

There is a dual symmetry - change of variables:

F µν → F ′µν = iF̃ µν

(the “ i” is included to make the transformation real).
Since F ′µν also obeys both equations of (4.41) we have defined a symmetry of the free

electromagnetic field.
The symmetry (4.42) exchanges the electric and magnetic fields: Ei → E ′

i = −Bi and
Bi → B′

i = Ei.

∂µF
µv = 0, ∂µF̃

µv = 0.

We can now consider the change of variables (the i is included to make the transformation
real):

F µv → F ′µν = iF̃ µv.

Since F ′µν also obeys both equations of (4.41) we have defined a symmetry of the free
electromagnetic field.

The symmetry (4.42) exchanges the electric and magnetic fields: Ei → E ′
i = −Bi and

Bi → B′
i = Ei.

The self-dual combinations F±
µνcontain only photons of one polarization in their plane wave

expansions:

F±
µν = 2i

∫
d3k

(2π)32k0

[
eik·xk[µϵv](k⃗,±)a(k⃗,±)− e−ik·xk[µϵ

∗
ν](k⃗,∓)a∗(k⃗,∓)

]
.

To perform this exercise, check first that with the polarization vectors given in Sec. 4.1.2,
one has

−1

2
iεµνρσkρϵσ(k⃗,±) = ±k[µϵν](k⃗,±).
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2.1 Main formulas and ideas of duality

FµνF̃
µν = −i∂µ (εµνρσAvFρσ) .

(
FµνF̃

µν
)
(x)→ detΛ−1

(
FµνF̃

µν
)
(Λx).

Thus FµνF̃ µν transforms as a scalar under proper Lorentz transformations but changes sign
under space or time reflections.

FµρF̃
ρ
ν =

1

4
ηµνFρσF̃

ρσ.

General duality rotations
L = L

(
F a, χi, χiµ

)
.

F a
µν = ∂µA

a
ν − ∂νA a

µ ,

∂µF̃ a
µν = 0.

G̃a
µν =

1

2
εµνρσG

aρσ ≡ 2
∂L

∂F aµν
,

∂µG̃a
µν = 0.

δ

(
F
G

)
=

(
A B
C D

)(
F
G

)
,

δχi = ξi(χ),

Covariance of the equations of motion:

C = CT, B = BT,

Dab + Aba = εδab,

∂

∂F a
δL =

∂

∂F a

(
1

4
FCF̃ +

1

4
GBG̃+ εL

)
.

Ei =
∂L

∂χi
− ∂µ

∂L

∂χiµ

δL =
1

4
(FCF̃ +GBG̃)

Proof:
(?)
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2.1 Main formulas and ideas of duality

Conserved current under duality rotations

Ĵµ =
1

2

(
G̃µνAAν − F̃ µνCAν + G̃µνBBν − F̃ µνDBν

)
Jµ = ξi

∂L

∂χiµ
+ Ĵµ

∂µJ
µ = 0.

Proof:
(?)
(???, see theory about it, ???)

Duality formalizm in vector+spinor+scalar field theory We considered there ac-
tions S(F ) that depend on field strengths FA

µν , which are determined in terms of (abelian)
vectors AAµ . We consider actions at most quadratic in spacetime derivatives, and thus also at
most quadratic in FA

µν .

F̃µν = −
1

2
ieεµνρσF

ρσ, F±
µν ≡

1

2

(
Fµν ± F̃µν

)
,

∇µ ImFA+
µν = 0 Bianchi identities,

∇µ ImGµν+
A = 0 Equations of motion of AAν ,

G+µν
A := 2ie−1 δS (F+, F−, ϕ)

δF+A
µν

, i.e. G̃µν
A := 2ie−1 δS(F, ϕ)

δFA
µν

.

S(F, ϕ) = S (F+, F−, ϕ)
NAB = −if̄AB

G+
Aµν = NAB(ϕ)F

+B
µν +H+

Aµν(ϕ) = G+
bAµν +H+

Aµν(ϕ).

δd

(
FA
µν

GAµν

)
=

(
AAB BAB

CAB DB
A

)(
FB
µν

GBµν

)
,

BAB = BBA, CAB = CBA, DB
A = −AAB.

Ei ≡
δS

δϕi
,

S =

∫
d4xeL (ϕ, ∂µϕ) ,

δS

δϕi
= e

[
δL

δϕi
−∇µ

δL

δ∂µϕi

]
.

δdϕ
i = ξi(ϕ),

δd = ξi
δ

δϕi
+
(
AABF

B
µν +BABGBµν

) δ

δFA
µν

,

δdS =

(
ξi

δ

δϕi
+
(
F TAT +GTB

) δ

δF

)
S

= ξiEi −
1

2

(
i
(
F+TAT +G+TB

)
G+ + h.c.

)
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2.1 Main formulas and ideas of duality

δ

δF+
S = −1

2
iG+,

∂G+
A

∂F+B
= NAB.

∂i =
δ
δϕi

,
δ

δF+
δd = δd

δ

δF+
+
(
AT +NB

) δ

δF+

∂iδd = δd∂i +
(
∂iξ

j
)
∂j +

(
∂iG

+TB
δ

δF+
+ h.c.

)
.

δ

δF+
δdS = −1

2
i
(
δdG

+ +
(
AT +NB

)
G+
)
= −1

2
i
[
CF+ +NBBG+

]
= −1

4
i
δ

δF+

[
F+TCF+ +G+TBG+

]
∂iδdS = δdEi +

(
∂iξ

j
)
Ej −

1

2

(
i
(
∂iG

+TB
)
G+ + h.c.

)
δdS = −1

4
i
[
F+TCF+ +G+TBG+

]
+ h.c. , δdEi = −

(
∂iξ

j
)
Ej.

δdS = −1

8

∫
d4xεµνρσ

(
FA
µνCABF

B
ρσ +GAµνD

ABGBρσ

)
,

Snon-inv = −1

4
iF+AG+

A + h.c. = S2(F, ϕ)−
1

4

(
iF+AH+

A + h.c.
)
,

S2(F, ϕ) = −
1

4
iF+AG+

bA + h.c. = −1

4
iF+ANABF

+B + h.c.

=
1

4

∫
d4x

[
e (ImNAB)F

A
µνF

Bµν − 1

2
εµνρσ (ImNAB)F

A
µνF

B
ρσ

]
,

S1(F, ϕ) = −
1

2
iF+AH+

A + h.c. = −1

4

∫
d4xεµνρσFA

µνHAρσ.

Sinv =
1

2
S1(F, ϕ) + S0(ϕ),

Symplectic vector notation

δdNAB(ϕ) = ξi∂iNAB =
(
C −NA− ATN −NBN

)
AB

δdH
+(ϕ) = ξi∂iH

+ = −
(
AT +NB

)
H+.

δd
1

2
S1(F, ϕ) = −

1

4
iH+TBH+,(

Q+A, P+
A

)
P+
A = NABQ

+B.

H+
µν =

(
NQ+ − P+

)
µν

= 2i(ImN )Q+
µν .

1

2
S1(F, ϕ) = −

1

4
iF+A

(
NQ+ − P+

)
=

1

4
i
(
F+AP+

A −G
+A
b Q+

A

)
+ h.c. .

If we replace Gb by the full G, this is a symplectic invariant.

S0(ϕ) =
1

4
iH+

AµνQ
+Aµν + h.c. + S0, inv .
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2.2 Special methods of duality

Invariance of the energy-momentum tensor

θµλ = −χiλ
∂L

∂χiµ
+ δµλL+ G̃aµνF a

νλ

is conserved as a consequence of the equations of motion (2.3), (2.5) and (2.15):

∂µθ
µ
λ = 0.

(??? в чем идея в иоге его??? и идея вывода???)

On construction of the lagrangian

L =
1

4
FG̃+

1

4
(FI −GH) + Linv (χ),

jG− I = (F + jH)
∂jG

∂F
.

L = −1

4
FKF +

1

2
F (I − jKH) +

1

4
jH(I − jKH) + Linv (χ).

(??? тоже впишу идею, что происходит???)

2.2 Special methods of duality

(потом сделаю несколько разделов, сгруппирую методы, пока тут методы, которые я плохо
понимаю)

Basics

N = 2 supersymmetric gauge theory on a group G broken to U(1)r, with r = rankG, corre-
sponds to a particular case of the most general N = 1 coupling of r chiral multiplets

(
XA, χA

)
to rN = 1 abelian vector multiplets

(
AA
µ , λ

A
)

in which the Kähler potential K and the holo-
morphic kinetic term function fAB

(
XA
)

are given by

K = i
(
F̄AX

A − FAX̄A
)
, (FA = ∂AF ) (2.1)

fAB = ∂A∂BF ≡ FAB

RAB̄CD̄ = −∂A∂C∂PF∂B̄∂D̄∂Q̄F̄ gPQ̄ (2.2)

gPQ̄ = ∂P∂Q̄K = 2 Im ∂P∂QF (2.3)

L = gAB̄∂µX
A∂µX̄

B +
(
gAB̄λ

IAσµDµλ̄
B̄
I + h.c.

)
(2.4)

+ Im
(
FABF

−A
µν F

−B
µν

)
+ LPauli + L4− fermi

where A,B, . . . run on the adjoint representation of the gauge group G, I = 1, 2 and F +A
µν =

F A
µν − i

2
ϵµνρσF

Aρσ (and F −A
µν = F

+A

µν ). As we shall see, also LPauli and L4− Fermi contain the
function F and its derivatives up to the fourth.
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2.2 Special methods of duality

The previous formulation, derived from tensor calculus, is incomplete because it is not
coordinate covariant. It is written in a particular coordinate system ("special coordinates")
which is not uniquely selected. In fact, eq.(2.1) is left invariant under particular coordinate
changes of the XA → X̃A with some new function F̃ (X̃) described by

X̃A(X) = AABX
B +BABFB(X) + PA

F̃A

(
X̃A(X)

)
= CABX

B +DB
AFB(X) +QA (2.5)(

A B
C D

)
∈ Sp(2r,R)

ATC − CTA = 0 , BTD −DTB = 0 , ATD − CTB = 1 (2.6)

and PA, QA can be complex constants which from now on will be set to zero.
It can be shown that a function F̃ exists such that [3]

F̃A =
∂F̃

∂X̃A
(2.7)

provided the mapping XA → X̃A is invertible.

∂µ ImF −A
µν = 0 Bianchi identities

∂µ ImGµν
−A = 0 Equations of motion (2.8)(

F −A
µν , Gµν

−A )
Gµν

−A ≡ i δL

δF −A
µν

= NABF
−B
µν +

F −A
µν = F A and Gµν

−A = GA

ImF ANABF
B → Im F̃ AG̃A =

= Im
(
F AGA + 2F A

(
CTB

)B
A
GB+ (2.9)

+F A
(
CTA

)
AB
F B +GA

(
DTB

)AB
GB

)

If C = B = 0 the lagrangian is invariant. If C ̸= 0, B = 0 it is invariant up to a four-
divergence.

In presence of a topologically non-trivial F −A
µν background,

(
CTA

)
AB

∫
ImF −A

µν F
−B
µν ̸= 0,

one sees that in the quantum theory duality transformations must be integral valued in Sp(2r,Z)
[1] and transformations with B = 0 will be called perturbative duality transformations.

If B ̸= 0 the lagrangian is not invariant. As it is well known, then the duality transformation
is only a symmetry of the equations of motion and not of the lagrangian.
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2.2 Special methods of duality

G̃µν
−A = ÑABF̃

−B
µν ,

Ñ = (C +DN )(A+BN )−1 (2.10)

Ñ (X̃) = N (X̃),
F̃ (X̃) = F (X̃). (

A 0

C
(
AT
)−1

)
, A ⊂ GL(r), ATC symmetric (2.11)

(
A 0

0
(
AT
)−1

)

The general form of the central charge for BPS states in a generic N = 2 rigid theory is
given by

|Z| =M =
∣∣∣nA(m)FA − n

(e)
A XA

∣∣∣ (2.12)

ATC = ⟨αi | αj⟩ of SU(r + 1)

Ui ≡ ∂iV =
(
∂iX

A, ∂iFA
)

with i = 1, . . . , r (2.13)

In rigid special geometry the Ui satisfy the constraints

DiUj = iCijkg
kl̄Ūl̄ (2.14)

∂iŪȷ̄ = 0

giȷ̄ = ∂i∂ȷ̄K = i
(
∂ȷ̄F̄A∂iX

A − ∂ȷ̄X̄A∂iFA
)

= i∂iX
A∂ȷ̄X̄

B
(
NAB −NAB

)
(2.15)

∂ı̄F̄A = NAB∂ı̄X̄
B (2.16)

Cikp = ∂iX
ADk∂pFA − ∂iFADk∂pX

A

= ∂iX
B
(
∂k∂pFB − ∂k∂pXANAB

)
(2.17)

Rij̄kl̄ = −CikpC̄j̄lp̄gpp̄ (2.18)

Cijk = ∂iX
A∂jX

B∂kX
C∂A∂B∂CF (2.19)

CABC = ∂A∂B∂CF (2.20)
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2.2 Special methods of duality

Symplectic transformations in the fermionic sector

L = − i
2
NABF

−AµνF −B
µν − iF −AµνH−

Aµν + c.c. + L4f (2.21)

H−
Aµν are quadratic, and L4f are the quartic terms in fermions.

G−
Aµν ≡ i

δL

δF −Aµν = NABF
−B
µν +H−

Aµν = G−
bAµν +H−

Aµν (2.22)

LV ≡ −
i

2
NF −

µνF
−µν + c.c.

= − i
2
G−
bµνF

µν + c.c.

= i∂µG−
bµνA

ν + c.c. (2.23)

= −i∂µH−
µνA

ν + c.c. − 2∂µ ImG−
µνA

ν

=
i

2
H−
µνF

−µν + c.c. − 2∂µ ImG−
µνA

ν

L| δL
δA

=0 = −
i

2
H−
µνF

−µν + c.c. + L4f ≡ Linv (2.24)

L = − i
2
F −AµνG−

Aµν + c.c. + Linv (2.25)

H−
Aµν =

(
PAa −NABQ

B
a

)
T −a
µν (2.26)

a denotes a new index, whose meaning depends on the model. T −a
µν is a tensor not trans-

forming under the symplectic group.

Linv = −
i

2
F −Aµν (PAa −NABQ

B
a

)
T −a
µν + c.c. + L4f

= − i
2

(
F −AµνPAa −G−µν

bA QA
a

)
T −a
µν + c.c. + L4f (2.27)

Invariance of Linv is then guaranteed if
(
QA, PA

)
is a symplectic vector, and L4f is con-

structed as the completion of Gb to G in the above formula (plus possible completely invariant
terms). These completions are thus

L4f =
i

2
H−µν
A QA

a T
−a
µν + c.c. + invariant terms (2.28)

Compact duality rotations

δ

(
F + iG
F − iG

)
=

(
T 0
0 T ∗

)(
F + iG
F − iG

)
,

F I −GH =
1

2

(
F 2 +G2

)
=

1

2
(F − iG)(F + iG),
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2.3 Applications and examples in a nutshell

Special methods by Gaillard, Zumino

Non-linear realizations
Dµg = ∂µg − gQµ,

Dµg → (Dµg) [k(x)]
−1,

g−1Dµg → kg−1Dµgk
−1.

δL = Tr δgg−1∂µ
(
Dµgg

−1
)
= 0.

Now, δgg−1 is an arbitrary element of the Lie algebra of G; therefore, one has the equations
of motion

∂µ
(
Dµgg

−1
)
= 0,

or
∂µ
(
gPµg

−1
)
= 0.

(?? ничего тут пока не знаю.)

Non-compact duality transformations (?? ничего тут пока не знаю. но тут кстати
много всего)

2.3 Applications and examples in a nutshell

2.3.1 Main illustrative examples

(напишу, подумать чуть нужно про них, пока не понял их как следует ещё)

Changing little coupling constant to a big one (???)

(??? have plans to find such examples)

Duality for gauge field and complex scalar

L = −1

4
(ImZ)FµνF

µν − 1

8
(ReZ)εµνρσFµνFρσ.

∂µF̃
µv = 0, ∂µ

[
(ImZ)F µv + i(ReZ)F̃ µv

]
= 0.

Gµv ≡ εµνρσ
δS

δF ρσ
= −i(ImZ)F̃ µv + (ReZ)F µν ,

Gµν− = ZF µν−, Gµν+ = Z̄F µv+.

∂µ ImF µv− = 0, ∂µ ImGµν− = 0.

SL(2,R)S ≡
(
d c
b a

)
, ad− bc = 1

(
F ′−

G′−

)
= S

(
F−

G−

)
.

G′µν− = Z ′F ′µν−,

Z ′ =
aZ + b

cZ + d
.

17



2.3.1 Main illustrative examples

L(F,Z) = −1

2
Im
(
ZF−

µνF
µν−) .

SL(2,R), a = d = 1, b = 0⇒

L (F ′, Z ′) = −1

2
Im
(
Z(1 + cZ)F−

µνF
µv−) ̸= L(F,Z).

Θµv = (ImZ)

(
F µρF ν

ρ −
1

4
ηµvFρσF

ρσ

)
. TEM

ImZ ′ =
ImZ

(cZ + d)(cZ̄ + d)
.

F̃µρF̃ν
ρ = −FµρFνρ +

1

2
ηµνFρσF

ρσ.

F ′
µρF

′ρ
ν −

1

4
ηµνF

′
ρσF

′ρσ = |cZ + d|2
[
FµρFν

ρ − 1

4
ηµνFρσF

ρσ

]
.

Electromagnetic duality for coupled Maxwell fields (!?!?!)

L = −1

4
(Re fAB)F

A
µνF

µνB +
1

4
i (Im fAB)F

A
µνF̃

µνB,

= −1

2
Re
(
fABF

−A
µν F

µν−B)
= −1

4

(
fABF

−A
µν F

µν−B + f ∗
ABF

+A
µν F

µν+B
)
,

Gµν
A = εµνρσ

δS

δF ρσA
= − (Im fAB)F

µνB − i (Re fAB) F̃
µνB≡ Gµν+

A +Gµν−
A ,

Gµν−
A = −2iδS (F+, F−)

δF−A
µν

= ifABF
µν−B,

Gµν+
A = 2i

δS (F+, F−)

δF+A
µν

= −if ∗
ABF

µν+B.

Since the field equation for the action containing (4.67) is

0 =
δS

δAAν
= −2∂µ

δS

δFA
µν

,

the Bianchi identity and the equation of motion can be expressed in the concise form

∂µ ImFA−
µν = 0 Bianchi identities,

∂µ ImGµν−
A = 0 equations of motion.

(The same equations hold for ImFA+ and ImGA
+.)(

F ′−

G′−

)
= S

(
F−

G−

)
≡
(
A B
C D

)(
F−

G−

)
,

18



2.3.2 Fermions in N = 2 rigid Yang-Mills theory

with real m × m submatrices A,B,C,D. Owing to the reality of these matrices, the same
relations hold for the self-dual tensors F+and G+. In Sec. 4.2.3, these matrices were just
numbers:

A = d, B = c, C = b, D = a.

We require that the transformed field tensors F ′A and G′
A are also related by the definitions

(4.68), with appropriately transformed fAB. We work out this requirement in the following
steps:

G′− = (C + iDf)F− = (C + iDf)(A+ iBf)−1F ′−,

such that we conclude that
if ′ = (C + iDf)(A+ iBf)−1.

ATC − CTA = 0, BTD −DTB = 0, ATD − CTB = 1.

These relations among A,B,C,D are the defining conditions of a matrix of the symplectic
group in dimension 2m so we reach the conclusion that

S =

(
A B
C D

)
∈ Sp(2m,R).

The conditions (4.75) may be summarized as

STΩS = Ω where Ω =

(
0 1

−1 0

)
.

(!!???!??!?!?!?!??!??!??!?!?)
The duality transformations in four dimensions are transformations in the symplectic group

Sp(2m, R).
(!?!!?!??!?!!??!?!?!?!??)

L = −1

2
Re
(
fABF

−A
µν F

µν−B) = −1

2
Im
(
F−A
µν G

µν−
A

)
,

we obtain

ImF ′−G− = Im
(
F−G−)+ Im

[
2F− (CTB

)
G− + F− (CTA

)
F− +G− (DTB

)
G−] .

If C ̸= 0, B = 0 the Lagrangian is invariant up to a 4-divergence, since ImF−F− =
−1

4
εµνρσFµνFρσ and the matrices A and C are real constants. For B ̸= 0 neither the Lagrangian

nor the action is invariant.

2.3.2 Fermions in N = 2 rigid Yang-Mills theory

The coordinate independent description of fermions is given by SU(2) doublets
(
λiI , λv̄I

)
where

upper and lower SU(2) indices I mean positive and negative chiralities respectively. As such
the spinors are symplectic invariant and contravariant world vector fields.(

XA, ∂iX
AλiIα ,F

−A
αβ

)
(2.29)

α, β ∈ SL(2,C).

⋆F −A
αβ is σµναβF

−A
µν .
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2.3.3 Example: duality transformations in N = 1 locally SUSY YM theories

QA
ı̄ = ∂ı̄X̄

A; PAı̄ = ∂ı̄F̄A (2.30)

T ı̄
αβ = kg ı̄jCjkpλ

kI
α λ

pJ
β ϵIJ

Hαβ
−A = k∂ı̄X̄

B
(
NBA −NBA

)
gījCjkpλ

αkIλβpJϵIJ (2.31)

LPauli = −i(N −N )AB∂ı̄X̄
AT ı̄

αβF
Bαβ + c.c.

L4f =
i

2
∂ı̄X̄

A∂ȷ̄X̄
B
(
NAB −NAB

)
T ı̄
αβT

ȷ̄αβ + c.c.+ invariant terms (2.32)

LPauli = −k∂A∂B∂CF
(
χAαλ

B
β − λAαχBβ

)
F −Cαβ + c.c. (2.33)

λiIα λ
kJ
β ϵ

αβλ̄ȷ̄α̇I λ̄
l̄
β̇J
ϵα̇β̇Riȷ̄kl̄ (2.34)

DiCjlmλ
iI
α λ

jK
β ϵαβλlJγ λ

mL
δ ϵγδϵIJϵKL (2.35)

2.3.3 Example: duality transformations in N = 1 locally SUSY YM theories

V =

(
F −A
µν , G−µν

A = i
∂L

∂F −A
µν

)
(3.50)

Uα =
(
λAα , fAB(z)λ

B
α

)

V → SV , U → SU , f → (C +Df)(A+Bf)−1 , S ∈ Sp(2, r;R) (3.51)

WA
α = T

(
DαV

A
)

(3.52)

4 ImWA
α DβUAϵ

αβ
∣∣
D
+ ifAB(z)W

A
αW

B
β ϵ

αβ
∣∣
F

(3.53)

DαWA
α = Dα̇W̄

α̇A (3.54)

WA
α = T

(
DαV

A
)

(3.55)

WA
α =

(
f−1
)AB

W
(D)
αB (3.56)

LD = − i
(
f−1
)AB

W
(D)
αA W

(D)
βB ϵ

αβ
∣∣∣
F

(3.57)

f̃AB(z̃) = fAB(z̃) (3.58)

∥W̃ (z̃)∥2 = ∥W (z̃)∥2 (3.59)
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2.3.4 Duality in electrodynamics in brief

∥W (z)∥2 = |W (z)|2eK ≡ eG.

e−1Lkin (λ, λ̄) = iUαΩ (σµ)αα̇DµU α̇

e−1LPauli (ψ, λ) = Im
(
U α̇Ω (σµ)α̇βVbβγψ

γ
µ

)
(3.60)

e−1LPauli (χ, λ) = Im
(
∂ifABλ

A
α χ̄

i
βF

−Bαβ)

T α̇
βγ = −1

2
(σµ)α̇ βψµγ.

HAαβ =
1

2
∂ifABλ

B
α χ̄

i
β

QA
iα ≡ (Im f)−1AB∂ifBCλ

C
α ; PAiα ≡ f̄ABQ

B
iα

T iα
βγ = i

4
δα(βχ

i
γ)

f̃ = (C +Df)(A+Bf)−1 =
(
AT + fBT

)−1 (
CT + fDT

)
∂if̃ = D∂if(A+Bf)−1 − (C +Df)(A+Bf)−1B∂if(A+Bf)−1

=
(
AT + fBT

)−1
∂if(A+Bf)−1 (3.61)

Im f̃ =
(
AT + fBT

)−1
(Im f)(A+Bf̄)−1

λ̃ = (A+Bf)λ

2.3.4 Duality in electrodynamics in brief

(all about it here.)

2.3.5 On duality examples in Dirac, ’t Hooft–Polyakov, BPS- monopoles

The Dirac Monopole

111 And in the beginning there was Maxwell12
112 The Dirac quantisation condition 14

Dyons and the Zwanziger–Schwinger quantisation condition (!?) (читал, но
нужно разобарться ещё, отдельная тоже тема)

The ’t Hooft–Polyakov Monopole

121 The bosonic part of the Georgi–Glashow model 18
122 Finite-energy solutions: the ’t Hooft–Polyakov Ansatz 20
123 The topological origin of the magnetic charge 24

BPS-monopoles

131 Estimating the mass of a monopole: the Bogomol’nyi bound 27
132 Saturating the bound: the BPS-monopole 28
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2.3.6 On duality examples in Poincare group

14 Duality conjectures 30

141 The Montonen–Olive conjecture 30
142 The Witten effect 31
143 SL(2, Z) duality

2.3.6 On duality examples in Poincare group

(впишу потом основные формулы)

2.3.7 On Duality examples in black holes (??)

(пока не до этого, смотрел немного, но это отдельное направление вообще)

2.3.8 Overview of other applications

2.4 Background for duality in a nutshell

2.4.1 On variation,....

Properties of variation

2.4.2 On supersymmetry and sypergravity basics

The super-Poincaré algebra in four dimensions

2.1.1 Some notational remarks about spinors 40

2.1.2 The Coleman–Mandula and Haag–ÃLopusza´nski–Sohnius theorems 42

Reminder of idea and main formulas of supergravity

(без этого мало кто не поймет то, что выше, при этом на 1/2-2/3 страницы всего формул
и слов планирую.)

2.2 Unitary representations of the supersymmetry algebra 44

2.2.1 Wigner’s method and the little group 44

2.2.2 Massless representations 45

2.2.3 Massive representations 47

No central charges

Adding central charges

2.5 Very special duality methods in a nutshell

(пока это не пишу, в теории буду писать чуть что. тут то, что крайне редко нужно для
редких методов - часть выше есть.)

2.5.1 On Effective Action for N=2 Supersymmetric Yang–Mills

(look at Figueroa-O’Farrill, his last part, I don’t need it now)
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2.5.2 On Monopoles for Arbitrary Gauge Groups by Figueroa-O’Farrill

2.5.2 On Monopoles for Arbitrary Gauge Groups by Figueroa-O’Farrill

(look at Figueroa-O’Farrill, his last part, I don’t need it now)
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Part II

Main Theory
(I’ll add especially useful theory form part below to here later)

3 Duality in united formalism

(My theory about all the theory below in one consistent formalism. No need to write it now
and I need several months of practice to do it)

4 Most used theory of duality

4.1 Duality in simple coupled theories by Freedman, Proeyen

(!!! тут то же, что Гиллард Зумино, но лучшим как сказал Проен методом, так что
переделаю!)

4.1.1 Duality for one free electromagnetic field

Duality operates as an interesting symmetry of field theories containing one or more abelian
gauge fields which may interact with other fields, principally scalars. In this section we discuss
the simplest case, namely a single free gauge field. First note that, after contraction with the
ε-tensor, the Bianchi identity (4.11) can be expressed as ∂µF̃ µν = 0.

6 The definition (4.35) is valid in Minkowski space, but must be modified in curved space-
times as we will discuss in Ch. 7.

So we can temporarily ignore the vector potential and regard Fµν as the basic field variable
which must satisfy both the Maxwell and Bianchi equations:

∂µF
µν = 0, ∂µF̃

µν = 0.

We can now consider the change of variables (the i is included to make the transformation
real):

F µν → F ′µν = iF̃ µν

Since F ′µν also obeys both equations of (4.41) we have defined a symmetry of the free
electromagnetic field.

Exercise 4.8 Show that the symmetry (4.42) exchanges the electric and magnetic fields:
Ei → E ′

i = −Bi and Bi → B′
i = Ei.

It is not possible to extend the symmetry to the vector potentials Fµν = ∂µAν − ∂νAµ and
F ′
µν = ∂µA

′
ν − ∂νA′

µ because Aµ and A′
µ are not related by any local transformation.

Here are some basic exercises involving the duality transform of the field strength tensor
Fµν .

Exercise 4.9 Show that the self-dual combinations F±
µνcontain only photons of one polariza-

tion in their plane wave expansions:

F±
µν = 2i

∫
d3k

(2π)32k0

[
eik·xk[µϵν](k⃗,±)a(k⃗,±)− e−ik·xk[µϵ

∗
ν](k⃗,∓)a∗(k⃗,∓)

]
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4.1.2 Basic Properties of Dual Tensors

To perform this exercise, check first that with the polarization vectors given in Sec. 4.1.2,
one has

−1

2
iεµνρσkρϵσ(k⃗,±) = ±k[µϵν](k⃗,±).

Exercise 4.10 Show that the quantity FµνF̃ µν is a total derivative, i.e.

FµνF̃
µν = −i∂µ (εµνρσAνFρσ)

Show, using (1.45), that under a Lorentz transformation(
FµνF̃

µν
)
(x)→ detΛ−1

(
FµνF̃

µν
)
(Λx)

Thus FµνF̃ µν transforms as a scalar under proper Lorentz transformations but changes sign
under space or time reflections. Use the Schouten identity (3.11) to prove that

FµρF̃
ρ
ν =

1

4
ηµνFρσF̃

ρσ

4.1.2 Basic Properties of Dual Tensors

For a second rank antisymmetric tensors Hµν in four-dimensional Minkowski spacetime we
define a dual tensor as

H̃µν ≡ −1

2
iεµνρσHρσ

In this conventions the dual tensor is imaginary. The indices of H̃ can be raised and lowered
with the Minkowsk metric ηµν . We also define the self-dual and anti-self-dual tensors as linear
combinations

H±
µν =

1

2

(
Hµν ± H̃µν

)
, H±

µν =
(
H∓
µν

)∗
They obey

−1

2
iεµνρσH̃ρσ = Hµν

(???? proof!!???) The validity of this property is the reason for the i in the definition (4.35).
Also

−1

2
iεµν

ρσH±
ρσ = ±H±

µν

(???? proof!!???)
Let Gµν be another antisymmetric tensor with G±

µνdefined as in (4.36). Prove the following
relations (where (µν) means symmetrization between the indices):

G+µνH−
µν = 0, G±ρ(µH±ν)

ρ = −1

4
ηµνG±ρσH±

ρσ, G+
ρ[µH

−
ν]ρ

Hint: you could first prove

G̃ρµH̃ν
ρ = −1

2
ηµνGρσHρσ −GρvHµ

ρ .

The duality operation can also be applied to matrices of the Clifford algebra. Define
the quantity Lµν = γµνPL. Show that this is anti-self-dual. Hint: check first that γµνγ∗ =
1
2
iεµνρσγ

ρσ.
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4.1.3 Duality for gauge field and complex scalar

4.1.3 Duality for gauge field and complex scalar

The simplest case of electromagnetic duality in an interacting field theory occurs with one
abelian gauge field Aµ(x) and a complex scalar field Z(x). The electromagnetic part of the
Lagrangian is

L = −1

4
(ImZ)FµνF

µν − 1

8
(ReZ)εµνρσFµνFρσ.

Actions in which the gauge field kinetic term is multiplied by a function of complex scalar
fields are quite common in supersymmetry and supergravity. We now define an extension of
the duality transformation (4.42) which gives a non-abelian global SL(2, R) symmetry of the
gauge field equations of this theory. In Sec. 7.12.2 we will discuss a generalized scalar kinetic
term that is invariant under SL(2,R). The field Z(x) carries dynamics, and the equations of
motion of the combined vector and scalar theory are also invariant.

The gauge Bianchi identity and equation of motion of our theory are

∂µF̃
µν = 0, ∂µ

[
(ImZ)F µν + i(ReZ)F̃ µν

]
= 0.

It is convenient to define the real tensor

Gµν ≡ εµνρσ
δS

δF ρσ
= −i(ImZ)F̃ µν + (ReZ)F µν

and to consider the self-dual combinations F µν± and Gµν±. Note that these are related by

Gµν− = ZF µν−, Gµν+ = Z̄F µν+.

The information in (4.49) can then be reexpressed as

∂µ ImF µν− = 0, ∂µ ImGµν− = 0

We define a matrix of the group SL(2,R) by

S ≡
(
d c
b a

)
, ad− bc = 1

The group SL(2,R) acts on the tensors F−and G−as follows:(
F ′−

G′−

)
= S

(
F−

G−

)
Since S is real, the conjugate tensors F+and G+also transform in the same way.
Exercise 4.11 Assume that ImF−and ImG−satisfy (4.52), and show that ImF ′− and ImG′−

also obey the same equations. Show that G′− and a transformed scalar Z ′ satisfy G′µν− =
Z ′F ′µν−, if Z ′ is defined as the following nonlinear transform of Z:

Z ′ =
aZ + b

cZ + d

The two equations (4.54) and (4.55) specify the SL(2,R) duality transformation on the field
strength and complex scalar of our system. The exercise shows that the Bianchi identity and
generalized Maxwell equations are duality invariant. In general the duality transform is not a
symmetry of the Lagrangian or the action integral. The following exercise illustrates this.

Exercise 4.12 Show that the Lagrangian (4.48) can be rewritten as

L(F,Z) = −1

2
Im
(
ZF−

µνF
µν−) .
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4.1.3 Duality for gauge field and complex scalar

Consider the SL(2,R) transformation with parameters a = d = 1 and b = 0. Show that

L (F ′, Z ′) = −1

2
Im
(
Z(1 + cZ)F−

µνF
µν−) ̸= L(F,Z)

The symmetric gauge invariant stress tensor of this theory is

Θµν = (ImZ)

(
F µρF ν

ρ −
1

4
ηµνFρσF

ρσ

)
As we will see in Ch. 8, when the theory is coupled to gravity, it is this stress tensor that

is the source of the gravitational field; see (8.4). It is then important that ImZ is positive,
which restricts the domain of Z to the upper half-plane. It is also important that the stress
tensor is invariant under the duality transformations (4.54) and (4.55). This is the reason for
the duality symmetry of many black hole solutions of supergravity,

Exercise 4.13 Prove that the energy-momentum tensor (4.58) is invariant under duality.
Here are some helpful relations which you will need:

ImZ ′ =
ImZ

(cZ + d)(cZ̄ + d)

Further you need again (4.47) and a similar identity (proven by contracting ε-tensors)

F̃µρF̃
ρ
ν = −FµρFνρ +

1

2
ηµνFρσF

ρσ.

This leads to

F ′
µρF

′ρ
ν −

1

4
ηµνF

′
ρσF

′ρσ = |cZ + d|2
[
FµρFν

ρ − 1

4
ηµνFρσF

ρσ

]
.

When the SL(2,R) duality transformation appears in supergravity, there is also a scalar
kinetic term in the Lagrangian which is invariant under the symmetry, specifically under the
transformation (4.55). The prototype Lagrangian with this symmetry is the nonlinear σ-model
whose target space is the Poincaré plane. This model and its SL(2,R) symmetry group will
be discussed in Sec. 7.12; see (7.151) and (7.152). The Poincaré plane is the upper half-plane
ImZ > 0. The relation (4.59) shows that duality transformations map the upper half-plane
into itself. The positive sign is preserved by SL(2,R) transformations and the energy density
obtained from the stress tensor Θ00 above will be positive!

Exercise 4.14 The free Maxwell theory is the special case of (4.48) with fixed Z = i. Suppose
that the gauge field is coupled to a conserved current as in (4.14). Check that the electric charge
can be expressed in terms of F or G by

q ≡
∫

d3x⃗J0 =

∫
d3x⃗∂iF

0i = −1

2

∫
d3x⃗εijk∂iGjk

A magnetic charge can be introduced in Maxwell theory as the divergence of B⃗ (recall
Ei = F 0i and Bi = 1

2
εijkFjk

)
. This leads to a definition 7

p ≡ −1

2

∫
d3x⃗εijk∂iFjk

Show that
(
p
q

)
is a vector that transforms under SL(2,R) in the same way as the tensors

F−and G−in (4.54).
In many applications of electromagnetic duality, magnetic and electric charges appear as

sources for the Bianchi ’identity’ and generalized Maxwell equations of (4.49). As exemplified in
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4.1.4 Electromagnetic duality for coupled Maxwell fields

Ex. 4.14 this leads to an SL(2,R) vector of charges. Particles that carry both electric and mag-
netic charge are called dyons. In quantum mechanics, dyon charges must obey the Schwinger-
Zwanziger quantization condition. If a theory contains two dyons with charges (p1, q1) and
(p2, q2), these charges must satisfy p1q2− p2q1 = 2πn, where n is an integer. 8 This condition is
invariant under SL(2,R) transformations of the charges. However, one can show [25] that there
is a lowest non-zero value of the electric charge and that all allowed charges are restricted to
an infinite discrete set of points called the charge lattice. The allowed SL(2) transformations
must take one lattice point to another, and this restricts the group parameters in (4.53) to be
integers. This restriction defines the subgroup SL(2,Z), often called the modular group. 9 One
can show that this subgroup is generated by the following choices of S:(

1 0
1 1

)
,

(
0 1
−1 0

)
,

Z ′ = Z + 1, Z ′ = − 1

Z
.

This means that one can express any element of SL(2,Z) as the product of (finitely many)
factors of the two generators above and their inverses.

Exercise 4.15 In (4.48), the kinetic terms of the electromagnetic fields are determined by a
variable Z that was treated as a scalar field. Z can also be replaced by a coupling constant,
and typically one takes Z to be the imaginary number 10i/g2, where g is a coupling constant.
Observe that the first transformation of (4.64) does not preserve the restriction that Z is
imaginary. However, the second one does. Prove that this transformation is of the type (4.42),
interchanging the electric and magnetic fields. It transforms g to its inverse, and thus relates
the strong and weak coupling descriptions of the theory. In

7 In order to obtain a symplectic vector (p, q) and not (−p, q), we changed the sign of the
magnetic charge with respect to some classical works. This implies that we have ∇⃗ · B⃗ = −j0m,
where j0m is the magnetic charge density.

8 For the case (p1, q1) = (p, 0) and (p2, q2) = (0, q), this reduces to condition pq = 2πn found
by Dirac in 1933.

9 The modular group generated by the matrices (4.64) is in fact PSL(2, Z). In PSL(2, Z),
the elements M and −M of SL(2,Z) are identified. Both these elements give in fact the same
transformation Z ′(Z).

10 One often adds an extra term that is a real so-called θ-parameter, but we will omit this
here.

Secs. 4.1 and 4.2.2 we considered Z = ig = i. Check that general duality transformations
in this case are of the form

F ′−
µν = (d+ ic)F−

µν , i.e. F ′
µν = dFµν − icF̃µν .

4.1.4 Electromagnetic duality for coupled Maxwell fields

In this section we explore how the duality symmetry is extended to systems containing a set of
abelian gauge fields AAµ (x), indexed by A = 1, 2, . . . ,m together with scalar fields ϕi. Scalars
enter the theory through complex functions fAB(ϕ) = fBA(ϕ). We consider the action

S =

∫
d4xL, L = −1

4
(Re fAB)F

A
µνF

µνB +
1

4
i (Im fAB)F

A
µνF̃

µνB

which is real since F̃ µv is pure imaginary, as defined in (4.35). The first term is a generalized
kinetic Lagrangian for the gauge fields, so we usually require that Re fAB is a positive definite
matrix. This ensures that gauge field kinetic energies are positive. Although FµνF̃

µν is a
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4.1.4 Electromagnetic duality for coupled Maxwell fields

total derivative, the second term does contribute to the equations of motion when Im fAB is a
function of the scalars ϕi. Our discussion will not involve the scalars directly. However, as in
Sec. 4.2.3, additional terms to specify the scalar dynamics will appear when theories of this
type are encountered in extended D = 4 supergravity. The treatment that follows is modeled
on Sec. 4.2.3 (where fAB was taken to be −iZ).

Using the self-dual tensors of (4.36), we then rewrite the Lagrangian (4.66) as

L
(
F+, F−) = −1

2
Re
(
fABF

−A
µν F

µν−B)
= −1

4

(
fABF

−A
µν F

µν−B + f ∗
ABF

+A
µν F

µν+B
)
,

and define the new tensors

Gµν
A = εµνρσ

δS

δF ρσA
= − (Im fAB)F

µνB − i (Re fAB) F̃
µνB = Gµν+

A +Gµν−
A ,

Gµν−
A = −2iδS (F+, F−)

δF−A
µν

= ifABF
µν−B,

Gµν+
A = 2i

δS (F+, F−)

δF+A
µν

= −if ∗
ABF

µν+B.

Since the field equation for the action containing (4.67) is

0 =
δS

δAAv
= −2∂µ

δS

δFA
µν

the Bianchi identity and the equation of motion can be expressed in the concise form

∂µ ImFA−
µν = 0 Bianchi identities

∂µ ImGµν−
A = 0 equations of motion.

(The same equations hold for ImFA+ and ImGA
+.)

Duality transformations are linear transformations of the 2m tensors FAµν and Gµν
A (accom-

panied by transformations of the fAB) which mix Bianchi identities and equations of motion,
but preserve the structure that led to (4.70). Since the equations (4.70) are real, we can mix
them by a real 2m×2m matrix. We extend these transformations to the (anti-)self-dual tensors,
and consider (

F ′−

G′−

)
= S

(
F−

G−

)
≡
(
A B
C D

)(
F−

G−

)
with real m ×m submatrices A,B,C,D. Owing to the reality of these matrices, the same

relations hold for the self-dual tensors F+and G+. In Sec. 4.2.3, these matrices were just
numbers:

A = d, B = c, C = b, D = a.

We require that the transformed field tensors F ′A and G′
A are also related by the definitions

(4.68), with appropriately transformed fAB. We work out this requirement in the following
steps:

G′− = (C + iDf)F− = (C + iDf)(A+ iBf)−1F−,

such that we conclude that

if ′ = (C + iDf)(A+ iBf)−1
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4.1.4 Electromagnetic duality for coupled Maxwell fields

The last equation gives the symmetry transformation relating f ′
AB to fAB. If G′−

µν is to be
the variational derivative of a transformed action, as (4.68) requires, then the matrix f ′ must
be symmetric. For a generic 11 symmetric f , this requires that the matrices A,B,C,D satisfy

ATC − CTA = 0, BTD −DTB = 0, ATD − CTB = 1.

These relations among A,B,C,D are the defining conditions of a matrix of the symplectic
group in dimension 2m so we reach the conclusion that

S =

(
A B
C D

)
∈ Sp(2m,R)

The conditions (4.75) may be summarized as

STΩS = Ω where Ω =

(
0 1

−1 0

)
11 If the initial fAB is non-generic, then the matrix 1 in the last equation can be replaced

by any matrix which commutes with fAB. For generic fAB, this must be a constant multiple
of the unit matrix. The constant, which should be positive to preserve the sign of the kinetic
energy of the vectors, can be absorbed by rescaling the matrices A,B,C,D.

The duality transformations in four dimensions are transformations in the symplectic group
Sp(2m,R).

The matrix Ω is often called the symplectic metric, and the transformations (4.71) are then
called symplectic transformations. This is the main result originally derived in [26]. Duality
transformations in four spacetime dimensions are transformations of the group Sp(2m,R), which
is a non-compact group.

Exercise 4.16 The dimension of the group Sp(2m,R) is the number of elements of the matrix
S, namely 4m2 minus the number of independent conditions contained in (4.77). Show that
the dimension is m(2m+ 1).

Duality transformations have two types of applications: they can describe symmetries of
one theory and they can describe transformations from one theory to another. In the first case,
the symmetries concerned form a subgroup of the ’maximal’ duality group Sp(2m,R) discussed
above. The subgroup consists of transformations (4.74) of fAB (ϕi) induced by the symmetry
transformations of the elementary scalars ϕi. These scalar transformations must be symmetries
of the scalar kinetic term and other parts of the Lagrangian. The model of Sec. 4.2.3 is one
example. The transformation of Z defined in (4.55) is the standard SL(2,R) symmetry of the
Poincaré plane. This could be part of the full symmetry group of all the scalar fields of the
theory. In extended supergravities it turns out that all the symmetry transformations that act
on the scalars appear also as transformations of the vector kinetic matrix. Hence, the symmetry
group is then a subgroup of the ’maximal’ group Sp(2m,R) discussed above.

However, another application is of the type that we encountered in Ex. 4.15. In that case
constants that specify the theory under consideration change under the duality transformations.
The constants that transform are sometimes called ’spurionic quantities’. The transformations
thus relate two different theories. Solutions of one theory are mapped into solutions of the
other one. This is the basic idea of dualities in M -theory.

Symplectic transformations always transform solutions of (4.70) into other solutions. How-
ever, they are not always invariances of the action. Indeed, writing

L = −1

2
Re
(
fABF

−A
µν F

µν−B) = −1

2
Im
(
F−A
µν G

µν−
A

)
we obtain
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4.1.4 Electromagnetic duality for coupled Maxwell fields

ImF ′−G′− = Im
(
F−G−)+ Im

[
2F− (CTB

)
G− + F− (CTA

)
F− +G− (DTB

)
G−] .

If C ̸= 0, B = 0 the Lagrangian is invariant up to a 4-divergence, since ImF−F− =
−1

4
εµνρσFµνFρσ and the matrices A and C are real constants. For B ̸= 0 neither the Lagrangian

nor the action is invariant.
Electromagnetic duality has important applications to black hole solutions of extended

supergravity theories. Supergravity is also very relevant to the analysis of black hole solutions
of string theory. Many black holes are dyons; they carry both magnetic and electric charges for
the gauge fields of the system. The general situation is a generalization of what was discussed

at the end of Sec. 4.2.3. The charges form a symplectic vector
(
qAm
qeA

)
which must transform

as in (4.71). The Dirac-Schwinger-Zwanziger quantization condition restricts these charges to a
lattice. Invariance of this lattice restricts the symplectic transformations of (4.71) to a discrete
subgroup Sp(2m,Z), which is analogous to the SL(2,Z) group discussed previously.

Finally, we comment that symplectic transformations with B ̸= 0 should be considered as
non-perturbative for the following reasons. A system with no magnetic charges as in classical
electromagnetism is transformed to a system with magnetic charges. The elements of fAB
may be regarded as coupling constants (see Ex. 4.15), and a system with weak coupling is
transformed to one with strong coupling. A duality transformation which mixes electric and
magnetic fields cannot be realized by transformation of the vector potential Aµ. One would
need a ’magnetic’ partner of Aµ to reexpress the F ′

µν and G′
µν in terms of potentials.

The important properties of the matrix fAB are that it is symmetric and that Re fAB define
a positive definite quadratic form in order to have positive gauge field energy. These properties
are preserved under symplectic transformations defined by (4.74).

On general formulas

The historical standard reference on dualities in field theories is [2], though they appeared
before in [13, 14, 15] and some extensions are in [16]. Duality transformations were explained
in [1, Sec. 4.2] for coupled Maxwell fields in D = 4. We want to extend these transformations
to the other parts of the action, including all other fields ϕ (bosons and fermions). Here is first
a summary of the main concepts that were in [1, Sec. 4.2]. We considered there actions S(F )
that depend on field strengths FA

µν , which are determined in terms of (abelian) vectors AAµ . We
consider actions at most quadratic in spacetime derivatives, and thus also at most quadratic in
FA
µν . Having introduced the dual and self-dual combinations in [1, (4.35− 36)]1

F̃µν = −
1

2
ieεµνρσF

ρσ, F±
µν ≡

1

2

(
Fµν ± F̃µν

)
,

the Bianchi identities and equation of motions for the vectors can be written as

∇µ ImFA+
µν = 0 Bianchi identities,

∇µ ImGµν+
A = 0 Equations of motion of AAν ,

where
G+µν
A ≡ 2ie−1 δS (F+, F−, ϕ)

δF+A
µν

, i.e. G̃µν
A = 2ie−1 δS(F, ϕ)

FA
µν

.

In the first part above, the action S(F, ϕ) = S (F+, F−, ϕ) is considered as a function of the
self-dual and anti-self-dual parts of F . In [1, Sec. 4.2] only the part of the action quadratic in
F was considered, and thus G was linear in F . Now we consider that there can also be parts
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4.1.4 Electromagnetic duality for coupled Maxwell fields

independent of F (terms in the action linear in F ) and thus (here NAB = −if̄AB in terms of
fAB in chapter 4 (as also done in ch. 21))

G+
Aµν = NAB(ϕ)F

+B
µν +H+

Aµν(ϕ) = G+
bAµν +H+

Aµν(ϕ).

Since N is by the last two equations the second derivative of the action w.r.t. F , it is a
symmetric tensor. Since the indices µ, ν should go somewhere and we do not consider higher
derivative actions, the H will in practice depend on fermion bilinears, but we just write that
they are functions of all the fields ϕ.

The dynamical equations (A.2) are then invariant under real symplectic transformations 2

δd

(
FA
µν

GAµν

)
=

(
AAB BAB

CAB DB
A

)(
FB
µν

GBµν

)
,

BAB = BBA, CAB = CBA, DB
A = −AAB.

1 We insert here factors e as in [1, (7.59)] to take into account that we can be in curved space-
time, though this is not important for the duality transformations. After the first definitions,
we will omit the factors e.

2 We write here the infinitesimal transformations, while in [1, (4.71)], A,B,C,D were used
for global transformations

Now we can consider also the field equations for the other fields, which we denote as ϕi. We
can omit the frame fields eaµ, which are inert under the duality transformations. We write

Ei ≡
δS

δϕi
,

using DeWitt notation, which means for an action that is function of fields and derivatives of
fields (and adding a total derivative)

S =

∫
d4xeL (ϕ, ∂µϕ) ,

δS

δϕi
= e

[
δL

δϕi
−∇µ

δL

δ∂µϕi

]
.

We will use the notation that a derivative w.r.t. a field is a left derivative. For bosons left
or right derivative makes no difference.

We consider transformations of these fields under the duality transformations:

δdϕ
i = ξi(ϕ),

where ξi is not dependent on Fµν . Full duality transformation can then be written as

δd = ξi
δ

δϕi
+
(
AABF

B
µν +BABGBµν

) δ

δFA
µν

,

E.g. the total transformation of the action S(F, ϕ) is

δdS =

(
ξi

δ

δϕi
+
(
F TAT +GTB

) δ

δF

)
S

= ξiEi −
1

2

(
i
(
F+TAT +G+TB

)
G+ + h.c.

)
Check this equation, and also (A.3), using properties of dual tensors explained in [1, Sec.

4.2.1 and Ex. 4.6]. From here onwards we use simplifications in the equations. We consider
matrix multiplication to write the expression in the brackets in (A.9). We omit the indices
[µν] on FA and GA and they are summed over in (A.10). We use DeWitt notation, 3 i.e.

32



4.1.4 Electromagnetic duality for coupled Maxwell fields

ξiEi contains an integral over spacetime, and derivatives w.r.t. spacetime can be treated as in
(A.7). Furthermore we will omit dependence on the frame. fields. They can be reinserted in
an obvious way such that they reinstall general coordinate transformations. It is easier to work
with self-dual combinations as in the last expression of (A.10). Some of the above relations are
then simpler written as

δ

δF+
S = −1

2
iG+,

∂G+
A

∂F+B
= NAB.

3 This simplifies many expressions in [2], where the first term would be written as∫
d4x

[
ξi δL
δϕi

+ ∂µξ
i δL
δ∂µϕi

]
It is useful to write the commutator of field derivatives with δd: (with ∂i =

δ
δϕi

and using
that ξi does not depend on FA)

δ

δF+
δd = δd

δ

δF+
+
(
AT +NB

) δ

δF+

∂iδd = δd∂i +
(
∂iξ

j
)
∂j +

(
∂iG

+TB
δ

δF+
+ h.c.

)
.

On the action we thus obtain

δ

δF+
δdS = −1

2
i
(
δdG

+ +
(
AT +NB

)
G+
)
= −1

2
i
[
CF+ +NBBG+

]
= −1

4
i
δ

δF+

[
F+TCF+ +G+TBG+

]
∂iδdS = δdEi +

(
∂iξ

j
)
Ej −

1

2

(
i
(
∂iG

+TB
)
G+ + h.c.

)
Thus we find

δdS = −1

4
i
[
F+TCF+ +G+TBG+

]
+ h.c. , δdEi = −

(
∂iξ

j
)
Ej.

For the first equation, note that this is, reinserting all notations,

δdS = −1

8

∫
d4xεµνρσ

(
FA
µνCABF

B
ρσ +GAµνD

ABGBρσ

)
,

and the first term is a total derivative. The second equation in (A.14) then implies that field
equations transform to field equations, hence preserving the dynamics.

Note that the transformation δdS is the transformation of

Snon−inv = −
1

4
iF+AG+

A + h.c. = S2(F, ϕ)−
1

4

(
iF+AH+

A + h.c.
)
,

where S2(F, ϕ) is the part of the action that is quadratic in F and can be written in various
ways:

S2(F, ϕ) = −
1

4
iF+AG+

bA + h.c. = −1

4
iF+ANABF

+B + h.c.

=
1

4

∫
d4x

[
e (ImNAB)F

A
µνF

Bµν − 1

2
εµνρσ (ImNAB)F

A
µνF

B
ρσ

]
,

where we gave also the full expression in curved space. The linear part in F is

S1(F, ϕ) = −
1

2
iF+AH+

A + h.c. ,

= −1

4

∫
d4xεµνρσFA

µνHAρσ.
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4.2 Duality by Gaillard-Zumino

This implies that one half of this S1(F, ϕ) sits in Snon−inv and the other half is in the invariant
part

Sinv =
1

2
S1(F, ϕ) + S0(ϕ),

where S0(ϕ) is the part of the action without gauge fields: Note that this is also the remaining
part when Gµν = 0, i.e. when the equations of motion of the vector fields are satisfied.

We can obtain aspects of the duality transformations more in detail. First we consider the
consistency of (A.4) with (A.5). This implies that

δdNAB(ϕ) = ξi∂iNAB =
(
C −NA− ATN −NBN

)
AB

δdH
+(ϕ) = ξi∂iH

+ = −
(
AT +NB

)
H+.

The transformation of the first term of the invariant part (A.19) under the duality is

δd
1

2
S1(F, ϕ) = −

1

4
iH+TBH+,

which is only function of the ϕi and should thus be compensated by a transformation of S0(ϕ).
The way in which a H+in agreement with the transformation in (A.20) appears, is from a

symplectic vector
(
Q+A, P+

A

)
with P+

A = NABQ
+B. Check that this is then a ’symplectic vector’,

which means that the vector transforms as
(
FA, GA

)
in (A.5. The H+from this symplectic

vector is
H+
µν =

(
NQ+ − P+

)
µν

= 2i(ImN )Q+
µν .

Then

1

2
S1(F, ϕ) = −

1

4
iF+A

(
NQ+ − P+

)
=

1

4
i
(
F+AP+

A −G
+A
b Q+

A

)
+ h.c. .

If we replace Gb by the full G, this is a symplectic invariant. Hence this determines which
parts of S0(ϕ) are separately invariant:

S0(ϕ) =
1

4
iH+

AµνQ
+Aµν + h.c. + S0, inv .

Note that by the remarks after (A.4) the first term is in practice a 4 -fermion term. The
scalar action is thus in the invariant part, which means that the scalar transformations should
be isometries. This will determine a subalgebra of the symplectic algebra that is the symmetry
of the theory. Hopefully this will be clarified with the example.

4.2 Duality by Gaillard-Zumino

(напишу потом)

4.2.1 Introduction and formalism by Gaillard, Zumino

Introduction by Gaillard, Zumino

It has long been known that the free Maxwell’s equations are invariant under a rotation of the
electric field and the magnetic field into each other. In relativistic notation this means that the
electromagnetic field strength Fµν and its dual,

F̃µν =
1

2
εµνρσF

ρσ,
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4.2.1 Introduction and formalism by Gaillard, Zumino

rotate into each other. For this reason the transformation has been called a "duality rota-
tion". It is easy to see [1, 2] that duality rotation invariance can be extended to the case when
the electromagnetic field interacts with the gravitational field, which does not transform under
duality. On the other hand, it is obvious that duality invariance is violated by electromag-
netic couplings of the minimal type. Related to this is the fact that there is no non-abelian
generalization of duality under which the pure Yang-Mills equations could be invariant [2].

Non-minimal couplings of the magnetic moment type can, however, be made duality in-
variant, and this invariance can in fact be generalized to a non-abelian group. This is the
situation [3] in extended supergravity theories without gauging. The assumption that the the-
ory is invariant under duality rotations has been used [4-6] to simplify the search for the correct
supersymmetric lagrangian. For N = 4 supergravity it was discovered [6] that the U(4) du-
ality could be extended to a larger SU(4) × SU(1, 1) non-compact duality invariance. Similar
situations occur for N > 4 supergravities; in the particular case of N = 8 supergravity, Crem-
mer and Julia [7] have shown that the theory is invariant under a non-compact E7 duality. A
non-compact duality invariance is possible only when there are scalar fields in the theory, and
is related to non-linear transformations of the scalars.

Our purpose in this paper is to clarify the structure of theories admitting both compact
and non-compact duality. Our analysis will not make explicit reference to supersymmetry,
although of course we have in mind the application to supergravity theories. In fact, we have
been strongly influenced by the work of Cremmer and Julia [7] on N = 8 supergravity, and
some of our results can be found in their paper although in a less explicit and systematic form.

The first point we wish to emphasize is that the requirement that the equations of motion
be duality invariant is not identical to the invariance of the lagrangian. This is already apparent
in the case of the free electromagnetic field, where the lagrangian is

L =
1

2

(
E2 −H2

)
and is obviously not invariant under rotations ⋆ of E into H. Nevertheless, when the equa-

tions of motion are duality invariant, the lagrangian has some special properties; in particular
it changes under a duality transformation in a specific way which will be described below.

A second point we make is that the invariance of the equations of motion under duality
rotations implies the existence of conserved currents, both for the compact and the non-compact
cases. These currents are constructed in terms of the basic fields of the theory and in terms of
a set of dual vector potentials, and are not invariant under the abelian gauge transformations
up to which these potentials are determined. However, the currents change under these gauge
transformations by the divergence of an antisymmetric tensor, and therefore the integrated
charges are gauge invariant. These charges are in fact the generators of the duality rotations.

In sect. 2 we discuss the general properties of duality transformations. We find that the most
general group which can be realized with n field strengths is the non-compact real symplectic
group Sp(2n,R), which has U(n) as its maximal compact subgroup. In the absence of scalar
fields, U(n) is the largest group of duality transformations ⋆⋆. In specific examples the actual
group of duality transformations can be smaller. For example, in N = 8 supergravity there
are 28 field strengths. The non-compact invariance is the E7(+7) subgroup of Sp(56,R), and
its maximal compact subgroup is the SU(8) subgroup of U(28). We derive the transformation
property of the lagrangian which is required for the equations of motion to be duality invariant,
and show that this property implies the existence of conserved currents and the invariance of
the energy-momentum tensor. We further exploit this property for the explicit construction of
the lagrangian, which we illustrate first by specializing to the compact case in sect. 3.

By the way, for the free Maxwell equations with n field strengths, the largest duality group
is GL(n,C), the non-compact general linear group of complex n × n matrices, which operate
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4.2.1 Introduction and formalism by Gaillard, Zumino

on the complex field strengths F + iF̃ . In the presence of interactions without scalars this
is reduced to its maximal compact subgroup U(n) which can be enlarged to Sp(2n,R) in the
presence of interacting scalars. Observe however that, even for the free Maxwell theory, the
energy-momentum tensor is only invariant under U(n).

In order to generalize to the non-compact case it is necessary to consider non-linear realiza-
tions of the symmetry group and the corresponding scalar lagrangians and currents which we
discuss in sect. 4. In sect. 5 we describe in more detail non-compact duality invariant theories.
In sect. 6 we conclude with some comments relevant to the N = 8 supergravity theory.

Lagrangian formalism in electrodynamics

We consider a lagrangian which is a function of n real field strengths F a
µv and of a certain number

of additional fields χi ≡ χi(x) (scalars or fermions) and their derivatives χiµ = ∂µχ
i ≡ ∂χi

∂xµ
:

L = L
)
F a, χi, χiµ

)
.

Note that x are coordinates, but they will appear rear, so there should not be confusions. So
from definitions we have properties:

∂µξ
j = χkµ

∂ξj

∂χk

∂χk
∂x

∂2L

∂χj∂χi
= ∂µ

∂L

∂χj
.

The field strengths are the curls of vector potentials

F a
µν ≡ ∂µA

a
ν − ∂νAa

µ,

and therefore they satisfy

∂µF̃ a
µν = 0, where F̃µν :=

1

2
εµνρσF

ρσ,

because of symmetry-antisymmetry of the terms. (??? no, I don’t know. черт, я забыл
спросить!!!)

If we define the antisymmetric tensors Ga
µν by

G̃a
µν ≡

1

2
εµνρσG

aρσ := 2
∂L

∂F aµν
.

So:
∂L

∂F aµν
≡ 1

2
G̃a
µν .

The equations of motion obtained by varying Aa
µ are

∂µG̃a
µν = 0.

because
(тут эта гениальная идея про вариацию, напишу потом!!!!!!!!)
if current is non-zero, ∂µG̃a

µν =
4π
c
jν . (??? yes??? why don’t we write this for χ fields???)
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Duality definitions

The definitions were:

F̃µν :=
1

2
εµνρσF

ρσ,

G̃a
µν ≡

1

2
εµνρσG

aρσ := 2
∂L

∂F aµν

The system of equations ∂µF̃ a
µν = 0 and ∂µG̃a

µν = 0 is invariant under linear transformations
among the F ’s and G’s. We therefore consider an infinitesimal transformation of the form

δ

(
F
G

)
=

(
A B
C D

)(
F
G

)
,

δχi = ξi(χ(x)),

where A,B,C,D are arbitrary real n × n matrices and ξi(χ) non-derivative functions of the
additional fields χi(x).

In “Duality Rotations in Nonlinear Electrodynamics and in Extended Supergravity” it is
written that “a practical convention is to define ∂Fρσ

∂Fµν
= δµρ δ

ν
σ rather than ∂Fρσ

∂Fµν
= δµρ δ

ν
σ − δνρδµσ .

This explains the factor 2 in G̃µν = 2∂L(F )
∂Fµν

. (????? what?????)
(!!! абзац про то, что от чего зависит! вообще, у нас F и G зависят друг от друга, а

также от фермионных полей!)
In general F and G are independent (an exception is the free field case, G̃ = −F ). Because

we have other field that consist in G (Gailard, Zumino wrote that).
In indices we write:

δF a = AabF b +BabGb,

δGa = CabF b +DabGb.

δF̃ a = AabF̃ b +BabG̃b,

δG̃a = CabF̃ b +DabG̃b,

We omit µν indexes, because it is obvious, where they should be.
(допишу, что вообще-то про матрицы все известно.)
We shall study the conditions under which G by the definition is invariant (????) and the

equations of motion for the χi are invariant. Notice that we do not impose the invariance of the
lagrangian itself: we shall see that the system of the equations of motion can be invariant only
if δL does not vanish. Instead the variation of L is required to have a specific form which can
be used to demonstrate the existence of a conserved current and leads to an essentially unique
construction of the vector field couplings.

(???? I’ll think more about the idea later, until I really understand what exactly we want
and why we are doing it specifically.)

List of meaning of symbols, parameters and letters for GZ methods

(later I’ll add a list of them not to get confused in a lot of letters!!!)

4.2.2 Derivations of properties of dual transformations by GZ

Variation of the lagrangian and its derivative

Итак, идея в том, что...(?? додумаю!!!)
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The variation of the lagrangian L = L
(
F a, χi, χiµ

)
under the linear transformations is

δL =

[
δχi

∂

∂χi
+ δχiµ

∂

∂χiµ
+ δF b ∂

∂F b

]
L =

=

[
ξi

∂

∂χi
+
∂δχi

∂xµ
∂

∂χiµ
+
(
F cAbc +GcBbc

) ∂

∂F b

]
L =

=

[
ξi

∂

∂χi
+
∂ξi

∂χj
∂χj

∂xµ
∂

∂χiµ
+
(
F cAbc +GcBbc

) ∂

∂F b

]
L =

=

[
ξi

∂

∂χi
+ χjµ

∂ξi

∂χj
∂

∂χiµ
+
(
F cAbc +GcBbc

) ∂

∂F b

]
L

We differentiate δL with respect to F a, remembering that here δ ≡ δ(F a), so ∂(δL)
∂Fa =

∂δ(F )
∂Fa L+ δ

(
∂L
∂Fa

)
:

∂

∂F a
δL = Aba

∂L

∂F b
+
∂Gc

∂F a
Bbc ∂L

∂F b
+ δ

∂L

∂F a
=

=
1

2
AbaG̃b +

1

2

∂Gc

∂F a
BbcG̃b +

1

2
δG̃a.

If we now require our linear transformation δG̃a = CabF̃ b +DabG̃b, we obtain

2
∂δL

∂F a
=CabF̃ b +

(
Dab + Aba

)
G̃b +

∂Gc

∂F a
BbcG̃b =

=
1

2
CabF̃ b +

1

2

∂Gc

∂F a
BbcG̃b +

(
Dab + Aba

)
· 2 ∂L

∂F aµν
+
1

2
CabF̃ b +

1

2

∂Gc

∂F a
BbcG̃b =

=
1

2
CabF̃ b+

1

2
CbaF̃ b +

1

2

∂Gc

∂F a
BbcG̃b+

1

2

∂Gc

∂F a
BbcG̃b + 2

(
Dab + Aba

) ∂L

∂F aµν
+

+

[
1

2
CabF̃ b−1

2
CbaF̃ b +

1

2

∂Gc

∂F a
BbcG̃b−1

2

∂Gc

∂F a
BbcG̃b

]
=

=
1

2

∂(FCF̃ )

∂F a
+

1

2

∂(GBTG̃)

∂F a
+2
(
Dab+Aba

) ∂L

∂F aµν
+
1

2

[(
Cab−Cba

)
F̃ b+

∂Gc

∂F a

(
Bbc−Bcb

)
G̃b

]
=

=
1

2

∂

∂F a

(
FCF̃ +GBTG̃

)
+2
(
Dab+Aba

) ∂L
∂F b

+
1

2

[(
Cab−Cba

)
F̃ b +

∂Gc

∂F a

(
Bbc −Bcb

)
G̃b

]
.

Here, as discussed before, (???? напишу это!!!) “grey” terms vanish because this expression
should be a derivative with respect to F a, and we have used the property

∂F̃ a
µν

∂F bρσ
≡ 1

2

∂εµνλθF
aλθ

∂F bρσ
=

1

2
εµνλθδλρδθσδ

b
a =

1

2
εµνρσδ

b
a =

1

2
ερσµνδ

b
a,

∂(FCF̃ )

∂F a
≡ ∂(F iCibF̃ b)

∂F a
= δai C

ibF̃ b+F iCib ∂F̃
b

∂F a
= CabF̃ b+F iµνCib ερσµν

2
δba ≡

≡ CabF̃ b+F̃ iCia = CabF̃ b+ CbaF̃ b,

∂(GBT G̃)

∂F a
≡ ∂(GcBbcG̃b)

∂F a
=
∂Gc

∂F a
BbcG̃b +GcBbc ∂G̃

b

∂F a
=
∂Gc

∂F a
BbcG̃b +GbBcb ∂G̃

c

∂F a
≡

≡ ∂Gc

∂F a
BbcG̃b +

∂G̃c

∂F a
BcbGb.

In general F̃ and G̃ are independent (an exception is the free field case, G̃ = −F ), so to vanish
the “grey” terms we must impose the conditions below on the infinitesimal transformation
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matrices:
C = CT,

B = BT,

Dab + Aba = εδab.

Now we have
∂

∂F a
δL =

∂

∂F a

(
1

4
FCF̃ +

1

4
GBG̃+ εL

)
.

Equation of motion

Next we study the equations of motion for χi using the properties of matrices in the linear
transformation. We define

Ei :=
∂L

∂χi
− ∂µ

∂L

∂χiµ
,

so that the equations of motion are
Ei = 0.

The covariance of these equations under the linear dual transformation requires

δEi = −
∂ξj

∂χi
Ej

since δF + δχ + δχk
= 0.

Euler-Lagrange operator applies to δL as showed below. But first let us note that

(∂µF
c)

∂

∂F b

∂L

∂χiµ
= (∂µF

c)
∂G̃

∂χiµ
= (∂µF̃

c)
∂G

∂χiµ
≡ 0 (∂µF̃

c = 0)

(∂µG
b)

∂2L

∂F b∂χiµ
= (∂µG̃

b)
∂G

∂χiµ
= 0 (∂µG̃

c = 0)

∂2ξλ

∂χiχj
≡ 0,

∂µχ
i
ρ ≡ 0

∂µχ
j
ρ ≡ 0,

since we are working with partial derivatives. Also note that below i is a free index.
(ниже все еще индексы нужно расставить, ну и еще раз пересмотрю это.)
We have:(
∂

∂χi
− ∂µ

∂

∂χiµ

)
δL ≡

(
∂

∂χi
− ∂µ

∂

∂χiµ

)[
ξj

∂

∂χj
+ χjµ

∂ξλ

∂χj
∂

∂χλµ
+
(
F cAbc +GcBbc

) ∂

∂F b

]
L =(

act with only
∂

∂χi
and

∂

∂χiµ

)
=
∂ξj

∂χi
∂L

∂χj
+ξi

∂2L

∂χi∂χj
+χjµ

∂2ξλ

∂χj∂χi
∂L

∂χλµ
+χjµ

∂ξλ

∂χj
∂2L

∂χi∂χλµ
+
∂Gc

∂χi
Bbc ∂L

∂F b
+
(
F cAbc+GcBbc

) ∂2L

∂F b∂χi
−

− ∂µ
[
ξj

∂2L

∂χj∂χiµ
+
∂ξλ

∂χi
∂L

∂χλµ
+ χjρ

∂ξλ

∂χj
∂2L

∂χλρ∂χ
i
µ

+ F cAbc
∂

∂F b

∂L

∂χiµ
+
∂Gb

∂χiµ
Bbc ∂L

∂F b
+GbBbc ∂2L

∂F b∂χiµ

]
=

(colorise some terms and act with ∂µ on terms in the bracket)
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=
∂ξj

∂χi
∂L

∂χj
+ξi

∂2L

∂χi∂χj
+χjµ

∂2ξλ

∂χj∂χi
∂L

∂χλµ
+χjµ

∂ξλ

∂χj
∂2L

∂χi∂χλµ
+
∂Gc

∂χi
Bbc ∂L

∂F b
+
(
F cAbc+GcBbc

) ∂2L

∂F b∂χi
−

−χkµ
∂ξj

∂χk
∂2L

∂χj∂χµ
−ξj∂µ

∂2L

∂χj∂χiµ
−χjρ

∂ξλ

∂χj
∂µ

∂2L

∂χλρ∂χ
i
µ

−(∂µχiρ)
∂ξλ

∂χ

∂2L

∂χiχ
− χiρ

(
∂µ
∂ξλ

∂χ

)
∂2L

∂χiχ

−(∂µF c)Abc
∂

∂F b

∂L

∂χiµ
−F cAbc

∂

∂F b
∂µ

∂L

∂χiµ
−∂µ

(
∂Gb

∂χiµ
Bbc ∂L

∂F b

)
−∂µ

(
GbBbc ∂2L

∂F b∂χiµ

)
=

(collect colorized terms)

=
∂ξj

∂χi
∂L

∂χj
− χkµ

∂ξj

∂χk
∂2L

∂χj∂χiµ
+ξi

∂2L

∂χi∂χj
− ξj∂µ

∂2L

∂χj∂χiµ
+χjµ

∂ξλ

∂χj
∂2L

∂χi∂χλµ
−χjρ

∂ξλ

∂χj
∂µ

∂2L

∂χλρ∂χ
i
µ

+

+
(
F cAbc+GcBbc

) ∂2L

∂F b∂χi
− F cAbc

∂

∂F b
∂µ

∂L

∂χiµ
− ∂µ

(
GbBbc ∂2L

∂F b∂χiµ

)
+

+
∂Gc

∂χi
Bbc ∂L

∂F b
−∂µ

(
∂Gb

∂χiµ
Bbc ∂L

∂F b

)
=(

simplify terms by ∂µξj = χkµ
∂ξj

∂χk
,

∂χk
∂x

∂2L

∂χj∂χi
= ∂µ

∂L

∂χj

)
=
∂ξj

∂χi
∂L

∂χj
− ∂ξi

∂χj
∂µ

∂L

∂χµ
+ξi

∂

∂χi

(
∂L

∂χj
− ∂µ

∂L

∂χjµ

)
+χjµ

∂2ξλ

∂χj∂χi
∂L

∂χλµ
− χjρ

∂ξλ

∂χj
∂µ

∂2L

∂χλρ∂χ
i
µ

+

+
(
F cAbc+GcBbc

) ∂2L

∂F b∂χi
− F cAbc

∂

∂F b
∂µ

∂L

∂χiµ
−GbBbc ∂

∂F b
∂µ
∂2L

∂χiµ
−

−(∂µGb)Bbc ∂2L

∂F b∂χiµ
+
∂Gc

∂χi
Bbc ∂L

∂F b
− ∂µ

(
∂Gb

∂χiµ
Bbc ∂L

∂F b

)
=

(rewrite terms in form of action to equation of motion)

=
∂ξj

∂χi

(
∂L

∂χj
− ∂µ

∂L

∂χµ

)
+ξi

∂

∂χi

(
∂L

∂χj
− ∂µ

∂L

∂χjµ

)
+ξjµ

∂

∂χjµ

(
∂L

∂χj
− ∂µ

∂L

∂χµ

)
+

+
(
F cAbc+GcBbc

) ∂

∂F b

(
∂L

∂χi
− ∂µ

∂L

∂χiµ

)
+
∂Gc

∂χi
Bbc ∂L

∂F b
− ∂µ

(
∂Gb

∂χiµ
Bbc ∂L

∂F b

)
(collect purple, pink and navy terms into a big navy term, insert Ei)

=
∂ξj

∂χi
Ej+

[
ξi

∂

∂χi
+
∂δχi

∂x

∂

∂χiµ
+
(
F cAbc +GcBbc

) ∂

∂F b

]
Ei+

∂Gc

∂χi
Bbc ∂L

∂F b
− ∂µ

(
∂Gc

∂χiµ
Bbc ∂L

∂F b

)
=

=
∂ξj

∂χi
Ej+δEi+

∂Gc

∂χi
Bbc ∂L

∂F b
− ∂µ

(
∂Gc

∂χiµ
Bbc ∂L

∂F b

)
.

We have proven that(
∂

∂χi
− ∂µ

∂

∂χiµ

)
δL =

∂ξj

∂χi
Ej + δEi +

∂Gc

∂χi
Bbc ∂L

∂F b
− ∂µ

(
∂Gc

∂χiµ
Bbc ∂L

∂F b

)
.

Also we know that δEi = − ∂ξj

∂χiEj and B = BT, ∂L
∂Faµν ≡

G̃a
µν

2
, so we have(

∂

∂χi
− ∂µ

∂

∂χiµ

)
δL =

1

2

∂Gc

∂χi
BbcG̃b − 1

2
∂µ

(
∂Gc

∂χiµ
BbcG̃b

)
=

=
1

4

∂(GBG̃)

∂χi
− 1

4
∂µ
∂(GBG̃)

∂χi
=

=
1

4

(
∂

∂χi
− ∂µ

∂

∂χiµ

)
(GBG̃)
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so (
∂

∂χi
− ∂µ

∂

∂χiµ

)(
δL− 1

4
GBG̃

)
= 0

We see that this equation is consistent with ∂
∂Fa δL = ∂

∂Fa

(
1
4
FCF̃ + 1

4
GBG̃+ εL

)
only if

ε = 0 ⇐⇒ D = −AT

(???? no, I am not sure why it is so). We have obtained the transformation property:

δL =
1

4
(FCF̃ +GBG̃).

We learned that dual transformations

δ

(
F
G

)
=

(
A B
C D

)(
F
G

)
,

C = CT, B = BT, D = −AT.

is a transformation of Sp(2n,R), the real non-compact form of Sp(2n) in a real basis for the
2n-dimensional representation.

Given two vectors F,G and H, I which transform by the same duality matrix, one can
construct an invariant (??? don’t fully see, why, maybe it is in the appendix)(

H I
)(0 −1

1 0

)(
F
G

)
= IF −HG.

This property that will prove useful in the construction of the lagrangian. In specific exam-
ples the group of duality transformations leaving invariant the equations of motion may be a
subgroup of Sp(2n,R).

(??? why they are not always a subgroup???)

Same derivations on example (!!????)

(давно хотел это же проделать, но на конкретном лагранжиане!!! вот и сделаю - и будет
понятно, правильная логика моя была или нет.)

Идея для доказательства свойств дуальности (мб как Проен сказал, идея в том,
мы просто обобщая темы, знаем, что доказать хотим, это и получаем. додумаю и напишу)

4.2.3 The conserved current

Derivation of the current

(! I’ll rewrite it and start with the idea, how we will get it!!!)
In order to construct a conserved current we extract the variation of L due to the variation

of the χ’s alone:

δχL := δχi
∂L

∂χi
+ δχiµ

∂L

∂χiµ
≡ δL− δFL

where

δFL := δF a ∂L

∂F a
= (AabF b +BabGb)

1

2
G̃a =

1

2

(
F b(AT)baG̃a +Gb(BT)baG̃a

)
=

1

2

(
FATG̃+GBG̃

)
,

δL =
1

4
(FCF̃ +GBG̃),
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4.2.3 The conserved current

which was obtained before. We have

δχL =
1

4
FCF̃ +

1

4
GBG̃+

1

2
FDG̃− 1

2
GBG̃ =

1

4
(F̃CF − G̃BG) + 1

2
F̃DG =

=
1

4

(
F̃CF − G̃BG+ F̃DG+ F̃DG

)
=

1

4

(
F̃CF − G̃BG+ F̃DG− G̃AF

)
,

because of general property F̃BG = GBT F̃ .
From basic electrodynamics we know that equations of motion ∂µG̃a

µν = 0 imply that we
can introduce a vector potential Bµ of which Gµν is the curl: Ga

µν = ∂µB
a
ν − ∂νBaµ.

If we consider transformations δϕi(x) ≡ ϵA∆Aϕ
i(x), we can obtain the current as

JµA := − δL

δ∂µϕi
∆Aϕ

i +Kµ
A.

We need to find Kµ
A, such that by definition δL = ϵA∂µK

µ
A. We will consider only transforma-

tions of the scalar fields χi, so ϵA = 1, δϕi(x) ≡ δχ = ξi. We can check that if we define

K̂µ :=
1

2

(
G̃µνAAν − F̃ µνCAν + G̃µνBBν − F̃ µνDBν

)
,

than it has divergence
∂µK̂

µ = −δχL,
so we need exactly Kµ = −K̂µ for the term in the formula for the current. Indeed, the
divergence has four parts:

2∂µK
µ
A := ∂µ(G̃

µνAAν) = ∂µ(G̃
µν)AAν + G̃µνA∂µ(Aν) = 0 +

1

2
G̃µνAFµν

(!!! допишу нужные слова про этот переход, что у нас G тут есть антисимм, из-за нее так
заменяем!!!)

Basically we showed that if we have some arbitraty electronagnetic tensors Pµν with ∂µP̃ µν =
1, arbitrary matrix M and Rµν := ∂µRν − ∂νRµ, then

∂µ(P̃
µνMRν) =

1

2
P̃µνMRµν ≡ 1

2
P̃MR.

So we see how the divergence of different parts of K̂ looks like. We see that

∂µK
µ
A =

1

2

(
1

2
G̃AF − 1

2
F̃CF +

1

2
G̃BG− 1

2
F̃DG

)
≡ −δχL.

The current off-shell is not a total derivative, because Gµν is a curl only in virtue of the
equations of motion ∂µG̃a

µν = 0.
Now, by the usual Noether argument, the equations of Ei ≡ ∂L

∂χi − ∂µ ∂L
∂χi

µ
= 0 for χi imply

that
δχL ≡ δχ

∂L

∂χ
+ δχµ

∂L

∂χiµ
= δχ∂µ

∂L

∂χiµ
+ ∂µ(δχ)

∂L

∂χµ
= ∂µ

(
ξi
∂L

∂χiµ

)
,

so backwards
∂µ

(
ξi
∂L

∂χiµ

)
= δχL.

Therefore, the current

−Jµ := +ξi
∂L

∂χiµ
− K̂µ = +ξi

∂L

∂χiµ
+Kµ

is conserved:
∂µJ

µ = −(δχL− δχL) = 0.

So, indeed we’ve obtained the current for the duality transformations:

Jµ = −ξi ∂L
∂χiµ

+
1

2

(
G̃µνAAν − F̃ µνCAν + G̃µνBBν − F̃ µνDBν

)
.
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4.2.4 Invariance of the energy-momentum tensor

Current is not gauge invariant

The current is not invariant under the gauge transformations

Aa
µ → Aa

µ + ∂µα
a, Baµ → Baµ + ∂µβ

a,

which leave invariant F a
µν := ∂µA

a
ν − ∂νA

a
µ, and Ga

µν := ∂µB
a
ν − ∂νB

a
µ. It changes by the

divergence of an antisymmetric tensor

Jµ → Jµ +
1

2
∂ν

(
G̃µνAα− F̃ µνCα+ G̃µνBβ − F̃ µνDβ

)
.

Therefore the corresponding charge
∫
J0 d3x is gauge invariant and is actually the generator

of the duality rotations, as one can see by constructing the potentials Aµ and Bµ in a special
gauge.

A conserved current of this kind does not preclude [8, 9] the existence of massless spin-one
states which couple to the charge operator, as we shall discuss in more detail in sect. 6.

(??? here is discussion of a charge from this current. Don’t know an answer yet !?!?!?)

4.2.4 Invariance of the energy-momentum tensor

Theory

The energy-momentum tensor is obtained by

T µν :=
∂L

∂ (∂µϕα)
∂νϕα − δµνL,

(???? no, forgot the idea)
we will modify it a little (??? why do we need it???) and consider another energy-momentum

tensor:

θµλ : = −T µλ + ψµλ = ψµλ : ∂µψ
µ
λ = 0; ψµλ := G̃aµνF a

νλ.

= −χiλ
∂L

∂χiµ
+ δµλL+ G̃aµνF a

νλ;

only because of this property we can add ψµλ.
Indeed

∂µψ
µ
λ = ∂µ(G̃

aµνF a
νλ) = ∂µ(G̃

aµν)F a
νλ + G̃aµν∂µ(F

a
νλ) = 0 +Gaµν∂µ(F̃

a
νλ) = 0,

because of the equations of motion ∂µF̃ a
µν = 0 and ∂µG̃a

µν = 0 (???? no, I don’t understand
this!!!!).

The energy-momentum tensor is conserved as a consequence of the equations of motion
(2.3), (2.5) and (2.15):

∂µθ
µ
λ = 0

We will show that δL = 1
4
(FCF̃ + GBG̃) implies also that θµλ is invariant under duality

rotations. We must evaluate

δθµλ = −δ
(
∂L

∂χiµ

)
χiλ −

∂L

∂χiµ
δχiλ + δµλδL+ δG̃µνFνλ + G̃µνδFνλ

Now, from (2.7),

δ
∂L

∂χiµ
=

∂

∂χiµ
δL− ∂ξj

∂χi
∂L

∂χjµ
− 1

2

∂Gρν

∂χiµ
BG̃ρν .
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4.2.5 Construction of the lagrangian

Therefore

δ
∂L

∂χiµ
χiλ +

∂L

∂χiµ
δχiλ = χiλ

∂

∂χiµ

(
δL− 1

4
GBG̃

)
In order to evaluate the other terms of (2.35) we take δF from (2.6a) and δG̃ from (2.6a)

or (2.9). Using also (2.19), we obtain

δG̃µνFνλ + G̃µνδFνλ = F̃ µνCFνλ + G̃µνBGνλ.

This expression can be simplified if one remembers that, for any two antisymmetric tensors
F1µν and F2µν ,

F̃ µν
l′ F2νλ + F̃ µν

2 F1νλ = −
1

2
δµλF̃

ρσ
1 F2ρσ.

Since the matrices C and B are symmetric we can use (2.39) in (2.38). Combining the result
with (2.37) we obtain finally

δθµλ =

(
−χiλ

∂

∂χiµ
+ δµλ

)(
δL− 1

4
F̃CF − 1

4
G̃BG

)
since the field F does not depend on χµ. This equation shows that our basic relation (2.20)

implies

δθµλ = 0.

The invariance of the symmetric energy-momentum tensor will be shown in appendix B.
Since the hamiltonian and the equations of motion are invariant under duality rotations, it
follows that the S-matrix is also invariant.

Идея для вывода тока и ТЭИ (тут суть того, что дальше будем делать. это же
во многих предложениях перед формулами.)

4.2.5 Construction of the lagrangian

(это не актуально, пока не смотрю)

Theory

We start by noting the identity

δL =
1

4
δ(FG̃),

which follows from the comparison of the transformation (2.6a) subject to the constraints
(2.11) and (2.19), with the property (2.20). As a consequence of (2.42) the lagrangian can be
written in the form

L =
1

4
FG̃+ Linv .

Under the most general group of duality transformations, namely Sp(2n,R), the only ⋆ in-
variant which can be constructed from vectors in the fundamental 2n-dimensional representation
is an antisymmetric bilinear. If we introduce two antisymmetric Lorentz-tensor functions of
the fields χi, (Hµν(χ), Iµν(χ)), which transform under (2.6) like (Fµν , Gµν), then the lagrangian
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4.2.6 Compact duality rotations

L =
1

4
FG̃+

1

4
(FI −GH) + Linv (χ)

where Linv(χ) is an invariant function of the χ (and their derivatives), has the property that
the equations of motion are invariant. The definition (2.4) of G̃,

∂L

∂F
=

1

2
G̃ =

1

4
G̃+

1

4
F
∂G̃

∂F
+

1

4
I +

1

4

∂G̃

∂F
H̃

where we have used F1F2 = −F̃1F̃2, gives a differential equation for G̃:

G̃− I = (F + H̃)
∂G̃

∂F

At this point it is convenient to introduce the operator j which changes an antisymmetric
tensor into its dual

jTµν = T̃µν , (j)2 = −1

and to rewrite (2.46) in the form

jG− I = (F + jH)
∂jG

∂F

If the true invariance group is a subgroup of Sp(2n,R), other invariants may exist.
The similarity of the operator j with the usual imaginary unit i has been noted and used

before [1, 7]. The general solution of (2.48) is

jG− I = −K(χ)(F + jH)

where K(χ) is a priori an arbitrary n × n symmetric matrix function of the χ and can
contain j. To verify that (2.49) is a solution of (2.48), observe that the definition (2.4) implies
that

∂G̃a
µν

∂F b
ρσ

=
∂G̃b

ρσ

∂F a
µν

The transformation law of K under (2.6) is determined by those of (F,G) and (H, I).
Varying both sides of (2.49) one finds

δK(x) = −jC − jKBK +DK −KA

where the matrices A,B,C,D satisfy (2.11) and (2.19). In addition, it is clear that the form
of the kinetic energy term for the vector fields requires

K(χ) = 1 + f(χ)

with f(0) = 0. As we shall see in sect. 5, these properties permit the determination of the
matrix K as a function of the fields χ. Substituting (2.49) in (2.44) we find the lagrangian

L = −1

4
FKF +

1

2
F (I − jKH) +

1

4
jH(I − jKH) + Linv(χ).

4.2.6 Compact duality rotations

(это не актуально, пока не смотрю)
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4.2.6 Compact duality rotations

Theory

As an example, let us consider the case where f(χ) = 0 in (2.52), i.e. K(χ) = 1 in (2.49).
Then, since δK = 0, the transformation law (2.51) restricts the matrices further:

B = −C = BT, A = D = −AT.

The subgroup of Sp(2n,R) determined by (3.1) is just its maximal compact subgroup U(n).
This becomes obvious if one writes (2.6a) in the complex basis given by the combinations
F ± iG. One finds

δ

(
F + iG
F − iG

)
=

(
T 0
0 T ∗

)(
F + iG
F − iG

)
where

T = A− iB = −T †

is an antihermitian n × n matrix. Whether or not the invariance group is actually U(n)
or some (compact) subgroup thereof, one sees that the tensors F + iG and F − iG transform
according to an n-dimensional representation (which may be reducible) and to its conjugate.

The complex basis defined in (3.2) allows a simple physical interpretation: spin-one states
of opposite helicity transform according to conjugate representations of the duality group, just
as massless fermions do under chiral transformations. However, the equations become more
concise and are more easily generalized to the non-compact case if we choose a similar basis
with i→ j, where j is the operator defined in eqs. (2.47), i.e.

F ± iG→ F ± jG
ReT ± i ImT → ReT ± j ImT

in eq. (3.2). Then if we introduce antisymmetric tensor functions of χ,

jH± ≡ (H ± jI) = ±j(I ∓ jH)

transforming like F ± jG, the lagrangian (2.53) with K = 1 becomes

L = −1

4
F 2 +

1

2
FH+ −

1

8
H2

+ −
1

8
H+H− + Linv(χ).

Clearly, without loss of generality, we may set H− = 0: since this field does not couple to
F , its couplings must be themselves invariant (and indeed H+H−is an invariant) and can be
absorbed in Linv (χ). Then (H, I) reduces to (H,−jH), and we see that the correct transforma-
tion properties for L are obtained in the compact case by introducing a tensor H = 1

2
jH+which

transforms according to the same j-complex representation of the unitary group as does the
field F + jG. In practice H is constructed from fermion fields ψ, e.g.

Ha
µν = Ca

ijψ̄
iσµνψ

j

and the transformation (2.6b) is chiral. Finally we remark that by setting H− = 0 we can
rewrite the invariant

FI −GH =
1

2

(
F 2 +G2

)
=

1

2
(F − iG)(F + iG),

which is manifestly invariant under linear unitary transformations among F and G. The
models of ref. [3] are examples of the developments of this subsection.
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4.2.7 Non-linear realizations

In order to generalize the above construction to the case of non-compact duality transforma-
tions without introducing ghosts, we must add scalar fields in the way recalled in the following
section.

4.2.7 Non-linear realizations

(это не актуально, пока не смотрю)

Theory

In this section we recall the well-known description of non-linear models for scalars valued in
the quotient space of a group by a subgroup [10,11]. Although the formalism is very general,
and can be applied to a compact group as well, we have in mind the special case when the
semisimple group G is non-compact but the subgroup K is its maximal compact subgroup. As
pointed out in refs. [12-14], this case leads to a non-linear scalar lagrangian without ghosts.

The scalars can be described by a group element g(x) ∈ G (in some representation) and are
therefore at first as many as the parameters of G. However, we consider as equivalent all group
elements which differ by multiplication (on the right) by an element of K . This reduces the
scalars to as many as the parameters of the quotient space (coset space). To implement the
equivalence we require the lagrangian to be invariant under a gauge transformation which we
choose to write as

g(x)→ g(x)[k(x)]−1

We require it also to be invariant under the rigid transformation

g(x)→ g0g(x)

with g0 ∈ G.
In order to construct the lagrangian, we introduce a gauge field Qµ which belongs to the

Lie algebra of H and which transforms as

Qµ → kQµk
−1 − ∂µkk−1

under the gauge transformation (4.1). With it one can construct a covariant derivative

Dµg = ∂µg − gQµ

which transforms as

Dµg → (Dµg) [k(x)]
−1

so that

g−1Dµg → kg−1Dµgk
−1

Under (4.2), g−1Dµg is invariant. Therefore the lagrangian

L = −1

2
Tr
(
g−1Dµg

)2
is invariant under both (4.1) and (4.2). Here Tr can be defined as the trace in some repre-

sentation, suitably normalized. The field Qµ enters the lagrangian without derivatives. If one
varies Qµ keeping g fixed, one obtains the equation of motion

δL = Tr δQµ

(
g−1∂µg −Qµ

)
= 0
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4.2.7 Non-linear realizations

Since δQµ, like Qµ, is in the Lie algebra of K , this means that Pµ ≡ g−1∂µg −Qµ is in the
orthogonal complement. The element g−1∂µg of the Lie algebra of G is decomposed as

g−1∂µg = Qµ + Pµ

and Qµ is its part in the Lie algebra of K . This equation can be thought of as giving Qµ

and Pµ in terms of g and its derivatives. One can rewrite (4.9) as

Pµ = g−1Dµg

and give (4.7) the form

L = −1

2
TrP 2

µ

Substitution into (4.7) of Qµ expressed in terms of g from (4.9) gives a lagrangian which
depends only on g and its derivatives. Clearly it is given by (4.11) in which Pµ is expressed in
terms of g from (4.9).

To obtain the equations of motion for the scalar fields one must vary g in the lagrangian
keeping Qµ fixed. With a little algebra and up to a total derivative one finds

δL = Tr δgg−1∂µ
(
Dµgg

−1
)
= 0

Now, δgg−1 is an arbitrary element of the Lie algebra of G; therefore, one has the equations
of motion

∂µ
(
Dµgg

−1
)
= 0

or

∂µ
(
gPµg

−1
)
= 0

These equations can also be written as

DµPµ ≡ ∂µPµ − [Pµ, Qµ] = 0

One could have obtained these equations of motion also by varying g in the lagrangian
(4.11) where Qµ no longer appears as an independent field.

Our lagrangian is invariant under (4.1) and (4.2). In particular it is invariant under the
rigid transformation

g → gk−1,

with k independent of x. According to a general argument due to Emmy Noether, the current
corresponding to (4.16) vanishes identically as a consequence of the gauge invariance (4.1). The
current corresponding to (4.2) does not vanish, however, and the current corresponding to the
subtransformation

g → kg

is the same as that for

g → kgk−1.

According to the Noether prescription, we construct the currents by replacing in the la-
grangian the derivatives of the scalar fields by the variation of the same fields under the corre-
sponding transformations. This amounts to varying the lagrangian (4.11),
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4.2.7 Non-linear realizations

δL = −TrPµδPµ

and replacing δPµ by δP (and δQµ by δQ when it appears in the lagrangian, as below)
defined from

g−1δg = δQ+ δP

with the same decomposition of the Lie algebra. So the current is

Jµ = −TrPµδP

where δ is the infinitesimal transformation in question. This equation can also be written

Jµ = −TrPµ(δQ+ δP )

= −TrPµg
−1δg

since the term we have added vanishes by orthogonality. For (4.2) let

δg = (q + p)g

where q and p are infinitesimals in the Lie algebra of K and perpendicular to it, respectively.
We find

Jµ = −Tr gPµg
−1(q + p)

So the current of (4.2) is given by the operator

Jµ = −gPµg−1

which is in the Lie algebra of G. Its part in the Lie algebra of K gives the current of (4.17)
and also of (4.18). The equations of motion, in the form (4.14), state just the conservation of
the current in agreement with Noether’s theorem. We can also check directly that the current
of (4.16) vanishes identically. Indeed we must now use (4.20) and (4.21) with

δg = −gq

This gives

δQ = −q, δP = 0.

Coupling to other fields, which we denote by ψ, can be introduced as follows. Let ψ be
invariant under (4.2) and let it belong to some unitary representation ofH so that it transforms
under (4.1) as

ψ(x)→ k(x)ψ(x).

It is easy to construct lagrangians invariant under (4.1), (4.28) by means of the covariant
derivative

Dµψ = ∂µψ +Qµψ

where k(x) and Qµ are matrices in the appropriate representation. For instance, the kinetic
term of the Dirac lagrangian would be

−1

2
iψ̄γµ

(
D⃗µ −

←−
Dµ

)
ψ
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4.2.7 Non-linear realizations

One can also have derivative coupling interaction terms such as

ψ̄1γ
µPµψ2

where Pµ is now a matrix in the appropriate representation of the Lie algebra of K .
In presence of other fields, the derivatives of the scalars enter also in terms like (4.30)

and (4.31) through Qµ and Pµ. Therefore, the current receives additional contributions. For
instance (4.30), which contains

−iψ̄γµQµψ

gives, from (4.20) and (4.23),

J ′
µ = −iψ̄γµδQψ = −iψ̄γµqψ + · · ·

where the dots represent terms of higher order in the scalar fields. Similarly, (4.31) gives

J ′′
µ = ψ̄1γµPψ2 + · · ·

We have assumed that the fields ψ are invariant under (4.2) because the group G is non-
compact: if we had attributed them to a linear representation of G we would have obtained a
lagrangian with ghosts.

The gauge field Qµ in (4.29) can be taken as given by (4.9), a function of the scalar fields
and their derivatives. On the other hand, Qµ could be introduced as an independent field both
in the scalar lagrangian and in the lagrangian of the other fields ψ. The field Qµ can still be
determined from its own equation of motion but it has now additional terms which are functions
of the fields ψ.

It is often convenient to use the gauge equivalence (4.1) to choose a special gauge. For
instance, one can always transform any group element g by (4.1) to the form

g· = ep = gk−1,

where P is an element of the Lie algebra of G perpendicular to those in the Lie algebra of
K . The scalars are now described by P (x), the coset space G/K is parametrized by P and g∗
represents the equivalence class. A transformation (4.2) is now represented by

(g0g)
· =
(
g0e

P
)·
= eP

′
= g0e

Pk−1,

where P ′ (g0, P ) and k (g0, P ) are functions of the variables indicated and are determined
by the group structure. The transformation

P → P ′ (g0, P )

is a non-linear realization of (4.2). Correspondingly one must transform the other fields as

ψ → k (g0, P )ψ

in order to maintain the special gauge. Similarly Qµ transforms as in (4.3), but with the
above k (g0, P ). Clearly the lagrangian is invariant under the non-linear transformations (4.37)
and (4.38), while the gauge invariance (4.1) is no longer apparent; it has been used to establish
and maintain the special gauge.

50



4.2.8 Non-compact duality transformations

4.2.8 Non-compact duality transformations

Theory

In sect. 2 we derived general formulae in terms of the vector field strength F and the remaining,
unspecified fields χ. Here we wish to study in more detail the case of non-compact groups,
requiring the introducing of scalar fields which are valued in the coset space G/K as described
in sect. 4. We saw that the most general non-compact group of dual rotations for n vectors is
G = Sp(2n,R) with K = U(n) as its maximal compact subgroup. In this case the scalar fields
can be represented by an Sp(2n,R) matrix which is most easily expressed in the complex basis
used in eq. (3.2) (see appendix A) as

g =

(
ϕ0 ϕ

∗
1

ϕ1 ϕ
∗
0

)
where ϕ0 and ϕ1 are complex n× n matrices which satisfy the constraint

ϕ†
0ϕ0 − ϕ†

1ϕ1 = 1

The transformation law of the scalar fields under Sp(2n,R) is

δg =

(
T V ∗

V T ∗

)
g

where

T = −T † =M − iN,
V = V T = R− iS,

and the real matrices M,N,R, S are related to those of eq. (2.6a) by

A =M +R, B = S +N, C = S −N, D =M −R.
Then eq. (2.51) for the transformation law of the matrix K can be written in the form

δK = [M,K]− {R,K} − jK(S +N)K − j(S −N)

It is easy to verify that this equation is solved by

K =
(
ϕ†
0 + ϕ†

1

)−1 (
ϕ†
0 − ϕ

†
1

)
where complex numbers are to be interpreted as having i replaced by the operator j defined

in eq. (2.47), so that, for instance

ϕi = Reϕi + j Imϕi

This trick [1, 7] allows one to write the equations for K in a very compact form.
Next we introduce couplings to fermions fields ψ in a way which is a straightforward gener-

alization of the compact case. As discussed in sect. 4, ψ belongs to some representation of the
compact gauge group K . We form an antisymmetric Lorentz tensor H0

µν(ψ) which transforms
under the gauge group K in the same way as F + iG (or, in terms of the transformation
matrices defined with i→ j, F + jG) transforms under the subgroup of the rigid non-compact
symmetry which is isomorphic to K . Then the tensors H and I entering eq. (2.44) may,
without loss of generality, be constructed as:(

H + jI
H − jI

)
= g

(
jH0(ψ)

0

)
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4.2.8 Non-compact duality transformations

H and I are invariant under the gauge transformation of K . We could, of course, replace the
zero in (5.8) by a tensor H ′ which transforms according to the representation of K conjugate
to that of H0. However, as in the compact case described in sect. 3, H ′ does not couple to F
so that its couplings to the remaining fields must be themselves invariant and can be absorbed
in Linv(χ). We have verified explicitly this invariance. Eq. (5.8) gives two equations for H and
I in terms of the scalar and fermion fields:

I − jKH =
(
ϕ†
0 + ϕ†

1

)−1

H0(ψ)

I − jK∗H = 0

Once one has specified H0(ψ) and Linv(ψ, ϕ), the lagrangian is uniquely constructed as given
by eqs. (2.53), (5.6) and (5.9). The compact case of sect. 3 is recovered by setting ϕ0 = 1 and
ϕ1 = 0.

We would like to observe that the solution (2.49) of the differential equation (2.48) must be
invariant under Sp(2n,R) transformations. Since H and I transform, respectively, in the same
way as F and G, an invariant linear relation among them can be obtained by writing

g−1

[(
F + jG
F − jG

)
+ λj

(
H + jI
H − jI

)]
=

(
0
· · ·

)
where

g−1 =

(
ϕ†
0 −ϕ

†
1

−ϕT
1 ϕT

0

)
is the inverse of (5.1). The coefficient λ can be determined by considering the limit K →

1, ϕ0 → 1, ϕ1 → 0, which gives λ = 1. Then one finds that in the general case, the relation
given by the upper component of (5.10) is identical with (2.49) when K is given by eq. (5.6).
In fact, this is how the expression for K was found. K is invariant under gauge transformations
of the local U(n) which operates on the matrix g from the right. It can also be expressed in
the form

K =
1− Z∗

1 + Z∗ ,

where

Z = ϕ1 (ϕ0)
−1 = ZT

In the special gauge in which

g =

(
ϕ0 ϕ

∗
1

ϕ1 ϕ
∗
0

)
= exp

(
0 P ∗

P 0

)
the symmetry of the non-compact generator matrix P implies that

ϕ0 = ϕ‡
0, ϕ1 = ϕT

1

This construction can be applied to the N = 8 supergravity lagrangian of Cremmer and
Julia, except that the specific expressions they obtained for Linv(χ) and H0

µν(ψ) were deter-
mined by the additional constraints of supersymmetry. (The inclusion of the gravitational field
presents no difficulty, since it is invariant under duality transformations.) The prescription
given in subsect. 2.2 and sect. 4 for obtaining the conserved currents can be directly applied
for the subgroups SU(8) and even E7 using their lagrangian.
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4.2.9 Invariance of a special derivative of a lagrangian

The conserved currents associated with the non-compact generators can be constructed only
when the interaction with the scalar fields is present. To understand what happens in the limit
in which the scalar coupling constant tends to zero, let us recall that this coupling constant κ
has the dimension of a reciprocal mass (in supergravity κ is the gravitational constant itself).
In the special gauge of sect. 4, the coupling constant κ can be introduced explicitly in the
lagrangians by rescaling P → κP after which the lagrangian (4.11) must be divided by κ2. The
currents associated with the non-compact generators become

Jµ = −1

κ
∂µP + · · · ,

where the dots denote terms containing the scalar fields which vanish with κ and terms
containing the vector field strengths and other fields which have a finite limit as κ→ 0. To go
to the limit we multiply (5.16) by κ and obtain

lim
κ→0

κJµ = −∂µP.

All terms involving fields other than the scalars drop out, the scalars become free massless
fields and the non-compact part of the group becomes abelian, corresponding to a contraction
of the original non-compact group.

4.2.9 Invariance of a special derivative of a lagrangian

We have emphasized in the text that the lagrangian is not invariant under duality rotations;
rather it transforms as given in (2.20). Here we will show that a suitably defined derivative of the
lagrangian with respect to an invariant parameter is invariant. The invariant parameter could
be a coupling constant or it could represent an invariant external field like the gravitational
field in the matter lagrangian. An important consequence of this result is that the symmetric
energy-momentum tensor is invariant under duality rotations, since it is obtained by taking the
functional derivative of the matter action with respect to the gravitational field.

Let us assume that the lagrangian depends upon an invariant parameter λ. If ξi is indepen-
dent of λ, differentiating (2.7) with respect to λ we obtain

∂

∂λ
δL = δ

∂L

∂λ
+
∂G

∂λ
BT ∂L

∂F

Using (2.4) and (2.11), this equation can be written

δ
∂L

∂λ
=

∂

∂λ

(
δL− 1

4
GBG̃− 1

4
FCF̃

)
.

We are free to add the last term in the right-hand side since the field F is independent of
λ. We see that, if L satisfies our basic equation (2.20), then

δ
∂L

∂λ
= 0

This observation provides a method for constructing invariant lagrangians, by switching on
couplings in an invariant way, or for checking if a lagrangian is invariant.

In deriving (B.1) we assumed that the ξi are independent of the parameter λ. When
the transformation is non-linear, if it is expressed in terms of scalar fields ϕ with canonical
dimensions, the ξi will in general have an explicit dependence on some dimensional coupling
constant κ. If we wish to apply the above argument to the parameter κ, we must first re-express
the lagrangian and the transformation laws in terms of the dimensionless fields κϕ. The partial
derivative ∂L/∂κ, taken keeping the fields κϕ constant instead of ϕ, is invariant.
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4.2.10 Conclusion and examples

We further wish to point out that the formalism developed in this paper applies directly
to the case in which the fields F and χ of sect. 2 interact with an external gravitational field,
described by a tensor gµν or by a vierbein eµ

a. Now we must distinguish between tensors
(denoted by ordinary letters) and densities (denoted by script letters). The field Fµν is an
antisymmetric tensor with lower indices as in (2.2). The lagrangian is a density E and (2.4)
must be written more precisely as

G̃ µν = 2
∂L

∂Fµν

If we use the tensor

Gµν = −
1

2
εµνρσG̃

ρσ

and the density

F̃ µν =
1

2
εµνρσFρσ

we can write (2.20) as

δE =
1

4

(
FµνC

G̃µν

+GµνBG̃ µν
)
.

Eq. (2.6a) remains correct as written, using tensors with lower indices. Remember that the
numerical antisymmetric symbol εµνρσ transforms a tensor into a density, while εµνρσ transforms
a density into a tensor.

As already emphasized, the gravitational field does not transform under the duality rotations
discussed in this paper. We have not considered here those duality rotations which act on the
gravitational field, because they are an invariance only of the linearized gravitational equations.

4.2.10 Conclusion and examples

Conclusion by GZ

We have shown how a general theory invariant under dual rotations may be constructed. These
theories still have a considerable degree of arbitrariness, namely in the choice of the tensor
H0
µν(ψ) and of Linv (χ) (see sects. 4, 5). In supergravity theories these quantities, and in fact

the field content itself, are fixed by supersymmetry. It appears that the duality invariance of
supergravity theories is implied by supersymmetry, a fact which still remains very mysterious.

There has recently been an attempt [15, 16] to connect N = 8 supergravity with gauge
theory phenomenology by assuming that the fields of grand unified theories are composites of
the fundamental fields of supergravity. This means in particular that the gauge bosons should
be zero-mass bound states. There are arguments which show that, in a theory where there is a
vector current, no zero-mass spin-one state can exist which carries the associated charge [8]. A
related argument [9] shows that a vector current operator applied to the vacuum state cannot
create a massless spin-one state. In N = 8 supergravity, these arguments would forbid the
existence of massless states associated with the composite SU(8) gauge fields Qµ, since, as we
have seen, a current associated with the SU(8) generators can indeed be constructed, and is even
conserved. However, as we have pointed out, this current is not gauge invariant, and therefore
is not a true Lorentz vector. To construct a current operator one has to choose a particular
gauge, in which case the Lorentz transformation properties become rather complicated, and
the above-mentioned arguments can no longer be applied. Supergravity escapes this difficulty
in much the same way as do
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4.2.10 Conclusion and examples

Yang-Mills theories where one can define a conserved vector current carrying the same
quantum numbers as the Yang-Mills field, but which is not gauge invariant.

Finally, we wish to clear up some confusion concerning the composite vector fields in the
N = 8 supergravity theory. In the manifestly gauge-invariant formulation, the conserved
current Jµ was constructed to be invariant under SU(8) gauge transformations, and to transform
linearly under non-compact E7. We emphasize that Jµ contains the vector potentials Aµ and
Bµ, and is therefore not invariant under their abelian gauge transformation; without these
terms it would not integrate to the correct generator of E7. On the other hand the composite
gauge potential Qµ was constructed to be invariant under E7, and to transform like a gauge
field under local SU(8); it does not contain Aµ and Bµ. A source of confusion could be the fact
that in the special gauge of sects. 4 and 5 these two operators appear similar at the bilinear
level in the scalar fields and even in the spinor fields if these are included in Qµ. However, even
in the special gauge the higher non-linear terms are different. In this gauge the non-compact
part of E7 is realized non-linearly, while its SU(8) subgroup is realized linearly. The SU(8) part
of Jµ gives a conserved SU(8) current in terms of the physical fields of the special gauge.

An unanswered question is the precise definition of the vector operator for which the spectral
function may develop a zero mass pole in the spin-one channel. Cremmer and Julia [7] took
this to be Qµ as defined from the scalar fields alone. As discussed in sect. 4, other definitions,
including fermion fields, are possible. Presumably the correct combination is one which belongs
to an irreducible supermultiplet. The issue we believe to have clarified in this paper is simply
that there is no inconsistency in the existence of zero-mass bound states which transform like
gauge bosons under local SU(8) and therefore couple to the conserved current associated with
the rigid SU(8) transformations defined in eq. (4.18).

Examples of applications of GZ methods (???)

(question: how is it applied???)
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Part III

Questions and Problems in Duality
4.3 Typical questions and problems

(!!!! I want to create a lot of illustrative examples!!! but for now it is too time consuming task.
Maybe later I’ll collect them!)

(???? is there at least one example of dual currents and dual TEM????? I don’t know it)

4.3.1 Questions about understanding duality

4.3.2 Problems about duality in electrodynamics

Solve some problem in ED with duality (?????)

(подумаю потом, интересно было бы так сделать!! пока доучиваю известную теорию.)

4.3.3 Problems about duality in general field theories

Duality in N = 2 supergravity

The example is (a part of) a theory in N = 2 supergravity with one vector multiplet. 4 Hence
there are two vectors, one from the gravity multiplet and one from the vector multiplet, but
they will be mixed. We thus use A = 1, 2. We will neglect the frame field and the gravitinos,
but still consider the complex scalar z, and two fermions χi, i = 1, 2. The Lagrangian is

L =
3

(z − z̄)2

[
∂µz∂

µz̄ +
1

2

(
χ̄1PL��∂χ

1 + χ̄2PL��∂χ
2
)]

+

{
−1

4
i

[
1

2
z2(3z̄ + z)F+1

µν F
+1µν − 3z(z + z̄)F+1

µν F
+2µν +

3

2
(3z + z̄)F+2

µν F
+2µν

]
−3

8
χ̄1PRγ

µνχ2ȳ
(
−zF+1

µν + F+2
µν

)}
+ h.c. + . . .

Here appears also a variable y. In terms of z only its modulus is determined by

|y|2 = (i(z − z̄))−3.

Choosing the phase of y is in fact a choice of a phase symmetry, that could also act on the
fermions, but we will fix this below by the form of the transformations of y. First look at the
scalar part, which determines the isometries.

Obtain all the quantities of the main text, where the matrices in the duality transformations
are in terms of the parameters for the isometries:

A =

(
−3

2
θ2 −3θ3

θ1 −1
2
θ2

)
, B =

(
0 0
0 −2

3
θ3

)
, C =

(
0 0
0 6θ1

)
The variable y transforms consistently with (A.26) as (here a phase has been chosen for y)

δdȳ = −3
(
1

2
θ2 + z̄θ3

)
ȳ.

Since PLχi is the supersymmetry transform of z under the two supersymmetries:

δdz = k(z)→ δdPLχ
i = (∂zk)PLχ

i,

and the complex conjugate for δdPRχi. Are the... terms in (A.25) invariant, or what should we
still add?
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Part IV

Other topics
5 Duality Rotations in Nonlinear Electrodynamics and in

Extended Supergravity by Aschieri, Ferrara, Zumino

Abstract

We review the general theory of duality rotations which, in four dimensions, exchange
electric with magnetic fields. Necessary and sufficient conditions in order for a theory to
have duality symmetry are established. A nontrivial example is Born-Infeld theory with n
abelian gauge fields and with Sp(2n,R) self-duality. We then review duality symmetry in
supergravity theories. In the case of N = 2 supergravity duality rotations are in general
not a symmetry of the theory but a key ingredient in order to formulate the theory itself.
This is due to the beautiful relation between the geometry of special Kähler manifolds and
duality rotations.

5.1 Introduction

It has long been known that the free Maxwell’s equations are invariant under the rotation of the
electric field into the magnetic fields; this is also the case if electric and magnetic charges are
present. In 1935, Schrödinger [2] showed that the nonlinear electrodynamics of Born and Infeld
[1], (then proposed as a new fundamental theory of the electromagnetic field and presently
relevant in describing the low energy effective action of D-branes in open string theory), has
also, quite remarkably, this property. Extended supergravity theories too, as first pointed out in
[3, 5] exhibit electric-magnetic duality symmetry. Duality symmetry thus encompasses photons
self-interactions, gravity interactions and couplings to spinors (of the magnetic moment type,
not minimal couplings).

Shortly after [3, 4, 5] the general theory of duality invariance with abelian gauge fields
coupled to fermionic and bosonic matter was developped in [6, 39]. Since then the duality
symmetry of extended supergravity theories has been extensively investigated [8, 9, 10, 11], and
examples of Born-Infeld type lagrangians with electric-magnetic duality have been presented,
in the case of one abelian gauge field [12, 13, 14, 15, 16] and in the case of many abelian gauge
fields [17, 18, 19, 20]. Their supersymmetric generalizations have been considered in [21, 22]
and with different scalar couplings and noncompact duality group in [17, 18, 23, 24, 25].

We also mention that duality symmetry can be generalized to arbitrary even dimensions
by using antisymmetric tensor fields such that the rank of their field strengths equals half the
dimension of space-time, see [26, 27], and [30, 11, 31, 28, 16, 18, 24, 25].

We provide a rigorous formulation of the general theory of four-dimensional electric-magnetc
duality in lagrangian field theories where many abelian vector fields are coupled to scalars,
fermions and to gravity. When the scalar fields lagrangian is described by a non-linear sigma
model with a symmetric space G/H where G is noncompact and H is its maximal compact
subgroup, the coupling of the scalars with the vector fields is uniquely determined by a sym-
plectic representation of G (i.e. where the representation space is equipped with an invariant
antisymmetric product). Moreover fermions coupled to the sigma model, which lie in repre-
sentations of H, must also be coupled to vectors through particular Pauli terms as implied by
electric-magnetic duality.

This formalism is realized in an elegant way in extended supergravity theories in four di-
mensions and can be generalized to dyons [32] in D-dimensions, which exist when D is even
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5.1 Introduction

and the dyon is a p-brane with p = D/2− 2. In the context of superstring theory or M theory
electric-magnetic dualities can arise from many sources, namely S-duality, T -duality or a com-
bination thereof called U -duality [29]. From the point of view of a four dimensional observer
such dualities manifest as some global symmetries of the lowest order Euler-Lagrange equations
of the underlying four dimensional effective theory.

The study of the relations between the symmetries of higher dimensional theories and their
realization in four dimension is rich and fruitful, and duality rotations are an essential ingredient.
Seemingly different lagrangians with different elementary dynamical fields can be shown to
describe equivalent equation of motions by using duality. An interesting example is provided
by the N = 8, D = 4 supergravity lagrangian whose duality group is G = E7,(7), this is the
formulation of Cremmer and Julia [5]. An alternative formulation obtained from dimensional
reduction of the D = 5 supergravity, exhibits an action that is invariant under a different group
of symmetries. These two theories can be related only after a proper duality rotation of electric
and magentic fields which involves a suitable Legendre transformation (a duality rotation that
is not a symmetry transformation).

Let us also recall that duality rotation symmetries can be further enhanced to local sym-
metries (gauging of duality groups). The corresponding gauged supergravities appear as string
compactifications in the presence of fluxes and as generalized compactifications of (ungauged)
higher dimensional supergravities.

As a main example consider again the N = 8, D = 4 supergravity lagrangian of Cremmer
and Julia, it is invariant under SO(8) (compact subgroup of E7,(7)). The gauging of SO(8)
corresponds to the gauged N = 8 supergravity of De Witt and Nicolai [33]. As shown in [34]
the gauging of a different subgroup, that is the natural choice in the equivalent formulation
of the theory obtained from dimensional reduction of D = 5 supergravity, corresponds to the
gauging of a flat group in the sense of Scherk and Schwarz dimensional reduction [35], and
gives the massive deformation of the N = 8 supergravity as obtained by Cremmer, Scherk and
Schwarz [36].

Electric-Magnetic duality is also the underlying symmetry which encompasses the physics
of extremal black holes and of the “attractor mechanism” [37, 38, 39], for recent reviews on the
attractor mechanism see [40, 41, 42]. Here the Bekenstein-Hawking entropy-area formula

S =
1

4
A

is directly derived by the evaluation of a certain black hole potential VBH at its attractive
critical points [43]

S = π VBH
∣∣
C

where the critical points C satisfy ∂VBH |C = 0. The potential VBH is a quadratic invariant
of the duality group; it depends on both the matter and the gauge fields configuration. In
all extended supersymmetries with N > 2, the entropy S can also be computed via a certain
duality invariant combination of the magnetic and electric charges p, q of the fields configuration
[44, 45]

S = πS (p, q) .

In the remaining part of this introduction we present the structure of the paper by summa-
rizing its different sections.

In Section 2 we give a pedagogical introduction to U(1) duality rotations in nonlinear
theories of electromagnetism. The basic aspects of duality symmetry are already present in this
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5.1 Introduction

simple case with just one abelian gauge field: the hamiltonian is invariant (duality rotations are
canonical transformations that commute with the hamiltonian); the lagrangian is not invariant
but must transform in a well defined way. The Born-Infeld theory is the main example of
duality invariant nonlinear theory.

In Section 3 the general theory is formulated with many abelian gauge fields interacting
with bosonic and fermionic matter. Necessary and for the first time sufficient conditions in
order for a theory to have duality symmetry are established. The maximal symmetry group in
a theory with n abelian gauge fields includes Sp(2n,R). If there are no scalar fields the maximal
symmetry group is U(n). The geometry of the symmetry transformations on the scalar fields
is that of the coset space Sp(2n,R)/U(n) that we study in detail. The kinetic term for the
scalar fields is constructed by using this coset space geometry. In Subsection 3.6 we present
the Born-Infeld lagrangian with n abelian gauge fields and Sp(2n,R) duality symmetry [18].
The self-duality of this lagrangian is proven by studying another example: the Born-Infeld
lagrangian with n complex gauge fields and U(n, n) duality symmetry. Here U(n, n) is the
group of holomorphic duality rotations. We briefly develop the theory of holomorphic duality
rotations.

The Born-Infeld lagrangian with U(n, n) self-duality is per se interesting, the scalar fields
span the coset space U(n,n)

U(n)×U(n)
, in the case n = 3 this is the coset space of the scalars of N = 3

supergravity with 3 vector multiplets. This Born-Infeld lagrangian is then a natural candidate
for the nonlinear generalization of N = 3 supergravity.

We close this sections by presenting, in a formulation with auxiliary fields, the supersymmet-
ric version of this Born-Infeld Lagrangian [17, 18]. We also present the form without auxiliary
fields of the supersymmetric Born-Infeld Lagrangian with a single gauge field and a scalar field;
this theory is invariant under SL(2,R) duality, which reduces to U(1) duality if the value of
the scalar field is suitably fixed. Versions of this theory without the scalar field were presented
in [46, 47, 48].

In Section 4 we apply the general theory of duality rotation to supergravity theories with
N > 2 supersymmetries. In these supersymmetric theories the duality group is always a
subgroup G of Sp(2n,R), where G is the isometry group of the sigma model G/H of the scalar
fields. Much of the geometry underlying these theories is in the (local) embedding of G in
Sp(2n,R). The supersymmetry transformation rules, the structure of the central and matter
charges and the duality invariants associated to the entropy and the potential of extremal black
holes configurations are all expressed in terms of the embedding of G in Sp(2n,R) [11]. We
thus present a unifying formalims. We also explicitly construct the symplectic bundles (vector
bundles with a symplectic product on the fibers) associated to these theories, and prove that
they are topologically trivial; this is no more the case for generic N = 2 supergravities.

In Section 5 we introduce special Kgeometry as studied in differential geometry, we follow
in particular the work of Freed [49], see also [50] (and [51]) and then develop the mathematical
definition up to the construction of those explicit flat symplectic sections used in N = 2 super-
gravity. We thus see for example that the flat symplectic bundle of a rigid special Kmanifold
M is just the tangent bundle TM with symplectic product given by the Kform. A similar
construction applies in the case of local special geometry (there the flat tangent bundle is not
of the Kmanifold M but is essentially the tangent bundle of a complex line bundle L → M).
This clarifies the global aspects of special geometry and the key role played by duality rotations
in the formulation of N = 2 supergravity with scalar fields taking value in the target space M .
Duality rotations are needed for the theory to be globally well defined.

In Section 6 duality rotations in nonlinear electromagnetism are considered on a noncom-
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5.2 U(1) gauge theory and duality symmetry

mutative spacetime, [xµ, xν ] = iΘµν . The noncommutativity tensor Θµν must be light-like. A
nontrivial example of nonlinear electrodynamics on commutative spacetime is presented and
using Seiberg-Witten map between commutative and noncommutative gauge theories noncom-
mutative U(1) Yang Mills theory is shown to have duality symmetry. This theory formally is
nonabelian, F̂µν = ∂µÂµ − ∂νÂµ − i[Âµ, Âν ], its self-duality is in this respect remarkable. One
can also enhance the duality group to Sp(2,R) and couple this noncommutative theory to axion,
dilaton and Higgs fields, these latter via minimal couplings. Duality in noncommutative space-
time allows to relate space-noncommutative magnetic monopoles to space-noncommutative
electric monopoles [52, 53].

A special kind of noncommutative spacetime is a lattice space (it can be studied with
noncommutative geometry techniques). Duality rotations on a lattice have been studied in
[54].

In Appendix 7 we prove some fundamental properties of the symplectic group Sp(2n,R)
and of the coset space Sp(2n,R)/U(n). We also collect for reference some main formulae and
definitions.

In Appendix 8 a symmetry property of the trace of a solution of a polynomial matrix
equation is proven. This allows the explicit formulation of the Born-Infeld lagrangian with
Sp(2n,R) duality symmetry presented in Section 3.7.

5.2 U(1) gauge theory and duality symmetry

Maxwell theory is the prototype of electric-magnetic duality invariant theories. In vacuum the
equations of motion are

∂µF
µν = 0 ,

∂µF̃
µν = 0 , (5.1)

where F̃ µν ≡ 1
2
ϵµνρσFρσ. They are invariant under rotations

(
F
F̃

)
7→
(
cosα
sinα

− sinα
cosα

)(
F
F̃

)
, or using

vector notation under rotations
(
E
B

)
7→
(
cosα
sinα

− sinα
cosα

)(
E
B

)
. This rotational symmetry, called

duality symmetry, and also duality invariance or self-duality, is reflected in the invariance of
the hamiltonian H = 1

2
(E2 + B2), notice however that the lagrangian L = 1

2
(E2 − B2) is

not invariant. This symmetry is not an internal symmetry because it rotates a tensor into a
pseudotensor.

We study this symmetry for more general electromagnetic theories. In this section and the
next one conditions on the lagrangians of (nonlinear) elecromagnetic theories will be found that
guarantee the duality symmetry (self-duality) of the equations of motion.

The key mathematical point that allows to establish criteria for self-duality, thus avoiding
the explicit check of the symmetry at the level of the equation of motions, is that the equations
of motion (a system of PDEs) can be conveniently split in a set of equations that is of degree 0
(no derivatives on the field strengths F ), the so-called constitutive relations (see e.g. (5.5), or
(5.8)), and another set of degree 1 (see e.g. (5.2), (5.3) or (5.9), (5.10)). Duality rotations act
as an obvious symmetry of the set of equations of degree 1, so all what is left is to check that
they act as a symmetry on the set of equations of degree 0. It is therefore plausible that this
check can be equivalently formulated as a specific transformation property of the lagrangian
under duality rotations (and independent from the spacetime dependence Fµν(x) of the fields),
indeed both the lagrangian and the equations of motions of degree 0 are functions of the field
strength F and not of its derivatives.
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5.2.1 Duality symmetry in nonlinear electromagnetism

5.2.1 Duality symmetry in nonlinear electromagnetism

Maxwell equations read

∂tB = −∇×E , ∇ ·B = 0 (5.2)
∂tD = ∇×H , ∇ ·D = 0 (5.3)

they are complemented by the relations between the electric field E, the magnetic field H , the
electric displacement D and the magnetic induction B. In vacuum we have

D = E , H = B . (5.4)

In a nonlinear theory we still have the equations (5.2), (5.3), but the relations D = E, H = B
are replaced by the nonlinear constitutive relations

D =D(E,B) , H =H(E,B) (5.5)

(if we consider a material medium with electric and magnetic properties then these equations
are the constitutive relations of the material, and (5.2) and (5.3) are the macroscopic Maxwell
equations).

Equations (5.2), (5.3), (5.4) are invariant under the group of general linear transformations(
B′

D′

)
=

(
A B
C D

)(
B
D

)
,

(
E′

H ′

)
=

(
A B
C D

)(
E
H

)
. (5.6)

We study under which conditions also the nonlinear constitutive relations (5.5) are invariant.
We find constraints on the relations (5.5) as well as on the transformations (5.6).

We are interested in nonlinear theories that admit a lagrangian formulation so that relativis-
tic covariance of the equations (5.2), (5.3), (5.5) and their inner consistency is automatically
ensured. This requirement is fulfilled if the constitutive relations (5.5) are of the form

D =
∂L(E,B)

∂E
, H = −∂L(E,B)

∂B
, (5.7)

where L(E,B) is a Poincaré invariant function of E and B. Indeed if we consider E and B
depending on a gauge potential Aµ and vary the lagrangian L(E,B) with respect to Aµ, we
recover (5.2), (5.3) and (5.7). This property is most easily shown by using four component
notation. We group the constitutive relations (5.7) in the constitutive relation∗

G̃µν = 2
∂L(F )

∂Fµν
; (5.8)

we also define Gµν = −1
2
ϵµνρσG̃

ρσ, so that G̃µν = 1
2
ϵµνρσGρσ (ϵ0123 = −ϵ0123 = 1). If we consider

the field strength Fµν as a function of a (locally defined) gauge potential Aµ, then equations
(5.2) and (5.3) are respectively the Bianchi identities for Fµν = ∂µAν − ∂νAµ and the equations
of motion for L(F (A)),

∂µF̃
µν = 0 , (5.9)

∂µG̃
µν = 0 . (5.10)

∗a practical convention is to define ∂Fρσ

∂Fµν
= δµρ δ

ν
σ rather than ∂Fρσ

∂Fµν
= δµρ δ

ν
σ − δνρδ

µ
σ . This explains the factor

2 in (5.8).
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5.2.1 Duality symmetry in nonlinear electromagnetism

In our treatment of duality rotations we study the symmetries of the equations (5.9), (5.10)
and (5.8). The lagrangian L(F ) is always a function of the field strength F ; it is not seen as a
function of the gauge potential Aµ; accordingly the Bianchi identities for F are considered part
of the equations of motions for F .

Finally we consider an action S =
∫
L d4x with lagrangian density L = L(F ) that depends

on F but not on its partial derivatives; it also depends on a spacetime metric gµν that we
generally omit writing explicitly∗, and on at least one dimensionful constant in order to allow
for nonlinearity in the constitutive relations (5.8) (i.e. (5.5)). We set this dimensionful constant
to 1.

The duality rotations (5.6) read(
F ′

G′

)
=

(
A B
C D

)(
F
G

)
. (5.11)

Since by construction equations (5.9) and (5.10) are invariant under (5.11), these duality rota-
tions are a symmetry of the system of equations (5.9), (5.10), (5.8) (or (5.2), (5.3), (5.5)), iff
on shell the constitutive relations are invariant in form, i.e., iff the functional dependence of G̃′

from F ′ is the same as that of G̃ from F , i.e. iff

G̃′µν = 2
∂L(F ′)

∂F ′
µν

, (5.12)

where F ′
µν and G′

µν are given in (5.11). This is the condition that constrains the lagrangian
L(F ) and the rotation parameters in (5.11). This condition has to hold on shell of (5.8)-(5.10);
however (5.12) is not a differential equation and therefore has to hold just using (5.8), i.e., off
shell of (5.9) and (5.10) (indeed if it holds for constant field strengths F then it holds for any
F ).

In order to study the duality symmetry condition (5.12) let
(
A B
C D

)
=
(
1 0
0 1

)
+ ϵ
(
a b
c d

)
+ . . ., and

consider infinitesimal GL(2,R) rotations G→ G+ ϵ∆G, F → F + ϵ∆F ,

∆

(
F
G

)
=

(
a b
c d

)(
F
G

)
, (5.13)

so that the duality condition reads

G̃ +∆G̃ = 2
∂L(F +∆F )

∂(F +∆F)
. (5.14)

The right hand side simplifies to†

∂L(F +∆F )

∂(F +∆F)
=
∂L(F +∆F )

∂F

∂F

∂(F +∆F)

=
∂L(F +∆F )

∂F
− ∂L(F )

∂F

∂(∆F)

∂F

then, using (5.13) and (5.8), condition (5.14) reads

cF̃ + dG̃ = 2
∂(L(F +∆F )− L(F ))

∂F
− 2a

∂L(F )

∂F
− bG̃ δG

∂F
. (5.15)

∗Notice that (5.9), (5.10) are also the equation of motions in the presence of a nontrivial metric. Indeed
S =

∫
L d4x =

∫
L
√
gd4x. The equation of motions are ∂µ(

√
g F ∗µν) = ∂µF̃

µν = 0 , ∂µ(
√
g G∗µν) = ∂µG̃

µν =
0 , where the Hodge dual of a two form Ωµν is defined by Ω∗

µν ≡ 1
2

√
g ϵµνρσΩ

ρσ .
†here and in the following we suppress the spacetime indices so that for example FG̃ = FµνG̃

µν ; notice that
FG̃ = F̃G, ˜̃F = −F , and F̃ G̃ = −FG where FG = FµνGµν .
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5.2.1 Duality symmetry in nonlinear electromagnetism

In order to further simplify this expression we write 2F̃ = ∂
∂F
FF̃ and we factorize out the

partial derivative ∂
∂F

. We thus arrive at the equivalent condition

L(F +∆F )− L(F )− c

4
FF̃ − b

4
GG̃ = (a+ d)(L(F )− LF=0) . (5.16)

The constant term (a+ d)LF=0, nonvanishing for example in D-brane lagrangians, is obtained
by observing that when F = 0 also G = 0.

Next use L(F +∆F ) − L(F ) = ∂L(F )
∂F

∆F = 1
2
aFG̃ + 1

2
bGG̃ in order to rewrite expression

(5.16) as
b

4
GG̃ − c

4
FF̃ = (a+ d)(L(F )− LF=0)−

a

2
FG̃ . (5.17)

If we require the nonlinear lagrangian L(F ) to reduce to the usual Maxwell lagrangian in the
weak field limit, F 4 << F 2, i.e., L(F ) = LF=0− 1/4

∫
FFd4x+O(F 4), then G̃ = −F +O(F 3),

and we obtain the constraint (recall that ˜̃G = −G)

b = −c , a = d ,

the duality group can be at most SO(2) rotations times dilatations. Condition (5.17) becomes

b

4

(
GG̃ + FF̃

)
= 2a

(
L(F )− LF=0 −

1

2
F
∂L

∂F

)
. (5.18)

The vanishing of the right hand side holds only if either L(F )−LF=0 is quadratic in F (usual
electromagnetism) or a = 0. We are interested in nonlinear theories; by definition in a nonlinear
theory L(F ) is not quadratic in F . This shows that dilatations alone cannot be a duality
symmetry. If we require the duality group to contain at least SO(2) rotations then

GG̃ + FF̃ = 0 , (5.19)

and SO(2) is the maximal duality group. Relation (5.18) is nontrivially satisfied iff

a = d = 0 ,

and (5.19) hold.

In conclusion equation (5.19) is a necessary and sufficient condition for a nonlinear electro-
magnetic theory to be symmetric under SO(2) duality rotations, and SO(2) ⊂ GL(2,R) is the
maximal connected Lie group of duality rotations of pure nonlinear electromagnetism∗.

This conclusion still holds if we consider a nonlinear lagrangian L(F ) that in the weak
field limit F 4 << F 2 (up to an overall normalization factor) reduces to the most general linear
lagrangian

L(F ) = LF=0 −
1

4
FF +

1

4
ΘFF̃ +O(F 4) .

In this case G = F̃ +ΘF +O(F 3). We substitute in (5.17) and obtain the two conditions (the
coefficients of the scalar F 2 and of the speudoscalar FF̃ have to vanish separately)

c = −b(1 + Θ2) , d− a = 2Θb . (5.20)
∗This symmetry cannot even extend to O(2) because already in the case of usual electromagnetism the

finite rotation
(−1 0
0 1

)
does not satisfy the duality condition (5.12). It is instructive to see the obstruction at the

hamiltonian level. The hamitonian itself is invariant under D → D, B → −B, but this transformation is not a
canonical transformation: the Poisson bracket (5.33) is not invariant.
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5.2.2 Legendre Transformations

The most general infinitesimal duality transformation is therefore(
a b

−b(1 + Θ2) a+ 2Θb

)
=

(
a+Θb 0

0 a+Θb

)
+Θ

(
0 b
−b 0

)
Θ−1 (5.21)

where Θ =

(
1 0
Θ 1

)
. We have dilatations and SO(2) rotations, they act on the vector

(
F
G

)
via the conjugate representation given by the matrix Θ. Let’s now remove the weak field limit
assumtion F 4 << F 2. We proceed as before. >From (5.12) (or from (5.17)) we immediately
obtain that dilatations alone are not a duality symmetry of the nonlinear equations of motion.
Then if SO(2) rotations are a duality symmetry we have that they are the maximal duality
symmetry group. This happens if

GG̃+ (1 + Θ)2FF̃ = 2ΘFG̃ . (5.22)

Finally we note that the necessary and sufficient conditions for SO(2) duality rotations
(5.22) (or (5.19)) can be equivalently expressed as invariance of

L(F )− 1

4
FG̃ . (5.23)

Proof: the variation of expression (5.23) under F → F +∆F is given by L(F +∆F )−L(F )−
1
4
∆F G̃− 1

4
F∆G̃ . Use of (5.16) with a+d = 0 (no dilatation) shows that this variation vanishes.

5.2.2 Legendre Transformations

In the literature on gauge theories of abelian p-form potentials, the term duality transformation
denotes a different transformation from the one we have introduced, a Legendre transformation,
that is not a symmetry transformation. In this section we relate these two different notions,
see [15] for further applications and examples.

Consider a theory of nonlinear electrodynamics (p = 1) with lagrangian L(F ). The equa-
tions of motion and the Bianchi identity for F can be derived from the Lagrangian L(F, FD)
defined by

L(F, FD) = L(F )−
1

2
FF̃D , FD

µν = ∂µAD
ν − ∂νAD

µ , (5.24)

where F is now an unconstrained antisymmetric tensor field, AD a Lagrange multiplier field
and FD its electromagnetic field. [Hint: varying with respect to AD gives the Bianchi identity
for F , varying with respect to F gives Gµν = FD

µν that is equivalent to the initial equations of
motion ∂µG̃µν = 0 because FD

µν = ∂µAD
ν − ∂νAD

µ (Poincaré lemma)].
Given the lagrangian (5.24) one can also first consider the equation of motion for F ,

G(F ) = FD , (5.25)

that is solved by expressing F as a function of the dual field strength, F = F (FD). Then
inserting this solution into L(F, FD), one gets the dual model

LD(FD) ≡ L(F (FD))−
1

2
F (FD) · F̃D . (5.26)

Solutions of the (5.26) equations of motion are, tothether with (5.25), solutions of the (5.24)
equations of motion. Therefore solutions to the (5.26) equations of motion are via (5.25) in 1-1
correspondence with solutions of the L(F ) equations of motion.
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5.2.3 Hamiltonian theory

One can always perform a Legendre transformation and describe the physical system with
the new dynamical variables AD and the new lagrangian LD rather than A and L.

The relation with the duality rotation symmetry (self-duality) of the previous section is that
if the system admits duality rotations then the solution FD of the LD equations of motion is
also a solution of the L equations of motion, we have a symmetry because the dual field FD is
a solution of the original system. This is the case because for any solution L of the self-duality
equation, its Legendre transform LD satisfies:

LD(F ) = L(F ) . (5.27)

This follows from considering a finite SO(2) duality rotation with angle π/2. Then F →
F ′ = G(F ) = FD, and invariance of (5.23), i.e. L(F ′) − 1

4
F ′G̃′ = L(F ) − 1

4
FG̃ , implies

LD(FD) = L(FD), i.e., (5.27).

In summary, a Legendre transformation is a duality rotation only if the symmetry condition
(5.8) is met. If the self-duality condition (5.8) does not hold, a Legendre transformation leads
to a dual formulation of the theory in terms of a dual Lagrangian LD, not to a symmetry of
the theory.

5.2.3 Hamiltonian theory

The symmetric energy monentum tensor of a nonlinear theory of electromagnetism (obtained
via Belinfante procedure or by varying with respect to the metric) is given by∗

T µν = G̃µλFνλ + ∂µνL . (5.28)

The equations of motion (5.10) and (5.9) imply its conservation, ∂µT µν = 0. Invariance of
the energy momentum tensor under duality rotations is easily proven by observing that for a
generic antisymmetric tensor Fµν

F̃ µλFνλ = −
1

4
∂µλF̃

ρσFρσ , (5.29)

and then by recalling the duality symmetry condition (5.19).

In particular the hamiltonian

H = T 00 =D ·E − L (5.30)

of a theory that has duality rotation symmetry is invariant.

In the hamiltonian formalism duality rotations are canonical transformations, since they
leave the hamiltonian invariant they are usual symmetry transformations. We briefly describe
the hamiltonian formalism of (nonlinear) electromagnetism by avoiding to introduce the vector
potential Aµ; this is appropriate since duality rotations are formulated independently from the
notion of vector potential. Maxwell equations (5.2), (5.3) and the expression of the hamiltonian
suggest to consider B and D as the analogue of canonical coordinates and momenta q and p,
while E, that enters the lagrangian togheter with B, is the analogue of q̇.

∗symmetry of Tµν follows immediately by observing that the tensor structure of G̃µν implies G̃µν =
fs(F )Fµν + fp(F )F̃µν with scalars fs(F ) and fp(F ) depending on F , the metric η = diag(−1, 1, 1, 1) and
the completely antisymmetric tensor density ϵµνρσ. (Actually, if the lagrangian is parity even, fs is a scalar
function while fp is a pseudoscalar function).
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5.2.4 Born-Infeld lagrangian

Recalling the constitutive relations in the lagrangian form (5.7) we obtain that the hamil-
tonian H = H (D,B) is just given by the Legendre transformation (5.30). Moreover H = ∂H

∂B

and E = ∂H
∂D

. The equations of motion are

∂tB = −∇× δH

δD
, (5.31)

∂tD = ∇× δH

δB
. (5.32)

The remaning equations ∇ ·B = 0, ∇ ·D = 0 are constraints that imposed at a given time
are satisfied at any other time. The Poisson bracket between two arbitrary functionals U , V of
the canonical variables is

{U, V } =
∫

∂U

∂D
·
(
∇× ∂V

∂B

)
− ∂V

∂D
·
(
∇× ∂U

∂B

)
d3r , (5.33)

in particular the only nonvanishing parenthesis between the canonical variables B and D are
{Bi(r),Dj(r′)} = ϵijk∂k∂

3(r− r′). The equations of motion (5.31) and (5.32) assume then the
canonical form ∂tB = −{B, H} , ∂tD = {D, H} where H =

∫
H d3r is the hamiltonian (H

being the hamiltonian density). We see that H as usual is the generator of time evolution. The
consitency and the hidden Poincaré invariance of the present formalism is proven in [55].

In the canonical formalism the generator of duality rotations is the following nonlocal inte-
gral [57], [56]

Λ =
1

8π

∫ ∫
D1 ·(∇×D2) +B1 ·(∇×B2)

|r1 − r2|
d3r1d

3r2 (5.34)

where the subscripts indicate that the fields are taken at the points r1 and r2. We have
{D,Λ} = B and {B,Λ} = −D .

Finally we remark that it is straighforward to establish duality symmetry in the hamiltonian
formalism. Indeed there are three independent scalar combinations of the canonical fields B
and D, they can be taken to be: D2 + B2, D2 − B2 and (D × B)2. The last two scalars
are duality invariant and therefore any hamiltonian that depends just on them leads to a
theory with duality symmetry. The nontrivial problem in this approach in now to constrain
the hamiltonian so that the theory is Lorentz invariant [58], [57]. The condition is again (5.19)
i.e., D ·H = E ·B.

5.2.4 Born-Infeld lagrangian

A notable example of a lagrangian whose equations of motion are invariant under duality
rotations is given by the Born-Infeld one [1]

LBI = 1−
√
−det(η + F ) (5.35)

= 1−
√
1 +

1

2
F 2 − 1

16
(FF̃ )2 (5.36)

= 1−
√
1−E2 +B2 − (E ·B)2 . (5.37)

In the second line we have simply expanded the 4x4 determinant and espressed the lagrangian
in terms of the only two independent Lorentz invariants associated to the electromagnetic field:
F 2 ≡ FµνF

µν , F F̃ ≡ FµνF̃
µν .

66



5.2.5 Extended duality rotations

The explicit expression of G is

Gµν =
F̃µν +

1
4
FF̃ Fµν√

1 + 1
2
F 2 − 1

16
(FF̃ )2

, (5.38)

and the duality condition (5.19) is readily seen to hold. The hamiltonian is

HBI =

√
1 +D2 +B2 + (D ×B)2 − 1 . (5.39)

Notice that while the E and B variables are constrained by the reality of the square root in
the lagrangian, the hamiltonian variables D,B are unconstrained. By using the equations of
motion and (5.19) it can be explicitly verified that the generator of duality rotations is time
independent, {Λ, H} = 0.

5.2.5 Extended duality rotations

The duality symmetry of the equations of motion of nonlinear electromagnetism can be extended
to SL(2,R). We observe that the definition of duality symmetry we used can be relaxed by
allowing the F dependence of G to change by a linear term: G = 2∂L

∂F
and G = 2∂L

∂F
+ ϑF

togheter with the Bianchi identities for F give equivalent equations of motions for F . Therefore
the transformation (

F ′

G′

)
=

(
1 0
ϑ 1

)(
F
G

)
(5.40)

is a symmetry of any nonlinear electromagnetism. It corresponds to the lagrangian change
L → L + 1

4
ϑFF̃ . This symmetry alone does not act on F , but it is useful if the nonlinear

theory has SO(2) duality symmetry. In this case (5.40) extends duality symmetry from SO(2)
to SL(2,R) (i.e. Sp(2,R)). Notice however that the SL(2,R) transformed solution, contrary
to the SO(2) one, has a different energy and energy momentum tensor (recall (5.28)). On the
other hand, as we show in Section 5.3.6, if the constant ϑ is promoted to a dynamical field we
have invariance of the energy momentum tensor under SL(2,R) duality.

5.3 General theory of duality rotations

We study in full generality the conditions in order to have theories with duality rotation sym-
metry. By properly introducing scalar fields (sigma model on coset space) we enhance theories
with a compact duality group to theories with an extended noncompact duality group. A Born-
Infeld lagrangian with n abelian field strengths and U(n) duality group (or Sp(2n,R) in the
presence of scalars) is constructed.

5.3.1 General nonlinear theory

We consider a theory of n abelian gauge fields possibly coupled to other bosonic and fermionic
fields that we denote φα, (α = 1, ...p). We assume that the U(1) gauge potentials enter the
action S = S[F, φ] only trough the field strengths FΛ

µν (Λ = 1, . . . , n), and that the action does
not depend on partial derivatives of the field strengths. Define G̃ µν

Λ = 2 ∂L
∂FΛ

µν
, i.e,

G̃ µν
Λ = 2

δS[F, φ]

δFΛ
µν

; (5.41)
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5.3.1 General nonlinear theory

then the Bianchi identities and the equations of motions for S[F, φ] are

∂µF̃
Λµν = 0 , (5.42)

∂µG̃
µν

Λ = 0 , (5.43)

δS[F, φ]

δφα
= 0 . (5.44)

The field theory is described by the system of equations (5.41)-(5.44). Consider the duality
transformations (

F ′

G′

)
=

(
A B
C D

)(
F
G

)
(5.45)

φ′α = Ξα(φ) (5.46)

where
(
A B
C D

)
is a generic constant L(2n,R) matrix and the φα fields transformation in full detail

reads φ′α = Ξα(φ,
(
A B
C D

)
), with no partial derivative of φ appearing in Ξα.

These duality rotations are a symmetry of the system of equations (5.41)-(5.44) iff, given F ,
G, and φ solution of (5.41)-(5.44) then F ′, G′ and φ′, that by construction satisfy ∂µF̃ ′Λµν = 0
and ∂µG̃′

Λ
µν = 0, satisfy also

G̃′
Λ
µν = 2

δS[F ′, φ′]

δF ′Λ
µν

, (5.47)

δS[F ′, φ′]

δφ′α = 0 . (5.48)

We study these on shell conditions in the case of infinitesimal GL(2n,R) rotations

F → F ′ = F +∆F , G→ G′ = G+∆G ,

∆

(
F
G

)
=

(
a b
c d

)(
F
G

)
, (5.49)

∆φα = ξα(φ) . (5.50)

The right hand side of (5.47) can be rewritten as

δS[F ′, φ′]

δF ′Λ =

∫
y

δS[F ′, φ′]

δFΣ(y)

δFΣ(y)

δF ′Λ . (5.51)

We now invert the matrix

(
δF ′

δF
δF ′

δφ
δφ′

δF
δφ′

δφ

)
, recall that F1F̃2 = F̃1F2 and observe that

∫
y

δS[F, φ]

δF (y)
b
δG(y)

δFΛ
=

1

4

δ

δFΛ

∫
y

G̃ bG+
1

4

∫
y

G̃(b− bt) δG
δFΛ

.

We thus obtain

δS[F ′, φ′]

δF ′Λ =
δS[F ′, φ′]

δFΛ
− aΣΛ δS[F

′, φ′]

δFΣ
− 1

4

δ

δFΛ

∫
y

G̃ bG− 1

4

∫
y

G̃(b− bt) δG
δFΛ

. (5.52)
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5.3.1 General nonlinear theory

Since the left hand side of (5.47) is G̃Λ+
1
2

δ
δFΛ

∫
y
F̃ c F + 1

2
(c− ct)ΛΣF̃Σ+2d Σ

Λ
δS[F,φ]
δFΣ , we rewrite

(5.47) as

δ

δFΛ

(
S[F ′, φ′]− S[F, φ]− 1

4

∫
y

(F̃ c F + G̃ bG)

)
(5.53)

= (at + d) Σ
Λ

δ

δFΣ
S[F, φ] +

1

4
(c− ct)ΛΣF̃Σ +

1

4

∫
y

G̃(b− bt) δG
δFΛ

.

Since this expression does not contain derivatives of F , the functional variation becomes just a
partial derivative, and (5.53) is equivalent to

∂

∂FΛ

(
L(F ′, φ′)− L(F, φ)− 1

4
F̃ c F − 1

4
G̃ bG

)
(5.54)

= (at + d) Σ
Λ

∂

∂FΣ
L(F, φ) +

1

4
(c− ct)ΛΣF̃Σ +

1

4
G̃(b− bt) ∂G

∂FΛ
.

Here L(F, φ) is a shorthand notation for a lagrangian that depends on F , φα, ∂φα and eventu-
ally higher partial derivatives of the fields φα, say up to order ℓ. Equation (5.54) has to hold on
shell of (5.41)-(5.44). Since this equation has no partial derivative of F and at most derivatives
of φα up to order ℓ, if it holds on shell of (5.41)-(5.44) then it holds just on shell of (5.41),
and of the fermions fields equations, the scalar and vector partial differential equations being of
higher order in derivatives of F or φα fields. In particular if no fermion is present (5.54) holds
just on shell of (5.41).

Since the left hand side of (5.54) is a derivative with respect to FΛ so must be the right
hand side. This holds if we consider infinitesimal dilatations, parametrized by κ

2
∈ R, and

infinitesimal Sp(2n,R) transformations

at + d = κ11 , bt = b , ct = c . (5.55)

We can then remove the derivative ∂
∂FΛ and obtain the equivalent condition

L(F ′, φ′)− L(F, φ)− κL(F, φ)− 1

4
F̃ c F − 1

4
G̃ bG = f(φ) (5.56)

where f(φ) can contain partial derivatives of φ up to the same order as in the lagrangian.

We now show that f(φ) in (5.56) is independent from φ. Consider the φ-equations of motion
(5.48),

δS[F ′, φ′]

δφ′α =

∫
y

δS[F ′, φ′]

δφβ(y)

δφβ(y)

δφ′α +

∫
y

δS[F, φ]

δF (y)

δF (y)

δφ′α

=
δS[F ′, φ′]

δφα
− δS[F, φ]

δφβ
∂ξβ

∂φα
− 1

4

δ

δφα

∫
y

G̃ bG

=
δS[F, φ]

δφα
− δS[F, φ]

δφβ
∂ξβ

∂φα
+

δ

δφα

(
S[F ′, φ′]− S[F, φ]− 1

4

∫
y

G̃ bG

)
where only first order infinitesimals have been retained, and where techniques similar to those
used in the study of (5.51) have been applied. On shell the left hand side has to vanish; since
the first two addends on the right hand side are proportional to the φ-equations of motion, this
happens iff on shell

δ

δφα

(
S[F ′, φ′]− S[F, φ]− κS[F, φ]− 1

4

∫
y

(G̃ bG+ F̃ c F )

)
= 0 . (5.57)
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5.3.2 The main example and the scalar fields fractional transformations

Comparison with (5.56) shows that on shell

δ

δφα
f(φ) = 0 . (5.58)

In this expression no field strength F is present and therefore the equations of motion of our
interacting system are of no use; equation (5.58) holds also off shell and we conclude that f(φ) is
φ independent, it is just a constant depending on the parameters a, b, c, d (it usually vanishes).
We thus have the condition

L(F ′, φ′)− L(F, φ)− κL(F, φ)− 1

4
F̃ c F − 1

4
G̃ bG = consta,b,c,d (5.59)

If we expand F ′ in terms of F and G, we obtain the equivalent condition

∆φL(F, φ) =
1

4
F̃ c F − 1

4
G̃ bG+ κL(F, φ)− 1

2
G̃ a F + consta,b,c,d (5.60)

where ∆φL(F, φ) = L(F, φ
′)− L(F, φ).

Equation (5.60), where G̃ µν
Λ = 2∂L/∂FΛ

µν , is a necessary and sufficient condition in order
to have duality symmetry. This condition is on shell of the fermions equations of motion,
in particular if no fermion is present this condition is off shell. In the presence of fermions,
equation (5.60) off shell is a sufficient condition for duality symmetry.

The duality symmetry group is

R>0 × SL(2n,R) , (5.61)

the group of dilatations times symplectic transformation; it is the connected Lie group generated
by the Lie algebra (5.55). It is also the maximal group of duality rotations as the example (or
better, the limiting case) studied in the next section shows.

We have considered dynamical fermionic and bosonic fields φα. If a subset χr of these
fields is not dynamical the corresponding equations of motion are of the same order as those
defining G, and thus (5.54) and (5.60) hold on shell of all these equations. Moreover since no
∂χr appears in the lagrangian, the duality transformations for these fields can include the field
strength F , i.e., χr → χ′r = Ξr(F, χ). In this case there is an extra addend in (5.51). The
necessary and sufficient duality condition (5.60) does not change.

We also notice that condition (5.59) in the absence of dilatations (κ = 0), and for
consta,b,c,d = 0 is equivalent to the invariance of

L − 1

4
F̃G . (5.62)

5.3.2 The main example and the scalar fields fractional transformations

Consider the Lagrangian
1

4
N∈F F +

∞

△
N∞F F̃ + L (ϕ) (5.63)

where the real symmetric matricesN∞(ϕ) andN∈(ϕ) and the lagrangian L (ϕ) are just functions
of the bosonic fields ϕi, i = 1, . . .m, (and their partial derivatives).

Any nonlinear lagrangian in the limit of vanishing fermionic fields and of weak field strengths
F 4 << F 2 reduces to the one in (5.63). A straighforward calculation shows that this lagrangian
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has R>0×SL(2n,R) duality symmetry if the matrices N∞ and N∈ of the scalar fields transform
as

∆N∞ = c+ dN∞ −N∞⊣ −N∞ ⌊ N∞ +N∈ ⌊ N∈ , (5.64)
∆N∈ = dN∈ −N∈⊣ −N∞ ⌊ N∈ −N∈ ⌊ N∞ , (5.65)

and
∆L (ϕ) = κL (ϕ) . (5.66)

If we define
N = N∞ + ⟩N∈ ,

i.e., N∞ = ReN , N∈ = ImN , the transformations (5.64), (5.65) read

∆N = ⌋ + ⌈N −N⊣ −N ⌊ N , (5.67)

the finite version is the fractional transformation

N ′ = (C +DN ) (A + BN )−∞ . (5.68)

Under (5.68) the imaginary part of N transforms as

N ′
∈ = (A + BN )−†N∈(A + BN )−∞ (5.69)

where −† is a shorthand notation for the hermitian conjugate of the inverse matrix.

The kinetic term 1
4
N∈F F is positive definite if the symmetric matrixN∈ is negative definite.

In Appendix 7.2 we show that the matrices N = N∞+ ⟩N∈ with N∞ and N∈ real and symmetric,
and N∈ positive definite, are the coset space Sp(2n,R)

U(n)
.

A scalar lagrangian that satisfies the variation (5.66) can always be constructed using the
geometry of the coset space Sp(2n,R)

U(n)
, see Section 5.3.4.

This example also clarifies the condition (5.55) that we have imposed on the GL(2n,R)
generators. It is a straighfoward calculation to check that the equations (5.42), (5.43) and

G̃ = N∈F +N∞F̃ (5.70)

have duality symmetry under GL(2n,R) transformations with ∆N given in (5.67). However
it is easy to see that equation (5.54) implies, for the lagrangian (5.63), that condition (5.55)
must hold. The point is that we want the constitutive relations G = G[F, φ] to follow from a
lagrangian. Those following from the lagrangian (5.63) are (5.70) with N∞ and N∈ necessarily
symmetric matrices. Only if the transformed matrices N ′

∞ and N ′
∈ are again symmetric we can

have G̃′ = ∂L(F ′,φ′)
∂F ′ as in (5.47), (or more generally G̃′ = ∂L′(F ′,φ′)

∂F ′ ). The constraints N ′
∞ = N ′

∞

⊔ ,
N ′
∈ = N

′
∈

⊔ , reduce the duality group to R>0 × SL(2n,R).

In conclusion equation (5.60) is a necessary and sufficient condition for a theory of n abelian
gauge fields coupled to bosonic matter to be symmetric under R>0×SL(2n,R) duality rotations,
and R>0 × SL(2n,R) is the maximal connected Lie group of duality rotations.

5.3.3 A basic example with fermi fields

Consider the Lagrangian with Pauli coupling

L0 = −
1

4
FµνF

µν − 1

2
ψ∂/ψ − 1

2
ξ∂/ξ +

1

2
λF µνψσµνξ (5.71)
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where σµν = 1
4
[γµ, γν ] and ψ, ξ are two Majorana spinors. We have

G̃µν = 2
∂L0

∂Fµν
= −F µν + λψσµνξ (5.72)

and the duality condition (5.60) for an infinitesimal U(1) duality rotation
(
0
−b

b
0

)
reads

∆ψL0 +∆ξL0 = −
b

4
λF̃ψσξ +

b

4
λ2 ψσµνξ ψσ̃µνξ . (5.73)

It is natural to assume that the kinetic terms of the fermion fields are invariant under this
duality rotation (this is also the case for the scalar lagrangian L (ϕ) in (5.66)), then using
γ5σ

µν = iσ̃µν we see that the coupling of the fermions with the field strength is reproduced if
the fermions rotate according to

∆ψ =
i

2
bγ5ψ , (5.74)

∆ξ =
i

2
bγ5ξ ; (5.75)

we also see that we have to add to the lagrangian L0 a new interaction term quartic in the
fermion fields. Its coupling is also fixed by duality symmetry to be −λ2/8.

The theory with U(1) duality symmetry is therefore given by the lagrangian [3]

L = −1

4
FµνF

µν − 1

2
ψ∂/ψ − 1

2
ξ∂/ξ +

1

2
λF µνψσµνξ −

1

8
λ2 ψσµνξ ψσ

µνξ . (5.76)

Notice that fermions transform under the double cover of U(1) indeed under a rotation of angle
b = 2π we have ψ → −ψ, ξ → −ξ, this is a typical feature of fermions transformations under
duality rotations, they transform under the double cover of the maximal compact subgroup
of the duality group. This is so because the interaction with the gauge field is via fermions
bilinear terms.

5.3.4 Compact and noncompact duality rotations

Compact duality rotations

The fractional transformation (5.68) is also characteristic of nonlinear theories. The subgroup
of Sp(2n,R) that leaves invariant a fixed value of the scalar fields N is U(n). This is easily seen
by setting N = −⟩∞∞. Then infinitesimally we have relations (5.55) with κ = 0 and b = −c,
a = −at, i.e. we have the antisymmetric matrix(

a b

−b a

)
,

a = −at, b = bt. For finite transformations the Sp(2n,R) relations (5.391) are complemented
by

A = D , B = −C . (5.77)

Thus A− iB is a unitary matrix (see also (5.397)). U(n) is the maximal compact subgroup of
Sp(2n,R), it is the group of orthogonal and symplectic 2n× 2n matrices.

72



5.3.4 Compact and noncompact duality rotations

More in general from Section 3.1 we easily conclude that a necessary and sufficient condition
for a theory with just n abelian gauge fields to have U(n) duality symmetry is (cf. (5.60))

F̃ΛFΣ + G̃ΛGΣ = 0 (5.78)

G̃ΛFΣ − G̃ΣFΛ = 0 (5.79)

for all Λ,Σ. Moreover since any nonlinear lagrangian in the limit of weak field strengths
F 4 << F 2 reduces to the one in (5.63) (with a fixed value of N ), we conclude that U(n) is the
maximal duality group for a theory with only gauge fields.

Condition (5.79) is equivalent to

(FΣ ∂

∂FΛ
− FΛ ∂

∂FΣ
)L = 0 , (5.80)

i.e. to the invariance of the Lagrangian under SO(n) rotations of the n field strengths FΣ.
Condition (5.78) concerns on the other hand the invariance of the equations of motion under
transformation of the electric field strengths into the magnetic field strengths.

In a theory with just n abelian gauge fields the field strengths appear in the Lagrangian
only through the Lorentz invariant combinations

αΛΣ ≡ 1

4
FΛFΣ, βΛΣ ≡ 1

4
F̃ΛFΣ, (5.81)

and equation (5.80), tell us that L is a scalar under SO(n) rotations; e.g. L is a sum of traces,
or of products of traces, of monomials in α and β (we implicitly use the metric δΛΣ in the α
and β products).

If we define
Lα ≡

∂L

∂αt
, Lβ ≡

∂L

∂βt
, (5.82)

then using the chain rule and the definitions (5.81) we obtain that (5.78) is equivalent to

LββLβ − LαβLα + LααLβ + LβαLα + β = 0 . (5.83)

If we define
p ≡ −1

2
(α + iβ) , q ≡ −1

2
(α− iβ) , (5.84)

then (5.83) simplifies and reads

p− Lp pLp = q − Lq qLq . (5.85)

Condition (5.83) in the case of a single gauge field was considered in [15] togheter with
other equivalent conditions, in particular LuLv = 1, where u = 1

2
(α + (α2 + β2)

1
2 ), v =

1
2
(α− (α2 + β2)

1
2 ), see also [20].

Coupling to scalar fields and noncompact duality rotations

By freezing the values of the scalar fields N we have obtained a theory with only gauge fields
and with U(n) duality symmetry. Vice versa (following [16] that extends to U(n) the U(1)
interacting theory discussed in [14, 15]) we show that given a theory invariant under U(n)
duality rotations it is possible to extend it via n(n + 1) scalar fields N to a theory invariant
under Sp(2n,R). Let L(F ) be the lagrangian of the theory with U(n) duality. From (5.59) we
see that under a U(n) duality rotation

L(F ′)− L(F ) = −1

4
F̃ b F +

1

4
G̃ bG . (5.86)
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5.3.4 Compact and noncompact duality rotations

In particular L(F ) is invariant under the orthogonal subgroup SO(n) ⊂ U(n) given by the
matrix

(
A
0

0
−At

)
. This is the so-called electric subgroup of the duality rotation group U(n)

because it does not mix the electric fields F with the dual fields G.

Define the new lagrangian

L(F,R,N∞) = L(RF ) +
∞

△
F̃ N∞F (5.87)

where R = (RΛ
Σ)Λ,Σ=1,...n is an arbitrary nondegenerate real matrix and N∞ is a real symmetric

matrix. Because of the O(n) symmetry the new lagrangian depends only on the combination

N∈ = −R⊔R , (5.88)

rather than on R. Thus L(F,R,N∞) = L(F ,N ) where N = N∞ + ⟩N∈.
We show that L satisfies the duality condition (5.60),

(∆F +∆R +∆N∞)L(F,R,N∞) =
∞

△
F̃ ⌋ F +

∞

△
G̃ ⌊ G (5.89)

where as always G̃ = 2 ∂L
∂F

, and where N∞ transforms as in (5.64) and

∆R = −R(a+ bN∞) , (5.90)

so that N∈ = −R⊔R transforms as in (5.65). Notice that we could also have chosen the
transformation ∆R = ΛR−R(a+ bN∞) with Λ an infinitesimal SO(n) rotation.

We first immediately check (5.89) in the case of the rotation
(
0
c
0
0

)
. Then in the case

(
a
0
0
d

)
,

where a = −dt. Finally we consider the duality rotation
(
0
0
b
0

)
. It is convenient to introduce the

notation
F = RF , G = 2

∂L(F )

∂F
. (5.91)

We observe that L(F ) satisfies the U(n) duality conditions (5.78), (5.79) with F → F , G→ G.
Equation (5.89) holds because of (5.78) and proves Sp(2n,R) duality invariance of the theory
with lagrangian L.

We end this subsection with few comments. We notice that (5.79) is equivalent to the
invariance of the lagrangian under the infinitesimal SO(n) transformation R→ ΛR.

We also observe that under an Sp(2n,R) duality transformation
(
a
c
b
d

)
, the dressed fields F

and G transform via the field dependent rotation
(

0
−b′

b′
0

)
=
(

0
−RbRt

RbRt

0

)
,

∆F = R bRt G , (5.92)
∆G = −R bRt F . (5.93)

The geometry underlying the construction of Sp(2n,R) duality invariant theories from U(n)
ones is that of coset spaces. The scalar fields N parametrize the coset space Sp(2n,R)/U(n) (see
proof in...). We also have Sp(2n,R)/U(n) = SO(n)\GL

+(n)×R
n(n+1)

2 where GL+(n) is the connected
component of GL(n) and the equivalence classes [R] = {R′ ∈ GL+(n); R′R−1 = eΛ ∈ SO(n)}
parametrize the coset space SO(n)\GL

+(n).

The proof of Sp(2n,R) duality symmetry for the theory described by the lagrangian L holds
also if we add to L an Sp(2n,R) invariant lagrangian for the fields N like the lagrangian L
in (5.105). Of course we can also consider initial lagrangians in (5.86) that depend on matter
fields invariant under the U(n) rotation, they will be Sp(2n,R) invariant in the corresponding
lagrangian L. Moreover, by considering an extra scalar field Φ, we can always extend an
Sp(2n,R) duality theory to an R>0 × Sp(2n,R) one.
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5.3.5 Nonlinear sigma models on G/H

In this section we briefly consider the geometry of coset spaces G/H. This is the geometry
underlying the scalar fields and needed to formulate their dynamics [59, 60].

We study in particular the case G = Sp(2n.R), H = U(n) [6] and give a kinetic term for
the scalar fields N .

The geometry of the coset space G/H is conveniently described in terms of coset represen-
tatives, local sections L of the bundle G → G/H. A point ϕ in G/H is an equivalence class
gH = {g̃ | g−1g̃ ∈ H}. We denote by ϕi (i = 1, 2 . . .m) its coordinates (the scalar fields of
the theory). The left action of G on G/H is inherited from that of G on G, it is given by
gH 7→ g′gH, that we rewrite ϕ 7→ g′ϕ = ϕ′. Concerning the coset representatives we then have

g′L(ϕ) = L(ϕ′)h , (5.94)

because both the left and the right hand side are representatives of ϕ′. The geometry of G/H
and the corresponding physics can be constructed in terms of coset representatives. Of course
the construction must be insensitive to the particular representative choice, we have a gauge
symmetry with gauge group H.

When H is compact the Lie algebra of G splits in the direct sum G = H+K, where

[H,H] ⊂ H , [K,K] ⊂ H+K , [H,K] ⊂ K . (5.95)

The last expression defines the coset space representation of H. The representations of the com-
pact Lie algebra H are equivalent to unitary ones, and therefore there exists a basis (Hα, Ka),
where [Hα, Ka] = Cb

αaKb with Cα = (Cb
αa)a,b=1,...m=dimG/H antihermitian matrices. Since the

coset representation is a real representation then these matrices Cα belong to the Lie algebra
of SO(m).

Given a coset representative L(ϕ), the pull back on G/H of the G Lie algebra left invariant
1-form Γ = L−1dL is decomposed as

Γ = L−1dL = P a(ϕ)Ka + ωα(ϕ)Hα .

Γ and therefore P = P a(ϕ)Ka and ω = ωα(ϕ)Hα are invariant under diffeomorphisms generated
by the left G action. Under the local right H action of an element h(ϕ) (or under change of
coset representative L′(ϕ) = L(ϕ)h(ϕ)) we have

P → h−1Ph , ω → h−1ωh+ h−1dh . (5.96)

The 1-forms P a(ϕ) = P a(ϕ)idϕ
i are therefore vielbain on G/H transforming in the fundamental

of SO(m), while ω = ω(ϕ)idϕ
i is an H-valued connection 1-form on G/H. We can then define

the covariant derivative ∇P a = [P, ω]a = P b ⊗−Ca
αbω

α.
There is a natural metric on G/H,

g = δabP
a ⊗ P b , (5.97)

(this definition is well given because we have shown that the coset representation is via in-
finiesimal SO(m) rotations). It is easy to see that the connection ∇ is metric compatible,
∇g = 0.

If the coset is furthermore a symmetric coset we have

[K,K] ⊂ H ,
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then the identity dΓ+Γ∧Γ = 0, that is (the pull-back on G/H of) the Maurer-Cartan equation,
in terms of P and ω reads

R + P ∧ P = 0 , (5.98)
dP + P ∧ ω + ω ∧ P = 0 . (5.99)

This last relation shows that ω is torsionfree. Since it is metric compatible it is therefore the
Riemannian connection on G/H. Equation (5.98) then relates the Riemannian curvature to
the square of the vielbeins.

By using the connection ω and the vierbein P we can construct couplings and actions
invariant under the rigid G and the local H transformations, i.e. sigma models on the coset
space G/H.

For example a kinetic term for the scalar fields, which are maps from spacetime to G/H, is
given by pulling back to spacetime the invariant metric (5.97) and then contracting it with the
spacetime metric

Lkin(ϕ) =
1

2
P a
µP

µ
a =

1

2
P a

i∂µϕ
iPaj∂

µϕj . (5.100)

By construction the lagrangian Lkin(ϕ) is invariant under G and local H transformations; it
depends only on the coordinates of the coset space G/H.

The case G = Sp(2n,R), H = U(n)

A kinetic term for the Sp(2n,R)
U(n)

valued scalar fields is given by (5.100). This lagrangian is invariant
under Sp(2n,R) and therefore satisfies the duality condition (5.66) with G = Sp(2n,R) and
κ = 0. We can also write

Lkin(ϕ) =
1

2
P a
µP

µ
a =

1

2
Tr(PµP

µ) ; (5.101)

where in the last passage we have considered generators Ka so that Tr(KaKb) = δab (this is
doable since U(n) is the maximal compact subgroup of Sp(2n,R)).

We now recall the representation of the group Sp(2n.R) and of the associated coset Sp(2n,R)
U(n)

in the complex basis discussed in the appendix (and frequently used in the later sections) and
we give a more explicit expression for the lagrangian (5.101).

Rather than using the symplectic matrix S =
(
A
C
B
D

)
of the fundamental representation of

Sp(2n,R), we consider the conjugate matrix A−1SA where A = 1√
2

(
11

−i11
11
i11

)
. In this complex

basis the subgroup U(n) ⊂ Sp(2n,R) is simply given by the block diagonal matrices
(
u
0
0
ū

)
. We

also define the n× 2n matrix (
f
h

)
=

1√
2

(
A− iB
C − iD

)
(5.102)

and the matrix
V =

(
f f̄
h h̄

)
=

(
A B
C D

)
A . (5.103)

Then (cf. (5.398), (5.399)),

V −1dV =

(
i(f †dh− h†df) i(f †dh̄− h†df̄)
−i(f tdh− htdf) −i(f tdh̄− htdf̄)

)
≡
(
ω P̄
P ω̄

)
, (5.104)

where in the last passage we have defined the n× n sub-blocks ω and P corresponding to the
U(n) connection and the vielbein of Sp(2n,R)/U(n) in the complex basis, (with slight abuse
of notation we use the same letter ω in this basis too).

76



5.3.6 Invariance of energy momentum tensor

We finally obtain the explicit expression

Lkin(ϕ) = Tr(P̄µP
µ) =

1

4
Tr(N−∞

∈ ∂µN N
−∞
∈ ∂µN ) (5.105)

where P = Pµdx
µ = Pi∂µϕ

idxµ, N = N∞ − ⟩N∈ and N = N∞ + ⟩N∈ = ReN + ⟩ImN . The
matrix of scalars N parametrizes the coset space Sp(2n,R)/U(n) (see Appendix 7.2); in terms
of the f and h matrices it is given by (cf. (5.408))

N = { ⟨−∞ , N−∞
∈ = −∈{ { † . (5.106)

Under the symplectic rotation
(
A
C
B
D

)
→
(
A′

C′
B′

D′

)(
A
C
B
D

)
the matrix N changes via the fractional

transformation N → (C′ +D ′N ) (A′ + B′N )−∞, (cf. (5.68)).

Another proof of the invariance of the kinetic term (5.105) under the Sp(2n,R) follows
by observing that (5.105) is obtained from the pullback to the spacetime manifold of the
metric associated to the Sp(2n,R)

U(n)
Kform Tr(N−∞

∈ dN N−∞
∈ dN ) (here d = ∂ + ∂ is the exterior

derivative). This metric is obtained from the Kpotential

K = −4Tr log i(N −N ) . (5.107)

Under the action of Sp(2n,R), N and N −N change as in (5.68), (5.69) and the Kpotential
changes by a Ktransformation, thus showing the invariance of the metric.

3.4.2 The case G = R>0 × Sp(2n,R), H = U(n)

In this case the duality rotation matrix
(
a
c
b
d

)
belongs to the Lie algebra of R>0 × Sp(2n,R), as

defined in (5.55). In particular infinitesimal dilatations are given by the matrix κ
2

(
11
0
0
11

)
. The

coset space is
R>0 × Sp(2n,R)

U(n)
= R>0×Sp(2n,R)

U(n)
, (5.108)

there is no action of U(n) on R>0. We consider a real positive scalar field Φ = eσ invariant
under Sp(2n,R) transformations. The fields Φ and N parametrize the coset space (5.108).

Let’s first consider the main example of Section 3.2. The duality symmetry conditions for
the lagrangian (5.63) are (5.64)-(5.66). >From equations (5.64),(5.65) (that hold for

(
a
c
b
d

)
in

the Lie algebra of R>0 × Sp(2n,R)) we see that the fields N , and henceforth the lagrangian
Lkin(ϕ), are invariant under the R>0 action. It follows that the scalar lagrangian

Φ2Lkin(ϕ) + ∂µΦ∂
µΦ (5.109)

satisfies the duality condition (5.66). This shows that the lagrangian (5.63) with the scalar
kinetic term given by (5.109) has R>0 × Sp(2n,R) duality symmetry. We see that in the
lagrangian (5.63) the scalar Φ does not couple to the field strenght F . The coupling of Φ to F
is however present in lagrangians where higher powers of F are present.

More in general expression (5.109) is a scalar kinetic term for lagrangians that satisfy the
R>0 × Sp(2n,R) duality condition (5.60).

5.3.6 Invariance of energy momentum tensor

Duality rotation symmetry is a symmetry of the equations of motion that does not leave in-
variant the lagrangian. The total change ∆L ≡ L(F ′, φ′)− L(F, φ) of the lagrangian is given
in equation (5.59). Even if κ = 0 this variation is not a total derivative because F and G are
the curl of vector potentials AF and AG only on shell.
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We show however that the variation of the action with respect to a duality rotation invariant
parameter λ is invariant under Sp(2n,R) rotations if the duality rotation (5.50) of the φ fields
is λ independent.

Consider the λ-variation of ∆S[F, φ] ≡ S[F ′, φ′]− S[F, φ] =
∫
y
∂L
∂F

∆F +∆φS,

δ

δλ
∆S =

∫
y

δ

δλ
(
∂L

∂F
) ∆F +

∫
y

∂L

∂F

δ

δλ
(∆F ) +

δ

δλ
(∆φS)

=

∫
y

∂

∂F
(
δL

δλ
) ∆F +

1

2

∫
y

G̃
δ

δλ
(∆F ) + ∆φ(

δS

δλ
)

= ∆(
δS

δλ
) +

1

4

δ

δλ

∫
y

G̃ bG (5.110)

where in the second line we used that δ
δλ
∆φ = 0. Thus ∆( δS

δλ
) = δ

δλ
(∆S − 1

4

∫
y
G̃ bG) and

therefore from (5.59) we have,

∆(
δS

δλ
) = κ

δS

δλ
(5.111)

thus showing invariance of δS
δλ

under Sp(2n,R) rotations (κ = 0 rotations).

An important case is when λ is the metric gµν , this is invariant under duality rotations. This
shows that the energy momentum tensor δS

δgµν
is invariant under Sp(2n,R) duality rotations.

Another instance is when λ is the dimensional parameter typically present in a nonlinear
theory. Provided the matter fields are properly rescaled φ → φ̂ = λsφ, so that they become
adimensional and therefore their transformation ∆φ̂, usually nonlinear, does not explicitly
involve λ, then δS

δλ
is invariant, where it is understood that ∂φ̂

∂λ
= 0.

For the action of the Born-Infeld theory coupled to the axion and dilaton fields, L =
1
λ

(
1−
√

1− 1
2
λN∈F ∈ − ∞

∞̸
λ∈N∈(F F̃ )∈

)
we obtain the invariant ∂L

∂λ
= − 1

λ
(L− 1

4
FG̃); we already

found this invariant in (5.62).

5.3.7 Generalized Born Infeld theory

In this section we present the Born-Infeld theory with n abelian gauge fields coupled to n(n+
1)/2 scalar fields N and show that is has an Sp(2n,R) duality symmetry. If we freeze the scalar
fields N to the value N = −⟩∞∞ then the lagrangian has U(n) duality symmetry and reads

L = Tr[11− Sα,β
√

11 + 2α− β2] , (5.112)

where as defined in (5.81), the componets of the n × n matrices α and β are
αΛΣ = 1

4
FΛFΣ, βΛΣ = 1

4
F̃ΛFΣ. The square root is to be understood in terms of its power

series expansion, and the operator Sα,β acts by symmetrizing each monomial in the α and β
matrices. A world (monomial) in the letters α and β is symmetrized by averaging over all
permutations of its letters. The normalization of Sα,β is such that if α and β commute then
Sα,β acts as the identity. Therefore in the case of just one abelian gauge field (5.112) reduces
to the usual Born-Infeld lagrangian.

The Sp(2n,R) Born-Infeld lagrangian is obtained by coupling the lagrangian (5.112) to the
scalar fields N as described in Subsection 5.3.4 and explicitly considered in (5.149).

Following [18] we prove the duality symmetry of the Born-Infeld theory (5.112) by first
showing that a Born-Infeld theory with n complex abelian gauge fields written in an auxiliary
field formulation has U(n, n) duality symmetry. We then eliminate the auxiliary fields by
proving a remarkable property of solutions of matrix equations [19]. Then we can consider real
fields.
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Duality rotations with complex field strengths

>From the general study of duality rotations we know that a theory with 2n real fields FΛ
1

and FΛ
2 (Λ = 1, . . . n) has at most Sp(4n,R) duality if we consider duality rotations that leave

invariant the energy-momentum tensor (and in particular the hamiltonian). We now consider
the complex fields

FΛ = FΛ
1 + iFΛ

2 , F̄Λ = FΛ
1 − iFΛ

2 , (5.113)

the corresponding dual fields

G =
1

2
(G1 + iG2) , Ḡ =

1

2
(G1 − iG2) , (5.114)

and restrict the Sp(4n,R) duality group to the subgroup of holomorphic transformations,

∆

(
F
G

)
=

(
a b
c d

)(
F
G

)
(5.115)

∆

(
F̄
Ḡ

)
=

(
ā b̄
c̄ d̄

)(
F̄
Ḡ

)
. (5.116)

This requirement singles out those matrices, acting on the vector


F1

F2

G1

G2

, that belong

to the Lie algebra of Sp(4n,R) and have the form Ā
( a 0
0 ā

)
Ā−1 1

2
Ā
( b 0
0 b̄

)
Ā−1

2Ā
( c 0
0 c̄

)
Ā−1 Ā

( d 0
0 d̄

)
Ā−1

 (5.117)

where A = 1√
2

(
11

−i11
11
i11

)
. The matrix (5.117) belongs to Sp(4n,R) iff the n×n complex matrices

a, b, c, d satisfy
a† = −a , b† = b , c† = c . (5.118)

Matrices
(
a b
c d

)
, that satisfy (5.118), define the Lie algebra of the real form U(n, n). The group

U(n, n) is here the subgroup of GL(2n,C) caracterized by the relations∗

M †
(

0 −11
11 0

)
M =

(
0 −11
11 0

)
. (5.119)

One can check that (5.119) implies the following relations for the block components of M =(
A B
C D

)
,

C†A = A†C , B†D = D†B , D†A− B†C = 11 . (5.120)

The Lie algebra relations (5.118) can be obtained from the Lie group relations (5.120) by
writing

(
A
B
C
D

)
=
(
11
0
0
11

)
+ ϵ
(
a
c
b
d

)
with ϵ infinitesimal. Equation (5.117) gives the embedding of

U(n, n) in Sp(4n,R).

The theory of holomorphic duality rotations can be seen as a special case of that of real du-
ality rotations, but (as complex geometry versus real geometry) it deserves also an independent
formulation based on the holomorphic variables

(
F
G

)
and maps

(
a b
c d

)
.

∗In Appendix 7.1 we define U(n, n) as the group of complex matrices that satisfy the condition U†(11
0
0
−11

)
U =(

11
0
0
−11

)
. The similarity transformation between these two definitions is M = ĀUĀ−1.
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The dual fields in (5.114), or rather the Hodge dual of the dual field strength, G̃ µν
Λ =

1
2
εµνρσG

ρσ
Λ , is equivalently defined via

G̃ µν
Λ ≡ 2

∂L

∂F̄Λ
µν

, ˜̄G µν
Λ ≡ 2

∂L

∂FΛ
µν

. (5.121)

Repeating the passages of Section 3.1 we have that the Bianchi identities and equations of
motion ∂µF̃Λµν = 0 , ∂µG̃

µν
Λ = 0 , δS[F,F̄ ,φ]

δφα = 0 transform covariantly under the holomorphic
infinitesimal transformations (5.115) if the lagrangian satisfies the condition (cf. (5.59))

L(F +∆F, F̄ +∆F̄ , φ+∆φ)− L(F, F̄ , φ)− 1

2
F̃ c F̄ − 1

2
G̃ b Ḡ = consta,b,c,d (5.122)

Of course we can also consider dilatations κ ̸= 0, then in the left hand side of (5.122) we have
to add the term −κL(F, F̄ , φ).

The maximal compact subgroup of U(n, n) is U(n) × U(n) and is obtained by requiring
(5.120) and

A = D , B = −C .

The corresponding infinitesimal relations are (5.118) and a = d , b = −c .

The coset space U(n,n)
U(n)×U(n)

is the space of all negative definite hermitian matrices M∗ of
U(n, n), see for example [18] (the proof is similar to that for Sp(2n,R)/U(n) in Appendix
7.2). All these matrices are for example of the form M∗ = −g†−1

g−1 with g ∈ U(n, n). These
matrices can be factorized as

M∗ =

(
11 −N∞
0 11

)(
N∈ 0
0 N−∞

∈

)(
11 0
−N †

∞ 11

)
=

(
N∈ +N∞N

−∞
∈ N †

∞ −N∞N−∞
∈

−N−∞
∈ N †

∞ N−∞
∈

)
= −i

(
0 −11
11 0

)
+

(
N ImN−∞N † −N ImN−∞

−ImN−∞N † ImN−∞

)
= −i

(
0 −11
11 0

)
+

(
N 0
−11 0

)(
N∈ 0
0 N−∞

∈

)(
N † −11
0 0

)
(5.123)

where N∞ is hermitian, N∈ is hermitian and negative definite, and

N ≡ N∞ + ⟩N∈ . (5.124)

Since any complex matrix can always be decomposed into hermitian matrices as in (5.124), the
only requirement on N is that N∈ is negative definite.

The left action of U(n, n) on itself g →
(

A B
C D

)
g, induces the action on the coset space

M∗ →
(

D −C
−B A

)
M∗ ( D −C

−B A

)† because M∗ = −g†−1
g−1. Expression (5.123) then immediately

gives the action of U(n, n) on the parametrization N of the coset space,

N → N ′ = (C+ DN ) (A+ BN )−∞ , (5.125)

N∈ → N ′
∈ = (A+ BN )−†N∈(A+ BN )−∞ . (5.126)

As in Section 3.4, given a theory depending on n complex fields FΛ and invariant under the
maximal compact duality group U(n)× U(n) it is possible to extend it via the complex scalar
fields N , to a theory invariant under U(n, n). The new lagrangian is

L(F,R,N∞) = L(RF ) +
∞

∈
F̃ N∞F̄ (5.127)
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where R = (RΛ
Σ)Λ,Σ=1,...n is now an arbitrary nondegenerate complex matrix. Because of the

U(n) maximal compact electric subgroup this new lagrangian depends only on the combination

N∈ = −R†R , (5.128)

rather than on R. Thus L(F,R,N∞) = L(F ,N ) where N = N∞ + ⟩N∈. A transformation for
R compatible with (5.125) is

R′ = R(A+ BN )−∞, (5.129)
whose infinitesimal transformation is ∆R = −R(a+ bN ) .

Conversely, if we are given a Lagrangian L with equations of motion invariant under U(n, n)
we can obtain a theory without the scalar field N by setting N = −⟩∞∞. Then the duality
group is broken to the stability group of N = −⟩∞∞ which is U(n) × U(n), the maximal
compact subgroup.

Similarly to Section 3.4.1 we define the Lorentz invariant combinations

αab ≡ 1

2
F aF̄ b, βab ≡ 1

2
F̃ aF̄ b. (5.130)

If we consider lagrangians L(F, F̄ ) that depend only on gauge fields and only through sum of
traces (or of products of traces) of monomials in α and β , then the necessary and sufficient
condition for U(n)×U(n) holomorphic duality symmetry is still (5.83), where now α and β are
as in (5.130).

Born-Infeld with auxiliary fields

A lagrangian that satisfies condition (5.122) is

L = ReTr [ i(N − λ)χ− ⟩
∈
λχ†N∈χ− ⟩λ(α + ⟩β) ] , (5.131)

The auxiliary fields χ and λ and the scalar field N are n dimensional complex matrices. We can
also add to the lagrangian a duality invariant kinetic term for the scalar field N , (cf (5.105))

Tr(N−∞
∈ ∂µN

† N−∞
∈ ∂µN ) . (5.132)

In order to prove the duality of (5.131) we first note that the last term in the Lagrangian
can be written as

−ReTr [ iλ(α + iβ) ] = −Tr(λ2α + λ1β) .

If the field λ transforms by fractional transformation and λ1, λ2 and the gauge fields are real
this is the U(1)n Maxwell action (5.63), with the gauge fields interacting with the scalar field λ.
This term by itself has the correct transformation properties under the duality group. Similarly
for hermitian α, β, λ1 and λ2 this term by itself satisfies equation (5.122). It follows that the
rest of the Lagrangian must be duality invariant. The duality transformations of the scalar and
auxiliary fields are∗

λ′ = (C+ Dλ) (A+ Bλ)−1 , (5.133)

χ′ = (A+ BN )χ(A+ Bλ†)† , (5.134)

and (5.125). Invariance of Tr[i(N − λ)χ] is easily proven by using (5.120) and by rewrit-
ing (5.133) as

λ′ = (A+ Bλ†)−† (C+ Dλ†)† . (5.135)
Invariance of the remaining term which we write as ReTr [− i

2
λχ†N∈χ] = Tr [∞

∈
λ∈χ

†N∈χ] , is
straightforward by using (5.126) and the following transformation obtained from (5.135),

λ′2 = (A+ Bλ†)−†λ2(A+ Bλ†)−1 . (5.136)
∗In [18] we use different notations: N → S†, λ→ λ†, χ→ χ†,

(
A B
C D

)
→
(

D C
B A

)
.
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Elimination of the Auxiliary Fields

The equation of motion obtained by varying λ gives an equation for χ,

χ+
1

2
χ†N∈χ+ α + ⟩β = ′ , (5.137)

using this equation in the Lagrangian (5.131) we obtain

L = ReTr (iNχ) (5.138)

= ReTr (−N∈χ) + Tr (N∞β) , (5.139)

where χ is now a function of α, β and N∈ that solves (5.137). In the second line we observed
that the anti-hermitian part of (5.137) implies χ2 = −β.

In this subsection we give the explicit expression of L in terms of α, β and N .
First notice that (5.137) can be simplified with the following field redefinitions

χ̂ = RχR† ,

α̂ = RαR† , (5.140)
β̂ = RβR† ,

where, as in (5.128), R†R = −N∈. The equation of motion for χ is then equivalent to

χ̂− 1

2
χ̂†χ̂+ α̂− iβ̂ = 0 . (5.141)

The anti-hermitian part of (5.141) implies χ̂2 = −β̂ , thus χ̂† = χ̂ − 2iβ. This can be used
to eliminate χ̂† from (5.141) and obtain a quadratic equation for χ̂. If we define Q = 1

2
χ̂ this

equation reads
Q = q + (p− q)Q+Q2, (5.142)

where
p ≡ −1

2
(α + iβ) , q ≡ −1

2
(α− iβ) .

The lagrangian is then
L = 2ReTrQ+ Tr (N∞β) . (5.143)

If the degree of the matrices is one, we can solve for Q in the quadratic equation (5.142). Apart
from the fact that the gauge fields are complex, the result is the Born-Infeld Lagrangian coupled
to the dilaton and axion fields N ,

L = 1−
√

1− 2N∈α +N∈
∈β∈ +N∞β . (5.144)

For matrices of higher degree, equation (5.142) can be solved perturbatively,

Q0 = 0 , Qk+1 = q + (p− q)Qk +Q2
k , (5.145)

and by analyzing the first few terms in an expansion similar to (5.145) in [17, 18] it was
conjectured that

TrQ =
1

2
Tr
[
11 + q − p− Sp,q

√
11− 2(p+ q) + (p− q)2

]
, (5.146)

The right hand side formula is understood this way: first expand the square root as a power
series in p and q assuming that p and q commute. Then solve the ordering ambiguities arising
from the noncommutativity of p and q by symmetrizing, with the operator Sp,q, each monomial
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in the p and q matrices. A world (monomial) in the letters p and q is symmetrized by considering
the sum of all the permutations of its letters, then normalize the sum by dividing by the number
of permutations. This normalization of Sp,q is such that if p and q commute then Sp,q acts as
the identity. Therefore in the case of just one abelian gauge field (5.112) reduces to the usual
Born-Infeld lagrangian. An explicit formula for the coefficients of the expansion of the trace of
Q is [19, 69]

TrQ = Tr

[
q +

∑
r,s≥1

(
r + s− 2
r − 1

)(
r + s
r

)
S( prqs )

]
. (5.147)

In Appendix 8, following [19], see also [70] and [71], we prove that the trace ofQ is completely
symmetrized in the matrix coefficients q and p− q. Since this is equivalent to symmetrization
in q and p (5.146) follows. Since symmetrization in p and q is equivalent to symmetrization in
α̂ and β̂, the Born-Infeld lagrangian also reads

L = Tr[11− Sα,β
√

11 + 2α̂− β̂2 +N∞β] . (5.148)

In [69] the convergence of perturbative matrix solutions of (5.137), are studied. A sufficient
condition for the convergence of the sequence (5.145) to a solution of (5.142) is that the norms
of p− q and q have to satisfy (1− ||p− q||)2 > 4||q||. Here || || denotes any matrix norm with
the Banach algebra property ||MM ′|| ≤ ||M || ||M ′|| (e.g. the usual norm). This condition is
surely met if the field strengths FΛ

µν are weak.
If equation (5.142) is written as (11 + q − p)Q = q + Q2, then the sequence given by

Q0 = 0 , Qk+1 = (11+q−p)−1q+(11+q−p)−1Q2
k converges and is a solution of equation (5.142)

if ||(11+q−p)−1|| ||(11+q−p)−1q|| < 1/4. Notice that the matrix 11+q−p is always invertible, use
1
2
(11+ q−p)+ 1

2
(11+ q−p)† = 11, and the same argument as in (5.407). Notice also that if p and

q commute then
√

11− 2(p+ q) + (p− q)2 = (11+q−p)
√
11− 4(11 + q − p)−2q and convergence

of the power series expansion of this latter square root holds if ||(11 + q − p)−2q|| < 1/4.

Real field Strengths

We here construct a Born-Infeld theory with n real field strengths which is duality invariant
under the duality group Sp(2n,R).

We first study the case without scalar fields, i.e. N∞ = ′ and −N∈ = R = ∞∞. Consider a
Lagrangian L = L(α, β) with n complex gauge fields which describes a theory symmetric under
the maximal compact group U(N)× U(N) of holomorphic duality rotations. Assume that the
Lagrangian is a sum of traces (or of products of traces) of monomials in α and β . It follows that
this Lagrangian satisfies the self-duality equations (5.83) with α and β complex (recall end of
Section 3.7.1). This equation remains true in the special case that α and β assume real values.
That is L = L(α, β) satisfies the self-duality equation (5.83) with α = αT = ᾱ and β = βT = β̄.
We now recall that equation (5.83) is also the self-duality condition for Lagrangians with real
gauge fields provided that α and β are defined as in (5.81) as functions of field strengths FΛ

that are real (cf. the different complex case definition (5.130)). This implies that the theory
described by the lagrangian L(α, β) that is now function of n real field strengths is self-dual
with duality group U(n), the maximal compact subgroup of Sp(2n,R). The duality group can
be extended to the full noncompact Sp(2n,R), by introducing the symmetric matrix of scalar
fields N via the prescription (5.87).

As a straighforward application we obtain the Born-Infeld Lagrangian with n real gauge
fields describing an Sp(2n,R) duality invariant theory

L = Tr [ 11− S
α̂,β̂

√
1 + 2α̂− β̂2 +N∞β ] , (5.149)

where α̂ = RαRt, β̂ = RβRt, N∈ = −R⊔R, and αΛΣ = 1
4
FΛFΣ, βΛΣ = 1

4
F̃ΛFΣ as in (5.81).
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Supersymmetric Theory

In this section we briefly discuss supersymmetric versions of some of the Lagrangians introduced.
First we discuss the supersymmetric form of the Lagrangian (5.131). Consider the superfields
V Λ = 1√

2
(V Λ

1 + iV Λ
2 ) and V̌ Λ = 1√

2
(V Λ

1 − iV Λ
2 ) where V Λ

1 and V Λ
2 are real vector superfields,

and define
WΛ
α = −1

4
D̄2DαV

Λ , W̌Λ
α = −1

4
D̄2DαV̌

Λ .

Both WΛ and W̌Λ are chiral superfields and can be used to construct a matrix of chiral super-
fields

MΛΣ ≡ WΛW̌Σ .

The supersymmetric version of the Lagrangian (5.131) is then given by

L = Re

∫
d2Θ

[
Tr (i(N − λ)χ− ⟩

∈
λD̄∈(χ†N∈χ) + ⟩λM)

]
,

where N , λ and χ denote chiral superfields with the same symmetry properties as their corre-
sponding bosonic fields. While the bosonic fields N and λ appearing in (5.131) are the lowest
component of the superfields denoted by the same letter, the field χ in the action (5.131) is the
highest component of the superfield χ. A supersymmetric kinetic term for the scalar field N
can be written using the Kähler potential (5.107) as described in [72].

Just as in the bosonic Born-Infeld theory, one would like to eliminate the auxiliary fields.
This is an open problem if n ̸= 1. For n = 1 just as in the bosonic case the theory with
auxiliary fields also admits both a real and a complex version, i.e. one can also consider a
Lagrangian with a single real superfield. Then by integrating out the auxiliary superfields the
supersymmetric version of the Born-Infeld lagrangian (5.144) is obtained

L =

∫
d4Θ

N ∈∈W
∈W̄∈

1 + A+
√
1 + 2A+B2

+Re

[∫
d2Θ(

i

2
NW∈)

]
, (5.150)

where

A =
1

4
(D2(N∈W

∈) + D̄∈(N∈W̄
∈)) , B =

∞

△
(D∈(N∈W

∈)− D̄∈(N∈W̄∈)) .

If we only want a U(1) duality invariance we can set N = −⟩ and then the lagrangian (5.150)
reduces to the supersymmetric Born-Infeld lagrangian described in [46, 47, 48].

In the case of weak fields the first term of (5.150) can be neglected and the Lagrangian is
quadratic in the field strengths. Under these conditions the combined requirements of super-
symmetry and self duality can be used [73] to constrain the form of the weak coupling limit
of the effective Lagrangian from string theory. Self-duality of Born-infeld theories with N = 2
supersymmetries is discussed in [24].

5.4 Dualities in N > 2 extended Supergravities

In this section we consider N > 2 supergravity theories in D = 4; in these theories the graviton
is also coupled to gauge fields and scalars. We study the corresponding duality groups, that are
subgroups of the symplectic group. It is via the geometry of these subgroups of the symplectic
group that we can obtain the scalars kinetic terms, the supersymmetry transformation rules and
the structure of the central and matter charges of the theory with their differential equations
and their duality invariant combinations VBH and S (that for extremal black holes are the
effective potential and the entropy).
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5.4.1 Extended supergravities with target space G/H

Four dimensional N -extended supergravities contain in the bosonic sector, besides the met-
ric, a number n of vectors and m of (real) scalar fields. The relevant bosonic action is known
to have the following general form:

S =
1

4

∫ √
−g d4x

(
−1

2
R + ImNΛΓF

Λ
µνF

Γµν +
1

2
√
−g

ReNΛΓϵ
µνρσ FΛ

µνF
Γ
ρσ+

+
1

2
gij(ϕ)∂µϕ

i∂µϕj
)
, (5.151)

where gij(ϕ) (i, j, · · · = 1, · · · ,m) is the scalar metric on the σ-model described by the scalar
manifold Mscalar of real dimension m and the vectors kinetic matrix NΛΣ(ϕ) is a complex,
symmetric, n × n matrix depending on the scalar fields. The number of vectors and scalars,
namely n and m, and the geometric properties of the scalar manifold Mscalar depend on the
number N of supersymmetries and are summarized in Table 1.

The duality group of these theories is in general not the maximal one Sp(2n,R) because the
requirement of supersymmetry constraints the number and the geometry of the scalar fields in
the theory. In this section we study the case where the scalar fields manifold is a coset space
G/H, and we see that the duality group in this case is G.

In Section 5 we then study the general N = 2 case where the target space is a special
Kähler manifold M and thus in general we do not have a coset space. There the Sp(2n,R)
transformations are needed in order to globally define the supergravity theory. We do not have
a duality symmetry of the theory; Sp(2n,R) is rather a gauge symmetry of the theory, in the
sense that only Sp(2n,R) invariant expressions are physical ones.

The case of duality rotations in N = 1 supergravity is considered in [9], [74], see also
[25]. In this case there is no vector potential in the graviton multiplet hence no scalar central
charge in the supersymmetry algebra. Duality symmetry is due to the number of matter vector
multiplets in the theory, the coupling to eventual chiral multiplets must be via a kinetic matrix
N holomorphic in the chiral fields. We see that the structure of duality rotations is similar
to that of N = 1 rigid supersymmetry. For duality rotations in N = 1 and N = 2 rigid
supersymmetry using superfields see the review [24].

5.4.1 Extended supergravities with target space G/H

In N ≥ 2 supergravity theories where the scalars target space is a coset G/H, the scalar
sector has a Lagrangian invariant under the global G rotations. Since the scalars appear in
supersymmetry multiplets the symmetry G should be a symmetry of the whole theory. This is
indeed the case and the symmetry on the vector potentials is duality symmetry.

Let’s examine the gauge sector of the theory. We recall from Section 3.1 that we have an
Sp(2n,R) duality group if the vector (FG) transforms in the fundamental of Sp(2n,R), and the
gauge kinetic term N transforms via fractional transformations, if

(A B

C D

)
∈ Sp(2n,R),

N → N ′ = (C +DN ) (A + BN )−∞ . (5.152)

Thus in order to have G duality symmetry, G needs to act on the vector (FG) via symplectic
transformations, i.e. via matrices

(A B

C D

)
in the fundamental of Sp(2n,R). This requires a

homomorphism
S : G→ Sp(2n,R) . (5.153)

Different infinitesimal G transformations should correspond to different infinitesimal symplectic
rotations so that the induced map Lie(G) → Lie(Sp(2n,R)) is injective, and equivalently the
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homomorphism S is a local embedding (in general S it is not globally injective, the kernel of S
may contain some discrete subgroups of G).

Since U(n) is the maximal compact subgroup of Sp(2n,R) and since H is compact, we
have that the image of H under this local embedding is in U(n). It follows that we have a
G-equivariant map

N : G/H → S√(∈\ ,R)/U(\) , (5.154)

explicitly, for all g ∈ G,

N (}ϕ) = (C +DN (ϕ)) (A + BN (ϕ))−∞ , (5.155)

where with gϕ we denote the action of G on G/H, while the action of G on Sp(2n,R)/U(n)
is given by fractional transformations. Notice that we have identified Sp(2n,R)/U(n) with the
space of complex symmetric matrices N that have imaginary part ImN = −⟩(N−N ) negative
definite (see Appendix 7.2).

The D = 4 supergravity theories with N > 2 have all target space G/H, they are char-
acterized by the number n of total vectors, the number N of supersymmetries, and the coset
space G/H, see Table 1 ∗.

Table 1: Scalar Manifolds of N > 2 Extended Supergravities

N Duality group G isotropy H Mscalar n m

3 SU(3, n′) S(U(3)× U(n′)) SU(3,n′)
S(U(3)×U(n′))

3 + n′ 6n′

4 SU(1, 1)× SO(6, n′) U(1)× S(O(6)×O(n′)) SU(1,1)
U(1)

× SO(6,n′)
S(O(6)×O(n′))

6 + n′ 6n′ + 2

5 SU(5, 1) S(U(5)× U(1)) SU(5,1)
S(U(5)×U(1))

10 10

6 SO⋆(12) U(6) SO⋆(12)
U(6)

16 30

7, 8 E7(7) SU(8)/Z2
E7(7)

SU(8)/Z2
28 70

In the table, n stands for the number of vectors and m = dimM scalar for the number of real
scalar fields. In all the cases the duality group G is (locally) embedded in Sp(2n,R). The
number n of vector potentials of the theory is given by n = ng + n′ where n′ is the number
of vectors potentials in the matter multiplet while ng is the number of graviphotons (i.e. of
vector potentials that belong to the graviton multiplet). We recall that ng = N(N−1)

2
if N ̸= 6

; and ng = N(N−1)
2

+ 1 = 16 if N = 6 ; we also have n′ = 0 if N > 4. The scalar manifold
of the N = 4 case is usually written as SOo(6, n

′)/SO(6) × SO(n′) where SOo(6, n
′) is the

component of SO(6, n′) connected to the indentity. The duality group of the N = 6 theory
is more precisely the double cover of SO∗(12). Spinors fields transform according to H or its
double cover.

In general the isotropy group H is the product

H = HAut ×Hmatter (5.156)

∗In Table 1 the group S(U(p) × U(q)) is the group of block diagonal matrices
(
P
0

0
Q

)
with P ∈ U(p),

Q ∈ U(q) and detP detQ = 1. There is a local isomorphism between S(U(p) × U(q)) and the direct product
group U(1)× SU(p)× SU(q), in particular the corresponding Lie algebras coincide. Globally these groups are
not the same, for example S(U(5)× U(1)) = U(5) = U(1)× PSU(5) ̸= U(1)× SU(5).

86



5.4.1 Extended supergravities with target space G/H

where HAut is the authomorphism group of the supersymmetry algebra, while Hmatter depends
on the matter vector multiplets, that are not present in N > 4 supergravities.

In Section 3.5 we have described the geometry of the coset space G/H in terms of coset
representatives, local sections L of the bundle G → G/H. Under a left action of G they
transform as gL(ϕ) = L(ϕ′)h , where the g action on ϕ ∈ G/H gives the point ϕ′ ∈ G/H.

We now recall that duality symmetry is implemented by the symplectic embeddings (5.153)
and (5.154) and conclude that the embeddings of the coset representatives L in Sp(2n,R) will
play a central role. Recalling (5.102) these embeddings are determined by defining

L→ f(L) and L→ h(L) . (5.157)

In the following we see that the matrices f(L) and h(L) determine the scalar kinetic termN ,
the supersymmetry transformation rules and the structure of the central and matter charges of
the theory. We also derive the differential equations that these charges satisfy and consider their
positive definite and duality invariant quadratic expression VBH . These relations are similar to
the Special Geometry ones of N = 2 supergravity.

>From the equation of motion

dFΛ = 4πjΛm (5.158)
dGλ = 4πjeΛ (5.159)

we associate with a field strength 2-form F a magnetic charge pΛ and an electric charge qΛ
given respectively by:

pΛ =
1

4π

∫
S2

FΛ , qΛ =
1

4π

∫
S2

GΛ (5.160)

where S2 is a spatial two-sphere containing these electric and magnetic charges. These are
not the only charges of the theory, in particular we are interested in the central charges of
the supersymmetry algebra and other charges related to the vector multiplets. These latter
charges result to be the electric and magnentic charges pΛ and qΛ dressed with the scalar fields
of the theory. In particular these dressed charges are invariant under the duality group G and
transform under the isotropy subgroup H = HAut ×Hmatter.

While the index Λ is used for the fundamental representation of Sp(2n;R) the index M is
used for that of U(n). According to the local embedding

H = HAut ×Hmatter → U(n) (5.161)

the index M is further divided as M = (AB, Ī) where Ī refers to Hmatter and AB = −BA
(A = 1, . . . , N) labels the two-times antisymmetric representation of the R-symmetry group
HAut. We can understand the appearence of this representation of HAut because this is a typical
representation acting on the central charges. The index Ī rather than I is used because the
image ofHmatter in U(n) will be the complex conjugate of the fundamental ofHmatter, this agrees
with the property that under Kähler transformations of the U(1) bundle Sp(2n,R)/SU(n) →
Sp(2n,R)/U(n) the coset representatives of the scalar fields in the gravitational and matter
multiplets transform with opposite Kähler weights. This is also what happens in the generic
N = 2 case (cf. (5.357)).

The dressed graviphotons field strength 2-forms TAB may be identified from the supersym-
metry transformation law of the gravitino field in the interacting theory, namely:

δψA = ∇εA + αTAB µνγ
aγµνεBVa + . . . (5.162)
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5.4.1 Extended supergravities with target space G/H

Here ∇ is the covariant derivative in terms of the space-time spin connection and the composite
connection of the automorphism group HAut, α is a coefficient fixed by supersymmetry, V a is
the space-time vielbein. Here and in the following the dots denote trilinear fermion terms
which are characteristic of any supersymmetric theory but do not play any role in the following
discussion. The 2-form field strength TAB is constructed by dressing the bare field strengths FΛ

with the image f(L(ϕ)), h(L(ϕ)) in Sp(2n;R) of the coset representative L(ϕ) of G/H. Note
that the same field strengths TAB which appear in the gravitino transformation law are also
present in the dilatino transformation law in the following way:

δχABC = PABCD ℓ∂µϕ
ℓγµεD + βT[AB µνγ

µνεC] (5.163)

Analogously, when vector multiplets are present, the matter vector field strengths TI appearing
in the transformation laws of the gaugino fields, are linear combinations of the field strengths
dressed with a different combination of the scalars:

δλIA = iPIAB r∂µϕ
rγµεB + γTI µνγ

µνεA + . . . (5.164)

Here PABCD = PABCD ℓ dϕ
ℓ and PIAB = PIAB r dϕ

r are the vielbein of the scalar manifolds
spanned by the scalar fields ϕi = (ϕℓ, ϕr) of the gravitational and vector multiplets respectively
(more precise definitions are given below), and β and γ are constants fixed by supersymmetry.

According to the transformation of the coset representative gL(ϕ) = L(ϕ′)h , under the
action of g ∈ G on G/H we have

S(ϕ)Ā→ S(ϕ′)Ā = S(g)S(ϕ)S(h−1)Ā = S(g)S(ϕ)ĀU−1 (5.165)

where A = 1√
2

(
11

−i11
11
i11

)
is unitary and symplectic (cf. (5.394)), S(g) =

(
A
C
B
D

)
and S(h) are the

embeddings of g and h in the fundamental of Sp(2n,R), while U = Ā−1S(h)Ā is the embedding
of h in the complex basis of Sp(2n,R). Explicitly U =

(
u
0
0
ū), where u is in the fundamental of

U(n) (cf. (5.402) and (5.397)). Therefore the symplectic matrix

V = SĀ =

(
f f̄
h h̄

)
(5.166)

transforms according to

V (ϕ)→ V (ϕ′) = S(g)V (ϕ)

(
u−1 0
0 ū−1

)
. (5.167)

The dressed field strengths transform only under a unitary representation of H and, in accor-
dance with (5.167), are given by [11](

T
−T̄

)
= −i V (ϕ)

−1
(
F
G

)
; (5.168)

T → ūT .ūT . (5.169)

Explicitly, since

−i V̄ −1 =

(
ht −f t
−h† f †

)
(5.170)

we have

TAB = hΛABF
Λ − fΛ

ABGΛ

T̄Ī = h̄ΛĪF
Λ − f̄Λ

Ī GΛ (5.171)
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5.4.1 Extended supergravities with target space G/H

where we used the notation T = (T M̄) = (TM) = (TAB, T̄Ī),

f = (fΛ
M) = (fΛ

AB, f̄
Λ
Ī) ,

h = (hΛM) = (hΛAB, h̄ΛĪ) , (5.172)

that enphasizes that (for every value of Λ) the sections
(
f̄Λ

Ī

h̄ΛĪ

)
have Kweight opposite to the(

fΛAB
hΛAB

)
ones. This may be seen from the supersymmetry transformation rules of the super-

gravity fields, in virtue of the fact that gravitinos and fotinos with the same chirality have
opposite Kähler weight. Notice that this notation (as in [41]) differs from the one in [11], where
(fΛ

M) = (fΛ
AB, f

Λ
I) , (hΛM) = (hΛAB, hΛI) .

Consequently the central charges are

ZAB = − 1

4π

∫
S2
∞

TAB = fΛ
ABqΛ − hΛABpΛ (5.173)

Z̄Ī = −
1

4π

∫
S2
∞

T̄Ī = f̄Λ
Ī qΛ − h̄ΛĪ p

Λ (5.174)

where the integral is considered at spatial infinity and, for spherically symmetric configurations,
f and h in (5.173), (5.174) are f(ϕ∞) and h(ϕ∞) with ϕ∞ the constant value assumed by the
scalar fields at spatial infinity.

The integral of the graviphotons TAB µν gives the value of the central charges ZAB of the
supersymmetry algebra, while by integrating the matter field strengths TI µν one obtains the
so called matter charges ZI . The charges of these dressed field strength that appear in the
supersymmetry transformations of the fermions have a profound meaning and play a key role
in the physics of extremal black holes. In particular, recalling (5.167) the quadratic combination
(black hole potential)

VBH :=
1

2
Z̄ABZAB + Z̄IZI (5.175)

(the factor 1/2 is due to our summation convention that treats the AB indices as independent)
is invariant under the symmetry group G. In terms of the charge vector

Q =

(
pΛ

qΛ

)
, (5.176)

we have the formula for the potential (also called charges sum rule)

VBH =
1

2
Z̄ABZAB + Z̄IZI = −

1

2
QtM(N )Q (5.177)

where
M(N ) = −(iV̄ −1)†iV̄ −1 = −(S−1)tS−1 (5.178)

is a negative definite matrix, here depending on ϕ∞. In Appendix 7.2 we show that the set of
matrices of the kind SSt with S ∈ Sp(2n,R) are the coset space Sp(2n,R)/U(n), hence the ma-
trices M(N ) parametrize Sp(2n,R)/U(n). Also the matrices N parametrize Sp(2n,R)/U(n).
The relation between M(N ) and N is

M∗(N ) =

(
11 −ReN
0 11

)(
ImN 0
0 ImN−∞

)(
11 0

−ReN 11

)
. (5.179)

This and further properties of the M(N ) matrix are derived in Appendix 7.2.
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5.4.1 Extended supergravities with target space G/H

For each of the supergravities with target space G/H there is another G invariant expression
S quadratic in the charges [63]; the invariant S is independent from the scalar fields of the
theory and thus depends only on the electric and magnetic charges pΛ and qΛ. In extremal
black hole configurations πS is the entropy of the black hole. In the N = 3 supergravity
theory S is the absolute value of a quadratic combination of the charges, while for N ≥ 4 it
is the square root of the absolute value of a quartic combination of the charges. The positive
or negative value of this quadratic combination is related to the different BPS properties of
the black hole. It turns out that S coincides with the potential VBH computed at its critical
point (attractor point) [43, 45, 63]. In the next section we give the explicit expressions of the
invariants S . They are obtained by considering among the H invariant combination of the
charges those that are also G invariant, i.e. those that do not depend on the scalar fields. This
is equivalent to require invariance of S under the coset space covariant derivative ∇ defined
in Section 3.5, see also (5.184).

We now derive some differential relations among the central and matter charges. We recall
the symmetric coset space geometry G/H studied in Section 3.5, and in particular relations
(5.98), (5.99) that express the Maurer-Cartan equation dΓ+Γ∧Γ = 0 in terms of the vielbein
P and of the Riemannian connection ω. Using the (local) embedding of G in Sp(2n,R) we
consider the pull back on G/H of the Sp(2n,R) Lie algebra left invariant one form V −1dV
given in (5.104), we have

V −1dV =

(
i(f †dh− h†df) i(f †dh̄− h†df̄)
−i(f tdh− htdf) −i(f tdh̄− htdf̄)

)
=

(
ω P̄
P ω̄

)
, (5.180)

where with slight abuse of notation we use the same letters V , P and ω for the pulled back
forms (we also recall that P denotes P in the complex basis). Relation (5.180) equivalently
reads

dV = V

(
ω P̄
P ω̄

)
, (5.181)

that is equivalent to the n× n matrix equations:

∇f = f̄ P , (5.182)
∇h = h̄P , (5.183)

where
∇f = df − fω , ∇h = dh− hω . (5.184)

Recalling that P is symmetric (cf. (5.419)) we equivalently have ∇f = Pf̄ , ∇h = Ph̄ . In
these equations we can now see ω and P as our data (vielbein and Riemannian connection)
on a manifold M , while f and h are the unknowns. By construction these equations are
automatically satisfied if M = G/H and G is a Lie subgroup of Sp(2n,R). More in general
equations (5.182),(5.183) hold (with f and h invertible) iff the integrability condition, i.e. the
Cartan-Maurer equation, d

(
ω
P̄

P
ω

)
+
(
ω
P̄

P
ω

)
∧
(
ω
P̄

P
ω

)
= 0 holds. With abuse of terminology we

sometimes call (5.182), (5.183) the Maurer-Cartan equations.
The differential relations among the charges ZAB and Z̄Ī follow after rewriting (5.182),

(5.183) with AB and Ī indices. The embedded connection ω and vielbein P are decomposed
as follows:

ω = (ωNM) =

(
ωABCD 0

0 ωĪ
J̄

)
, (5.185)

P = (PN̄M) = (PNM) =

(
PĀB̄CD P

ĀB̄
J̄

P ĪCD P Ī
J̄

)
=

(
PABCD PABJ̄

PICD PIJ̄

)
, (5.186)
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the subblocks being related to the vielbein of G/H, written in terms of the indices of HAut ×
Hmatter. We used the following indices conventions:

f =
(
fΛ
M

)
, f−1 =

(
fMΛ
)
= (fM̄Λ

)
etc. (5.187)

where in the last passage, since we are in U(n), we have lowered the index M with the U(n)
hermitian form η =

(
ηMN̄

)
M,N=1,...n

= diag(1, 1, ....1). Similar conventions hold for the AB and

I indices, for example fΛ
I = f̄Λ

Ī
= f̄ΛI .

Using further the index decomposition M = (AB, Ī), relations (5.182), (5.183) read (the
factor 1/2 is due to our summation convention that treats the AB indices as independent):

∇fΛ
AB =

1

2
f̄ΛCDPCDAB + fΛ

IP
I
AB , (5.188)

∇hΛAB =
1

2
h̄ΛCDPCDAB + hΛIP

I
AB , (5.189)

∇fΛ
Ī =

1

2
f̄ΛCDPCDĪ + fΛJ̄PJ̄ Ī , (5.190)

∇hΛĪ =
1

2
h̄ΛCDPCDĪ + hΛJ̄PJ̄ Ī . (5.191)

As we will see, depending on the coset manifold, some of the sub-blocks of (5.186) can be actually
zero. For N > 4 (no matter indices) we have that P coincides with the vielbein PABCD of the
relevant G/H. Using the definition of the charges (21) we then get the differential relations
among charges: ∇ZM = Z̄N̄P

N̄
M , where ∇ZM = ∂ZM

∂ϕi∞
dϕi∞ − ZNωNM , with ϕi∞ the value of the

i-th coordinate of ϕ∞ ∈ G/H and ϕ∞ = ϕ(r =∞). Explicitly, using the AB and I indices,

∇ZAB = ZIP
I
AB +

1

2
Z̄CDPCDAB , (5.192)

∇Z̄ Ī =
1

2
Z̄ABPABĪ + Z J̄PJ̄ Ī . (5.193)

The geometry underlying the differential equation (5.181) is that of a flat symplectic vector
bundle of rank 2n, a structure that appears also in the special Kmanifolds of scalars of N =
2 supergravities. Indeed if we are able to find 2n linearly independent row vectors V ξ =
(V ξ

ζ)ζ=1,...2n then the matrix V in (5.181) is invertible and therefore the connection
(
ω
P
P̄
ω̄

)
is

flat. If these vectors are mutually symplectic then we have a symplectic frame, the transition
functions are constant symplectic matrices, the connection is symplectic.

In the present case we naturally have a flat symplectic bundle,

G×H R2n → G/H ;

this bundle is the space of all equivalence classes [g, v] = {(gh, S(h)−1v) , g ∈ G, v ∈ R2n, h ∈
H}. The symplectic structure on R2n immediately extends to a well defined symplectic structure
on the fibers of the bundle. Using the local sections of G/H and the usual basis {eξ} =
{eM , eM} of R2n (e1 is the column vector with with 1 as first and only nonvanishing entry,
etc.) we obtain immediately the local sections sξ = [L(ϕ), eξ] of G×H R2n → G/H. Since the
action of H on R2n extends to the action of G on R2n, we can consider the new sections eξ =

sζS
−1(L(ϕ))ζξ = [L(ϕ), S−1(L(ϕ))eξ] , that are determined by the column vectors S−1(L(ϕ)) ξ =

(S−1(L(ϕ))ζξ)ζ=1,...2n. These sections are globally defined and linearly independent. Therefore
this bundle is not only flat, it is trivial. If we use the complex local frame Vξ = {sζĀζξ} rather
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than the {sξ} one (we recall that A = 1√
2

(
11

−i11
11
i11

)
, cf. (5.394)), then the global sections eξ are

determined by the column vectors V −1(L(ϕ)) ξ = (V −1(L(ϕ))ζξ)ζ=1,...2n,

eξ = Vη V
−1η

ξ . (5.194)

The sectionsVξ too form a symplectic frame (a symplectonormal basis, indeed V ρ
ξΩρσV

σ
ζ = Ωξζ ,

where Ω =
(
0
11
−11
0

)
), and the last n sections are the complex conjugate of the first n ones,

{Vξ} = {VM , V̄M̄}. Of course the column vectors V η = (V ξ
η)ξ=1,...2n, are the coefficients of the

sections Vη with respect to the flat basis {eξ}.
Also the rows of the V matrix define global flat sections. Let’s consider the dual bundle

of the vector bundle G ×H R2n → G/H, i.e. the bundle with fiber the dual vector space. If
{sζ} is a frame of local sections of G×H R2n → G/H, then {sζ}, with ⟨sζ , sξ⟩ = δζξ , is the dual
frame of local sections of the dual bundle. Concerning the transition functions, if s′ζ = sηS

η
ζ

then s′ξ = S−1ξ
λs
λ. This dual bundle is also a trivial bundle and a trivialization is given by the

global symplectic sections eξ = V ξ
ηV

η, whose coefficients are the row vectors V ξ = (V ξ
ζ)ζ=1,...2n

i.e., the rows of the symplectic matrix V defined in (5.166),(
V Λ

ζ

)
ζ=1,...2n

=
(
fΛ

M , f̄
Λ
M̄

)
M=1,...n

,(
VΛζ
)
ζ=1,...2n

=
(
hΛM , h̄ΛM̄

)
M=1,...n

. (5.195)

5.4.2 Specific cases

We now describe in more detail the supergravities of Table 1. The aim is to write down
the group theoretical structure of each theory, their symplectic (local) embedding S : G →
Sp(2n,R) and N : G/H → S√(∈\ ,R)/U(\), the vector kinetic matrix N , the supersymmetric

transformation laws, the structure of the central and matter charges, their differential relations
originating from the Maurer-Cartan equations (5.98),(5.99), and the invariants VBH and S . As
far as the boson transformation rules are concerned we prefer to write down the supercovariant
definition of the field strengths (denoted by a superscript hat), from which the supersymmetry
transformation laws are retrieved. As it has been mentioned in previous section it is here that
the symplectic sections (fΛ

AB, f̄
Λ
Ī
, f̄Λ

AB, f
Λ
I) appear as coefficients of the bilinear fermions in

the supercovariant field strengths while the analogous symplectic section (hΛAB, h̄ΛĪ , h̄ΛAB, hΛI)
would appear in the dual magnetic theory. We include in the supercovariant field strengths also
the supercovariant vielbein of the G/H manifolds. Again this is equivalent to giving the susy
transformation laws of the scalar fields. The dressed field strengths from which the central and
matter charges are constructed appear instead in the susy transformation laws of the fermions
for which we give the expression up to trilinear fermion terms. We stress that the numerical
coefficients in the aforementioned susy transformations and supercovariant field strengths are
fixed by supersymmetry (or, equivalently, by Bianchi identities in superspace), but we have not
worked out the relevant computations being interested in the general structure rather that in
the precise numerical expressions. These numerical factors could also be retrieved by comparing
our formulae with those written in the standard literature on supergravity and performing the
necessary redefinitions. The same kind of considerations apply to the central and matter charges
whose precise normalization has not been fixed.

Throughout this section we denote by A,B, . . . indices of SU(N), SU(N) × U(1), being
Haut the automorphism group of the N–extended supersymmetry algebra. Lower and upper
SU(N) indices on the fermion fields are related to their left or right chirality respectively. If
some fermion is a SU(N) singlet, chirality is denoted by the usual (L) or (R) suffixes.
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Furthermore for any boson field v carrying SU(N) indices we have that lower and upper
indices are related by complex conjugation, namely: (vAB···) = v̄AB···.

The N = 4 theory

The field content is given by the

− Gravitational multiplet (vierbein for the graviton, gravitino, graviphoton, dilatino, dila-
ton):

(V a
µ , ψAµ, A

AB
µ , χABC , N) (A,B = 1, · · · , 4) (5.196)

frequently the upper half plane parametrization S = N̄ is used for the axion-dilaton field.

− Vector multiplets:
(Aµ, λ

A, 6ϕ)I (I = 1, · · · , n) (5.197)

The coset space is the product

G/H =
SU(1, 1)

U(1)
× SO(6, n)

S(O(6)×O(n))
(5.198)

We have to embed
Sp(2,R)× SO(6, n)→ Sp(2(6 + n),R) . (5.199)

We first consider the embedding of SO(6, n),

S : SO(6, n) → Sp(2(6 + n),R)

L 7→ S(L) =

(
Lt

−1
0

0 L

)
(5.200)

we see that under this embedding SO(6, n) is a symmetry of the action (not only of the equation
of motions) that rotates electric fields into electric fields and magentic fields into magnetic fields.
The natural embedding of SU(1, 1) ≃ SL(2,R) ≃ Sp(2,R) into Sp(2(6+n),R) is the S-duality
that rotates each electric field in its corresponding magnetic field, we also want the image
of Sp(2,R) in Sp(2(6 + n),R) to commute with that of SO(6, n) (since we are looking for a
symplectic embedding of all Sp(2,R)× SO(6, n)) and therefore we have

S : Sp(2,R) → Sp(2(6 + n),R)(
A B
C D

)
7→ S

(
A B
C D

)
=

(
A11 Bη
Cη D11

)
(5.201)

where η = diag(1, 1, ...,−1,−1, ...) is the SO(6, n) metric.
Concerning the coset representatives, on one hand we denote by L(t) the representative

in SO(6, n) of the point t ∈ SO(6, n)/S(O(6) × O(n)). On the other hand we have that
SU(1, 1)/U(1) ≃ Sp(2,R)/U(1) is the lower half plane (see appendix) and is spanned by the
complex number N with Im N < 0, (frequently the upper half plane parametrization S = N̄ is
used). A coset representative of SU(1, 1)/U(1) is

U(N) =
1

n(N)

(
1 i−N̄

i+N̄
i+N
i−N 1

)
, n(N) =

√
−4Im N

1 + |N|2 − 2Im N

(5.202)

(In order to show that the SU(1, 1) matrix U(N) projects to N use (5.402) and (5.408), that
reads N = hf−1 with h and f complex numbers). The coset representative U(N) is defined
for any N in the lower complex plane and therefore U(N) is a global section of the bundle
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SU(1, 1) → SU(1, 1)/U(1). (The projection SU(1, 1) → SU(1, 1)/U(1) can be also obtained
by extracting N from M∗(N) = (01

−1
0 )AUU †A−1( 0−1

1
0) , cf. (5.415)).

With the given coset parametrizations the symplectic embedded section
(
fΛΣ
hΛΣ

)
is

fΛ
Σ = (fΛ

AB, f̄
Λ
Ī) =

1

n(N)

( 2

1 + iN
Lt

−1 Λ

AB,
2

1− iN̄
Lt

−1 Λ

Ī

)
hΛΣ = (hΛAB, h̄ΛĪ) =

1

n(N)

( 2N

iN + 1
LΛ

AB,
2N̄

iN̄ − 1
LΛ

Ī

)
(5.203)

We now have all ingredients to compute the matrix N in terms of N and L. The coset
representative in Sp(2(6+m),R) of (N, L) is S(AU(N)A−1)S(L), and recalling that N = ⟨ { −∞

and (5.102), we obtain after elementary algebra the kinetic matrix

N = ReN + ⟩ImN = Re N η + ⟩Im N LL⊔ . (5.204)

Table 2: Group assignments of the fields in D = 4, N = 4

V a
µ ψA|µ AΛ

µ χABC λIA U(N)LΛ
AB U(N)LΛ

I RH

SU(1, 1) 1 1 - 1 1 2× 1 2× 1 -
SO(6, n′) 1 1 6 + n′ 1 1 1× (6 + n′) 1× (6 + n′) -
SO(6) 1 4 1 4̄ 4̄ 1× 6 1 6
SO(n′) 1 1 1 1 n′ 1 n′ n′

U(1) 0 1
2

0 3
2

−1
2

1 1 0

In this and in the following tables, RH is the representation under which the scalar fields of the
linearized theory, or the vielbein P of G/H of the full theory transform (recall text after (5.95)
and that P is P in the complex basis). Only the left–handed fermions are quoted, right handed
fermions transform in the complex conjugate representation of H. Care must be taken in the
transformation properties under the H subgroups; indeed according to (5.167) the inverse right
rep. of the one listed should really appear, i.e. since we are dealing with unitary rep., the
complex conjugate

The supercovariant field strengths and the vielbein of the coset manifold are:

F̂Λ = dAΛ +
[
fΛ
AB(c1ψ̄

AψB + c2ψ̄Cγaχ
ABCV a)

+fΛ
I (c3ψ̄

Aγaλ
I
AV

a + c4χ̄
ABCγabλ

IDϵABCDV
aV b) + h.c.

]
(5.205)

P̂ = P − ψ̄AχBCDϵABCD (5.206)
P̂IAB = PIAB − (ψ̄Aλ

I
B + ϵABCDψ̄

CλID) (5.207)
(5.208)

where P = PN dN and PIAB = PIAB i dϕ
i are the vielbein of SU(1,1)

U(1)
and SO(6,n′)

S(O(6)×O(n′))
respectively.

The fermion transformation laws are:

δψA = DϵA + a1TAB µνγ
aγµνϵBVa + · · · (5.209)

δχABC = a2PN ∂µN γ
µϵDϵABCD + a3T[AB µνγ

µνϵC] + · · · (5.210)
δλIA = a4P

I
AB i ∂aϕ

iγaϵB + a5T
−I
µν γ

µνϵA + · · · (5.211)
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5.4.2 Specific cases

where the 2–forms TAB and TI are defined in eq.(5.171). By integration of these two-forms
we find the central and matter dyonic charges given in equations (5.173), (5.174). >From the
equations (5.182),(5.183) for f, h and the definitions of the charges one easily finds:

∇SU(4)×U(1)ZAB = Z̄IPIAB +
1

2
ϵABCDZ̄

CD
P (5.212)

∇SO(n′)ZI =
1

2
Z̄ABPIAB + ZI P̄ (5.213)

where 1
2
εABCDZ̄

CD = Z̄AB. In terms of the kinetic matrix (5.203) the invariant VBH for the
charges is given by, cf. (5.177),

VBH =
1

2
ZABZ̄

AB + ZIZ̄
I = −1

2
QtM(N )Q . (5.214)

The unique SU(1, 1) × SO(6, n′) invariant combination of the charges that is independent
from the scalar fields is I21 − I2Ī2, so that

S =
√
|I21 − I2Ī2| . (5.215)

Here, I1, I2 and Ī2 are the three SO(6, n′) invariants given by

I1 =
1

2
ZABZ̄

AB − ZIZ̄I , I2 =
1

4
ϵABCDZABZCD − Z̄IZ̄I . (5.216)

The N = 3 theory

In the N = 3 case [64] the coset space is:

G/H =
SU(3, n′)

S(U(3)× U(n′))
(5.217)

and the field content is given by:

(V a
µ , ψAµ, A

AB
µ , χ(L)) A = 1, 2, 3 (gravitational multiplet) (5.218)

(Aµ, λA, λ(R), 3 z)
I I = 1, . . . , n′ (vector multiplets) (5.219)

The transformation properties of the fields are given in Table 3. We consider the (local)

Table 3: Transformation properties of fields in D = 4, N = 3

V a
µ ψAµ AΛ

µ χ(L) λIA λI(L) LΛ
AB LΛ

I RH

SU(3, n′) 1 1 3 + n′ 1 1 1 3 + n′ 3 + n′ -
SU(3) 1 3 1 1 3 1 3̄ 1 3
SU(n′) 1 1 1 1 n′ n′ 1 n′ n′

U(1) 0 n′

2
0 3n′

2
3+n′

2
−3(1 + n′

2
) n′ −3 3 + n′

embedding of SU(3, n′) in Sp(3 + n′,R) defined by the following dependence of the matrices f
and h in terms of the G/H coset representative L,

fΛ
Σ =

1√
2
(LΛ

AB, L̄
Λ
I) (5.220)

hΛΣ = −i(ηfη)ΛΣ η =

(
113×3 0
0 −11n′×n′

)
(5.221)
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5.4.2 Specific cases

where AB are antisymmetric SU(3) indices, I is an index of SU(n′) and L̄Λ
I denotes the complex

conjugate of the coset representative. We have:

NΛΣ = (hf−1)ΛΣ = −i(ηfηf−1)ΛΣ (5.222)

The supercovariant field strengths and the supercovariant scalar vielbein are:

F̂Λ = dAΛ +
[ i
2
fΛ
I λ̄

I
Aγaψ

AV a − 1

2
fΛ
ABψ̄

AψB + ifΛ
ABχ̄(R)γaψCϵ

ABCV a + h.c.
]

P̂ A
I = P A

I − λ̄IBψCϵABC − λ̄I(R)ψ
A (5.223)

where the only nonvanishing entries of the vierbein P are

PAI =
1

2
ϵABCPIBC = PAI i dz

i (5.224)

zi being the (complex) coordinates of G/H. The chiral fermions transformation laws are given
by:

δψA = DϵA + 2iTAB µνγ
aγµνVaϵ

B + · · · (5.225)

δχ(L) = 1/2TAB µνγ
µνϵCϵ

ABC + · · · (5.226)

δλIA = −iP B
I i∂µz

iγµϵCϵABC + TI µνγ
µνϵA + · · · (5.227)

δλI(L) = iP A
I i∂µz

iγµϵA + · · · (5.228)

where TAB and TI have the general form given in equation (5.171). >From the general form of
the equations (5.182), (5.183) for f and h we find:

∇fΛ
AB = fΛ

IP
I
AB , (5.229)

∇hΛAB = hΛIP
I
AB , (5.230)

∇fΛ
Ī =

1

2
f̄ΛCDPCDĪ , (5.231)

∇hΛĪ =
1

2
h̄ΛCDPCDĪ . (5.232)

According to the general study of Section 4.1, using (5.173), (5.174) one finds

∇(H)ZAB = Z̄IP C
I ϵABC (5.233)

∇(H)ZI =
1

2
Z̄ABP C

I ϵABC (5.234)

and the formula for the potential, cf. (5.177),

VBH =
1

2
ZABZ̄AB + ZIZ̄I = −

1

2
QtM(N )Q (5.235)

where the matrixM(N ) has the same form as in equation (5.179) in terms of the kinetic matrix
N of equation (5.222), and Q is the charge vector Q = (ge).

The G = SU(3, n′) invariant is ZAZ̄A − ZIZ̄
I (one can check that ∂i(ZAZ̄A − ZIZ̄

I) =

∇(H)
i (ZAZ̄A − ZIZ̄I) = 0) so that

S = |ZAZ̄A − ZIZ̄I | . (5.236)
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The N = 5 theory

For N > 4 the only available supermultiplet is the gravitational one, so that Hmatter = 1. The
coset manifold of the scalars of the N = 5 theory [33] is:

G/H =
SU(5, 1)

U(5)
(5.237)

The field content and the group assignments are displayed in Table 4.

Table 4: Transformation properties of fields in D = 4, N = 5

V a ψA; χABC , χL AΛΣ LxA RH

SU(5, 1) 1 1 1 - 6 -
SU(5) 1 5 (10, 1) 1 5 5̄
U(1) 0 1

2
(3
2
,−5

2
) 0 1 2

In Table 4 the incides x, y, . . . = 1, . . . , 6 and A,B,C, . . . = 1, . . . , 5 are indices of the
fundamental representations of SU(5, 1) and SU(5), respectively. LxA denotes as usual the
coset representative in the fundamental representation of SU(5, 1). The antisymmetric couple
ΛΣ, Λ,Σ = 1, . . . , 5, enumerates the ten vector potentials. The local embedding of SU(5, 1)
into the Gaillard-Zumino group Usp(10, 10) is given in terms of the three-times antisymmetric
representation of SU(5, 1), this is a 20 dimensional complex representation, we denote by txyz a
generic element. This representation is reducible to a complex 10 dimensional one by imposing
the self-duality condition

t̄x̄ȳz̄ =
1

3!
ϵx̄ȳz̄ uvwt

uvw (5.238)

here indices are raised with the SU(5, 1) hermitian structure η = diag(1, 1, 1, 1, 1,−1). The
self duality condition (5.238) is compatible with the SU(5, 1) action (on t̄x̄ȳz̄ acts the complex
conjugate of the three-times antisymmetric of SU(5, 1)). Due to the self-duality condition we
can decompose txyz as follows:

txyz =

(
tΛΣ6

t̄Λ̄Σ̄6̄

)
(5.239)

where (Λ,Σ, · · · = 1, · · · , 5). In the following we set tΛΣ ≡ tΛΣ6, t̄Λ̄Σ̄ ≡ t̄Λ̄Σ̄6̄, t̄ΛΣ ≡ t̄ΛΣ6 =

−t̄ 6̄
ΛΣ . The symplectic structure in this complex basis is given by the matrix

(
0 −11
11 0

)
,

⟨t, ℓ⟩ := 1

2

(
tΛΣ, t̄Λ̄Σ̄

)( 0 −δΛΣ Γ̄Π̄

δΛ̄Σ̄ ΓΠ 0

)(
ℓΓΠ

ℓΓ̄Π̄

)
(5.240)

=
1

2
tΛΣℓ̄ΛΣ −

1

2
t̄ΛΣℓ

ΛΣ

=
1

3!3!
txyzεxyzuvwℓ

uvw (5.241)

this last equality implies that the SU(5, 1) action preserves the symplectic structure. We have
thus embedded∗ SU(5, 1) into Sp(20,R) (in the complex basis).

∗Strictly speaking we have immersed SU(5, 1) into Sp(20,R), in fact this map is a local embedding but fails
to be injective, indeed the three SU(5, 1) elements 3

√
1 11 are all mapped into the identity element of Sp(20,R).

97



5.4.2 Specific cases

The 20 dimensional real vector (FΛΣ, GΛΣ) transforms under the 20 of SU(5, 1), as well as,
for fixed AB, each of the 20 dimensional vectors

(
fΛΣ

AB
hΛΣAB

)
of the embedding matrix:

U =
1√
2

(
f + ih f̄ + ih̄
f − ih f̄ − ih̄

)
. (5.242)

The supercovariant field strengths and vielbein are:

F̂ΛΣ = dAΛΣ +
[
fΛΣ

AB(a1ψ̄
AψB + a2ψ̄Cγaχ

ABCV a) + h.c.
]

(5.243)

P̂ABCD = PABCD − χ̄[ABCψD] − ϵABCDEχ̄(R)ψE (5.244)

where PABCD = ϵABCDFP
F is the complex vielbein, completely antisymmetric in SU(5) indices

and PABCD = P̄ABCD.
The fermion transformation laws are:

δψA = DϵA + a3TAB µνγ
aγµνϵBVa + · · · (5.245)

δχABC = a4PABCD i∂µϕ
iγµϵD + a5T[AB µνγ

µνϵC] + · · · (5.246)
δχ(L) = a6P̄

ABCD
ı̄ ∂µϕ̄

ı̄γµϵEϵABCDE + · · · (5.247)

where:

TAB =
1

2
(hΛΣABF

ΛΣ − fΛΣ
ABGΛΣ) (5.248)

NΛΣ ∆Π =
1

2
hΛΣAB(f

−1)AB∆Π . (5.249)

With a by now familiar procedure one finds the following (complex) central charges:

ZAB = iV (ϕ∞)
−1
Q (5.250)

where the charge vector is

Q =

(
pΛΣ

qΛΣ

)
=

(
1
4π

∫
S2 F

ΛΣ

1
4π

∫
S2 GΛΣ

)
(5.251)

and ϕ∞ is the constant value assumed by the scalar fields at spatial infinity. >From the
equations (Maurer-Cartan equations)

∇(U(5))fΛΣ
AB =

1

2
f̄ΛΣCDPABCD (5.252)

and the analogous one for h we find:

∇(U(5))ZAB =
1

2
Z̄CDPABCD . (5.253)

Finally, the formula for the potential is, cf. (5.177),

VBH =
1

2
Z̄ABZAB = −1

2
QtM(N )Q (5.254)

where the matrix M(N ) has exactly the same form as in equation (5.179), and N is given in
(5.249).

For SU(5, 1) there are only two U(5) quartic invariants. In terms of the matrix A B
A =

ZACZ̄
CB they are:

TrA = ZABZ̄
BA , Tr(A2) = ZABZ̄

BCZCDZ̄
DA . (5.255)

The SU(5, 1) invariant expression is

S =
1

2

√
|4Tr(A2)− (TrA)2| . (5.256)
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The N = 6 theory

The scalar manifold of the N = 6 theory has the coset structure [65]:

G/H =
SO⋆(12)

U(6)
(5.257)

We recall that SO⋆(2n) is the real form of O(2n,C) defined by the relation:

L†CL = C , C =

(
0 −11
11 0

)
(5.258)

The field content and transformation properties are given in Table 5, where A,B,C = 1, · · · , 6

Table 5: Transformation properties of fields in D = 4, N = 6

V a ψA χABC , χA AΛ Sαr RH

SO⋆(12) 1 1 1 - 32 -
SU(6) 1 6 (20 + 6) 1 (15, 1) + (1̄5, 1̄) 1̄5
U(1) 0 1

2
(3
2
,−5

2
) 0 (1,−3) + (−1, 3) 2

are SU(6) indices in the fundamental representation and Λ = 1, · · · , 16. The 32 spinor repre-
sentation of SO⋆(12) can be given in terms of a Sp(32,R) matrix, which in the complex basis
we denote by Sαr (α, r = 1, · · · , 32). It is the double cover of SO⋆(12) that embeds in Sp(32,R)
and therefore the duality group is this spin group. Employing the usual notation we may set:

Sαr =
1√
2

(
fΛ
M + ihΛM f̄Λ

M + ih̄ΛM
fΛ
M − ihΛM f̄Λ

M − ih̄ΛM

)
(5.259)

where Λ,M = 1, · · · , 16. With respect to SU(6), the sixteen symplectic vectors (fΛ
M , hΛM),

(M = 1, · · · , 16) are reducible into the antisymmetric 15 dimensional representation plus a
singlet of SU(6):

(fΛ
M , hΛM)→ (fΛ

AB, hΛAB) + (f̄Λ, h̄Λ) . (5.260)

It is precisely the existence of a SU(6) singlet which allows for the Special Geometry structure
of SO∗(12)

U(6)
(cf. (5.367), (5.368))∗. Note that the element Sαr has no definite U(1) weight since

the submatrices fΛ
AB, f̄

Λ have the weights 1 and −3 respectively. The vielbein matrix is

P =

(
PABCD PAB

PCD 0

)
, (5.261)

where
PAB =

1

4!
ϵABCDEFP

CDEF ; P̄AB = PAB . (5.262)

The supercovariant field strengths and the coset manifold vielbein have the following expression:

F̂Λ = dAΛ +
[
fΛ
AB(a1ψ̄

AψB + a2ψ̄Cγaχ
ABCV a)

+a3f
Λψ̄Cγaχ

CV a + h.c.
]

(5.263)

P̂ABCD = PABCD − χ̄[ABCψD] − ϵABCDEF χ̄EψF (5.264)

∗Due to its Special Geometry structure the coset space SO∗(12)
U(6) is also the scalar manifold of an N = 2

supergravity. The two supergravity theories have the same bosonic fields however the fermion sector is different.
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The fermion transformation laws are:

δψA = DϵA + b1TAB µνγ
aγµνϵBVa + · · · (5.265)

δχABC = b2PABCD i∂az
iγaϵD + b3T[AB abγ

abϵC] + · · · (5.266)
δχA = b4P

BCDE
i∂az

iγaϵF ϵABCDEF + b5Tabγ
abϵA + · · · (5.267)

where according to the general definition (5.171):

TAB = hΛABF
Λ − fΛ

ABGΛ

T̄ = h̄ΛF
Λ − f̄ΛGΛ (5.268)

With the usual procedure we have the following complex dyonic central charges:

ZAB = hΛABp
Λ − fΛ

ABqΛ (5.269)
Z̄ = h̄Λp

Λ − f̄ΛqΛ (5.270)

in the 15 (recall (5.169)) and singlet representation of SU(6) respectively. Notice that although
we have 16 graviphotons, only 15 central charges are present in the supersymmetry algebra.
The singlet charge plays a role analogous to a “matter” charge (hence our notation Z̄, f̄Λ, h̄Λ).
The charges differential relations are

∇(U(6))ZAB =
1

2
Z̄CDPABCD +

1

4!
ZϵABCDEFP

CDEF (5.271)

∇(U(1))Z̄ =
1

2!4!
Z̄ABϵABCDEFP

CDEF (5.272)

and the formula for the potential reads, cf. (5.177),

VBH =
1

2
Z̄ABZAB + Z̄Z = −1

2
QtM(N )Q . (5.273)

The quartic U(6) invariants are

I1 = (TrA)2 (5.274)
I2 = Tr(A2) (5.275)

I3 =
1

233!
Re (ϵABCDEFZABZCDZEFZ) (5.276)

I4 = (TrA)ZZ̄ (5.277)
I5 = Z2Z̄2 (5.278)

where A B
A = ZACZ̄

CB. The unique SO∗(12) invariant is

S =
1

2

√
|4I2 − I1 + 32I3 + 4I4 + 4I5| . (5.279)

The N = 8 theory

In the N = 8 case [5] the coset manifold is:

G/H =
E7(7)

SU(8)/Z2

. (5.280)

The field content and group assignments are given in Table 6.
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Table 6: Field content and group assignments in D = 4, N = 8 supergravity

V a ψA AΛΣ χABC Sαr RH

E7(7) 1 1 - 1 56 -
SU(8) 1 8 1 56 28 + 2̄8 70

The embedding in Sp(56,R) is automatically realized because the 56 defining representation
of E7(7) is a real symplectic representation. The components of the f and h matrices and their
complex conjugates are

fΛΣ
AB , hΛΣAB , f̄ AB

ΛΣ , h̄ΛΣAB , (5.281)

here ΛΣ, AB are couples of antisymmetric indices, with Λ,Σ, A,B running from 1 to 8. The
70 under which the vielbein of G/H transform is obtained from the four times antisymmetric
of SU(8) by imposing the self duality condition

t̄ĀB̄C̄D̄ =
1

4!
ϵĀB̄C̄D̄A′B′C′D′tA

′B′C′D′
(5.282)

The supercovariant field strengths and coset manifold vielbein are:

F̂ΛΣ = dAΛΣ + [fΛΣ
AB(a1ψ̄

AψB + a2χ̄
ABCγaψCV

a) + h.c.] (5.283)
P̂ABCD = PABCD − χ̄[ABCψD] + h.c. (5.284)

where PABCD = 1
4!
ϵABCDEFGH P̄

EFGH ≡ (L−1∇SU(8)L)ABCD = PABCD idϕ
i (ϕi coordinates of

G/H). In the complex basis the vielbein PABCD of G/H are 28 × 28 matrices completely
antisymmetric and self dual as in (5.282). The fermion transformation laws are given by:

δψA = DϵA + a3TAB µνγ
aγµνϵBVa + · · · (5.285)

δχABC = a4PABCD i∂aϕ
iγaϵD + a5T[AB µνγ

µνϵC] + · · · (5.286)

where:
TAB =

1

2
(hΛΣABF

ΛΣ − fΛΣ
ABGΛΣ) (5.287)

with:
NΛΣΓ∆ =

1

2
hΛΣAB(f

−1)ABΓ∆ . (5.288)

With the usual manipulations we obtain the central charges:

ZAB =
1

2
(hΛΣABp

ΛΣ − fΛΣ
ABqΛΣ), (5.289)

the differential relations:
∇SU(8)Z AB =

1

2
Z̄ CDPABCD (5.290)

and the formula for the potential, cf. (5.177),

VBH =
1

2
Z̄ABZAB = −1

2
QtM(N )Q (5.291)

where the matrix M(N ) is given in equation (5.179), and N in (5.288).

For N = 8 the SU(8) invariants are

I1 = (TrA)2 (5.292)
I2 = Tr(A2) (5.293)

I3 = Pf Z =
1

244!
ϵABCDEFGHZABZCDZEFZGH (5.294)
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where PfZ denotes the Pfaffian of the antisymmetric matrix (ZAB)A,B=1,...8, and where A B
A =

ZACZ̄
CB. One finds the following E7(7) invariant [44]:

S =
1

2

√
|4Tr(A2)− (TrA)2 + 32Re (Pf Z)| (5.295)

For a very recent study of E7(7) duality rotations and of the corresponding conserved charges
see [66].

Electric subgroups and the D = 4 and N = 8 theory.

A duality rotation is really a strong-weak duality if there is a rotation between electric and
magnetic fields, more precisely if some of the rotated field strengths F ′Λ depend on the initial
dual fields GΣ, i.e. if the submatrix B ̸= 0 in the symplectic matrix

(
A
C
B
D

)
. Only in this case the

gauge kinetic term may transform nonlinearly, via a fractional transformation. On the other
hand, under infinitesimal duality rotations (110

0
11) + (ac

0
d), with b = 0, the lagrangian changes by

a total derivative so that (in the absence of instantons) these transformations are symmetries
of the action, not just of the equation of motion. Furthermore if c = 0 the lagrangian itself is
invariant.

We call electric any subgroup Ge of the duality group G with the property that it (locally)
embeds in the symplectic group via matrices

(
A
C
B
D

)
with B = 0. The parameter space of true

strong-weak duality rotations is G/Ge.

The electric subgroup of Sp(2n,R) is the subgroup of all matrices of the kind(
A 0

C At
−1

)
; (5.296)

we denote it by Spe(2n,R). It is the electric subgroup because any other electric subgroup is
included in Spe(2n,R). This subgroup is maximal in Sp(2n,R) (see for example the appendices
in[50, 68]). In particular if an action is invariant under infinitesimal Spe(2n,R) transformations,
and if the equations of motion admit also a π/2 duality rotation symmetry FΛ → GΛ, GΛ →
−FΛ for one or more indices Λ (no transformation on the other indices) then the theory has
Sp(2n,R) duality.

It is easy to generalize the results of Section 2.2 and prove that duality symmetry under
these π/2 rotations is equivalent to the following invariance property of the lagrangian under
the Legendre transformation associated to FΛ,

LD(F,N
′) = L(F ,N ) , (5.297)

where N ′ = (C + DN )(A + BN )−∞ are the transformed scalar fields, the matrix
(
A
C
B
D

)
im-

plementing the π/2 rotation FΛ → GΛ, GΛ → −FΛ. We conclude that Sp(2n,R) duality
symmetry holds if there is Spe(2n,R) symmetry and if the lagrangian satisfies (5.297).

When the duality group G is not Sp(2n,R) then there may exist different maximal electric
subgroups of G, say Ge and G′

e. Consider now a theory with G duality symmetry, the electric
subgroup Ge hints at the existence of an action S =

∫
L invariant under the Lie algebra Lie(Ge)

and under Legendre transformation that are π/2 duality rotation in G. Similarly G′
e leads to a

different action S ′ =
∫
L′ that is invariant under Lie(G′

e) and under Legendre transformations
that are π/2 duality rotation in G. The equations of motion of both actions have G duality
symmetry. They are equivalent if L and L′ are related by a Legendre transformation. Since
L′(F,N ′) ̸= L(F ,N ), this Legendre transformation cannot be a duality symmetry, it is a π/2
rotation FΛ → GΛ, GΛ → −FΛ that is not in G, this is possible since G ̸= Sp(2n,R).
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5.5 Special Geometry and N = 2 Supergravity

As an example consider the Ge = SL(8,R) symmetry of the N = 8, D = 4 supergravity
lagrangian whose duality group is G = E7,(7) this is the formulation of Cremmer-Julia. An al-
ternative formulation, obtained from dimensional reduction of the D = 5 supergravity, exhibits
an electric group G′

e = [E6,(6) × SO(1, 1)] ⋉ T27 where the nonsemisimple group G′
e is realized

as a lower triangular subgroup of E7,(7) in its fundamental (symplectic) 56 dimensional repre-
sentation. Ge and G′

e are both maximal subgroups of E7(7). The corrseponding lagrangians can
be related only after a proper duality rotation of electric and magnetic fields which involves a
suitable Legendre transformation.

A way to construct new supergravity theories is to promote a compact rigid electric subgroup
symmetry to a local symmetry, thus constructing gauged supergravity models (see for a recent
review [67], and references therein). Inequivalent choices of electric subgroups give different
gauged supergravities. Consider again D = 4, N = 8 supergravity. The maximal compact
subgroups of Ge = SL(8,R) and of G′

e = [E6,(6) × SO(1, 1)] ⋉ T27 are SO(8) and Sp(8) =
U(16) ∩ Sp(16,C) respectively. The gauging of SO(8) corresponds to the gauged N = 8
supergravity of De Witt and Nicolai [33]. As shown in [34] the gauging of the nonsemisimple
group U(1) ⋉ T27 ⊂ G′

e corresponds to the gauging of a flat group in the sense of Scherk
and Schwarz dimensional reduction [35], and gives the massive deformation of the N = 8
supergravity as obtained by Cremmer, Scherk and Schwarz [36].

5.5 Special Geometry and N = 2 Supergravity

In the case of N = 2 supergravity the requirements imposed by supersymmetry on the scalar
manifold Mscalar of the theory dictate that it should be the following direct product: Mscalar =
M × MQ where M is a special Kähler manifold of complex dimension n and MQ a quater-
nionic manifold of real dimension 4nH , here n and nH are respectively the number of vector
multiplets and hypermultiplets contained in the theory. The direct product structure imposed
by supersymmetry precisely reflects the fact that the quaternionic and special Kähler scalars
belong to different supermultiplets. We do not discuss the hypermultiplets any further and refer
to [77] for the full structure of N=2 supergravity. Since we are concerned with duality rotations
we here concentrate our attention to an N = 2 supergravity where the graviton multiplet,
containing besides the graviton gµν also a graviphoton A0

µ, is coupled to n′ vector multiplets.
Such a theory has a bosonic action of type (5.151) where the number of (real) gauge fields is
n = 1 + n′ and the number of (real) scalar fields is 2n′. Compatibiliy of their couplings with
local N = 2 supersymmetry lead to the formulation of special Kgeometry [75],[76].

The formalism we have developed so far for the D = 4, N > 2 theories is completely
determined by the (local) embedding of the coset representative of the scalar manifold M =
G/H in Sp(2n,R). It leads to a flat -actually a trivial- symplectic bundle with local symplectic
sections Vη, determined by the symplectic matrix V , or equivalently by the matrices f and h.
We want now to show that these matrices, the differential relations among charges and their
quadratic invariant VBH (5.177) are also central for the description of N = 2 matter-coupled
supergravity. This follows essentially from the fact that, though the scalar manifold M of the
N = 2 theory is not in general a coset manifold, nevertheless, as for the N > 2 theories, we have
a flat symplectic bundle associated to M , with symplectic sections Vη. While the formalism is
very similar there is a difference, the bundle is not a trivial bundle anymore, and it is in virtue
of duality rotations that the theory can be globally defined on M .

In the next section we study the geometry of the scalar manifold M and in detail its as-
sociated flat symplectic bundle. Then in Section 5.2 we see how, in analogy with N > 2
supergravities, the flat symplectic bundle geometry of M enters the supersymmetry transfor-
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mations laws of N = 2 supergravity and the differential relations among the matter and central
charges.

5.5.1 Special Geometry

There are two kinds of special geometries: rigid and local. While rigid special Kmanifolds
are the target space of the scalar fields present in the vector multiplets of N = 2 Yang Mills
theories, the (local) special Kmanifolds, in the mathematical literature called projective special
Kmanifolds, describe the target space of the scalar fields in the vector multiplets of N = 2
supergravity (that has local supersymmetry). In order to describe the structure of a (local or
projective) special Kmanifold it is instructive to recall that of rigid Kmanifold.

Rigid Special Geometry

In short a rigid special Kmanifold is a Kmanifold M that has a flat connection on its tangent
bundle. This connection must then be compatible with the symplectic and complex structure
of M .

More precisely, following [49], see also [50], a rigid special Kstructure on a Kmanifold M
with Kform K is a connection ∇ that is real, flat, torsionfree, compatible with the symplectic
structure ω:

∇ω = 0 (5.298)

and compatible with the almost complex structure J of M :

d∇J = 0 (5.299)

where d∇ : Ω1(TM) → Ω2(TM) is the covariant exterior derivative on vector-valued forms.
Explicitly, if J = Jξ ∂ξ where Jξ are 1-forms, and ∇∂ξ = Aζξ ∂ζ , with Aζξ 1-forms, then
d∇J = dJξ ∂ξ − Jξ ∧ Aζξ ∂ζ = (dJξ + Aξζ ∧ Jζ) ∂ξ. Notice that the torsionfree condition can
be similarly written d∇I = 0, where I is the identity map in TM , locally I = dxξ ⊗ ∂ξ. The
two conditions d∇J = 0, d∇I = 0 for the real connection ∇ can be written in the complexified
tangent bundle simply as

d∇π
1,0 = 0 , (5.300)

where π1,0 is the projection onto the (1, 0) part of the complexified tangent bundle; locally
π1,0 = dzi ⊗ ∂

∂zi
.

The flatness condition is equivalent to require the existence of a covering of M with local
frames {eξ} that are covariantly constant, ∇eξ = 0. The corresponding transition functions
of the real tangent bundle TM are therefore constant invertible matrices; compatibility with
the symplectic structure, equation (5.298), further implies that these matrices belong to the
fundamental of Sp(2n,R), where 2n is the real dimension of M (each frame {eξ} can be chosen
to have mutually symplectic vectors eξ).

Flatness of ∇ (i.e., the vanishing of the curvature R∇ or equivalently d2∇ = 0) implies that
(5.300) is equivalent to the existence of a local complex vector field ξ that satisfies

∇ξ = π1,0 (5.301)

[hint: in a flat reference frame d∇ = d, and Poincaré lemma for d implies that any d∇-closed
section is also d∇-exact]. Studying the components of this vector field (with respect to a flat
Darboux coordinate system) we obtain the existence of local holomorphic coordinates on M ,
called special coordinates, their transition functions are constant Sp(2n,R) matrices, so that
the holomorphic tangent bundle TM is a flat symplectic holomorphic one. Corresponding to
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5.5.1 Special Geometry

these special coordinates we have a holomorhic function F , the holomorphic prepotential. In
terms of this data the Kpotential and the Kform read

K =
1

2
Im
(∂F
∂zi

z̄i
)
dzi ∧ dzj , (5.302)

K = i∂∂̄K =
i

2
Im
( ∂2F

∂zi∂zj
)
dzi ∧ dzj = i

2
Im(τij)dz

i ∧ dzj , (5.303)

where zi are special coordinates, and τij = ∂2F
∂zi∂zj

.

An equivalent way of characterizing rigid special Kmanifolds is via a holomorphic symmetric
3-tensor C. This tensor measures the difference between the symplectic connection ∇ and the
Levi-Civita connection D, whose connection coefficients we here denote γkij and γ̄k̄ı̄ȷ̄.

Define
PR = ∇−D .

The nonvanishing components of PR are

Akij − γkij , Ak̄ij , A
k̄
īj̄ − γ

k̄
īj̄ , A

k
īj̄ , (5.304)

this is so because the components A of the connection ∇ are constrained by condition (5.300).
Since D and ∇ are real and torsionfree we further have that the lower indices in (5.304) are
symmetric, and the reality conditions Akij − γkij = Ak̄īj̄ − γ

k̄
īj̄, A

k̄
īj̄
= Akīj̄. Since both D and ∇

are symplectic we have that for any vector u ∈ TmM , (PR)u : TmM → TmM is a generator of
a symlectic transformation,

u(K(v, w)) = Du(K(v, w)) = K(Duv, w) +K(v,Duw)

u(K(v, w)) = ∇u(K(v, w)) = K(∇uv, w) +K(v,∇uw)

0 = K((PR)uv, w) +K(v, (PR)uw) . (5.305)

If we set u = ∂k, v = ∂i, w = ∂̄ȷ̄, and use that K is a (1, 1)-form, we obtain

Akij − γkij = 0 . (5.306)

Then the components of
PR = P + P

are just Ak̄ij and Akīj̄. This leads to define the tensor

Cijk = −igiℓ̄Aℓ̄jk . (5.307)

Setting u = ∂k, v = ∂i, w = ∂j in (5.305) we obtain that Cijk is totally symmetric in its indices.
Since Djπ

(1,0) = 0 we easily compute, recalling (5.301), Cijk = −⟨∇iξ,∇j∇kξ⟩, hence we obtain
the coordinate independent expression for C = Cijkdz

i ⊗ dzj ⊗ dzk,

C = −⟨∇ξ,∇∇ξ⟩ . (5.308)

Flatness of ∇ = D + PR, i.e. d2∇ = 0, is equivalent to

R + dDP + dDP + P ∧ P + P ∧ P = 0 (5.309)

where R = d2D is the Levi-Civita curvature and d∇P is the exterior covariant derivative action
on the 1-form P with values in TCM⊗T ∗

CM (where T ∗
CM is the complexified cotangent bundle).

Now in (5.309), the term R+P∧P+P∧P ∈ Ω(1,1)(M,End(TCM,TCM)), i.e., this term maps
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T (1,0)M (or T (0,1)M) vectors into (1,1)-forms valued in T (1,0)M (or T (0,1)M). On the other hand
P ∈ Ω(End(TCM,TCM)), in particular it maps T (1,0)M vectors into forms valued in T (0,1)M ,
and annihilates T (0,1)M vectors (hence P ∧ P = 0). Similar properties hold for the complex
conjugate P, with T (1,0)M replaced by T (0,1)M , and for dDP and dDP. It follows that equation
(5.309) is equivalent to two independent equations,

R + P ∧ P + P ∧ P = 0 (5.310)

dDP = 0 . (5.311)

Since the covariant derivative of the metric vanishes, this last equation is equivalent to dDC = 0.
In local coordinates we have

dCℓj − γkℓ ∧ Ckj − γkj ∧ Cℓk = 0 . (5.312)

where Cij = Cikjdz
k. This equation splits in the condition

∂̄C = 0 , (5.313)

so that C is holomorphic, and the condition ∂DC = 0, that can be equivalently written

DiCj = DjCi (5.314)

where Ci is the matrix Ci = (Ckiℓ)k,ℓ=1,...n, i.e., Ci ∈ Ω0(M,T ∗(1,0)M ⊗ T ∗(1,0)M), so that Di is
the covariant derivative on functions valued in T ∗(1,0)M ⊗ T ∗(1,0)M .

The local coordinates expression of (5.310) is

Rı̄jk̄ℓ = −C ı̄k̄s̄g
s̄pCpjℓ . (5.315)

In conclusion a rigid special Kstructure on M implies the existence of a holomorphic sym-
metric 3-tensor (cubic form) C that satisfies (5.310) and (5.314).

Viceversa if a Kmanifold M admits a symmetric holomorphic 3-tensor C that satisfies
(5.310) and (5.314), then M is a special Kmanifold. Indeed the contraction of C with the
metric gives P, so that we can define ∇ = D−PR. The symmetry of C implies that d∇π1,0 = 0
so that ∇ is torsionfree and compatible with the complex structure, d∇J = 0. The symmetry
of C also implies (5.305) so that ∇ is symplectic. Finally (5.310) and (5.314) imply that ∇ is
flat.

In special coordinates the holomorphic 3-tensor C is simply given by Cijk = 1
4

∂3F
∂zi∂zj∂zk

.

Local Special Geometry

We have recalled that to a rigid special Kmanifold of dimension n there is canonically associated
a holomorphic n dimensional flat symplectic vector bundle. On the other hand, to a projective
(or local) special Kmanifold M , of dimension n′ there is canonically associated a holomorphic
n = n′+1 dimensional flat symplectic vector bundle. The increase by one unit of the rank of the
vector bundle with respect to the dimension of the manifold is due to the graviton multiplet.
The mathematical description involves the n = n′ + 1 dimensional manifold L, total space of a
line bundle over M .

K-Hodge manifolds and their associated principal bundles M̃ →M
Consider a K-Hodge manifold, i.e. a triple (M,L,K), where M is Kwith integral Kform K, so
that it defines a class [K] ∈ H2(M,Z), and

L
π→M
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is a holomorphic hermitian line bundle with first Chern class equal to [K], and with curva-
ture equal to −2πiK (recall that on a hermitian holomorphic vector bundle there is a unique
connection compatible with the hermitian holomorphic structure).

Consider the complex manifold M̃ , that is L without the zero section of L π→ M . The
manifold M̃ is a principal bundle over M , with structure group C× (complex numbers minus the
zero); the action of C× on M̃ is holomorphic. The hermitian connection canonically associated
to L→M induces a connection on M̃ so that in TM̃ we have the subspaces of horizontal and
vertical tangent vectors.

Another property of the manifold M̃ is that it has a canonical hermitian line bundle π∗L→
M̃ ; it is the pullback to M̃ of L → M , so that the fiber on the point m̃ ∈ M̃ is just the fiber
of L on the point m = π(m̃) ∈M ,

Explicitly π⋆L = {(m̃, ℓ) ; π(ℓ) = π(m̃)}. The line bundle π∗L is trivial indeed we have the
globally defined nonzero holomorphic section

Ω : M̃ → π∗L

m̃ 7→ (m̃, m̃)

(m,λ) 7→ (m,λ, λ) . (5.316)

In the last line we used a local trivialization of M̃ →M (and henceforth of L→M) given by a
local section s, say m̃ = λs(m) ∼ (m,λ). This induces a local trivialization s̃ = π∗s of the line
bundle π∗L→ M̃ . Explicitly s̃ associates to m̃ the point s(m) of L, so that a generic element
ℓ̃ = σs̃(m̃) ∈ L̃ is described by the triple (m,λ, σ), and in particular

Ω(m̃) = Ω(λs(m)) = λs̃(m̃) ∼ (m,λ, λ) . (5.317)

It can be shown that M̃ is a pseudo-Kmanifold (i.e. a Kmanifold where the metric has
pseudo-Riemannian signature). The Kform is

K̃ =
i

2π
∂̄∂|Ω|2 , (5.318)

where |Ω|2 is the evaluation on Ω of the hermitian structure of π⋆(L) (this latter is trivially
inherited from the hermitian structure of L). With respect to the corresponding Kmetric,
horizontal and vertical vectors are orthogonal, moreover the Kmetric is negative definite along
vertical vectors, and positive definite along horizontal vectors, where K̃|

hor
= |Ω|2π∗K.∗ Thus

(M̃, K̃) has Lorentzian signature.
Concerning the pullback π∗K on M̃ of the Kform K on M ; while K is in general only closed,

π∗K is exact,

π∗K =
i

2π
∂̄∂log|Ω|2 . (5.319)

∗Hint: in the coordinates (zi, λ), associated to the local trivialization m̃ = λs(m) ∼ (m,λ) induced by a
section s of L, we have |Ω|2 = λλ̄|s|2. Moreover horizontal vectors read u = ui∂i − uiaiλ

∂
∂λ where the local

connection 1-form on M is a = aidz
i = |s|−2

∂|s|2. The pseudo-Kform reads −2πiK̃ = λλ̄∂i∂ȷ̄|s|2dzi ∧ dz̄ȷ̄ +
|s|2dλ ∧ dλ̄+ λ∂i|s|2dzi ∧ dλ̄+ λ̄∂ȷ̄|s|2dλ ∧ dz̄ȷ̄.
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This last formula easily follows by pulling back the usual local curvature formula for the hermi-
tian connection K = i

2π
∂̄∂ log |s|2 and by observing that π∗log|s|2 = log|s̃|2 = log|Ω|2 − logλ−

logλ̄.

In conclusion, one can canonically associate to a K-Hodge manifold (M,L,K) a pseudo-
Kmanifold (M̃, K̃) that carries a free and holomorphic C× action, and a line bundle π∗L→ M̃
that has a canonical global holomorphic section Ω.

The bundle L̃ can be naturally identified as the holomorphic subbundle of TM̃ given by
the vertical vectors of M̃ with respect to the holomorphic C× action. The global holomorphic
section Ω corresponds to the vertical vector field that gives the infinitesimal C× action. Under
this identification we have

K̃(Ω,Ω) = − i

2π
|Ω|2 . (5.320)

This equation shows that under the identification TM̃ |vert ≃ L the corresponding hermitian
structures are mapped one into minus the other.

Special Kmanifolds
Following [49], (M,L,K) is special Kif (M̃, K̃) is rigid special Kand if Ω is compatible with the
symplectic connection ∇̃.

A (projective or local) special Kmanifold is a K-Hodge manifold (M,L,K) such that the
associated pseudo-Kmanifold (M̃, K̃) has a rigid special pseudo-Kstructure ∇̃ which satisfies

∇̃Ω = π(1,0) . (5.321)

Notice that (5.321) is equivalent to the condition ∇̃uΩ = u for any u ∈ T (1,0)M̃ . As shown
in [50], since ∇̃ is torsionfree and flat, then condition (5.321) implies the C× invariance of ∇̃,
i.e. dRb(∇̃uv) = ∇̃dRbudRbv where Rb denotes the action of b ∈ C×. Notice also that equation
(5.321) is the global version of eq. (5.301).

For ease of notation in the following we denote the flat torsionfree symplectic connection ∇̃
on M̃ simply by ∇.

We now construct a flat symplectic 2n = 2n′ + 2 dimensional bundle H on M that is
frequently used in the literature in order to characterize projective special Kmanifolds. We
introduce a new C× action on TM̃ . On M̃ it is the usual one Rbm̃ = m̃b = bm̃, where b ∈ C×,
while on vectors we have

vm̃ 7→ b−1dRb vm̃ . (5.322)

>From now on by C× action we understand the new above defined one. Thus for example
since b−1dRbΩm̃ = b−1Ωm̃b, then Ω is not invariant under (5.322). On the other hand the local
section (vertical vector field) s̃, obtained from a local section s of L, satisfies b−1dRbs̃m̃ = s̃bm̃
(or b−1Rb∗s̃ = s̃) and is therefore C× invariant. A C× invariant frame associated with local
coordinates zi ofM and with the local section s of L is (λ−1 ∂

∂zi
, ∂
∂λ
); it is given by the coordinates

(X i, X0) = (λzi, λ), they are C× invariant (b−1Rb
∗X = X) and therefore are homogeneous

(projective) coordinates of M .

We define the 2n = 2n′ + 2 dimensional real vector bundle on M (dimRM = 2n′),

H →M (5.323)

by identifying its local sections with the C× invariant sections of TM̃ . In other words H is
the quotient of TM̃ via the C× action (5.322). A point (m,h) ∈ H is the equivalence class
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[(m̃, vm̃)] where (m̃, vm̃) ∼ (m̃′, um̃′) if m′ = mb and b−1dRbvm̃ = um̃′ . Under this quotient
π⋆L ⊂ TM̃ becomes L, while the subbundle TM̃ |hor of horizontal vectors becomes L ⊗ TM .∗
Therefore we have two natural inclusions

L ⊂ H and L⊗ TM ⊂ H . (5.324)

Since the C× action is holomorphic, then H is a holomorphic vector bundle on M of rank
n′ + 1. Since K̃ is a C× invariant 2-form the symplectic structure of TM̃ goes to the quotient
H : indeed K̃(u, v) is a homogeneous function on M if u and v are C× invariant vector fields of
TM̃ . Similarly also the flat symplectic connection ∇ induces a flat symplectic connection on
H (see for example [50]). The inclusion L ⊂ H implies that

L−1 ⊗H →M (5.325)

has a nonvanishing global holomorphic section.

In the following we work in TM̃ , but we choose C× invariant tensors and therefore our
results immediately apply to the bundle H . Let’s consider a C× invariant flat local symplectic
framing of TM̃ , that we denote by {eξ} = {eΛ, fΛ}, ξ = 1, . . . 2n, Λ = 1, . . . n. The framing is
flat because ∇eΛ = 0,∇fΛ = 0, and it is symplectic because in this basis the symplectic matrix
is in canonical form: the components K̃(eΛ, eΣ), K̃(eΛ, f

Σ), K̃(fΛ, eΣ), K̃(fΛ, fΣ) read(
0 −11
11 0

)
(5.326)

With respect to the {eΛ, fΛ} frame, the global section Ω has local components Ω = Ωξeξ =
XΛeΛ + FΛf

Λ. We also denote by Ω this column vector of coefficients,

Ω = (Ωξ) =

(
XΛ

FΛ

)
. (5.327)

The local functions XΛ, FΛ on M̃ are holomorphic, indeed (5.321) implies that ∇Ω is a (1, 0)-
form valued in TM̃ , since∇(Ωξeξ) = dΩξ eξ = ∂Ωξ eξ+∂̄Ω

ξ eξ, we obtain ∂̄Ωξ = 0. In conclusion
(XΛ, FΛ) are local components of the global symplectic section Ω of the tangent bundle TM̃ .

Each entry XΛ, FΛ is also a local holomorphic section of the line bundle L−1 →M . Indeed
from the transformation properties of Ω under the C× action m̃ 7→ Re−f(m)(m̃) = e−f(m)m̃ (or
under a change of local trivialization s′(m) = ef(m)s(m)) we have(

XΛ

FΛ

)′

= e−f(m)

(
XΛ

FΛ

)
, (5.328)

therefore for each invertible Ωξ we have that Ωξ−1
(s)s is a section of L → M or equivalently

each XΛ and each FΛ are the coefficients of sections of L−1 →M .

In conclusion (XΛ, FΛ) are local components of the global symplectic section Ω of the tangent
bundle TM̃ . Each entry is also a local holomorphic section of the line bundle L−1 →M . Under
change of local trivialization of TM̃ we have(

XΛ

FΛ

)′

= S

(
XΛ

FΛ

)
=

(
A B
C D

)(
XΛ

FΛ

)
, (5.329)

∗Hint: denote by v̂m|m̃ the horizontal lift in Tm̃M̃ of the vector vm ∈ TmM . Then the map L ⊗ TM →
(TM̃ |hor)/C×action defined by (ℓm ⊗ vm) 7→ [(ℓm, v̂m|ℓm)] if ℓm ̸= 0, and by 0 7→ 0 is well defined, linear and
injective.
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where S =
(
A
B
C
D

)
is a constant symplectic matrix. We can also consider a change of coordinates

on M , say z → z′. Provided we keep fixed the frame of TM̃ and the trivalization of L we then
have that XΛ and FΛ behave like local functions on M , XΛ(z) = X ′Λ(z′), FΛ(z) = F ′

Λ(z
′) (here

XA(z) = XA(s(z)) etc.).

It can be shown [50] that from the set of 2n elements {XΛ, FΛ} one can always choose
a subset of n elements that form a local coordinate system on M̃ . Contrary to the Kcase
(where the metric is Riemanninan) in this pseudo-Kcase in general neither {XΛ} nor {FΛ} are
coordinates systems on M̃ . The frame {eΛ, fΛ} is determined up to a symplectic transformation,
if using this freedom we have that the {XΛ} are coordinates functions then the {XΛ} are named
special coordinates. The sections FΛ can then be seen as functions of the XΛ and are obtained
via a prepotential F ,

FΛ =
∂ F

∂XΛ
. (5.330)

Recalling (5.319) and (5.320) we have

π∗K =
i

2π
∂̄∂log i⟨Ω,Ω⟩ (5.331)

and for the corresponding “K” potential K we have∗

K = −log i⟨Ω,Ω⟩ ; (5.332)

in these formulae we used the standard notation

⟨Ω,Ω⟩ = K̃(Ω,Ω) .

Using the components (XΛ, FΛ) expression (5.332) reads

K = −log
[
i(X,F )

(
0 −11
11 0

)(
X̄
F̄

)]
= −log[i(FΛX̄

Λ −XΛF̄Λ)] . (5.333)

By considering local sections of the bundle M̃ →M , we can then pull back the potential K to
local Kpotentials on M .

Under the action of e−f(m) ∈ C× on M̃ (or equivalently under change of trivialization of
M̃ →M) we have

K ′ = K + f + f̄ (5.334)

thus showing that e−K defines a global nonvanishing section of the bundle L ⊗ L → M , in
particular this bundle is trivial. Explicitly this global section is eK (s)[s, s̄] where s is any local
section of M̃ →M and [s, s̄] = {(sλ, λ−1s̄), λ ∈ C×} is the corresponding local section of L⊗ L̄.

Symplectic Sections and Matrices from local coordinates frames on M
Let’s examine few more properties of special Kmanifolds and introduce those symplectic vectors
that we have seen characterizing the geometry of the supergravity scalar fields. Consider a
vector u ∈ T (1,0)

m M , this can be lifted to a horizontal vector û ∈ T (1,0)
m̃ M̃ . Because of (5.321)

the covariant derivative ∇ûΩ is again a vector in T (1,0)
m̃ M̃ , then

⟨Ω,∇ûΩ⟩ = 0 , ⟨Ω̄,∇ûΩ⟩ = 0 ; (5.335)

the first relation holds because K̃ = ⟨ , ⟩ is a (1, 1)-form, the second relation holds because
horizontal and vertical vectors are orthogonal under K̃ (recall paragraph after (5.318)).

∗As usual when K is integral K = i
2π giȷ̄dz

i ∧ dz̄ȷ̄ = i
2π∂i∂ȷ̄K dzi ∧ dz̄ȷ̄ = i

2π∂∂̄K .
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Subordinate to a holomorphic coordinate system {zi} of M , and a local section s of L→M
we have the local coordinates (zi, λ) on M̃ . The corresponding vector fields are (∂i, ∂

∂λ
). A more

natural frame on M̃ is given by considering the vertical vector field associated to the action of
C× on M̃ ,

∂̂0 ≡ Ω = λ
∂

∂λ
, (5.336)

and the horizontal lift ∂̂i of the vector fields ∂i on M

∂̂i = ∂i − |s|−2∂i|s|2λ
∂

∂λ
= ∂i + ∂iKλ

∂

∂λ
.∂i + ∂iK ∂̂0 (5.337)

In (5.337), |s|2 = h(s, s) is the hermitian form of L→M . All these vector fields have degree 1
and are independent from the section s of L→M .

We define
∇i = ∇∂̂i

. (5.338)

The new sections ∇iΩ are exactly the horizontal vector fields ∂̂i, indeed from (5.321) we obtain

∇iΩ = ∂̂i , ∇0Ω = ∂̂0 = Ω . (5.339)

Similarly
∇̄ı̄Ω̄ = 0 , ∇̄0̄Ω = 0 . (5.340)

Recalling (5.335) we obtain

⟨Ω,∇iΩ⟩ = 0 (5.341)
⟨∇iΩ,∇jΩ⟩ = 0 (5.342)
⟨Ω̄,∇iΩ⟩ = 0 . (5.343)

Notice also that ⟨Ω, Ω̄⟩ is invariant under horizontal vector fields,

∂̂i⟨Ω, Ω̄⟩ = ∇i⟨Ω, Ω̄⟩ = ⟨∇iΩ, Ω̄⟩+ ⟨Ω,∇iΩ̄⟩ = 0 (5.344)

where in the last passage we used (5.335) and (5.340). Similarly ∇̄ı̄⟨Ω, Ω̄⟩ = 0.
The metric associated to the Kform (5.318) on M̃ is block diagonal in the ∂̂0, ∂̂i basis, (see

paragraph following (5.318)),(
g̃00̄ 0
0 g̃iȷ̄

)
=

(
−λλ̄|s|2 0

0 λλ̄|s|2giȷ̄◦π

)
=

(
−|Ω|2 0
0 |Ω|2 giȷ̄◦π

)
. (5.345)

Because of (5.344) the associated Levi-Civita connection coefficients of M̃ in the ∂̂i basis of
horizontal vectors coincide with those of M in the ∂

∂zi
basis,

Γ̃ℓij = g̃k̄ℓ∂̂ig̃jk̄ = gk̄ℓ∂igjk̄ = Γℓij . (5.346)

In terms of the symplectic frame {eξ} = {eΛ, fΛ}, that is flat, we have ∇Ω = ∇(Ωξeξ) =

d(Ωξ)eξ, and ∇iΩ = ∂̂i(Ω
ξ)eξ = ∂iΩ

ξ + ∂iKΩξ, i.e.,

∇i

(
XΛ

FΛ

)
= ∂i

(
XΛ

FΛ

)
+ ∂iK

(
XΛ

FΛ

)
. (5.347)

Recalling the interpretation of XΛ or FΛ as coefficients of local sections of L−1 → M , we read
in equation (5.347) the covariant derivative of L−1 →M .
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It is also convenient to normalize Ω and thus consider the (non holomorphic) nonvanishing
global vector field on M̃ given by

V = eK /2Ω . (5.348)

>From (5.344) the covariant derivatives of V are

∇iV = eK /2∇iΩ , ∇̄ı̄V = eK /2∇̄ı̄Ω = 0 ,

∇̄ı̄V̄ = eK /2∇̄ı̄Ω̄ , ∇iV̄ = eK /2∇iΩ̄ = 0 .

Explicitly we have∗

∇iV = (∂iV
ξ +

1

2
∂iKV

ξ) eξ , ∇̄ı̄V = (∂̄ı̄V
ξ − 1

2
∂̄ı̄K V ξ) eξ = 0 (5.349)

∇̄ı̄V̄ = (∂̄ı̄V̄
ξ +

1

2
∂̄ı̄K V̄ ξ) eξ , ∇iV̄ = (∂iV̄

ξ − 1

2
∂ı̄K V̄ ξ) eξ = 0 . (5.350)

Each coefficient V ξ of V with respect to the C× invariant basis eξ is also a coefficient of a local
section of the bundle L−1/2 ⊗ L̄1/2 →M . This bundle has connection 1

2
∂iK − 1

2
∂̄ı̄K . Equation

(5.349) can be interpreted as the covariant derivative of these line bundle local sections.
From (5.332), and (5.341)-(5.343) we have

⟨V , V̄⟩ = −i , (5.351)
⟨V ,∇iV⟩ = 0 , (5.352)

⟨∇iV ,∇jV⟩ = 0 , (5.353)
⟨V , ∇̄ı̄V̄⟩ = 0 . (5.354)

>From (5.345), or also from [∇j, ∇̄ı̄] = −∂j ∂̄ıK = −gjı̄ and ⟨∇̄ı̄∇jV , V̄⟩ + ⟨∇jV , ∇̄ı̄V̄⟩ = 0,
we have

⟨∇jV , ∇̄ı̄V̄⟩ = igjı̄ , (5.355)

(where gjı̄ = ∂j ∂̄ıK = −2πi π∗Kjı̄ is actually gjı̄◦π, the pull back via π of the positive definite
metric on M). If we consider an orthonormal frame {eI}, (I = 1, . . . n′) on M ,

eI = ejI∂j , ∂j = eIjeI , gjı̄ = eIj ē
J̄
ı̄ δIJ̄ , (5.356)

we lift this frame to a frame of horizontal vectors of T (1,0)M̃ , and if we set

VM = (V , ∇̄ĪV̄) , M = 0, 1, . . . n′ , (5.357)

(where ∇̄Ī = ēı̄
Ī
∇̄ı̄), then relations (5.352), (5.353), (5.351), (5.355) read

⟨VM ,VN⟩ = 0 , ⟨V̄M ,VN⟩ = iδMN . (5.358)

The index M mixes holomorphic and antiholomorphic indices in order to compensate for the
Lorentian signature of the metric

(−1
0

0
gjı̄

)
in (5.351), (5.355).

∗we find also instructive to obtain the covariant derivative of the sectionV via this straighforward calculation
that uses λ ∂

∂λK = −1,

∇iV = ∇i(e
K/2Ωξeξ) = ∂̂i(e

K/2Ωξ)eξ = ∂i(e
K/2Ωξ)eξ + ∂iKλ

∂

∂λ
(eK/2Ωξ)eξ = (∂iV

ξ +
1

2
∂iK V ξ) eξ .
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Explicitly the column vectors of the components of the sections VM = V ξ
Meξ are

(
V ξ
)
=

(
LΛ

MΛ

)
= eK /2

(
XΛ

FΛ

)
,
(
∇̄Ī V̄

ξ
)
=

(
∇̄ĪL

Λ

∇̄ĪM
Λ

)
, (5.359)

and they can be organized in a 2n× n matrix

(V ξ
M) = (V, ∇̄Ī V̄

ξ) =

(
LΛ ∇̄ĪL

Λ

MΛ ∇̄ĪM
Λ

)
=

(
fΛ
M

hΛM

)
=

(
f
h

)
. (5.360)

In the last passage we have denoted by f (respectively h) the n × n matrix of entries fΛ
M

(respectively hΛM).
The N = 2 special geometry relations (5.358) are equivalent to

(f †, h†)

(
0 −11
11 0

)(
f
h

)
= i11 i.e. − f †h+ h†f = i11 (5.361)

and

(f t, ht)

(
0 −11
11 0

)(
f
h

)
= 0 i.e. − f th+ htf = 0 (5.362)

These two relations are equivalent to require the real matrix(
A B
C D

)
=
√
2

(
Ref −Imf
Reh −Imh

)
(5.363)

to be symplectic. Vice versa any symplectic matrix
(
A
C
B
D

)
leads to relations (5.361), (5.362) by

defining
(
f
h

)
= 1√

2

(
A−iB
C−iD

)
. The matrix

V =

(
f f̄
h h̄

)
=

(
A B
C D

)
A , (5.364)

where A = 1√
2

(
11
−i11

11
i11

)
, rotates the flat real symplectic frame {eξ} = {eΛ, fΛ} in the frame

{VM , V̄M̄} that up to a rotation by A−1 = A† is also real and symplectic (but not flat). This
{VM , V̄M̄} frame comes from a local coordinate frame on M , indeed V̄M̄ = (eK /2Ω̄, eK /2ejI ∂̂j).
The symplectic connection 1-form in this frame is simply Γ = V −1dV , indeed ∇eξ = 0 is
equivalent to

dV = V Γ . (5.365)

We can write Γ =

(
ω P̄
P ω̄

)
, and see this equation as a condition on the Levi-Civita connection

ω and the tensor P of M̃ . The block decomposition
(
ω
P
P̄
ω̄

)
follows by recalling that M̃ is in

particular a rigid special Kmanifold. The difference PR = ∇−D between the flat symplectic
connection and the Levi-Civita connection is given by the holomorphic symmetric three form
C (c.f. (5.308))

C = −⟨∇Ω,∇∇Ω⟩ . (5.366)

The properties of C previously discussed in the rigid case apply also to this projective special
geometry case.
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5.5.2 The N = 2 theory

>From the previous section we see that the N = 2 supergravity theories and the higher N
theories have a similar flat symplectic structure. The formalism is the same, indeed since the
antisymmetric of the U(2) authomorphism group of the N = 2 supersymmetry algebra is a
singlet we have

fΛ
AB = fΛ

0ϵAB , hΛAB = hΛ0ϵAB (5.367)

where fΛ
0, hΛ0 are the components of the global section V , therefore from (5.360) we have as

in (5.172),

f = (fΛ
M) = (fΛ

AB, f̄
Λ
Ī) ,

h = (hΛM) = (hΛAB, h̄ΛĪ) , (5.368)

as it should be, the sections
(
f̄Λ

Ī

h̄ΛĪ

)
have Kweight opposite to the

(
fΛAB
hΛI

)
sections.

The difference between the N = 2 cases and the N > 2 cases is that the scalar manifold M
of the N = 2 case is not in general a coset manifold. The flat symplectic bundle is therefore
not in general a trivial bundle. The gauge kinetic term N = ⟨M {

−∞M depends on the choice
of the flat symplectic frame {eξ} = {eΛ, fΛ}. This latter can be defined only locally on M̃ (and
therefore on M). In another region we have a different frame {e′ξ} = {e′Λ, f ′Λ} and therefore a
different gauge kinetic term N ′. In the common overlapping region the two formulations should
give the same theory, this is indeed the case because the corresponding equations of motion
are related by a duality rotation. As a consequence the notion of electric or magnetic charge
depends on the flat frame chosen. In this sense the notion of electric and magnetic charge is
not a fundamental one. The symplectic group is a gauge group (where just constant gauge
transformations are allowed) and only gauge invariant quantities are physical.

A related aspect of the comparison between the N = 2 and the N > 2 theories is that the
special Kstructure determines the presence of a new geometric quantity, the holomorphic cubic
form C, which physically corresponds to the anomalous magnetic moments of the N = 2 theory.
When the special Kmanifold M is itself a coset manifold [78], then the anomalous magnetic
moments Cijk are expressible in terms of the vielbein of G/H, this is for example the case of
the N = 2 theories with scalar manifold G/H = SU(1,1)

U(1)
× O(6,2)

O(6)×O(2)
and G/H = SO⋆(12)

U(6)
[78].

To complete the analogy between the N = 2 theory with n′ vector multiplets and the
higher N theories in D = 4, we also give the supersymmetry transformation laws, the central
and matter charges, the differential relations among them and the formula for the potential
VBH .

The supercovariant electric field strength F̂Λ is

F̂Λ = FΛ + fΛψ̄AψBϵAB − if̄Λ
ı̄ λ̄

ı̄
AγaψBϵ

ABV a + h.c. (5.369)

The transformation laws for the chiral gravitino ψA and gaugino λiA fields are:

δψAµ = ∇µ ϵA + ϵABTµνγ
νϵB + · · · , (5.370)

δλiA = i∂µz
iγµϵA +

i

2
T̄ȷ̄µνγ

µνgiȷ̄ϵABϵB + · · · , (5.371)

where:
T = hΛF

Λ − fΛGΛ , (5.372)

T̄ı̄ = T̄Ī ē
Ī
ı̄ , with T̄Ī = h̄ΛĪF

Λ − f̄Λ
Ī GΛ , (5.373)
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are respectively the graviphoton and the matter vectors. In (5.370), (5.371) the position of the
SU(2) automorphism index A (A,B = 1, 2) is related to chirality, namely (ψA, λ

iA) are chiral,
(ψA, λı̄A) antichiral.

In order to define the symplectic invariant charges let us recall the definition of the magnetic
and electric charges (the moduli independent charges) in (5.160). The central charges and the
matter charges are then defined as the integrals over a sphere at spatial infinity of the dressed
graviphoton and matter vectors (5.171), they are given in (5.173), (5.174):

(ZM) =
(
Z, Z̄Ī

)
= iV (ϕ∞)

−1
Q (5.374)

where ϕ∞ is the value of the scalar fields at spatial infinity. Because of (5.357) we get immedi-
ately:

∇IZ = ZI . (5.375)

This relation can also be written ∇IZAB = ZIϵAB, and considering the vielbein 1-form PI dual
to the frame eI introduced in (5.356) and setting ∇ ≡ PI∇I we obtain ∇ZAB = ZIP

IϵAB .
The positive definite quadratic invariant VBH in terms of the charges Z and ZI reads

VBH =
1

2
ZZ̄ + ZIZ̄

I = −1

2
QtM(N )Q . (5.376)

Equation (5.376) is obtained by using exactly the same procedure as in (5.177). Invariance of
VBH implies that it is a well defined positive function on M .

5.6 Duality rotations in Noncommutative Spacetime

Field theories on noncommutative spaces have received renewed interest since their relevance
in describing Dp-branes effective actions (see [79] and references therein). Noncommutativity
in this context is due to a nonvanishing NS background two form on the Dp-brane. First
space-like (magnetic) backgrounds (Bij ̸= 0) were considered, then NCYM theories also with
time noncommutativity (B0i ̸= 0) have been studied [82]. The NCYM theories that can be
obtained from open strings in the decoupling limit α′ → 0 are those with B space-like or
light-like (e.g. B0i = −B1i), these were also considered the only theories without unitatrity
problems [83], however by applying a proper perturbative setup it was shown that also time-
space noncommutative field theories can be unitary [84].

Following [79], gauge theory on a Dp-brane with constant two-form B can be described
via a commutative Lagrangian and field strength L(F + B) or via a noncommutative one
L̂(F̂ ), where F̂µν = ∂µAν − ∂νAµ − i[Aµ ⋆, Aν ]. Here ⋆ is the star product, on coordinates
[xµ ⋆, x

ν ] = xµ ⋆ xν − xν ⋆ xν = iΘµν , where Θ depends on B and the metric on the Dp-brane.
The commutative and the noncommutative descriptions are complementary and are related
by Seiberg-Witten map (SW map) [79], [80, 81]. In the α′ → 0 limit [79] the exact effective
electromagnetic theory on a Dp-brane is noncommutative electromagnetism (NCEM), this is
equivalent, via SW map, to a nonlinear commutative U(1) gauge theory.

In this section we consider a D3-brane action in the slowly varying field approximation, we
give an explicit expression of this nonlinear U(1) theory and we show that it is self-dual when
B (or Θ) is light-like. Via SW map solutions of U(1) nonlinear electromagnetism are mapped
into solutions of NCEM, so that duality rotations are also a symmetry of NCEM, i.e., NCEM is
self-dual [85], [52]. When Θ is space-like we do not have self-duality and the S-dual of space-like
NCYM is a noncommutative open string theory decoupled from closed strings [87]. Related
work appeared in [88, 89, 90]. We mention that self-duality of NCEM was initially studied
in [86] to first order in Θ. On one hand it is per se interesting to provide new examples of
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self-dual nonlinear electromagnetism, as the one we give with the lagrangian (15.355). On the
other hand this lagrangian is via Seiberg-Witten map, and for slowly varying fields, just NCEM.
Formally NCEM resembles U(N) YM on commutative space, and on tori with rational Θ the
two theories are T -dual [91]. Self-duality of NCEM then hints to a possible duality symmetry
property of the equations of motion of U(N) YM.

Self-Duality of the D3-brane action
Consider the D3-brane effective action in a IIB supergravity background with constant axion,
dilaton NS and RR two-forms. The background two-forms can be gauged away in the bulk
and we are left with the field strength F = F + B on the D3-brane. Here B is defined as the
constant part of F , or B = F |spatial∞ since F vanish at spatial infinity. For slowly varying
fields the Lagrangian, in Einstein frame is essentially the Born-Infeld action with axion and
dilaton. We set for simplicity N = −⟩∞∞ and gs = 1, where gs is the string coupling constant.
The lagrangian is then L = −1

α′2

√
−det(g + α′F ). The explicit expression of G, is obtained

from the definition G := ∂L
∂F

and is (cf. (5.38))

Gµν =
F ∗
µν +

α′2

4
F F ∗ Fµν√

1 + α′2

2
F 2 − α′4

16
(F F ∗)2

. (5.377)

Here F ∗
µν =

√
gϵµνρσF

ρσ, cf. footnote 2, Section 2.1. One can then consider a duality rotation
by an angle γ and extract how B (the constant part of F ) transforms

B′
µν = cosγ Bµν − sinγ

B∗
µν +

α′2

4
BB∗Bµν√

1 + α′2

2
B2 − α′4

16
(BB∗)2

. (5.378)

Open/closed strings and light-like noncommutativity
The open and closed string parameters are related by (see [79], the expressions for G and Θ
first appeared in [92])

1

g + α′B
= G−1 +

Θ

α′

g−1 = (G−1 −Θ/α′)G (G−1 +Θ/α′) = G−1 − α′−2
ΘGΘ

α′B = −(G−1 −Θ/α′)Θ/α′ (G−1 +Θ/α′)

Gs = gs

√
detG

det(g + α′B)
= gs

√
detG det (G−1 +Θ/α′) = gs

√
det g−1 det (g + α′B)

The decoupling limit α′ → 0 with Gs,G,Θ nonzero and finite [79] leads to a well defined
field theory only if B is space-like or light-like. Looking at the closed and open string coupling
constants it is easy to see why one needs this space-like or light-like condition on B in performing
this limit. Consider the coupling constants ratio Gs/gs, that expanding the 4x4 determinant
reads (here B2 = BµνBρσg

µρgνσ, Θ2 = ΘµνΘρσGµρGνσ and so on)

Gs
gs

=

√
1 +

α′−2

2
Θ2 − α′−4

16
(ΘΘ∗)2 =

√
1 +

α′2

2
B2 − α′4

16
(BB∗)2 . (5.379)

Both Gs and gs must be positive; since G and Θ are by definition finite for α′ → 0 this implies
ΘΘ∗ = 0 and Θ2 ≥ 0. Now ΘΘ∗ = 0 ⇔ detΘ = 0 ⇔ detB = 0 ⇔ BB∗ = 0. In this case
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from (5.379) we also have Θ2 = α′4B2. In conclusion in order for the α′ → 0 limit defined by
keeping Gs,G,Θ nonzero and finite [79], to be well defined we need

B2 ≥ 0 , BB∗ = 0 i.e. Θ2 ≥ 0 , ΘΘ∗ = 0 (5.380)

This is the condition for B (and Θ) to be space-like or light-like. Indeed with Minkowski metric
and in three vector notation (5.380) reads B2 −E2 ≥ 0 and E ⊥ B.

If we now require the α′ → 0 limit to be compatible with duality rotations, we immediately
see that we have to consider only the light-like case B2 = BB∗ = 0. Indeed under U(1) rotations
the electric and magnetic fields mix up, in particular under a π/2 rotation (5.378) a space-like
B becomes time-like.

In the light-like case det(g + α′B) = det(g), relations (5.379) simplify considerably. The
open and closed string coupling constants coincide, since we set gs = 1 we have Gs = gs = 1,
this also implies det(G)= det(g) so that the hodge dual field F ⋆ with the g metric equals the
one with the G metric. Use of the relations

Ω∗
µρΩ

∗ρν − ΩµρΩ
ρν =

1

2
Ω2 δ ν

µ , ΩµρΩ
∗ρν = Ω∗

µρΩ
ρν =

−1
4
ΩΩ∗ δ ν

µ (5.381)

valid for any antisymmetric tensor Ω, shows that any two-tensor at least cubic in Θ (or B)
vanishes. It follows that g−1GΘ = Θ and that the raising or lowering of the Θ and B indices
is independent from the metric used. We also have

Bµν = −α′−2
Θµν . (5.382)

Self-duality of NCBI and NCEM
We now study duality rotations for noncommutative Born-Infeld (NCBI) theory and its zero
slope limit that is NCEM. The relation between the NCBI and the BI Lagrangians is [79]

L̂BI(F̂ ,G,Θ,Gs) = LBI(F +B, g) +O(∂F ) + tot.der. (5.383)

where O(∂F ) stands for higher order derivative corrections, F̂ is the noncommutative U(1) field
strength and we have set gs = 1. The NCBI Lagrangian is

L̂BI(F̂ ,G,Θ,Gs) =
−1
α′2Gs

√
−det(G+ α′F̂ ) +O(∂F̂ ) . (5.384)

In the slowly varying field approximation the action of duality rotations on L̂BI is derived from
self-duality of LBI . If F̂ is a solution of the L̂Gs,G,Θ

BI EOM then F̂ ′ obtained via

F̂
SW map←−−→ F

duality rot.←−−→ F ′ SW map←−−→ F̂ ′

is a solution of the L̂G′
s,G

′,Θ′

BI EOM where G′
s,G

′,Θ′ are obtained using (5.379) from g′, B′ and
g′s = gs = 1.

In the light-like case we have Gs = gs = 1, the B rotation (5.378) simplifies to

B′
µν = cosγ Bµν − sinγ B∗

µν . (5.385)

Using (5.385) the U(1) duality action on the open string variables is

G′ = G , Θ′µν = cosγΘµν − sinγΘ∗µν . (5.386)

For Θ light-like, solutions F̂ of L̂G,Θ are mapped into solutions F̂ ′ of L̂G,Θ′ . Thus we can
map solutions of L̂G,Θ into solutions of L̂G,Θ, therefore the theory described by L̂G,Θ has U(1)
duality rotation symmetry.
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5.6 Duality rotations in Noncommutative Spacetime

In order to show self-duality of NCEM we consider the zero slope limit of (5.383) and verify
that the resulting lagrangian on the r.h.s. of (5.383) is self-dual. We rewrite LBI in terms of
the open string parameters G,Θ

LBI =
−1
α′2

√
−det(g + α′F ) =

−
√
G

α′2

√
det(g + α′B + α′F )

det(g + α′B)

=
−1
α′2

√
−det(G+ α′F + GΘF ) . (5.387)

The determinant in the last line can be evaluated as sum of products of traces (Newton-
Leverrier formula). Each trace can then be rewritten in terms of the six basic Lorentz invariants
F 2, FF ∗, FΘ, FΘ∗, Θ2 = ΘΘ∗ = 0, explicitly

detG−1 det(G+ α′F + GΘF ) = (1− 1
2
ΘF )2 + α′2[1

2
F 2 + 1

4
ΘF ∗ FF ∗]− α′4(1

4
FF ∗)2

Finally we take the α′ → 0 limit of (5.387), by dropping the infinite constant and total deriva-
tives the resulting Lagrangian is

√
G times

−1
4
F 2 − 1

8
ΘF ∗ FF ∗

1− 1
2
ΘF

. (5.388)

We thus have an expression for NCEM in terms of F , Θ and G (of course Gµν can be taken
ηµν), L̂EM =

√
G L̂EM,

L̂EM ≡ −
1

4
F̂ F̂ =

−1
4
F 2 − 1

8
ΘF ∗ FF ∗

1− 1
2
ΘF

+O(∂F ) + tot. der. (5.389)

The Lagrangian (15.355) satisfies the self-duality condition (5.60) with φ = Θ, κ = 0, a =
d = 0, c = −b and therefore NCEM is self-dual under the U(1) duality rotations (5.386) and
F ′ = cosγ F − sinγ G. The change in Θ→ Θ′, that is not a dynamical field, can be cancelled by
a rotation in space so that therefore we can map solution of the EOM of (5.389) into solutions
of the EOM of (5.389) with the same value of Θ.

This duality can be enhanced to Sp(2,R) by considering also axion and dilaton fields; also
Higgs fields can be coupled, the coupling is minimal in the noncommutative theory. Using this
duality one can relate space-noncommutative magnetic monopoles with a string (D1-string D3-
brane configuration) to space-noncommutative electric monopoles (possibly an F-string ending
on a D3-brane) [52, 53].
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5.7 Appendix: Symplectic group and transformations
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5.7 Appendix: Symplectic group and transformations

5.7.1 Symplectic group (A,B,C,D and f, h and V matrices)

The symplectic group Sp(2n,R) is the group of real 2n× 2n matrices that satisfy

St
(
0 −11
11 0

)
S =

(
0 −11
11 0

)
(5.390)

Setting S =
(
A
B
C
D

)
we explicitly have

AtC − CtA = 0 , BtD −DtB = 0 , AtD − CtB = 1 . (5.391)

Since the transpose of a symplectic matrix is again symplectic we equivalently have

ABt −BAt = 0 , CDt −DCt = 0 , ADt −BCt = 1 . (5.392)

In particular AtC,BtD,CA−1, BD−1, A−1B,D−1C,ABt, DCt are symmetric matrices (in case
they exist).

If D is invertible we have the factorization(
A B
C D

)
=

(
11 BD−1

0 11

)(
Dt−1

0
0 D

)(
11 0

D−1C 11

)
(5.393)

where A = Dt−1
+BD−1C follows from BD−1 = Dt−1

Bt.

The complex basis
It is often convenient to consider the complex basis 1√

2

(
F+iG
F−iG

)
rather than

(
F
G

)
. The transition

from the real to the complex basis is given by the symplectic and unitary matrix Ā−1, where

A =
1√
2

(
11 11
−i11 i11

)
, A−1 = A† . (5.394)

A symplectic matrix S, belonging to the fundamental representation of Sp(2n,R), in the com-
plex basis reads

U = A−1SA . (5.395)

There is a 1-1 correspondence between matrices U as in (5.395) and complex 2n× 2n matrices
belonging to U(n, n) ∩ Sp(2n,C),

U †
(
11 0
0 −11

)
U =

(
11 0
0 −11

)
, U t

(
0 −11
11 0

)
U =

(
0 −11
11 0

)
. (5.396)

Equations (5.396) define a representation of Sp(2n,R) on the complex vector space C2n. It
is the direct sum of the representations

(
ψ

ψ̄

)
and

(
ψ

−ψ̄

)
, these are real representations of real

dimension 2n. (The representation
(
ψ

ψ̄

)
is the vector space of all linear combinations, with

coefficients in R, of vectors of the kind
(
ψ

ψ̄

)
).
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5.7.2 The coset space Sp(2n,R)/U(n) (M∗ and N matrices)

The maximal compact subgroup of U(n, n) is U(n)× U(n); because of the second relation
in (5.396) the maximal compact subgroup of Sp(2n,R) is U(n). The usual embedding of U(n)
into the complex and the fundamental representations of Sp(2n,R) are respectively(

u 0
0 ū

)
,

(
Reu −Imu
Imu Reu

)
, (5.397)

where u belongs to the fundamental of U(n).

The f and h matrices
The f and h matrices are n× n complex matrices that satisfy the two conditions

(f †, h†)

(
0 −11
11 0

)(
f
h

)
= i11 i.e. − f †h+ h†f = i11 (5.398)

and
(f t, ht)

(
0 −11
11 0

)(
f
h

)
= 0 i.e. − f th+ htf = 0 (5.399)

These two relations are equivalent to require the real matrix(
A B
C D

)
=
√
2

(
Ref −Imf
Reh −Imh

)
(5.400)

to be in the fundamental representation of Sp(2n,R). Vice versa any symplectic matrix
(
A
C
B
D

)
leads to relations (5.398), (5.399) by defining(

f
h

)
=

1√
2

(
A− iB
C − iD

)
. (5.401)

In terms of the f and h matrices we have

U = A−1

(
A B
C D

)
A =

1√
2

(
f + ih f̄ + ih̄

f − ih f̄ − ih̄

)
. (5.402)

The V matrix and its symplectic vectors
The matrix

V =

(
A B
C D

)
A =

(
f f̄
h h̄

)
(5.403)

transforms from the left via the fundamental representation of Sp(2n,R) and from the right via
the complex representation of Sp(2n,R). Since Ā is a symplectic matrix we have that V is a
symplectic matrix, V t

(
0
11
−11
0

)
V =

(
0
11
−11
0

)
, hence also its transpose V t, V

(
0
11
−11
0

)
V t =

(
0
11
−11
0

)
. The

columns of the V matrix are therefore mutually symplectic vectors; also the rows are mutually
symplectic vectors. Explicitly if V ξ is the vector with components given by the ξ-th row of V ,
then V ξ

ρΩ
ρσV ζ

σ = Ωξζ , where Ω =
(
0
11
−11
0

)
.

5.7.2 The coset space Sp(2n,R)/U(n) (M∗ and N matrices)

All positive definite symmetric and symplectic matrices S are of the form

S = ggt , g ∈ Sp(2n,R) . (5.404)
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5.7.2 The coset space Sp(2n,R)/U(n) (M∗ and N matrices)

Indeed consider the factorization (5.393) (since S is positive definite also its restriction to an n
dimensional subspace is positive definite, therefore D is invertible). The factorization (5.404)
is obtained for example by considering the symplectic matrix

g =

(
11 BD−1

0 11

)(√
D−1 0

0
√
D

)
, (5.405)

where the matrix
√
D is the unique positive definite square root of the symmetric and positive

definite matrix D. (Notice that the same proof shows that any symmetric and symplectic
matrix

(
A
Bt
B
D

)
with invertible and positive definite matrix D is of the form ggt and therefore is

positive definite).

We can now show that the coset space Sp(2n,R)/U(n) is the space of all positive definite
symmetric and symplectic matrices. The maximal compact subgroup of Sp(2n,R) is H := {g ∈
Sp(2n,R); ggt = 11}, and we have seen in (5.397) that it is U(n).

We then denote by gH the elements of Sp(2n,R)/U(n), where H = U(n), and consider the
map

σ :
Sp(2n,R)
U(n)

→ {S ∈ Sp(2n,R);S = St and S positive definite}

gH 7→ ggt (5.406)

This map is well defined because it does not depend on the representative g ∈ Sp(2n,R) of the
equivalence class gH. Formula (5.404) shows that this map is surjective. Injectivity is also easily
proven: if ggt = g′g′t then g′−1g(g′−1g)t = 1, so that u = g′−1g is an element of Sp(2n,R) that
satisfies uut = 1. Therefore u = g′−1g belongs to the maximal compact subgroup H = U(n),
hence g and g′ belong to the same coset.

The M∗ and N matrices
Notice that the n×n matrices f = (fΛ

a)Λ,a=1,...n, are invertible. Indeed if the columns of f were
linearly dependent, say fΛ

aψ
a = 0, i.e. fψ = 0, with a nonzero vector ψ, then sandwiching

(5.398) between ψ† and ψ we would obtain

−(fψ)†hψ + ψ†h†fψ = iψ†ψ ̸= 0 (5.407)

that is absurd. Similarly also the matrix h = (hΛa) is invertible. We can then define the
invertible n× n matrix

N = hf−1 (5.408)

that is symmetric (cf. (5.399)) and that has negative definite imaginary part (cf. (5.398))

N = N ⊔ , ImN = − ⟩
∈
(N −N †) = −∞

∈
({ { †)−∞ , (5.409)

(while N−∞ has positive definite imaginary part N−∞ − N−† = ⟩(⟨ ⟨ †)−∞ ). Any symmetric
matrix with negative definite imaginary part is of the form (5.408) for some (f, h) satisfying
(5.398) and (5.399) (just consider any f that satisfyes (5.409)). There is also a 1-1- corre-
spondence between symmetric complex matrices N with negative definite imaginary part and
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5.7.3 Lie algebra of Sp(2n,R) and U(n) (a, b, c, d matrices)

symmetric negative definite matrices M∗ of Sp(2n,R). Given N we consider

M∗(N ) =

(
11 −ReN
0 11

)(
ImN 0
0 ImN−∞

)(
11 0

−ReN 11

)
=

(
ImN +ReN ImN−∞ReN −ReN ImN−∞

−ImN−∞ReN ImN−∞

)
= −i

(
0 −11
11 0

)
+

(
N ImN−∞N † −N ImN−∞

−ImN−∞N † ImN−∞

)
= −i

(
0 −11
11 0

)
− 2

(
hh† −hf †

−fh† ff †

)
= −i

(
0 −11
11 0

)
− 2

(
−h
f

)
(−h† f †)

= −2Re
[(
−h
f

)
(−h† f †)

]
(5.410)

Since symmetric negative definite matrices M∗ of Sp(2n,R) parametrize the coset space
Sp(2n,R)/U(n), the matrices N too parametrize this coset space.

Under symplectic rotations (5.329) we have(
f
h

)
→
(
f
h

)′

= S

(
f
h

)
=

(
A B
C D

)(
f
h

)
(5.411)

and
N → N ′ = (C +DN )(A+BN )−1 . (5.412)

The transformation of the imaginary part of N is (recall (5.409))

ImN → ImN ′ = (A + BN )−†ImN (A + BN )−∞ (5.413)

The transformation of the corresponding matrix M∗(N ) is

M∗(N )→M∗(N ′) = S⊔
−∞
M∗(N )S−∞ , (5.414)

this last relation easily follows from (5.410) and from
(−h
f

)
=
(
0
11
−11
0

)(
f
h

)
.

The relation between the negative definite symmetric matrix M∗ defined in (5.410) and S
defined in (5.404) can be obtained from their transformation properties under Sp(2n,R),

M∗ = −S−1 =

(
0 −11
11 0

)
S

(
0 −11
11 0

)
. (5.415)

We also have M = −V −†V −1 .

5.7.3 Lie algebra of Sp(2n,R) and U(n) (a, b, c, d matrices)

If we write
(
A
B
C
D

)
=
(
11
0
0
11

)
+ ϵ
(
a
c
b
d

)
with ϵ infinitesimal we obtain that the 2n× 2n matrix(

a b
c d

)
(5.416)

belongs to the Lie algebra of Sp(2n,R) if a, b, c, d are real n × n matrices that satisfy the
relations

at = −d , bt = b , ct = c . (5.417)
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5.8 Appendix: Unilateral Matrix Equations

The Lie algebra of U(n) in this fundamental representation of Sp(2n,R) is given by the matrices(
a b
−b a

)
with b = bt, a = −at.

In the complex basis (5.395) the Lie algebra of Sp(2n,R) is given by the 2n× 2n matrices(
a b
b̄ ā

)
(5.418)

where a and b are complex n× n matrices that satisfy the relations

a† = −a , bt = b . (5.419)

The Lie algebra of U(n) in this complex basis is given by the matrices
(
a 0
0 ā

)
with a† = −a.

5.8 Appendix: Unilateral Matrix Equations

The remarkable symmetry property of the trace of the solution of the matrix equation (5.142)
holds for more general matrix equations. This trace property and the structure of the solution
itself are studied in [18], and with a different method in [70]; see also [71] for a unified approach
based on the generalized Bezout theorem, and [69] for convergence of perturbative solutions of
matrix equations and a new form of the noncommutative Lagrange inversion formula.

In this appendix we prove the symmetry property of the trace of certain solutions (and their
powers) of unilateral matrix equations. These are N th order matrix equations for the variable
X with matrix coefficients Ai which are all on one side, e.g. on the left

X = A0 + A1X + A2X
2 + . . .+ ANX

N . (5.420)

The matrices are all square and of arbitrary degree. We may equally consider the Ai’s as
generators of an associative algebra, and X an element of this algebra which satisfies the above
equation. We consider the formal solution of (5.420) obtained as the limit of the sequence
X0 = 0, Xk+1 = A0 +A1Xk +A2X

2
k + . . .+ANX

N
k . It is convenient to assign to every matrix a

dimension d such that d(X) = −1. Using (5.420), the dimension of the matrix Ai is given by
d(Ai) = i− 1.

First note that we can rewrite equation (5.420) as

1−
N∑
i=0

Ai = 1−X −
N∑
k=1

Ak(1−Xk)

The right hand side factorizes

1−
N∑
i=0

Ai = (1−
N∑
k=1

k−1∑
m=0

AkX
m)(1−X) .

Under the trace we can use the fundamental property of the logarithm, even for noncommutative
objects, and obtain

Tr log(1−
N∑
i=0

Ai) = Tr log(1−
N∑
k=1

k−1∑
m=0

AkX
m) + Tr log(1−X) .
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Using d(Ak) = k − 1 and d(X) = −1 we have d(AkXm) = k − m − 1 and we see that all
the words in the argument of the first logarithm on the right hand side have semi-positive
dimension. Since all the words in the expansion of the second term have negative dimension
we obtain

Tr log(1−X) = Tr log(1−
N∑
i=0

Ai)
∣∣∣
d<0

. (5.421)

On the right hand side of (5.421) one must expand the logarithm and restrict the sum to words
of negative dimension. Since d(Xr) = −r by extracting the dimension d = −r terms from the
right hand side of (5.421) we obtain

Trϕr = r
∑
{ai}∑

(i−1)ai=−r

(∑N
i=0 ai − 1

)
!

a0!a1! . . . aN !
Tr S(Aa00 A

a1
1 . . . AaNN ) . (5.422)

The relevant point is that all the terms in the expansion of Tr log(1 −
∑N

i=0Ai) are automat-
ically symmetrized, this explains the symmetrization operator S in the A0, A1, ...AN matrix
coefficients.

If the coefficient AN is unity, we have the following identity for the symmetrization operators
of N + 1 and of N coefficients (words)

S(Aa00 A
a1
1 . . . AaNN )|AN=1 = S(A

a0
0 A

a1
1 . . . A

aN−1

N−1 ) .

This is obviously true up to normalization; the normalization can be checked in the commutative
case.

The trace of the solution of (5.142) can now be obtained from (5.422) by considering r = 1
and N = 2 and by setting A2 to unity.

6 Classical Electromagnetic Duality for Children by JM
Figueroa-O’Farrill

In this chapter we treat classical electromagnetic duality, and its manifestation (Montonen-
Olive duality) in some spontaneously broken gauge theories. We start by reviewing the Dirac
monopole, and then quickly move on to the ’t Hooft-Polyakov monopole solution in the model
described by the bosonic part of the SO(3) Georgi-Glashow model. We focus on the monopole
solution in the Prasad-Sommerfield limit and derive the Bogomol’nyi bound for the mass of the
monopole. We show that the classical spectrum of the model is invariant under electromagnetic
duality. This leads to the conjecture of Montonen and Olive. We then discuss "the Witten
effect" and show that the Z2 electromagnetic duality extends to an SL(2,Z) duality.

6.1 1.1 The Dirac Monopole

In this section we discuss the Dirac monopole and the Dirac(-ZwanzigerSchwinger) quantisation
condition in the light of classical electromagnetic duality.

6.1.1 1.1.1 And in the beginning there was Maxwell...

Maxwell’s equations in vacuo, given by
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6.1.1 1.1.1 And in the beginning there was Maxwell...

−→
∂ ·
−→
E = 0

−→
∂ ·
−→
B = 0

−→
∂ ×

−→
E = −∂

−→
B

∂t

−→
∂ ×

−→
B =

∂
−→
E

∂t

are highly symmetric. In fact, they are invariant under both Lorentz transformations (in
fact, conformal) and under electromagnetic duality:

(
−→
E ,
−→
B) 7→ (

−→
B ,−

−→
E ) (1.2)

Lorentz invariance can be made manifest by introducing the field-strength Fµν , defined by

F 0i = −F i0 = −Ei F ij = −ϵijkBk

In terms of Fµν , Maxwell’s equations (1.1) become

∂νF
µν = 0 ∂ν

⋆F µν = 0 (1.3)

where

⋆F µν =
1

2
ϵµνλρFλρ

with ϵ0123 = +1. This formulation has the added virtue that the duality transformation
(1.2) is simply

F µν 7→ ⋆F µν ⋆F µν 7→ −F µν , (1.4)

where the sign in the second equation is due to the fact that in Minkowski space ⋆2 = −1.
In Minkowski space ∂ν⋆F µν = 0 implies that Fµν = ∂µAν − ∂νAµ, for some electromag-

netic potential Aµ. Similarly, ∂νF µν = 0 implies that ⋆Fµν = ∂µÃν − ∂νÃµ, for some dual
electromagnetic field Ãµ. Notice however that the duality transformation relating Aµ and Ãµ
is nonlocal. It may be easier to visualise the following two-dimensional analogue, where the
duality transformation relates functions ϕ and ϕ̃ which satisfy ϵαβ∂βϕ = ∂αϕ̃, where α, β take
the values 0 and 1 now.

In the presence of sources, duality is preserved provided that we include both electric and
magnetic sources:

∂νF
µν = jν ∂ν

⋆F µν = kµ

and that we supplement the duality transformations (1.4) by a similar transformation of
the sources:

jµ 7→ kµ kµ 7→ −jµ

A charged point-particle of in the presence of an electromagnetic field behaves according to
the Lorentz force law. If the particle is also magnetically charge, the Lorentz law is then given
by

m
d2xµ

dτ 2
= (qF µν + g⋆F µν)

dxν
dτ

∗1 In these lectures, we shall pretend to live in Minkowski space with signature (+−−−). We will set c = 1
but will often keep λ explicit.
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6.1.2 1.1.2 The Dirac quantisation condition

where τ is the proper time, and m, q and g are the mass, the electric and magnetic charges,
respectively. This formula is also invariant under duality provided we interchange the electric
and magnetic charges of the particle: (q, g) 7→ (g,−q).

Problem: Derive the above force law from a particle action.
Notice that in the presence of magnetic sources, ∂ν⋆F µν ̸= 0 whence there is no electro-

magnetic potential Aµ. Nevertheless if at any given moment in time, the magnetic sources
are localised in space, one may define Aµ in those regions where kµ = 0. The topology of
such regions is generically nontrivial and therefore a nonsingular Aµ need not exist throughout.
Instead one solves for Aµ locally, any two solutions being related, in their common domain of
definition, by a gauge transformation. We will see this explicitly for the magnetic monopole.

6.1.2 1.1.2 The Dirac quantisation condition

Whereas a particle interacting classically with an electromagnetic field does so solely via the
field-strength F µν , quantum mechanically the electromagnetic potential enters explicitly in the
expression for the hamiltonian. Therefore the non-existence of the potential could spell trouble
for the quantisation of, say, a charged particle interacting with the magnetic field of a monopole.
In his celebrated paper of 1931, Dirac [Dir31] studied the problem of the quantum mechanics
of a particle in the presence of a magnetic monopole and found that a consistent quantisation
forced a relation between the electric charge of the particle and the magnetic charge of the
monopole: the so-called Dirac quantisation condition. We will now derive this relation.

A magnetic monopole is a point-like source of magnetic field. If we place the source at the
origin in R3, then the magnetic field is given by

−→
B(−→r ) = g

4π

−→r
r3

(1.5)

where g is the magnetic charge. In these conventions, the magnetic charge is also the
magnetic flux. Indeed, if Σ denotes the unit sphere in R3, then

g =

∫
Σ

−→
B · d

−→
S

In the complement of the origin in R3,
−→
∂ ×
−→
B = 0, whence one can try to solve for a vector

potential
−→
A obeying

−→
B =

−→
∂ ×

−→
A. For example, we can

consider

−→
A+(
−→r ) = g

4πr

1− cos θ

sin θ
êϕ

where (r, θ, ϕ) are spherical coordinates.
−→
∂ ×

−→
A+ =

−→
B everywhere but on the negative

z-axis where θ = π and hence
−→
A+is singular. Similarly,

−→
A−(
−→r ) = − g

4πr

1 + cos θ

sin θ
êϕ

also obeys
−→
∂ ×

−→
A− =

−→
B everywhere but on the positive z-axis where θ = 0 and

−→
A−is

singular. It isn’t that we haven’t been clever enough, but that any
−→
A which obeys

−→
∂ ×
−→
A =

−→
B

over some region will always be singular on some string-like region: the celebrated Dirac string.
Over their common domain of definition (the complement of the z-axis in

R3) ∂⃗ ×
(−→
A+ −

−→
A−

)
= 0, whence one would expect that there exists a function χ so that

A⃗+ − A⃗− = ∂⃗χ. However the complement of the z-axis is not simply-connected, and χ need
only be defined locally. For example, restricting ourselves to θ = π

2
, we find that
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6.1.3 1.1.3 Dyons and the Zwanziger-Schwinger quantisation condition

−→
A+ −

−→
A− =

g

2πr
êϕ =

−→
∂
( g
2π
ϕ
)

but notice that since ϕ is an angle, the function χ is not continuous. It couldn’t possibly
be continuous, for if it were there would be no flux. Indeed, if Σ again denotes the unit sphere
in R3,Σ±the upper and lower hemispheres respectively, and E the equator, the flux can be
computed in terms of χ as follows:

g =

∫
Σ

−→
B · d

−→
S

=

∫
Σ+

(−→
∂ ×

−→
A+

)
· d
−→
S +

∫
Σ−

(−→
∂ ×

−→
A−

)
· d
−→
S

=

∫
E

−→
A+ · d

−→
ℓ −

∫
E

−→
A− · d

−→
ℓ

=

∫
E

−→
∂ χ · d

−→
ℓ

= χ(2π)− χ(0)

Suppose now that we are quantising a particle of mass m and charge q in the field of a
magnetic monopole. The Schrödinger equation satisfied by the wave-function is

− λ2

2m
∇2ψ = iλ

∂ψ

∂t

where
−→
∇ =

−→
∂ + ie

−→
A, for e = q/λ. The Schrödinger equation is invariant under the

gauge-transformations:

−→
A 7→

−→
A +

−→
∂ χ and ψ 7→ exp(−ieχ)ψ

This gauge invariance guarantees that solutions of the Schrödinger equation obtained locally
with a particular

−→
A will patch up nicely, provided that the wave-function be single-valued. This

condition means that

exp(−ieχ) = exp(−iegϕ/2π)

must be a single-valued function, which is equivalent to the Dirac quantisation condition:

eg = 2πn for some n ∈ Z (1.6)

The Dirac quantisation condition has the following physical interpretation. Classically, there
is not much of a distinction between a a magnetic monopole and a very long and very thin
solenoid. The field inside the solenoid is of course, different, but in the limit in which the
solenoid becomes infinitely long (on one end only) and infinitesimally thin, so that the inside of
the solenoid lies beyond the probe of a classical experiment, the field at the end of the solenoid
is indistinguishable from that of a magnetic monopole. Quantum mechanically, however, one
can in principle detect the solenoid through the quantum interference pattern predicted by the
Bohm-Aharanov effect. The condition for the absence of the interference is precisely the Dirac
quantisation condition.

6.1.3 1.1.3 Dyons and the Zwanziger-Schwinger quantisation condition

A quicker, more heuristic derivation of the Dirac quantisation condition (1.6) follows by invoking
the quantisation of angular momentum. The orbital angular momentum

−→
L = −→r ×m−̇→r of a
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particle of mass m and charge q in the presence of a magnetic monopole (1.5) is not conserved.
Indeed, using the Lorentz force law,

d
−→
L

dt
= −→r ×m−̈→r

= −→r × (q−̇→r ×
−→
B)

=
qg

4πr3
−→r × (−̇→r ×−→r )

=
d

dt

(
qg

4π

−→r
r

)
whence the conserved quantity is instead

−→
J ≡

−→
L − qg

4π

−→r
r

a result dating to 1896 and due to Poincaré.

Exercise

1.1 (Angular momentum due to the electromagnetic field)
Show that the correction term is in fact nothing else but the angular momentum of the

electromagnetic field itself:

−→
J em =

∫
R3

d3r−→r × (
−→
E ×

−→
B)

where the
−→
E -field is the one due to the charged particle.

If we now assume that the electromagnetic angular momentum is separately quantised, so
that ∣∣∣−→J em

∣∣∣ = 1

2
nλ for some n ∈ Z

we recover (1.6) again. The virtue of this derivation is that it provides a quick proof of
the Zwanziger-Schwinger quantisation condition for dyons, as the following exercise asks you
to show.

Exercise 1.2 (The Zwanziger-Schwinger quantisation condition)

A dyon is a particle which possesses both electric and magnetic charge. Consider two dyons
of charges (q = eλ, g ) and (q′ = e′λ, g′). Show that imposing the quantisation of the angular
momentum of the resulting electromagnetic field yields the following condition:

eg′ − e′g = 2πn for some n ∈ Z (1.7)

Notice that the existence of the "electron" (that is, a particle with charges (e, 0)) does
not tell us anything about the electric charge of a monopole (q, g); although it does tell us
something about the difference between the electric charges of two such monopoles: (q, g) and
(q′, g). Indeed, (1.7) tells us immediately that g (q − q′) = 2πn for some integer n. If g has the
minimum magnetic charge g = 2π/e, then the difference between the electric charges of the
dyons (q, g) and (q′, g) is an integer multiple of the electric charge of the electron: q − q′ = ne
for some integer n. But we cannot say anything further about the absolute magnitude of either
q or q′.
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6.2 1.2 The ’t Hooft-Polyakov Monopole

Exercise 1.3 (Dyonic spectrum in CP non-violating theories)

Prove that if CP is not violated, then in fact there are only two (mutually exclusive) possibilities:
either q = ne or q = ne+ 1

2
e.

(Hint: use that under CP: (q, g) 7→ (−q, g). Why?)
We will see later when we discuss the so-called "Witten effect" that this gets modified in

the presence of a CP-violating term, and the electric charge of the dyon will depend explicitly
on the θ angle measuring the extent of the CP violation.

6.2 1.2 The ’t Hooft-Polyakov Monopole

In 1974, ’t Hooft [tH74] and Polyakov [Pol74] independently discovered that the bosonic part
of the Georgi-Glashow model admits finite energy solutions that from far away look like Dirac
monopoles. In contrast with the Dirac monopole, these solutions are everywhere regular and do
not necessitate the introduction of a source of magnetic charge - this being due to the "twists"
in (the vacuum expectation value of) the Higgs field.

6.2.1 1.2.1 The bosonic part of the Georgi-Glashow model

The Georgi-Glashow model was an early proposal to describe the electroweak interactions. We
will be concerned here only with the bosonic part of the model which consists of an SO(3)
Yang-Mills field theory coupled to a Higgs field in the adjoint representation. The lagrangian
density is given by

L = −1

4

−→
Gµν ·

−→
Gµν +

1

2
Dµϕ⃗ ·Dµ

−→
ϕ − V (ϕ) (1.8)

where
the gauge field-strength

−→
Gµν is defined by

−→
Gµν = ∂µ

−→
Wν − ∂ν

−→
Wµ − e

−→
Wµ ×

−→
Wν

where
−→
Wµ are gauge potentials taking values in the Lie algebra of SO(3), which we identify

with R3 with the cross product for Lie bracket;
the Higgs field

−→
ϕ is a vector in the (three-dimensional) adjoint representation of SO(3),

with components ϕa = (ϕ1, ϕ2, ϕ3) which is minimally coupled to the gauge field via the gauge-
covariant derivative:

Dµ

−→
ϕ = ∂µ

−→
ϕ − e

−−−−−→
Wµ × ϕ⃗

the Higgs potential V (ϕ) is given by

V (ϕ) =
1

4
λ
(
ϕ2 − a2

)2
where ϕ2 = ϕ⃗ · ϕ⃗ and λ is assumed non-negative.
The lagrangian density L is invariant under the following SO(3) gauge transformations:

−→
ϕ 7→

−→
ϕ ′ = g(x)

−→
ϕ

−→
Wµ 7→

−→
W′

µ = g(x)
−→
Wµg(x)

−1 +
1

e
∂µg(x)g(x)

−1 (1.9)

where g(x) is a possibly x-dependent 3× 3 orthogonal matrix with unit determinant.
The classical dynamics of the fields W⃗µ and ϕ⃗ are determined from the equations of motion
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6.2.1 1.2.1 The bosonic part of the Georgi-Glashow model

Dν

−→
Gµν = −e

−→
ϕ ×Dµ−→ϕ DµDµϕ⃗ = −λ

(
ϕ2 − a2

)
ϕ⃗ (1.10)

and by the Bianchi identity

Dµ
⋆G⃗µν = 0 (1.11)

where ∗G⃗µν = 1
2
ϵµνλρ

−→
Gλρ.

The canonically conjugate momenta to the gauge field
−→
Wµ and the Higgs ϕ⃗ are given by

−→
E i = −

−→
G 0i Π⃗ = D0ϕ⃗ (1.12)

Defining
−→
B i by

−→
G ij = −ϵijk

−→
B k = +ϵijk

−→
B k

we can write the energy density as

H =
1

2

−→
E i ·
−→
E i +

1

2

−→
Π ·
−→
Π +

1

2

−→
B i ·
−→
B i +

1

2
Di

−→
ϕ ·Di

−→
ϕ + V (ϕ) (1.13)

which is manifestly positive-semidefinite and also gauge-invariant.
We define a vacuum configuration to be one for which the energy density vanishes. This

means that

−→
Gµν = 0 Dµ−→ϕ = 0 V (ϕ) = 0

For example,
−→
ϕ = aê3 and

−→
Wµ = 0 is such a configuration, where (êa) is an orthonormal

basis for the three-dimensional representation space where the Higgs field takes values. We also
define the Higgs vacuum as those configurations of the Higgs field which satisfy the latter two
equations above. Notice that in the Higgs vacuum, the Higgs field obeys ϕ2 = a2. Any such
vacuum configuration is not invariant under the whole SO(3), but only under an SO(2) ∼= U(1)
subgroup, therefore this model exhibits spontaneous symmetry breaking.

Exercise 1.4 (The spectrum of the model)

Let
−→
ϕ = −→a +−→φ where −→a is a constant vector obeying −→a · −→a = a2. Expanding the lagrangian

density in terms of −→φ , show that the model consists of a massless vector boson Aµ = 1
a
−→a ·
−→
Wµ

which we will identify with the photon, a massive scalar field φ = 1
a
−→a ·
−→
ϕ and two massive

vector bosons W±
µ with the charge assignments given

in Table 1.1.
(Hint: The masses are read off from the quadratic terms of the lagrangian density:

L = · · ·+ 1

2

(
MH

λ

)2

φ2 +
1

2

(
MW

λ

)2

W+
µ W

µ− + · · ·

whereas the charges are read off from the coupling to the photon. The photon couples
minimally via the covariant derivative ∇µ = ∂µ + iQ/λAµ. By examining how this covariant
derivative embeds in the SO(3) covariant derivative one can read off what Q are for the fields
in the spectrum.)

Field Mass Charge
Aµ 0 0
φ MH = a

√
2λλ 0

W±
µ MW = aeλ ±eλ

Table 1.1: The perturbative spectrum after higgsing.
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6.2.2 1.2.2 Finite-energy solutions: the ’t Hooft-Polyakov Ansatz

We now investigate the properties of finite-energy non-dissipative solutions to the equations
of motion (1.10). But first let us remark a few properties of arbitrary finite-energy field con-
figurations. The energy of a given field configuration is the spatial integral E =

∫
d3xH of

the energy density H given by equation (1.13). Finite energy means that the integral exists,
hence the fields must approach a vacuum configuration asymptotically. In particular the Higgs
field approaches the Higgs vacuum at spatial infinity. If we think of the Higgs potential V as a
function V : R3 → R, let us define M0 ⊂ R3 as those points −→x ∈ R3 for which V (−→x ) = 0. In
the model at hand, M0 is the sphere of radius a, hence in any finite-energy configuration the
Higgs field defines a function from the sphere at spatial infinity to M0:

ϕ⃗∞(r̂) ≡ lim
r→∞

ϕ⃗(−→r ) ∈M0

We will assume that the resulting function ϕ⃗∞ is actually continuous. This would follow
from some uniformity property of the limit and such a property has been proven by Taubes
JT80.

It is well-known that the space of continuous functions from a sphere to a sphere is discon-
nected: it has an infinite number of connected components
indexed by an integer called the degree of the map. A constant map has degree zero, whereas
the identity map has degree 1. Heuristically, the degree is the number of times one sphere
wraps around the other. It is the direct two-dimensional generalisation of the winding number
for maps from a circle to a circle.

Taking these remarks into account it is not difficult to construct maps of arbitrary degree.
Consider the map fn : R3\{0} → R3 defined by

fn(
−→r ) = (sin θ cosnφ, sin θ sinnφ, cos θ) (1.14)

where (r, θ, φ) are spherical coordinates. The map fn restricts to a map from the unit sphere
in R3 to itself which has degree n.

The topological number of a finite-energy configuration is defined to be the degree of the
map ϕ⃗∞. The zero energy vacuum configuration W⃗µ = 0, ϕ⃗ = aê3 has zero degree, since ϕ⃗∞
is constant. The topological number of a field configuration-being an integer-is invariant under
any continuous deformation. In particular it is invariant under time evolution, and under gauge
transformations, since the gauge group is connected. Hence if we set up a finite-energy field
configuration at some moment in time whose topological number is different from zero, it will
never dissipate; that is, it will never evolve in time towards a trivial solution. In other words,
in a sense it will be stable.

We now investigate whether such stable solutions actually exist. We will narrow our
search to spherically symmetric static solutions-a solution is defined to be static if it is time-
independent and in addition the timecomponent of the gauge field

−→
W0 vanishes.

One may be tempted to think that the this latter condition is simply a choice of gauge.
Indeed it is easy to show that W⃗0 = 0 up to a gauge transformation, but the gauge transforma-
tion is actually time-dependent which is not allowed, since we are looking for time-independent
solutions. Coming soon: More details on the explicit time-dependent gauge transformation.

It follows from (1.12) that for static field configurations both E⃗ and Π⃗ vanish, and hence
the energy agrees up to a sign with the lagrangian. This means that a field configuration will
be a solution to the classical equations of motion if and only if it extremises the energy.

The ’t Hooft-Polyakov Ansatz for the monopole is given by
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−→
ϕ (−→r ) =

−→r
er2

H(aer)

Wi
a = −ϵaij

rj

er2
(1−K(aer))

W0
a = 0 (1.15)

for some arbitrary functions H and K.

Exercise

1.5 (Boundary conditions on H and K)
Plugging the Ansatz into the expression for the energy density derive the following formula

for the energy:

E =
4πa

e

∫ ∞

0

dξ

ξ2
×(

ξ2
dH

dξ
+

1

2

(
ξ
dH

dξ
−H

)2

+
1

2

(
K2 − 1

)2
+K2H2 +

λ

4e2
(
H2 − ξ2

)2) (1.16)

Deduce that the integral exists provided that the following boundary conditions hold:

K → 0 and H/ξ → 1 sufficiently fast as ξ →∞
K − 1 ≤ O(ξ) and H ≤ O(ξ) as ξ → 0 (1.17)

This last equation means that H and K approach 0 and 1 respectively at least linearly in
ξ as ξ → 0.

Notice that with the above boundary conditions,

−→
ϕ∞(r̂) ≡ lim

r→∞

−→r
er2

H(aer) = ar̂

which is (homotopic to) the identity map, and hence has degree 1. In other words, the
topological number of such a field configuration is 1. If such a solution exists it is therefore
stable and non-dissipative.

Exercise 1.6 (The equations of motion for H and K)

Work out the equations of motion for the functions H and K in either of two ways: either plug
the Ansatz into the equations of motion (1.10) or else extremise the energy subject to the above
boundary conditions. In either case you should get the following coupled nonlinear system of
ordinary differential equations:

ξ2
d2K

dξ2
= KH2 +K

(
K2 − 1

)
ξ2
d2H

dξ2
= 2K2H +

λ

e2
H
(
H2 − ξ2

)
(1.18)

Initial numerical studies of the above differential equations for H and K together with
the boundary conditions (1.17) suggested the existence of a solution. This was later proven
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rigourously by Taubes JT80. Notice that the asymptotic limit of the equations (1.18) in the
limit ξ →∞ yields:

d2K

dξ2
= K

d2h

dξ2
= 2

λ

e2
h

where h ≡ H − ξ. The above equations can be solved for at once and one finds that the
solutions compatible with the boundary conditions are

K ∼ exp(−ξ) = exp (−MW r/λ)

h ∼ exp (−MHr/λ)

where MW and MH were obtained in Exercise 1.4. This means that the solution describes
an object of finite size given by the largest of the Compton wavelengths λ/MH or λ/MW .

In order to identify the solution provided by the ’t Hooft-Polyakov Ansatz we investigate
the asymptotic electromagnetic field. Recall that the electromagnetic potential is identified
with Aµ = 1

a
ϕ⃗ ·
−→
Wµ, corresponding to the U(1) ⊂ SO(3) defined as the stabiliser of

−→
ϕ . The

electromagnetic field can therefore be identified with Fµν = 1
a
ϕ⃗ ·
−→
Gµ,ν . Because the ’t Hooft-

Polyakov Ansatz corresponds to a static solution, there is no electric field: F0i = 0. However,
as the next exercise shows, there is a magnetic field.

Exercise 1.7 (Asymptotic form of the electromagnetic field)

Show that the asymptotic form of Fij = 1
a
ϕ⃗ · G⃗ij is given by

Fij = ϵijk
rk

er3
(1.19)

The form (1.19) of the electromagnetic field shows that the asymptotic magnetic field is
that of a magnetic monopole:

−→
B = −1

e

−→r
r3

A quick comparison with equation (1.5) reveals that the magnetic charge of a ’t Hooft-
Polyakov monopole is (up to a sign) twice the minimum magnetic charge consistent with the
electric charge e and the Dirac quantisation condition; that is, twice the Dirac charge corre-
sponding to e. This follows from the fact that the electromagnetic U(1) is embedded in SO(3)
in such a way that the electric charge is the eigenvalue of the T3 isospin generator, which here
is in the adjoint representation, which has integral isospin. The minimum electric charge is
therefore emin = 1

2
e, relative to which the charge of the ’t Hooft-Polyakov monopole is indeed

one Dirac charge, again up to a sign.
In fact, there is another solution with the opposite magnetic charge. It is obtained from the

’t Hooft-Polyakov monopole by performing a parity transformation on the Ansatz.
One might wonder whether there also exist dyonic solutions. These solutions would not

be static in that W⃗0 would be different from zero, but time-independent dyonic solutions have
been found by Julia and Zee JZ75 shortly after the results of ’t Hooft and Polyakov.

In summary, we see that the ’t Hooft-Polyakov solution describes an object of finite size
which from far away cannot be distinguished from a Dirac monopole of charge −4π/e. In
contrast with the Dirac monopole, the ’t Hooft-Polyakov monopole is everywhere smooth-
this being due to the massive fields which become relevant as we approach the "core" of the
monopole.
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6.2.3 1.2.3 The topological origin of the magnetic charge

Although the ’t Hooft-Polyakov monopole is indistinguishable from far away from a Dirac
monopole, as we approach its core the massive fields become relevant and the difference becomes
evident. In contrast to the Dirac monopole, which necessitates a singular point-like magnetic
source at the origin, the ’t Hooft-Polyakov monopole is everywhere smooth and its magnetic
charge is purely topological and, as we will see in this section, due completely to the behaviour
of the Higgs field far away from the core.

Because of the exponential decay of the massive fields away from the core of the monopole,
we notice that the Higgs field approaches the Higgs vacuum. In other words, a large distance
away from the core of the monopole, the Higgs field satisfies

Dµ

−→
ϕ = 0 (1.20)

ϕ⃗ · ϕ⃗ = a2 (1.21)

up to terms of order O(exp(−r/R)) where R is the effective size of the monopole, which is
governed by the mass of the heavy particles.

Notice that equation (1.20) already implies that ϕ⃗ · ϕ⃗ is a constant. Indeed,

∂µ(ϕ⃗ · ϕ⃗) = 2ϕ⃗ · ∂µϕ⃗

= 2eϕ⃗ ·
(
W⃗µ × ϕ⃗

)
by 1.20

= 0

What 1.21 tells us is that this constant is such that the potential attains its minimum.
It is therefore reasonable to assume that any finite-energy solution (not necessarily static or

time-independent) of the Yang-Mills-Higgs system (1.10) satisfies equations (1.20) and (1.21)
except in a finite number of well-separated compact localised regions in space, which we shall
call monopoles. In other words, we are considering a "dilute gas of monopoles" surrounded by
a Higgs vacuum.

Notice that in the Higgs vacuum, ϕ⃗×
−→
Wµ = −1

e
∂µϕ⃗, whence

−→
Wµ is fully determined except

for the component in the ϕ⃗-direction, which we denote by
Aµ. Computing the components perpendicular to ϕ⃗ we find that

−→
Wµ =

1

a2e

−→
ϕ × ∂µ

−→
ϕ +

1

a

−→
ϕAµ

Exercise 1.8 (Gauge field-strength in the Higgs vacuum)

Show that the field-strength in the Higgs vacuum points in the
−→
ϕ -direction and is given by−→

Gµν =
1
a
ϕ⃗Fµν where

Fµν =
1

a3e
ϕ⃗ ·
(
∂µϕ⃗× ∂νϕ⃗

)
+ ∂µAν − ∂νAµ

Using the equations of motion (1.10) and the Bianchi identity (1.11) prove that Fµν satisfies
Maxwell’s equations (1.3).

Now let Σ be a surface in the Higgs vacuum enclosing some monopoles in the volume it
bounds. The magnetic flux through Σ measures the magnetic charge. Notice that Aµ doesn’t
contribute, and that we get:
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gΣ ≡
∫
Σ

−→
B · d

−→
S

= − 1

2ea2

∫
Σ

ϵijk
−→
ϕ ·
(
∂j
−→
ϕ × ∂k

−→
ϕ
)
dSi

Notice that only the components of ∂iϕ⃗ tangential to Σ contribute to the integral and
therefore the magnetic charge only depends on the behaviour of ϕ⃗ on Σ. Furthermore it only
depends on the homotopy class of ϕ⃗ as map Σ → M0; in other words, the above integral is
invariant under deformations δϕ⃗ of ϕ⃗ which preserve the Higgs vacuum:

Dµδϕ⃗ = 0 and ϕ⃗ · δϕ⃗ = 0

To see this, let’s compute the variation of gΣ under such a deformation of
−→
ϕ . Notice first

that

δ
(
ϵijk
−→
ϕ ·
(
∂j
−→
ϕ × ∂k

−→
ϕ
))

=

3ϵijkδ
−→
ϕ ·
(
∂j
−→
ϕ × ∂k

−→
ϕ
)
+ 2ϵijk∂j

(−→
ϕ ·
(
δ
−→
ϕ × ∂k

−→
ϕ
))

By Stokes’ theorem, the second term in the right-hand-side integrates to zero. Now, because
ϕ⃗ ·∂jϕ⃗ = 0, ϕ⃗ ·

(
∂jϕ⃗× ∂kϕ⃗

)
= 0, whence ∂jϕ⃗×∂kϕ⃗ is parallel to ϕ⃗. Hence, δϕ⃗ ·

(
∂jϕ⃗× ∂kϕ⃗

)
= 0.

In other words, δgΣ = 0. This means that gΣ is invariant under arbitrary deformations of ϕ⃗ and
hence under any deformation which can be achieved by iterating infinitesimal deformations:
homotopies. Examples of homotopies are:

time-evolution of ϕ⃗; continuous gauge transformations on ϕ⃗; continuous changes of Σ within
the Higgs vacuum.

Exercise 1.9 (Additivity of the magnetic charge gΣ)

Use the invariance of the magnetic charge under the last of the above homotopies, to argue
that the magnetic charge is additive.

(Hint: Use a "contour" deformation argument.)
Notice that the magnetic charge can be written as gΣ = −4π

e
NΣ, where

NΣ =
1

8πa3

∫
Σ

dSiϵijk
−→
ϕ ×

(
∂j
−→
ϕ × ∂k

−→
ϕ
)

(1.22)

which as the next exercise asks you to show, is the degree of the map ϕ⃗: Σ→M0.

Exercise 1.10 (Dirac quantisation condition revisited)

Show that NΣ is the integral of the jacobian of the map ϕ⃗ : Σ → M0, which is the classical
definition of the degree of the map. This means that NΣ is an integer; a fact of which you may
convince yourself by showing that if fn is the map defined by (1.14), then the value of NΣ when
Σ is, say, the unit sphere in R3, is equal to n. Taking this into account we recover again the
Dirac quantisation condition:

egΣ = −4πNΣ (1.23)

with the same caveat as before about the fact that the minimum magnetic charge is twice
the Dirac charge.
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6.3 1.3 BPS-monopoles

Since the source for a Dirac monopole has to be put in by hand, its mass is a free parameter:
it cannot be calculated. On the other hand, for the ’t HooftPolyakov monopole there is no
source, and the mass of the monopole is an intrinsic property of the Yang-Mills-Higgs system
and as such it should be calculable. In the next section we derive a lower bound for its mass.
A natural question to ask is whether there are solutions which saturate this bound, and in the
section after that such a solution is found: the BPS-monopole.

6.3.1 1.3.1 Estimating the mass of a monopole: the Bogomol’nyi bound

In the centre of mass frame, all the energy of the monopole is concentrated in its mass. There-
fore, taking equation (1.13) into account,

M =

∫
R3

(
1

2

−→
E i ·
−→
E i +

1

2

−→
B i ·
−→
B i +

1

2

−→
Π ·
−→
Π +

1

2
Diϕ⃗ ·Diϕ⃗+ V (ϕ)

)
≥ 1

2

∫
R3

(−→
E i ·
−→
E i +

−→
B i ·
−→
B i +Diϕ⃗ ·Diϕ⃗

)
where we have dropped some non-negative terms. We now redistribute the last term as

follows: we introduce an angular parameter θ and we add and subtract
−→
E i · Diϕ⃗ sin θ and−→

B i ·Di

−→
ϕ cos θ to the integrand. This yields

M ≥ 1

2

∫
R3

(∥∥∥−→E i −Diϕ⃗ sin θ
∥∥∥2 + ∥∥∥−→B i −Diϕ⃗ cos θ

∥∥∥2)
+ sin θ

∫
R3

Diϕ⃗ ·
−→
E i + cos θ

∫
R3

Di

−→
ϕ ·
−→
B i

≥ sin θ

∫
R3

Di

−→
ϕ ·
−→
E i + cos θ

∫
R3

Di

−→
ϕ ·
−→
B i

where we have introduced the obvious shorthand ∥Vi∥2 = Vi · Vi. But now notice that

∫
R3

Di

−→
ϕ ·
−→
B i =

∫
R3

∂i

(−→
ϕ ·
−→
B i

)
by the Bianchi identity (1.11)

=

∫
Σ∞

−→
ϕ ·
−→
B idSi by Stokes

= a

∫
Σ∞

−→
B · d

−→
S ≡ ag (1.24)

where Σ∞ is the sphere are spatial infinity and g is the magnetic charge of the solution.
Notice that we have used the results of Exercise 1.8, which are valid since finite-energy demands
that the sphere at spatial infinity be in the Higgs vacuum. Similarly, using the equations of
motion this time instead of the Bianchi identity, one finds out that∫

R3

Di

−→
ϕ ·
−→
E i = a

∫
Σ∞

−→
E · d

−→
S ≡ aq (1.25)

where q is the electric charge of the solution. Therefore for all angles θ we have the following
bound on the mass:

M ≥ ag cos θ + aq sin θ (1.26)
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The sharpest bound occurs when the right hand side is a maximum, which happens for
q cos θ = g sin θ. In other words, tan θ = q/g. Plugging this back into (1.26), we find the
celebrated Bogomol’nyi bound for the mass of a monopole-like solution in terms of the electric
and magnetic charges:

M ≥ a
√
q2 + g2 (1.27)

derived for the first time in [Bog76 (see also [CPNS76]).
For the ’t Hooft-Polyakov monopole, which is electrically neutral, the Bogomol’nyi bound

yields M ≥ a|g| = 4πa/e. But a/e = MW/e
2λ, whence M ≳ MW/α, where α ≃ 1/137 is

the fine structure constant. If MW ≃ 90GeV, say, then MW ≳ 12TeV-beyond the present
experimental range. This concludes the phenomenological part of these lectures!

6.3.2 1.3.2 Saturating the bound: the BPS-monopole

Having derived the Bogomol’nyi bound, it is natural to ask whether there exist solutions which
saturate the bound. We will follow custom and call such states BPS-states. We incurred in
the inequalities for the mass by discarding certain terms from the mass formula. To saturate
the bound, these terms would have to be equal to zero. Since they are all integrals of non-
negative quantities, we must impose that these quantities vanish throughout space and not just
asymptotically as the weaker requirement of finite-energy would demand.

Let us concentrate on static solutions which saturate the bound. Static solutions satisfy−→
E i = 0 and D0

−→
ϕ = 0. In particular they have no electric charge, so that sin θ = 0. This means

that cos θ = ±1 correlated to the sign of the magnetic charge. A quick inspection at the way
we derived the bound reveals that for saturation we must also require that V (ϕ) should vanish
and that in addition the Bogomol’nyi equation should hold:

−→
B i = ±Di

−→
ϕ (1.28)

Now the only way to satisfy V (ϕ) = 0 and yet obtain a solution with nonzero magnetic
charge, is for λ to vanish. Why? Because for λ ̸= 0, ϕ2 = a2 throughout space, and in
particular, ϕ⃗ ·Diϕ⃗ = ϕ⃗ · ∂iϕ⃗ = 0. But using the Bogomol’nyi equation (1.28), this means that
ϕ⃗ · B⃗i = 0, whence the solution carries no magnetic field. One way to understand the condition
λ = 0 is as a limiting value. We let λ ↓ 0, while at the same time retaining the boundary
condition that at spatial infinity ϕ⃗ satisfies (1.21). This is known as the Prasad-Sommerfield
limit [ PS75].

Exercise 1.11 (The Bogomol’nyi equation implies (1.10))

Show that the Bogomol’nyi equation together with the Bianchi identity (1.11) implies the
equations of motion (1.10) for the Yang-Mills-Higgs system with λ = 0.

Of course, the advantage of the Bogomol’nyi equation lies in its simplicity. In fact, it is not
hard to find an explicit solution to the Bogomol’nyi equation in the ’t Hooft-Polyakov Ansatz,
as the next exercise asks you to do.

Exercise 1.12 (The BPS-monopole)

Show that the Bogomol’nyi equation in the ’t Hooft-Polyakov Ansatz yields the following sys-
tems of equations for the functions H and K:
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ξ
dK

dξ
= −KH

ξ
dH

dξ
= H + 1−K2

Show that the following is a solution with the right asymptotic boundary conditions:

H(ξ) = ξ coth ξ − 1

K(ξ) =
ξ

sinh ξ

Notice that the solution for the BPS-monopole is such that

H(ξ)− ξ = 1 +O(exp(−ξ))
which does not contradict 1.17 because for λ = 0 the Higgs field is massless. Its interactions

are long range and hence the BPS-monopole can be distinguished from a Dirac monopole from
afar.

One consequence of the Bogomol’nyi equation is that both the photon (through
−→
B i) and the

Higgs (via Diϕ⃗) contribute equally to the mass density. One can show that the longrange force
exerted by the Higgs is always attractive and for static monopoles, it is equal in magnitude
to the 1/r2 magnetic force. Therefore the forces add for oppositely charged monopoles, yet
they cancel for equally charged monopoles. This is as it should be if static multi-monopole
solutions saturating the Bogomol’nyi bound are to exist. To see this, notice that the mass of a
two-monopole system with charges g and g′ (of the same sign) is precisely equal to the sum of
the masses of each of the BPS-monopoles. Hence there can be no net force between them.

Exercise

1.13 (The mass density at the origin is finite)
Show that the mass density at the origin for a BPS-monopole is not merely integrable, but

actually finite!

(Hint: Notice that the mass density is given by
∥∥∥Diϕ⃗

∥∥∥2. Compute this for the BPS-monopole
and expand as ξ ∼ 0.)

6.4 1.4 Duality conjectures

In this section we discuss the observed duality symmetries between perturbative and nonpertur-
bative states in the Georgi-Glashow model and the conjectures that this observation suggests.
We start with the Montonen-Olive conjecture and then, after introducing a CP-violating term
in the theory, the Witten effect will suggest an improved SL(2,Z) duality conjecture.

6.4.1 1.4.1 The Montonen-Olive conjecture

At λ = 0, the (bosonic) spectrum of the Georgi-Glashow model (including the BPS-monopoles)
is the following:

Electric
Charge

Magnetic
Charge

Spin/
Helicity

Particle Mass 0 0 ±1
Photon 0 0 0 0
Higgs 0 0 0 1

W±boson aq ±q ±g 0
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where q = eλ. Two features are immediately striking:
all particles satisfy the Bogomol’nyi bound; and the spectrum is invariant under electro-

magnetic Z2 duality: (q, g) 7→ (g,−q) provided that we also interchange the BPS-monopoles
and the massive vector bosons.

The invariance of the spectrum under electromagnetic duality is a consequence of the fact
that the formula for the Bogomol’nyi bound is invariant under electromagnetic duality and
the fact that the spectrum saturates the bound. This observation prompted Montonen and
Olive MO77 to conjecture that there should be a dual ("magnetic") description of this gauge
theory where the elementary gauge particles are the BPS-monopoles and where the massive
vector bosons appear as "electric monopoles". This conjecture is reinforced by the fact that two
very different calculations for the inter-particle force between the massive vector bosons (done
by computing tree diagrams in the quantum field theory) and between the BPS-monopoles (a
calculation due to Manton) yield identical answers. Notice, however, that because of the Dirac
quantisation condition, if the coupling constant e of the original theory is small, the coupling
constant g of the magnetic theory must be large, and
viceversa. Hence the duality conjecture would imply that the strong coupling behaviour of a
gauge theory could be determined by the weak coupling behaviour of its dual theory - a very
attractive possibility.

The Montonen-Olive conjecture suffers from several drawbacks:
there is no reason to believe that the duality symmetry of the spectrum is not broken by

radiative corrections through a renormalisation of the Bogomol’nyi bound; in order to under-
stand the BPS-monopoles as gauge particles, we would expect that their spin be equal to one -
yet it would seem naively that due to their rotational symmetry, they have spin zero; and the
conjecture is untestable unless we get a better handle at strongly coupled theories - of course,
this also means that it cannot be disproved!

We will see in the next chapter that supersymmetry solves the first two problems. The third
problem is of course very difficult, but we will now see that by introducing a CP violating term
in the action, the duality conjecture will imply a richer dyonic spectrum which can be tested
in principle.

6.4.2 1.4.2 The Witten effect

Exercise 1.3 asked you to compute the dyonic spectrum consistent with the quantisation con-
dition (1.7) in a CP non-violating theory. You should have found that the electric charge q of a
dyon with minimal magnetic charge g could take one of two sets of mutually exclusive values:
either q = ne or q = ne+ 1

2
e, where n is some integer. We will see that indeed it is the former

case which holds.
Let N denote the operator which generates gauge transformations about the direction ϕ⃗:

δ−→v =
1

a

−→
ϕ ×−→v

δ
−→
Wµ = − 1

ea
Dµ

−→
ϕ (1.29)

where −→v is any isovector. And consider the operator exp 2πiN . In the background of
a finite energy solution, the Higgs field is in the Higgs vacuum at spatial infinity, whence

∗The formula for the Bogomol’nyi bound is actually invariant under rotations in the (g, q) plane. But
the quantisation of the electric and magnetic charges, actually breaks this symmetry down to the Z2 duality
symmetry. In their paper, Montonen and Olive speculate that the massless Higgs could play the role of a
Goldstone boson associated to the breaking of this SO(2) symmetry down to Z2. I am not aware of any further
progress in this direction.
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6.4.2 1.4.2 The Witten effect

exp 2πiN generates the identity transformation. On isovectors it generates a rotation about
ϕ⃗ of magnitude 2π|ϕ⃗|/a = 2π, and on the gauge fields we notice that Dµϕ⃗ = 0 in the Higgs
vacuum. Since exp 2πiN = 1, the eigenvalues of N are integral. To see what this means, we
compute N .

We can compute N since it is the charge of the Noether current associated with the trans-
formations (1.29). Indeed,

N =

∫
R3

(
∂L

∂∂0
−→
Wµ

· δ
−→
Wµ +

∂L

∂∂0ϕ⃗
· δ
−→
ϕ

)

Using equation (1.29), and hence that δ
−→
ϕ = 0, we can rewrite N as

N = − 1

ae

∫
R3

∂L

∂∂0
−→
Wi

·Di

−→
ϕ

Since the conjugate momentum to
−→
Wi is −

−→
G 0i =

−→
E i = −

−→
E i, we find that

N =
1

ae

∫
R3

−→
E i ·Diϕ⃗ =

q

e
(1.30)

where we have used the expression (1.25) for the electric charge q of the configuration. The
quantisation of N then implies that q = ne for some integer n.

Let us now introduce a θ-term in the action:

Lθ =
1

2

e2θ

32π2
ϵαβµν

−→
Gαβ ·

−→
Gµν = −

e2θ

32π2
×
−→
Gµν ·

−→
Gµν

This term is locally a total derivative and hence does not contribute to the equations of
motion. Its integral in a given configuration is an integral multiple (called the instanton number)
of the parameter θ. θ is therefore an angular variable and parametrises inequivalent vacua. The
Noether charge N gets modified in the presence of this term as follows:

N 7→ N − 1

ae

∫
R3

∂Lθ

∂∂0W⃗i

·Diϕ⃗

Computing this we find

∆N = − eθ

16π2a

∫
R3

ϵ0iαβ
−→
Gαβ ·Diϕ⃗

= − eθ

16π2a

∫
R3

ϵijk
−→
G jk ·Diϕ⃗

=
eθ

8π2a

∫
R3

−→
B i ·Diϕ⃗

=
eθ

8π2
g

where g, given by equation (1.24), is the magnetic charge of the configuration. In other
words,

N =
q

e
+

eθ

8π2
g

For the ’t Hooft-Polyakov monopole, eg = −4π, hence the integrality of N means that

q = ne+
eθ

2π
for some n ∈ Z (1.31)
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This result, which was first obtained by Witten in [Wit79], is of course consistent with the
quantisation condition (1.7) since for a fixed θ the difference between any charges is an integral
multiple of e.

6.4.3 1.4.3 SL(2,Z) duality

The action defined by L + Lθ depends on four parameters: e, θ, λ and a. The dependence on
the first two can be unified into a complex parameter τ . To see this, let us first rescale the
gauge fields

−→
Wµ 7→ e

−→
Wµ. This has the effect of bringing out into the open all the dependence

on e. The lagrangian is now

L + Lθ = −
1

4e2
−→
Gµν ·

−→
Gµν +

θ

32π2

−→
Gµν · ∗

−→
Gµν +

1

2
Dµ−→ϕ ·Dµ

−→
ϕ − V (ϕ) (1.32)

where all the (e, θ)-dependence is now shown explicitly. We now define a complex parameter

τ ≡ θ

2π
+ i

4π

e2

whose imaginary part is positive since e is real. To write the lagrangian explicitly in terms
of τ it is convenient to introduce the following complex linear combination:

−→
G µν ≡

−→
Gµν + i⋆

−→
Gµν (1.33)

It then follows that

−→
S µν ·

−→
G µν = 2

−→
Gµν ·

−→
Gµν + 2i

−→
Gµν · ×

−→
Gµν

whence the first two terms in the lagrangian (1.32) can be written simply as

− 1

32π
Im
(
τ
−→
Sµν ·

−→
Gµν

)
(1.34)

Notice that because θ is an angular variable, it is only defined up to 2π. This means that
physics is invariant under τ 7→ τ + 1. At θ = 0, the conjecture of electromagnetic duality says
that e 7→ g = −4π/e is a symmetry. But this duality transformation is just τ 7→ −1/τ . We
are therefore tempted to strengthen the conjecture of electromagnetic duality to say that for
arbitrary θ, the physics should depend on τ only modulo the transformations:

T : τ 7→ τ + 1

S : τ 7→ −1

τ

Exercise

1.14((P )SL(2,Z) and its action on the upper half-plane)
The group SL(2,Z) of all 2×2 matrices with unit determinant and with integer entries acts

naturally on the complex plane: (
a b
c d

)
· τ =

aτ + b

cτ + d

Prove that this action preserves the upper half-plane, so that if Im τ > 0, so will its transform
under SL(2,Z). Prove that the matrices 1 and −1 both act trivially (and are the only two
matrices that do). Thus the action is not faithful, but it becomes faithful if we identify every
matrix M ∈ SL(2,Z) with −M . The resulting group is denoted PSL(2,Z) ≡ SL(2,Z)/{±1}.
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6.4.3 1.4.3 SL(2,Z) duality

The operations S and T defined above are clearly invertible and hence generate a discrete
group. Prove that they satisfy the following relations:

S2 = 1 and (ST )3 = 1

Prove that the group generated by S and T subject to the above relations is a subgroup
of PSL(2,Z), by exhibiting matrices Ŝ and T̂ whose action on τ coincides with the action of
S and T . These matrices are not unique, since in going from PSL(2,Z) to SL(2,Z) we have
to choose a sign. Nevertheless, for any choice of Ŝ and T̂ , prove that the following matrix
identities are satisfied:

Ŝ2 = −1 and (ŜT̂ )6 = 1

The matrices Ŝ and T̂ thus generate a subgroup of SL(2,Z). Prove that this subgroup is
in fact the whole group, which implies that S and T generate all of PSL(2,Z).

(Hint: if you get stuck look in Ser73].)
Is physics invariant under SL(2,Z)? Clearly this would be a bold conjecture, but no bolder

than the original Montonen-Olive Z2 conjecture, for in fact the evidence for both is more or less
the same. Indeed, as we now show the mass formula for BPS-states is invariant under SL(2,Z).
The mass of a BPS-state with charges (q, g) is given by the equality in formula (1.27). From
formula (1.23) it follows that the allowed magnetic charges of the form g = nm4π/e, for some
nm ∈ Z. As a consequence of the Witten effect, the allowed electric charges are given by
q = nee+ nmeθ/2π. The mass of BPS-states is then given by

M2 = 4πa2−→n t · A(τ) · −→n (1.35)

where −→n = (ne, nm)
t ∈ Z× Z and where

A(τ) =
1

Im τ

(
1 Re τ

Re τ |τ |2
)

Exercise 1.15 (SL(2,Z)-invariance of the mass formula)

Let

M =

(
a b
c d

)
∈ SL(2,Z)

First prove that

A(M · τ) =
(
M−1

)t · A(τ) ·M−1

and as a consequence deduce that the mass formula is invariant provided that we also
transform the charges:

n⃗ 7→M · n⃗

The improved Montonen-Olive conjecture states that physics is SL(2,Z) invariant. If this
is true, this means that the theories defined by two values of τ related by the action of SL(2,Z)
are physically equivalent, provided that we are willing to relabel magnetic and electric charges
by that same SL(2,Z) transformation.

The action of PSL(2,Z) on the upper half-plane is well-known (see for example Serre’s book
[Ser73]). There is a fundamental domain D defined by
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6.4.3 1.4.3 SL(2,Z) duality

D =

{
τ ∈ C| Im τ > 0, |Re τ

∣∣∣∣≤ 1

2
,

∣∣∣∣ τ ∣∣∣∣ ≥ 1

}
(1.36)

which has the property that its orbit under PSL(2,Z) span the whole upper half-plane and
that no two points in its interior

IntD =

{
τ ∈ C| Im τ > 0, |Re τ

∣∣∣∣< 1

2
,

∣∣∣∣ τ ∣∣∣∣ > 1

}
are related by the action of PSL(2,Z).

Figure 1.1: Fundamental domain (shaded) for the action of PSL(2,Z) on the upper half
plane, and some of its PSL(2,Z) images.

Exercise 1.16 (Orbifold points in the fundamental domain D)

The fundamental domain D contains three "orbifold" points: i, ω = exp(iπ/3) and −ω̄ =
exp(2iπ/3) which are fixed by some finite subgroup of PSL(2,Z). Indeed, prove that i is
fixed by the Z2-subgroup generated by S, whereas ω and −ω̄ are fixed respectively by the
Z3-subgroups generated by TS and ST .

We end this section and this chapter with a discussion of the dyonic spectrum predicted by
SL(2,Z)-duality. If we had believed in the electromagnetic Z2-duality, we could have predicted
the existence of the BPS-monopoles from the knowledge of the existence of the massive vector
bosons (and viceversa). But this is as far as we could have gone with Z2. On the other hand
SL(2,Z) has infinite order, and assuming that for all values of τ there are massive vector bosons
in the spectrum, SL(2,Z)-duality predicts an infinite number of dyonic states. This assumption
is not as innocent as it seems, as the Seiberg-Witten solution to pure N = 2 supersymmetric
Yang-Mills demonstrates; but it seems to hold if we have N = 4 supersymmetry. But for now
let us simply follow our noses and see what this assumption implies.

Let’s assume then that for all values of τ there is a state with quantum numbers −→n = (1, 0)t.
The duality conjecture predicts the existence of one
state each with quantum numbers in the SL(2,Z)-orbit of −→n :

M · −→n =

(
a b
c d

)
·
(
1

0

)
=

(
a

c

)
Because M has unit determinant, a and c are not arbitrary integers: there exist integers b

and d such that ad − bc = 1. This means that a and c are coprime; that is, they don’t have
a common factor (other than 1). Indeed, if n were a common factor: a = na′ and c = nc′

for integers a′ and c′, and we would have that n (a′d− bc′) = 1 which forces n = 1. We will
now show that this arithmetic property of a and c actually translates into the stability of the
associated dyonic state!
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Exercise 1.17 (Properties of the mass matrix A(τ))

Notice that the matrix A(τ) in the mass formula (1.35) enjoys the following properties for all
τ in the upper half-plane:

detA(τ) = 1 and A(τ) is positive-definite.
Prove that this latter property implies that the mass formula defines a distance function, so

that in particular it obeys the triangle inequality. In other words, if we define ∥−→n∥2 ≡M2−→n -that
is, the Bogomol’nyi mass of a dyonic state with that charge assignment - then prove that

∥n⃗+ m⃗∥ ≤ ∥n⃗∥+ ∥m⃗∥ (1.37)
Now let’s consider a dyonic state −→q = (a, c)t. The triangle inequality (1.37) says that for

any two dyonic states −→n and −→m which obey −→n + −→m = −→q , the mass of the −→q is less than or
equal to the sum of the masses of −→n and −→m. But we claim that when a and c are coprime,
the inequality is actually strict! Indeed, the inequality is only saturated when −→n and −→m, and
hence −→q , are collinear. But if this is the case, a and c must have a common factor. Assume
for a contradiction that they don’t. If −→n = (p, q)t and −→m = (r, s)t, then we must have that
both p and r are smaller in magnitude to a, and that q and s are smaller in magnitude to
c. But collinearity means that pc = qa. Since a and c are relatively prime, it must be that a
divides p so that there is some integer n such that p = an, which contradicts that p is smaller in
magnitude to a. This also follows pictorially from the fact that a and c are coprime if and only
if in the straight line from the origin to −→q ∈ Z2 ⊂ R2,−→q is the first integral point. Therefore
the dyonic state represented by −→q is is a genuine stable state which cannot be interpreted as
a bound state of other dyonic states with "smaller" charges.

Figure 1.2: Dyonic spectrum predicted by SL(2,Z) duality. Dots indicate dyons, crosses
indicates holes in the dyonic spectrum. Only dyons with nonnegative magnetic charge are
shown.

The dyonic states in the SL(2,Z)-orbit of (1, 0) can be depicted as follows:
Notice that for c = 0 we have the original state and its charge conjugate. For c = 1 we

have the Julia-Zee dyons but with quantised electric charge: a can be an arbitrary integer. For
c = 2, we have that a must be odd. Notice that in every rational direction (that is, every
half-line with rational slope emanating from the origin) only the first integral point is present.
As explained above these are precisely those points (m,n) whose coordinates are coprime.

As we will see in the context of N = 4 supersymmetric Yang-Mills theory, the dyonic
spectrum is in one-to-one correspondence with square-integrable harmonic forms on monopole
moduli space. This is a fascinating prediction: it says that there is an action of the modular
group on the (L2) cohomology of monopole moduli space.

∗Contrast this with the case where the triangle inequality saturates. In this case, this means that the bound
state of two dyons with "collinear" charges exhibits no net force between its constituents. Compare this with
the discussion in section 1.3.2
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Chapter 2

7 Special geometry and symplectic transformations by de
Wit, Van Proeyen

Special Kähler manifolds are defined by coupling of vector multiplets to N = 2
supergravity. The coupling in rigid supersymmetry exhibits similar features. These
models contain n vectors in rigid supersymmetry and n + 1 in supergravity, and n
complex scalars. Apart from exceptional cases they are defined by a holomorphic
function of the scalars. For supergravity this function is homogeneous of second
degree in an (n+1)-dimensional projective space. Another formulation exists which
does not start from this function, but from a symplectic (2n)- or (2n+2)-dimensional
complex space. Symplectic transformations lead either to isometries on the manifold
or to symplectic reparametrizations. Finally we touch on the connection with special
quaternionic and very special real manifolds, and the classification of homogeneous
special manifolds.

† Based on invited lectures delivered by AVP at the Spring workshop on String theory,
Trieste, April 1994; to be published in the proceedings.
∗ Onderzoeksleider, N.F.W.O., Belgium
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7.0.1 Introduction

In nonlinear sigma models, the spinless fields define a map from the d-dimensional Minkowskian
space-time to some ‘target space’, whose metric is given by the kinetic terms of these scalars.
Supersymmetry severely restricts the possible target-space geometries. The type of target space
which one can obtain depends on d and on N , the latter indicating the number of independent
supersymmetry transformations. The number of supersymmetry generators (‘supercharges’)
is thus equal to N times the dimension of the (smallest) spinor representation. For realistic
supergravity this number of supercharge components cannot exceed 32. As 32 is the number
of components of a Lorentz spinor in d = 11 space-time dimensions, it follows that realistic
supergravity theories can only exist for dimensions d ≤ 11. For the physical d = 4 dimensional
space-time, one can have supergravity theories with 1 ≤ N ≤ 8.

Table 7: Restrictions on target-space manifolds according to the type of supergravity theory.
The rows are arranged such that the number κ of supercharge components is constant. M
refers to a general Riemannian manifold, SK to ‘special Kähler’, V SR to ‘very special real’
and Q to quaternionic manifolds.

κ d = 2 d = 3 d = 4 d = 5 d = 6
N = 1

2 M

N = 2 N = 2 N = 1
4 Kähler Kähler Kähler

N = 4 N = 4 N = 2 N = 2 N = 1
8 Q Q SK ⊕Q V SR⊕Q Ø⊕Q

... ... N = 4 ... →
16 ... ... SO(6,n)

SO(6)⊗SO(n)
⊗ SU(1,1)

U(1)
... d = 10

... ... N = 8 ... →
32 ... ... E7

SU(8)
... d = 11

As clearly exhibited in table 7, the more supercharge components one has, the more restric-
tions one finds. When the number of supercharge components exceeds 8, the target spaces are
restricted to symmetric spaces. For κ = 16 components, they are specified by an integer n,
which specifies the number of vector multiplets. This row continues to N = 1, d = 10. Beyond
16 supercharge components there is no freedom left. The row with 32 supercharge components
continues to N = 1, d = 11. Here we treat the case of 8 supercharge components. This is
the highest value of N where the target space is not yet restricted to be a symmetric space,
although supersymmetry has already fixed a lot of its structure. We will mostly be concerned
with N = 2 in d = 4 dimensions. The target space factorizes into a quaternionic and a Kähler
manifold of a particular type [1], called special [2]. The former contains the scalars of the hy-
permultiplets (multiplets without vectors). The latter contain the scalars in vector multiplets.
Recently the special Kähler structure received a lot of attention, because it plays an important
role in string compactifications. Also quaternionic manifolds appear in this context, and also
here it is a restricted class of special quaternionic manifolds that is relevant. In lowest order of
the string coupling constant these manifolds are even ‘very special’ Kähler and quaternionic, a
notion that we will define below.

In the next section we describe the actions of N = 2 vector multiplets. First we consider
rigid supersymmetry. We explain the fields in the multiplets, their description in superspace and
how this leads to a holomorphic prepotential. Then we exhibit how the structure becomes more
complicated in supergravity, where the space of physical scalars is embedded in a projective
space. This became apparent by starting from the superconformal tensor calculus.
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7.0.2 N = 2 actions

In section 7.0.3 we discuss the symplectic transformations, which play an important role in
the recent developments of weak–strong coupling dualities. First we repeat the general idea
(and elucidate it for S and T dualities), and then show what is the extra structure in N = 2
theories. There are two kind of applications, either as isometries of the manifolds (symmetries of
the theory), or as equivalence relations of prepotentials (pseudo-symmetries). We illustrate both
with explicit examples. These will also exhibit formulations without a prepotential, showing the
need for a formulation that does not rely on the existence of a prepotential. This formulation
is given at the end of the section. Some further results will be mentioned in section 7.0.4.

In all of this we confine ourselves to special geometry from a supersymmetry/supergravity
perspective. The connection with the geometry of the moduli of Calabi-Yau spaces [2, 3, 4, 5,
6, 7] is treated in the lectures of Pietro Frè [8].

7.0.2 N = 2 actions

Table 8: Physical fields in N = 2, d = 4 actions

spin pure SG n vector m. s hyperm.
2 1
3/2 2
1 1 n
1/2 2n 2s
0 2n 4s

We briefly introduce special Kähler manifolds in the context of N = 2, d = 4 super-
gravity. As exhibited in table ??, the physical multiplets of supersymmetry are vector and
hypermultiplets, which can be coupled to supergravity. In this section we will not consider the
hypermultiplets. The scalar sector of the N = 2 supergravity-Yang-Mills theory in four space-
time dimensions defines the ‘special Kähler manifolds’. Without supergravity we have N = 2
supersymmetric Yang-Mills theory, which we will treat first. The spinless fields parametrize
then a similar type of Kähler manifolds. The vector potentials, which describe the spin-1 par-
ticles, are accompanied by complex scalar fields and doublets of spinor fields, all taking values
in the Lie algebra associated with the group that can be gauged by the vectors. In the second
subsection we will see what the consequences are of mixing the vectors in the vector multiplets
with the one in the supergravity multiplet.

Rigid supersymmetry

The superspace contains the anticommuting coordinates θiα and θ̄α̇i where i = 1, 2 and α, α̇ are
the spinor indices. The simplest superfields are, as in N = 1, the chiral superfields. They are
defined by a constraint D̄α̇iΦ = 0, where D̄α̇ is a covariant chiral superspace derivative, and Φ
is a complex superfield. This constraint determines its structure∗:

Φ = X + θiαλ
α
i (7.1)

+ϵijθ
i
ασ

αβ
µν θ

j
βF

+µν + ϵαβθ
i
αθ

j
βYij + . . . ,

where . . . stands for terms cubic or higher in θ. New component fields can appear up to
θ4, leading to 8 + 8 complex field components. All these fields do not form an irreducible
representation of supersymmetry, but can be split into two sets of 8+8 real fields transforming
irreducibly. We restrict ourselves to the set containing the fields already exhibited in (7.1),

∗We use F ±
µν = 1

2

(
Fµν ± 1

2ϵµνρσF
ρσ
)

with ϵ0123 = i.
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7.0.2 N = 2 actions

which leads to the vector multiplet (The others form a ‘linear multiplet’). The reduction is
accomplished by the additional constraint

Dα
(iD

β
j)Φ ϵαβ = ϵikϵjℓD̄

α̇(kD̄ℓ)β̇Φ̄ ϵα̇β̇ , (7.2)

which for instance implies that the symmetric tensor Yij satisfies a reality constraint: Yij =
ϵikϵjℓȲ

kℓ, so that it consists of only 3 real scalar fields. But more importantly, we also obtain
a constraint on the antisymmetric tensor: ∂µ

(
F +
µν − F −

µν

)
= 0, which is the Bianchi identity,

which implies that F is the field strength of a vector potential. All the terms . . . in (7.1) are
determined in terms of the fields written down. Therefore the independent components of the
vector multiplet are: XA, λiA,F A

µν , Y
A
ij (where A = 1, ..., n denotes the possibility to include

several multiplets). XA and λiA will describe the physical scalars and spinors, F A are the fields
strengths of the vectors and Y A will be auxiliary scalars in the actions which we will construct.

As we have a chiral superfield, an action can be obtained by integrating an arbitrary holo-
morphic function F (Φ) over chiral superspace. The action∫

d4x

∫
d4θ F (Φ) + c.c. (7.3)

leads to the Lagrangian

L = gAB̄∂µX
A∂µX̄

B + gAB̄λ̄
iA ̸∂λB̄i + (7.4)

+Im (FABF
−A
µν F

−B
µν ) + LPauli + L4−fermi

where the latter two terms are the couplings of the vector fields to the spinors and the terms
quartic in fermions, which we do not write explicitly here. The metric in target space is
Kählerian: [9]

gAB̄(X, X̄) = ∂A∂B̄K(X, X̄) (7.5)
K(X, X̄) = i(F̄A(X̄)XA − FA(X)X̄A)

FA(X) = ∂AF (X) ; F̄A(X̄) = ∂ĀF̄ (X̄).

For N = 1 the Kähler potential could have been arbitrary. The presence of two independent
supersymmetries implies that this Kähler metric, and even the complete action, depends on
a holomorphic prepotential F (X), where X denotes the complex scalar fields. Two different
functions F (X) may correspond to equivalent equations of motion and to the same geometry.
From the equation∗ gAB̄ = 2 Im FAB, it follows that

F ≈ F + a+ qAX
A + cABX

AXB , (7.6)

where a and qA are complex numbers, and cAB real†. But more relations can be derived from
the symplectic transformations that we discuss shortly.

The fact that the metric is Kählerian implies that only curvature components with two holo-
morphic and two anti–holomorphic indices can be non–zero. In this case, these are determined
by the third derivative of F :

RAB̄CD̄ = −FACEgEF̄ F̄FBD. (7.7)

∗Here and henceforth we use the convention where FAB··· denote multiple derivatives with respect to X of
the holomorphic prepotential.

†In supergravity, or in the full quantum theory the qA must be zero.
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7.0.2 N = 2 actions

Vector multiplets coupled to supergravity

The general action for vector multiplets coupled to N = 2 supergravity was first derived using
superconformal tensor calculus [1]. In that approach one starts from the N = 2 superconformal
group, which is

SU(2, 2|N = 2) ⊃ SU(2, 2)⊗ U(1)⊗ SU(2). (7.8)

The bosonic subgroup, which we exhibited, contains, apart from the conformal group in d = 4,
also U(1) and SU(2) factors. The Kählerian nature of vector multiplet couplings and the
quaternionic nature of hypermultiplet couplings is directly related to the presence of these two
groups. The superconformal group is, however, mainly a useful tool for constructing actions
which have just super-Poincaré invariance (see the reviews [10]). To make that transition, the
dilatations, special conformal transformations and U(1)⊗SU(2) are broken by an explicit gauge
fixing. The same applies to some extra S–supersymmetry in the fermionic sector.

To describe theories as exhibited in table ??, the following multiplets are introduced: (other
possibilities, leading to equivalent physical theories, also exist, see [11, 10]). The Weyl multiplet
contains the vierbein, the two gravitinos, and auxiliary fields. We introduce n + 1 vector
multiplets : (

XI , λiI ,AI
µ

)
with I = 0, 1, ..., n. (7.9)

The extra vector multiplet labelled by I = 0 contains the scalar fields which are to be gauge–
fixed in order to break dilations and the U(1), the fermion to break the S–supersymmetry, and
the vector which corresponds to the physical vector of the supergravity multiplet in table ??.
Finally, there are s + 1 hypermultiplets, one of these contains only auxiliary fields and fields
used for the gauge fixing of SU(2). For most of this paper we will not discuss hypermultiplets
(s = 0).

Under dilatations the scalars XI transform with weight 1. On the other hand an action
similar to (7.3) can only be constructed if F (X) has Weyl weight 2. This leads to the important
conclusion that for the coupling of vector multiplets to supergravity, one again starts from
a holomorphic prepotential F (X), this time of n + 1 complex fields, but now it must be a
homogeneous function of degree two [1].

In the resulting action appears −1
2
i(X̄IFI−XIF̄I)eR, where R is the space–time curvature.

To have the canonical kinetic terms for the graviton, it is therefore convenient to impose as
gauge fixing for dilatations the condition

i(X̄IFI − F̄IXI) = 1 . (7.10)

Therefore, the physical scalar fields parametrize an n-dimensional complex hypersurface, de-
fined by the condition (7.10), while the overall phase of the XI is irrelevant in view of a local
(chiral) invariance. The embedding of this hypersurface can be described in terms of n com-
plex coordinates zA by letting XI be proportional to some holomorphic sections ZI(z) of the
projective space PCn+1 [12]. The bosonic part of the resulting action is (without gauging)

e−1L = −1
2
R + gαβ̄∂µz

α∂µz̄β̄

−Im
(
NIJ(z, z̄)F

+I
µν F

+J
µν

)
. (7.11)

The n-dimensional space parametrized by the zα (α = 1, . . . , n) is a Kähler space; the
Kähler metric gαβ̄ = ∂α∂β̄K(z, z̄) follows from the Kähler potential

e−K(z,z̄) = iZ̄I(z̄)FI(Z(z))− iZI(z) F̄I(Z̄(z̄))

XI = eK/2ZI(z) , X̄I = eK/2Z̄I(z̄). (7.12)
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The resulting geometry is known as special Kähler geometry [1, 2]. The curvature tensor
associated with this Kähler space satisfies the characteristic relation [13]

Rα
βγ
δ = δαβ δ

δ
γ + δαγ δ

δ
β − e2KWβγϵ W̄

ϵαδ , (7.13)

where

Wαβγ = iFIJK
(
Z(z)

) ∂ZI

∂zα
∂ZJ

∂zβ
∂ZK

∂zγ
. (7.14)

A convenient choice of inhomogeneous coordinates zα are the special coordinates, defined
by

zA = XA/X0, A = 1, . . . , n, (7.15)

or, equivalently,
Z0(z) = 1 , ZA(z) = zA . (7.16)

The kinetic terms of the spin-1 gauge fields in the action are proportional to the symmetric
tensor

NIJ = F̄IJ + 2i
Im(FIK) Im(FJL)X

KXL

Im(FKL)XKXL
. (7.17)

This tensor describes the field-dependent generalization of the inverse coupling constants and
so-called θ parameters.

We give here some examples of functions F (X) and their corresponding target spaces, which
will be useful later on:

F = −iX0X1 SU(1, 1)

U(1)
(7.18)

F = (X1)3/X0 SU(1, 1)

U(1)
(7.19)

F = −4
√
X0(X1)3

SU(1, 1)

U(1)
(7.20)

F = iXIηIJX
J SU(1, n)

SU(n)⊗ U(1)
(7.21)

F =
dABCX

AXBXC

X0
‘very special’ (7.22)

The first three functions give rise to the manifold SU(1, 1)/U(1). However, the first one is not
equivalent to the other two as the manifolds have a different value of the curvature [14]. The
latter two are, however, equivalent by means of a symplectic transformation as we will show
below. In the fourth example η is a constant non-degenerate real symmetric matrix. In order
that the manifold has a non-empty positivity domain, the signature of this matrix should be
(+−· · ·−). So not all functions F (X) allow a non-empty positivity domain. The last example,
defined by a real symmetric tensor dABC , defines a class of special Kähler manifolds, which
we will denote as ‘very special’ Kähler manifolds. This class of manifolds is important in the
applications discussed below.

7.0.3 Symplectic transformations

The symplectic transformations are a generalization of the electro-magnetic duality transfor-
mations. We first recall the general formalism for arbitrary actions with coupled spin-0 and
spin-1 fields, and then come to the specific case of N = 2.
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7.0.3 Symplectic transformations

Pseudo-symmetries in general

We consider general actions of spin-1 fields with field strengths F Λ
µν (now labelled by Λ =

1, ...,m) coupled to scalars. The general form of the kinetic terms of the spin 1 fields is

L1 = 1
4
(Im NΛΣ)F

Λ
µνF

µνΣ

− i
8
(Re NΛΣ)ϵ

µνρσF Λ
µνF

Σ
ρσ

= 1
2
Im

(
NΛΣF

+Λ
µν F

+µνΣ
)

(7.23)

We define

Gµν
+Λ ≡ 2i

∂L

∂F +Λ
µν

= NΛΣF
+Σµν

Gµν
−Λ ≡ −2i

∂L

∂F −Λ
µν

= N̄ΛΣF
−Σµν . (7.24)

The equations for the field strengths can then be written as

∂µIm F +Λ
µν = 0 Bianchi identities

∂µIm Gµν
+Λ = 0 Equations of motion

This set of equations is invariant under GL(2m, IR) transformations:(
F̃ +

G̃+

)
= S

(
F +

G+

)
=

(
A B
C D

)(
F +

G+

)
. (7.25)

However, the Gµν are related to the Fµν as in (7.24). The previous transformation implies

G̃+ = (C +DN )F+

= (C +DN )(A+BN )−1F̃+. (7.26)

Therefore the new tensor N is
Ñ = (C +DN )(A+BN )−1 (7.27)

This tensor should be symmetric, as it is the second derivative of the action with respect to the
field strength. This request leads to the equations which determine that S ∈ Sp(2m, IR), i.e.

STΩS = Ω where Ω =

(
0 1l
−1l 0

)

or


ATC − CTA = 0
BTD −DTB = 0
ATD − CTB = 1l

. (7.28)

Some remarks are in order: First, these transformations act on the field strengths. They
generically rotate electric into magnetic fields and vice versa. Such rotations, which are called
duality transformations, because in four space-time dimensions electric and magnetic fields
are dual to each other in the sense of Poincaré duality, cannot be implemented on the vector
potentials, at least not in a local way. Therefore, the use of these symplectic transformations
is only legitimate for zero gauge coupling constant. From now on, we deal exclusively with
Abelian gauge groups. Secondly, the Lagrangian is not an invariant if C and B are not zero:

Im F̃ +ΛG̃+Λ = Im
(
F +G+

)
+Im

(
2F +(CTB)G+ + F +(CTA)F +

+G+(D
TB)G+

)
. (7.29)
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7.0.3 Symplectic transformations

If C ̸= 0, B = 0 it is invariant up to a four–divergence. Thirdly, the transformations can also

act on dyonic solutions of the field equations and the vector
(
qΛm
qeΛ

)
of magnetic and electric

charges transforms also as a symplectic vector. The Schwinger-Zwanziger quantization condi-
tion restricts these charges to a lattice with minimal surface area proportional to λ. Invariance
of this lattice restricts the symplectic transformations to a discrete subgroup:

S ∈ Sp(2m,ZZ). (7.30)

Finally, the transformations with B ̸= 0 will be non–perturbative. This can be seen from the
fact that they do not leave the purely electric charges invariant, or from the fact that (7.27)
shows that these transformations invert N which plays the role of the gauge coupling constant.

Pseudo–symmetries and proper symmetries

The transformations described above, change the matrixN , which are gauge coupling constants
of the spin-1 fields. This can be compared to diffeomorphisms of the scalar manifold z → ẑ(z)
which change the metric (which is the coupling constant matrix for the kinetic energies of the
scalars) and N :

ĝαβ(ẑ(z))
∂ẑα

∂zγ
∂ẑβ

∂zδ
= gγδ(z) ; N̂ (ẑ(z)) = N (z).

Both these diffeomorphisms and symplectic reparametrizations are ‘Pseudo–symmetries’: [15]

Dpseudo = Diff(M)× Sp(2m, IR). (7.31)

They leave the action form invariant, but change the coupling constants and are thus not
invariances of the action.

If ĝαβ(z) = gαβ(z) then the diffeomorphisms become isometries of the manifold, and proper
symmetries of the scalar action. If these isometries are combined with symplectic transforma-
tions such that

ˆ̃
N (z) = N (z) , (7.32)

then this is a proper symmetry. These are invariances of the equations of motion (but not
necessarily of the action as not all transformations can be implemented locally on the gauge
fields). To extend the full group of isometries of the scalar manifold to proper symmetries, one
thus has to embed this isometry group in Sp(2m; IR), and arrives at the following situation:

Dprop = Iso(M) ⊂ Iso(M)× Iso(M) ⊂ Dpseudo

Let us illustrate how S and T dualities, treated in Sen’s lectures [16], fit in this scheme
as proper symmetries. The action he treats occurs in N = 4 supergravity. The scalars are
λ = λ1 + iλ2 and a symmetric matrix M , satisfying MηM = η−1 where η = ηT is the metric of
O(6, 22). Their coupling to the spin-1 fields is encoded in the matrix

N = λ1η + iλ2ηMη. (7.33)

The transformations on the scalars should lead to (7.27) with (7.28). Let us first consider this
for the T dualities. These are transformations of O(6, 22):

F̃ + = AF + ; M̃ = AMAT , (7.34)

(λ is invariant) where η = ATηA. This leads to Ñ =
(
AT
)−1
NA−1, which is of the form

(7.27), identifying D =
(
AT
)−1. The matrices C and B are zero, which indicates that these

symmetries are realised perturbatively.
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For the S dualities, M is invariant. These transformations are determined by the integers
s, r, q, p such that sp− qr = 1:

F̃ + = sF + + rη−1NF + ; λ̃ =
pλ+ q

rλ+ s
.

This leads to Ñ = (pN + qη)(rη−1N + s), which is of the required form upon the identification

S =

(
s1l rη−1

qη p1l

)
. (7.35)

Now, B and C are non-zero, which shows the non-perturbative aspect of the S-duality.

Symplectic transformations in N = 2

In N = 2 the tensor N is determined by the function F as explained in section 7.0.2. The
definitions of N in rigid and local supersymmetry can be written in a clarifying way as follows∗

rigid SUSY SUGRA
∂C̄F̄A = NAB∂C̄X̄

B ∂γ̄F̄I = NIJ∂γ̄X̄
J (7.36)

FI = NIJX
J

From this definition it is easy to see that N transforms in the appropriate way if we define

V =

(
XA

FA

)
V =

(
XI

FI

)
UC =

(
∂CX

A

∂CFA

)
Uα =

(
∂αX

I

∂αFI

)
(7.37)

(and their complex conjugates) as symplectic vectors in the two cases. They thus transform as
in (7.25). With this identification in mind, we can reconsider the kinetic terms of the scalars.
Then it is clear that the Kähler potentials (7.5) and (7.12), and the constraint (7.10) are
symplectic invariants. This will lead to a new formulation of special geometry in section 7.0.3.

When we start from a prepotential F (X), the FI are the derivatives† of F . The expression
X̃I = AIJX

J + BIJFJ(X) expresses the dependence of the new coordinates X̃ on the old
coordinates X. If this transformation is invertible ‡, the F̃I are again the derivatives of an new
function F̃ (X̃) of the new coordinates,

F̃I(X̃) =
∂F̃ (X̃)

∂X̃I
. (7.38)

The integrability condition which implies this statement is equivalent to the condition that S
is a symplectic matrix. In the supergravity case, one can obtain F̃ due to the homogeneity:

F̃ (X̃(X)) =
1

2
V T

(
CTA CTB
DTA DTB

)
V. (7.39)

∗For the rigid case, here ∂C̄X̄
B = δBC , but this definition is also applicable when we take derivatives w.r.t.

arbitrary coordinates zα(X). For the local case one regards (∂γ̄F̄I , FI) as an n+ 1 by n+ 1 matrix to see how
this defines the matrix N .

†The remarks below are written with indices I, J as in the supergravity case, but can be applied as well in
rigid supersymmetry replacing these indices by A,B.

‡The full symplectic matrix is always invertible, but this part may not be. In rigid supersymmetry, the
invertibility of this transformation is necessary for the invertibility of N , but in supergravity we may have that
the X̃I do not form an independent set, and then F̃ can not be defined. See below.
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Hence we obtain a new formulation of the theory, and thus of the target-space manifold, in
terms of the function F̃ .

We have to distinguish two situations:
1. The function F̃ (X̃) is different from F (X̃), even taking into account (7.6). In that case the
two functions describe equivalent classical field theories. We have a pseudo symmetry. These
transformations are called symplectic reparametrizations [4]. Hence we may find a variety of
descriptions of the same theory in terms of different functions F .
2. If a symplectic transformation leads to the same function F (again up to (7.6)), then we are
dealing with a proper symmetry. As explained above, this invariance reflects itself in an isometry
of the target-space manifold. Henceforth these symmetries are called ‘duality symmetries’, as
they are generically accompanied by duality transformations on the field equations and the
Bianchi identities. The question remains whether the duality symmetries comprise all the
isometries of the target space, i.e. whether

Iso(M) ⊂ Sp(2(n+ 1), IR). (7.40)

We investigated this question in [17] for the very special Kähler manifolds, and found that in
that case one does obtain the complete set of isometries from the symplectic transformations.
For generic special Kähler manifolds no isometries have been found that are not induced by
symplectic transformations, but on the other hand there is no proof that these do not exist.

Examples (in supergravity)

We present here some examples of symplectic reparametrizations and duality symmetries in the
context of N = 2 supergravity. First consider (7.19). If we apply the symplectic transformation

S =

(
A B
C D

)
=


1 0 0 0
0 0 0 1/3
0 0 1 0
0 −3 0 0

 (7.41)

one arrives, using (7.39), at (7.20). So this is a symplectic reparametrization, and shows the
equivalence of the two forms of F as announced above.

On the other hand consider

S =


1 + 3ϵ µ 0 0
λ 1 + ϵ 0 2µ/9
0 0 1− 3ϵ −λ
0 −6λ −µ 1− ϵ

 (7.42)

for infinitesimal ϵ, µ, λ. Then F is invariant. On the scalar field z = X1/X0, the transformations
act as

δz = λ− 2ϵz − µz2/3. (7.43)

They form an SU(1, 1) isometry group of the scalar manifold. The domain were the metric is
positive definite is Im z > 0. This shows the identification of the manifold as the coset space
in (7.19), (7.20).

As a second example, consider (7.18). Using (7.17) one obtains the matrix N which deter-
mines (again with z = X1/X0)

e−1L1 = −1
2
Re

[
z
(
F+0
µν

)2
+ z−1

(
F+1
µν

)2]
. (7.44)
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This appears also in pureN = 4 supergravity in the so–called ‘SO(4) formulation’ [18]. Consider
now the symplectic mapping [19]

S =


1 0 0 0
0 0 0 −1
0 0 1 0
0 1 0 0

 , (7.45)

leading to the transformations

X̃0 = X0 X̃1 = −F1 = iX0 (7.46)
F̃0 = F0 F̃1 = X1. (7.47)

This is an example where the transformation between X̃ and X is not invertible. Using (7.39),
we obtain F̃ = 0. However, A+BN is invertible, and we can compute Ñ using (7.27), leading
to

e−1L1 = −1
2
Re

[
z
(
F+0
µν

)2
+ z

(
F+1
µν

)2]
. (7.48)

(We performed here a symplectic transformation, but no diffeomorphism. We are still using
the same variable z). This is the form familiar from the ‘SU(4) formulation’ of pure N = 4
supergravity [20]. This shows that there are formulations which can not be obtained directly
from a superspace action.

In the final example, we will show that this particular formulation can be the most useful
one. For that we consider the manifold

SU(1, 1)

U(1)
⊗ SO(r, 2)

SO(r)⊗ SO(2)
. (7.49)

This is the only special Kähler manifold which is a product of two factors [21]. Therefore it
appears in string theory where the first factor contains the dilaton-axion. The first formulation
of this class of manifolds used a function F of the type (7.22): F (X) = 1

X0X
SXrX tηrt, where

ηrt is the constant diagonal metric with signature (+,−, . . . ,−) [13]. In this parametrization
only an SO(r − 1) subgroup of SO(r, 2) is linearly realized (residing in A and D of (7.25)).
From a string compactification point of view one does not expect this. The full SO(r, 2) should
be a perturbative symmetry, as it is realized in the N = 4 theory described by Sen [22, 16]. In
the search for better parametrizations, by means of a symplectic reparametrization a function
F of the square root type was discussed in [23] which has SO(r) linearly realized. However, the
solution was found in [19], and was not based on a function F at all. The symplectic vector V
contains then

FI = S ηIJ X
J , (7.50)

where S is one of the coordinates (representing the first factor of (7.49)), and the XI satisfy
the constraint XI ηIJ X

J = 0, where ηIJ is the SO(2, r) metric. For additional details on this
example, see also [24], where the perturbative corrections to the vector multiplet couplings are
considered in the context of the N = 2 heterotic string vacua. This important example shows
that under certain circumstances one needs a formulation that does not rely on the existence
of a function F .

Coordinate independent description

We want to be able to use more general coordinates than the special ones which appeared
naturally in the superspace approach, and also to set up a formulation of the theory in which
the symplectic structure is evident. First we will formulate this for the rigid case [25].
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7.0.3 Symplectic transformations

We start by introducing the symplectic vector V ∈ C2n, as in (7.37), where now the FA
are no longer the derivative of a function F , but n independent components. Then consider
functions V (z), parametrized by n coordinates zα (α = 1, ..., n), which will be the coordinates
on the special manifold. The choice of special coordinates introduced before, corresponds to
XA(z) = zα, FA(z) = ∂F

∂XA (X(z)). By taking now derivatives with respect to zα one obtains
Uα analogous to the UA in (7.37).

We define as metric on the special manifold

gαβ̄ = i UT
α Ω Ūβ̄ = i ⟨Uα, Ūβ̄⟩ , (7.51)

where we introduced a symplectic inner product ⟨V,W ⟩ ≡ V TΩW . The constraints which
define the rigid special geometry can be formulated on the 2n× 2n matrix

V ≡
(
UT
α

ŪαT

)
≡
(

∂αX
A ∂αFA

gαβ̄∂β̄X̄
A gαβ̄∂β̄F̄A

)
. (7.52)

This matrix should satisfy VΩVT = −iΩ and

DαV = AαV with Aα =

(
0 Cαβγ
0 0

)
for a symmetric Cαβγ (being FABC in special coordinates); and D contains the Levi-Civita
connection. The integrability condition of this constraint then implies the form of the curvature:
Rαβ̄γδ̄ = −CαγϵC̄β̄δ̄ϵ̄gϵϵ̄ (compare this with (7.7)). The formulation can even be simplified in
terms of a vielbein eAα ≡ ∂αX

A (being the unit matrix in special coordinates). Then the
connection Γ̂γαβ = eγA∂βe

A
α is flat, and there are holomorphic constraints

V̂ ≡
(
eAα ∂αFA
0 eαA

)
∂αV̂ = ÂαV̂ with Âα =

(
Γ̂γαβ −iCαβγ
0 −Γ̂βαγ

)
For Supergravity a similar definition of special geometry is possible. This formulation

was first given in the context of a treatment of the moduli space of Calabi-Yau three-folds
[2, 5, 7]. The particular way in which we present it here is explained in more detail in [26].
Now the symplectic vectors have 2(n + 1) components. We first impose the constraint (7.10),
which is written in a symplectic way as ⟨V̄ , V ⟩ ≡ V̄ TΩV = −i. Then we define n holomorphic
symplectic sections, parametrized by zα, which are proportional to V :

V (z, z̄) = e
1
2
K(z,z̄)v(z) , (7.53)

and the proportionality constant defines the Kähler potential. These equations are then invari-
ant under ‘Kähler transformations’

v(z)→ ef(z) v(z)

K(z, z̄)→ K(z, z̄)− f(z)− f̄(z̄)

V → e
1
2
(f(z)−f̄(z̄)) V . (7.54)

for which ∂αK and ∂ᾱK play the role of connections. Then special geometry is defined, using∗

Uα = DαV , with one additional constraint:

⟨Uα, Uβ⟩ = 0. (7.55)
∗The connection contains now the Levi–Civita one and the Kähler connection related to (7.54): DαX =(

∂α + 1
2 (∂αK)

)
X.
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7.0.4 Further results and conclusions

Usually the FI(z) are functions which depend on XI(z). Then one has FI = ∂IF , and the
scaling symmetry implies that F is a holomorphic function homogeneous of 2nd degree in XI .
But e.g. with (7.50) this is not the case.

To make contact with the Picard-Fuchs equations in Calabi-Yau manifolds, a similar for-
mulation as for the rigid case is useful. This is obtained by defining the (2n + 2) × (2n + 2)
matrix

V =


V
Ūα

V̄
Uα

 , (7.56)

which satisfies V ΩVT = iΩ. One then introduces a connection such that the constraints are
[27]

DαV = AαV , DᾱV = AᾱV . (7.57)

with e.g. Aα =


0 0 0 δγα
0 0 δβα 0

0 0 0 0

0 Cαβγ 0 0

 . (7.58)

The integrability conditions lead to the curvature tensor

Rαβ̄δγ̄ = gαβ̄gδγ̄ + gαγ̄gδβ̄ − CαδϵCβ̄γ̄ϵ̄gϵϵ̄. (7.59)

7.0.4 Further results and conclusions

Special geometry is not confined to Kähler manifolds. There exist a c map, which can be
obtained either from dimensional reduction of the field theory to 3 dimensions, or from su-
perstring compactification mechanisms [4]. This maps special Kähler manifolds to a subclass
of the quaternionic manifolds, which are then called special quaternionic. As already men-
tioned, a subclass of special manifolds are the ‘very special’ ones. These can be obtained from
dimensional reduction of actions in 5 dimensions, characterised by a symmetric tensor dABC
[28]. This mapping is called the r map [29], and the manifolds in the 5-dimensional theory
are called ‘very special real’ manifolds. These concepts were very useful in the classification
of homogeneous [30] and symmetric [14] special manifolds. It turned out that homogeneous
special manifolds are in one-to-one correspondence to realizations of real Clifford algebras with
signature (q + 1, 1) for real, (q + 2, 2) for Kähler, and (q + 3, 3) for quaternionic manifolds. A
study of the full set of isometries could be done systematically in these models. All this has
been summarised in [26].

For string theory the implications of special geometry in the rigid theories for the moduli
spaces of Riemann surfaces [25], and in the supergravity theories for Calabi-Yau spaces [2, 3, 4,
5, 6, 7] is extremely useful for obtaining non-perturbative results [31, 25, 19]. For these results
we refer to [8] and to [32], where many more aspects of special manifolds in the context of
topological theories, Landau-Ginzburg theories, etc. are discussed.
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Soriani.

157



Duality in supersymmetry for Children by JM Figueroa-O’Farrill

8 Duality in supersymmetry for Children by JM
Figueroa-O’Farrill

In this chapter we discuss the intimate relation between supersymmetry and the Bogomol’nyi
bound. The effect of supersymmetry is two-fold: first of all, it enforces the bound since this is a
property of unitary representations of the supersymmetry algebra; but it also protects the bound
against quantum corrections, guaranteeing that if a state saturates the bound classically, it does
so quantum mechanically. This last assertion follows because, as we will see, supersymmetry
multiplets corresponding to BPS-states are smaller than the multiplets of states where the
Bogomol’nyi bound is not saturated.

We first discuss the supersymmetry algebra and its representations. For definiteness we
shall work in four dimensions, but much of what we’ll say can (and will) be used in dimensions
other than four. It will be while studying (massive) representations with central charges that
we will see the mechanism by which the Bogomol’nyi bound follows from the algebra. We then
illustrate this fact by studying a particular example: N = 2 supersymmetric Yang-Mills in four
dimensions. We define this theory by dimensional reduction from N = 1 supersymmetric Yang-
Mills in six dimensions. This theory admits a Higgs mechanism by which the gauge symmetry
is broken to U(1) while preserving supersymmetry. The higgsed spectrum falls into a massless
gauge multiplet corresponding to the unbroken U(1) and two massive short multiplets. From
the structure of the short N = 2 multiplets we can deduce that the N = 2 supersymmetry
algebra admits central charges and, moreover, that the multiplets containing the massive vec-
tor bosons must saturate the mass bound. We will also see that this theory admits BPS-like
solutions, which are shown to break one half of the supersymmetries. This implies that the
BPS-monopole belongs to a short multiplet and suggests that the bound which follows ab-
stractly from the supersymmetry algebra agrees with the Bogomol’nyi bound for dyons given
by equation (1.27). This is shown to be case. Nevertheless the short multiplets containing the
massive vector
bosons and those containing the BPS-monopole have different spins, whence N = 2 supersym-
metric Yang-Mills does not yet seem to be a candidate for a theory which is (Montonen-Olive)
self-dual. This problem will be solved for N = 4 supersymmetric Yang-Mills, which we study as
the dimensional reduction of ten-dimensional N = 1 supersymmetric Yang-Mills. At a formal
level, N = 4 supersymmetric Yang-Mills is qualitatively very similar to the N = 2 theory; ex-
cept that we will see that the short multiplets which contain the solitonic and the fundamental
BPS-states have the same spin. This prompts the question whether N = 4 supersymmetric
Yang-Mills is self-dual - a conjecture that we will have ample opportunity to test as the lectures
progress.

8.1 2.1 The super-Poincaré algebra in four dimensions

In this section we will briefly review the supersymmetric extension of the fourdimensional
Poincaré algebra. There are plenty of good references available so we will be brief. We will
follow for the most part the conventions in [Soh85], to where we refer the reader for the relevant
references on supersymmetry.

8.1.1 2.1.1 Some notational remarks about spinors

The Lorentz group in four dimensions, SO(1, 3) in our conventions, is not simply-connected
and therefore, strictly speaking, has no spinorial representations. In order to consider spinorial
representations we must look to the corresponding spin group Spin(1, 3) which happens to be
isomorphic to SL(2,C) - the group of 2 × 2-complex matrices with unit determinant. From

158



8.1.1 2.1.1 Some notational remarks about spinors

its very definition, SL(2,C) has a natural two-dimensional complex representation, which we
shall call S. More precisely, S is the vector space C2 with the natural action of SL(2,C). If
u ∈ S has components uα = (u1, u2) relative to some fixed basis, and M ∈ SL(2,C), the action
of M on u is defined simply by (Mu)α =Mα

βuβ. We will abuse the notation and think of the
components uα as the vector and write uα ∈ S.

This is not the only possible action of SL(2,C) on C2, though. We could also define an action
by using instead of the matrix M , its complex conjugate M̄ , its inverse transpose (M t)

−1 or its
inverse hermitian adjoint

(
M †)−1, since they all obey the same group multiplication law. These

choices correspond, respectively to the conjugate representation S, the dual representation S∗,
and the conjugate dual representation S∗. We will use the following notation: if uα ∈ S, then
uα̇ ∈ S, uα ∈ S∗ and uα̇ ∈ S∗. These representations
are not all different, however. Indeed, we have that S ∼= S∗ and S ∼= S∗, which follows from
the existence of ϵαβ: an SL(2,C)-invariant tensor (since ϵαβ 7→ Mα

α′
Mβ

β′
ϵα′β′ = (detM)ϵαβ

and detM = 1) which allows us to raise and lower indices in an SL(2,C)-covariant manner:
uα = ϵαβuβ, and uβ̇ = uα̇ϵ

α̇β̇. We use conventions where ϵ12 = 1 and ϵi2̇ = −1.
Because both the Lie algebra sl(2,C) (when viewed as a real Lie algebra) and su(2)× su(2)

are real forms of the same complex Lie algebra, one often employs the notation (j, j′) for
representations of SL(2,C), where j and j′ are the spins of the two su(2) ’s. In this notation
the trivial one dimensional representation is denoted (0, 0), whereas S =

(
1
2
, 0
)
. The two su(2)

’s are actually not independent but are related by complex conjugation, hence S =
(
0, 1

2

)
. In

general, complex conjugation will interchange the labels. If the labels are the same, say
(
1
2
, 1
2

)
,

complex conjugation sends the representation to itself and it makes sense to restrict to the
sub-representation which is fixed by complex conjugation. This is a real representation and in
the case of the

(
1
2
, 1
2

)
representation of SL(2,C), it coincides with the defining representation

of the Lorentz group SO(1, 3): that is, the vector representation.
Indeed, given a 4 -vector Pµ =

(
p0,
−→p
)

we can turn it into a bispinor as follows:

σ · P ≡ σµPµ =

(
p0 + p3 p1 − ip2
p1 + ip2 p0 − p3

)

where σµ = (1,−→σ ) with −→σ the Pauli matrices:

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
Since the Pauli matrices are hermitian, so will be σ · P provided Pµ is real. The Pauli

matrices have indices σµαα̇, which shows how SL(2,C) acts on this space. If M ∈ SL(2,C),
then the action of M on such matrices is given by σ · P 7→ Mσ · PM †. This action is linear
and preserves both the hermiticity of σ ·P and the determinant det(σ ·P ) = P 2 = p20−

−→p · −→p ,
just as we expect of Lorentz transformations. We can summarise this discussion by saying
that the σµαα̇ are Clebsch-Gordon coefficients intertwining between the "vector" and the

(
1
2
, 1
2

)
representations of SL(2,C). Notice also that both M and −M at the same way on bispinors,
which reiterates the fact that SL(2,C) is the double-cover of the Lorentz group SO(1, 3).

Finally we discuss the adjoint representation of the Lorentz group, which is generated by an-
tisymmetric tensors Lµν = −Lνµ. In terms of bispinors, such an Lµν becomes a pair

(
Lαβ, L̄α̇β̇

)
where Lαβ = Lβα and similarly for L̄α̇β̇. In other words, Lµν transforms as the (1, 0)⊕(0, 1) rep-
resentation of SL(2,C): notice that we need to take the direct sum because the representation
is real.
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8.1.2 2.1.2 The Coleman-Mandula and Haag-LopuszańskiSohnius theorems

8.1.2 2.1.2 The Coleman-Mandula and Haag-LopuszańskiSohnius theorems

Back in the days when symmetry was everything, physicists spent a lot of time trying to unify
the internal symmetries responsible for the observed particle spectrum and the Poincaré group
into the same group: the holy grail being the so-called relativistic quark model. However their
hopes were dashed by the celebrated no-go theorem of Coleman and Mandula. In a nutshell, this
theorem states that the maximal Lie algebra of symmetries of the S-matrix of a unitary local
relativistic quantum field theory obeying some technical but reasonable assumptions (roughly
equivalent to demanding that the S-matrix be analytic), is a direct product of the Poincaré
algebra with the Lie algebra of some compact internal symmetry group. Since Lie algebras of
compact Lie groups are reductive: that is, the direct product of a semisimple and an abelian
Lie algebras, the largest Lie algebra of symmetries of the S-matrix is a direct product: Poincaré
× semisimple × abelian. In particular this implies that multiplets of the internal symmetry
group consist of particles with the same mass and the same spin or helicity.

If all one-particle states are massless, then the symmetry is enhanced to conformal ×
semisimple × abelian; but the conclusions are unaltered: there is no way to unify the spacetime
symmetries and the internal symmetries in a nontrivial way.

A wise person once said that inside every no-go theorem there is a "yesgo" theorem waiting
to come out, □ and the Coleman-Mandula theorem is no exception. The trick consists, not in
trying to relax some of the assumptions on the S-matrix of the field theory, but in redefining the
very notion of symmetry to encompass Lie superalgebras. In a classic paper Haag, Lopuzański
and Sohnius re-examined the result of Coleman and Mandula in this new light and found the
most general Lie superalgebra of symmetries of an S matrix. The Coleman-Mandula theorem
applies to the bosonic sector of the Lie superalgebra, so this is given again by Poincaré ×
reductive. In terms of representations of SL(2,C), these generators transform according to the
(0, 0),

(
1
2
, 1
2

)
, (0, 1) and (1, 0) representations. The singlets are the internal symmetry generators

which we will denote collectively by Bℓ. The
(
1
2
, 1
2

)
generators correspond to the translations

Pαα̇, and the (1, 0) and (0, 1) generators are the Lorentz generators: Lαβ and L̄α̇β̇.
The novelty lies in the fermionic sector, which is generated by spinorial charges QαI in the(

1
2
, 0
)

representation of SL(2,C) and their hermitian adjoints Q̄I
α̇ = (QαI)

† in the
(
0, 1

2

)
. Here

I is a label running from 1 to some positive integer N . The Lie superalgebra generated by
these objects is called the N -extended super-Poincaré algebra. The important Lie brackets are
given by

[Bℓ, QαI ] = bℓI
JQαJ

[
Bℓ, Q̄

I
α̇

]
= −b̄ℓIJQ̄J

α̇

[Pαα̇, QβI ] = 0
[
Pαα̇, Q

I
α̇

]
= 0

{QαI , QβJ} = 2ϵαβZIJ

{
Q̄I
α̇, Q̄

J
β̇

}
= −2ϵ̄α̇β̇ZIJ{

QαI , Q̄
J
α̇

}
= 2δJI Pαα̇ [ZIJ , anything ] = 0

(2.1)

where ZIJ = zIJ
mBm, Z

IJ = (ZIJ)
† and the coefficients bℓIJ and zIJm must obey:

bℓI
KzKJ

m + bℓJ
KzIK

m = 0 (2.2)

This last condition is nontrivial and constraints the structure of that part of the internal
symmetry group which acts nontrivially on the spinorial charges of the supersymmetry algebra,
what we will call the internal automorphism group of the supersymmetry algebra. In the
absence of central charges, the internal automorphism group of the supersymmetry algebra is
U(N), but in the presence of the central charges, it gets restricted generically to USp(N), since
condition (2.2) can be interpreted as the invariance under the internal automorphism group

∗1 and a wise guy said that we should call it a "go-go" theorem
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8.2 2.2 Unitary representations of the supersymmetry algebra

of each of the antisymmetric forms zIJm, for each fixed value of m. Notice that ZIJ = −ZJI ,
whence central charges requires N ≥ 2.

The above Lie superalgebra is the most general symmetry of a local relativistic S-matrix
in a theory describing point-particles. In the presence of extended objects: strings or, more
generally, p-branes, the supersymmetry algebra receives extra terms involving topological con-
served charges. These charges are no longer central since they fail to commute with the Lorentz
generators; nevertheless they still commute with the spinorial charges and with the momentum
generators. We will see an example of this later on when we discuss the six-dimensional N = 1
supersymmetry algebra.

It is sometimes convenient, especially when considering supersymmetry algebras in dimen-
sions other than 4, where there is no analogue to the isomorphism Spin(1, 3) ∼= SL(2,C), to
work with 4 -spinors. We can assemble the spinorial changes QαI and Q̄I

α̇ into a Majorana
spinor: QI =

(
QαI , Q̄

α̇I
)t. The Dirac (= Majorana) conjugate is given by Q̄I =

(
Qα

I , Q̄
I
α̇

)
, and

the relevant bit of the supersymmetry algebra is now given by{
QI , Q̄J

}
= 2δIJγ

µPµ + 2i (ImZIJ + γ5ReZIJ) (2.3)

where our conventions are such that

γµ =

(
0 σµ

σ̄µ 0

)
(2.4)

and σ̄µ = (1,−−→σ ).

8.2 2.2 Unitary representations of the supersymmetry algebra

The construction of unitary representations of the super-Poincaré algebra can be thought of
as a mild extension of the construction of unitary representations of the Poincaré algebra.
Because the Lorentz group is simple but noncompact, any nontrivial unitary representation
is infinite-dimensional. The irreducible unitary representations are simply given by classical
fields in Minkowski space subject to their equations of motion. Indeed the KleinGordon and
Dirac equations, among others, can be understood as irreducibility constraints on the fields.
The method of construction for the Poincaré algebra is originally due to Wigner and was
greatly generalised by Mackey. The method consists of inducing the representation from a
finite-dimensional unitary representation of some compact subgroup. Let us review this briefly.

8.2.1 2.2.1 Wigner’s method and the little group

The Poincaré algebra has two casimir operators: P 2 and W 2, where W µ = 1
2
ϵµνλρPνLλρ is the

Pauli-Lubansky vector. By Schur’s lemma, on an irreducible representation they must both
act as multiplication by scalars. Let’s focus on P 2. On an irreducible representation P 2 =M2,
where M is the "rest-mass" of the particle described by the representation. With our choice
of metric, physical masses are real, whence M2 ≥ 0. We can thus distinguish two kinds of
representations: massless for which M2 = 0 and massive for which M2 > 0.

Wigner’s method starts by choosing a nonzero momentum kµ on the massshell: k2 = M2.
That is, this is a character (that is, a one-dimensional representation) of the translation subal-
gebra generated by the Pµ. We let Gk denote the subgroup of the Lorentz group (or rather of
its double-cover SL(2,C)) which leaves kµ invariant. Gk is known as the little group. Wigner’s
method, which we will not describe in any more detail than this, consists in inducing a rep-
resentation of the Poincaré group from a finite-dimensional unitary representation of the little
group. This is done by boosting the representation to fields on the mass shell and then Fourier
transforming to yield fields on Minkowski space subject to their equations of motion.
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8.2.2 2.2.2 Massless representations

In extending this method to the super-Poincaré algebra all that happens is that now the Lie
algebra of the little group gets extended by the spinorial supersymmetry charges, since these
commute with Pµ and hence stabilise the chosen 4 -vector.

We will need to know about the structure of the little groups before
introducing supersymmetry. The little group happens to be different for massive and for mass-
less representations, as the next exercise asks you to show.

Exercise

2.1 (The little groups for positive-energy particles)
Let kµ be a 4 -vector obeying k0 > 0, k2 = M2 ≥ 0. Prove that the little group of kµ is

isomorphic to:
SU(2), for M2 > 0; Ẽ2, for M2 = 0,
where E2

∼= SO(2)⋉R2, is the two-dimensional euclidean group and Ẽ2
∼= Spin(2)⋉R2 is

its double cover.
(Hint: argue that two momenta kµ which are Lorentz-related have isomorphic little groups.

Then choose a convenient kµ in each case, examine the action of SL(2,C) on the bispinor σµkµ,
and identify those M ∈ SL(2,C) for which Mσ · kM † = σ · k.)

The reason why we have restricted ourselves to positive-energy representations in this ex-
ercise, is that unitary representations of the supersymmetry algebra have non-negative energy.
Indeed, for an arbitrary momentum kµ, the supersymmetry algebra becomes

{
QαI , Q̄

J
α̇

}
= 2δJI

(
k0 + k3 k1 − ik2
k1 + ik2 k0 − k3

)
Therefore the energy k0 of any state |k⟩ with momentum kµ can be written as follows (for

a fixed but otherwise arbitrary I)

k0∥||k⟩ ∥2 = ⟨k |k0| k⟩

=
1

2

〈
k
∣∣{Q1I , Q̄

I
1̇

}∣∣ k〉+ 1

2

〈
k
∣∣{Q2I , Q̄

I
2̇

}∣∣ k〉
=

1

2
∥Q1I |k⟩

∥∥∥∥2 + 1

2

∥∥∥∥Q2I |k⟩
∥∥∥∥2 + 1

2

∥∥∥∥ (Q1I)
† |k⟩

∥∥∥∥2 + 1

2

∥∥∥∥ (Q2I)
† |k⟩∥2

whence k0 is positive, unless |k⟩ is annihilated by all the supersymmetry charges.

8.2.2 2.2.2 Massless representations

We start by considering massless representations. As shown in Exercise 2.1, the little group for
the momentum kµ of a massless particle is noncompact. Therefore its finite-dimensional unitary
representations must all come from its maximal compact subgroup Spin(2) and be trivial on
the translation subgroup R2. The unitary representations of Spin(2) are one-dimensional and
indexed by a number λ ∈ 1

2
Z called the helicity. For CPT-invariance of

the spectrum, it may be necessary to include both helicities±λ, but clearly all this does is double
the states and we will not mention this again except to point out that some supersymmetry
multiplets are CPT-self-conjugate.

Let’s choose kµ = (E, 0, 0, E), with E > 0. Then

σµkµ =

(
2E 0
0 0

)
and the supersymmetry algebra becomes
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8.2.2 2.2.2 Massless representations

{
QαI , Q̄

J
α̇

}
= 4EδJI

(
1 0
0 0

)
In particular this means that

{
Q2I , Q̄

J
2̇

}
= 0. Because Q̄J

2̇
= (Q2J)

†, it follows that in a
unitary representation Q2I = 0 for all I. Indeed for any state |ψ⟩,

0 =
〈
ψ
∣∣∣{Q2I , (Q2I)

†
}∣∣∣ψ〉 = ∥Q2I |ψ⟩

∥∥2+∥∥ (Q2I)
† |ψ⟩∥2

Plugging this back into the supersymmetry algebra (2.1) we see that ZIJ = 1
2
{Q1I , Q2J} = 0,

so that there are no central charges for massless representations.
Let us now introduce qI ≡ (1/2

√
E)Q1I , in terms of which the supersymmetry algebra

becomes {
qI , q

†
J

}
= δIJ {qI , qJ} =

{
q†I , q

†
J

}
= 0

We immediately recognise this is as a Clifford algebra corresponding to a 2 N dimensional
pseudo-euclidean space with signature (N,N). The irreducible representations of such Clifford
algebras are well-known. We simply start with a Clifford vacuum |Ω⟩ satisfying

qI |Ω⟩ = 0 for all I = 1, . . . , N

and we act repeatedly with the q†I . Since
{
q†I , q

†
J

}
= 0, we obtain a 2N

N dimensional

representation spanned by the vectors: q†I1q
†
I2
· · · q†Ip|Ω⟩, where 1 ≤ I1 < I2 < · · · < Ip ≤ N , and

p = 0, . . . , N .
The Clifford vacuum actually carries quantum numbers corresponding to the momentum k

and also to the helicity: |Ω⟩ = |k, λ⟩. It may also contain quantum numbers corresponding to
the internal symmetry generators Bℓ, but we ignore them in what follows.

Exercise 2.2 (Helicity content of massless multiplets)

Paying close attention to the helicity of the supersymmetry charges, prove that Q1 I raises the
helicity by 1

2
, whereas Q2I lowers it by the same amount. Deduce that the massless supersym-

metry multiplet of helicity λ contains the following states:

States Helicity Number
|k, λ⟩ λ 1

q†I |k, λ⟩ λ+ 1
2

N

q†Jq
†
I |k, λ⟩ λ+ 1

(
N
2

)
...

...
...

q†I1q
†
I2
· · · q†Ip |k, λ⟩ λ+ p/2

(
N
p

)
...

...
...

q†1q
†
2 · · · q

†
N |k, λ⟩ λ+N/2 1

Particularly interesting cases are the CPT-self-conjugate massless multiplets. First notice
that CPT-self-conjugate multiplets can only exist for N even. For N = 2 we have the helicity
λ = −1

2
multiplet, whose spectrum consists of

Helicity −1/2 0 1/2
Number 1 2 1
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8.2.3 2.2.3 Massive representations

Then we have the N = 4 gauge multiplet which has λ = −1 and whose spectrum is given
by:

Helicity -1 −1/2 0 1/2 1
Number 1 4 6 4 1

.
Pure (that is, without matter) N = 4 supersymmetric Yang-Mills in fourdimensions consists

of several of these multiplets-one for each generator of the gauge algebra. Finally, the third
interesting case is the N = 8 supergravity multiplet with λ = −2 and spectrum given by:

Helicity -2 −3/2 -1 −1/2 0 1/2 1 3/2 2
Number 1 8 28 56 70 56 28 8 1

8.2.3 2.2.3 Massive representations

We now consider massive representations. As shown in Exercise 2.1, the little group for the
momentum kµ of a massive particle is SU(2). Its finitedimensional irreducible unitary repre-
sentations are well-known: they are indexed by the spin s, where 2s is a non-negative integer,
and have dimension 2s+ 1.

A massive particle can always be boosted to its rest frame, so that we can choose a momen-
tum kµ = (M, 0, 0, 0). Then

σµkµ =

(
M 0
0 M

)
and the supersymmetry algebra becomes

{
QαI , Q̄

J
α̇

}
= 2MδJI 1αα̇

No central charges

In the absence of central charges, {QαI , QβJ} = 0. Thus we can introduce qαI ≡ (1/
√
2M)Qα,I ,

in terms of which the supersymmetry algebra is again a Clifford algebra:{
qαI , q

†
βJ

}
= δIJδαβ {qαI , qβJ} =

{
q†αI , q

†
βJ

}
= 0 (2.5)

but where now the underlying pseudo-euclidean space is 4N -dimensional with signature
(2N, 2N). The unique irreducible representation of such a Clifford algebra is now
22N -dimensional and it is built just as before from a Clifford vacuum by acting successively
with the q†αI .

However unlike the case of massless representations, the Clifford vacuum is now degenerate
since it carries spin: for spin s the Clifford vacuum is really a (2s + 1)-dimensional SU(2)
multiplet. Notice that for fixed I, q†αI transforms as a SU(2)-doublet of spin 1

2
. This must

be taken into account when determining the spin content of the states in the supersymmetry
multiplet. Instead of simply adding the helicities like in the massless case, now we must use
the Clebsch-Gordon series to add the spins.
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Exercise 2.3 (Highest spin in the multiplet)

Prove that the highest spin in the multiplet will be carried by states of the form q†1q
†
12 · · · q

†
1N

acting on the Clifford vacuum, and that their spin is s+N/2.
For example, if N = 1 and s = 0, then we find the following spectrum: |k, 0⟩ with spin

0,
(
q†1|k, 0⟩, q

†
2|k, 0⟩

)
with spin 1/2 and q†1q

†
2|k, 0⟩ which has spin 0 too. The supersymmetric field

theory describing this multiplet consists of a scalar field, a pseudo-scalar field, and a Majorana
fermion: it is the celebrated Wess-Zumino model and the multiplet is known as the massive
Wess-Zumino multiplet. Another example that will be important to us is the N = 2 multiplets
with spins s = 0 and s = 1/2, which we leave as an exercise.

Exercise

2.4 (Massive N = 2 multiplets with s = 0 and s = 1/2)
Work out the spin content of the massive N = 2 multiplets without central charges and

with spins s = 0 and s = 1/2. Show that for s = 0 the spin content is
(
05, 1

2

4
, 1
)

in the obvious

notation, and for s = 1/2 it is given by
(
3/2, 14, 1

2
6, 04

)
.

Adding central charges

Adding central charges changes the nature of the supersymmetry algebra, which now becomes{
QαI , Q̄

J
α̇

}
= 2MδJI 1αα̇ {QαI , QβJ} = 2ϵαβZIJ

Because ZIJ is antisymmetric, we can rotate the QαI unitarily-which is an automorphism
of the first of the above brackets-in such a way that ZIJ takes a standard form:

ZIJ =



0 z1
−z1 0

0 z2
−z2 0

. . .
. . .

0 zN/2
−zN/2 0


where the zi can be chosen to be real and non-negative. To simplify the discussion we have

assumed that N is even, but one should keep in mind that if N is odd, there will of course be
a zero 1× 1 block in the above normal form for ZIJ .

Let us break up the index I into a pair (A, i) where A = 1, 2 and i = 1, . . . , N/2. In terms
of these indices the supersymmetry algebra can be rewritten as{

QαAi, Q
†
βBj

}
= 2MδijδαβδAB {QαAi, QβBj} = 2ϵαβϵABδijzi

Define the following linear combinations

S±
αi ≡

1

2

(
Qα1i ± ϵα̇β̇Q̄2i

β̇

)
where we have raised the spinor index in the second term in order to preserve covariance

under the little group SU(2). In terms of these generators, the algebra is now:{
S±
αi,
(
S±
βj

)†}
= δαβδij (M ± zi)
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8.2.3 2.2.3 Massive representations

with all other brackets being zero. Notice that acting on any state |ψ⟩,

(M ± zi) ∥|ψ⟩∥2 = ⟨ψ |(M ± zi)|ψ⟩

=
〈
ψ
∣∣∣{S±

1i,
(
S±
1i

)†}∣∣∣ψ〉
= ∥S±

1i|ψ⟩
∥∥2+∥∥ (S±

1i

)† |ψ⟩∥2
from where it follows that M ± zi ≥ 0 for all i, or

M ≥ |zi| for all i = 1, . . . , N/2 (2.6)

which is reminiscent of the Bogomol’nyi bound (1.27). Notice that this bound is an unavoid-
able consequence of having a unitary representation of the supersymmetry algebra. Therefore
provided that supersymmetry is not broken quantum-mechanically, the bound will be main-
tained.

Suppose that M > zi for all i. Then we can define q±αi ≡
(
1/
√
M ± zi

)
S±
αi, in terms of which

the supersymmetry algebra is again given by equation (2.5) once we recombine the indices (±, i)
into I. Therefore we are back in the case of massive representations without central charges,
at least as far as the dimension of the representations is concerned.

Suppose instead that some of the zi saturate the bound (2.6): zi =M for i = 1, . . . , q ≤ N/2.
Then a similar argument as in the discussion of the massless representations allows us to
conclude that the 2q generators S−

αifor i = 1, . . . , q act trivially and can be taken to be zero. The
remaining 2N − 2q generators obey a Clifford algebra whose unique irreducible representation
has dimension 22N−2q. Notice that the smallest representation occurs when all central charges
saturate the bound (2.6), in which case all the S−

αi = 0 and we are left only with 2N states, just
as in the case of a massless multiplet. These massive multiplets are known as short multiplets.

For example, in N = 2 there is only one z = z1. If z < M the massive multiplet contains
24 = 16 states, whereas if z = M the short multiplet only contains 22 = 4 states. For N = 4,
there are two zi. If both zi < M , then the massive multiplet has 28 = 256 states, whereas
if both zi = M , then the short multiplet contains only 24 = 16 states. Half-way we find the
case when exactly one of the zi = M , in which case the dimension of the multiplet is 26 = 64.
Strictly speaking we shouldn’t call these numbers the dimension of the multiplet, but rather the
degeneracy, since it may be that the Clifford vacuum is degenerate, in which case the dimension
of the supersymmetry multiplet is the product of what we’ve been calling the dimension of the
multiplet and that of the Clifford vacuum. Let us work out some examples. We first work out
the case of N = 2 and spins s = 0 and s = 1

2
in the following exercise.

Exercise

2.5 (Short N = 2 multiplets with s = 0 and s = 1/2)
Prove that the spin contents of the short multiplet with s = 0 is

(
1
2
, 02
)

and that of the

short multiplet with s = 1/2 is
(
1, 1

2

2
, 0
)
. Compare with the results of Exercise 2.4, which

are the spin contents when the central charge does not saturate the bound. We will see that
the s = 0 multiplet contains the BPS-monopole, whereas the s = 1/2 multiplet contains the
massive vector bosons.

Next we take a look at the short N = 4 multiplets with s = 0. These will be the important
ones when we discuss N = 4 supersymmetric Yang-Mills.

Exercise

2.6 (Short N = 4 multiplets with s = 0)
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8.3 2.3 N = 2 Supersymmetric Yang-Mills

Prove that the spin content of the N = 4 short multiplet with s = 0 is
(
1, 1

2
4, 05

)
, which

totals the expected 16 states. As we will see later, this will be the multiplet containing both
the BPS-monopole and the massive vector boson.

This difference in the dimension of representations for which the bound (2.6) is saturated is
responsible for the fact that if a multiplet saturates the bound classically, it will continue to do
so when perturbative quantum corrections are taken into account. This is because perturbative
quantum corrections do not alter the number of degrees of freedom, hence a short multiplet
(that is, one which saturates the bound) cannot all of a sudden undergo the explosion in size
required to obey the bound strictly.

8.3 2.3 N = 2 Supersymmetric Yang-Mills

The supersymmetric bound (2.6) for massive representations with central charges may seem a
little abstract, but it comes to life in particular field theoretical models, where we can explicitly
calculate the central charges in terms of the field variables. We will see this first of all in
pure N = 2 supersymmetric Yang-Mills, which embeds the bosonic part of the Georgi-Glashow
model. This result is due to Witten and Olive WO78.

We could simply write the action down and compute the supersymmetry algebra directly
as was done in WO78, but it is much more instructive to derive it by dimensional reduction
from the N = 1 supersymmetric Yang-Mills action in six dimensions. This derivation of N = 2
supersymmetric Yang-Mills by dimensional reduction was first done in DHdV78, and the six-
dimensional computation of the central charges was first done in Oli79.

That there should be a N = 1 supersymmetric Yang-Mills theory in six dimensions is not
obvious: unlike its nonsupersymmetric counterpart, supersymmetric Yang-Mills theories only
exist in a certain number of dimensions. Of course one can always write down the Yang-Mills
action in any dimension and then couple it to fermions, but supersymmetry requires a delicate
balance between the bosonic and fermionic degrees of freedom. A gauge field in d dimensions
has d−2 physical degrees of freedom corresponding to the transverse polarisations. The number
of degrees of freedom of a fermion field depends on what kind fermion it is, but it always a
power of 2. An unconstrained Dirac spinor in d dimensions has 2d/2 or 2(d−1)/2 real degrees of
freedom, for d even or odd respectively: a Dirac spinor has 2d/2 or 2(d−1)/2

complex components but the Dirac equation cuts this number in half. In even dimensions, one
can further restrict the spinor by imposing that it be chiral or Weyl. This cuts the number
of degrees of freedom by two. Alternatively, in some dimensions (depending on the signature
of the metric) one can impose a reality or Majorana condition which also halves the number
of degrees of freedom. For a lorentzian metric of signature (1, d − 1), Majorana spinors exist
for d ≡ 1, 2, 3, 4 mod 8. When d ≡ 2 mod 8 one can in fact impose that a spinor be both
Majorana and Weyl, cutting the number of degrees of freedom in four. The next exercise asks
you to determine in which dimensions can supersymmetric Yang-Mills theory exist based on
the balance between bosonic and fermionic degrees of freedom.

Exercise 2.7 (N = 1 supersymmetric Yang-Mills)

Verify via a counting of degrees of freedom that N = 1 supersymmetric Yang-Mills can exist
only in the following dimensions and with the following types of spinors:

d Spinor
3 Majorana
4 Majorana or Weyl
6 Weyl

10 Majorana-Weyl
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It is a curious fact that these are precisely the dimensions in which the classical superstring
exists. Unlike superstring theory, in which only the ten-dimensional theory survives quantisa-
tion, it turns out that supersymmetric Yang-Mills theory exists in each of these dimensions.
Although we are mostly concerned with four-dimensional field theories in these notes, the six-
dimensional and ten-dimensional theories are useful tools since upon dimensional reduction to
four dimensions they yield N = 2 and N = 4 supersymmetric Yang-Mills, respectively.

8.3.1 2.3.1 N = 1d = 6 supersymmetric Yang-Mills

We start by setting some conventions. We will let uppercase Latin indices from the beginning
of the alphabet A,B, . . . take the values 0, 1, 2, 3, 5, 6. Our metric ηAB is "mostly minus"; that
is, with signature (1, 5). We choose the following explicit realisation of the Dirac matrices:

Γµ =

(
0 γµ
γµ 0

)
Γ5 =

(
0 γ5
γ5 0

)
Γ6 =

(
0 −1
1 0

)
where µ = 0, 1, 2, 3, and where γµ are defined in (2.4) and γ5 = γ0γ1γ2γ3. The ΓA obey the

Clifford algebra

{ΓA,ΓB} = 2ηAB1

Weyl spinors are defined relative to Γ7, which is defined by

Γ7 = Γ0Γ1 · · ·Γ6 =

(
−1 0
0 1

)
We now write down the action for N = 1 supersymmetric Yang-Mills. We will take the

gauge group to be SO(3) for definiteness, but it should be clear that the formalism is general.
As before we will identify the Lie algebra so(3) with R3 but we will now drop the arrows on
the vectors to unclutter the notation, hoping it causes no confusion. The lagrangian density is
given by

L = −1

4
GAB ·GAB +

i

2
Ψ̄ · ΓA

←→
D AΨ (2.7)

where

GAB = ∂A WB − ∂B WA − e WA ×WB

DAΨ = ∂AΨ− e WA ×Ψ

and where Ψ is a complex Weyl spinor obeying Γ7Ψ = −Ψ. The Dirac conjugate spinor is
defined by Ψ̄ = Ψ†Γ0, and obeys Ψ̄Γ7 = Ψ̄. Finally we have used the convenient shorthand←→
D A to mean

Ψ̄ · ΓA
←→
D AΨ = Ψ̄ · ΓADAΨ−DAΨ̄ · ΓAΨ

The action defined by (2.7) is manifestly gauge invariant, but it is also invariant under
supersymmetry. Let α and β be two constant anticommuting Weyl spinors of the same chirality
as Ψ. Let us define the following transformations:

δWA = iαΓAΨ Ψ̄WA = −iΨΓAβ

δΨ = 0 δ̄Ψ =
1

2
GABΓABβ

δΨ̄ = −1

2
αGABΓAB δ̄Ψ̄ = 0
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where ΓAB = 1
2
(ΓAΓB − ΓBΓA). We should remark that there is only one supersymmetry

in our theory: α and β are chiral. That is, there is only one spinorial charge Q, in terms of
which the transformations δ and δ̄ defined above can be understood as follows:

δϕ = [αQ, ϕ] and δ̄ϕ = [Q̄β, ϕ]

for any field ϕ. Notice that it follows from this that the action of δ̄ can be deduced from
that of δ as follows: δ̄ϕ =

(
δϕ†)† (apart from the obvious change of α to β, of course). Keep in

mind that we have chosen the Lie algebra structure constants to be real, whence the generators
are antihermitian.

We claim that L is invariant under δ and δ̄ above up to a divergence. In order to derive
the supersymmetry current, we will actually take α and β to depend on the position and
simply vary the lagrangian density. We expect a total divergence plus a term with the current
multiplying the derivative of the parameter. The calculations will take us until the end of the
section and are contained in the following set of exercises.

Exercise 2.8 (Supersymmetry variation of L)

Prove first of all that for any derivation δ,

δGAB = DAδWB −DBδWA

and conclude that the variation of the bosonic part of the action Lb is given by

δLb = −iGAB ·DA (αΓBΨ) and δ̄Lb = iGAB ·DA

(
Ψ̄ΓBβ

)
Next we tackle the fermions. Prove the following identities:

δ (DAΨ) = −ie (αΓAΨ)×Ψ

δ
(
DAΨ̄

)
= −1

2
DA

(
αGBCΓBC

)
− ie (αΓAΨ)× Ψ̄

and

δ̄ (DAΨ) =
1

2
DA

(
GBCΓBCβ

)
+ ie

(
ΨΓAβ

)
×Ψ

δ̄
(
DAΨ

)
= ie

(
ΨΓAβ

)
×Ψ,

and conclude that the variation of the fermionic part of the action Lf is given by

δLf =
i

4
DA

(
αGBC

)
· ΓBCΓAΨ−

i

4
αGBC · ΓBCΓADAΨ+ eΨ̄ ·

(
αΓAΨ

)
× ΓAΨ

and

δ̄Lf =
i

4
ΨΓAΓBC ·DA (GBCβ)−

i

4
DAΨΓAΓBC ·GBCβ − eΨ ·

(
ΨΓAβ

)
× ΓAΨ

Supersymmetry invariance demands, in particular, that the fermion trilinear terms in δLf

should cancel. This requires a Fierz rearrangement, and this is as good a time as any to discuss
this useful technique. Writing explicitly the Lie algebra indices on the fermions, the trilinear
terms in δLf become

eϵabc
(
αΓAΨa

) (
Ψ
c
ΓAΨ

b
)

(2.9)
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Let us focus on the expression ΨaΨ
c. This is a bispinor. Since spinors in six dimensions have

8 components, bispinors form a 64-dimensional vector space spanned by the antisymmetrised
products of Γ-matrices:

1, ΓA, ΓAB, ΓABC , ΓABCD, ΓABCDE and ΓABCDEF , or equivalently

1, ΓA, ΓAB, ΓABC , ΓABΓ7, ΓAΓ7 and Γ7.

(Notice that antisymmetrisation is defined by

ΓA1A2···Ap = Γ[A1ΓA2 · · ·ΓAp] =
1

p!

∑
σ∈Sp

signσΓAσ(1)
ΓAσ(2)

· · ·ΓAσ(p)

so that it has "strength one.")
We will let {MΛ} denote collectively these matrices. The above basis is orthogonal relative

to the inner product defined by the trace:

trMΛMΛ′ = cΛδΛΛ′

which allows us to expand

ΨaΨ̄c =
∑
Λ

bΛ
acMΛ

and to compute the coefficients bΛac simply by taking traces. Remembering that Ψa are
anticommuting, we find

bΛ
ac = − 1

cΛ

(
Ψ̄cMΛΨ

a
)

(2.10)

Exercise 2.9 (A Fierz rearrangement)

Using the above formula and computing the relevant traces, prove that

ΨaΨ
c
= −1

8

(
Ψ
c
ΓAΨ

a
)
ΓA (1+ Γ7)−

1

48

(
Ψ
c
ΓABCΨ

a
)
ΓABC

(Hint: use the fact that Γ7Ψ = −Ψ to discard from the start many of the terms in the
general Fierz expansion.)

We now use this Fierz rearrangement to rewrite the trilinear term (2.9) as follows:

−1

8
eϵabc) αΓ

AΓB (1+ Γ7) ΓAΨ
b
) (

Ψ
c
ΓBΨ

a
)

− 1

48
eϵabc

(
αΓAΓBCDΓAΨ

b
) (

Ψ̄cΓBCDΨ
a
)

which using that Ψ is Weyl, can be simplified to

−1

4
eϵabc) αΓ

AΓBΓAΨ
b
) (

Ψ
c
ΓBΨ

a
)

− 1

48
eϵabc

(
αΓAΓBCDΓAΨ

b
) (

Ψ̄cΓBCDΨ
a
)

170



8.3.1 2.3.1 N = 1d = 6 supersymmetric Yang-Mills

Exercise 2.10 (Some Γ-matrix identities)

Prove the following two identities:

ΓAΓBΓA = −4ΓB and ΓAΓBCDΓA = 0 (2.11)

and deduce that the trilinear terms cancel exactly. The above identities are in fact the
minor miracle that makes supersymmetric Yang-Mills possible in six dimensions.

Up to a divergence, the remaining terms in the supersymmetric variation of the lagrangian
density L are then:

δL = −iGAB ·DA (αΓBΨ)− i

2
GBC ·αΓBCΓADAΨ

and

δ̄L = iGAB ·DA

(
ΨΓBβ

)
− i

2
GBC ·DAΨΓAΓBCβ

Exercise 2.11 (... and the proof of supersymmetry invariance)
Prove the following identity between Dirac matrices

ΓABΓC = ΓABC + ηBCΓA − ηACΓB

and use it to rewrite the supersymmetric variations of L as

δL =
i

2
∂AαG

BC · ΓBCΓAΨ and δ̄L =
i

2
ΨΓAΓBC ·GBC∂Aβ (2.12)

again up to divergences and where we have used the Bianchi identity in the form
ΓABCD

AGBC = 0. This proves the invariance of L under the supersymmetry transformations
(2.8).

From (2.12) we can read the expression for the supersymmetry currents:

JA =
i

2
GBC · ΓBCΓAΨ and J̄A =

i

2
ΨΓAΓBC ·GBC

As usual the spinorial supersymmetry charge is the space integral of the zero component of
the current. Provided we already knew that L is supersymmetric, there is a more economical
way to derive the expression of the supercurrent. This uses the fact that the supercurrent is
part of a supersymmetry multiplet.

Exercise 2.12 (The supersymmetry multiplet)

Prove that the lagrangian density (2.7) is invariant under the transformation Ψ 7→
exp(iθ)Ψ,Ψ 7→ exp(−iθ)Ψ, and that the corresponding Noether current is given by
jA = Ψ · ΓAΨ. Prove that

δjA = iαJA and δ̄jA = −iJ̄Aβ

The supersymmetry multiplet also contains the energy-momentum tensor, alone or in com-
bination with other topological currents that may appear in the right hand side of {Q, Q̄} in the
supersymmetry algebra. We will use this later to compute the supersymmetry algebra corre-
sponding to six-dimensional supersymmetric Yang-Mills. But first we perform the dimensional
reduction to four dimensions.
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8.3.2 2.3.2 From N = 1 in d = 6 to N = 2 in d = 4

Let us single out two of the coordinates (x5, x6) in six dimensions and assume that none of
our fields depend on them: ∂5 ≡ ∂6 ≡ 0. This breaks SO(1, 5) Lorentz invariance down to
SO(1, 3)× SO(2). Let us therefore decompose our six-dimensional fields in a way that reflects
this. In fact, we will at first ignore the SO(2) invariance and focus only on the behaviour of
the components of the six-dimensional fields under the action of SO(1, 3). The gauge field
WA breaks up into a vector Wµ, a pseudo-scalar P = W5 and a scalar S = W6. In terms of
these fields, the field-strength breaks up as Gµν , Gµ5 = DµP,Gµ6 = DµS and G56 = e S × P.
Meanwhile, the Weyl spinor breaks up as Ψ =

(
ψ
0

)
, where ψ is an unconstrained (complex) Dirac

spinor. The covariant derivative of the spinor then breaks up as (Dµψ,−eP×ψ,−e S×ψ).
The lagrangian density now becomes L = Lb + Lf where

Lb = −1

4
Gµν ·Gµν +

1

2
DµP ·DµP +

1

2
DµS ·DµS− 1

2
e2∥P× S∥2

and

Lf = iψ · γµDµψ + ieψ · γ5P×ψ + ieψ · S×ψ (2.13)

where we see that P is indeed as pseudo-scalar as claimed. L is the lagrangian density of
N = 2 supersymmetric Yang-Mills theory in four dimensions. The supersymmetry parameter
α, which in the six-dimensional theory is a Weyl spinor, becomes upon dimensional reduction
a Dirac spinor. But in four dimensions the supersymmetry parameters are Majorana, hence
this gives rise to N = 2 supersymmetry. One can see this explicitly by breaking up the super-
symmetry parameter into its Majorana components: simply choose a Majorana representation
and split it into its real and imaginary parts. Each of these spinors is Majorana and generates
one supersymmetry.

Let us first do this with ψ. The next exercise shows the resulting fermion action in a
Majorana basis.

Exercise 2.13 (L in a Majorana basis)

In a Majorana basis, let us split ψ as follows:

ψ =
1√
2
(ψ1 − iψ2)

Prove that relative to ψα, α = 1, 2, the fermionic part Lf of the lagrangian density becomes
(up to a total derivative)

Lf =
i

2
ψ1 · γµDµψ1 +

i

2
ψ2 · γµDµψ2 + eψ1 · γ5P×ψ2 + eψ1 · S×ψ2 (2.14)

(Hint: you may find useful the following identities for anticommuting Majorana spinors in
four dimensions:

χ̄λ = λ̄χ χ̄γ5λ = −λ̄γ5χ χ̄γµλ = −λ̄γµχ (2.15)

which you are encouraged to prove!)
We can do the same with the supersymmetry transformations (2.8), as the next exercise

asks you to show.
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Exercise 2.14 (Explicit N = 2 supersymmetry transformations)

Show that in a Majorana basis, the dimensional reduction of the supersymmetry transforma-
tions (2.8) becomes:

δ1 Wµ = iᾱγµψ1 + ᾱγµψ2

δ2 Wµ = −ᾱγµψ1 + iᾱγµψ2

δ1P = iᾱγ5ψ1 + ᾱγ5ψ2

δ2P = −ᾱγ5ψ1 + iᾱγ5ψ2

δ1 S = iᾱψ1 + ᾱψ2

δ2 S = −ᾱψ1 + iᾱψ2

δ1ψ1 = −Dµ (S + Pγ5) γµα +
1

2
e( S× P)γ5α +

1

2
Gµνγµνα

δ1ψ2 = 0

δ2ψ1 = 0

δ2ψ2 = −Dµ (S + Pγ5) γµα +
1

2
e( S× P)γ5α +

1

2
Gµνγµνα

The SO(2) invariance of (2.14) can be made manifest by rewriting Lf explicitly in terms
of the SO(2) invariant tensors δαβ and ϵαβ. In fact, using the identities (2.15), one can rewrite
(2.14) as:

Lf =
i

2
δαβψα · γµDµψβ +

e

2
ϵαβψα · (γ5P + S)×ψβ

The SO(2) transformation properties of the four-dimensional fields can be succinctly written
as follows:

S + iP 7→ e−iµ(S + iP)

ψ 7→ eµγ5/2ψ

Wµ 7→Wµ (2.16)

Exercise 2.15 (The SO(2) Noether current)
Prove that the Noether current associated with the SO(2) transformations (2.16) is given

by

j5µ = P ·DµS− S ·DµP +
i

2
ψ̄ · γ5γµψ

Notice that this current contains the axial current, hence the notation.
Problem: Is it anomalous in this theory?

8.3.3 2.3.3 Higgsed N = 2 supersymmetric Yang-Mills

The hamiltonian density corresponding to the N = 2 supersymmetric YangMills theory defined
by (2.13) is given by H = Hb +Hf . We focus on the bosonic part:

Hb =
1

2
∥Ei∥2 +

1

2
∥D0 S∥2 + 1

2
∥D0P∥2

+
1

2
∥ Bi∥2 +

1

2
∥Di S∥2 +

1

2
∥DiP∥2 +

1

2
e2∥P× S∥2

Demanding that the energy of a given field configuration be finite doesn’t necessarily imply
that P and S acquire non-zero vacuum expectation valuesfor the term ∥P× S∥2 is already zero
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provided that P × S = 0, which for so (3) means that they be parallel. Indeed, except for
that term and the extra field, Hb is nothing but the energy density (1.13) of (the bosonic part
of) the Georgi-Glashow model in the limit of vanishing potential. We could add a potential
term λ (∥P∥2 + ∥S∥2 − a2)2 to the lagrangian (2.13) to force S and P to acquire a nonzero
vacuum expectation value, but such a term would break supersymmetry. Nevertheless we
could then take the limit λ ↓ 0 while keeping the nonzero vacuum expectation values of S and
P . This restores the supersymmetry provided that ⟨S⟩ and ⟨P⟩ are parallel, which would be
the supersymmetric version of the Prasad-Sommerfield limit. Since the potential depends only
on the SO(2) invariant combination ∥P∥2 + ∥S∥2, SO(2) is preserved and we could use this
symmetry to choose ⟨P⟩ = 0 and ⟨S⟩ = a, where a is a fixed vector with ∥a∥2 = a2.

Exercise 2.16 (The perturbative spectrum of the model)

We can analyse the perturbative spectrum of the model around such a vacuum in exactly the
same way as we did in Exercise 1.4. Choosing for example the unitary gauge a = ae3, show that
there are now two massive multiplets (ψ±,W±

µ , P
±) of mass MW = aeλ, and a massless gauge

multiplet corresponding to the unbroken U(1) :
(
ψ3,W 3

µ , S
3, P 3

)
. Prove that the massless gauge

multiplet is actually made out of two massless multiplets with helicities λ = −1 and λ = 0.

Now watch carefully: something curious has happened. From the analysis in section 2.2.3,
we know that the generic massive representations of N = 2
supersymmetry are sixteen-fold degenerate, and from Exercise 2.3 we know that they must
have a state with spin 3/2. Yet the massive multiplets which have arisen out of higgsing the
model contain maximum spin 1 and are only four-fold degenerate. This is only possible if the
N = 2 supersymmetry algebra in this model has central charges and these charges saturate the
bound! Indeed, the only way to reconcile the above spectrum with the structure of massive
representations of the N = 2 supersymmetry algebra studied in section 2.2.3 is if it corresponds
to the short multiplet with spin s = 1/2 studied in Exercise 2.5. In the next section we will
actually compute the supersymmetry algebra for this model and we will see that the central
charges are precisely the electric and magnetic charges relative to the unbroken U(1). But before
doing this let us check that the BPS-monopole is actually a solution of N = 2 supersymmetric
Yang-Mills.

8.3.4 2.3.4 N = 2 avatar of the BPS-monopole

We now show that this N = 2 supersymmetric Yang-Mills theory admits BPSmonopole solu-
tions. We look for static solutions, so we put W0 = 0. Since the fermion equations of motion
are linear, we can always put ψ = 0 at the start. Applying supersymmetry transformations to
such a solution, we will be able to generate solutions with nonzero fermions. Similarly, using
the SO(2) invariance we can look for a solution with P = 0, and then obtain solutions with
nonzero P by acting with SO(2). Having made these choices, we are left with Wi and S, which
is precisely the spectrum of the bosonic part of the Georgi-Glashow model provided we identify
S and ϕ. Furthermore, not just the spectrum, but also the lagrangian density agrees, with
potential set to zero, of course. Therefore the BPS-monopole given by (1.15) with H and K
given in Exercise 1.12 is a solution of N = 2 supersymmetric Yang-Mills. If we now apply an
SO(2) rotation to this solution, we find the following BPS-monopole solution:
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ψ = W0 = 0

Sa = α
ra

er2
H(ξ)

Pa = β
ra

er2
H(ξ)

Wa
i = ϵaij

rj

er2
(K(ξ)− 1) (2.17)

where as before ξ = aer, where H and K are the same functions in Exercise 1.12, and
α2 + β2 = 1. Putting β = 0 we recover the BPS-monopole and anti-monopole for α = ±1,
respectively-a result first obtained in DHdV78.

Since (2.17) is a solution of the field equations of a supersymmetric theory, supersymmetry
transformations map solutions to solutions. Hence starting with (2.17) we can try to gener-
ate solutions with nonzero fermions by performing a supersymmetry transformation. We will
actually assume a more general solution than the one above.

Exercise 2.17 (Supersymmetric BPS-monopoles)

Prove that any BPS-monopole, that is, any static solution (Wi, ϕ) of the Bogomol’nyi equation
(1.28), can be thought of as an N = 2 BPS-monopole by setting S = αϕ,P = βϕ and ψ = 0,
with α2 + β2 = 1.

We will then take one such N = 2 BPS-monopole as our starting point and try to generate
other solutions via supersymmetry transformations. The supersymmetry transformation laws
on the four-dimensional fields can be read off from those given in (2.8) for the six-dimensional
fields. Since we start with a background in which ψ = 0, the bosonic fields are invariant under
supersymmetry. The supersymmetry transformation law of the fermion ψ is given by

δψ =

(
1

2
Gµνγµν −Dµϕγ

µ (α + βγ5)

)
ϵ

where ϵ is an unconstrained (complex) Dirac spinor. Because the solution is static - W0 = 0
and all fields are time-independent-the above can be rewritten as

δψ =

(
1

2
Gijγij +Diϕγi (α + βγ5)

)
ϵ

For definiteness we will assume that (Wi,ϕ) describe a BPS-monopole (as opposed to an
anti-monopole) so that Diϕ = +1

2
ϵijkGjk. Then we can rewrite the above transformation law

once more as

δψ = Dkϕ

(
1

2
ϵijkγij + γk (α + βγ5)

)
ϵ (2.18)

Exercise

2.18 (More γ-matrix identities)
Prove the following identity:

1

2
ϵijkγij = −γ0γ5γk (2.19)
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Exercise 2.19 (Some euclidean γ-matrices)

Let γ̄i ≡ γ0γi for i = 1, 2, 3, and let γ̄4 = γ0 (α + βγ5). Prove that they generate a euclidean
Clifford algebra. Define γ̄5 ≡ γ̄1γ̄2γ̄3γ̄4 = γ0 (αγ5 − β). Prove that γ̄5 is hermitian and that
γ̄25 = 1.

In terms of these euclidean Clifford algebra, and using (2.19), we can rewrite (2.18) as

δψ = γ5γ̄kDkϕ (1− γ̄5) ϵ

Notice that 1
2
(1± γ̄5) is a projector. If we denote ϵ± = 1

2
(ϵ± γ̄5ϵ), then the supersymmetric

variation of ψ in a BPS-monopole background is given simply by

δψ = 2γ5γ̄kDkϕϵ−

This means that if ϵ has negative chirality relative to γ̄5, then we don’t generate new solu-
tions, yet if ϵ has positive chirality, then we do. Equivalently, supersymmetry transformations
with negative chirality parameters preserve the solution, whereas those with positive chirality
parameters break it.

Exercise

2.20 (BPS-monopoles break one half of the supersymmetry) Prove that the (±1)-eigenspaces
of γ̄5 have the same dimension. Conclude that the projector 1

2
(1± γ̄5) projects out precisely

one half of spinors.
As a corollary of the above exercise we see that supersymmetric BPSmonopoles break half

the supersymmetries.
Notice that the parameter ϵ, being an unconstrained Dirac spinor has 4 complex (or 8 real)

components, whereas ϵ±only has 2 complex (or 4 real) components. Hence we expect that the
BPS-monopole belongs to a fourfold degenerate multiplet. From our study in section 2.2.3 of
massive representations of the N = 2 supersymmetry algebra, we know that those massive
multiplets preserving half the supersymmetries are necessarily short, and from Exercise 2.5
we see that the k = 1 BPS-monopole given by (2.17) generates a short multiple with spin
s = 0. This multiplet contains two "particles" of spin 0 and one of spin 1/2, yet none of spin
1. Therefore although as we will see in the next section, N = 2 supersymmetry solves the first
of the problems with the Montonen-Olive conjecture mentioned at the end of section 1.4.1, it
still does not address the second problem satisfactorily. As we will see later, the solution of
this problem requires N = 4 supersymmetry.

8.3.5 2.3.5 The supersymmetry bound is the Bogomol’nyi bound

The Bogomol’nyi bound (1.27) can be suggestively rewritten as

M2 − (aq)2 − (ag)2 ≥ 0

which is begging us to add two spatial dimensions to our spacetime and interpret the above
inequality as the positivity of mass. As explained in section 2.2.1, the positivity of the mass is a
consequence of unitarity and the supersymmetry algebra. Therefore it would make sense to look
for a six-dimensional supersymmetric explanation of the Bogomol’nyi bound. The explanation
of WO78 used the central charges in four-dimensional N = 2
supersymmetric Yang-Mills theory, and as we have seen this theory comes induced from six-
dimensional N = 1 supersymmetric Yang-Mills via dimensional reduction. It would make sense
therefore to look for a direct sixdimensional explanation. This was done to a large extent in
Oli79 and we will now review this.
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The above heuristics suggest that we think of the electric and magnetic charges as momenta
in the two extra spatial dimensions. However it isn’t hard to see that this interpretation is
not quite correct. If one computes the energy-momentum tensor TAB of the six-dimensional
supersymmetric YangMills theory, and from there the momenta PA = T0A, then the positivity
of mass formula in six-dimensions:

M2 ≥ P 2
5 + P 2

6 (2.20)

where M2 = P µPµ is the four-dimensional mass, does not agree with the Bogomol’nyi
bound (1.27). In fact one finds that the magnetic charge does not appear. What is wrong
then? Simply that we have assumed that it is Pµ which appears in the right hand side of
{Q, Q̄} in the supersymmetry algebra, when in fact it is Pµ + Zµ, where Zµ can be interpreted
as the topological charge due to the presence of a string-like source in six-dimensions. We now
find out what Zµ is by computing the supersymmetry algebra. We first do this in six dimensions
and then reduce down to four.

The supersymmetry algebra in six dimensions

We start by noticing that the space integral of δδ̄j0 is equal to α{Q, Q̄}β, whence it is enough
to compute δδ̄jA, which we naturally leave as an exercise.

Exercise 2.21 (Supersymmetric variation of the supercurrent)

Prove that

δδ̄jA = −iδJ̄Aβ

= −1

4
GBC ·GEFαΓBCΓAΓEFβ + i (αΓCDBΨ) ·

(
Ψ̄ΓAΓ

BCβ
)

The fermion bilinear term has to be Fierzed, but we will not be concerned with the fermions
in what follows: we are interested in computing the "momenta" in classical configurations like
the BPS-monopole, where the fermions have been set to zero. Of course, it would be a good
exercise in Γ-matrix algebra to compute the fermionic terms, not that there is little Γ-matrix
algebra to be done. In fact, prove that setting Ψ = 0, δδ̄jA is given by

δδ̄jA = 2α

(
−1

8
ϵBCAEFDG

BC ·GEF +GBC ·GCAηBD +
1

4
GBC ·GBCηAD

)
ΓDβ (2.21)

(Hint: use that ΓABCDE = −ϵABCDEFΓFΓ7 (prove it!) and use the fact that Γ7β = −β.)
We see that there are two very different tensors appearing in the righthand-side of δδ̄jA:

ΘAB = −1

8
ϵABCDEFG

CD ·GEF (2.22)

TAB = GA
C ·GCB +

1

4
GCD ·GCDηAB (2.23)

Notice that TAB is symmetric, whereas ΘAB is antisymmetric. In fact, TAB is (the bosonic
part of) the energy-momentum tensor of the six-dimensional theory.
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Exercise

2.22 (The symmetric gauge-invariant energy momentum tensor) Prove that the
energy-momentum tensor of the six-dimensional supersymmetric Yang-Mills theory is given by

TAB +
i

2
Ψ̄ · Γ(A

←→
D B)Ψ− ηAB

i

2
Ψ̄ · ΓC

←→
D CΨ

Prove that TAB is gauge-invariant and that it is conserved on-shell.
(Hint: Vary Lb with respect to an infinitesimal translation xA 7→ xA+ εA(x) and determine

the associated Noether current, which after symmetrisation is the energy-momentum tensor,
by definition.)

Defining PA to be the space integral of T0A and ZA the space integral of Θ0A, we see that
the supersymmetry algebra becomes {Q, Q̄}:

{Q, Q̄} = 2ΓA (PA + ZA)

Only the first of these terms is to be interpreted as the momentum, the other term is
associated with a topologically conserved current.

Exercise 2.23 (The topological current)

Prove that ΘAB is gauge invariant and that it is conserved off-shell, that is, without imposing
the equations of motion. This means that it is a topological current.

(Hint: show that ΘAB = ∂CΞABC where ΞABC is totally antisymmetric, though not gauge
invariant.)

The supersymmetry algebra in four dimensions

It is now time to dimensionally reduce the supersymmetry algebra. The following exercise asks
you to compute P5, P6, Z5, and Z6 (with fermions put to zero) after dimensional reduction.

Exercise 2.24 (The "momenta" in the extra dimensions)

Prove that

T05 = −DiP ·G0i − e(P× S) ·D0 S

T06 = −Di S ·G0i + e(P× S) ·D0P

Θ05 =
1

2
ϵijkGij ·Dk S

Θ05 = −
1

2
ϵijkGij ·DkP

Using the Bianchi identity ϵijkDiGjk = 0, we can rewrite Θ05 and Θ06 as follows:

Θ05 =
1

2
∂i (ϵijkGjk · S) and Θ05 = −

1

2
∂i (ϵijkGjk · P)

whereas using the equations of motion (for zero fermions)

−DiG0i + eP×D0P + e S×D0 S = 0

we can rewrite T05 and T06 as follows:

T05 = −∂i (G0i · P) and T05 = −∂i (G0i · S)
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We see that all the densities are divergences, whence their space integrals only receive
contribution from spatial infinity:

P5 + Z5 =

∫
Σ∞

(
−P ·G0i +

1

2
ϵijk S ·Gjk

)
dΣi

P6 + Z6 =

∫
Σ∞

(
−S ·G0i −

1

2
ϵijkP ·Gjk

)
dΣi

To interpret these integrals we can proceed in either of two ways. The fastest way is to
use the SO(2) invariance of the theory to choose P = 0 and ∥S∥2 = a2 at spatial infinity.
Comparing with (1.24) and (1.25), we see that P5 + Z5 = ag and P6 + Z6 = −aq. The same
reasoning follows without having to use SO(2) invariance, as the next exercise shows.

Exercise 2.25 (The effective electromagnetic field strength)

Define the following field strength:

Fµν ≡
1

a
( S ·Gµν + P · ⋆Gµν) (2.24)

Prove that in the "Higgs vacuum" it obeys Maxwell’s equations, and deduce that P5+Z5 =
ag and P6+Z6 = −aq where g and q are, respectively, the magnetic and electric charges of this
electromagnetic field.

(Hint: Compare with Exercise 1.8).
To prove that (2.20) is the Bogomol’nyi bound (1.27), we can proceed in two ways. We can

exploit the SO(2) invariance of the supersymmetry algebra in order to set P = 0, and then
notice that Zµ = 0. Using the fact that Pµ is indeed the honest momentum of the theory,
namely the space integral of T0µ, and plugging the expressions for PA + ZA into (2.20), we
finally arrive at the Bogomol’nyi bound (1.27)!

Alternatively we can deduce that Zµ = 0 without having to set P = 0. This is the purpose
of the following exercise.

Exercise

2.26 (The space components of the topological charge)
Prove that Θ0i is given by

Θ0i = ϵijk∂j (P ·Dk S)

whence Zi is given by

Zi = ϵijk

∫
Σ∞

(P ·Dk S) dΣj

Prove that this vanishes for a finite-energy configuration.
(Hint: Notice that for a solution of the Bogomol’nyi equation S = αϕ,P = βϕ with α2+β2 =

1,P ·Dk S = 1
2
αβ∂k∥ϕ∥2, and that the derivative ∂k is tangential to Σ∞ due to the ϵijk. Since

∥ϕ∥2 = a2 on Σ∞, its tangential derivative vanishes.)
Define the following complex linear combinations of fields (cf. 1.33)):

Gµν = Gµν + i⋆Gµν

Φ = S + iP

in terms of which the effective electromagnetic field strength defined in 2.24, becomes
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Fµν =
1

a
Re
(
Φ · Gµν

)
Under an infinitesimal SO(2) transformation, δΦ = iΦ, and because iSµν = ⋆Gµν , we can

write

δFµν = −⋆Fµν
In other words, SO(2) transformations become infinitesimal duality transformations in the

effective electromagnetic theory.
Problem: Are anomalies responsible for the breaking of this symmetry in the quantum

theory?

8.4 2.4 N = 4 Supersymmetric Yang-Mills

We saw in Exercise 2.7 that 10 is the largest dimension in which N = 1 supersymmetric Yang-
Mills theory can exist and that for it to exist we must impose that the spinors be both Weyl and
Majorana-conditions which, luckily for us, can be simultaneously satisfied in ten-dimensional
Minkowski space. In
this section we will prove that this theory exists and that upon dimensional reduction to four
dimensions yields a gauge theory with N = 4 supersymmetry. This theory admits Higgs phe-
nomena and has room to embed the BPS-monopole and indeed, any solution of the Bogomol’nyi
equation, just as in theN = 2 theory discussed in the previous section. We will see that both the
massive fundamental states (e.g., vector bosons) and the solitonic states (e.g., BPS-monopoles)
belong to isomorphic (short) multiplets saturating the supersymmetry mass bound which once
again will be shown to agree with the Bogomol’nyi bound for dyons.

8.4.1 2.4.1 N = 1 d = 10 supersymmetric Yang-Mills

We start by setting up some conventions. We will let indices A,B, . . . from the start of the
Latin alphabet run from 0 to 9. (No confusion should arise from the fact that in the previous
section the very same indices only reached 6.) The metric ηAB is mostly minus and the 32× 32
matrices {ΓA} obey the Clifford algebra {ΓA,ΓB} = 2ηAB1. We let Γ11 ≡ Γ0Γ1 · · ·Γ9; it obeys
Γ2
11 = 1. We shall also need the charge conjugation matrix C, which obeys Ct = −C and

(CΓA)
t = CΓA, from where it follows that (ΓA)

t = −CΓAC−1.
N = 1 supersymmetric Yang-Mills theory is defined by the following lagrangian density:

L = −1

4
GAB ·GAB +

i

2
Ψ̄ · ΓADAΨ (2.25)

where

GAB = ∂A WB − ∂B WA − e WA ×WB

DAΨ = ∂AΨ− e WA ×Ψ

and where Ψ is a complex Majorana-Weyl spinor obeying Γ11Ψ = −Ψ (Weyl) and Ψ =
Ψ†Γ0 = Ψt

C (Majorana).

Exercise 2.27 (The Majorana condition)

Prove that the Majorana condition above relates Ψ and its complex conjugate Ψ∗:

Ψ∗ = CΓ0Ψ
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whence it can be considered a reality condition on the spinor.
The action defined above is clearly gauge invariant. We claim that it is also invariant under

the following supersymmetry:

δWA = iαΓAΨ = −iΨΓAα

δΨ =
1

2
GABΓABα (2.26)

δΨ̄ = −1

2
αΓABG

AB

where α is a constant anticommuting Majorana-Weyl spinor of the same chirality as Ψ, and
where the second and third relations above imply each other.

The proof that the action is invariant under the supersymmetry transformations (2.26) is
very similar to the analogous statement for the sixdimensional theory, so we will not be as
verbose.

We start by varying the action with respect to (2.26). We don’t take α to be constant in
order to be able to read off the form of the supersymmetry current from the variation of the
lagrangian density. We will have proven invariance if we can show that up to a divergence, the
variation of (2.25) is proportional to the derivative of α-the coefficient being the supersymmetry
current. Varying the lagrangian density we encounter two kinds of terms: terms linear in the
fermions, and a term trilinear in the fermions and without derivatives, coming from the variation
of the gauge field inside the covariant derivative acting on the fermions.

Before getting into the computation, it is useful to derive some properties of Majorana-Weyl
fermions, which are left as an instructive exercise.

Exercise 2.28 (Properties of Majorana and Weyl fermions)

Let α and β be anticommuting Majorana fermions in ten dimensions. Prove that

αΓA1A2···Ak
β = (−)k(k+1)/2βΓA1A2···Ak

α (2.27)

If, in addition, α and β are Weyl and of the same chirality, then prove that

α (even number of Γs) β = 0.

(Hint: It may prove useful to first prove the identity

(CΓA1A2···Ak
)t = −(−)k(k+1)/2CΓA1A2···Ak

(2.28)

which will play a role also later on.)
We now vary the lagrangian density.

Exercise 2.29 (Varying the lagrangian density)

Prove that supersymmetric variation of the lagrangian density L is given, up to a divergence,
by:

δL =
i

2
DCGAB ·αΓABΓCΨ+ iDAGAB ·αΓBΨ

+
i

2
GAB · ∂CαΓABΓCΨ+

1

2
eΨΓA · ((αΓAΨ)×Ψ)

(Hint: Integrate by parts and use the identity (2.27) repeatedly.)
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Using the Bianchi identity in the form ΓABCDCGAB = 0, it is easy to prove that the first
two terms in the above expression for δL cancel out, leaving the trilinear terms and the term
involving the supersymmetry current:

δL = ∂AαJ
A +

1

2
eΨΓA · ((αΓAΨ)×Ψ)

where the supersymmetry current JA is given by

JA =
i

2
GBC · ΓBCΓAΨ (2.29)

Finally we tackle the trilinear terms, which as usual are the trickier ones. Just as in the
six-dimensional theory, their vanishing will be seen to be a property of some identities between
the Γ-matrices. Writing the SO(3) indices explicitly, we find that these terms are given by

1

2
eϵabcαΓAΨ

aΨ
c
ΓA ×Ψb (2.30)

and we once again must use the Fierz identities to expand the bi-spinor ΨaΨ̄c.

Exercise 2.30 (A ten-dimensional Fierz identity)

Prove that

ΨaΨ
c
= − 1

32
Ψ
c
ΓAΨ

aΓA (1+ Γ11)

+
1

32 · 3!
Ψ
c
ΓABCΨ

aΓABC (1+ Γ11)−
1

32 · 5!
Ψ
c
ΓABCDEΨ

aΓABCDE.

Using the results of Exercise 2.28 - in particular equation (2.27)-and taking into account
the antisymmetry of ϵabc we see that only the first and last terms on the right-hand side of the
above Fierz identity contribute to (2.30).

Exercise 2.31 (Some more Γ-matrix identities)

Prove the following identities between ten-dimensional Γ-matrices:

ΓAΓBΓA = −8ΓB and ΓFΓABCDEΓF = 0 (2.31)

and use them to deduce that the trilinear terms (2.30) cancel exactly.
(Compare these identities with those in Exercise 2.10.)

8.4.2 2.4.2 Reduction to d = 4 : N = 4 supersymmetric YangMills

We now dimensionally reduce the d = 10 N = 1 supersymmetric Yang-Mills theory described
in the previous section down to four dimensions. From
now on we will let uppercase indices from the middle of the Latin alphabet: I, J,K, . . . run
from 1 to 3 inclusive. It will be convenient to break up the ten-dimensional coordinates as xA =(
xµ, x3+I , x6+J

)
, and by dimensional reduction we simply mean that we drop the dependence

of the fields on
(
x3+I , x6+J

)
: ∂3+I ≡ ∂6+J ≡ 0.

We also need to decompose the ten-dimensional Γ-matrices. This is done as follows:

Γµ = γµ ⊗ 14 ⊗ σ3 C = C ⊗ 14 ⊗ 12

Γ3+I = 14 ⊗ αI ⊗ σ1 Γ6+J = iγ5 ⊗ βJ ⊗ σ3
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where C is the charge conjugation matrix in four-dimensional Minkowski space obeying
Ct = −C and (Cγµ)

t = Cγµ; and
{
αI
}

and
{
βJ
}

are 4 × 4 real antisymmetric matrices
satisfying the following algebraic relations:[

αI , αJ
]
= −2ϵIJKαK

{
αI , αJ

}
= −2δIJ14[

βI , βJ
]
= −2ϵIJKβK

{
βI , βJ

}
= −2δIJ14[

αI , βJ
]
= 0;

and where 1n denotes the n×n unit matrix. (From now on we will drop the subscript when
the dimension is clear from the context.) In the above decomposition, Γ11 takes the form:

Γ11 = −1⊗ 1⊗ σ2

We can find an explicit realisation for the matrices αI and βJ as follows. Because they
are real antisymmetric 4 × 4 matrices, they belong to so(4). Their commutation relations say
that they each generate an so(3) subalgebra and moreover that these two so(3) subalgebras
commute. Happily so(4) ∼= so(3) × so(3), so that all we have to find is an explicit realisation
of this isomorphism. This is found as follows. We say that a matrix A in so(4) is self-dual
(respectively antiselfdual), if its entries obey Aij = 1

2
ϵijklAkl (respectively, Aij = −1

2
ϵijklAkl).

The next exercise asks you to show that the subspaces of so(4) consisting of (anti)self-dual
matrices define commuting subalgebras.

Exercise

2.32(so(4) ∼= so(3)× so(3) explicitly )
Prove that the commutator of two (anti)self-dual matrices in so(4) is (anti)selfdual, and

that the commutator of a self-dual matrix and an antiselfdual matrix in so(4) vanishes.
(Hint: Either compute this directly or use the fact that the "duality" operation is so(4)

invariant since ϵijkl is an so(4)-invariant tensor, whence its eigenspaces are ideals.)
Using this result we can now find a explicit realisation for the αI and the βJ : we simply

find a basis for the (anti)self-dual matrices in so(4). This is the purpose of the next exercise.

Exercise

2.33 (Explicit realisation for αI and βJ)
Prove that a matrix A in so(4) is (anti)self-dual if its entries are related in the following

way:

A12 = ±A34 A13 = ∓A24 A14 = ±A23

where the top signs are for the self-dual case and the bottom signs for the antiselfdual case.
Conclude that explicit bases for the (anti)self-dual matrices are given by:

e+1 = iσ2 ⊗ 1 =

(
0 1

−1 0

)
e−1 = 1⊗ iσ2 =

(
iσ2 0
0 iσ2

)
e+2 = σ3 ⊗ iσ2 =

(
iσ2 0
0 −iσ2

)
e−2 = iσ2 ⊗ σ3 =

(
0 σ3
−σ3 0

)
e+3 = σ1 ⊗ iσ2 =

(
0 iσ2
iσ2 0

)
e−3 = iσ2 ⊗ σ1 =

(
0 σ1
−σ1 0

)
where the

{
e+I
}
are self-dual and the

{
e−I
}
are antiselfdual. Prove that αI = e±I and βJ = e∓J

is a valid realisation.

183



8.4.2 2.4.2 Reduction to d = 4 : N = 4 supersymmetric YangMills

Exercise

2.34 (The fundamental representation of su(4))
Either abstractly or using the above explicit realisation, prove that the fifteen (4 × 4)-

matrices:

AIJ = ϵIJKαK BIJ = ϵIJKβK CIJ = i
{
αI , βJ

}
(2.33)

are antihermitian and generate the su(4) Lie algebra. This is the fundamental representation
of su(4).

The result of the above exercise and the above decomposition of the ten-dimensional Γ-
matrices mean that we have broken up a ten-dimensional spinor index (running from 1 to 32)
into three indices: a four-dimensional spinor index (running from 1 to 4), an internal su(4)
index in the fundamental representation (i.e., also running from 1 to 4), and an internal su(2)
index also in the fundamental representation. We have chosen the above decomposition of the
Γ-matrices because it possesses two immediate advantages:

Because of the form of Γ11, a Weyl spinor in ten-dimensions gives rise to a unconstrained
Dirac spinor in four-dimensions with values in the fundamental representation of su(4). In
other words, the chirality condition only affects the internal su(2) space and does not constrain
the other degrees of freedom; and

Because of the form of the charge conjugation matrix, the Majorana condition in ten di-
mensions becomes the Majorana condition in four dimensions.

Thus we see immediately that a Majorana-Weyl spinor in ten-dimensions yields a quartet
of Majorana spinors in four-dimensions, or equivalently a Majorana spinor in four-dimensions
with values in the fundamental representation of su(4).

This su(4) is a "flavour" index of the four-dimensional theory; that is, su(4) is a global
symmetry of N = 4 supersymmetric Yang-Mills theory, not a gauge symmetry. Of course,
this flavour symmetry is nothing but the residual Lorentz symmetry in ten-dimensions which
upon dimensional reduction to four-dimensions breaks down to SO(1, 3) × SO(6). The Lie
algebras of SO(6) and SU(4) are isomorphic. In fact, SU(4) ∼= Spin(6), the universal covering
group of SO(6); and the four dimensional representations of SU(4) are precisely the spinorial
representations of Spin(6) under which the supersymmetric charges transform.

We now want to write down the four-dimensional action obtained by the above dimensional
reduction. We define the scalar fields SI = W3+I and pseudoscalar fields PJ = W6+J . Together
with the four-dimensional gauge fields Wµ they comprise the bosonic field content of the four-
dimensional theory. As mentioned above, the chirality condition on a ten-dimensional spinor
can be easily imposed. Let us write

Ψ = ψ ⊗ 1√
2

(
1

i

)
where ψ is a quartet of unconstrained Dirac spinors in four dimensions. From the form of

Γ11 it is easy so see that Γ11Ψ = −ψ⊗ 1√
2
σ2
(
1
i

)
= −Ψ. The Majorana condition says that ψ is

Majorana in four dimensions. Naturally, all fields are in the adjoint representation of the gauge
group SO(3).

In order to write down the action we need to dimensionally reduce the Dirac operator
and the gauge field-strength. We find that GAB breaks up as Gµν ,Gµ,3+I = DµSI ,Gµ,6+I =
DµPJ ,G3+I,3+J = −e SI × SJ ,G3+I,6+J = −e SI ×PJ , and G6+I,6+J = −ePI ×PJ . This allows
us to write the bosonic part of the lagrangian density immediately:
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Lb = −1

4
Gµν ·Gµν +

1

2
DµSI ·DµSI +

1

2
DµPJ ·DµPJ

− 1

4
e2 ∥ SI × SJ∥2 −

1

4
e2 ∥PI × PJ∥2 −

1

2
e2 ∥ SI × PJ∥2 (2.34)

The fermionic part of the action requires a bit more work, but it is nevertheless straightfor-
ward, and is left as an exercise.

Exercise

2.35 (The fermionic terms in the lagrangian)
Using the explicit form of the Γ-matrices, prove that the term i

2
Ψ · ΓADAΨ in equation

(2.25), becomes

Lf =
i

2
ψ · γµDµψ +

e

2
ψ ·
((
αI SI + βJPJγ5

)
×ψ

)
(2.35)

from where we see that indeed we were justified in calling SI scalars and PJ pseudoscalars.
We now write down the supersymmetry transformations. In ten dimensions, the parame-

ter of the supersymmetry transformation is a MajoranaWeyl spinor. As we have seen, upon
dimensional reduction, such a spinor yields a quartet of Majorana spinors in four-dimensions.
Therefore the fourdimensional theory will have N = 4 supersymmetry. Indeed the lagrangian
density Lb + Lf , understood in four dimensions, defines N = 4 supersymmetric Yang-Mills
theory.

Since the supersymmetry parameter α is a Majorana-Weyl spinor obeying Γ11α = −α, we
can write it as α = ϵ⊗ 1√

2

(
1
i

)
, where ϵ is a quartet of four-dimensional anticommuting Majorana

spinors.

Exercise 2.36 (N = 4 supersymmetry transformations)

Expand equation (2.26) in this reparametrisation to obtain the following supersymmetry trans-
formations for the four-dimensional fields:

δWµ =iϵγµψ

δSI =ϵα
Iψ

δPJ =ϵγ5β
Jψ

δψ =
1

2
Gµνγµνϵ+ iDµSIγ

µαIϵ+ iDµPJγ
µγ5β

Jϵ

− e ( SI × PJ) γ5α
IβJϵ+

1

2
eϵIJK ( SI × SJ)α

Kϵ+
1

2
eϵIJK (PI × PJ) β

Kϵ

Finally we have the su(4) invariance of the action.

Exercise 2.37 (su(4) invariance)

Prove that, for every choice of constant parameters (aIJ , bIJ , cIJ) where aIJ = −aJI and bIJ =
−bJI , the following transformations are a symmetry of N = 4 supersymmetric Yang-Mills
theory:
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δWµ = 0

δSI = 2aIJ SJ + 2cIJPJ

δPI = 2bIJPJ − 2cJI SJ

δψ = −1

2
aIJA

IJψ − 1

2
bIJB

IJψ +
i

2
cIJC

IJγ5ψ

where AIJ , BIJ and CIJ are the su(4) generators in the fundamental representation given
by equation (2.33).

(Hint: You may save some time by first showing that these transformations are induced
from Lorentz transformations in ten dimensions, and then using the Lorentz invariance of the
ten-dimensional action.)

8.4.3 2.4.3 Monopoles and gauge bosons in N = 4 supersymmetric Yang-Mills

In section 2.3.4, we saw how any BPS-monopole could be thought of as a solution to the
equations of motion of N = 2 supersymmetric Yang-Mills by setting the fermions to zero and
aligning the scalar fields properly. Moreover we saw that such solutions break one half of the
supersymmetry, so that these N = 2 BPS-monopoles naturally belong to a short multiplet.
In fact, they belong to the short multiplet with spin s = 0. On the other hand, we had seen
in section 2.3.3 that after higgsing, the perturbative spectrum of the theory arranged itself in
a massless vector multiplet corresponding to the unbroken U(1) and massive short multiplets
with spin s = 1

2
containing the massive vector bosons. It therefore seemed unlikely that N = 2

super YangMills would be self-dual, since the perturbative spectrum of the dual theory (i.e.,
the monopoles) now live in a different supersymmetry multiplet. And in fact, we now know
from the results of Seiberg and Witten, that this theory is not self-dual. In this section we will
see that this obstacle is overcome in N = 4 supersymmetric Yang-Mills theory. The discussion
is very similar to that of sections 2.3.3 and 2.3.4, with the important distinction that the short
multiplet containing the BPS-monopole and the one containing the massive vector boson are
now isomorphic, being the one with spin s = 0. This section and the next are based on the
work of Osborn Osb79.

The bosonic part of the hamiltonian density corresponding to the N = 4 supersymmetric
Yang-Mills theory defined by (2.34) and (2.35) is given by:

Hb = 1
2
∥Ei∥2 + 1

2
∥D0 SI∥2 + 1

2
∥D0PJ∥2 + 1

2
∥ Bi∥2 + 1

2
∥Di SI∥2 + 1

2
∥DiPJ∥2

+1
2
e2 ∥ SI × PJ∥2 + 1

4
e2 ∥ SI × SJ∥2 + 1

4
e2 ∥PI × PJ∥2

Demanding that the energy of a given field configuration be finite doesn’t necessarily imply
that all the scalars PI and SJ acquire non-zero vacuum expectation values at spatial infinity.
Indeed, looking at the potential terms it is sufficient (for so(3)) that they be parallel. This
defines the supersymmetric Prasad-Sommerfield limit as in N = 2. In more detail, we add a
potential term λ

(
∥SI∥2 + ∥PJ∥2 − a2

)2
to the lagrangian (2.34) to force SI and PJ to acquire

a nonzero vacuum expectation value, but since such a term would break
supersymmetry, we take the limit λ ↓ 0 while keeping the nonzero vacuum expectation values
of SI and PJ . This restores the supersymmetry provided that ⟨SI⟩ and ⟨PJ⟩ are parallel. We
could choose SI = aIϕ and PJ = bJϕ where

∑
I (a

2
I + b2I) = 1, and where ⟨ϕ⟩ has length a at

infinity. Since the potential depends only on the SO(6) invariant combination ∥SI∥2 + ∥PJ∥2,
we could use this symmetry to choose, say, bJ = a2 = a3 = 0, a1 = 1 and ⟨ϕ⟩ = a, where a is a
fixed vector with ∥a∥2 = a2.
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Exercise 2.38 (The perturbative spectrum after higgsing)

We can analyse the spectrum of the model around such a vacuum in exactly the same way as
we did in Exercise 1.4. Choosing for example the unitary gauge a = ae3, show that there is
now a massless gauge multiplet with helicity λ = −1, corresponding to the unbroken U(1) :(
W 3
µ ,ψ

3, S3
I , P

3
J

)
; and two massive multiplets

(
ψ±,W±

µ , P
±
I , S

±
1,2 ) of mass MW = aeћ. Conclude

that these massive multiplets are actually short multiplets of spin s = 0.
Now let’s see to what kind of multiplets the N = 4 BPS-monopoles belong. Let (Wi,ϕ) be

a BPS-monopole and let us set W0 = ψ = 0, SI = aIϕ, and PJ = bJϕ, where aI and bJ are
real numbers satisfying

∑
I (a

2
I + b2I) = 1. Because the fermions are zero, only the bosonic part

of the lagrangian is nonzero. Plugging in these field configurations into (2.34), we find

L = −1

4
GijGij −

1

2
∥Diϕ∥2

after using that the fields are static and that SI and PJ are all collinear. But this is precisely
the action for static solutions to the bosonic Yang-MillsHiggs theory, hence it is minimised by
BPS-monopoles. Therefore the above field configurations minimise the equations of motion of
N = 4 supersymmetric Yang-Mills. In other words, we have shown that any BPS-monopole
can be embedded as a solution of the N = 4 supersymmetric Yang-Mills theory. (Compare
with Exercise 2.17.)

Now we will prove that such a solution breaks one half of the supersymmetry and hence it
lives in a short multiplet. Because the fermions are put to zero, the supersymmetry transfor-
mation of the bosonic fields is automatically zero. From the results of Exercise 2.36 we can read
off the expression for the supersymmetry transformation of the spinors in this background:

δψ =

(
1

2
Gijγij − iDiϕγi

(
aIα

I + bJβ
Jγ5
))
ϵ

If we now use equation (2.19), and the Bogomol’nyi equation in the form Gij = ϵijkDkϕ, δψ
takes the form:

δψ = γkDkϕ
(
γ5γ0 − i

(
aIα

I + bJβ
Jγ5
))
ϵ

= γ5γ̄kDkϕ (1− γ̄5) ϵ

where γ̄i ≡ γ0γi, γ̄4 ≡ −iγ0
(
aIα

I + bJβ
Jγ5
)
, and γ̄5 ≡ γ̄1γ̄2γ̄3γ̄4. As expected, the γ̄i

generate a euclidean Clifford algebra, and it follows that 1
2
(1− γ̄5) projects out one half of the

states: those which have positive chirality with respect to γ̄5. Hence we conclude that N = 4
BPS-monopoles break one half of the supersymmetry.

From the analysis of N = 4 multiplets in section 2.2.3 and, in particular, from Exercise
2.6, we see that a multiplet where states break one half of the supersymmetries are short; and
looking at the spectrum, we see that it is the short multiplet with spin s = 0, which is the only
short multiplet with spins not exceeding 1. Therefore the BPS-monopole and the massive vector
boson belong to isomorphic multiplets. This solves the second problem with the Montonen-
Olive duality conjecture alluded to in section 1.4.1-for, certainly, if N = 4 supersymmetric
Yang-Mills is to be self-dual, the BPS-monopole and the massive vector boson should belong
to isomorphic multiplets.

Finally, we come to a minor point. The supersymmetry parameter ϵ, just like the fermion
ψ, is a quartet of Majorana spinors. The additional condition for the parameter to preserve
the supersymmetry is that it be chiral with respect to γ̄5. One might be tempted to think that
there is a problem since in four-dimensions (either with euclidean or lorentzian signature) there
are no Majorana-Weyl spinors. However the Majorana condition is a condition in Minkowski
spacetime, whereas the chirality condition is a condition relative to the euclidean γ̄5. We
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will see this more explicitly later on when we consider the effective action for the collective
coordinates, but for now let us simply state without proof that these two conditions are indeed
simultaneously realisable.

8.4.4 2.4.4 The mass bound for N = 4 super Yang-Mills

We end this chapter with a derivation of the mass bound for N = 4 super Yang-Mills. Keeping
in mind the similar calculation for N = 2 super YangMills, it should come as no surprise that
the mass bound coincides once again with the Bogomol’nyi bound. In order to derive the mass
bound, we will first write down the algebra obeyed by the supersymmetry charges in d = 10
N = 1 super Yang-Mills. After dimensional reduction this will give us an explicit expression for
the central charges appearing in the four-dimensional supersymmetry algebra. Naturally one
could compute the supersymmetry algebra directly in four dimensions, but we find it simple to
dimensionally reduce the algebra in ten dimensions.

The supersymmetry algebra in ten dimensions

The supersymmetry algebra can be derived by varying the supersymmetry current (2.29). In-
deed, the supersymmetry algebra will be read off from the space integral of the supersymmetry
variation of the timelike (zeroth) component of the supersymmetry current. Explicitly, if ϵ is
a MajoranaWeyl spinor just like Ψ, then

α{Q, Q̄}ϵ = −i
∫

space
δJ̄0ϵ

where the integral is over a spacelike hypersurface. We can get an idea of what to expect
in the right-hand side of the supersymmetry algebra purely from the fact that Q is an anti-
commuting Majorana-Weyl spinor. From Exercise 2.28 we see that in the right-hand side of
the supersymmetry algebra, we expect only terms consisting of an odd number of Γ matrices
and moreover only those bispinors Γ for which CΓ is symmetric, since so is the left-hand side
of the supersymmetry algebra. Using equation (2.28), we see that only those terms with 1 and
5Γ matrices survive. We now turn to the computation, which is left as an exercise. We will
only be interested in terms which survive in a BPS-monopole monopole background in which
the fermions have been put to zero.

Exercise 2.39 (The supersymmetry algebra in ten dimensions)

Prove that up to terms involving the fermions, the variation of the supersymmetry current is
given by

−iδJ̄Eϵ = −1

4
αΓABΓEΓCDϵGAB ·GCD

Perform the Γ matrix algebra and, taking into account that α and ϵ are MajoranaWeyl,
show that

−iδJ̄Eϵ = α
(
−1

4
ΓABCDEGAB ·GCD + 2GEA ·GABΓ

B +
1

2
GAB ·GABΓ

E

)
ϵ

Prove the identity

ΓABCDE = − 1

5!
ϵABCDEFGHIJΓFGHIJΓ11

and using the fact that Γ11ϵ = −ϵ, conclude that
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−iδJ̄Eϵ = 2α

(
1

8 · 5!
ϵABCDEFGHIJGAB ·GCDΓFGHIJ

+

(
GEA ·GAB +

1

4
GCD ·GCDδ

E
B

)
ΓB
)
ϵ

We now define the following tensors

TAB = GAC ·GC
B +

1

4
ηABGCD ·GCD

ΘABCDEF =
1

8
ϵABCDEFGHIJGGH ·GIJ

We recognise T as the bosonic part of the (improved) energy-momentum tensor of the super
Yang-Mills theory. The momentum is then given by the space integral of T 0A:

PA =

∫
space

T 0A

How about Θ? Just as in the case of N = 2, it is a topological current.

Exercise 2.40 (Another topological current)

Prove that ΘABCDEF is gauge invariant and that it is conserved without imposing the equations
of motion.

(Hint: Compare with Exercise 2.23.)
We define the topological charge associated to Θ as the space integral of Θ0ABCDE:

ZABCDE =

∫
space

Θ0ABCDE

In summary, the supersymmetry algebra remains as follows:

{Q, Q̄} = 2PAΓA +
2

5!
ZABCDEΓABCDE (2.36)

In 10 dimensions, the 5 -form ZABCDE can be decomposed into a self-dual and an antiself-
dual part. The next exercise asks you to show that only the self-dual part contributes to the
algebra.

Exercise 2.41 (A self-dual 5-form)

Using the fact that the supersymmetry charge has negative chirality, show that we can for free
project onto the self-dual part of ZABCDE in the left-hand side of the supersymmetry algebra.

This 5 -form belies the existence of a 5-brane solution of ten dimensional supersymmetric
Yang-Mills. Under double dimensional reduction, it gives rise to the string-like solution of
six-dimensional supersymmetric Yang-Mills briefly alluded to in section 2.3.4

The supersymmetry algebra in four dimensions

In order to write down the supersymmetry algebra in four dimensions, we need to dimensionally
reduce both the momenta and the topological charge appearing in the ten-dimensional algebra
(2.36). We will assume from the
start a BPS-monopole background where the fermions are put to zero. We will not demand
that the solutions be static, since that is the only way we can generate electric charge. Moreover
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we will exploit the internal SO(6) symmetry to choose PJ = S2,3 = 0 and S1 = ϕ. In such a
background, the only nonzero components of the field strength GAB are Gµν ,Gµ4. This limits
considerably the nonzero terms of the momentum PA and the topological charge ZABCDE, as
the next exercise shows.

Exercise 2.42 (Momentum and topological charge in this background)

Prove that in the background chosen above, the only nonzero components of the momentum
and topological charge densities are the following: T 0µ, T 04,Θ056789. The first term is of course
simply the four-momentum density, whereas the other two terms are given by:

T 04 = −G0i ·Diϕ = −∂i (G0i · ϕ)

Θ056789 = −1

2
ϵijkGij ·Dkϕ = −1

2
∂k (ϵijkGij · ϕ)

(Hint: In order to rewrite the right-hand sides of the equations, use the equations of motion
in this background, and the Bianchi identity. (Compare with the discussion following Exercise
(2.24))

Taking into account the results of the previous exercise we can rewrite the supersymmetry
algebra in four dimensions as follows:

{Q, Q̄} = 2ΓµP
µ − 2Γ4

∫
Σ∞

G0i · ϕdΣi − Γ56789ϵijk

∫
Σ∞

Gij · ϕdΣk (2.37)

But now notice that Γµ,Γ4 and Γ56789 = Γ5Γ6Γ7Γ8Γ9 generate a lorentzian Clifford algebra
of signature (1,5), hence the supersymmetry algebra (2.37) is formally identical to one in six-
dimensional Minkowski spacetime where the momenta in the extra two dimensions are given
by:

P ′
5 =

∫
Σ∞

G0i · ϕdΣi = −aq

P ′
6 =

1

2
ϵijk

∫
Σ∞

Gij · ϕdΣk = ag

and where we have used equations (1.24) and (1.25) to rewrite the extra momenta in terms
of the electric and magnetic charges. Finally, as in the N = 2 case, the mass bound is simply the
positivity of the six-dimensional "mass" given by equation (2.20). Plugging in the expression
for the extra momenta, we once again recover the Bogomol’nyi bound (1.27).

9 Collective Coordinates for Children by JM
Figueroa-O’Farrill

BPS-monopoles are static: any motion, however small, increases their kinetic energy and makes
their total energy strictly greater than the Bogomol’nyi bound. Nevertheless, if we keep the
velocity small and if the motion starts off tangent to the space of static BPS-monopoles, energy
conservation will prevent the motion from taking the monopoles very far away from this space.
Much like a point-particle moving slowly near the bottom of a potential well, the motion of slow
BPS-monopoles may be approximated by motion on the space of static BPS-monopoles (i.e.,
along the flat directions of the potential) and small oscillations in the transverse directions. We
can trade the limit of velocities going to zero, for a limit in which the potential well becomes
infinitely steep. This suppresses the oscillations in the transverse directions (which become
increasingly expensive energetically) and motion is effectively constrained to take place along
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the flat directions, since this motion costs very little energy. Manton [Man82] showed that the
motion along the flat directions is geodesic relative to a metric on the moduli space of BPS-
monopoles, which is induced naturally from the Yang-Mills-Higgs action functional. Expanding
the action functional around a BPS-monopole gives rise to an effective theory in terms of
collective coordinates. These are the coordinates on the moduli space of BPS-monopoles and
the effective action is nothing but a (1 + 0)-dimensional σ-model with target space the moduli
space.

In this chapter we will study the moduli space M of BPS-monopoles. Our aim is to prove
that it is a hyperkähler manifold which, for a given magnetic charge, is finite-dimensional, and
to compute its (formal) dimension. For the simplest case of magnetic charge k = 1, we will also
work out the metric explicitly from the field theory and hence the effective action. We quantise
the effective action following the review in the introduction of GM86]. This is as much as can
be done directly with field-theoretical methods. The only
other case in which the metric on moduli space is known exactly is the k = 2 monopole
sector. This metric was constructed by Atiyah and Hitchin AH85 by indirect methods. We will
eventually review their construction as well.

9.1 3.1 The metric on the moduli space

We start by constructing the metric on the true physical configuration space of the Yang-Mills-
Higgs theory. This will induce a metric on the moduli space of BPS-monopoles, which is a
submanifold.

9.1.1 3.1.1 The physical configuration space

Let A′ denote the space of configurations (Wµ,ϕ) of Yang-Mills-Higgs fields of finite energy in
the Prasad-Sommerfield limit. Recall that in this limit, the energy density is given by (1.13)
setting V (ϕ) = 0. Configurations which are related by a short-range gauge transformation-that
is, gauge transformations which tend to the identity at infinity-are to be thought of as physically
indistinguishable. Hence if we let G′ denote the group of shortrange gauge transformations, the
true configuration space of the Yang-MillsHiggs system is the quotient

C ∼= A′/G′

It is convenient to fix the gauge partially by setting W0 = 0, that is by going to the temporal
gauge. This still leaves the freedom of performing time-independent gauge transformations,
since these are the gauge transformations which preserve the temporal gauge:

eδϵW0 = D0ϵ = ϵ̇ = 0

We will therefore let G ⊂ G′ denote the group of time-independent short-range gauge
transformations.

The temporal gauge W0 = 0 is preserved by the dynamics provided we impose its equation
of motion, that is, Gauss’s law:

DiẆi − eϕ× ϕ̇ = 0 (3.1)

Therefore if we let A denote the space of finite-energy configurations (Wi,ϕ) subject to
Gauss’s law, then the configuration space C also admits the description

C ∼= A/G

191



9.1.2 3.1.2 The metric on the physical configuration space

We can simplify many of the calculations by describing the space A in a different way. We
introduce a fourth spatial coordinate x4 and interpret the Higgs field ϕ as the fourth-component
W4 of the gauge field. Notice however that we must impose that nothing depends on the new
coordinate: ∂4 ≡ 0. We will write Wi = (Wi, W4 = ϕ), where the underlined indices run from
1 to 4. Notice that the field-strength has components Gij = (Gij,Gi4 = Diϕ). In this new
notation, gauge transformations, Gauss’s law and the Bogomol’nyi equation all have natural
and simple descriptions.

Exercise 3.1 (The BPS-monopole as an instanton)

Prove that infinitesimal gauge transformations on the Yang-Mills-Higgs system now take the
form

δϵWi =
1

e
Diϵ

that Gauss’s law (3.1) becomes simply

DiẆi = 0 (3.2)

and that the Bogomol’nyi equation (1.28) is nothing but the (anti)self-duality equation

Gij = ±
1

2
ϵijkℓGkℓ (3.3)

In summary, this proves that BPS-monopoles in 3 + 1 dimensions are in one-to-one corre-
spondence with static instantons in 4 + 1 dimensions which are translationally invariant in the
fourth spatial direction.

Therefore in this description, the space A is given as those gauge fields Wi in 4 + 1 di-
mensions, independent of x4, of finite energy per unit length in the x4-direction, and whose
time-dependence is subject to (3.2).

9.1.2 3.1.2 The metric on the physical configuration space

In the temporal gauge, the Yang-Mills-Higgs lagrangian in the PrasadSommerfield limit is given
as a difference of two terms: L = T − V , where the kinetic term T is the 3 -space integral of

1

2

∥∥∥Ẇi

∥∥∥2 = 1

2

∥∥∥Ẇi

∥∥∥2 + 1

2
∥ϕ̇∥2 (3.4)

and the potential term V is the 3 -space integral of

1

2
∥ Bi∥2 +

1

2
∥Diϕ∥2 =

1

2
∥ Bi ∓Diϕ∥2 ± ∂i (ϕ · Bi) (3.5)

We will now show that the lagrangian is well-defined in the true configuration space C. The
kinetic term will induce a metric.

Suppose we would like to compute the value of the potential on some point in C. Points in C
are equivalence classes [Wi] of points Wi in A: two points in A belong to the same equivalence
class if and only if they are related by a gauge transformation in G; that is, if they lie on the
same G-orbit. To define a potential on C we can simply use the potential term (3.5) on A as
follows: to find out the value of the potential on a point [Wi] in C, we choose some point Wi

in the same equivalence class, and we evaluate the potential (3.5) on it. This will only make
sense if the value of the potential doesn’t depend on which element in the equivalence class
we have chosen; that is, if the potential is gauge-invariant. More formally, a function on A
will induce a function on C = A/G if and only if it is G-invariant. Luckily this is the case,
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9.1.3 3.1.3 The metric on the moduli space

since in the temporal gauge, the potential and kinetic terms are separately invariant under
time-independent gauge-transformations.

The kinetic term is trickier since it is not strictly speaking a function on A: it requires not
just knowledge of Wi but also of its time-derivative Ẇi. In other words, it is a function on
the tangent bundle TA. The typical fibre at a point [Wi] of the tangent bundle is spanned
by the velocities of all smooth curves passing through that point. We may lift such curves to
curves in A, but this procedure is not unique. First we have to choose a point Wi in A in
the equivalence class [Wi]. Just as before, this ambiguity is immaterial since the kinetic term
is invariant under time-independent gauge transformations. But now we also have to choose
a tangent vector Ẇi̇. Clearly adding to a tangent vector a vector tangent to the orbits of G
does not change the curve in C since every G-orbit in A is identified with a single point in
C. Hence the kinetic term should be impervious to such a change. Tangent vectors to G are
infinitesimal gauge-transformations whose parameters go to zero at spatial infinity, therefore
the kinetic term (3.4) defines a kinetic energy on C provided that Ẇi and Ẇi +Diϵ have the
same kinetic energy. Integrating by parts we see that this is a consequence of Gauss’s law (3.2).

In summary, the Yang-Mills-Higgs lagrangian induces a lagrangian in the true configuration
space C, whose energy is of course given by E = T + V . The kinetic energy term T defines
a metric on C. Motion on C is not "free" of course, since there is also a potential term, but
for motion along the flat directions at the bottom of the potential well, this will be a good
approximation. We turn to this now.

9.1.3 3.1.3 The metric on the moduli space

Let M denote the subspace of C where the energy E attains its minimum. From the explicit
expression for T and V given in (3.4) and (3.5), we see that the minimum of the energy is given
by ∣∣∣∣∫

R3

d3x∂i (ϕ · Bi)
∣∣∣∣ = a|g| = 4πa

e
|k| (3.6)

where g is the magnetic charge, and the integer k is the topological or monopole number.
Clearly the minimum is attained by those configurations corresponding to static solutions on
the Bogomol’nyi equation: BPSmonopoles, and where any two such solutions which are gauge-
related are identified. In other words, M is the moduli space of static BPS-monopoles.

The monopole number labels different connected components of the space A, so that

A =
⋃
k

Ak

but the gauge group G preserves each component. Therefore we can also decompose the
true configuration space C as

C =
⋃
k

Ck where Ck = Ak/G

Finally, let Mk = M ∩ Ck. This is then the moduli space of static BPSmonopoles of
monopole number k, or BPS- k-monopoles, for short.

By definition, the potential is constant on Mk, so that the Yang-MillsHiggs lagrangian is
given by

L = T − 4πa

e
|k| (3.7)

Therefore Mk corresponds to the manifold of flat directions of the potential. Manton’s
argument given at the beginning of this chapter, can now be proven. The motion of slow
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monopoles which start off tangent to Nk will consists of the superposition of two kinds of
motions: motions along the flat directions Mk and small oscillations in the directions normal
to Mk. In the limit of zero velocity, the oscillatory motion is suppressed and we are left with
motion on Mk. But this motion is governed by the lagrangian (3.7) which only has a kinetic
term - whence the motion is free, or in other words geodesic relative to the metric on Mk

defined by T .

9.1.4 3.1.4 The 1-monopole moduli space

Let us study the moduli space M1 in the 1-monopole sector. The coordinates for M1 can
be understood as parameters on which the BPS-monopole solution depends. In the ’t Hooft-
Polyakov Ansatz (1.15), the monopole is centred at the origin in R3, but the invariance under
translations of the Yang-MillsHiggs lagrangian (1.8) means that we can put the centre of the
monopole where we please. This introduces three moduli parameters: X. The time evolution
of these parameters corresponds to the BPS-monopole moving as if it were a particle with mass
4πa/e. The effective lagrangian for these collective coordinates is then

Leff =
2πa

e
Ẋ

2

There is a fourth, more subtle, collective coordinate. Consider a oneparameter family Wi(t)
of gauge fields, but where the t-dependence is pure gauge:

Ẇi =
1

e
Diϵ(t). (3.8)

Since the potential is gauge invariant, this corresponds to a flat direction. But one might
think that it is not a physical flat direction since it is tangent to the G-orbits - it is an in-
finitesimal gauge transformation, after all. But recall that G is the group of short-range gauge
transformations, whence for Diϵ to be tangent to the orbits, ϵ has to tend to 0 as we approach
infinity. Indeed, Diϵ would represent a physical deformation of the BPS-monopole if it would
obey Gauss’s law (3.2), which implies

D2ϵ = 0 (3.9)

Exercise 3.2 (D2 has no normalisable zero modes)

Prove that acting on square-integrable functions D2 = −D†
iDi is a negative-definite operator.

Deduce from this that any normalisable zero mode must be a zero mode of Di for each i, and
deduce from this that the only square-integrable solution to (3.9) is the trivial solution ϵ = 0.
In other words, there exist no normalisable solutions.

(Hint: If Diϵ = 0, then ∥ϵ∥2 is constant.)
This discussion suggests that we look for a gauge parameter ϵ which does not tend to zero

asymptotically. For example, let ϵ(t) = f(t)ϕ, where f(t) is an arbitrary function. In the 1-
monopole sector, ϕ defines a map of degree 1 at infinity, hence it certainly does not go to zero.
Moreover, using the Bogomol’nyi equation, it follows at once that f(t)ϕ is a (un-normalisable)
zero mode of D2. It is clearly a true moduli parameter because it costs energy to excite it:

T =
1

2e2
f 2

∫
R3

∥Diϕ∥2 > 0 (3.10)

We can understand this as follows. Let g = exp(χϕ/a) be a timedependent gauge transfor-
mation, where all the time-dependence resides in χ. Such a gauge transformation will move us
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9.1.4 3.1.4 The 1-monopole moduli space

away from the temporal gauge, but assume that at time t = 0, say, we start from a configuration
Wi in the temporal gauge, and suppose that g(t = 0) = 1. Then from (1.9),

Wi(t) = gWig
−1 +

1

e
∂igg

−1

whence

Ẇi(t) =
1

ae
χ̇Dxϕ

Comparing with (3.8), we see that f = χ̇/a. Using (3.10), the kinetic energy of such a
configuration is given by

T =
1

2a2e2
χ̇2

∫
R3

∥Diϕ∥2

But notice that since Diϕ = Bi,

T =
1

2a2e2
χ̇2

∫
R3

(
1

2
∥Diϕ∥2 +

1

2
∥ Bi∥2

)
=

1

2a2e2
χ̇2

(
4πa

e

)
=

2π

ae3
χ̇2

Notice that χ is an angular variable. To see this, let us define g(χ) = exp(χϕ/a). Then it
is easy to see that g(χ) and g(χ + 2π) are gauge-related in G, that is, via short-range gauge
transformations. Indeed, recall that ∥ϕ∥ → a at infinity in the Prasad-Sommerfield limit,
whence g(2π) = exp(2πϕ/a) tends to 1 at infinity. Since g(χ+ 2π) = g(χ)g(2π), we are done.

Assuming for the moment (we will prove this later) that there are no other collective coor-
dinates in the 1-monopole sector, we have proven that the moduli space of BPS-1-monopoles
is given by

M1
∼= R3 × S1

and the metric can be read off from the expression for the effective action

Leff =
1

2
gabẊ

aẊb − 4πa

e
(3.11)

=
2πa

e
Ẋ

2
+

2π

ae3
χ̇2 − 4πa

e
(3.12)

that is

gab =
4πa

e

(
13 0
0 e−2

)
from where we can see that the radius of the circle is inversely proportional to the electric

charge.
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9.1.5 3.1.5 The quantisation of the effective action

The effective action (3.12) corresponds to a particle moving freely in R3 × S1 with the flat
metric. The quantisation of this effective action is straightforward. The canonical momenta
(P , Q) given by

P =
4πa

e
Ẋ and Q =

4π

ae3
χ̇

are conserved, and the hamiltonian is given by

H =
e

8πa
P 2 +

ae3

8π
Q2 +

4πa

e
(3.13)

Bound states of minimum energy are given by those eigenstates of the hamiltonian for which
P = 0. Since χ is angular with period 2π, the eigenvalues of Q are quantised in units of λ,
whence the spectrum looks like

En =
4πa

e
+
ae3

8π
(nλ)2 (3.14)

Notice that this energy spectrum has the standard form which corresponds to perturbative
states around a nonperturbative vacuum. If we think of e as the coupling constant, then
the zero-point energy is not analytic in e, hence it corresponds to a non-perturbative state in
the theory: the BPS-monopole in this case. The second term in the energy corresponds to
excitations around the monopole, which are clearly perturbative since their energy goes to zero
as we let the coupling tend to zero.

Exercise 3.3 (The electric charge)

Prove that the electric field for classical configurations in which P = 0 is given by

Ei = −G0i = −Ẇi = −e2Q Bi/4π

Conclude that e Q can be interpreted as the electric charge.
Taking the above exercise into consideration, we see that the spectrum of the quantum

effective theory corresponds to dyons of magnetic charge −4π/e and electric charge neλ, for
n ∈ Z. According to the classical BPS formula (1.27), the rest mass of such a dyon would be
equal to

Mn = a

√(
4π

e

)2

+ (neλ)2 =
4πa

e

√
1 +

(
ne2λ

4π

)2

which, if we expand the square root assuming that e is small, becomes

= En +O
(
e5
)

where we’ve used (3.14).
In summary, the energy spectrum obtained from quantising the effective action of the col-

lective coordinates is a small-coupling approximation to the expected BPS energy spectrum.
However, even if their energy is only approximately correct, the multiplicity of bound states
can be read accurately from the effective action. This is one of the important lessons to be
drawn from the collective coordinate expansion.

In principle one can repeat this analysis in the k-monopole sector provided that one knows
the form of the metric. But at the present moment this is only the case for k = 1 and k = 2.
We will discuss the effective theory for k = 2 later on in the lectures in the context of N = 4
supersymmetric Yang-Mills.
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9.1.6 3.1.6 Some general properties of the monopole moduli space

Quite a lot is known about the properties of the k-monopole 1 moduli space Nk, even though
its metric (and hence the effective action) is known explicitly only for k = 1, 2. As we saw in
the previous section, the metric onM1 can be computed directly from the field theory. On the
other hand, the metric on N2 can only be determined via indirect means. This result as well
as much else of what is known about Mk is to be found either explicitly or referenced in the
book AH88] by Atiyah and Hitchin (see also [AH85]) to where we refer the reader for details.

We will now state some facts about Nk. Some of them we will be able to prove later with
field-theoretical means, but proving some others would take us too far afield. The following
properties of Mk are known AH88: 1. Mk is a 4k-dimensional (non-compact) complete
riemannian manifold;

The natural metric on Mk is hyperkähler;
Mk
∼= M̃k/Zk where M̃k

∼= (R3 × S1)× M̃0
k as hyperkähler spaces.

M̃0
k is a 4(k−1)-dimensional, irreducible, simply-connected, hyperkähler manifold admitting

an action of SO(3) by isometries which rotates the three complex structures;
Asymptotically Ñk → N1 ×M1 × · · · ×M1︸ ︷︷ ︸

k times

≡ Mk
1 , and Mk → Mk

1/Zk. Physically this

means that a configuration of well-separated BPS- k monopoles can be considered as k1-
monopole configurations. The fact that BPS-monopoles are classically indistinguishable is
responsible for the Zk-quotient.

9.2 3.2 dimMk = 4k

In this section we compute the dimension of the moduli space of static BPSmonopoles. The
strategy is typical of this kind of problems. We fix a reference BPS-monopole and ask in
how many directions can we deform the solution infinitesimally and still remain with a BPS-
monopole. Most of these directions will be unphysical: corresponding to infinitesimal gauge
transformations. Discarding them leaves us with a finite number of physical directions along
which to deform the BPS-monopole. In other words, we are computing the dimension of the
tangent space at a particular point in the moduli space. If the point is regular (and generic
points usually are) then this is the dimension of the moduli space itself. This number is in any
case called the formal dimension of the moduli space.

Since the number of all deformations and of infinitesimal gauge transformations are both
infinite, it is better to fix the gauge before counting: this eliminates the gauge-redundant
deformations and leaves us with only a finite formal dimension. With a little extra argument,
the counting can then be done via an index theorem. In the case of BPS-monopoles, the
relevant index theorem is that of Callias Cal78 (slightly modified by Weinberg [Wei79]) which
is valid for open spaces and for operators with suitable decay properties at infinity. Weinberg’s
calculation contains steps which from a strictly mathematical point of view may be deemed
unjustified. The necessary analytic details have been sorted out by Taubes [Tau83, but we will
be following Weinberg’s heuristic calculation in any case.

9.2.1 3.2.1 The dimension as an index

First let set up the problem. We want to find out in how many physically different ways can
one deform a given BPS-monopole. It will turn out that these are given by zero modes of a
differential operator. Asking for the number of zero modes will be the same as asking for the
dimension of the tangent space at a given BPS-monopole solution. Hence let t⇝ (Wi(t), ϕ(t))

∗1 We will only concern ourselves with positive k : M−k is naturally isomorphic to Mk by performing a
parity transformation on the solutions.
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be a family of static BPS-monopoles (here t is an abstract parameter which has nothing to do
with time). This means that

(
Ẇi, ϕ̇

)
≡
(
Ẇi(0), ϕ̇(0)

)
is a tangent vector to the moduli space

at the point (Wi,ϕ) ≡ (Wi(0), ϕ(0)). Taking the t-derivative of the Bogomol’nyi equation
(1.28), we find that

(
Ẇi, ϕ̇

)
satisfies the linearised Bogomol’nyi equation:

Diϕ̇+ eϕ× Ẇi = ϵijkDjẆk (3.15)

However, not every solution of the linearised Bogomol’nyi equation need be a physical
deformation: it could be an infinitesimal gauge transformation. To make sure that it isn’t,
it is necessary to impose in addition Gauss’s law (3.1). In other words, the dimension of the
tangent space of the moduli space of BPS-monopoles is given by the maximum number of
linearly independent solutions of both (3.15) and (3.1).

In order to count these solutions it will be convenient to rewrite both of these equations in
terms of a single matrix-valued equation. We will define the following 2× 2 complex matrix:

Ψ = ϕ̇1+ iẆjσj (3.16)

and the following linear operator:

D = eϕ1+ iDjσj (3.17)

where we follow the convention that all fields which appear in operators are in the adjoint
representation; that is, ϕ really stands for ad ϕ = ϕ×−, etc.

Exercise 3.4 (Two equations in one)

Prove that the linearised Bogomol’nyi equation (3.15) and Gauss’s law (3.1) together are equiv-
alent to the equation DΨ = 0.

We want to count the number of linearly independent real normalisable solutions toDΨ = 0.
It is easier to compute the index of the operator D. By definition, the index of D is difference
between the number of its normalisable zero modes and the number of normalisable zero modes
of its hermitian adjoint D† relative to the inner product:∫

d3x trΨ∗Ψ =

∫
d3x

(
ϕ̇

∗ · ϕ̇+ Ẇ∗
i · Ẇi

)
where * denotes complex conjugation of the fields and hermitian conjugation on the 2 × 2

matrices, and where tr denotes the 2× 2 matrix trace.
The expression for the index of D

ind D = dimkerD − dimkerD†

can be turned into an inequality

dimkerD ≥ ind D

which saturates precisely when D† has no normalisable zero modes. Happily this is the
case, as the next exercise asks you to show.
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Exercise 3.5 (D† has no normalisable zero modes)

Prove that DD† is a positive-definite operator, whence it has no normalisable zero modes.
Compare with Exercise 3.2. Also prove that for antimonopoles (i.e., the other sign in the
Bogomol’nyi equation, it is D†D that is the positive operator.

(Hint: Use the fact that both ϕ and Dj are antihermitian operators to prove that D† =
−eϕ1+ iσjDj, and that DD† = −e2ϕ2− (Dj)

2. Deduce that this operator is positive-definite.
Therefore the number of normalisable zero modes of D equals the index of the operator D.

In the following sections we will compute the index of D acting on two-component complex
vectors; that is, on functions R3 → C2. However the (formal) dimension of monopole moduli
space is given by the number of normalisable zero modes of D acting on matrices of the form
(3.16). To a deformation

(
ϕ̇, Ẇi

)
there corresponds a matrix

Ψ =

(
ϕ̇+ iẆ3 Ẇ2 + iẆ1

−Ẇ2 + iẆ1 ϕ̇− iẆ3

)
Clearly the first column of the above matrix Ψ determines the matrix. Moreover this first

column is a normalisable zero mode of D acting on vectors if and only if Ψ is a normalisable
zero mode of D acting on matrices. This would seems to indicate that there is a one-to-one
correspondence between the normalisable zero modes of D acting on vectors and of D acting
on matrices, but notice that D is a complex linear operator in a complex vector space, hence
the space of its normalisable zero modes is complex, of complex dimension ind D. However the
matrices Ψ and iΨ determine linearly independent tangent vectors to monopole moduli space,
hence it is its real dimension which equals the (formal) dimension of monopole moduli space
Mk. In other words,

dimMk = 2 ind D

9.2.2 3.2.2 Computing the index of D

Our purpose is then to compute ind D. To this effect consider the following expression:

I
(
M2
)
= Tr

(
M2

D†D +M2

)
− Tr

(
M2

DD† +M2

)
(3.18)

where Tr is the operatorial trace.
Exercise 3.6 (A formula for the index of D)
Prove that the index of D is given by

ind D = dimkerD†D − dimkerDD†

= lim
M2→0

I
(
M2
)

(Hint: Prove this assuming that there is a gap in the spectrum of these operators. This is
not the case, but as argued in Wei79] the conclusion is unaltered.)

In order to manipulate equation (3.18) it is again convenient to use the reformulation of
the BPS-monopole as an instanton, in terms of Wi = (Wi, ϕ), and to define the following
four-dimensional euclidean Dirac matrices:

γ̄k =

(
0 −iσk
iσk 0

)
γ̄4 =

(
0 1

1 0

)
γ̄5 = γ̄1γ̄2γ̄3γ̄4 =

(
1 0
0 −1

)
(3.19)

obeying {
γ̄i, γ̄j

}
= 2δij

199



9.2.2 3.2.2 Computing the index of D

Letting Di denote the gauge covariant derivative corresponding to W, and remembering
that ∂4 ≡ 0, we find that

γ̄ ·D ≡ γ̄iDi =

(
0 −D
D† 0

)
whence

−(γ̄ ·D)2 =

(
DD† 0
0 D†D

)
Exercise 3.7 (Another formula for I (M2))
Prove that

I
(
M2
)
= −Tr γ̄5

M2

−(γ̄ ·D)2 +M2

where Tr now also includes the spinor trace. More generally, if f is any function for which
the traces Tr f

(
D†D

)
and Tr f

(
DD†) exist, prove that

Tr γ̄5f
(
−(γ̄ ·D)2

)
= Tr f

(
DD†)− Tr f

(
D†D

)
Let K be any operator acting on square-integrable (matrix-valued) functions ψ(x).K is

defined uniquely by its kernel K(x, y):

(Kψ)(x) =

∫
d3yK(x, y)ψ(y)

If we rewrite this equation using Dirac’s "ket" notation, so that ψ(x) = ⟨x | ψ⟩, then we see
that the above equation becomes

⟨x|K|ψ⟩ =
∫
d3y⟨x|K|y⟩⟨y | ψ⟩

whence we can think of the kernel K(x, y) as ⟨x|K|y⟩. We will often use this abbreviation
for the kernel of an operator. In particular, its trace is given by

TrK =

∫
d3x tr⟨x|K|x⟩

where tr stands for the matrix trace, if any.
The rest of this section will concern the calculation of the following expression

I
(
M2
)
= −

∫
d3x tr γ̄5

〈
x

∣∣∣∣ M2

−(γ̄ ·D)2 +M2

∣∣∣∣x〉 (3.20)

where tr now stands for both the spinor and matrix traces. Let’s focus on the kernel

I(x, y) = − tr γ̄5

〈
x

∣∣∣∣ M2

−(γ̄ ·D)2 +M2

∣∣∣∣ y〉

Exercise 3.8 (Some properties of kernels)

Let A and B be operators acting on (matrix-valued) square-integrable functions. Let A be a
differential operator. Then prove the following identities:

A(x) ·B(x, y) = (AB)(x, y)

B(x, y) ·
←−
A †(y) = (BA)(x, y)
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9.2.2 3.2.2 Computing the index of D

where - means action of differential operators, the label on a differential operator denotes on
which variable it acts, and the arrow on A† in the second equation means that the derivatives
act on B.

Using the results of this exercise and the fact that the trace of an even number of γ̄-matrices
vanishes, we can rewrite I(x, y) slightly. Writing −(γ̄. D)2 +M2 = (γ̄ ·D +M)(−γ̄ ·D +M),
we have that

I(x, y) = − tr γ̄5

〈
x

∣∣∣∣ M

γ̄ ·D +M

∣∣∣∣ y〉 = −M tr γ̄5∆(x, y) (3.21)

where we have introduced the propagator

∆(x, y) =

〈
x

∣∣∣∣ 1

γ̄ ·D +M

∣∣∣∣ y〉
Using once again the results of Exercise 3.8, one immediately deduces the following identities:(

γ̄i
∂

∂xi
− eγ̄iWi(x) +M

)
∆(x, y) = δ(x− y)

∆(x, y)

(
−γ̄i
←−
∂

∂yi
− eγ̄i Wi(y) +M

)
= δ(x− y)

and from them:

I(x, y) =
1

2

(
∂

∂xi
+

∂

∂yi

)
tr γ̄5γ̄i∆(x, y)

− e

2
tr γ̄5γ̄i ( Wi(x)−Wi(y))∆(x, y) (3.22)

which can be understood as a "conservation law" for the bi-local current

Ji(x, y) ≡ tr γ̄5γ̄i∆(x, y)

In order to compute I (M2) we have to first take the limit y → x of I(x, y). From equation
(3.22) we find that

I(x, x) =
1

2

∂

∂xi
Ji(x, x)− lim

y→x

e

2
tr γ̄5γ̄i (Wi(x)−Wi(y))∆(x, y) (3.23)

Although the last term has a Wi(x) −Wi(y) which vanishes as y → x, the propagator is
singular in this limit and we have to pay careful attention to the nature of these singularities
in order to conclude that this term does not contribute. Clearly we can admit at most a
logarithmic singularity. The purpose of the following (long) exercise is to show that nothing
more singular than that occurs.

Exercise 3.9 (Regularity properties of the propagator)
Prove that the following limit has at most a logarithmic singularity:

lim
y→x

tr γ̄5γ̄i∆(x, y)

where tr now only denotes the spinor trace.
(Hint: Notice that ∆(x, y) is the propagator of a three-dimensional spinor in the

presence of a background gauge field. First let us approximate ∆(x, y) perturbatively in the
coupling constant e:
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9.2.2 3.2.2 Computing the index of D

∆(x, y) =
∞∑
n=0

en∆n(x, y)

Imposing the equation

(γ̄ ·D +M)(x)∆(x, y) = δ(x− y)

order by order in e, we find that

∆(x, y) =
∞∑
n=0

en
∫ n∏

i=1

d3zi∆0 (x, z1)

×

[
n−1∏
i=1

(γ̄ ·W) (zi)∆0 (zi, zi+1)

]
(γ̄ ·W) (zn)∆0 (zn, y)

where ∆0(x, y) is the free propagator:

∆0(x, y) =

〈
x

∣∣∣∣ 1

(γ̄ · ∂) +M

∣∣∣∣ y〉 =

∫
d3p

(2π)3
eip·(x−y)

i(γ̄ · p) +M

Since we are interested in the behaviour of ∆(x, y) as |x − y| → 0, we need to make some
estimates. Prove that ∆n(x− y) ∼ |x− y|−2+n in this limit, whence we the potentially singular
contributions come from n = 0 and n = 1. Prove that tr γ̄5γ̄i∆0(x, y) = 0 using the facts that
tr γ̄5γ̄i = tr γ̄5γ̄iγ̄j = 0. These same identities reduce the computation of tr γ̄5γ̄i∆1(x, y) to

− tr γ̄5γ̄iγ̄j γ̄kγ̄ℓ

∫
d3p

(2π)3
d3q

(2π)3
pkqℓe

ip·xe−iq·y

(p2 +M2) (q2 +M2)
×
∫
d3ze−i(p−q)·zWj(z)

Compute this (introducing Feynman parameters,...) and show that it vanishes.)
From the results of the above exercise, the second term in (3.23) vanishes, and using the

expression (3.20) for I (M2), we find that

I
(
M2
)
=

1

2

∫
d3x∂iJi(x, x) =

1

2

∫
Σ∞

dSiJi(x, x)

where Σ∞ is the sphere at spatial infinity. The (formal) dimension of the moduli space of
BPS- k-monopole will then be given by

dimMk = lim
M2→0

∫
Σ∞

dSiJi(x, x) (3.24)

In the remainder of this section, we will compute this integral and show that it is related to
the magnetic number of the monopole.

∗It is instructive to compare this with the calculation of the axial anomaly in four dimensions. The same
calculation in four dimensions would have yielded a singularity ∼ |x − y|−1 in the n = 2 term of the above
calculation. A bit of familiar algebra would then have yielded a multiple of the Pontrjagin density for the second
term in equation (3.23). In the four dimensional problem, the gauge fields go to zero at infinity and the integral
of I(x, x) would have received contributions only from the Pontrjagin term, since the ∂iJi(x, x) would give a
vanishing boundary term. In our case, though, the situation is different. The second term in 3.23 vanishes,
whereas the boundary term coming from ∂iJi(x, x) is not zero due to the nontrivial behaviour of the Higgs field
at infinity.
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9.2.3 3.2.3 Computing the current Ji(x, x)

We start by rewriting Ji(x, x). Inserting 1 in the form (−γ̄ ·D +M)−1(−γ̄. D +M) into the
definition of Ji(x, x), we get

Ji(x, x) = tr γ̄5γ̄i

〈
x

∣∣∣∣ 1

−(γ̄ ·D)2 +M2
(−γ̄ ·D +M)

∣∣∣∣x〉
Using the fact that the trace of an odd number of γ̄-matrices vanishes, we remain with

Ji(x, x) = tr γ̄5γ̄i

〈
x

∣∣∣∣ 1

−(γ̄ ·D)2 +M2
(−γ̄jDj + eγ̄4ϕ)

∣∣∣∣x〉 (3.25)

where now

−(γ̄ ·D)2 = − (Di)
2 − e2ϕ2 +

1

2
eγ̄ijGij + eγ̄iγ̄4Diϕ

We proceed by treating the last terms 1
2
eγ̄ijGij+eγ̄iγ̄4Diϕ as a perturbation and expanding

1

−(γ̄ ·D)2 +M2
=

1

− (Di)
2 − e2ϕ2 +M2

− 1

− (Di)
2 − e2ϕ2 +M2

(
1

2
eγ̄ijGij + eγ̄iγ̄4Diϕ

)
1

− (Di)
2 − e2ϕ2 +M2

+ · · ·

It is now time to use the fact that Wi corresponds to a monopole background. For such a
background Gij = O(|x|−2

)
asymptotically as |x| → ∞. Because we are integrating Ji(x, x̄) on

Σ∞, we are free to discard terms which decay faster than O (|x|−2) at infinity, hence no further
terms other than those shown in the above perturbative expansion contribute. Plugging the
remaining two terms of the expansion into (3.25), we notice that the first term vanishes due to
the trace identity tr γ̄5γ̄iγ̄j = 0. Similar identities leave only the following terms:

Ji(x, x) = e tr γ̄5γ̄iγ̄j γ̄4γ̄k

〈
x

∣∣∣∣ 1KDjϕ
1

K
Dk

∣∣∣∣x〉
− 1

2
e2 tr γ̄5γ̄iγ̄jkγ̄4

〈
x

∣∣∣∣ 1KGjk
1

K
ϕ

∣∣∣∣x〉+O
(
|x|−3

)
where we have introduced the shorthand K = − (Di)

2−e2ϕ2+M2. Using the trace identity

tr γ̄5γ̄iγ̄j γ̄kγ̄4 = 4ϵijk

we can rewrite the above equation as

Ji(x, x) = −4eϵijk tr⟨x|
1

K
Djϕ

1

K
Dk|x⟩

− 2e2ϵijk tr

〈
x

∣∣∣∣ 1KGjk
1

K
ϕ

∣∣∣∣x〉+O
(
|x|−3

)
(3.26)

where the trace now refers only to the SO(3) adjoint representation.
The propagators K−1 are not yet those of a free spinor, thanks to their dependence on ϕ

and Wi, thus we must treat them perturbatively as well. Since Wi decays at infinity, we can
effectively put Wi = 0 in the propagators in the above expressions which are already O (|x|−2).
On the other hand, the perturbative treatment of ϕ is a bit more subtle, since it doesn’t decay at
infinity but rather behaves as a homogeneous function of degree zero; that is, its behaviour on

203



9.2.3 3.2.3 Computing the current Ji(x, x)

the radius |x| is constant at infinity, but not so its angular dependence, which gives rise to the
topological stability of the BPS-monopole. First we notice that in the adjoint representation,

ϕ2v = ϕ× (ϕ× v) = −a2v + (ϕ · v)ϕ

where we have recalled that ϕ · ϕ = a2 at infinity. Hence on Σ∞ we can put K = Q+ e2Ω
where Q = −∂2 + M2 + a2e2 and Ω is (up to a factor) the projector onto the ϕ direction:
Ω(v) = (ϕ · v)ϕ. Because [Q,Ω] = O (|x|−1) asymptotically, we can effectively treat these two
operators as commuting, whence we can write

1

K
=

1

Q
+
∑
n≥1

1

Qn+1

(
e2Ω
)n

+O
(
|x|−1

)
Notice moreover that as operators in the adjoint representation of SO(3),

(Ω ◦ ϕ)v = Ω(ϕ× v) = ϕ · (ϕ× v)ϕ = 0 (3.27)

We are now in a position to prove that the first term in equation (3.26) doesn’t contribute.
Exercise 3.10 (The first term doesn’t contribute)
Prove that

tr

〈
x

∣∣∣∣ 1KDjϕ
1

K
Dk

∣∣∣∣x〉 = O
(
|x|−3

)
whence it doesn’t contribute to the integral over Σ∞.
(Hint: First notice thatDk = ∂k+O (|x|−1), whence up to O (|x|−3) we can simply substitute

∂k for Dk in the above expression. Now use equation (3.27) and the fact that ϕ and Djϕ are
parallel in Σ∞, to argue that one can substitute K for Q in the above expression (again up to
terms of order O (|x|−3)). Then simply take the trace to obtain the result.)

Hence we are left with

Ji(x, x) = −2e2ϵijk tr
〈
x

∣∣∣∣ 1KGjk
1

K
ϕ

∣∣∣∣x〉+O
(
|x|−3

)
(3.28)

Since Gjk is parallel to ϕ on Σ∞,Ω ◦Gjk = 0 by (3.27). Thus we are free to substitute the
free propagator Q−1 for K−1 in the above expression, to obtain:

Ji(x, x) = −2e2ϵijk
∫
d3x′ trϕ(x)Gjk (x

′)Q−1 (x, x′)Q−1 (x′, x) +O
(
|x|−3

)
where the free propagator is given by

Q−1(x, y) =

∫
d3p

(2π)3
eip·(x−y)

p2 +M2 + a2e2

Changing variables x′ 7→ y = x− x′, and using

trϕ(x)Gjk(x− y) = trϕ(x)Gjk(x) +O
(
|x|−3

)
we remain with

Ji(x, x) = −2e2ϵijk trGjk(x)ϕ(x)

∫
d3y

d3p

(2π)3
d3q

(2π)3
ei(p−q)·y

× 1

(p2 +M2 + a2e2) (q2 +M2 + a2e2)
+O

(
|x|−3

)
The y-integral gives 2π3δ(p− q), which gets rid of the q-integral and we remain with
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Ji(x, x) = −2e2ϵijk trϕ(x)Gjk(x)

∫
d3p

(2π)3
1

(p2 +M2 + a2e2)2
+O

(
1/|x|3

)
The p-integral is readily evaluated∫

d3p

(2π)3
1

(p2 +M2 + a2e2)2
=

1

8π

1√
M2 + a2e2

whence ∫
Σ∞

dSiJi(x, x) =
1

2π

e2√
M2 + a2e2

∫
Σ∞

dSiϵijkϕ ·Gjk

where have also used that the trace in the adjoint representation is normalised so that
trAB = −2A ·B.

Exercise 3.11 (Another expression for the degree of the map ϕ)

Prove that on Σ∞,

ϕ ·Gjk =
1

ea2
ϕ · (∂jϕ× ∂kϕ)

and, comparing with equation (1.22), deduce that the degree of the map ϕ from Σ∞ to the
sphere of radius a in R3 is given by

degϕ =
e

8πa

∫
Σ∞

dSiϵijkϕ ·Gjk

(Hint: Use that ϕ×Djϕ = 0 on Σ∞, and expand 0 = ϕ · (Djϕ×Dkϕ).)
From the results of this exercise and the fact that for a k-monopole solution, the degree of

ϕ is k, we can write ∫
Σ∞

dSiJi(x, x) =
4aek√

M2 + a2e2

whence plugging this into the equation (3.24) for the formal dimension of Nk, we find that

dimMk = 4k

9.3 3.3 A quick motivation of hyperkähler geometry

In the next section we will prove that the natural metric onMk induced by the Yang-Mills-Higgs
functional is hyperkähler; but first we will briefly review the necessary notions from riemannian
geometry leading to hyperkähler manifolds. The reader familiar with this topic can easily skip
this section.

∗If you are familiar with the calculation of the number of instanton parameters, you may be surprised by
the explicit M2 dependence in the expression

∫
Σ∞

dSiJi(x, x). This is due to the asymptotic behaviour of ϕ,
which prevents the above calculation from being tackled by the methods usually applied to index theorems on
compact spaces. For the index of an operator on a compact space, or similarly for fields which decay at infinity,
one can prove that the result of the above integral is actually independent of M2, hence one can compute the
integral for already in the limit M2 → 0 (cf. the Witten index). Here we are in fact faced essentially with
the calculation of the index of an operator on a manifold with boundary, for which a satisfactory Witten-index
treatment is lacking, to the best of my knowledge.
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Hyperkähler geometry is probably best understood from the point of view of holonomy
groups in riemannian geometry. In this section we review the basic notions. Sadly, the classic
treatises on the holonomy approach to riemannian geometry KN63, KN69, Lic76 stop just short
of hyperkähler geometry; but two more recent books Bes86, Sal89] on the subject do treat the
hyperkähler case, albeit from a slightly different point of view than the one adopted here. We
direct the mathematically inclined reader to the classics for the basic results on riemannian
and Kähler geometry, which we will only have time to review ever so briefly in these notes;
and to the newer references for a more thorough discussion of hyperkähler manifolds. All our
manifolds will be assumed differentiable, as will be any geometric object defined on them, unless
otherwise stated.

9.3.1 3.3.1 Riemannian geometry

Any manifold M admits a riemannian metric. Fix one such metric g. On the riemannian
manifold (M, g) there exists a unique linear connection ∇ which is torsion-free

[X, Y ] = ∇XY −∇YX for any vector fields X, Y on M (3.29)

and preserves the metric ∇g = 0. It is called the Levi-Civita connection and relative to a
local chart xa, it is defined by the Christoffel symbols Γab

c which in turn are defined by

∇a∂b = Γcab∂c

where we have used the shorthand ∇a = ∇∂a . The defining properties of the Levi-Civita
connection are sufficient to express the Christoffel symbols in terms of the components gab of
the metric:

Γcab =
1

2
gcd (∂agdb + ∂bgad − ∂dgab) (3.30)

which proves the uniqueness of the Levi-Civita connection.

Exercise 3.12 (A coordinate-free expression for ∇)

Using the defining conditions of the Levi-Civita connection ∇, prove that

2 ⟨Z,∇XY ⟩ = X⟨Y, Z⟩+ Y ⟨Z,X⟩ − Z⟨X, Y ⟩
− ⟨[X,Z], Y ⟩ − ⟨[Y, Z], X⟩ − ⟨[X, Y ], Z⟩ (3.31)

where we have used the notation ⟨X, Y ⟩ = g(X, Y ). Equation (3.30) follows after substi-
tuting ∂a, ∂b and ∂c for X, Y , and Z respectively.

With ∇ we can give meaning to the notion of parallel transport. Given a curve t⇝ γ(t) on
M with velocity vector γ̇, we say that a vector field X is parallel along γ if ∇γ̇X = 0. Relative
to a local coordinate chart xa, we can write this equation as

DXb

dt
≡ γ̇a∇aX

b = γ̇a
(
∂aX

b + ΓbacX
c
)
= Ẋb + Γac

bγ̇aXc = 0 (3.32)

A curve γ is a geodesic if its velocity vector is self-parallel: ∇γ̇ γ̇ = 0. In terms of (3.32) we
arrive at the celebrated geodesic equation:

γ̈c + Γab
cγ̇aγ̇b = 0 (3.33)

This equation follows by extremising the action with lagrangian
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9.3.1 3.3.1 Riemannian geometry

L(x, ẋ) =
1

2
gab(x)ẋ

aẋb

whence our claim at the end of section 3.1.3 that free motion on a riemannian manifold is
geodesic.

We can integrate equation (3.32) and arrive at the concept of paralleltransport. More
concretely, associated with any curve γ : [0, 1]→M there is a linear map Pγ : Tγ(0)M → Tγ(1)M
taking vectors tangent to M at γ(0) to vectors tangent to M at γ(1). If X ∈ TpM is a tangent
vector to M at p ≡ γ(0) we define its parallel transport Pγ(X) relative to γ by first extending
X to a vector field along γ in a way that solves (3.32), and then simply evaluating the vector
field at γ(1).

Now fix a point p ∈ M and let γ be a piecewise differentiable loop based at p, that is, a
piecewise differentiable curve which starts and ends at p. Then Pγ is a linear map TpM → TpM .
We can compose these maps: if γ and γ′ are two loops based at p, then Pγ′ ◦Pγ is the linear map
corresponding to parallel transport on the loop based at p obtained by first tracing the path γ
and then γ′. (Notice that this new loop may not be differentiable even if γ and γ′ are: but it is
certainly piecewise differentiable, hence the need to consider such loops from the outset.) Also
Pγ is invertible: simply trace the path γ backwards in time. Therefore the transformations
{Pγ} form a group. If we restrict ourselves to loops which are contractible, the group of linear
transformations:

H(p) = {Pγ | γ a contractible loop based at p}
is called the (restricted) holonomy group at p of the connection ∇. It can be shown that to

be a Lie group.
One should hasten to add that there is no reason to restrict ourselves to the Levi-Civita

connection. We will be mostly interested in the classical
case, where∇ is the Levi-Civita connection, but these definitions make sense in more generality.

Exercise 3.13 (The holonomy group of a connected manifold)
Prove that if two points p and q in M can be joined by a path in M , their holonomy groups

H(p) and H(q) are conjugate and therefore isomorphic.
(Hint: Use parallel transport along the path joining p and q to provide the conjugation.)
Hence it makes sense to speak of the holonomy group of a connected manifold M . From

now on all we will only concern ourselves with connected manifolds. A further useful restriction
that one can impose on the type of manifolds we consider is that of irreducibility. A manifold
is said to be (ir) reducible relative to a linear connection ∇ if the tangent space at any point
is an (ir)reducible representation of the holonomy group. Clearly the holonomy group (relative
to the Levi-Civita connection) of product manifold M × M ′ with the product metric acts
reducibly. A famous theorem of de Rham’s provides a converse. This theorem states that
if a simplyconnected complete riemannian manifold M is reducible relative to the LeviCivita
connection, then M = M ′ ×M ′′ isometrically. We will restrict ourselves in what follows to
irreducible manifolds.

For a generic linear connection on an irreducible manifold M , the holonomy group is (iso-
morphic to) GL(m), wherem = dimM . However, the Levi-Civita connection is far from generic
as the following exercise shows.

Exercise 3.14 (The holonomy group of a riemannian manifold)

Prove that the holonomy group of an m-dimensional riemannian manifold (relative to the Levi-
Civita connection) is actually in SO(m).

(Hint: Show that ∇g = 0 implies that the parallel transport operation Pγ preserves the
norm of the vectors, whence the holonomy group is in O(m). Argue that since we consider only
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contractible loops, the holonomy group is connected and hence it must be in SO(m). By the
way, the same would hold for orientable manifolds even if considering non-contractible loops.)

A celebrated theorem of Ambrose and Singer tells us that the Lie algebra of the holonomy
group is generated by the Riemann curvature tensor in the following way. Recall that the
Riemann curvature tensor is defined as follows. Fix vector fields X and Y on M , and define a
linear map from vector fields to vector fields as follows:

R(X, Y ) = [∇X ,∇Y ]−∇[X,Y ]

It is easy to prove that this map is actually tensorial in X and Y . Indeed, relative to a
coordinate basis, it may be written out as a tensor Rabc

d defined
by

R (∂a, ∂b) ∂c = Rabc
d∂d

and therefore has components

Rabc
d = ∂aΓbc

d + Γbc
eΓae

d − ∂bΓacd − Γac
eΓbe

d (3.34)

Then the Lie algebra of the holonomy group is the Lie subalgebra of gl(m) spanned by the
curvature operators Rab : ∂c 7→ Rabc

d∂d.

Exercise 3.15 (The holonomy algebra of a riemannian manifold)

Using the Ambrose-Singer theorem this time, prove a second time that the holonomy group of
a riemannian manifold lies in SO(m), by showing that its Lie algebra lies in so (m). In other
words, prove that each curvature operator Rab (for fixed a and b) is antisymmetric:

Rabcd = −Rabdc where Rabcd = Rabc
eged

Adding more structure to a riemannian manifold in a way that is consistent with the metric
restricts the holonomy group further. Next we will discuss what happens when we add a
complex structure.

9.3.2 3.3.2 Kähler geometry

An almost complex structure is a linear map I : TM → TM which obeys I2 = −1. This
gives each tangent space TpM the structure of a complex vector space, since we can multiply a
tangent vector X by a complex number z = x+ iy simply by z ·X = xX+yI(X). In particular,
it means that the (real) dimension of each TpM and hence of M must be even: 2n, say. We
will also assume that the complex structure I is compatible with the metric in the sense that
g(IX, IY ) = g(X, Y ) for all vector fields X and Y . Another way to say this is that the metric
g is hermitian relative to the complex structure I.

If we complexify the tangent space, we can diagonalise the complex structure. Clearly the
eigenvalues of I are ±i. Complex vector fields Z for which IZ = iZ are said to be of type
(1, 0), whereas those for which IZ = −iZ are of type (0, 1). If we can introduce local complex
coordinates (zα, z̄ᾱ), α, ᾱ = 1, . . . n, relative to which a basis for the (1, 0) (resp. (0, 1)) vector
fields is given by ∂α (resp. ∂ᾱ) and if when we change charts the local complex coordinates are
related by biholomorphic transformations, then we say that I is integrable.

A hard theorem due to Newlander and Nirenberg translates this into a beautiful local
condition on the complex structure. According to the

Newlander-Nirenberg theorem, an almost complex structure I is integrable if and only if the
Lie bracket of any two vector fields of type (1, 0) is again of type (1, 0). This in turns translates
into the vanishing of a tensor.
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Exercise 3.16 (The Nijenhuis tensor)

Using the Newlander-Nirenberg theorem prove that I is integrable if and only if the following
tensor vanishes:

NI(X, Y ) = I[IX, IY ] + [X, IY ] + [IX, Y ]− I[X, Y ]

NI is known as the Nijenhuis tensor of the complex structure I. It is easy to prove that the
Nijenhuis tensor NI vanishes in a complex manifold (do it!)-it is the converse that is hard to
prove.

Now suppose that ∇ is a linear connection relative to which I is parallel: ∇I = 0. Let’s
call this a complex connection.

Exercise 3.17 (The holonomy group of a complex connection)

Let H denote the holonomy group of a complex connection on a complex manifold M . Prove
that H ⊆ GL(n,C) ⊂ GL(2n,R).

(Hint: It’s probably easiest to prove the equivalent statement that the holonomy algebra is
a subalgebra of gl(n,C). Choose a basis for TpM ∼= R2n in which the complex structure I has
the form

I =

(
0 1

−1 0

)
where 1 is the n× n unit matrix. Argue that the curvature operators Rab commute with I,

whence in this basis, they are of the form(
A B
−B A

)
where A and B are arbitrary real n × n matrices. This then corresponds to the real 2n-

dimensional representation of the matrix A+ iB ∈ gl(n,C).)
If ∇ is the Levi-Civita connection, then the holonomy lies in the intersection GL(n,C) ∩

SO(2n) ⊂ GL(2n,R).

Exercise 3.18 (The unitary group)

Prove that GL(n,C) ∩ SO(2n) ⊂ GL(2n,R) is precisely the image of the real 2n dimensional
representation of the unitary group U(n).

(Hint: Prove the equivalent statement for Lie algebras. In the basis of the previous exercise,
prove that a matrix in so(2n) has the form(

A B
−Bt D

)
where At = −A,Dt = −D and B are otherwise arbitrary real n× n matrices. If the matrix

is also in gl(n,C), we know that A = D and that B = Bt. Thus matrices in gl(n,C)∩so(2n) ⊂
gl(2n,R) are of the form (

A B
−B A

)
where At = −A and Bt = B, which corresponds to the complex matrix A+ iB ∈ gl(n,C).

Prove that this matrix is anti-hermitian, whence in u(n).
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9.3.2 3.3.2 Kähler geometry

If the Levi-Civita connection is complex, so that the holonomy lies in U(n), the manifold
(M, g, I) is said to be Kähler. In other words, Kähler geometry is the intersection, so to speak,
of riemannian and complex geometries.

There is another perhaps more familiar definition of Kähler manifolds, involving the Kähler
form.

Exercise 3.19 (The Kähler form)

Given a complex structure I relative to which g is hermitian, we define a 2-form ω by

ω(X, Y ) = g(X, IY ) or equivalently ωab = Ia
cgbc

Prove that ω(X, Y ) = −ω(Y,X), so that it is in fact a form. Prove that it is actually of
type (1, 1).

An equivalent definition of a Kähler manifold is that (M, g, I) is Kähler if and only if ω is
closed. These two definitions can of course be reconciled. We review this now.

Exercise 3.20 (Kähler is Kähler is Kähler)

Let (M, g, I) be a complex riemannian manifold, where g is hermitian relative to I. Let ω be the
corresponding Kähler form and ∇ the Levi-Civita connection. Prove that the following three
conditions are equivalent (and are themselves equivalent to (M, g, I) being a Kähler manifold):

(a) ∇I = 0;
(b) ∇ω = 0; and
(c) dω = 0.
(Hint: (a) ⇔ (b) is obvious. For (b) ⇒ (c) simply antisymmetrise and use the fact that ∇

is torsion-less, which implies the symmetry of the Christoffel symbols in the lower two indices.
The trickiest calculation is (c)⇒ (b), and we break this up into several steps:

From (3.29), deduce that I is integrable if and only if

∇aωbc + Idc I
e
b∇eωad − (a↔ b) = 0

From the fact that g is hermitian relative to I, deduce that

Ic
d∇aωbd = −Ibd∇aωcd

Using the previous two steps, show that

∇aωbc = −IbdIce∇aωde

Finally, use these formulae to show that dω = 0⇒ ∇ω = 0.)
Conversely, one can show that if the holonomy group of a 2n-dimensional riemannian man-

ifold is contained in U(n), then the manifold is Kähler. The proof is paradigmatic of the more
algebraic approach to the study of holonomy, which has begotten some of the more remarkable
results in this field. We will therefore allow ourselves a brief digression. We urge the reader to
take a look at the books [Bes86, Sal89] for a more thorough treatment.

For simplicity, we start with a torsionless connection ∇. The fundamental elementary
observation is that there is a one-to-one correspondence between covariantly constant tensors
and singlets of the holonomy group. (Clearly if ∇t = 0, then t is invariant under the holonomy
group; conversely, if t is invariant under the holonomy group, taking the derivative of the
parallel transport of t along the path is zero, but to first order this is precisely ∇t.) In turn,
singlets of the holonomy group determine to a large extent the geometry of M . For example,
suppose that M is an m-dimensional irreducible manifold with holonomy group G ⊂ GL(m,R).
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9.3.3 3.3.3 Ricci flatness

Irreducibility means that the fundamental m-dimensional representation of GL(m,R) remains
irreducible underG. Let us call this representation T - the " T " stands for tangent space. Under
the action of G, tensors on M will transform according to tensor powers of the representation
T . For example, 1-forms will transform according to the dual representation T ∗, symmetric
rank p tensors will transform as SpT ∗, whereas p-forms will transform as

∧p T ∗, and so on. We
can then break up all these tensorial representations in terms of irreducibles and, in particular,
exhibit all the singlets. These singlets will correspond, by the observation made above, in a
one-to-one fashion with covariantly constant tensors. Let us run through some examples.

Suppose that G = SO(m). Then T is the fundamental m-dimensional representation of
SO( m). We know that, in particular, there is a singlet ḡ ∈ S2T ∗ and moreover that the map
T → T ∗ defined by this ḡ is nondegenerate. Hence by the fundamental observation, there
exists a covariantly constant tensor g which can be thought of as a riemannian metric. By
the uniqueness of the Levi-Civita connection, it follows that ∇ is the Levi-Civita connection
associated to g. In other words, manifolds with SO(m) holonomy
relative to a torsionless connection are simply riemannian manifolds. Well, not just any rieman-
nian manifold. There is another SO(m)-invariant tensor Ω̄ ∈ ΛmT ∗. The covariantly constant
m-form Ω defines an orientation on M . In fact, one can show that there are no other invariant
tensors which are algebraic independent from these ones, so that manifolds with SO(m) holon-
omy (again, relative to a torsionless connection) are precisely orientable riemannian manifolds.

Now suppose that the dimension of M is even: m = 2n, say, and that G = U(n) ⊂
GL(2n,R). Then T is the real 2n irreducible representation of U(n), whose complexification
breaks up as TC = T ′⊕T ′′, where T ′ is the complex n-dimensional (fundamental) representation
of U(n), and T ′′ = T ′ is its conjugate. Since G ⊂ SO(2n), we know from the previous paragraph
that M is riemannian and orientable, and that we can think of ∇ as the LeviCivita connection
of this metric. However there is also a singlet ω̄ ∈

∧2 T ∗. The resulting covariantly constant
2 -form ω is precisely the Kähler form. Hence manifolds with U(n)-holonomy are precisely the
Kähler manifolds.

9.3.3 3.3.3 Ricci flatness

We can now restrict the holonomy of a Kähler manifold a little bit further by imposing con-
straints on the curvature: namely that it be Ricci-flat. As we will see, this is equivalent to
demanding that the holonomy lie in SU(n) ⊂ U(n). As Lie groups, U(n) = U(1)× SU(n). If
we think of U(n) as unitary matrices, the U(1) factor is simply the determinant. Hence the
manifold will have SU(n) holonomy provided that the determinant of every parallel transport
operator Pγ is equal to 1.

Geometrically, the determinant can be understood as follows. Suppose that M is a Kähler
manifold and let’s look at how forms of type (n, 0) (or (0, n)) transform under parallel transport.
At a fixed point p in M , the space of such forms is 1-dimensional. Hence if θ is an (n, 0)-form,
then Pγθ = λγθ where λγ is a complex number of unit norm.

Exercise 3.21 (The determinant of Pγ)

Prove that λγ is the determinant of the linear map Pγ : TpM → TpM .
Therefore the holonomy lies in SU(n) if and only if λγ = 1 for all γ. By our previous

discussion, it means that there is a nonzero parallel (n, 0) form θ. Since parallel forms have
constant norm, this form if nonzero at some point is nowhere vanishing, hence the bundle
of (n, 0)-forms is trivial. Equivalently this means that the first Chern class of the manifold
vanishes. Such Kähler manifolds are known as Calabi-Yau manifolds, after the celebrated
conjecture of Calabi, proven by Yau. Calabi’s conjecture stated that
given a fixed Kähler manifold with vanishing first Chern class, there exists a unique Ricci-
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9.3.3 3.3.3 Ricci flatness

flat Kähler metric in the same Kähler class. The Calabi conjecture (now theorem) allows
us to construct manifolds admitting Ricci-flat Kähler metrics, by the simpler procedure of
constructing Kähler manifolds with vanishing first Chern class. Algebraic geometry provides
us with many constructions of such manifolds: as algebraic varieties of complex projective
space, for example. The catch is that the Ricci-flat Kähler metric is most definitely not the
induced metric. In fact, the form of the metric is very difficult to determine. Even for relatively
simple examples like K3, the metric is not known.

It follows from this conjecture (now theorem) that an irreducible Kähler manifold has SU(n)
holonomy if and only if it is Ricci-flat. We don’t need to appeal to the Calabi conjecture to
prove this result, though, as we now begin to show.

Let’s first recall how the Ricci tensor is defined. IfX and Y are vector fields onM,Ric(X, Y )
is defined as the trace of the map V 7→ R(V,X)Y , or relative to a local chart

Sab ≡ Ric (∂a, ∂b) = Rc
cab

Exercise 3.22 (The Ricci tensor is symmetric)

Prove that Sab = Sba.
In a Kähler manifold and relative to complex coordinates adapted to I, many of the com-

ponents of the Ricci and Riemann curvature tensors are zero.

Exercise 3.23 (Curvature tensors in Kähler manifolds)

Let (zα, z̄ᾱ) be complex coordinates adapted to the complex structure I; that is, the corre-
sponding vector fields are of type (1, 0) and (0, 1) respectively: I (∂α) = i∂α and I (∂ᾱ) = −i∂ᾱ.
Prove that the metric has components gαβ̄, and that the Christoffel symbols have compo-
nents Γαβ

γ and Γᾱβ̄γ̄. Prove that the only nonzero components of the Riemann curvature are
Rαβ̄γ

δ = −Rβ̄αγ
δ and Rαβ̄γ̄

δ̄ = −Rβ̄αγ̄ . Finally deduce that the Ricci tensor has components
Sαβ̄, so that Sαβ = Sᾱβ̄ = 0.

The holonomy algebra of a Kähler manifold is u(n), whence for fixed a and b, the curvature
operator Rab belongs to u(n) = u(1) × su(n). How can one extract the u(1)-component? For
this we need to recall Exercise 3.18. If A + iB ∈ u(n), exp(A + iB) ∈ U(n) and the U(1)
component is the determinant: det exp(A + iB) = exp(tr(A + iB)). Since At = −A, it is
traceless, whence det exp(A + iB) = exp(i trB). Hence if we let i1 ∈ u(n) be the generator
of the u(1) subalgebra, the u(1) component of a matrix in u(n) is just its trace. In a Kähler
manifold, the holonomy representation of
U(n) is real and 2n-dimensional, which means that a matrix A + iB ∈ u(n) is represented by
a real 2n× 2n matrix

Q =

(
A B
−B A

)
and therefore its u(1)-component, trB, is simply given by

trB = −1

2
tr

[(
0 1

−1 0

)(
A B
−B A

)]
= −1

2
tr(IQ)

From this it follows that the u(1)-component Fab of the curvature operator is given by
Fab = −1

2
tr (I ◦Rab) = −1

2
Rabc

dId
c. The next exercise asks you to show that this is essentially

the Ricci curvature, from where it follows that Ricci-flat Kähler manifolds have SU(n) holonomy
and viceversa.

Exercise 3.24 (An equivalent expression for the Ricci curvature)
Prove that the Ricci curvature on a Kähler manifold can be also be defined by
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9.3.4 3.3.4 Hyperkähler geometry

Ric(X, Y ) =
1

2
tr(V 7→ I ◦R(X, IY )V )

or equivalently,

SacIb
c = −1

2
tr (I ◦Rab) = Fab,

which, relative to complex coordinates, becomes

Sαβ̄ = iFαβ̄

Using the above results, give another proof of the symmetry of the Ricci tensor: Sab = Sba.
(Compare with Exercise 3.22.

9.3.4 3.3.4 Hyperkähler geometry

Finally we define hyperkähler manifolds. In a hyperkähler manifold we have not one but three
parallel almost complex structures I, J , and K which satisfy the quaternion algebra:

IJ = K = −JI, JK = I = −KJ, KI = J = −IK
I2 = J2 = K2 = −1,

and such that the metric is hermitian relative to all three. Notice that we don’t demand
that the complex structures be integrable. This is a consequence of the definition.

Exercise 3.25 (Hyperkähler implies integrability)

Let (M, g, I, J,K) be a hyperkähler manifold. Prove that I, J and K are integrable complex
structures.

(Hint: Associated to each of the almost complex structures there is a 2-form: ωI , ωJ and ωK .
Because ∇I = 0, Exercise 3.20 implies that dωI = 0, and similarly for J and K. Notice that
ωJ(X, Y ) = g(X, JY ) = g(X,KIY ) = ωK(X, IY ), whence 2 ıXωJ = ıIXωK . A complex vector
field X is of type (1, 0) with respect to I, if and only if ıXωJ = iıXωK . By the Newlander-
Nirenberg theorem, it is sufficient to prove that the Lie bracket of two such complex vector
fields also obeys the same relation. But this is a simple computation, where the fact that the
forms ωJ and ωK are closed is used heavily. The same proof holds mutatis mutandis for J and
K.)

Just like an almost complex structure I on a manifold allows us to multiply vector fields
by complex numbers and hence turn each tangent space into a complex vector space, the three
complex structure in a hyperkähler manifold allow us to multiply by quaternions. Concretely,
if q = x+ iy + jz + kw ∈ H is a quaternion, and X is a vector field on M , then we define

q ·X ≡ xX + yI(X) + zJ(X) + wK(X)

This turns each tangent space into a quaternionic vector space (a left H module, to be
precise) and, in particular, this means that hyperkähler manifolds are 4k-dimensional.

One can prove, just as we did with complex manifolds, that the holonomy group of a
hyperkähler manifold lies in 3Sp(2k) ⊆ SU(2k) ⊂ GL(4k). In particular, hyperkähler manifolds
are Ricci-flat.
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9.4 3.4 Mk is hyperkähler

Exercise 3.26 (The holonomy group of a hyperkähler manifold)

Prove that the holonomy group of a hyperkähler manifold is a subgroup of USp (2k). (Hint:
Depending on how one looks at this, there may be nothing that needs proving. If we take as
definition of USp(2k) ⊂ GL(2k,C) those matrices which commute with the natural action of
the quaternions on C2k ∼= Hk, then the result is immediate since the fact that I, J , and K
are parallel means that ∇ and hence the curvature operators commute with multiplication by
H. If you have another definition of USp(2k) in mind, then the exercise is to reconcile both
definitions.)

Conversely, if the holonomy group of a manifold M is a subgroup of USp(2k) ⊂ SO(4k),
then decomposing tensor powers of the fundamental 4k dimensional representation T of SO(2k)
into USp(2k)-irreducibles, we find that Λ2T ∗ possesses three singlets. The resulting covariantly
constant 2 forms are of course the three Kähler forms of M . A little bit closer inspection shows
that the associated complex structures obey the quaternion algebra, so that M is hyperkähler.

9.4 3.4 Mk is hyperkähler

In this section we prove that the metric on Mk defined by the kinetic term in the Yang-
Mills-Higgs functional is hyperkähler. We will prove this in two ways. First we will prove
that the configuration space A is hyperkähler and that Mk is its hyperkähler quotient. In
order to do this we will review the notion of a Kähler quotient which should be very familiar
as a special case of the symplectic quotient of Marsden-Weinstein which appears in physics
whenever we want to reduce a phase space with first-class constraints. In a nutshell, the group
G of gauge transformations acts on A preserving the hyperkähler structure and the resulting
moment mapping is nothing but the Bogomol’nyi equation. We will also give a computationally
more involved proof of the hyperkähler nature of Nk, which is independent of the hyperkähler
quotient, at least on the face of it.

9.4.1 3.4.1 Symplectic quotients

Let (M,ω) be a symplectic manifold-that is, ω is a nondegenerate closed 2-form-and let G be
a Lie group acting on M in a way that preserves ω. Let g denote the Lie algebra of G and let
{ea} be a basis for g which we fix once and for all. To each ea there is an associated vector
field Xa on M . The fact that G preserves ω means that LXaω = 0 for every Xa, where LXa is
the Lie derivative along Xa. We will often abbreviate LXa by La.

Exercise 3.27 (The Lie derivative acting on forms)
Prove that if ω is a differential form on M and X is any vector field, then the Lie derivative

LXω is given by

LXω = (dıX + ıXd)ω

where d is the exterior derivative and ıX is the contraction operator characterised uniquely
by the following properties:

(a) ıXf = 0 for all functions f ;
(b) ıXα = α(X) for all one-forms α; and
(c) ıX(α ∧ β) = (ıXα) ∧ β + (−1)pα ∧ ıXβ, for α a p-form and β any form.
Because dω = 0,Laω = 0 is equivalent to the one-form ıaω being closed, where ıa ≡ ıXa .

Let us assume that this form is also exact, so that there is a function µa such that ıaω = dµa.
This would be guaranteed, for example, if M were simply-connected, or if g were semi-simple.

∗2 The conventions for the interior product ıX are summarised in Exercise 3.27.
3 Mathematicians call Sp(k) what we call USp(2k).
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9.4.2 3.4.2 Kähler quotients

More precise conditions on the absence of this obstruction can be written down but we won’t
need them in what follows. The functions µa allow us to define a moment mapping µ :M → g∗

by µ(p) = µa(p)e
a for every p ∈ M , where {ea} is the canonically dual basis for g∗. In other

words, µ(p) (ea) = µa(p).

Exercise 3.28 (The Poisson bracket)

Prove that the Poisson bracket defined by:

{f, g} = ωij∂if∂jg

where ωijωjk = δk
i, is antisymmetric and obeys the Jacobi identity. Using the above defini-

tion of the Poisson bracket (or otherwise) prove the following identity:

d {µa, µb} = fab
cdµc (3.35)

where fabc are the structure constants of g in the chosen basis.
(Hint: Prove first that Xaµb = {µa, µb} and take d of this expression. You may wish you

use the following properties of the contraction: [La, ıb] = fab
c
c.)

Now notice that since µa are defined by their gradients, they are defined up to a constant.
If these constants can be chosen so that equation (3.35) can be integrated to

{µa, µb} = fab
cµc (3.36)

then the moment mapping µ is equivariant and the action is called Poisson. In other words,
the moment mapping intertwines between the action of G on M and the coadjoint action of G
on g∗. Again one can write down precise conditions under which this is the case - conditions
which would be met, for example, if g were semisimple. We will assume henceforth that the
necessary conditions are met and that the moment mapping is equivariant.

The components µa of an equivariant moment mapping can be understood as first-class
constraints. It is well-known that if the constraints are irreducible, so that their gradients
are linearly independent almost everywhere on the constraint submanifold, one can reduce
the original symplectic manifold to a smaller symplectic manifold (or, more generally, orbifold).
More precisely, the irreducibility condition on the constraints means that their zero locus µ−1(0)
is an embedded submanifold of M . The fact that the constraints are first class means that the
vector fields Xa, when restricted to µ−1(0), are tangent to µ−1(0).

Equivalently, one may deduce from the equivariance of the moment mapping that G acts
on µ−1(0). Provided that it does so "nicely" (that is, freely and properly discontinuous) the
space µ−1(0)/G of G-orbits is a manifold, and a celebrated theorem of Marsden and Weinstein
tells us that it is symplectic. Indeed, if we let π : µ−1(0) → µ−1(0)/G denote the natural
projection, then the Marsden-Weinstein theorem says that there is a unique symplectic form ω̄
on µ−1(0)/G such that its pullback π∗ω̄ to µ−1(0) coincides with the restriction to µ−1(0) of the
symplectic form ω on M . The symplectic manifold (µ−1(0)/G, ω̄) is known as the symplectic
quotient of (M,ω) by the action of G. It wouldn’t be too difficult to sketch a proof of this
theorem, but since we will only need the special case of a Kähler quotient, we will omit it.

9.4.2 3.4.2 Kähler quotients

Now suppose that (M, g, I) is Kähler with Kähler form ω. Then in particular (M,ω) is symplec-
tic. Assume that the action of G on M is not just Poisson, but that G also acts by isometries,
that is, preserving g. Because G preserves both g and ω, it also preserves I. On µ−1(0) we
have the induced metric: the restriction to µ−1(0) of the metric on M . This gives rise to a a
metric on µ−1(0)/G which we will discuss below.
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For every p ∈ µ−1(0), the tangent space TpM breaks up as

TpM = Tpµ
−1(0)⊕Npµ

−1(0)

where Tpµ−1(0) is the tangent space to µ−1(0) and the normal space Npµ
−1(0) is defined as

its orthogonal complement (Tpµ
−1(0))

⊥. Globally this means that the restriction to µ−1(0) of
the tangent bundle of M decomposes as:

TM = Tµ−1(0)⊕Nµ−1(0) (3.37)

where the normal bundle Nµ−1(0) is defined as (Tµ−1(0))
⊥. As the next exercise shows,

the normal bundle is trivial because µ−1(0) is defined globally by irreducible constraints.

Exercise 3.29 (Triviality of the normal bundle)

Prove that the normal space Npµ
−1(0) is spanned by the gradients gradp µa of the constraints;

or globally, that the gradients of the constraints {gradµa} trivialise the normal bundle.
In fact, the converse is also true. If you feel up to it, prove that the normal bundle to a

submanifold is trivial if and only if the submanifold can be described globally as the zero locus
of some irreducible "constraints."

(Hint: A vector field X is tangent to µ−1(0) if and only if it preserves the constraints:
dµa(X) = 0, but this is precisely g (gradµa, X) = 0, by definition of gradµa.)

Both the metric and the symplectic form restrict to µ−1(0), but whereas g is nondegenerate
on µ−1(0), the symplectic form isn’t. Thus in order to obtain a Kähler manifold it is necessary
to perform a quotient. We will describe this quotient locally. To this effect, let us split the
tangent space Tpµ−1(0) further as:

Tpµ
−1(0) = Hp ⊕ Vp

where the vertical vectors Vp are those vectors tangent to the G-orbits and the horizontal
vectors Hp = V ⊥

p are their orthogonal complement. The vertical subspace is spanned by the
Killing vectors Xa, whereas the horizontal space Hp can be identified with the tangent space
to µ−1(0)/G at the G-orbit of p. Indeed, given any vector field X on µ−1(0)/G we define its
horizontal lift to be the unique horizontal vector field X̃ on µ−1(0) which projects down to
X : π∗X̃ = X.

Now given any two vector fields on µ−1(0)/G, we define their inner product to be the inner
product of their horizontal lifts. This is independent on the point in the orbit to where we lift,
because the metric is constant on the orbits. Hence it is a well-defined metric on µ−1(0)/G.
In fancier language, this is the unique metric on µ−1(0)/G which makes the projection π a
riemannian submersion. (The reader will surely recognise this construction as the one which in
section 3.1.2 yielded the metric on the physical configuration space C of the Yang-Mills-Higgs
system.)

We claim that there is also a symplectic form on µ−1(0)/G which makes this metric Kähler.
We prefer to work with the complex structure.

By definition, if Y is any vector field tangent to M , its inner product with gradµa is given
by

g (gradµa, Y ) = dµa(Y ) = ω (Xa, Y ) = g (IXa, Y )

whence grad µa = IXa. Hence if we decompose the restriction of TM to µ−1(0) as

TM = Tµ−1(0)⊕Nµ−1(0) = H ⊕ V ⊕Nµ−1(0)
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and we choose as bases for V and Nµ−1(0), {Xa} and {gradµa} respectively, the complex
structure I has the following form:

I =

 Ī 0 0
0 0 1

0 −1 0


whence H is a complex subspace relative to the restriction Ī of I. In other words, the

complex structure commutes with the horizontal projection, or a
little bit more precisely, if Y is a vector field on µ−1(0)/G and Ỹ its horizontal lift, then
IỸ = ˜̄IY . The next exercise asks you to prove that this complex structure is integrable,
whence µ−1(0)/G is a complex manifold.

Exercise 3.30 (Integrability of the restricted complex structure)
Use the Newlander-Nirenberg theorem to deduce that Ī is integrable.
(Hint: Relate the Nijenhuis tensor NĪ of Ī to that of I, which vanishes since I is integrable.)
To prove that Ī is parallel, we need to know how the Levi-Civita connection of µ−1(0)/G is

related to the one on M . The next exercise asks you to prove the relevant relation.

Exercise 3.31 (O’Neill’s formula)

Let X and Y be vector fields on µ−1(0)/G, and let X̃ and Ỹ be their horizontal lifts. Prove
the following formula

∇X̃ Ỹ = ∇̃XY +
1

2
[X̃, Ỹ ]v (3.38)

where ∇ is the Levi-Civita connection on µ−1(0)/G, and v denotes the projection onto the
vertical subspace. In other words, the horizontal projection of ∇X̃ Ỹ is precisely the horizontal
lift of ∇̄XY .

(Hint: Use expressions (3.31) and (3.29) to evaluate the horizontal and vertical components
of ∇X̃ Ỹ .)

In other words, formula (3.38) says that if we identifyH with the tangent space to µ−1(0)/G,
then the Levi-Civita connection on µ−1(0)/G is given simply by the horizontal projection of
the Levi-Civita connection on M . Or, said differently, that the covariant derivative commutes
with the horizontal projection. Since the complex structures also commute with the projection,
we see that ∇I = 0 on M implies that ∇̄Ī = 0 on µ−1(0)/G. Therefore using Exercise 3.20,
µ−1(0)/G is Kähler.

Notice that the above decomposition (3.37) can be thought of as

TM ∼= T
(
µ−1(0)/G

)
⊕ gC

where gC is the complexification of the Lie algebra of G. Therefore, morally speaking, it
would seem that µ−1(0)/G is the quotient of M by the action of GC. In some circumstances
this is actually an accurate description of the Kähler quotient; for instance, the construction of
complex projective space CPn as a Kähler quotient of Cn+1.

9.4.3 3.4.3 Hyperkähler quotients

Now let (M, g, I, J,K) be a hyperkähler manifold. We have three Kähler forms: ω(I), ω(J), and
ω(K). Suppose that G acts on M via isometries and preserving the three complex structures,
hence the three Kähler forms. Assume moreover that the action of G gives rise to three
equivariant moment mappings: µ(I), µ(J) and µ(K); which we can combine into a single map
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9.4.4 3.4.4 Mk as a hyperkähler quotient

µ :M → g∗ ⊗ R3

Equivariance implies that µ−1(0) is acted on by G. Assuming that µ−1(0)/G is a manifold,
we claim that it is actually hyperkähler.

Fix one of the complex structures, I, say; and consider the function

ν = µ(J) + iµ(K) :M → g∗ ⊗ C

For each Killing vector field Xa and any vector field Y ,

dνa(Y ) = ω(J) (Xa, Y ) + iω(K) (Xa, Y ) = g (JXa, Y ) + ig (KXa, Y )

dνa(IY ) = g (JXa, IY ) + ig (KXa, IY ) = −g(KX,Y ) + ig(JX, Y )

whence

dνa(IY ) = idνa(Y )

or in other words, ∂̄νa = 0, so that ν is a holomorphic function (relative to I). This means
that ν−1(0) is a complex submanifold of a Kähler manifold and hence its induced metric is
Kähler. Now G acts on ν−1(0) in such a way that it preserves the Kähler structure, and the
resulting moment mapping is clearly the restriction of µ(I) to ν−1(0). We may therefore perform
the Kähler quotient of ν−1(0) by the action of G, and obtain a manifold:

ν−1(0) ∩
(
µ(I)
)−1

(0)/G = µ−1(0)/G

whose metric is Kähler relative to (the complex structure induced by) I. To finish the proof
that µ−1(0)/G is hyperkähler, we repeat the above for J and K. This construction is called
the hyperkähler quotient, and was described for the first time in [HKLR87.

9.4.4 3.4.4 Mk as a hyperkähler quotient

Now we will prove that Nk is a hyperkähler quotient of the configuration space Ak of fields Wi

corresponding to finite-energy configurations with monopole number k. We can think of Wi as
maps R3 → R4⊗ so(3), and R4

can be thought of as a quaternionic vector space in two inequivalent ways: we first identify R4 =
H, but then we have to choose whether H acts by left or right multiplication. Since quaternionic
multiplication is not commutative, the two actions are different. Since we will be dealing with
monopoles, we choose the right action-left multiplication would correspond to antimonopoles.
Let I, J , and K denote the linear maps R4 → R4 representing right multiplication on H ∼= R4

by the conjugate quaternion units −i,−j, and −k respectively. The next exercise asks you to
work out the explicit expressions for I, J , and K relative to a chosen basis.

Exercise 3.32 (Hyperkähler structure of R4)

Choose a basis {1, i, j, k} for H. Then relative to this basis, prove that the linear maps I, J ,
and K are given by the matrices:

I =

(
iσ2 0
0 −iσ2

)
J =

(
0 1

−1 0

)
K = IJ =

(
0 iσ2

iσ2 0

)
Notice that together with the euclidean metric on R4, I, J,K make R4 into a (linear) hy-

perkähler manifold.
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9.4.4 3.4.4 Mk as a hyperkähler quotient

(Hint: Remember that the matrix associated to a linear transformation is defined by
Iei = ejIjji. This choice makes composition of linear transformations correspond with ma-
trix multiplication.)

We may now define a hyperkähler structure on Ak as follows. If Ẇi is a vector field on Ak,
then we define (

ÎẆi(x) = IijẆj(x),

and similarly for Ĵ and K̂. Clearly they obey the quaternion algebra Î Ĵ = K̂, etc because
I, J andK do. Moreover since they are constant (and so is the metric) they are certainly parallel
relative to the Levi-Civita connection on Ak with the metric given by the Yang-Mills-Higgs
functional. Hence Ak is an infinite-dimensional (affine) hyperkähler manifold.

Let G denote the group of finite-range time- and x4-independent gauge transformations.
Since the metric is gauge invariant, G acts on Ak via isometries. We also claim that G preserves
the three complex structures and gives rise to three equivariant moment mappings. In fact, we
will prove this in one go by constructing the moment mappings from the start.

The Killing vectors of the G action are just the infinitesimal gauge transformations and they
are parametrised by square-integrable functions ϵ : R3 → so(3). The resulting Killing vector
field is Xϵ ≡ δϵWi = Diϵ. For every such ϵ, define the following function:

µ(Î)
ϵ =

1

2

∫
d3xIij

(
Gij · ϵ

)
and the same for Ĵ and K̂.
Now let Ẇ be any tangent vector field on Ak. (Here and in the sequel we will suppress the

indices i whenever they don’t play a role in an expression.) Then(
ıϵω

(Î)
)
(Ẇ) = ω(Î)(Dϵ, Ẇ)

= g(ÎDϵ, Ẇ)

=

∫
d3xIijDjϵ · Ẇi

=

∫
d3xIijDiẆj · ϵ (integrating by parts)

= dµ(Î)
ϵ (Ẇ).

Hence,

ıϵω
(Î) = dµ(Î)

ϵ

Naturally, the same holds also for Ĵ and K̂. Hence we can construct a moment mapping µ
such that µϵ =

(
µ
(Î)
ϵ , µ

(Ĵ)
ϵ , µ

(K̂)
ϵ

)
. The next exercise asks you to prove that it is equivariant.

Exercise 3.33 (Equivariance of the moment mapping)

Prove that the moment mapping µ =
(
µ(I), µ(J), µ(K)

)
is equivariant. In other words, if ϵ and

η are gauge parameters, prove that

Xϵµ
(I)
η = dµ(I)

η (Xϵ) = µ
(I)
ϵ×η

and the same for J and K.
Therefore we can apply the preceding discussion about the hyperkähler quotient to deduce

that µ−1(0)/G is a hyperkähler manifold. But what is µ−1(0)? Configurations Wi belonging in
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µ−1(0) are those for which µ
(Î)
ϵ = 0 for all ϵ, and the same for Ĵ and K̂. Since ϵ is arbitrary,

this is equivalent to demanding that IijGij = 0, and the same for Ĵ and K̂. From the explicit
expressions for the matrices I, J , and K found in Exercise 3.32, we find that

IijGij = 0⇒ G12 = G34

JijGij = 0⇒ G13 = −G24,

KijGij = 0⇒ G14 = G23

But these make up precisely the self-duality condition on Gij, that is, the Bogomol’nyi
equation!

Therefore µ−1(0) is the submanifold of static solutions of the Bogomol’nyi equation with
monopole number k (the BPS- k-monopoles) and µ−1(0)/G is their moduli space Mk. In
summary, Mk is a 4k-dimensional hyperkähler manifold, obtained as an infinite-dimensional
hyperkähler quotient of Ak by the action of the gauge group G.

This "proof", although conceptually clear and offering a natural explanation of why Mk

should be a hyperkähler manifold in the first place, relies rather heavily on differential geometry.
Therefore a more pedestrian proof might be helpful, and we now turn to one such proof.

9.4.5 3.4.5 Another proof that Mk is hyperkähler

We start by expanding the Yang-Mills-Higgs action in terms of collective coordinates in order
to obtain an expression for the metric. Let Xa, a = 1, . . . , 4k, denote the collective coordinates
on the moduli space Mk of BPSk-monopoles. Let Wi(x,X(t)) be a family of BPS-monopoles
whose t-dependence is only through the t-dependence of the collective coordinates; that is,

Ẇi = ∂a WiẊ
a (3.39)

Notice that ∂a Wi need not be perpendicular to the gauge orbits. Indeed, generically, we
will have a decomposition

∂a Wi = δa Wi +Diϵa (3.40)

where δa Wi is the component perpendicular to the gauge orbits and Diϵa is the component
tangent to the gauge orbits, hence an infinitesimal gaugetransformation. The gauge parameters
ϵa are determined uniquely by ∂a Wi. Indeed, simply apply Di and use the fact that D2 ≡ DiDi

is negative-definite (hence invertible) to solve for ϵa:

ϵa = D−2Di∂a Wi.

Exercise 3.34 (The Yang-Mills-Higgs effective action)

Compute the effective action for such a configuration of BPS-monopoles, and show that provided
one sets W0 = Ẋaϵa, it is given by

Leff =
1

2
gabẊ

aẊb − 4πa

e
|k|

where the metric on Mk is given by

gab =

∫
d3xδa Wi · δb Wi, (3.41)

where, by construction, δa Wi are perpendicular to the gauge orbits and satisfy the linearised
Bogomol’nyi equation.
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One way to systematise the above expansion is in terms of t-derivatives. The zeroth order
term is given by the potential, which is a constant since the motion is purely along the flat
directions. The first order term vanishes due to our choice for W0,

$ while the quadratic term,
which describes the motion of such monopoles in the limit of zero velocity, corresponds precisely
to geodesic motion on Nk relative to the induced metric - that is, as a particle moving freely on
Mk or, somewhat pedantically, as a (1 + 0)-dimensional σ-model with Mk as its target space.

It is convenient to think of ϵa as the components of a connection. We define Da ≡ ∂a −
e (ϵa ×−), whence we can think of (Wi, ϵa) as the components of a connection on R4 ×Mk.
This allows us to interpret δa Wi as the mixed components of the curvature:

Gai = ∂a Wi − ∂iϵa − eϵa ×Wi = ∂a Wi −Diϵa = δa Wi

The other components Gab of the curvature may be formally computed from the Bianchi
identity:

DiGab = −2D[aδb]Wi = −Daδb Wi +Dbδa Wi (3.42)

by applying Di and inverting D2 as before.

Exercise 3.35 (A somewhat more explicit formula for Gab)

Prove that

Gab = −2eD−2 (δa Wi × δb Wi)

(Hint: Apply Di to (3.42), and use that δa Wi is perpendicular to the gauge orbits.)
Using these formulae it is possible to write a formal expression for the Christoffel symbols

of the Levi-Civita connection. Naturally this is left as an exercise.

Exercise 3.36 (The Christoffel symbols)

Prove that

Γabc = gcdΓab
d =

∫
d3xDaδb Wi · δc Wi (3.43)

Notice that Γabc = Γbac , since D[bδc]Wi = −1
2
DiGab which is orthogonal to δc Wi.

(Hint: Use the explicit expressions (3.30) and (3.41) and compute.)
Using the explicit expressions found in Exercise 3.32 for the hyperkähler structure in R4 we

now define the following two-forms on Mk:

ω
(I)
ab =

∫
d3xIiijδa Wi · δb Wj

and similarly for J and K, and their corresponding almost complex structures

Ia
b = gbcω(I)

ac Ja
b = gbcω(J)

ac Ka
b = gbcω(K)

ac

∗4 Notice that W0 is not zero for generic choices of Wi(x,X(t)), but it can be made to vanish after a
t-dependent gauge transformation.
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Exercise 3.37 (Explicit expressions for the complex structures)

(a) Prove that Iijδa Wj is orthogonal to the gauge orbits, and the same for J and K.
(b) Then derive the following formula:

Ia
bδb Wi = −Iijδa Wj (3.44)

and the same for Jab and Ka
b.

(c) Using these expressions, prove that Iab, Jab and Ka
b obey the quaternion algebra.

(Hints: (a) This is equivalent to the linearised Bogomol’nyi equation, in the form IijGij = 0,
etc.

(b) Argue that since Iabδb Wi is orthogonal to the gauge orbits,
∫
d3xIa

bδb Wi ·δc Wi defines
it uniquely. Then just compute the integral and use (a).)

We claim that the forms ω(I), ω(J) and ω(K) are parallel. Let’s see this for one of them
ω ≡ ω(I), the other cases being identical. By definition,

∇aωbc = ∂aωbc − Γab
dωdc − Γac

dωbd

We now compute this in steps. First of all we have:

∂aωbc =

∫
d3xIij

(
Daδb Wi · δc Wj + δb Wi ·Daδc Wj

)
(3.45)

Now we notice that Γabdωdc = −IceΓabe. Using the explicit expression (3.43), we arrive at

Γab
dωdc = −Ice

∫
d3xDaδb Wi · δe Wi (3.46)

and using (3.44) we can rewrite this as

Γdabωdc =

∫
d3xIijDaδbWi · δcWj (3.47)

with a similar expression for Γac
dωbd = −Γacdωdb. Adding it all together we find that

∇aωbc = 0. But this means that Iab, Jab, and Ka
b are also parallel, whence Mk is hyperkähler.

Chapter 4

10 The Effective Action for N = 2 Supersymmetric
Yang-Mills

In this chapter we will perform the collective coordinate expansion of theN = 2 supersymmetric
SO(3) Yang-Mills theory defined by equation (2.13). We will also discuss the quantisation of
the corresponding effective action. As we saw in the discussion in section 3.1.5 on the effective
theory for the 1monopole sector, the effective theory offers a qualitatively faithful description of
the dyonic spectrum, even though quantitatively it is only an approximation. Of course, in the
non-supersymmetric theory there is no reason to expect that the true quantum spectrum should
resemble the classical spectrum given by the Bogomol’nyi formula, but as we saw in Chapter 2,
supersymmetry protects both the formula for the bound from quantum corrections and also the
saturation of the bound. Hence it makes sense to expect that in the supersymmetric theory, the
quantisation of the effective action should teach us something about the full quantum theory.
As we shall soon discuss, this will have a chance of holding true only in the N = 4 theory, but
we can already learn something from the N = 2 theory we have just studied. We will therefore
first discuss the fermionic collective coordinates and then the effective quantum theory in the
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10.1 4.1 Fermionic collective coordinates

k-monopole sector. We will see that there are 2k fermionic collective coordinates and that
the resulting effective theory is to lowest order a (0 + 1) supersymmetric σ-model admitting
N = 4 supersymmetry consistent with the fact that Mk is hyperkähler. The quantisation of
this theory then leads to a geometric interpretation of the Hilbert space as the square-integrable
(0, q)-forms on Nk, and of the hamiltonian as the laplacian. This chapter is based on the work
of Gauntlett [Gau94].

10.1 4.1 Fermionic collective coordinates

As we saw in section 3.2, there are 4k bosonic collective coordinates in the k-monopole sector.
The purpose of this section is to compute the number of fermionic collective coordinates: we
will see that there are 2k of them. We will prove this in two ways. First we can set up this
problem as the computation of the index of an operator, as we did for the bosonic collective
coordinates; then essentially the same calculation that was done in section 3.2 yields the answer.
Alternatively, and following Zumino [Zum77], we will exhibit a supersymmetry between the
bosonic and fermionic collective coordinates which will also allow us to count them.

Suppose that we start with anN = 2 BPS-monopole obtained, say, in the manner of Exercise
2.17. Fermionic collective coordinates are simply fermionic flat directions of the potential; that
is, fermionic configurations which do not change the potential. In order to see what this means,
let us first write down the potential for a general field configuration. To this effect let us break
up the lagrangian density (2.13) into kinetic minus potential terms L = T −V , where

T =
1

2
∥G0i∥2 +

1

2
∥D0P∥2 +

1

2
∥D0 S∥2 + iψ · γ0D0ψ (4.1)

and

V =
1

2
∥DiP∥2 +

1

2
∥Di S∥2 +

1

4
Gij ·Gij +

1

2
e2∥P× S∥2 + iψ · γiDiψ

− ieψ̄ · γ5P×ψ − ieψ̄ · S×ψ (4.2)

The potential is then the integral V =
∫
R3V . For an N = 2 BPS-monopole, with W0 =

0, S = αϕ,P = βϕ with α2 + β2 = 1, the potential is given by

V =
1

2

∫
R3

∥Diϕ∥2 +
1

4

∫
R3

Gij ·Gij + i

∫
R3

ψ · (γiDi − eϕ (α + βγ5))ψ

where in the last term ϕ is in the adjoint representation; that is, ϕψ = ϕ × ψ. The first
two terms in the potential already reproduce the potential energy of a nonsupersymmetric
BPS-monopole: 4πa

e
|k|, for a k-monopole. Therefore turning on the fermions will not change

the potential provided that the third term vanishes; in other words, provided that ψ satisfies
the Dirac equation in the presence of the BPS-monopole. In other words, fermionic collective
coordinates are in one-to-one correspondence with zero modes of the Dirac operator. We will
now count the number of zero modes in two ways.

10.1.1 4.1.1 Computing the index

In order to count the zero modes it is again convenient to use the reformulation of the
BPS-monopole as an instanton, in terms of Wi = (Wi, ϕ), and to define the following
four-dimensional euclidean Dirac matrices: γ̄i = γ0γi and γ̄4 = γ0 (α + βγ5). In terms of these,
the fermion term in the potential is given by i

∫
R3 ψ

† · γ̄iDiψ, keeping in mind that ∂4 ≡ 0.
We want to compute the number of normalisable solutions to the equation γ̄iDiψ = 0.

Let us choose a Weyl basis in which γ̄5 = γ̄1γ̄2γ̄3γ̄4 is diagonal. In such a basis, a convenient
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representation of the euclidean Dirac matrices is the one given in equation (3.19). In that
representation the euclidean Dirac equation becomes:(

0 −iσiDi − eϕ1
iσiDi − e11 0

)(
ψ+

ψ−

)
= 0

But notice that we have seen these very operators before, in the computation of the number
of bosonic collective coordinates in section 3.2. In fact, in terms of the operator D defined in
equation (3.17), the above Dirac equation breaks up into two equations, one for each chirality:

Dψ− = 0 and D†ψ+ = 0

But now in Exercise 3.5 you showed that the operator DD† is positive, whence it has no
normalisable zero modes, hence neither does D†. Therefore we notice that fermionic zero modes
in the presence of a BPS-monopole necessarily have negative chirality. (For antimonopoles, it
would have been D which has no normalisable zero modes, and fermion zero modes would have
positive chirality.)

We can arrive at the same result in a different way which doesn’t use the explicit realisation
of the γ̄i-matrices. In fact, it is an intrinsic property of fermions coupled to instantons (in
four-dimensions). The next exercise takes you through it.

Exercise 4.1 (Fermion zero modes are chiral)

Consider solutions of the four-dimensional euclidean Dirac equation γ̄iDiψ = 0 in the pres-
ence of an (anti)self-dual gauge field. Prove that if the gauge field is self-dual (respectively,
antiselfdual), then fermion zero modes have negative (respectively, positive) chirality.

(Hint: Compute the Dirac laplacian γ̄iγ̄jDiDjψ and use the fact that D2 = DiDi is negative-
definite and has not normalisable zero modes.)

Finally, just as in section 3.2.1, the number of normalisable zero modes of D is given by its
index, which was computed in section 3.2.3 to be 2k, where k is the monopole number.

10.1.2 4.1.2 Using supersymmetry

We can reproduce this result in a different, but more useful way by exhibiting a supersymmetry
between the bosonic and fermionic zero modes. This is based on work by Zumino [Zum77].

Let δWi be a bosonic zero mode; that is, δWi satisfies the linearised Bogomol’nyi equation
(3.15) and Gauss’s law (3.1). Let η+be a constant, commuting spinor of positive chirality,
normalised to η†+η+ = 1. Define

ψ ≡ δWiγ̄iη+ (4.3)

It is clear that ψ has negative chirality and, as the next exercise asks you to show, ψ satisfies
the Dirac equation.

Exercise 4.2 (From bosonic to fermionic zero modes)

Let δWi be a bosonic zero mode as above. With ψ defined as above, prove that γ̄ ·Dψ = 0.
(Hint: Use Exercise 3.4.)
Conversely, suppose that ψ is a fermionic zero mode with negative chirality; that is, γ̄5ψ =

−ψ and γ̄ ·Dψ = 0. Then define

δWi ≡ iη†+γ̄γψ − iψ†γ̄iη+.

The next exercise asks you to prove that δWi is a bosonic zero mode.
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Exercise 4.3 (... and back)

With δWi defined as above, prove that it satisfies the linearised Bogomol’nyi equation (3.15)
and Gauss’s law (3.1).

The above result seems to suggest that there is a one-to-one correspondence between the
bosonic and fermionic zero modes, but this is fictitious, since not all the fermionic zero modes
obtained in this fashion are independent. Indeed, as we will now see, they are related by the
complex structure.

Let δa Wi for a = 1, . . . , 4k denote the bosonic zero modes, and let ψa = δa Wiγ̄iη+be the
corresponding fermionic zero modes. We will prove that Iabψb = iψa, where I is one of the
complex structures ofMk. Hence comparing with the discussion at the end of section 3.2.1, we
see that unlike bosonic zero modes, ψa and iψa are not linearly independent.

Let η+be a commuting spinor of positive chirality normalised to η†+η+ = 1. Define a 4 × 4
matrix A with entries

Aij ≡ η†+γ̄ijη+ (4.4)

We start by listing some properties of this matrix.

Exercise 4.4 (A complex structure)

Let A be the 4× 4 matrix with entries Aij given by (4.4). Prove that A satisfies the following
properties:

(1) A is antisymmetric;
(2) iA is real;
(3) A is antiselfdual: Aij = −1

2
ϵijℓℓAkℓ;

(4) A2 = 1, so that iA is a complex structure; and
(5) Aij γ̄jη+ = −γ̄iη+.
(Hint: This requires the Fierz identity:

η+η
†
+ =

1

4
(1+ γ̄5)−

1

8
Aij γ̄ij

which you should prove.)
We will now prove that we can choose η+in such a way that that iA agrees with any

one of the complex structures on R4 defined in Exercise 3.32, and that such an η+is unique
up to a phase. We start by noticing that the 4 × 4 matrix iA defined above is real and
antisymmetric, hence it belongs to so(4). As a Lie algebra, so(4) is isomorphic to so(3)× so(3)
(see Exercise 2.32). The fact that iA is antiselfdual, means that iA belongs to one of these
so(3)’s. In fact, it is the so(3) spanned by the complex structures I, J , and K of Exercise 3.32.
(Check that they are antiselfdual!) In fact, R4 has a two-sphere worth of complex structures:
{aI + bJ + cK | a2 + b2 + c2 = 1}, and from the above exercise, we see that iA defines a point
in this two-sphere. In the next exercise we see this explicitly.

Exercise 4.5 (iA lives on the sphere)

Compute the matrix i A explicitly in the representation of the Dirac matrices given by equation
(3.19), and show that it is given by

iA =


0 q3 −q2 −q1
−q3 0 q1 −q2
q2 −q1 0 −q3
q1 q2 q3 0

 = −q1K − q2J + q3I (4.5)
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where I, J , and K are the complex structures in R4 defined in Exercise 3.32 and qi = η†σiη,
where η is a complex Weyl spinor normalised to η†η = 1. (In the Weyl basis above η+ =

(
η
0

)
.)

Prove that qi are real and that they satisfy
∑

i q
2
i = 1, hence iA defines a point in the unit

two-sphere in R3.
Now, in the Weyl basis introduced above, η+ =

(
η
0

)
. Any other normalised positive chirality

spinor η′+ will have the same form with η′ replacing η. This new Weyl spinor will be related
to η by an element of U(2) : η′ = Uη. The matrix iA′ obtained from η′ has the form given by
(4.5) but with qi replaced by q′i ≡ η′†σiη

′ = η†U−1σiUη.

Exercise 4.6 (Adjoint transformation)

In the notation above, prove that q′i = Uijqj, where Uij is the three-dimensional adjoint repre-
sentation of U(2). (Notice that because the U(1) subgroup corresponding to the scalar matrices
act trivially, only the SU(2) subgroup acts effectively in this representation.)

Therefore the action of U(2) on η induces the adjoint action on the (qi). This action is
transitive on the unit sphere

∑
i q

2
i = 1, hence any two points (qi) and (q′i) are related by an

element of U(2). Notice that U(2) = SU(2)× U(1) and that the SU(2) subgroup acts freely,
whereas the U(1) acts trivially. Hence once a complex structure has been chosen, η is unique
up to the action of U(1); that is, a phase.

Let us then exercise our right to choose η+. We do so in such a way that

η†+γ̄ijη+ = iIij

where Iij is given by Exercise 3.32. Then using equation (3.44), we have

Ia
bψb = Ia

bδb Wiγ̄iη+ = −Iijδa Wj γ̄iη+

= iδa Wj γ̄jη+

= iψa (4.6)

where in the next to last line we have used (5) in Exercise4.5. Therefore there are only half
as many linearly independent fermionic zero modes as there are bosonic ones, in agreement
with the index calculation in the previous section.

10.1.3 4.2 The effective action

In this section we will write down the effective action governing the dynamics of the collective co-
ordinates to lowest order. Let us introduce bosonic collective coordinates Xa, for a = 1, . . . , 4k.
These coordinates parametrise the moduli spaceMk of BPS-monopoles with topological num-
ber k. In addition there will be fermionic collective coordinates λa, for a = 1, . . . , 4k satisfying
the condition λaIa

b = iλb. We now expand the supersymmetric Yang-Mills action (2.13) in
terms of the collective coordinates {Xa, λa} and keep only
the lowest nontrivial order. In order to count the order of an expression we take the conventions
that λa has order 1

2
, Xa has order 0, but time derivatives have order 1. These conventions are

such that a free theory of bosons Xa and fermions λa is of quadratic order.
We start by performing an SO(2) transformation which puts S = ϕ and P = 0, and choosing

an appropriate parametrisation for the fields Wi,P,W0, and ψ in terms of the collective coordi-
nates. As in the nonsupersymmetric theory, we leave W0 and, in this case also P, undetermined
for the moment. We choose to parametrise Wi as Wi(x,X(t)), where all the time dependence
comes from the collective coordinates. For this reason, equation (3.39) still holds where, as
before, ∂a Wi need not be perpendicular to the gauge orbits. Nevertheless we can project out
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10.1.3 4.2 The effective action

a part which does: δa Wi as in (3.40). Because δa Wi is perpendicular to the gauge orbits,
we know that ψa given by (4.3) is a fermion zero mode. We therefore parametrise ψ = ψaλ

a.
Notice that since ψa is commuting (because so is η+), λa is anticommuting as expected.

There is no reason, in principle, to expect Wi not to depend also on the fermionic collective
coordinates. In fact, using that these are odd, we can expand Wi as follows:

Wi(x,X, λ) = Wi(x,X) + λaWi,a(x,X) + λaλb Wi,ab(x,X) + · · · ;

but it is not hard to see that all terms but the first in the above expansion contribute only
higher order terms to the effective action.

Because our choice of ψ is a zero mode of the Dirac equation in the presence of a BPS-
monopole, the discussion of section 4.1 applies and provided that P = 0, the potential remains
at its minimum value: 4πa

e
k. However, P need not remain zero for this to be case. It can evolve

along a flat direction as we now show. The P-dependent terms in the potential (4.2) can be
written as follows:

1

2

∫
R3

∥DiP∥2 + ie

∫
R3

ψ† · (P×ψ)

where we have used that γ̄5ψ = γ0γ5ψ = −ψ. Integrating the first term by parts, and using
the invariance of the inner product in the second term, the above expression becomes:

−1

2

∫
R3

P ·
(
D2P + 2ieψ† ×ψ

)
where D2 = DiDi.
Exercise 4.7 (Computing ψ† × ψ)
Prove the following identity:

ψ† ×ψ = −1

e
λ̄aλbD2Gab

where Gab are some of the components of the curvature of the connection (Wi, ϵa) on R4 ×
Mk, which were computed in Exercise 3.35.

(Hint: You might want to use the identity:

η†+γ̄iγ̄jη+ = δij + iIij (4.7)

which is (up to a factor) the projector onto the I-antiholomorphic subspace of the complex-
ification C4 of R4.)

Therefore we see that the condition that the potential remains constant demands that we
either set P to zero or else

P = 2iλ̄aλbGab

Next we tackle the kinetic terms. Notice that either of the choices for P allow us to discard
P from the kinetic terms. Indeed, if P is nonzero, then the above expression shows that it is
already of order 1 and hence its contribution to the kinetic term (4.1) will be of order higher
than quadratic. Having discarded P from the kinetic terms, we remain with

1

2

∫
R3

∥G0∥2 + i

∫
R3

ψ† ·D0ψ

The first term is computed in the following exercise.
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10.2 4.3 N = 4 supersymmetry of the effective action

Exercise 4.8 (The first kinetic term)

Prove that the first term in the kinetic energy above is given by

1

2

∫
R3

∥∥∥G0e

∥∥∥2 = 1

2
gabẊ

aẊb +
1

2

∫
R3

∥∥∥Di

(
ϵaẊ

a −W0

)∥∥∥2
where gab was defined in (3.41).
(Hint: Use the fact that δa Wi is perpendicular to the gauge orbits!)
Finally we come to the second kinetic term. Plugging in the expression for ψ and using

equations (4.7), (3.44), and (4.6) we can rewrite the second term as

i

∫
R3

ψ† ·D0ψ = 2igabλ̄
aλ̇b + 2iλ̄aλbẊc

∫
R3

δa Wi · ∂cδb Wi

+ 2ieλ̄aλb
∫
R3

W0 ·
(
δa Wi × δb Wj

)
The next exercise finishes off the calculation.

Exercise 4.9 (... and the second kinetic term)

Prove that the second kinetic term can be written as

i

∫
R3

ψ† ·D0ψ = 2igabλ̄
a
(
λ̇b + Γcd

bẊcλd
)
− iλ̄aλb

∫
R3

(
W0 − ϵcẊc

)
·D2Gab

where the Christoffel symbols Γcd
b were defined in equation (3.43).

Putting the results of Exercises 4.8 and 4.9, we find that the kinetic terms of the action are
(to lowest order) given by:

1

2
gabẊ

aẊb + 2igabλ̄
aλ̇b + 2igabΓ

b
cdλ̄

aẊcλd

− iλ̄aλb
∫
R3

(
W0 − ϵcẊc

)
·D2Gab +

1

2

∫
R3

∥∥∥Di̇

(
ϵaẊ

a −W0

)∥∥∥2
We see that we can cancel the last two terms provided that we set

W0 = ϵaẊ
a − 2iλ̄aλbGab

With this choice, and to lowest order, the effective action then becomes:

Leff =
1

2
gabẊ

aẊb + 2igabλ̄
a
(
λ̇b + Γcd

bẊcλd
)
− 4πa

e
k (4.8)

Ignoring the constant term, this action describes a (0 + 1-dimensional supersymmetric (as
we shall see shortly) σ-model with target Mk.

10.2 4.3 N = 4 supersymmetry of the effective action

In general, symmetries of the theory under consideration play important roles in the effective
action. Broken symmetries give rise to collective coordinates, whereas unbroken symmetries re-
main symmetries of the effective action. As we have seen in section 2.3.4, N = 2 BPS-monopoles
preserve one half of the four-dimensional N = 2 supersymmetry. This supersymmetry must be
present in the effective action. In 0+1 dimensions, supersymmetry charges are one-component
Majorana spinors, hence one supersymmetry charge in four dimensions gives rise to four su-
persymmetry charges in 0 + 1. In this section we will prove that the effective action given by
(4.8) admits N = 4 supersymmetry. From the proof it follows that the same is true for any
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supersymmetric σ-model with hyperkähler target manifold-which is, of course, a well-known
fact.

We start by discarding the constant term in the action (4.8) and rewriting the remaining
terms in terms of complex coordinates adapted to the complex structure I of Mk. To this
end we define complex coordinates

(
Zα, Z̄ ᾱ

)
which diagonalise the complex structure; that

is, such that Iαβ = i1α
β and Iᾱ

β̄ = −i1ᾱβ̄. As for the fermions, equation (4.6) implies that
λaIa

b = iλb, whence λᾱ = 0. Similarly, λ̄α = 0. This prompts us to define new fermions ζ such
that ζα =

√
2λα and ζ ᾱ =

√
2λ̄ᾱ. In terms of these new variables, the effective action remains

Leff = gαβ̄Ż
α ˙̄Z β̄ + igᾱβζ

ᾱ
(
ζ̇β + Γγδ

βŻγζδ
)

(4.9)

where we have used that for a Kähler metric in complex coordinates, the only nonzero
components of the metric and the Christoffel symbols are gαβ̄ = gᾱβ and Γαβ

γ and Γᾱβ̄γ̄, as was
proven in Exercise 3.23.

10.2.1 4.3.1 N = 4 supersymmetry in R4: a toy model

In order to understand the supersymmetry of the action (4.9), let us first discuss the case of
R4 with the standard euclidean flat metric. We can think of R4 as C2 and introduce complex
coordinates Zα, Z̄ ᾱ where α = 1, 2. The analogous action to (4.9) in this case is given simply
by

Leff =
∑
α

(
Żα ˙̄Z ᾱ + iζ ᾱζ̇α

)
(4.10)

where ζα and ζ ᾱ are the accompanying fermions. This toy action has four real supersym-
metries. Two of them are manifest, as the next exercise asks you to show.

Exercise 4.10 (N = 2 supersymmetry in flat space)
Let δ1 and δI be the supersymmetries defined as follows:

δ1Z
α = ζα δ1ζ

α = iŻα δIZ
α = iζα δIζ

α = Żα

δ1Z̄
ᾱ = ζ ᾱ δ1ζ

ᾱ = iŻ ᾱ δIZ̄
ᾱ = −iζ ᾱ δIζ ᾱ = −Ż ᾱ

(The names chosen for these transformations will appear more natural below.) Prove that
they are invariances of the toy action (4.10), and that they satisfy the following algebra:

δ2
1
= δ2I = i

d

dt
and δ1δI = −δIδ1

We can rewrite the second of these supersymmetries in a way that makes its generalisation
obvious. If we let I denote the complex structure in R4 = C2 which is diagonalised by our
choice of complex coordinates, then the second supersymmetry δI can be rewritten as follows:

δIZ
α = Iαβζ

β δIζ
α = −iIαβŻβ

δIZ̄
ᾱ = I ᾱβ̄ζ

β̄ δIζ
ᾱ = −iI ᾱβ̄Ż β̄

which explains the notation. It now doesn’t take much imagination to write down the
remaining two supersymmetries. We simply replace I in turn by each of the other two complex
structures J and K of Exercise 3.32. The fact that I, J , and K satisfy the quaternion algebra
is instrumental in showing that these transformations obey the right supersymmetry algebra.
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Exercise 4.11 (The N = 4 supersymmetry algebra)

Let δ1 and δI be the supersymmetries given in Exercise 4.10, Define δJ and δK in the obvious
way. Let δ be any of these supersymmetries and δ′ ̸= δ be a second of these supersymmetries.
Prove that the following algebra is obeyed:

δ2 = i
d

dt
and δδ′ + δ′δ = 0

This is the N = 4 supersymmetry algebra.

10.2.2 4.3.2 N = 4 supersymmetry in hyperkähler manifolds

We now abandon our toy model and return to the action Leff given by (4.9). We expect that
the supersymmetry δ1 defined in Exercise 4.10 should also be an invariance of Leff and, given
our choice of coordinates, that so should δI. This is because I is diagonal and constant on the
chosen basis. In fact, leaving aside for the moment the issue of the invariance of Leff under
these transformations, Exercise 4.10 shows that they obey the right supersymmetry algebra.
On the other hand, the other two complex structures J and K will not be constant in this
basis, and hence the transformations δJ and δK defined above will not obey the supersymmetry
algebra. We will have to modify them appropriately.

To see this we will investigate the supersymmetry transformations associated to a a co-
variantly constant complex structure I. Let us not work on a complex basis adapted to I,
but rather on some arbitrary basis (Xa, ζa). We will attempt to write down a supersymmetry
transformation δ using I. Because the δ has order 1

2
(being essentially a "square root" of d/dt),

δXa is determined up to an inconsequential overall constant:

δXa = Ib
aζb. (4.11)

Computing δ2 we find

δ2Xa = ∂cIb
aId

cζdζb + Ib
aδζb

If we now use the fact that I is covariantly constant, so that

∂cIb
a = Γcb

dId
a − Γcd

aIb
d

we can solve for δζb by demanding that δ2Xa = iẊa:

δζa = −iIab Ẋb − Γbc
aIbdζ

dζc (4.12)

where we have discarded a term −1
2
Ib
aTcd

bIe
cIf

dζcζf where Tcdb ≡ Γcd
b− Γdc

b is the torsion
of the connection, which in our case is zero. In order to show that δ2 = id/dt on ζa, two
approaches present themselves. One can use the fact that ζa = −IbaδXb and use the fact that
on (any function of) X, δ2 = id/dt:

δ2ζa = −δ2
(
Ib
aδXb

)
= −i∂cIbaẊcδXb − Ibaδ2δXb

= −i∂cIbaẊcδXb − Ibaδδ2Xb since δ2δ = δ3 = δδ2

= −i∂cIbaẊcδXb − iIbaδẊb

= −i∂cIbaẊcδXb − iIba
(
Ic
bζc
)

= −i∂cIbaIdbẊcζd − iIba∂dIcbẊdζc + iζ̇a

= iζ̇a
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10.2.3 4.3.3 N = 4 supersymmetry of Leff

where in the last line we have used an identity resulting from taking the derivative of
I2 = −1. Alternatively, one can compute δ2ζa directly. This is naturally left as an exercise.

Exercise 4.12 (Another proof that δ2ζa = iζ̇a)
By taking δ of δζa, prove that δ2ζa = iζ̇a.
(Hint: You might find it necessary to use two properties of the Riemann curvature tensor:
Rabc

d +Rbca
d +Rcab

d = 0; and Rabc
dId

e = Rabd
eIc

d.
You are encouraged to prove these identities. The first one is the (first) Bianchi identity,

the other one follows from the fact that I is covariantly constant, and hence commutes with
the curvature operator.)

Let δI denote the supersymmetry transformation associated to the complex structure I. If
we define δ1 as above: δ1Xa = ζa and δ1ζ

a = iẊa, then just as before δ1δI = −δIδ1. In other
words, δ1 and δI generate an N = 2 supersymmetry algebra. Therefore this result holds for
any Kähler manifold, and not just for R4 as in the previous section.

Now let J be a second covariantly constant complex structure. It will give rise to its own
supersymmetry transformation given by equations (4.11) and (4.12), but with J replacing I.
Let us call this supersymmetry transformation δJ . When will δI and δJ (anti)commute? The
next exercise provides the answer.

Exercise 4.13 (Commuting supersymmetries)

Let δI and δJ denote the supersymmetries generated by covariantly constant complex structure
I and J . Prove that

δIδJX
a = −iIcbJbaẊc − Γbc

aId
bJe

cζdζe.

Conclude that (δIδJ + δJδI)X
a = 0 if and only if IJ = −JI. Prove that if this is the case,

then (δIδJ + δJδI) ζ
a = 0 as well, so that the two supersymmetries (anti)commute.

(Hint: To compute δIδJ + δJδI on ζa, you might find it easier to exhibit ζa = −IbaδIXb,
say, and then use that δIδJ + δJδI is zero on (functions of) Xa.)

This means that if {Xa} denote the coordinates of a hyperkähler manifold and {ζa} are
the accompanying fermions, then the four supersymmetries δ1, δI , δJ and δK satisfy an N = 4
supersymmetry algebra.

10.2.3 4.3.3 N = 4 supersymmetry of Leff

It remains to show that the four supersymmetries defined above, are indeed symmetries of the
effective action Leff . This will be easier to ascertain if we first rewrite the supersymmetry trans-
formations (4.11) and (4.12) in complex coordinates adapted to one of the complex structures:
I, say.

Let us therefore choose coordinates
(
Zα, Z̄ ᾱ, ζα, ζ ᾱ

)
adapted to the complex structure I.

Because the the metric is hermitian relative to this complex structure (in fact, relative to all
three), we can rewrite the equations (4.11) and (4.12) using the results of Exercise 3.23, Because
I is constant relative to these basis, δI precisely agrees with δI in Exercise 4.10.

Now consider the second complex structure J . Because IJ = −JI, J maps vectors of type
(0, 1) relative to I to vectors of type (1, 0) and viceversa. In other words, relative to the
above basis adapted to I, J has components Jαβ̄ and Jᾱβ. Therefore J generates the following
supersymmetry
transformation:

δJZ
α = iJβ̄

αζ β̄ δJζ
α = −iJβ̄α ˙̄Z β̄ − Γβγ

αJδ̄
βζ δ̄ζγ

δJ Z̄
ᾱ = Jβ

ᾱζβ δJζ
ᾱ = −iJβᾱŻβ − Γβ̄γ̄

ᾱJ β̄δ ζ
δζ γ̄
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10.2.3 4.3.3 N = 4 supersymmetry of Leff

where we have used (see Exercise 3.23) that Γαβγ and Γᾱβ̄γ̄
2 are the only nonzero components

of the Christoffel symbols. Similar formulas hold for δK .
As they stand, these supersymmetries are fermionic transformations. We can make them

bosonic by introducing an anticommuting parameter ε and defining the following transforma-
tions:

δε
1
Zα = εζα

δε
1
ζα = iεŻα

δε
1
Z̄ ᾱ = εζ ᾱ (4.13)

δε
1
ζ ᾱ = iε ˙̄Z ᾱ

δεIZ
α = iεζα

δεIζ
α = Żα

δεIZ̄
ᾱ = −iεζ ᾱ (4.14)

δεIζ
ᾱ = −ε ˙̄Z ᾱ

δεJZ
α = iεJβ̄

αζ β̄

δεJζ
α = −iεJβ̄α ˙̄Z β̄ − εΓβγαJδ̄βζ δ̄ζγ

δεJ Z̄
ᾱ = εJβ

ᾱζβ (4.15)

δεJζ
ᾱ = −iεJβᾱŻβ − εΓβ̄γ̄ ᾱJδβ̄ζδζ γ̄

δεKZ
α = iεKβ̄

αζ β̄

δεKζ
α = −iεKβ̄

α ˙̄Z β̄ − εΓβγαKδ̄
βζ δ̄ζγ

δεKZ̄
ᾱ = εKβ

ᾱζβ (4.16)

δεKζ
ᾱ = −iεKβ

ᾱŻβ − εΓβ̄γ̄ ᾱKδ
β̄ζδζ γ̄

The task ahead is now straightforward-albeit a little time consuming. Taking each of these
supersymmetries in turn, and letting ϵ depend on time, we vary the action Leff . Invariance of
the action implies that

δεLeff = ε̇Q+ Ẋ

where X is arbitrary, and Q is the charge generating the supersymmetry. The next exercise
summarises the results of this calculation.

Exercise 4.14 (The supersymmetry charges)

Prove that Leff is invariant under the supersymmetries given by equations (4.13)(4.16), with
the following associated supersymmetry charges:

Q1 = gαβ̄ζ
αŻ β̄ + gαβ̄ζ

β̄Żα

QI = igαβ̄ζ
αŻ β̄ − igαβ̄ζ β̄Żα

QJ = Jαβζ
αŻβ + Jᾱβ̄ζ

ᾱŻ β̄

QK = Kαβζ
αŻβ +Kᾱβ̄ζ

ᾱŻ β̄

where Jαβ = Jαγ̄βγ̄ and Jᾱβ̄ = Jᾱ
γgβ̄γ, and similarly for K.

(Hint: The calculation uses the two fundamental identities described in the hint to Exercise
4.12. In complex coordinates, and using the results of Exercise 3.23, they now look as follows:
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10.3 4.4 A brief review of harmonic theory

Rαβ̄γ
δ = Rγβ̄α

δ Rαβ̄γ̄
δ̄ = Rαγ̄β̄

δ̄

Rαβ̄γ
ϵJϵ

δ̄ = Rαβ̄ϵ̄
δ̄Jγ

ϵ̄ Rαβ̄γ̄
ϵJϵ̄

δ = Rαβ̄ϵ
δJγ̄

ϵ

and similarly for K.)
Having established the N = 4 supersymmetry of the effective action Leff it is now time to

quantise the theory. It turns out that supersymmetry will provide a geometric description of
the Hilbert space and of the hamiltonian. This will require some basic concepts of harmonic
theory on Kähler manifolds. The purpose of the next section is to provide a brief review for
those who are not familiar with this topic.

10.3 4.4 A brief review of harmonic theory

This section contains a brief scholium on the harmonic theory of orientable riemannian man-
ifolds and in particular of Kähler manifolds. The reader familiar with these results can easily
skip this section. Other readers are encouraged to read on. We will of necessity be brief: details
can be found in many fine books on the subject [Gol62, GH78, War83, Wel80].

10.3.1 4.4.1 Harmonic theory for riemannian manifolds

Let M be a smooth manifold. We will let E =
⊕

p E
p denote the algebra of differential forms

on M . The de Rham operator d : Ep → Ep+1 obeys d2 = 0 and hence one can define its
cohomology (the de Rham cohomology of M) as follows:

Hp
dR(M) =

ker d : Ep → Ep+1

im d : Ep−1 → Ep
In other words, the p-th de Rham cohomology is a vector space whose elements are equiva-

lence classes of closed p-forms (dω = 0) —two closed p-forms ω1 and ω2 being equivalent if their
difference is exact: ω1−ω2 = dθ, for some (p−1)-form θ. The crown jewel of harmonic theory is
the decomposition theorem of Hodge, which states that if M is a compact orientable manifold
there exists a privileged representative for each de Rham cohomology class. This representative
is obtained by introducing more structure on M -namely a riemannian metric. From the above
definition, it is clear that
the de Rham cohomology does not depend on any geometric properties of the manifold. It
is precisely this reason why the Hodge theorem is of fundamental importance: because it es-
tablishes a link between the topological and the geometric properties of riemannian manifolds.
(Actually, the fact that the de Rham cohomology is a topological invariant of M is not obvious.
It is called the de Rham theorem and it is proven in War83, BT81.)

We therefore let (M, g) be an m-dimensional orientable riemannian manifold. Let {ei} for
i = 1, . . . ,m be a local orthonormal basis for the 1-forms. Orthonormality means that the line
element is locally ds2 =

∑
i e
i ⊗ ei. In general such a basis will of course not exist globally,

but will transform under a local O(m) transformation when we change coordinate charts. In
this basis the volume form is given by vol = e1 ∧ e2 ∧ · · · ∧ em. This volume form defines a
local orientation in M . Orientability simply means that, unlike the 1-forms {ei}, the volume
form-and hence the orientation-does exist globally. It also means that upon changing charts,
the {ei} will change by a local SO(m) transformation. (Prove this!)

A local basis for the differential forms E on M is given by wedge products of these 1-forms.
It is convenient to introduce multi-indices I = (i1, i2, . . . , ip) where 1 ≤ i1 < i2 < · · · < ip ≤ m.
We say that I has length p or that |I| = p. We then define eI ≡ ei1 ∧ ei2 ∧ · · · ∧ eip . In this
notation,

{
eI |I|I |,= p

}
is a local basis for Ep; that is, any p-form ω on M can be written

locally like
∑

|I|=p ωIe
I , where the coefficients ωI are smooth functions. If I = (i1, i2, . . . , ip) is
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10.3.1 4.4.1 Harmonic theory for riemannian manifolds

a multi-index of length p, we let Ic = (ip+1, ip+2, . . . , im) denote the multi-index of length m−p
uniquely defined by the fact that {i1, . . . , ip} ∪ {ip+1, . . . , im} = {1, 2, . . . ,m}.

We can now define the Hodge ⋆-operation. This is a linear map ⋆ : Ep → Em−p defined by

⋆eI = signσeI
c

where if I = (i1, . . . , ip) and Ic = (ip+1, . . . , im), then sign σ is the sign of the permutation

σ =

(
i1 i2 · · · im
1 2 · · · m

)
In particular ⋆1 = vol. The following result is important for calculations.

Exercise 4.15 (The square of the Hodge ⋆)

Prove that acting on Ep, ⋆2 = (−)(m−p)p.
The Hodge ⋆-operator allows us to define a pointwise metric ⟨−,−⟩ on forms as follows:

α ∧ ⋆β = ⟨α, β⟩ vol (4.17)

The properties of this pointwise metric are summarised in the following exercise.

Exercise 4.16 (The pointwise metric on forms)

Prove that the basis
{
eI
}

is orthonormal relative to the pointwise metric defined in (4.17)
and therefore that it agrees on 1-forms with the one induced by the riemannian metric on M .
Conclude that the pointwise metric is positive-definite.

If, in addition, M is compact we can define an honest metric (called the Hodge metric) on
forms by integrating the pointwise metric over the manifold relative to the volume form:

(α, β) =

∫
M

⟨α, β⟩vol =
∫
M

α ∧ ⋆β

If M is not compact, then we can restrict ourselves to compactly supported forms or to
forms α for which the Hodge norm ∥α∥2 ≡ (α, α) is finite. Such forms are often called square-
integrable.

The Hodge metric allows us to define the adjoint d∗ to the de Rham operator, with which
the following exercise concerns itself.

Exercise 4.17 (The adjoint de Rham operator)

Define the adjoint d∗ of the de Rham operator by

(dα, β) = (α, d∗β)

for all forms α, β ∈ E. Prove that d∗ satisfies the following properties:
(1) d∗ : Ep → Ep+1;
(2) (d∗)2 = 0; and
(3) d∗ = (−)mp+m+1 ⋆ d⋆ acting on Ep.
Now let us define the Hodge laplacian △ : Ep → Ep by △ ≡ dd∗ + d∗d. We say that a

p-form is harmonic if △α = 0.
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Exercise 4.18 (Harmonic forms)

Prove that a form α is harmonic if and only if dα = d∗α = 0. Prove that harmonic forms have
minimal Hodge norm in their cohomology class. That is, if α is harmonic, then prove that the
Hodge norm of α + dβ is strictly greater than that of α.

The Hodge decomposition theorem states that in a compact orientable manifold each de
Rham cohomology class has a unique harmonic representative; that is, that there is a vector
space isomorphism

Hp
dR(M) ∼= harmonic p-forms

The proof of this theorem is rather technical. The idea is to use the normminimising property
to define the harmonic representative; but one then has to prove that this form is smooth. This
calls for the use of regularity theorems which are beyond the scope of these notes. A proof can
be found, for example, in War83.

The Hodge decomposition theorem has a very important corollary, which the following
exercise asks you to prove.

Exercise 4.19 (Poincaré duality)

Prove that the Hodge *-operator commutes with the Hodge laplacian. Use the Hodge decom-
position theorem to conclude that for M an m-dimensional compact orientable manifold, there
is an isomorphism

Hp
dR(M) ∼= Hm−p

dR (M)

This isomorphism is known as Poincaré duality.

10.3.2 4.4.2 Harmonic theory for Kähler manifolds

Now suppose that M is a complex manifold of complex dimension n. As explained in section
3.3.2, on a complex manifold one has local coordinates

(
zα, z̄β̄

)
, where α, β = 1, 2, . . . , n.

This allows us to refine the grading of the complex differential forms. We say that a complex
differential form ω is of type (p, q) if it can be written in local complex coordinates as

ω = ωα1···αpβ̄1···β̄q(z, z̄)dz
α1 ∧ · · · ∧ dzαp ∧ dz̄β̄1 ∧ · · · ∧ dz̄β̄q

where ωα1···αpβ̄1···β̄q(z, z̄) are smooth functions. The algebra of complex differential forms is
then bigraded as follows:

E =
⊕

0≤p,q≤n

Ep,q (4.18)

where Ep,q is the space of (p, q)-forms.
The de Rham operator d also breaks up into a type (1,0) piece and a type (0, 1) piece:

d = ∂ + ∂̄ where
∂ : Ep,q → Ep+1,q

∂̄ : Ep,q → Ep,q+1

Breaking d2 = 0 into types we find that ∂2 = ∂̄2 = ∂∂̄ + ∂̄∂ = 0. We call ∂̄ the Dolbeault
operator, and its cohomology

Hp,q

∂̄
(M) =

ker ∂̄ : Ep,q → Ep,q+1

im ∂̄ : Ep,q−1 → Ep,q
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the Dolbeault cohomology.
Now suppose that we give M a hermitian metric h; that is, a riemannian metric compatible

with the complex structure: h(IX, IY ) = h(X, Y ). Such metrics always exist: one simply takes
any riemannian metric g, say, and averages it over the finite group generated by I : h(X, Y ) ≡
1
2
g(X, Y )+ 1

2
g(IX, IY ). If we forget the complex structure for a moment, M is an orientable

riemannian manifold of (real) dimension 2n. Therefore we have a Hodge ⋆-operator defined as
in the previous section. The next exercise asks you to show how ⋆ interacts with the complex
structure.

Exercise 4.20 (The Hodge ⋆ and the complex structure)

Prove that the Hodge ⋆-operator maps (p, q)-forms to (n− q, n− p)-forms:

⋆ : Ep,q → En−q,n−p

and that acting on (p, q)-forms, ⋆2 = (−)p+q.
(Hint: The first part is computationally quite involved, but the idea is easy. We can always

find a local basis {θi} for the (1,0)-forms on M such that the line element (relative to the
hermitian metric) has the form

ds2 =
n∑
i=1

(
θi ⊗ θ̄i + θ̄i ⊗ θi

)
where

{
θ̄i
}

are the complex conjugate (0,1)-forms. We can decompose these forms into
their real and imaginary parts as follows: θj = 1√

2
(e2j−1 + ie2j) and θ̄j = 1√

2
(e2j−1 − ie2j). In

terms of these real 1-forms, the line element becomes ds2 =
∑2n

j=1 e
j ⊗ ej; in other words, they

form an orthonormal basis. Therefore we know the action of the Hodge ⋆-operator on the
{
eI
}
.

Your mission, should you decide to accept it, is to find out what it is in terms of the θI ∧ θ̄J .
The second part simply uses Exercise 4.15,

Another operation that we have on a complex manifold is complex conjugation, which
exchanges (p, q)-forms with (q, p)-forms. Using the Hodge *-operator and complex conjugation
we can define a pointwise hermitian metric for the complex forms, also denoted ⟨−,−⟩ as in
the real case treated in the previous section. This metric is defined by

α ∧ ⋆β̄ = ⟨α, β⟩vol

Notice that relative to this metric, the decomposition in equation (4.18) is orthogonal: if β
is a (p, q)-form, then β̄ is a (q, p)-form, and ⋆β̄ is a (n− p, n− q)-form. The only way one can
obtain the volume form, which is an (n, n)-form, is to wedge with another (p, q)-form.

Exercise 4.21 (The pointwise hermitian metric)

Prove that the basis
{
θI ∧ θ̄J

}
is orthonormal relative to the pointwise hermitian metric, and

conclude that it is positive-definite.
If M is compact, we can then integrate this pointwise metric relative to the volume form

and define an honest hermitian metric on complex forms:

(α, β) =

∫
M

⟨α, β⟩vol =
∫
M

α ∧ ⋆β̄ (4.19)

This metric is again called the Hodge metric. As in the real case, if M is not compact, then
we can still make sense of this provided we restrict our attention to square-integrable forms.
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It follows from Exercise 4.17 that on a complex manifold, d∗ = − ⋆ d⋆ regardless on which
forms it is acting. Breaking d∗ into types we find

d∗ = ∂∗ + ∂̄∗ where
∂∗ : Ep,q → Ep−1,q

∂̄∗ : Ep,q → Ep,q−1

On the other hand, breaking − ⋆ d⋆ into types, and comparing we see that

∂∗ = − ⋆ ∂̄ ⋆ and ∂̄∗ = − ⋆ ∂⋆

We can therefore define two laplacian operators:

□ = ∂∂∗ + ∂∗∂ and □̄ = ∂̄∂̄∗ + ∂̄∗∂̄

both of which map Ep,q → Ep,q.
Just as for de Rham cohomology, there is a Hodge decomposition theorem for Dolbeault

cohomology, which says that the ∂̄-cohomology on (p, q)-forms is isomorphic to the space of
□̄-harmonic (p, q)-forms:

Hp,q

∂̄
∼= □̄-harmonic (p, q)-forms.

In a generic complex manifold there is no reason to expect any relation between the Dol-
beault laplacians and the Hodge laplacian △ = d∗d+ dd∗; but the magic of Kähler geometry is
that if M is Kähler, then

△ = 2□ = 2□. (4.20)

This is not a hard result to obtain, but it requires quite a bit of formalism that we will not
need in the remainder of this course, hence we leave it unproven and refer the interested reader
to the literature Gol62, GH78, Wel80.

As an immediate corollary of equation (4.20) and of the Hodge decomposition theorems for
de Rham and Dolbeault cohomologies, we have

Hr
dR(M) ∼=

⊕
p+q=r

Hp,q

∂̄
(M)

and the following exercise describes another immediate corollary of equation (4.20).

Exercise 4.22 (Serre duality)

Prove that both the Hodge *-operator and complex conjugation commute with the laplacian.
Use this to conclude that for M a compact Kähler manifold of complex dimension n, there exist
isomorphisms:

Hp,q

∂̄
(M) ∼= Hn−q,n−p

∂̄
(M) ∼= Hn−p,n−q

∂̄
(M)

These isomorphisms are known collectively as Serre duality.
Finally, a curiosity. If we define the r-th Betti number br of a manifold as the real dimension

of the r-th de Rham cohomology, we have as a consequence of Serre duality that for a compact
Kähler manifold all the odd Betti numbers are even.
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10.3.3 4.4.3 Explicit formulas for ∂̄ and ∂̄∗

The purpose of this section is simply to derive some explicit expressions for the differential
operators ∂̄ and ∂̄∗. These are the expressions by which we will be able to recognise them
when we quantise the effective action. Throughout this section M shall be a Kähler manifold
of complex dimension n.

Let us first start by deriving formulas for d and d∗. For this we can forget momentarily the
complex structure and think of M simply as an orientable riemannian manifold of dimension
2n. Let {ei} denote a local orthonormal basis for the vector fields, and let {ei} denote the
canonical dual basis for the 1-forms. They are also orthonormal relative to the induced metric.
Let ∇ denote the Levi-Civita connection. We claim that d can be written as

d =
2n∑
i=1

ei ∧∇ei (4.21)

Proving this will be the purpose of the following exercise.
Exercise 4.23 (An explicit expression for d)
Let d? denote the right-hand side of equation (4.21).
Prove that d? is independent of the orthonormal basis chosen so that it is well-defined.
Let ei = eiadx

a and ei = eai ∂a. Prove that d? =
∑

a dx
a ∧ ∂a, and conclude that d? = d.

(Hint: Use the fact that the Levi-Civita connection is torsionless.)
With this result we can now describe a similar formula for d∗. Letting {ei} and {ei} be as

above, we will prove that

d∗ = −
2n∑
i=1

ι
(
ei
)
∇ei (4.22)

where ι (ei) is the contraction operation, defined by:
ι (ei) f = 0 for f a function; ι (ei) ej = δij; and ι (ei) (ej ∧ ω) = δijω − ej ∧ ι (ei)ω.
The next exercise asks you to prove equation (4.22).

Exercise 4.24 (An explicit expression for d∗)

Let d∗? stand for the right-hand side of equation (4.22). Prove that d∗? = −⋆d⋆, whence it agrees
with d∗. (We are using (3) in Exercise 4.17, with m = 2n.)

(Hint: Prove first that d∗? is well-defined; that is, it is independent of the choice of orthonor-
mal frame. Because of this and by linearity, conclude that it is sufficient to compare d∗? and
−⋆d⋆ on a p-form of the form fe1∧e2∧· · ·∧ep. Moreover argue that it is sufficient to compute
this at a point where ∇eie

j = 0. Then do it.)
As a corollary of the previous exercise, it follows that relative to a coordinate basis, we can

write

d∗ = −
∑
a

ι (dxa) ∂a (4.23)

where now ι (dxa) dxb = gab.
We can now re-introduce the complex structure. Let

{
θi, θ̄i

}
be a complex basis for the

complex vector fields, and let
{
θi, θ̄i

}
be the canonical dual basis for the complex 1-forms. In

terms of the above basis {ei} , θi is given as in Exercise 4.20. The canonical dual basis for the
vector fields are related by

θi =
1√
2
(e2i−1 − ie2i) θ̄i =

1√
2
(e2i−1 + ie2i)
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Inverting this change of basis, and using equations (4.21) and (4.22), we find

d =
n∑
i=1

(
θi ∧∇θi + θ̄i ∧∇θ̄i

)
and

d∗ = −
n∑
i=1

(
ι
(
θi
)
∇θi + ι

(
θ̄i
)
∇θ̄i

)
Breaking up into types, one concludes that

∂̄ =
n∑
i=1

θ̄i ∧∇θ̄i and ∂̄∗ = −
n∑
i=1

ι
(
θi
)
∇θi

Or in a coordinate basis,

∂̄ =
n∑

ᾱ=1

dz̄ᾱ ∧ ∂ᾱ and ∂̄∗ = −
n∑

α=1

ι (dzα) ∂α (4.24)

These equations will be important in the sequel.

10.3.4 4.5 Quantisation of the effective action

In this section we discuss the canonical quantisation of the effective action (4.8). We will be
able to identify the Hilbert space with the square-integrable (0, q)-forms on the moduli space
Mk. We will exploit the supersymmetry to write the hamiltonian as the anticommutator of
supersymmetry charges which, under the aforementioned isomorphism, will be identified as the
Dolbeault operator ∂̄ and its adjoint under the Hodge metric. This will then allow us to identify
the ground states of the effective quantum theory as the harmonic (0, q)-forms on the moduli
space.

10.3.5 4.5.1 Canonical analysis

The first step in this direction is to find the expression for the canonical momenta. Then we write
the hamiltonian and the supersymmetry charges in terms of the momenta. We write down the
Poisson brackets and make sure that the classical algebra is indeed the N = 4 supersymmetry
algebra. Most of these calculations are routine, and are therefore left as exercises.

The first exercise starts you in this path by asking you to compute the canonical momenta.

Exercise 4.25 (The canonical momenta)

Prove that the canonical momenta defined by Leff take the following form:

Pα =
∂Leff

∂Żα
= gαβ̄

˙̄Z β̄ + iΓαβγ̄ζ
γ̄ζβ

P̄ᾱ =
∂Leff

∂Ż ᾱ
ᾱ

= gᾱβŻ
β

πα =
∂Leff

∂ζ̇α
= −igαβ̄ζ β̄

πᾱ =
∂Leff

∂ζ̇ ᾱ
= 0

where Γαβγ̄ = Γαβ
δgδγ̄.
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The fact that πᾱ = 0 is not very important. It is simply a consequence of the fact that the
fermionic part of the effective lagrangian is already in first order form, so that morally speaking
{ζ ᾱ} play the role of momenta while {ζα} are coordinates.

The effective hamiltonian Heff is defined as usual by:

Heff = ŻαPα +
˙̄Z ᾱP̄ᾱ + ζ̇απα − Leff

The next exercise asks you to compute it.

Exercise 4.26 (The effective hamiltonian)

Prove that the effective hamiltonian is given by

Heff = gαβ̄PαP̄β̄ + gαβ̄Γαγ
δP̄β̄πδζ

γ

Next we write the supersymmetry charges obtained in Exercise 4.14 in terms of momenta.
This is another easy exercise.

Exercise 4.27 (The supersymmetry charges revisited)

Prove that the supersymmetry charges obtained in Exercise 4.14 have the following form:

Q1 = ζαPα + ζ ᾱP̄ᾱ = ζαPα + igαβ̄παP̄β̄

QI = iζαPα − iζ ᾱP̄ᾱ = iζαPα + gαβ̄παP̄β̄

QJ = Jαᾱ
ᾱP̄ᾱ + Jᾱ

αζ ᾱPα − iJαᾱΓαβγ̄ζ ᾱζ γ̄ζβ

QK = Kα
ᾱζαP̄ᾱ +Kᾱ

αζ ᾱPα − iKᾱ
αΓαβγ̄ζ

ᾱζ γ̄ζβ

The canonical Poisson brackets are defined to be the following:{
Pα, Z

β
}
= δβα

{
P̄ᾱ, Z̄

β̄
}
= δβ̄ᾱ

{
πα, ζ

β
}
= δβα

Exercise 4.28 (Some checks)

As a check on our calculations, show that the supersymmetry transformations given in equations
(4.13)-(4.16) are indeed generated via Poisson brackets by the supersymmetry charges computed
in the previous exercise.

Finally, we are ready to verify that we have a classical realisation of the N = 4 supersymme-
try algebra. Let q = q1i+q2j+q3k+q4 ∈ H be a quaternion. LetQq ≡ q1QI+q2QJ+q3QK+q4Q1.
The next exercise asks you to prove that the supersymmetry charges obey the N = 4 super-
symmetry algebra.

Exercise 4.29 (Classical N = 4 supersymmetry algebra)

Let q, q′ ∈ H be quaternions. Then prove that under Poisson bracket:

{Qq, Qq′} = i (q̄q′)Heff

where q̄ = −q1i − q2j − q3k + q4 is the conjugate quaternion and q̄q′ =
∑

i qiq
′
i is the

quaternionic product.
Because the supersymmetry charges generate under Poisson bracket the supersymmetry

transformations, the above exercise implies that the effective hamiltonian indeed generates
time translation. If you feel up to it you can check this directly from the expression of the
hamiltonian.
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10.3.6 4.5.2 The quantisation of the effective hamiltonian

To quantise the effective hamiltonian we first need to identify the Hilbert space. Let us quickly
quantise the bosons. We choose to realise Zα and Z̄ ᾱ as multiplication operators and hence Pα
and P̄ᾱ will be realised as derivatives:

Pα 7→ −i
∂

∂Zα
and P̄ᾱ 7→ −i

∂

Z̄ ᾱ

For the fermions, we notice that the canonical Poisson brackets can be rewritten in terms
of ζα and ζ ᾱ as follows: {

ζα, ζ β̄
}
= igαβ̄

Upon quantisation this gives rise to the following anticommutation relations

ζαζ β̄ + ζ β̄ζα = gαβ̄

with all other anticommutators vanishing. Of course, gαβ̄ is a function of Zα, Z̄ ᾱ; but for
each point

(
Zα, Z̄ ᾱ

)
in Mk, the above anticommutation relations define a Clifford algebra. In

other words, this defines a Clifford bundle on Mk. Fixing a point in Mk, we have a standard
Clifford algebra of
the type studied in section 2.2.2. It has a unique irreducible representation constructed as
follows. We choose a Clifford vacuum |Ω⟩, defined by the condition

ζα|Ω⟩ = 0 for all α

The representation is then built on |Ω⟩ by acting with the ζ ᾱ.
We now tensor together the representations of the bosons and the fermions and what we

have is linear combinations of objects of the form

f(Z, Z̄)ζ ᾱζ β̄ · · · ζ γ̄|Ω⟩

If we take the f(Z, Z̄) smooth, this space is clearly isomorphic to the space ⊕0≤p≤2kE
0,p of

differential forms of type (0, p) on Mk:

f(Z, Z̄)ζ ᾱζ β̄ · · · ζ γ̄|Ω⟩ ↔ f(Z, Z̄)dZ̄ ᾱ ∧ dZ̄ β̄ ∧ · · · ∧ dZ̄ γ̄

Of course the Hilbert space will consist of (the completion of) the subspace formed by those
forms which are square integrable relative to a suitable inner product. As we saw in section
4.4.2, the natural inner product to consider is the Hodge metric given by (4.19). Therefore we
have the following geometric interpretation of the Hilbert space H of the quantum effective
theory:

H ∼=
⊕

0≤p≤2k

E
0,p
L2 (4.25)

where E0,p
L2 denotes the space of (0, p)-forms onMk with finite Hodge norm; that is, square-

integrable.
In order to identify the hamiltonian we will use supersymmetry. The expressions for the su-

persymmetry charges and the hamiltonian, being polynomial, suffer from ordering ambiguities.
One way to get around this problem is to define the quantisation in a way that the N = 4 su-
persymmetry algebra is realised quantum-mechanically, and in such a way that we can identify
the resulting operators geometrically. The hamiltonian can be defined as the square of any of
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the supersymmetry charges, but we find it more convenient to take complex linear combinations
of Q1 and QI . Indeed, let us define

Q = i
1

2
(Q1 + iQI) and Q∗ = −i1

2
(Q1 − iQI)

The classical expressions for these charges are very simple

Q = iζ ᾱP̄ᾱ and Q∗ = −iζαPα

and they obey the following algebra

{Q,Q∗} = i
1

2
Heff (4.26)

The quantisation is now clear. Quantise the charges Q and Q∗ as follows:

Q 7→ ζ ᾱ
∂

∂Z̄ ᾱ
and Q∗ 7→ −ζα ∂

∂Zα
(4.27)

But notice that we have seen these operators before. Indeed, acting on
f ≡ fᾱβ̄···γ̄ζ

ᾱζ β̄ · · · ζγ̄|Ω⟩, we find that

Qf = ∂δ̄fᾱβ̄···γ̄ζ
δ̄ζ ᾱζ β̄ · · · ζ γ̄|Ω⟩

Under the isomorphism (4.25), this corresponds to the form ∂̄f . In other words, Q 7→ ∂̄.
How about Q∗? Acting on a (0, 0)-form, Q∗ is zero, since ζα annihilates the Clifford vacuum.

Acting on a (0, 1)-form fᾱᾱᾱ|Ω⟩, we find

Q∗fᾱζ
ᾱ|Ω⟩ = −∂βfᾱgᾱβ|Ω⟩

In other words, up to a sign, it is given by the divergence. This fact persists to higher
(0, p)-forms. Indeed, the next exercise asks you to show that Q∗ = ∂̄∗, the adjoint of ∂̄ under
the Hodge metric.

Exercise 4.30 (Q∗ is ∂̄∗
)

Show that under the isomorphism (4.25), the quantisation of Q∗ given by (4.27) agrees with
∂̄∗ = − ⋆ ∂⋆, the adjoint of ∂̄ under the Hodge metric.

(Hint: Compare with equation (4.24).)
Finally, we quantise the hamiltonian by demanding that the N = 4 supersymmetry algebra

be preserved quantum-mechanically. In other words, and taking into account equation (4.26),
we quantise the hamiltonian as follows:

Heff 7→ 2 (QQ∗ +Q∗Q)

Under the identification Q ↔ ∂̄ and Q∗ ↔ ∂̄∗, the quantum effective hamiltonian agrees
with twice the Dolbeault laplacian □̄ or-since Mk is (hyper)Kähler-with the Hodge laplacian
△.

This result doesn’t just provide a beautiful geometric interpretation of the effective quantum
theory, but also allows us to use geometric information to derive physical results. For example,
the ground states of the theory will be in one-to-one correspondence with (square-integrable)
harmonic (0, p)-forms. This sort of reasoning will play a crucial role in the test of Montonen-
Olive duality in N = 4 supersymmetric Yang-Mills theory, which shall be the focus of the next
chapter.
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Chapter 5

11 The Effective Action for N = 4 Supersymmetric
Yang-Mills

In the previous chapter we found that the low energy effective action for the collective coordi-
nates of N = 2 supersymmetric Yang-Mills was given by supersymmetric quantum mechanics
on the moduli space of BPS-monopoles. In this chapter we will do the same for N = 4 super
Yang-Mills. As we saw when we discussed that theory in Chapter 2, N=4 super Yang-Mills is a
prime candidate to exhibit Montonen-Olive duality: not just are the masses and the structure
of the multiplets protected by supersymmetry, but the massive vector bosons and the BPS-
monopole belong to isomorphic multiplets. Therefore it would be possible for this theory to
afford two inequivalent descriptions: one the standard one and a dual description where the
perturbative fields are those in the multiplet containing the BPS-monopole. The structure of
this chapter is therefore very similar to that of the previous chapter. We will first count the
number of fermionic collective coordinates and will perform the collective coordinate expan-
sion of the action up to second order. The resulting theory is again a (0 + 1) supersymmetric
σ-model, this time admitting N = 8 supersymmetry due to the fact that there are twice as
many fermionic collective coordinates as in the N = 2 case. The quantisation of the effective
action will proceed along lines similar to the previous chapter: this time the Hilbert space will
be isomorphic to square integrable forms on the monopole moduli space, and the hamiltonian
will once again be given by the laplacian. This chapter is based on the work of Blum [Blu94].

11.0.1 5.1 Fermionic collective coordinates

We saw in section 3.2 that there are 4k bosonic coordinates in the k-monopole sector; and, as
we saw in section 4.1, N = 2 supersymmetry contributed 2k fermionic collective coordinates.
In this section we will show that for N = 4 supersymmetric Yang-Mills the number of fermionic
collective coordinates will double. We can understand this heuristically in a very simple matter.
It follows from the discussion in section 4.1, that fermionic collective coordinates are in one-to-
one correspondence with zero modes of the Dirac equation in the monopole background. The
Dirac operator is the same in both the N = 2 and the N = 4 theories, but it acts on different
types of fermions. In the N = 2 theory, ψ was an unconstrained Dirac spinor (it came from a
Weyl spinor in six dimensions); whereas in the N = 4 theory, it acts on a quartet of Majorana
fermions (the dimensional reduction from ten-dimensions of a Majorana-Weyl fermion). But
now four Majorana spinors have twice the number of degrees of freedom that an unconstrained
Dirac spinor does: 4× 4 = 16 real components to only 4 complex.

To make this argument precise, we need to look in detail at how the Dirac operator breaks
up. We start with a monopole background like the one in 2.4.3. Namely, we choose W0 =
0, SI = aIϕ, and PJ = bJϕ, where aI and bJ are real numbers satisfying

∑
I (a

2
I + b2I) = 1,

and where (Wi,ϕ) define a k-monopole. Because the scalar fields are collinear, the potential
remains at the minimum provided that the fermions satisfy the Dirac equation:

γ̄iDiψ = 0

where γ̄i = γ0γi, and γ̄4 = −iγ0
(
aIα

I + bJβ
Jγ5
)
.

Exercise 5.1 (Euclidean Clifford algebra)

Prove that the matrices γ̄i defined above satisfy a euclidean Clifford algebra in four-dimensions.
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From Exercise 4.1 we know that the normalisable zero modes of the Dirac operator γ̄iDi

will have negative chirality with respect to γ̄5. But remember that ψ is also Majorana. We
now check what chirality with respect to γ̄5 and the Majorana condition imply on a spinor.

Recall that our choice (2.32) of ten-dimensional Γ-matrices is such that the Majorana con-
dition in ten-dimensions translates directly into the Majorana condition in four-dimensions.
In four-dimensional Minkowski spacetime, there cannot be Majorana-Weyl spinors, but the
euclidean γ̄-matrices preserve the Majorana condition as the next exercise asks you to show.

Exercise 5.2 (γ̄i and the Majorana condition)

Let ψ be a quartet of Majorana spinors. Prove that γ̄iψ is again Majorana. Deduce that one
can simultaneously impose the Majorana and γ̄5-chirality conditions.

Let us now start by choosing a explicit realisation for the γ-matrices:

γ0 =

(
0 1

1 0

)
γi =

(
iσi 0
0 −iσi

)
γ5 =

(
0 −1
1 0

)
(5.1)

The next exercise asks you to compute the charge conjugation matrix in this realisation.

Exercise 5.3 (The charge conjugation matrix explicitly)

Prove that the charge conjugation matrix C in the above realisation can be chosen to be

C =

(
iσ2 0
0 −iσ2

)
(Hint: Using that Ct = −C and that Cγµ = −γtµC determine C up to a constant multiple.

A possible choice for this multiple is then one for which C†C = 1. That is the choice exhibited
above.)

Now let ψ denote a quartet of Majorana spinors which in addition obey γ̄5ψ = −ψ. Because
γ̄5 = −γ5γ̄4 (prove it!), the chirality condition on ψ means that γ̄4ψ = −γ5ψ. This means
that the euclidean Dirac equation γ̄iDiψ = 0 becomes (γ̄iDi − γ5D4)ψ = 0. For the explicit
realisation (5.1), this has the virtue that the Dirac operator doesn’t see the internal SU(4)
indices. Indeed, the Dirac operator is given by:

γ̄iDi =

(
0 −D
D 0

)
⊗ 14 = (−iσ2 ⊗D)⊗ 14

)
(5.2)

where 14 is the identity matrix in the internal SU(4) space, and D = iDiσi+ eϕ1 is the
operator introduced in (3.17).

We are now ready to count the zero modes of the euclidean Dirac operator, by relating them
to zero modes of D, which we have already calculated to be 2k. We first choose the explicit
realisation for the αI and βJ matrices found in Exercise 2.33: αI = e+I and βJ = e−J . Next we
exploit the internal SU(4) invariance to fix a1 = 1 and all the other aI and bJ to zero. This
means that γ̄5 = −iγ0γ5⊗α1 = (σ3 ⊗ 1)⊗(σ2 ⊗ 1). From Exercise 5.3 we know that the charge
conjugation matrix is given by C = (σ3 ⊗ iσ2)⊗ 14. The next exercise asks you to write down
the typical quartet of Majorana spinors ψ which in addition are chiral with respected to γ̄5.

∗Notice that if ψ had the opposite chirality with respect to γ̄5, then it would have been D† which would
have appeared. This is as expected from the results of Exercise 3.5 and Exercise 4.1
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Exercise 5.4 ("Majorana-Weyl" spinors)

Prove that every quartet of Majorana spinors ψ obeying γ̄5ψ = ±ψ is of the form:((
η

−iσ2η∗

)(
ζ

−iσ2ζ∗

)(
∓iη
±σ2η∗

)(
∓iζ
±σ2η∗

))
where η and ζ are complex two-component spinors.
Finally we count the zero mode of the euclidean Dirac operator γ̄iDi.

Exercise 5.5 (Counting zero modes)

Show that ψ is a "Majorana-Weyl" zero mode of the euclidean Dirac operator, in the sense of
the previous exercise, if and only if η and ζ are zero modes ofD. Therefore if ηa for a = 1, . . . , 2k
is a basis for the normalisable zero modes of D, then the 4k spinors((

ηa
−iσ2η∗a

)(
0

0

)(
∓iηa
±σ2η∗a

)(
0

0

)) ((
0

0

)(
ηa

−iσ2η∗a

)(
0

0

)(
∓iηa
±σ2η∗a

))
form a basis for the normalisable zero modes of γ̄iDi.
In summary, there are 4k fermionic collective coordinates for N = 4 supersymmetric Yang-

Mills with gauge group SO(3).

12 Monopoles for Arbitrary Gauge Groups for Children
by JM Figueroa-O’Farrill

In this chapter we start the study of electromagnetic duality in supersymmetric gauge theories
with an arbitrary gauge group. We will be interested in this part of the notes only on N = 4
super Yang-Mills. Our principal aim is to frame an analogue of the Montonen-Olive duality
conjecture for these theories, to develop testable predictions and then to test them. This
will occupy several chapters, but in this one we will start with the analysis of the kind of
monopole solutions that can exist in a Yang-Mills-Higgs theory with gauge group G, taken to
be a compact, connected Lie group, and a Higgs field with values in the adjoint representation.
We will cover the homotopy classification of topologically stable solutions and the generalised
Dirac quantisation condition. This chapters borrows quite a lot from the magnificent lectures
of Coleman Col77, and from the paper of Goddard, Nuyts and Olive GNO77.

12.1 6.1 Topologically stable solutions

Let G be a compact connected Lie group, and Φ a scalar field taking values in some finite-
dimensional representation ∨ of G. We will assume that there is a G-invariant potential V (Φ)
which is positive semi-definite and also that V admits a G-invariant metric. This is necessary
in order to write down the kinetic term for Φ in the action. We will let g denote the Lie algebra
of G. We will fix once and for all an invariant metric on g. As the next exercise shows, such a
metrics always exists.

Exercise

6.1 (Invariant metrics exist)
Prove that there exists a G-invariant metric in the Lie algebra of a compact Lie group.
(Hint: Start with any metric and average over the group with respect to the Haar measure.

Does this argument work for any representation?)
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We will denote both metrics on g and on V by (−,−), hoping that no confusion will arise.
The lagrangian density of the Yang-Mills-Higgs system is given by

L = −1

4
(Gµν ,G

µν) +
1

2
(DµΦ, D

µΦ)− V (Φ) (6.1)

where
Dµ = ∂µΦ− e Wµ · Φ Gµν = ∂µWν − ∂νWµ − e [ Wµ,Wν ],
where Wµ are the g-valued gauge potentials, and by · we mean the action of g on the

representation V.
Let M0 denote the manifold of vacua: those values of Φ for which V (Φ) = 0. Because V is

G-invariant, G will map M0 to M0; in other words, G stabilises M0.
We now choose the temporal gauge W0 = 0. As the next exercise shows, this can always be

done and leaves intact the freedom of performing timeindependent gauge transformations.

Exercise 6.2 (The temporal gauge)

Prove that the temporal gauge exists by exhibiting a gauge transformation which makes W0 = 0.
Prove that this gauge is preserved by time-independent gauge transformations.

(Hint: Use path-ordered exponentials.)
In this gauge, the energy density corresponding to the lagrangian density (6.1) is given by

H =
1

2

(
Ẇi, Ẇi

)
+

1

2
(Φ̇, Φ̇) +

1

4
(Gij,Gij) +

1

2
(DiΦ, DiΦ) + V (Φ)

where a dot indicates the time derivative, and where repeated indices are summed. The
energy is of course the integral over space R3 of the energy density H , and hence finite-energy
configurations must obey the following asymptotic conditions as |−→r | → ∞:

Ẇi = 0 and Φ̇ = 0, whence fields are asymptotically static; Gij = 0 faster than O(1/r);
DiΦ = 0 faster than O(1/r); and V (Φ) = 0.

In particular this last condition says that Φ defines a map from the asymptotic 2 -sphere
S2
∞ ⊂ R3 to the manifold of vacua M0. Because M0 is stabilised by G, it will be foliated by

orbits of G. For example, in G = SO(3) and the Higgs is in the adjoint, the leaves of the
foliation of SO(3) in R3 are the round spheres centred at the origin, with a "singular" orbit
corresponding to the sphere of zero size. A priori there is no reason to expect that the mapping
S2
∞ → M0 defined by the asymptotics of the Higgs field should lie on only one of the orbits,

but because DiΦ = 0 in this limit, this is actually the case. The proof is left as an exercise.

Exercise

6.3 (Φ (S2
∞) ⊂M0 lies in a single orbit)

Prove that the image of S2
∞ lies in a single orbit in M0.

(Hint: Integrate the equation DiΦ = 0 on S2
∞.)

A sufficient-but as shown by Coleman [Col77]) not necessary-condition for a finite-energy
configuration to be non-dissipative is that it should be topologically stable. As explained in
section 1.2.2, a way to guarantee the topological stability of a field configuration is for the map
Φ : S2

∞ → M0 to belong to a nontrivial homotopy class. It therefore behoves us to study the
homotopy classes of maps from the asymptotic two-sphere S2

∞ to the manifold of vacua M0 or,
more precisely, to the orbit to which Φ (S2

∞) belongs. To this effect we find it useful to set down
some basic notions about homotopy groups. Readers familiar with this material can easily skip
the next section.
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12.1.1 6.1.1 Some elements of homotopy

This section contains a brief review of homotopy theory. Homotopy theory is the study of
continuous change, and is particularly concerned with the determination of quantities which
are impervious to such changes. Roughly speaking a homotopy is a continuous deformation
parametrised by the unit interval I = [0, 1]. We will have to be a little bit more precise than
this in what follows, but we will avoid getting too technical. In particular, we will not give
many proofs. Luckily for us, the aspects of homotopy theory that we will need in these notes
can be understood quite intuitively. Proofs can be given but they rely quite a bit on point-set
topology. Since that is not the main point of these notes, we simply point the reader who
wishes to look at the proofs of the statements made in this section to the old but still excellent
book by Steenrod Ste51.

The useful objects in homotopy theory are not just topological spaces, but spaces with a
privileged point called the basepoint. A map between two
such spaces is understood to be a continuous function which sends basepoint to basepoint. Let
X and Y be two topological spaces with basepoints x0 and y0 respectively, and let f0 and f1
be two continuous functions X → Y taking x0 to y0. We say that these two functions are
homotopic if there exists a family of functions parametrised by the interval which interpolates
continuously between them. More precisely, f0 is homotopic to f1 (written f0 ≃ f1) if there
exists a continuous function F : X × I → Y , such that for all x ∈ X,F (x, 0) = f0(x) and
F (x, 1) = f1(x) and such that for all t ∈ I, F (x0, t) = y0. This last condition says that the
homotopy is relative to the basepoint.

The fundamental group

A good example with which to visualise these definitions is to take X to be the circle. We can
think of the circle as the unit interval with endpoints identified. Then a map from the circle to
Y as a map f : I → Y with f(0) = f(1) = y0. That is, a continuous loop based at y0. Then
two such loops are homotopic if they can be continuously deformed to each other through loops
which are based at y0.

The set of homotopy equivalence classes of maps f : X → Y with f (x0) = y0 is written
[X, x0;Y, y0]. In the special case above where X is the circle, the set of homotopy equivalence
classes is written π1 (Y, y0). But π1 (Y, y0) is more than just a set: indeed, based loops can be
composed. Given two loops f1 and f2 based at y0, we can form a third loop f1 ∗ f2 by simply
going first along f1 and then along f2 at twice the speed. In other words,

(f1 ∗ f2) (t) =

{
f1(2t) for t ∈

[
0, 1

2

]
f2(2t− 1) for t ∈

[
1
2
, 1
]

Notice that composition is not just defined for loops but also for paths, provided that the
first path ends where the second begins. As the following exercise shows, composition of based
loops induces a well-defined operation on homotopy classes, which makes π1 (Y, y0) into a group.

Exercise 6.4 (π1 (Y, y0) is a group )

In this exercise we prove that π1 (Y, y0) is a group, with group multiplication given by compo-
sition of loops. The proof consists of several steps which are all very easy. The idea is to first
prove that ∗ makes sense in π1 (Y, y0) and then that ∗ on loops satisfies all the properties of a
group up to homotopy. This means that in π1 (Y, y0) they are satisfied exactly.

is well-defined in homotopy. Prove that if f0 ≃ f1 and g0 ≃ g1 are loops, then f0∗g0 ≃ f1∗g1.
(This allows us to work with loops, knowing that up
to homotopy it doesn’t really matter which loop we choose to represent its homotopy class.)
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is associative in π1 (Y, y0). Prove that if f1, f2, and f3 are loops then (f1 ∗ f2) ∗ f3 ≃
f1 ∗ (f2 ∗ f3). In other words, ∗ is associative up to homotopy.

π1 (Y, y0) has an identity. Prove that the constant loop sending all the circle to y0 is an
identity for ∗ up to homotopy; that is, if k denotes the constant loop, then k ∗ f ≃ f ∗ k ≃ f
for any loop f . Inverses exist. Let f be a loop, and let f̄ denote the loop obtained by following
f backwards in time: f̄(t) = f(1 − t). Prove that f ∗ f̄ ≃ f̄ ∗ f ≃ k, where k is the constant
loop.

(Hint: It may be convenient to devise a pictorial way to denote loops and homotopies. For
instance a loop f based at y0 can be depicted as a unit interval whose endpoints are marked
y0:

Similarly if f and g are two such loops, a homotopy H between them can be depicted as a
square whose left and right edges are marked y0 and whose top and bottom edges correspond
to f and g:

Composition of loops can then be depicted simply as pasting the intervals together by their
endpoints and contracting (reparametrising time) so that the resulting interval has again unit
length. The following picture illustrates this:

In this language, the group properties become almost self-evident. For example, the asso-
ciativity property of ∗ simply becomes
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and similarly for the other axioms.)
The group π1 (Y, y0) is known as the first homotopy group of the pointed space (Y, y0). If

Y is path-connected, so that any two points in Y can be joined by a continuous path, then the
first homotopy group does not depend (up to isomorphism) on the basepoint. This fact has a
simple proof which we leave to the next exercise. Incidentally, the condition of connectedness
and path-connectedness are not equivalent, but they do agree for manifolds, and hence for all
the spaces we will be considering in these notes.

Exercise 6.5 (π1 (Y, y0) ∼= π1 (Y, y1))
Let Y be path-connected and y0 and y1 be two points in Y . Fix a path γ : I → Y with

γ(0) = y0 and γ(1) = y1. Because Y is path-connected, γ exists. We can use this path to
turn any loop f1 based at y1 into a loop based on y0: one simply composes γ̄ ∗ f1 ∗ γ, where
γ̄(t) = γ(1− t). Prove that this defines a group isomorphism π1 (Y, y1) ∼= π1 (Y, y0).

Therefore when Y is connected, it makes sense to talk about π1(Y ) without reference to a
basepoint. This group is called the fundamental group of Y . If this group is trivial, so that all
loops are homotopic to the constant map, then Y is said to be simply-connected.

Notice that the isomorphism in Exercise 6.5 depends on the choice of path γ joining the two
basepoints. How does the isomorphism depend on γ? It is easy to show (do it!) that if γ′ is any
other path which is homotopic to γ with endpoints fixed, then the isomorphisms induced by γ
and γ′ agree. On the other hand, paths in different homotopy classes generally define different
isomorphisms. This can be formulated in a way that shows an action of the fundamental group
of the space on itself by conjugation. This will play a role later and we will discuss this further
we study the addition of topological charges for largely separated monopoles.

The fundamental groups of some manifolds are well known. Here are some examples.
Rn is simply-connected for any n. The punctured plane R2\{0} is no longer simply-

connected; in fact, π1 (R2\{0}) ∼= Z. The isomorphism is given by the following well-known
integral formula from complex analysis. To see notice that R2\{0} = C×is the punctured
complex plane. Let γ be a loop in C×, and compute the contour integral∮

γ

1

2πi

dz

z

It is well known that this is an integer and is a homotopy invariant of the loop.
π1 (S

1) ∼= Z. This is just the above example in disguise. We can think of S1 as the unit circle
in the complex plane S1 ⊂ C×. Any loop (or homotopy for that matter) in C×can be projected
onto the unit circle by t 7→ γ(t) 7→ γ(t)/|γ(t)|. The isomorphism π1 (S

1) ∼= Z is known as the
degree of the map. It basically counts the number of times one circle winds around another.
Puncturing Rn, for n > 2, does not alter the fundamental group. In fact, any loop in Rn\{0}
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is homotopic to a loop on its unit sphere Sn−1 ⊂ Rn, again by projecting. But for n > 2,
it is intuitively clear that any loop on Sn−1 is homotopic to a constant. For n = 3 it is the
well-known principle that "you cannot lasso an orange." You cannot lasso higher-dimensional
oranges either. You can make a non-simply-connected space out of R3 by removing a circle (or
a knot), say, or an infinite line.

However it is not only by making holes in a space that we can generate nontrivial loops.
We can also identify points. For example, if we take the sphere Sn, for n > 1, and identify
antipodal points, we describe a space which is not simply-connected. The space in question is
the space of lines through the origin in Rn+1: since every line through the origin will intersect
the unit sphere in two antipodal points. We call this space the real projective space RPn. We
can lift a loop in RPn up to Sn. This procedure is locally well-defined once we choose a starting
point in Sn. There is no further choice and when we are done with the lift, we are either at the
starting point or at its antipodal point, since both points map down to the same point in RPn.

(a)

(b)
Figure 6.1: The two possible lifts to Sn of a loop in RPn.
In the former case, the loop has lifted to an honest loop in Sn, which is depicted by (a) in

Figure 6.1. Since Sn is simply-connected, we can project the homotopy to RPn and this gives
a homotopy for the original loop. On the other hand, if the loop ends at the antipodal point,
as shown in (b) in Figure 6.1, there is clearly no way to deform it to the constant map while
keeping endpoints fixed, so it defines a nontrivial loop in RPn. However notice that the loop
obtained by going twice around the loop lifts to an honest loop in the sphere, and is hence
trivial. This shows that π1 (RPn) ∼= Z2. The two-to-one map ρ : Sn → RPn is a covering
map, in that it is a local homeomorphism and every point p in RPn has a neighbourhood U
such that its inverse image by the covering map ρ−1(U) ⊂ Sn consists of two disconnected
neighbourhoods. Because Sn is simply-connected, we say that Sn is the universal covering
space of RPn. All reasonable spaces X (certainly all manifolds and hence all spaces considered
in these notes) possess a universal covering space X̃. This space is simply-connected and is
such that it admits a free action of the fundamental group of X. In the case of Sn, it admits an
action of Z2, sending a point on the sphere to its antipodal point. The case n = 3 is particularly
interesting, because it is intimately related with two of our favourite Lie groups: SU(2) and
SO(3).

Exercise 6.6 (SU(2) and SO(3))
Prove that the Lie group SU(2) of 2×2 special unitary matrices is parametrised by a three-

sphere S3 and that the group SO(3) of 3×3 special orthogonal matrices is parametrised by the
real projective space RP3. Prove that there is a group homomorphism SU(2)→ SO(3) which
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sends both 1 and −1 in SU(2) to 1 in SO(3). Notice that 1 and −1 generate the centre of
SU(2), which is isomorphic to Z2. Hence SU(2) is the universal covering group of SO(3).

This situation persists for other Lie groups. Every semisimple compact
Lie group G has a universal covering group G̃, sharing the same Lie algebra g. The funda-

mental group π1(G) is naturally identified with a subgroup of the centre of G̃. We will be able
to compute π1(G) by comparing the finite-dimensional irreducible representations of G with
those of G̃, which are those of g. For example, not every irreducible representation of SU(2)
is a representation of SO(3): only those with integer spin. Since representations of SU(2) can
have integer or half-integer spin, this means that SU(2) has twice as many irreducible repre-
sentations as SO(3)-which is precisely the order of π1(SO(3)) ∼= Z2. This is no accident, as we
will see later on.

Before we abandon the subject of the fundamental group, we mention one last fact. Notice
that all the fundamental groups that we have discussed so far are abelian. This is not always
the case. In fact, the fundamental group of any compact Riemann surface of genus g > 1
is non-abelian. However, there is an important class of manifolds for which the fundamental
group is abelian.

Exercise 6.7 (π1(G) is abelian)

Let G be a connected Lie group. Prove that π1(G) is abelian.
(Hint: In a Lie group there are two ways to compose loops. We can use the loop composition

* defined above, or we can use pointwise group multiplication, provided that the loops are
based at the identity. Indeed, if f and g are loops in G based at the identity, one can define
(f • g)(t) = f(t)g(t). Prove that f ∗ g ≃ f • g, so that we can use group multiplication to define
the multiplication in the fundamental group. Use this to write down a homotopy between f ∗ g
and g ∗ f , for any two loops f and g in G.)

Higher homotopy groups

The fundamental group has higher dimensional analogues obtained by substituting the circle
by a sphere. Just like we could think of the circle as the interval I with edges identified, we
can think of the n-sphere as the multiinterval In with its boundary ∂In identified to one point.
There is a rich theory for all n, but we will only need n = 2 in these notes, so we will concentrate
mainly on this case. Any map S2 → X can be thought of as a map I2 → X which sends the
boundary ∂I2 to the basepoint x0 ∈ X. Just as in Exercise 6.4, we choose to depict such a
map f as a rectangle I2 with the basepoint x0 along the edges to remind us that x0 is where
∂I2 gets mapped to:

We will denote the homotopy classes of such maps by π2 (X, x0). Just like for π1, we can
turn this space into a group. We first discuss composition. Two maps S2 → X can be composed
by adjoining the squares, just like we did for loops. However in this case there seems to be an
ambiguity: we can adjoin the squares horizontally or vertically. We will see that there is indeed
no such ambiguity, but for the present we choose to resolve it by composing them horizontally.
In other words, if f and g are two maps I2 → X, we define the composition f ∗ g by
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(f ∗ g) (t1, t2) =

{
f (2t1, t2) for t1 ∈

[
0, 1

2

]
g (2t1 − 1, t2) for t1 ∈

[
1
2
, 1
]

Clearly the resulting map is continuous, since the boundary conditions agree: f (1, t2) =
g (0, t2) = x0 for all t2. Pictorially this composition corresponds to the following diagram:

Just like we did for π1 (X, x0), we can show that π2 (X, x0) is a group.

Exercise 6.8 (π2 (X, x0) is a group )

This exercise follows similar steps to Exercise 6.4. Prove the following:
is well-defined in homotopy.
is associative up to homotopy.
π2 (X, x0) has an identity. Prove that the constant map sending all of I2 to x0 is an identity

for ∗ up to homotopy. Inverses exist. Let f be a map I2 → X, let f̄ denote the map obtained
by following f backwards in the first of the two times: f̄ (t1, t2) = f (1− t1, t2). Prove that f̄
is the inverse of f up to homotopy.

If X is path-connected, it follows that π2 (X, x0) doesn’t depend on the basepoint (up to
isomorphism). Indeed, let f represent a homotopy class in π2 (X, x0). Given any other basepoint
x1 ∈ X, let γ be a path from x0 to x1. The following diagram represents a homotopy class in
π2 (X, x1):

where the arrows represent the path γ going from x0 to x1. The next exercise asks you to
show that this map is an isomorphism.

Exercise 6.9 (π2 (X, x0) ∼= π2 (X, x1))

Prove that the above map is an isomorphism π2 (X, x0) ∼= π2 (X, x1); and that the isomor-
phism only depends on the homotopy class of the path γ used to define it.

Hence for path-connected X it makes sense to talk about π2(X) without reference to the
basepoint, provided that we are only interested in its isomorphism class. This group is a higher-
dimensional analogue of the fundamental group π1(X). Unlike the fundamental group, π2(X)
is always abelian. The
following sequence of homotopies proves this assertion:
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This proof also shows that there is no ambiguity in the composition after all. Similarly one
proves that also πk(X) for k > 2 are abelian.

Finally we discuss some examples of higher homotopy groups. Unlike the fundamental
group, for which there are theorems (for instance, the Van Kampen theorem) allowing us to
compute π1(X) starting from a decomposition of X into simpler spaces, the computation of
the higher homotopy groups is a very difficult problem. For example, not all the homotopy
groups of the 2-sphere S2 are known! Nevertheless, here are some examples of higher homotopy
groups:

πk (S
n) = 0 for k < n, and πn (S

n) ∼= Z. The first equality is the fact that one cannot
k-lasso an n-orange, for k < n; whereas the last isomorphism is given by the degree of the map,
as was the case for n = 1. πk (S1) = 0 for k > 1. This follows because S1 can be covered by
a contractible space: S1 ∼= R/Z. πk (T n) = 0 for k > 1, where T n is an n-torus. This follows
for the same reason as the above example: T n ∼= Rn/Λ, where Λ is some lattice. πk (Σg) = 0
for k > 1, where Σg is a compact Riemann surface of genus g. Again, the proof is as above,
since Σg can be written as the quotient of the Poincaré upper half plane by a Fuchsian group:
Σg
∼= H/Γ. π2(G) = 0, for any topological group G. This result of É. Cartan will play a very

important role in the next section. The homotopy groups of the spaces determining a fibration
F → E → B, where F is the typical fibre, E is the total space, and B is the base, are related
by a useful gadget known as the exact homotopy sequence of the fibration:

· · · → πn(B)→ πn−1(F )→ πn−1(E)→ πn−1(B)→ · · ·
· · · → π2(E)→ π2(B)→ π1(F )→ π1(E)→ π1(B)

The "exactness" of this sequence simply means that every arrow is a group homomorphism
such that its kernel (the normal subgroup sent to the identity) precisely agrees with the image
of the preceding arrow. If the fibration is principal, so that F is a Lie group, then the sequence
extends one more term to include a map π1(B)→ π0(F ). Where π0(F ) is the set of connected
components of the typical fibre. One can define π0(X) in this way for any space X, but for a
general X, π0(X) is only a set. It is when X = G is a group, that π0(G) also inherits a group
operation. Indeed, π0(G) ∼= G/G0, where G0 is the connected component of the identity. It is
in this case that it makes sense to speak of a group homomorphism π1(B)→ π0(G).

A lot more could be said about higher homotopy groups, but this about covers all that we
will need in the sequel.

12.1.2 6.1.2 Homotopy classification of finite-energy configurations

After this brief review of homotopy theory, we return to the problem at hand. Let us fix a
basepoint −→r 0 in the two-sphere at infinity; for example, we could choose the north pole. Let
Φ
(−→r 0

)
= ϕ0 ∈ M0. The G-orbit of ϕ0 will be the set G · ϕ0 = {g · ϕ0 | g ∈ G} ⊂ M0. If

we let H = Hϕ0 ⊂ G denote the stability subgroup of ϕ0 : Hϕ0 = {h ∈ G | h · ϕ0 = ϕ0}, then
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G · ϕ0
∼= G/H. The asymptotics of the Higgs field define a map from the two-sphere to G/H

taking the basepoint to ϕ0. In other words it defines an element in the second homotopy group
π2 (G/H, ϕ0).

Because G is connected, this class is gauge-invariant, as the next exercise asks you to show.
This shows that the homotopy class is physical.

Exercise 6.10 (Gauge invariance of the homotopy class)

Prove that gauge related Higgs field configurations define asymptotics which are homotopic.

(Hint: Use the fact that G is connected to write down an explicit homotopy between the
two configurations.)

As shown in the previous section, π2 (G/H, ϕ0) is an abelian group, and because G/H is
connected it does not depend (up to isomorphism) on ϕ0. Because of this fact we will drop the
reference to the basepoint when unnecessary. We will now prove that π2(G/H) is isomorphic to
the subgroup of π1(H) given by those homotopy classes of loops in H which are null-homotopic
in G. From what was said in the previous section, you will immediately recognise this statement
as part of the exact homotopy sequence associated to the fibration H → G→ G/H. But rather
than appealing to such heavy machinery, we will prove most of this statement here using more
pedestrian methods.

We first associate a loop in H with each Φ. Let Σ±denote an open cover for the asymptotic
two-sphere S2

∞; more concretely, we take their union to be S2
∞ and their intersection to be a

small band around the equator. Since Σ±are homeomorphic to disks (hence contractible), we
can find local gauge transformations g± : Σ± → G such that

Φ(x) = g±(x) · ϕ0 for x ∈ Σ±

Then on the intersection Σ+ ∩ Σ−, we have

g+(x) · ϕ0 = g−(x) · ϕ0

whence g+(x)−1g−(x) · ϕ0 = ϕ0, whence g+(x)−1g−(x) defines an element of H. Restricting
to the equator, we have a continuous map x 7→ h(x) = g+(x)

−1g−(x) ∈ H; that is, a loop in
H. Because g±(x) are defined only up to right multiplication by H, we can always arrange
so that h(x) is the identity for some x in the equator. This way h defines an element in
π1(H,1). Furthermore, this loop is trivial in G. Indeed, since G is path-connected, there exist
paths t 7→ g±(t, x) from the identity to g±(x). Defining h(t, x) = g+(t, x)

−1g−(t, x) provides a
homotopy in G from the identity to the loop h(x).

Alternatively we can understand this in a more explicit way. A map Φ : S2
∞ → G/H can

be thought of as a loop of loops: In the above picture, there is a family parametrised by the
interval s ∈ [0, 1] of loops based at ϕ0 and each loop in the family is in turn parametrised by
the interval t ∈ [0, 1], with the condition that the initial and final loops are trivial. Therefore
we can redraw Figure 6.2 as a map from the square to G/H where the edges are mapped to ϕ0:
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Figure 6.2: A map S2 → G/H as a loop of loops.

where the three horizontal lines are precisely the three loops depicted above.
Consider now a fixed loop, that is, a fixed value of s. Because DiΦ = 0 on S2∞, we can

solve for Φ.

Exercise 6.11 (Solving for Φ)

Prove that for a fixed s,Φ(s, t) given by

Φ(s, t) = P exp

(
e

∫ t

0

dt′Wi (s, t
′)
∂xi

∂t′

)
· ϕ0 (6.3)

is a solution of DiΦ with the boundary conditions Φ(s, 0) = ϕ0. Here s, t are coordinates
for S2

∞ and x(s, t) are the coordinates in R3. Similarly Wi(s, t) is short for Wi(x(s, t)).
Let g(s, t) ∈ G be the group element defined by Φ(s, t) = g(s, t) · ϕ0 in (6.3). From its

definition it follows that g(s, 0) = 1 and since ∂xi

∂t
= 0 at s = 0 and s = 1, it follows that

g(0, t) = g(1, t) = 1. How about g(s, 1)? Because Φ(s, 1) = ϕ0, g(s, 1) · ϕ0 = ϕ0, whence
g(s, 1) = h(s) is in H. Since h(0) = h(1) = 1, as s varies, h(s) defines a loop in H:

h(s) ≡ P exp

(
e

∫ 1

0

dtWi(s, t)
∂xi

∂t

)
(6.4)

Moreover, this loop in H is trivial in G, the homotopy being given by g(s, t) itself, as the
following figure shows:
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This approach has the added benefit that it is very easy to see that the map π2(G/H) →
π1(H) sending the class of Φ(s, t) to the class of h(s) is a group homomorphism. Indeed rotating
the squares, we have the composition:

from where we see that if Φ 7→ h and Φ′ 7→ h′, then Φ ∗Φ′ 7→ h ∗ h′. In summary we have a
map π2(G/H) → π1(H), sending Φ(s, t) to h(s), which is a homomorphism of groups. Notice
that both groups are abelian by Exercise 6.7 and equation (6.2). Also, because any loop in
H can be thought of as a loop in G, we have a natural map π1(H) → π1(G), which is also a
homomorphism of abelian groups. We can thus compose these two maps, and what we have
shown is that the composition:

π2(G/H)→ π1(H)→ π1(G) is zero. (6.5)

Conversely it follows readily from what we said above that any loop in H which is trivial in
G of necessity comes from a map Φ in π2(G/H). Indeed, if h(s) is a loop in H which is null-
homotopic in G, let g(s, t) denote the homotopy in G. We can then define Φ′(s, t) = g(s, t) ·ϕ0.
It is not hard to convince oneself that this Φ′(s, t) gives rise to a loop in H which is homotopic
to the one from which we obtained it.

In other words, we have proven that the above sequence (6.5) is exact at π1(H), since the
kernel of the arrow leaving π1(H) coincides with the image
of the arrow entering π1(H). We are still not done, though: for we still have to show that the
map π2(G/H) → π1(H) is one-to-one; that is, that if the loop h(s) in H defined by Φ(s, t)
is null-homotopic in H, then the map Φ(s, t) was already null-homotopic in G/H. Indeed,
suppose that there exists a homotopy in H interpolating between h(s) and the constant loop
based at the identity; that is, that there exists a map h(s, t):
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Then we can compose this with g(s, t) as follows:

Now define Φ̃(s, t) = g̃(s, t) · ϕ0. Because h(s, t) ∈ H, this map is homotopic to Φ(s, t). In
fact, acting on ϕ0 with the above maps we find:

But now notice that g̃(s, t) defines an element in π2(G). It is now that we must invoke the
result of E. Cartan mentioned in the previous section, that
π2(G) = 0K This means that there exists a homotopy H(s, t, u) interpolating continuously
between g̃(s, t) and 1. Acting on ϕ0, we see that H(s, t, u) · ϕ0 provides the desired homotopy
between Φ(s, t) and the constant map ϕ0.

In summary we have proven that

π2(G/H) ∼= ker (π1(H)→ π1(G)) (6.6)

or equivalently the exactness of the sequence:

0→ π2(G/H)→ π1(H)→ π1(G)

In particular, if G is simply-connected, as is often the case, then every loop in G is null-
homotopic, and we find that π2(G/H) ∼= π1(H).

We can illustrate this theorem with a simple example. Suppose that G = SU(2) and H =
U(1), then we have that SU(2)/U(1) ≃ S2 and U(1) ≃ S1, and indeed π2 (S

2) ∼= π1 (S
1) ∼= Z.

As an abelian group, Z is freely generated by 1, hence it suffices to determine where 1 gets sent
to under the map. In the above case the map π2(SU(2)/U(1))→ π1(U(1)) sends the generator
to the generator since the two groups are isomorphic, SU(2) being simply-connected. On the
other hand now consider G = SO(3) and H = SO(2). Again we have that SO(3)/SO(2) ≃ S2

and SO(2) ≃ S1, hence as abstract abelian groups π2(SO(3)/SO(2)) and π1(SO(2)) are both
isomorphic to Z, but the theorem says more. It says that the generator of π2(SO(3)/SO(2))
cannot be sent to the generator of π1(SO(2)), since the image of π2(SO(3)/SO(2)) is not all
of π1(SO(2)) but only the kernel of the map π1(SO(2)) ∼= Z → Z2

∼= π1(SO(3)). This map is
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simply reduction modulo 2 and its kernel consists of the even integers, that is, the subgroup
generated by 2. Hence the generator of π2(SO(3)/SO(2)) must get sent to twice the generator
of π1(SO(2)). This can also be understood more pictorially from the discussion surrounding
Figure 6.1 and from Exercise 6.6, and it is a good exercise to do so.

Adding topological charges

We now briefly discuss to what extent we can add the topological charges of distant monopoles.
It is physically intuitive, despite the fact that the equations describing monopoles are nonlinear,
that one should be able to patch distant monopoles together to form a multi-monopole solution.
It also seems physically intuitive that the charge of this monopole solution should be given
purely in terms of the charges of the constituents and not depend on the details on how the
solutions were patched together. We will now see, however that this is not quite right. We
will see that when the unbroken gauge group H is disconnected there is an ambiguity in the
addition of the monopole charges.

Figure 6.3: monopole.
Consider first a monopole configuration. For convenience we will draw monopole configurations
in such a way that the asymptotic sphere at spatial infinity is brought forth to a finite distance
from the origin. Physically, we are assuming that the fields reach their asymptotic values to a
good approximation in a finite distance. More formally, we are since many physical quantities
(e.g., the monopole charge) will turn out to be conformally invariant. The Higgs configuration
is gauge related to one which is constant almost everywhere on the asymptotic sphere. This
is the so-called unitary gauge. More precisely, the unitary gauge is one where the Higgs field
is constant throughout the sphere. It follows that the unitary gauge is singular whenever the
Higgs configuration has nontrivial topological charge, since we have seen that regular gauge
transformations are homotopies. For our purposes it will be sufficient to consider gauges in
which the Higgs is constant almost everywhere on the sphere. Such configurations are depicted
in Figure 6.3, where the Higgs is constant everywhere but in the shaded region at the south
pole.

Now suppose that we have two monopoles. They are assumed to be so separated that their
asymptotic spheres do not intersect. In other words in the space on and outside their two
asymptotic spheres, the fields have already attained their asymptotic values. It is as if the
monopoles were non-intersecting bubbles in the Higgs vacuum.

∗1 There is to my knowledge no "simple" proof of this fact, but the interested reader is encouraged to go
through the one in the book of Bröcker and tom Dieck BtD85.
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We can make a 2-monopole solution by patching together two monopoles in the following
way. Let us denote by Φ1 and Φ2 the Higgs fields for each of the monopoles. It is of course
necessary that the image of the Higgs fields lie in the same G-orbit of the manifold of vacua. In a
sense different G-orbits are like different superselection sectors. We start by gauge transforming
the Higgs fields in such a way that they are equal to ϕ0 almost everywhere on their asymptotic
spheres. We can further orient the monopoles in such a way that the regions in which Φ1 and
Φ2 are allowed to fluctuate do not intersect. We can do this independently for each monopole
because we can always perform gauge transformations which are "compactly supported" in the
sense that they are the identity far away from the centre of the monopole. After these
gauge transformations, we have a configuration where on and outside the asymptotic spheres
(except for the shaded regions in Figure 6.4) the Higgs field is constant and equal to ϕ0. In
particular we have continuity in the Higgs field along the dotted line in Figure 6.4.

Figure 6.4: Patching two monopoles.
It is clear that the resulting field configuration is continuous, but is this procedure unam-

biguous? Suppose that we had used a different set of gauge transformations in order to make
Φ1 and Φ2 equal almost everywhere asymptotically. Once the Higgs are set to ϕ0 we are still
allowed to make an gauge transformation in the stability subgroup H. Would the resulting
two-monopole configuration be homotopic (i.e, gauge-equivalent) to the one resulting from our
first attempt at patching? Clearly if H is connected, then we can always make a homotopy so
that any discontinuity in the H-gauge transformation can be undone. But how about if H is
disconnected? In this case there is a potential ambiguity in the patching prescription.

Another way to understand this is as follows. The question boils down to whether
π2 (G/H, ϕ1) and π2 (G/H, ϕ2) can be composed meaningfully. Because G is path-connected,
we know that G/H is path-connected, hence π2 (G/H, ϕ1) ∼= π2 (G/H, ϕ1). But remember
that this isomorphism depends on the path used to connect ϕ1 and ϕ2. If all such paths were
homotopicthat is, if G/H were simply-connected - then all such isomorphisms would be one
and the same and we could unambiguously compose elements in π2 (G/H, ϕ1) and
π2 (G/H, ϕ2). In other words, if G/H were simply-connected, then we could add without
ambiguity the topological charges of each of the monopoles constituting a given two-monopole
solution to derive its charge. It turns out, thanks to Theorem 16.11 in [Ste51], that it is
enough to check that H be connected. If H is connected, the theorem states, that the
isomorphism π2 (G/H, ϕ1) ∼= π2 (G/H, ϕ2) is independent of the path used to go between ϕ1

and ϕ2. If H is not connected, however, there is a potential ambiguity. We can patch
separated monopoles together, but the topological charge of the resulting two-monopole
configuration will not be given simply in terms of the topological charges of its constituents.
We need more information: namely the details on how the solutions were put together.
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12.2 6.2 The Dirac quantisation condition

In this section we start the analysis of the generalised Dirac quantisation condition obeyed
by these monopole solutions. The results in this section are based on the seminal paper of
Goddard, Nuyts and Olive GNO77.

We start by considering a monopole in the unitary gauge, where the Higgs field Φ is constant
and equal to ϕ0, say, almost everywhere on the asymptotic sphere. Looking back at Figure 6.3,
we have Φ = ϕ0 everywhere on the sphere but on the shaded region around the south pole.
Because DiΦ = 0 everywhere on the sphere, on the part where Φ is constant, this condition
becomes Wi ·Φ = 0, hence Wi takes values in the Lie algebra h of the stability subgroup H ⊂ G,
and so hence so does the path-ordered exponential in equation (6.3).

We will now assume that the field strength Gij has the following asymptotic form:

Gij = ϵijk
xk

|x|3
Q(x)

4π
(6.7.7)

where the magnetic charge Q(x) is Lie algebra valued, and hence takes values in h almost
everywhere on S2

∞. It may seem surprising at first that the magnetic charge is not constant; but
in the presence of a non-abelian gauge symmetry, constancy is not a gauge-invariant statement.
The correct nonabelian generalisation of constancy is covariantly constant; and, as the next
exercise asks you to show, this is indeed the case.

Exercise 6.12 (The magnetic charge is covariantly constant)
Prove that DiQ(x) = 0 on the sphere.
(Hint: Analyse the Bianchi identity and the equations of motion on the asymptotic sphere

in the Ansatz (6.7) and show that

Bianchi identity ⇒ xkDkQ(x) = 0

equation of motion ⇒ ϵijkx
kDjQ(x) = 0

Deduce that these two equations together imply that DkQ = 0.)
The quantisation condition will come from demanding that the map h(s) defined in (6.4)

does indeed trace a loop in H, so that h(1) = h(0). To make this condition into something
amenable to computation we will derive another expression for h(1) in the unitary gauge. This
will bring to play a non-abelian version of Stoke’s theorem.

Let us define the group element g(s, t) by Φ(s, t) = g(s, t) · ϕ0 in (6.3). Because DiΦ = 0, it
follows that Dig(s, t) = 0, where the covariant derivative is now in the adjoint representation.
Define the covariant derivative along
the curves of constant s, byDt =

∂xi

∂t
Di, and the covariant derivative along the curves of constant

t, by Ds =
∂xi

∂s
Di. The next exercise asks you to prove the non-abelian Stoke’s theorem.

Exercise 6.13 (The non-abelian Stoke’s theorem)

The point of this exercise is to prove the following formula.

h(s)−1dh(s)

ds
= −e

∫ 1

0

dtg(s, t)−1Gijg(s, t)
∂xi

∂t

∂xj

∂s
(6.8)

We proceed in steps:
Use the fact that DtΦ(s, t) = 0 implies Dtg(s, t) = 0, provided the curve s = constant lies

in the region where Φ(s, t) = ϕ0 is constant, and prove that this is equivalent to Dt ◦ g(s, t) =
g(s, t) ◦ ∂t as operators.

Show that
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∂t
(
g(s, t)−1Dsg(s, t)

)
= g(s, t)−1 [Dt, Ds] g(s, t)

= −e∂x
i

∂t

∂xj

∂s
g(s, t)−1Gijg(s, t)

Finally integrate the above expression over t ∈ [0, 1] and use the fact that
g(s, t)−1Dsg(s, t)|t=0 = 0 because g(s, 0) = 1 and xi(s, 0) is constant for all s, and that
g(s, t)−1Dsg(s, t)|t=0 = h(s)−1 dh(s)

ds
.

With the Ansatz (6.7) for Gij we now have that

g(s, t)−1Gijg(s, t) =
1

4π
ϵijk

xk

|x|3
g(s, t)−1Q(x)g(s, t)

But now notice that because Q(x) is covariantly constant,

g(s, t)−1Q(x(s, t))g(s, t) = Q(x(0, 0)) ≡ Q ∈ h

In other words,

h(s)−1dh(s)

ds
= − e

4π
Q

∫ 1

0

dtϵijk
xk

|x|3
∂xi

∂t

∂xj

∂s

which can be trivially solved for h(s) to yield:

h(s) = exp

[
− e

4π
Q

∫ s

0

ds′
∫ 1

0

dtϵijk
xk

|x|3
∂xi

∂t

∂xj

∂s′

]
· h(0)

and in particular

h(1) = exp

[
− e

4π
Q

∫ 1

0

ds

∫ 1

0

dtϵijk
xk

|x|3
∂xi

∂t

∂xj

∂s

]
· h(0) (6.9)

where exp : h → H is the exponential map. Alternatively, if you are more familiar with
matrix groups, you can embed H inside a matrix group (every Lie group has a faithful finite-
dimensional matrix representation) and then the above differential equation for the matrix h(s)
is solved by the above expression, but where exp of a matrix is now defined by its power series.

Let us first compute the above integral. Notice that because the integrand is invariant under
rescalings of x we can evaluate it on the unit sphere in R3; that is, we take |x| = 1. We then
rewrite it in a more invariant looking form. To this end, it suffices to notice that the integrand
is the pull back via the embedding S2 → R3, (s, t) 7→ xi(s, t) of the form ω = 1

2
ϵijkx

kdxi ∧ dxj,
whose exterior derivative dω = 1

2
ϵijkdx

i ∧ dxj ∧ dxk is precisely 3 times the volume form in R3

relative to the standard euclidean metric. Therefore using Stoke’s theorem and understanding
the unit sphere in R3 as the boundary of the unit ball S2 = ∂B3, we have that∫

∂B3

ω =

∫
B3

dω = 3vol
(
B3
)
= 4π

We can then rewrite equation (6.9) as follows

h(1) = exp[−eQ] · h(0)

whence the the Dirac quantisation condition h(1) = h(0), becomes

exp eQ = 1 ∈ H (6.10)

Before undertaking a general analysis of this equation, let us make sure that it reduces to the
familiar condition (1.6) for G = SO(3) and a nonzero Higgs field in the adjoint representation,
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as was the case in Chapter 1. The adjoint representation of SO(3) is three-dimensional. Choose
the Higgs field to point in the z-direction. The stability subgroup if the subgroup of rotations
about the z-axis. It is the SO(2) subgroup consisting of matrices of the form cos θ sin θ 0

− sin θ cos θ 0
0 0 1


where θ runs from 0 to 2π. The magnetic charge Q is given by:

Q = g

 0 1 0
−1 0 0
0 0 1


where g is what appears in (1.5). With these definitions, we see that the Dirac quantisation

condition (6.10) becomes

exp eg

 0 1 0
−1 0 0
0 0 1

 =

 cos(eg) sin(eg) 0
− sin(eg) cos(eg) 0

0 0 1

 = 1

whence eg ∈ 2πZ in complete agreement with (1.6). We are clearly on the right track. In
order to analyse the Dirac quantisation condition properly we will need quite a bit of technology
concerning compact Lie groups. This is the purpose of the following section. Readers who
already know this material are encouraged to skim through the section for notation.

12.3 6.3 Some facts about compact Lie groups and Lie algebras

In this section we collect without proof those results from the theory of compact Lie groups
that are relevant for the analysis of the Dirac quantisation condition. There are many fine
books on the subject. A quick and efficient introduction to the main results can be found in
the second chapter of Pressley and Segal’s book on loop groups [PS86]. A fuller treatment of
the parts we will need can be can be found in the book by Adams [Ada69] and also in the more
comprehensive book by Bröcker and tom Dieck BtD85]. For the results on Lie algebras we have
followed the book by Humphreys Hum72.

12.3.1 6.3.1 Compact Lie groups

Suppose that G is a compact connected Lie group. Any connected abelian subgroup is clearly
a torus. Let T be a fixed maximal connected abelian subgroup of G; that is, a maximal
torus. Maximal tori obviously exist because any one-parameter subgroup is a connected abelian
subgroup. One of the key theorems in the structure of compact Lie groups is the fact that all
maximal tori are conjugate in G. This implies, in particular, that the dimension of all maximal
tori are the same: it is an invariant of G known as the rank of G. Another way to rephrase this
theorem is that any element in G is conjugate
to an element in T , or simply that every group element in G lies in some maximal torus. Generic
elements will lie in just one maximal torus: these are called regular elements, whereas there
exist also singular elements which lie in more than one.

The prototypical compact connected Lie group is U(n) and many of the results in the theory
of compact Lie groups, when restricted to U(n), reduce to well-known facts. For instance, a
maximal torus in U(n) can be taken to be the set of diagonal matrices; hence the rank of U(n)
is n, and the rank for the SU(n) subgroup is n − 1. The theorem about maximal tori being
conjugate, is simply the fact that any set of commuting unitary matrices can be simultaneously
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diagonalised by a unitary transformation. The regular elements are those matrices which have
distinct eigenvalues.

Let g and t denote the Lie algebras of G and T , respectively. t is a maximal toral subalgebra.
A lot can be learned about G by studying the action of T on g. Because T is abelian, any
finite-dimensional complex representation is completely reducible into one-dimensional repre-
sentations. But g is a real representation, so we complexify it first: define gC = g ⊗ C, and
extend the action of G (and hence the one of T ) complex-linearly. We can now decompose gC
as representations of T as follows:

gC = tC ⊕

(⊕
α

gα

)
where tC = t ⊗ C is the subspace on which T acts trivially, and gα is the subspace of gC

defined as follows:

v ∈ gα ⇔ expX · v = eiα(X)v

where X ∈ t and α : t → R is a real linear function. The α ’s appearing in the above
decomposition are known as the (infinitesimal) roots of G. Notice that if α is a root, so is −α
since if v ∈ gα its complex conjugate v̄ ∈ g−α.

The complexified Lie algebra of U(n) is the Lie algebra of all n× n complex matrices. The
roots are given by αij where 1 ≤ i, j ≤ n, i ̸= j, and the root subspace corresponding to αij is
spanned by the matrices Eij with a 1 in the (ij) entry and zeroes everywhere else. Acting on
the diagonal matrix X = diag (x1, x2, . . . , xn) ∈ t, αij(X) = xi − xj.

Let us think of U(1) as the group of complex numbers of unit norm. A homomorphism
χ : T → U(1) is called a character of T . Characters can be multiplied pointwise and indeed
form a group called the character group of T . Characters are uniquely determined by their
derivatives at the identity. In other words, if χ is a character and expX belongs to T , then

χ(expX) = eiw(X) (6.11)

where w ∈ t∗ is an infinitesimal character or a weight. The set of infinitesimal characters
define a lattice in t∗ called the weight lattice of G and denoted Λw(G). The roots are particular
examples of weights, and taking integer linear combinations of the roots, we obtain a sublattice
of the weight lattice known as the root lattice and denoted Λr(G). The root lattice only depends
on the Lie algebra, whence Lie groups sharing the same Lie algebra have the same root lattice.
On the other hand, the weight lattice identifies the Lie group. If G is semisimple, then both the
weight and root lattices span t∗. It means that the quotient Λw(G)/Λr(G) is a finite abelian
group. We will see later that it is the fundamental group of the dual group of G.

We can illustrate this with SU(2) and SO(3). The weights of SU(2) form a one-dimensional
integral lattice isomorphic to Z, shown below. The weight m ∈ Z corresponds to twice the
"magnetic quantum number," since for SU(2) the magnetic quantum number, like the spin,
can be half-integral. In the case of SO(3) only integral spin representations can occur, hence
its weight lattice (shown below with filled circles) corresponds to the sublattice consisting of
even integers:

In the semisimple case, t∗ is called the root space of g. On the other hand, if G is not
semisimple, the roots will only span a subspace of t∗ which is then the root space of its maximal
semisimple subalgebra [g, g] ⊂ g. This shows that the Lie algebra of a compact Lie group is
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reductive; that is, the direct product of a semisimple Lie algebra and an abelian algebra-namely,
its centre.

From the definition of the roots of U(n) above we see that they don’t span t∗, since they
annihilate the scalar matrices. This is to be expected since the scalar matrices are in the centre
of the Lie algebra u(n) of U(n). The traceless matrices in u(n) span the complement of the
scalars matrices and generate the Lie algebra su(n) of SU(n), which is semisimple (in fact,
simple). The space spanned by the roots is the root space of su(n).

The root subspaces gα are one-dimensional. Choose vectors eα ∈ gα such that e−α = ēα.
Then eα, e−α and their bracket hα = −i [eα, e−α] ∈ t define an embedding of sl(2,C) in gC:

[hα, eα] = 2ieα [hα, e−α] = −2ie−α and [eα, e−α] = ihα

Explicitly the embedding is given by e 7→ eα, f 7→ e−α and h 7→ hα, where

e =

(
0 1
0 0

)
f =

(
0 0
−1 0

)
and h =

(
i 0
0 −i

)
It therefore follows that exp (2πhα) = 1. It also follows from the representation theory of

sl(2,C) that for any root β ∈ t∗, β (hα) ∈ Z and that, in particular, α (hα) = 2. The hα are
known as coroots and their integer linear combinations span a lattice in t called the coroot
lattice and denoted Λ∨

r (G). If Λ is a lattice, then the dual lattice is the set of linear functions
Λ→ Z and is denoted Λ∗. This relation is reflexive because Λ∗∗ = Λ. In this notation we now
see that the coroot lattice is a sublattice of the dual root lattice: Λ∨

r (G) ⊆ Λr(G)
∗. We will see

later that the two lattices will agree when G is simply-connected.
Despite the fact that the coroot lattice lives naturally in t, one often sees in the literature

where the coroot lattice is a lattice in t∗, just like the root and weight lattices. In my opinion
this causes more confusion than it is worth, but for the sake of comparison let us see how this
goes. In order to identify t and t∗ we need a new piece of information: namely, a metric. We
saw in Exercise 6.1 that the Lie algebra of every compact Lie group has an invariant metric,
so we will fix one such G-invariant metric (−,−) on g. Its restriction to T will also be denoted
(−,−). Because this metric is invariant and non-degenerate, we can use it to identify t and t∗.
In particular there is an element α∨ ∈ t∗ such that for all X ∈ t, α∨(X) = (hα, X). In terms
of the root α, we have that α∨ = 2α/(α, α). We call α∨ the inverse root corresponding to the
root α. Taking integer linear combinations of the coroots, we span the inverse root lattice of
G. The weight, root and inverse root lattices are all subsets of t∗, but notice that whereas the
weight and root lattices are intrinsic, the inverse root lattice depends on the chosen metric.
In particular the inverse root lattice cannot be meaningfully compared with either the root or
weight lattices, since we can scale it at will by rescaling the metric. As we do not wish to
advocate its use, we will not give it a symbol, but the reader should beware that sometimes
the symbol we use for the coroot lattice is reserved for the inverse root lattice, relative to some
"standard" metric.

Using the metric on t∗ one can measure lengths of roots, and it can be proven that if g is
simple, then there are at most two lengths of roots, called long and short roots. Simple Lie
algebras for which all roots are the same length are called simply-laced. For these simple Lie
algebras, we can choose the metric so that (α, α) = 2 for all roots. Under this metric, the roots
and the inverse roots agree.

12.3.2 6.3.2 The Weyl group

Because the maximal torus T is abelian, conjugation by elements of T is trivial. Moreover
generic elements of G will conjugate T to another maximal
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torus. However there are some elements of G which conjugate T back to T . The largest such
subgroup of G is called the normaliser of T and is denoted N(T ); that is,

N(T ) =
{
h ∈ G | hTh−1 = T

}
It follows from this definition that N(T ) is indeed a subgroup of G and that T is contained

in N(T ) as a normal subgroup. Because T ⊂ N(T ) is a normal subgroup, it follows that
N(T )/T is a group. This group is the Weyl group of G relative to the maximal torus T . It
is the group of symmetries of the maximal torus. Although it is defined relative to T , the
Weyl group N (T ′) /T ′ corresponding to any other maximal torus T ′ is conjugate (and hence
isomorphic) to N(T )/T . Hence it makes sense to talk about the Weyl group W of G, up to
isomorphism.

The Weyl group W is a finite group, generated by reflections corresponding to the roots.
More precisely, if α is a root, then consider the group element

exp
π

2
(eα + e−α) ∈ N(T )

The adjoint action of this group element on t corresponds to a reflection ρα on the reflection
hyperplane Hα ⊂ t defined by Hα = {X ∈ t | α(X) = 0}. Indeed, one computes that for all
X ∈ t,

ρα(X) = X − α(X)hα

It can be proven that the ρα generate W .
For example, the Weyl group of U(n) is Sn, the symmetric group in n objects, and it acts

by permuting the entries of the diagonal matrices in t. This is also the Weyl group of SU(n)
since the roots of U(n) are the roots of SU(n).

Elements of t not belonging to any hyperplane Hα are called regular; whereas those who
are not regular are called singular. Regular elements fall into connected components called
Weyl chambers. The Weyl group permutes the Weyl chambers and no two elements in the
same Weyl chamber are Weylrelated. Fix a Weyl chamber C and call it positive. The roots
can then be split into two sets, positive and negative roots, according to whether they are
positive or negative on C-they cannot be zero, because C does not intersect any hyperplane
Hα. A positive root is called simple if Hα is a wall of C. If G is a simple group of rank ℓ,
then there are ℓ simple roots. Every positive root is a linear combination of the simple roots
with nonnegative integer coefficients, hence the simple roots generate the root lattice, and their
associated reflections generate the Weyl group. The positive Weyl chamber is sometimes called
the fundamental Weyl chamber. Its closure
(that is, including the walls) is a fundamental domain for the action of the Weyl group on
t: every point in t is Weyl-related to a unique point in the closure of the fundamental Weyl
chamber.

In the case of U(n), a choice of fundamental Weyl chamber consists in choosing diagonal
matrices whose entries are ordered in a particular way. For instance, we can choose a descending
order, in which case the positive roots of U(n) are the αij with i < j. The simple roots are
then clearly the αi,i+1.

Again using the metric on t there is a dual picture of this construction in t∗, where the
hyperplanes Hα now are defined as the hyperplanes perpendicular to the roots. This picture is
independent of the metric since the notion of perpendicularity does not depend on the choice of
G-invariant metric on t. The Weyl group acts on t∗ and it is once again generated by reflections
associated to every root. If α and β are roots, we have

ρα(β) = β − (β, α∨)α = β − (β, α)α∨ (6.12)
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where α∨ = 2α/(α, α) is the inverse root. Once again the complement of the hyperplanes is
divided into connected components called the dual Weyl chambers and one any one of them can
be chosen to be the positive or fundamental dual Weyl chamber. The walls of the fundamental
dual Weyl chamber are the hyperplanes perpendicular to the simple roots. Once again the
closure of the fundamental dual Weyl chamber is a fundamental domain for the action of the
Weyl group in t∗.

Those weights of G which lie in the closure of the fundamental dual Weyl chamber are
called dominant. We write this set Λ+

w(G). It is a semigroup of Λw(W ); that is, if w1 and w2

are dominant, so is their sum w1 + w2, but there are no inverses. Every irreducible represen-
tation of G has a unique highest weight which is dominant. Therefore Λ+(W ) is in one-to-one
correspondence with the set of finite-dimensional irreducible representations of G.

12.3.3 6.3.3 Root systems and simple Lie algebras

We have seen that the Lie algebra of a compact Lie group is reductive. Because semisimple
Lie algebras split in turn into their simple factors, we see that the Lie algebra of a compact
Lie group is a direct sum of abelian and simple Lie algebras. This does not mean that any
compact Lie group is the direct product of simple Lie groups and a torus, but it turns out that
it is covered finitely by a compact Lie group of this type. Hence to a large extent it is enough
to study simple Lie groups and abelian Lie groups separately and only at the end put the
structures together. Let us therefore assume that G is a simple Lie group. It is a remarkable
fact that compact simple Lie groups are essentially classified up to "finite ambiguity" by their
root systems. We will begin to describe this process now.

First of all we need to axiomatise the notion of a root system. A subset Φ of a euclidean
space E is a root system if the following conditions are obeyed:

Φ is finite, spans E and does not contain the origin;
If α ∈ Φ, then −α ∈ Φ and no other multiples of α are in Φ;
The reflections ρα (see (6.12)) leave Φ invariant; and
For all α, β ∈ Φ, (α∨, β) ∈ Z, where (−,−) is the metric in E.
This last condition is extremely restrictive. It essentially says that only very few angles can

occur between roots. Indeed, notice that (α∨, β) = 2|β|/|α| cosϑ, where ϑ is the angle between
α and β. Now, (α∨, β) (β∨, α) = 4 cos2 ϑ is a non-negative integer. Taking into account that
(α∨, β) and (β∨, α) have the same sign we are left with the possibilities listed in Table 6.1,
where we have chosen (α, α) < (β, β) for definiteness and have omitted the trivial case α = ±β.

(α, β∨) (α∨, β) ϑ (β, β)/(α, α)

0 0 π/2 undetermined
1 1 π/3 1

-1 -1 2π/3 1
1 2 π/4 2

-1 -2 3π/4 2
1 3 π/6 3

-1 -3 5π/6 3

Table 6.1: Allowed angles between roots in a root system.
If a root system Φ admits a split Φ = Φ1 ∪ Φ2 into disjoint sets so that every element of

Φ1 is orthogonal to every element of Φ2, we say that it is reducible; otherwise it is simple. The
simple root systems have been classified. There are four infinite families: Aℓ, for ℓ ≥ 1, Bℓ and
Cℓ for ℓ ≥ 2, and Dℓ for ℓ ≥ 3; and five exceptional root systems G2, F4, E6, E7 and E8. There
are two "accidental" isomorphisms in the above list: B2 = C2 and A3 = D3. In all cases, the
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subscript indicates the rank. The simply-laced root systems are those in the A,D and E series.
They are listed in Table 6.2 in a graphical notation that will be explained shortly.

Notice that the above definition of a root system is symmetrical with respect with the
interchange α ↔ α∨ of a root and the inverse root. In particular this shows that the set
Φ∨ ⊂ E consisting of the dual roots α∨ is again a root system, and that it is simple if Φ is. In
this case Φ∨ must be again one of the simple root systems listed above. From the definition
of α∨, it follows that for simply-laced root systems (where all roots have the same length) we
can choose the metric so that α∨ = α, hence simply laced root systems are self-dual. More
generally, since (α∨, α∨) = 4/(α, α), long and short roots are interchanged. A quick look at
Table 6.2 reveals that G2 and F4 are also self-dual, whereas B∨

ℓ = Cℓ, and viceversa, since
Φ∨∨ = Φ.

Let α1, α2, . . . , αℓ be a set of simple roots. Let α∨
i = 2αi/ (αi, αi). Then the inner product

aij =
(
αi, α

∨
j

)
is an integer. The set {aij} of all such integers are called the Cartan integers and

the matrix (aij) is known as the Cartan matrix. They are independent of the invariant metric
chosen for t. If two complex simple Lie algebras have the same Cartan matrix, then they are
isomorphic. The Cartan matrices of the simple Lie algebras are listed in Hum72, for example.

There is also a graphical notation for root systems. Let Φ be a root system of rank ℓ, and
let α1, α2, . . . , αℓ be a set of simple roots. The Coxeter graph of Φ is the graph consisting of ℓ
vertices and such that the i th vertex is joined to the j th vertex by

(
αi, α

∨
j

)
(α∨

i , αj) lines. From
Table 6.1, we know that this number can be 0, 1, 2 or 3. The Coxeter graph can be shown to
determine the Weyl group, but does not determine the root system because when two vertices
are connected by more than one line, it fails to tell us which of the two vertices corresponds to
the shorter root. In other words, the Coxeter graph cannot tell between Φ and Φ∨. In order
to distinguish them it is necessary to decorate the diagram further: we colour those vertices
which corresponds to the short roots, if any are present. The resulting diagram is called the
Dynkin diagram. The Dynkin diagrams corresponding to the simple root systems are listed
in Table 6.2, the vertex labelled i corresponds to αi, and the filled vertices corresponds to the
short roots.

Reconstructing the group

From the above discussion about compact Lie groups it follows that the root system associated
to a compact simple Lie group is simple. Hence it has to be one of the roots systems listed
above. This prompts the question of the reconstruction of the group from the root system. It
turns out that this is possible up to a finite ambiguity. In a nutshell, given the root system of a
compact group, one can obtain a finite covering group of the group in question. In this section
we will consider only simple Lie groups.
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Table 6.2: Dynkin diagrams of the simple root systems.
Given an simple root system Φ of rank ℓ, one can construct a unique simple complex Lie

algebra. Associated with each simple root αi there exist three generators ei = eαi
, fi = e−αi

and
hi = hαi

. These 3ℓ elements, subject to the so-called Serre relations (see Hum72, for example)
generate a complex simple Lie algebra gC, where tC is spanned by the hi and whose root system
relative to this maximal torus is Φ. As a linear space, the Lie algebra will be generated by
ℓ elements hi spanning the Cartan subalgebra and generators eα for each root α, whose Lie
brackets can be written down as follows:

[eα, eβ] =


nαβeα+β if α + β is a root
hα if β = −α; and
0 otherwise

where hα belongs to the Cartan subalgebra. Furthermore, for every h in the Cartan subal-
gebra, [h, eα] = α(h)eα. It is possible to choose a basis in which the nαβ are all nonzero integers.
These integers obey nαβ = −n−α,−β.

Every complex simple Lie algebra has in general several real forms; that is, real subalgebras.
Among these real forms there is a unique compact real form; that is, one for which the Killing
form is negative-definite. It is easy to write this form down explicitly. It is generated over the
reals by the ihα, and the combinations

i√
2
(eα + e−α) and

1√
2
(eα − e−α)

It is easy to check that the real linear combinations of these generators close under the Lie
bracket. It is also easy to compute the Killing form and see that it is indeed negative-definite.

Next, each compact real form g of a simple Lie algebra is the Lie algebra of a unique simply-
connected compact simple Lie group G̃, whose maximal torus T is obtained by exponentiating
the {ihα}, and whose root system relative to T agrees with the one of G. Therefore we have
almost come full circle. I say almost, because we are left with a simply-connected compact
simple Lie group, even though we started with a compact simple Lie group G which was not
assumed to be simply-connected. Therefore we need more information. The information we
need is of course the fundamental group π1(G) of G, which is a finite subgroup of the centre
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of G̃. Remarkably, the centre of G̃ can be read off simply from Lie algebraic data. We review
this now.

The centre of G̃

Let {αi} for i = 1, . . . , ℓ denote the simple roots of G relative to a maximal torus T . We define
ℓ fundamental weights {λi} by the requirement:

(
λi, α

∨
j

)
= δij. Alternatively, λi

(
hαj

)
= δij.

In other words, the fundamental weights generate a lattice which is dual to the coroot lattice
Λ∨
r (G). The lattice generated by the fundamental weights is the weight lattice of the simply-

connected Lie group G̃ : Λw(G̃). This lattice contains the root lattice Λr(G̃) as a sublattice,
and the quotient Λw(G̃)/Λr(G̃) is a finite abelian group isomorphic to the centre Z(G̃) of G̃.
It is sometimes called the fundamental group of the root system, since it is the fundamental
group of the adjoint group, the Lie group whose weight lattice agrees with its root lattice.

Let us now explain why Λw(G̃)/Λr(G̃) is isomorphic to the centre Z(G̃) of G̃. First of all,
notice that Z(G̃) is contained in every maximal torus of G̃. In fact, Z(G̃) is the intersection of
all the maximal tori of G̃.

Exercise

6.14 (The centre is the intersection of all the maximal tori)
Prove that the centre Z(G̃) is the intersection of all the maximal tori of G̃.
(Hint: Use that any element can be conjugated to any given maximal torus and the fact

that an element of the centre is invariant under conjugation.)
Fix a maximal torus T̃ of G̃ and let exp : t→ T̃ be the restriction of the exponential map to

t. Because T̃ is abelian, the exponential map is a homomorphism of abelian groups. We find it
convenient in what follows to include a factor of 2π in the exponential map. We will introduce
then the reduced exponential map, denoted exp, and defined by expX = exp 2πiX. Clearly
exp is also a group homomorphism and, in particular, its kernel is a lattice ΛI(G̃), called the
integer lattice of G̃. The reduced exponential map yields an isomorphism T̃ ∼= t/ΛI(G̃), whence
we see that the integer lattice is the lattice of periods of the maximal torus T̃ . It follows from
(6.11) that h belongs to the integer lattice if and only if for every weight w of G̃, w(h) ∈ Z. In
other words, the integer lattice and the weight lattice are dual:

ΛI(G̃) = Λw(G̃)
∗

Let ΛZ(G̃) = exp−1Z(G̃) denote those elements of t which the reduced exponential map
sends to the centre of G̃.ΛZ(G̃) too is a lattice called the central lattice of G̃, which by definition
contains the integer lattice. Because exp is a group homomorphism, we have that Z(G̃) is
canonically isomorphic to ΛZ(G̃)/ΛI(G̃). We now claim that the central lattice is the dual of
the root lattice.

Exercise 6.15 (The central and root lattices are dual)

Prove that X ∈ t belongs to the central lattice if and only if for every root α ∈ t∗, α(X) ∈ Z.
(Hint: X belongs to the central lattice if and only exp 2πiX is central in G̃, which in turn is

equivalent to the statement that for every root α, exp(2πiX) exp (teα) = exp (teα) exp(2πiX),
for all t. Now use that [X, eα] = α(X)eα.)

Therefore Z(G̃) ∼= ΛZ(G̃)/ΛI(G̃) = Λr(G̃)
∗/Λw(G̃)

∗, which as the next exercise asks you to
show is isomorphic to Λw(G)/Λr(G̃) as we had claimed.
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Exercise 6.16 (Some facts about lattices)

Let Λ1 ⊇ Λ2 be lattices. Prove the following:
Duality reverses inclusions: Λ∗

1 ⊆ Λ∗
2; Λ1/Λ2

∼= Λ∗
2/Λ

∗
1; and if Λ3 ⊆ Λ2 is a third lattice, then

Λ1/Λ2
∼= (Λ1/Λ3) / (Λ2/Λ3)

Since the root lattice is contained in the fundamental weight lattice, we can write αi =∑
jMijλj, for some integersMij. Now, taking the inner product with α∨

j and using the definition
of the fundamental weights, we find that

(
αi, α

v
j

)
= Mij. In other words, (Mij) is the Cartan

matrix. Hence in order to write the fundamental weights in terms of the roots, it is necessary to
invert the Cartan matrix. If the Cartan matrix has unit determinant then its inverse has integer
entries and the fundamental weights belong to the root lattice. In this case the root lattice and
the fundamental weight lattice agree, and G̃ has no centre. In general, the order of the group
Z(G̃) is given by the determinant of the Cartan matrix, since this is the only denominator
in which we incur in the process of expressing the fundamental weights in terms of the roots.
In many cases, the order of Z(G̃) is enough to determine the group uniquely. For example,
the Cartan matrices of G2, F4 and E8 have unit determinant, the ones of Bℓ, Cℓ and E7 have
determinant 2, and the one of E6 has determinant 3. Hence the fundamental groups of the roots
systems are respectively 1,Z2 and Z3. In the other cases, the order does not generally determine
the group, and one has to work a little harder: the Cartan matrix of Aℓ has determinant ℓ+1,
from where it follows that if ℓ+1 is prime, then the fundamental group of Aℓ is Zℓ+1, since the
only finite abelian group of prime order is the cyclic group. (Proof: Take any element not equal
to the identity. It generates a cyclic subgroup whose order must divide the order of the group.)
In fact, this persists for all ℓ, but this requires an explicit computation. Finally the Cartan
matrix of Dℓ has determinant 4, which again does not determine the fundamental group. It
turns out that for ℓ even the fundamental group is Z2×Z2, whereas for ℓ odd it is Z4. A useful
mnemonic in this case is to remember that D3 = A3.

An example: A3 = D3

Let us in fact work out this example to see how to go about these calculations. Let us
consider the root system A3 = D3 whose simply-connected compact Lie group is SU(4) ∼=
Spin(6). We can read off the Cartan matrix from its Dynkin diagram listed in Table 6.2:

 2 −1 0
−1 2 −1
0 −1 2


which has indeed determinant 4. Inverting this matrix we can read off the expression for

the fundamental weights in terms of the roots:

λ1 =
3

4
α1 +

1

2
α2 +

1

4
α3

λ2 =
1

2
α1 + α2 +

1

2
α3

λ3 =
1

4
α1 +

1

2
α2 +

3

4
α3

We can now compute the factor group Λw/Λr. Its elements are the cosets 0 + Λr, λ1 +
Λr, λ2 + Λr and λ3 + Λr, which possess the following multiplication table:
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0 λ1 λ2 λ3

0 0 λ1 λ2 λ3
λ1 λ1 λ2 λ3 0
λ2 λ2 λ3 0 λ1
λ3 λ3 0 λ1 λ2

where all entries are understood modulo Λr. It follows clearly that this is the cyclic group
Z4.

Another example: D4

Finally let us work a second example. We pick now one of our favourite root systems: D4,
whose simply-connected compact Lie group is Spin(8). From Table 6.2 we can read off the
Cartan matrix: 

2 −1 0 0
−1 2 −1 −1
0 −1 2 0
0 −1 0 2


and inverting it, we can read off the expression of the fundamental weights in terms of the

roots:

λ1 = α1 + α2 +
1
2
α3 +

1
2
α4 λ2 = α1 + 2α2 + α3 + α4

λ3 =
1
2
α1 + α2 + α3 +

1
2
α4 λ4 =

1
2
α1 + α2 +

1
2
α3 + α4

We can now compute the factor group Λw/Λr. Because λ2 ∈ Λr, it has as elements the
cosets of 0, λ1, λ3 and λ4. The multiplication table for this group can be read off easily:

0 λ1 λ3 λ4

0 0 λ1 λ3 λ4
λ1 λ1 0 λ4 λ3
λ3 λ3 λ4 0 λ1
λ4 λ4 λ3 λ1 0

where all entries are understood modulo Λr. It is clear that this group is Z2 × Z2. It
has three proper Z2 subgroups, each one generated by one of the cosets λ1 + Λr, λ3 + Λr and
λ4+Λr. The representations with highest weights λ1, λ3 and λ4 are all eight-dimensional. They
correspond to the vector and the two spinor representations ∆±of Spin(8). Alternatively, they
correspond to the three inequivalent embeddings Spin(7) ⊂ Spin(8). Given any one of these
eight-dimensional representations there exists an Spin(7) subgroup of Spin(8) under which the
representation remains irreducible and can be identified with the unique spinorial representation
of Spin(7). The dihedral group D3 of automorphisms of the Dynkin diagram is the group of
outer automorphisms of Spin(8). It is called the triality group in the physics literature, and
it permutes the three inequivalent Spin(7) subgroups and thus the three eight-dimensional
representations. In terms of the weights, it permutes λ1, λ3 and λ4.

All the connected compact simple Lie groups

It is now time to summarise what we have learned so far in a table. Table 6.3 lists the simple
root systems, their Weyl groups, the associated simple complex Lie algebras, their simply-
connected simple compact Lie groups, and their centres. An eternal thorny issue about the
notation in Table 6.3: the compact Lie group associated to the root system of type Cℓ is called
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in the physics literature USp(2ℓ) and in the mathematics literature Sp(ℓ). From here until the
end of this section, all Lie groups are connected, compact and simple unless otherwise explicitly
stated.

We start by associating with every Lie group G a subgroup of the centre of its universal
cover G̃ and viceversa. Representations of G are also representations of G̃, whence the weight
lattice Λw(G) is contained in the weight lattice Λw(G̃). We thus have the following inclusions
of lattices in t∗:

Λr(G̃) ⊆ Λw(G) ⊆ Λw(G̃)

Dualising and keeping in mind Exercise 6.16, we have in t the following lattices:

ΛZ(G̃) ⊇ Λw(G)
∗ ⊇ ΛI(G̃)

where we have used that ΛI(G̃) = Λw(G̃)
∗, and that ΛZ(G̃) = Λr(G̃)

∗. Applying the
reduced exponential map exp : t → G̃ to these lattices and remembering that exp is a group
homomorphism when restricted to the maximal torus, we find that expΛw(G)

∗ = ΓG ⊆ Z(G̃)
is a subgroup of the centre. The subgroup ΓG is naturally isomorphic to Λw(G)

∗/ΛI(G̃), since
the integral lattice is the kernel of the reduced exponential map. Using the fact that

Φ W or |W | gC G̃ Z(G̃)

Aℓ Sℓ+1 sl(ℓ+ 1,C) SU(ℓ+ 1) Zℓ+1

Bℓ (Z2)
ℓ ⋊Sℓ so(2ℓ+ 1,C) Spin(2ℓ+ 1) Z2

Cℓ (Z2)
ℓ ⋊Sℓ sp(2ℓ,C) USp(2ℓ) Z2

Dℓ (Z2)
ℓ−1 ⋊Sℓ so(2ℓ,C) Spin(2ℓ) {Z4 is odd

Z2 × Z2ℓ is even
G2 D6 1
F4 2732 F4 G2 F4

E6 27345 E6 E6 1
E7 2103457 E7 E7 Z3

E8 21035527 E8 E8 Z2

Table 6.3: Simple root systems, their Weyl groups, their complex Lie algebras, compact Lie
groups and their centres.

ΛI(G̃) = Λw(G̃)
∗, we have

ΓG = Λw(G)
∗/Λw(G̃)

∗ ∼= Λw(G̃)/Λw(G)

where we have again used Exercise 6.16. Since G is determined by its weight lattice, this
actually tells us that G ∼= G̃/ΓG. Since G̃ is simply-connected, this implies that π1(G) ∼= ΓG.

Conversely, if Γ ⊆ Z(G̃) is a subgroup of the centre of G̃. The preimage of Γ via the
reduced exponential map exp : t → G̃, is a sublattice of the central lattice and contains the
integer lattice:

ΛI(G̃) ⊆ ΛΓ ⊆ ΛZ(G̃) (6.13)

which upon dualising gives in t∗ the following series of lattices:

Λw(G̃) ⊇ Λ∗
Γ ⊇ Λr(G̃) (6.14)

It is not hard to see that Λ∗
Γ is the weight lattice of the group G defined by G̃/Γ.

In summary, there is a one-to-one correspondence between Lie groups with the same uni-
versal covering group G̃ and subgroups of the centre Z(G̃); or, equivalently, between Lie groups
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with the same Lie algebra g and lattices Λ containing the root lattice and contained in the
fundamental weight lattice. Since the centre Z(G̃) is finite, it has a finite number of subgroups,
and hence there are only a finite number of Lie groups covered by the same simplyconnected
Lie group. This is what we meant earlier by "finite ambiguity."

Minding Table 6.3, we can now list all the connected compact simple Lie groups.

For the root systems E8, F4 andG2, the centre is trivial, so they are the only groups with that
root system. Similarly, the centres of E6, E7, Bℓ and Cℓ are not trivial but have no proper non-
trivial subgroups, hence there are only two groups associated with each of those root systems:
the simply-connected group and the adjoint group: E6 and E6/Z3, E7 and E7/Z2, Spin(2ℓ+ 1)
and SO(2ℓ + 1) = Spin(2ℓ + 1)/Z2, and USp(2ℓ) and USp(2ℓ)/Z2. A similar story holds
for Aℓ with ℓ + 1 prime: there are only two groups with that root system, SU(ℓ + 1) and
SU(ℓ+ 1)/Zℓ+1. For general ℓ, however, the centre of SU(ℓ+ 1) has subgroups corresponding
to the divisors of ℓ+1 : Zm ⊂ Zℓ+1 if and only if m divides ℓ+1. So we have a whole hierarchy
of groups SU(ℓ + 1)/Zm where m runs over the divisors or ℓ + 1, interpolating between the
simply-connected SU(ℓ+1) and the adjoint group SU(ℓ+1)/Zℓ+1. For the root system D2ℓ+1,
the centre is Z4 which has a single nontrivial proper subgroup isomorphic to Z2. Hence there
are three groups: Spin(4ℓ+2), SO(4ℓ+2) = Spin(4ℓ+2)/Z2 and Spin(4ℓ+2)/Z4. Finally, the
root systems D2ℓ has centre Z2×Z2 which has three proper subgroups isomorphic to Z2. Hence
there are five groups in this family: Spin(4ℓ), SO(4ℓ) = Spin(4ℓ)/Z2, Spin(4ℓ)/Z′

2, Spin(4ℓ)/Z
′′
2 ,

and the adjoint group Spin(4ℓ)/ (Z2 × Z2). In the next section we will see that many of these
groups are mapped to each other by a duality transformation.

12.3.4 6.3.4 Some simple examples

We illustrate some of the results above with some simple examples: the simple root systems of
rank 2: A2, B2 = C2 and G2.

The simple root system A2

The root system A2 is defined by the Cartan matrix

(Aij) =

(
2 −1
−1 2

)

Therefore the simple roots are given in terms of the fundamental weights as follows: α1 =
2λ1 − λ2 and α2 = −λ1 + 2λ2. Inverting these relations we see that λ1 = 2

3
α1 +

1
3
α2 and

λ2 = 1
3
α1 +

2
3
α2. This clearly shows that the order of the fundamental group of A2 is 3, and

hence that Λw/Λr ∼= Z3. Indeed, notice that this group has as elements the cosets 0 + Λr and
λ1 + Λr and
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Figure 6.5: The root system A2.
λ2 + Λr, with multiplication table:

0 λ1 λ2

0 0 λ1 λ2
λ1 λ1 λ2 0
λ2 λ2 0 λ1

where all entries are to be understood modulo Λr. We can choose a euclidean metric on
R2 and represent these lattices pictorially. This is done in Figure 6.5. which also shows the
hyperplanes perpendicular to the roots as dashed lines, and the positive dual Weyl chamber
as shaded. The Weyl group is the dihedral group D3

∼= S3, the symmetries of an equilateral
triangle, and it clearly permutes the dual Weyl chambers. Indeed, in Figure 6.5 all chambers
but the fundamental are labelled with the element of the Weyl with which it is associated. Since
the Weyl group is generated by reflections on the hyperplanes perpendicular to the simple roots,
I have chosen to write the Weyl group elements in this way: the notation ρi means the reflection
ραi

and ρij···k = ρiρj · · · ρk. The filled circles defines the root lattice Λr and these together with
the open circle define the weight lattice Λw. The fundamental
weights and simple roots are also shown. Λw is the weight lattice of the group SU(3), whereas
Λr is the weight lattice of the adjoint group SU(3)/Z3.

The simple root systems B2 = C2
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Figure 6.6: The root system B2.
The root system B2 is defined by the Cartan matrix

(Aij) =

(
2 −1
−2 2

)
Therefore the simple roots are given in terms of the fundamental weights as follows: α1 =

2λ1 − λ2 and α2 = −2λ1 + 2λ2. Inverting these relations we see that λ1 = α1 +
1
2
α2 and

λ2 = α1+α2. This clearly shows that the order of the fundamental group of B2 is 2, and hence
that Λw/Λr ∼= Z2. Again, one can see this directly: the cosets 0 + Λr and λ1 + Λr are the
elements of the fundamental group with multiplication table

0 λ1

0 0 λ1
λ1 λ1 0

where all entries are again to be understood modulo Λr. We can choose a euclidean metric
on R2 and represent these lattices pictorially. This is done in Figure 6.6, which also shows the
hyperplanes perpendicular to the roots as dashed lines, and the positive dual Weyl chamber as
shaded. The Weyl group is isomorphic to the dihedral group D4 of symmetries of the square,
and again the Weyl chambers have been decorated with the corresponding element of the Weyl
group. Once again the filled circles define the root lattice Λr and these together with the
open circles define the weight lattice Λw. The fundamental weights and simple roots are also
shown. Λw is the weight lattice of the group Spin(5) ∼= USp(4), whereas Λr is the weight
lattice of the group SO(5). The weight λ1 is the highest weight of the irreducible spinorial
representation ∆ of Spin(5) obtained as the unique irreducible representation of the Clifford
algebra in five-dimensional euclidean space.

The dual root system C2 has as Cartan matrix the transpose of the Cartan matrix of B2.
They are of course isomorphic root systems, but the isomorphism interchanges long and short
roots: α1 ↔ α2. This essentially rotates the root diagram by π/4, and chooses a different
fundamental dual Weyl chamber.

The simple root system G2

The root system G2 is defined by the Cartan matrix

(Aij) =

(
2 −1
−3 2

)
Therefore the simple roots are given in terms of the fundamental weights as follows: α1 =

2λ1 − λ2 and α2 = −3λ1 + 2λ2. Inverting these relations we see that λ1 = 2α1 + α2 and
λ2 = 3α1 + 2α2. Hence the root and weight lattices agree. We can choose a euclidean metric
on R2 and represent this lattice pictorially. This is done in Figure 6.7, which also shows the
hyperplanes perpendicular to the roots as dashed lines, and the positive dual Weyl chamber as
shaded. The Weyl group is now D6, the symmetries of the regular hexagon, and it permutes
the Weyl chambers as shown in the figure. Now the open circles define the root/weight lattice
Λ. The fundamental weights and simple roots are also shown. Notice that the long roots form
a root system of type A2, indicative of the fact that SU(3) is a maximal subgroup of G2.

12.3.5 6.4 The magnetic dual of a compact Lie group

We now start to analyse the Dirac quantisation condition (6.10) in more detail. The punch-line
is that the Dirac quantisation condition says that the
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Figure 6.7: The root system G2.
magnetic charge (suitably normalised) is a dominant weight of a connected compact Lie

group H∨, the (magnetic) dual group of H.
First of all notice that it is irrelevant for these purposes thatH be connected, since the image

of the exponential map lies in the connected component of the identity. (Proof: If g = expX,
then g(t) = exp(1− t)X is a path to the identity.) Therefore we will assume from now on that
H is connected. It is also compact since it is a closed subgroup of a compact Lie group. So we
are in the situation that we have just discussed. Because physics is gauge invariant, we have
to identify different charges Q which are gauge related via the unbroken gauge group H. Q
belongs to the Lie algebra h of H and H acts on its Lie algebra via conjugation. One way to fix
this gauge invariance is to to choose a fixed maximal torus T in H, with Lie algebra t and use
our gauge freedom to conjugate Q to lie in t. As discussed above, this does not fix the gauge
completely, because there will be elements of H which stabilise T ; in other words, we have to
still take into account the action of the Weyl group. The action of the Weyl group is fixed
by choosing Q in the closure of the fundamental Weyl chamber C, since this is a fundamental
domain for the action of the Weyl group.

Therefore in the Dirac quantisation condition (6.10), we can take eQ to lie in the closure C̄
of the fundamental Weyl chamber in t. The exponential map in (6.10) is then the exponential
map t → T , and (6.10) says that eQ/2π belongs to the integer lattice ΛI(H) of H. We saw
above that ΛI(H) = Λw(H)∗, whence the Dirac quantisation condition becomes:

eQ/2π ∈ Λw(H)∗/W ∼= Λw(H)∗ ∩ C̄

where W is the Weyl group. On the other hand, the integer lattice can be thought of as
the weight lattice of a connected compact Lie group H∨ known as the (magnetic) dual group
of H. As we will see below, this group is a quotient of the simply-connected compact simple
Lie group whose root system is dual to the root system of H. Now, dual root systems share
the same Weyl group. This follows from the fact that the Weyl group is generated by those
reflections ρα in (6.12) corresponding to simple roots. But from (6.12) it follows that ρα = ραv.
Therefore we can fix the Weyl symmetry by going to the fundamental dual Weyl chamber of
H∨. In other words, the Dirac quantisation condition can be rewritten as

eQ/2π ∈ Λw (H
∨) /W ∼= Λ+

w (H∨)

where Λ+
w (H∨) are the dominant weights of H∨, which are in one-to-one correspondence

with the finite-dimensional irreducible representations of H∨. We now turn to a more detailed
description of the dual group.
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6.4.1 Some lattices and dual groups

In our flash review of compact Lie groups, we have already encountered several lattices. We will
now review their interrelations and in particular how they can be used to describe the dual of a
connected compact Lie group. For the purposes of studying the Dirac quantisation condition,
we will take the unbroken gauge group H to be a compact connected Lie group. Such a group
is covered finitely by a compact group H̃ = K̃ × S, where K̃ is a simply-connected compact
Lie group (hence semisimple, and in turn the product of simple factors K̃1 × · · · × K̃p) and S
is a torus. S is the connected component of the identity of the centre of H̃. We define the
dual group H∨ of H to be the compact connected Lie group whose weight lattice is dual to the
weight lattice of H. From this it follows that just like H is a finite quotient of H̃, so will H∨

be a finite quotient of H̃∨ = K̃∨
1 × · · · × K̃∨

p × S∨. It is impractical to treat the general case,
so we will discuss separately the cases of H abelian and H simple. From these ingredients it
should be possible to treat the case of general H should the urge arise. All Lie groups in this
section are compact and connected unless stated otherwise.

H abelian

If H is abelian, then it is a torus. Let h be its Lie algebra. The (reduced) exponential map is
surjective and defines a diffeomorphism H ∼= h/Λ, where Λ ⊂ h is the lattice of periods of H.
As we reviewed above, this lattice is dual to the weight lattice Λw(H) ⊂ h∗. By definition this
is the weight lattice of the dual group H∨. Hence we have a diffeomorphism H∨ ∼= h∗/Λw(H).
Notice that h∨ is identified with h∗.

H simple

Let H be a simple Lie group, H̃ its universal covering group, and h its Lie algebra. Let T be
a fixed maximal torus and t ⊂ h its Lie algebra. We let t∗ be the space of linear forms t→ R.
The root lattices Λr(H) and Λr(H̃) in t∗ agree, since as explained above they only depend on
the Lie algebra. We will therefore write it as Λr(h). The weight lattices Λw(H) and Λw(H̃)
are different, with Λw(H̃) depending only on the Lie algebra again, since it is the lattice of
fundamental weights. We will then often write it as Λw(h). We have the following inclusions:

Λr(h) ⊆ Λw(H) ⊆ Λw(h)

where the first inclusion is an equality when H is the adjoint group, and the last inclusion
is an equality when H = H̃. From Table 6.3 we see that for E8, F4 and H2, the adjoint group is
simply-connected, so that in these cases, and in these cases only, are both inclusions equalities.

The dual of these lattices give rise to lattices in t. Dualising the lattices reverses the
inclusions in (6.15), so we have

Λr(h)
∗ ⊇ Λw(H)∗ ⊇ Λw(h)

∗ (6.16)

We have met some of these lattices before. Λw(h)
∗ = ΛI(H̃) = Λ∨

r (h), which again only
depends on the Lie algebra. Similarly, Λw(H)∗ = ΛI(H) is the integer lattice of H: those
elements h ∈ T such that 2πh lies in the kernel of the exponential map exp : t→ T . It clearly
depends on H, as it will be different for H and for H̃.

Now with the same notation as above, let us consider the inverse root system Φ∨. As
mentioned above, it is a simple root system. Therefore by the construction outlined above,
there will be a complex simple Lie algebra h∨C associated to Φ∨, which has a unique compact
real form h∨, which can be integrated to a unique connected compact simply-connected Lie
group H̃∨. We will now exhibit the dual group H∨ of H as a quotient of H̃∨ by a finite
subgroup of its centre.

277



12.3.5 6.4 The magnetic dual of a compact Lie group

The inverse root system requires for its very definition the existence of the metric: α∨ =
2α/(α, α). We can undo this dependence by using the metric to map each α∨ ∈ t∗ to a unique
α∗ ∈ t such that if β ∈ t∗, β (α∗) = (β, α∨). We have met these α∗ before: they are nothing but
the coroots hα. The coroots generate a root system in t whose root lattice is the coroot lattice
Λ∨(h) of h and whose fundamental weight lattice is the dual lattice to the root lattice of h.

Exercise 6.17 (The dual fundamental weights)

Let Λw (h
∨) ⊂ t denote the lattice of fundamental weights of the dual root system. Prove that

Λw (h
∨) = Λr(h)

∗

In other words, if we let t∨ = t∗, then on t∨∗ = t, we have a root lattice Λr (h
∨) = Λ∨

r (h) =
Λw(h)

∗ and a fundamental weight lattice Λw (h
∨) = Λr(h)

∗. On t∨ = t∗ there is also a notion
of reduced exponential map exp: t∨ → T∨ which is given by the canonical projection t∗ →
t∗/Λr(h). The centre of H̃∨ is given by

Z
(
H̃∨
)
∼= Λw (h

∨) /Λr (h
∨) ∼= Λr(h)

∗/Λw(h)
∗ ∼= Λw(h)/Λr(h) ∼= Z(H̃)

where we have used Exercise 6.16.
Now, by definition, the weight lattice Λw (H

∨) of H∨ is dual of the weight lattice Λw(H) of
H:

Λw (H
∨) ≡ Λw(H)∗

which sits between the above two lattices in t:

Λr (h
∨) ⊆ Λw (H

∨) ⊆ Λw (h
∨)

From the above discussion surrounding equations (6.13) and (6.14), we know that H∨

is given by H̃∨/Γ∨ where Γ∨ ⊆ Z
(
H̃∨
)

is the subgroup of the centre of H̃∨ defined by

Λw (H
∨)∗ /Λw (h

∨)∗ = Λw(H)/Λr(h). But consider now the subgroup Γ ≡ ΓH ⊆ Z(H̃) which
defines H = H̃/Γ. Taking into account Exercise 6.16, we find that it is given by

Γ ∼= Λw(h)/Λw(H) ∼= (Λw(h)/Λr(h)) / (Λw(H)/Λr(h)) ∼= Z(H̃)/Γ∨

whence

|Γ| |Γ∨| = |Z(H̃)| (6.17)

Let us now look at examples of dual groups. Above we listed the connected compact simple
Lie groups. We now do the same for their duals. This has been done in GNO77. We list the
results in Table 6.4. Most cases
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H H∨

SU(pq)/Zp SU(pq)/Zq
Spin(2ℓ+ 1) USp(2ℓ)/Z2

SO(2ℓ+ 1) USp(2ℓ)
SO(2ℓ) SO(2ℓ)

Spin(4ℓ+ 2) Spin(4ℓ+ 2)/Z4

Spin(4ℓ) Spin(4ℓ)/ (Z2 × Z2)
Spin(8ℓ)/Z′

2 Spin(8ℓ)/Z′′
2

Spin(8ℓ)/Z′′
2 Spin(8ℓ)/Z′′

2

Spin(8ℓ+ 4)/Z′
2 Spin(8ℓ+ 4)/Z′′

2

G2 G2

F4 F4

E6 E6/Z3

E7 E7/Z2

E8 E8

Table 6.4: The connected compact simple Lie groups and their duals.
can be determined without any computation, but some of the Dℓ series turn out to be

subtle, and require an explicit description of the weight and root lattices. They are listed, for
example, in Hum72.

Equation (6.17) tells us that the orders of Γ and Γ∨ are complementary in |Z(H̃)| =∣∣∣Z (H̃∨
)∣∣∣. This means that the dual of the simply-connected group H̃ is the adjoint group

H̃∨/Z
(
H̃∨
)
. This already tells us the last five entries of Table 6.4 as well as the second, third,

fifth and sixth entries, and the special case p = 1, in the first entry. But, in fact, the rest of the
first entry also requires no further calculation. Since any subgroup of a cyclic group is cyclic
and is moreover unique, the dual of SU(pq)/Zp has to be SU(pq)/Zq, since given Zp ⊂ Zpq
there is a unique subgroup of Zpq of order q, and it is Zq. The same argument also applies to
D2ℓ+1, since the centre is cyclic in this case: whence SO(4ℓ + 2) is self-dual. For the groups
with root system D2ℓ one has to work harder.

An example: Spin(8) and its quotients

As an example we will work out the example of Spin(8) and its factor groups. The root system
of Spin(8) is D4 and we worked out the Cartan matrix, the centre and the fundamental weights
above. The lattice of fundamental weights Λw = Z ⟨λi⟩ is the integer span of the fundamental
weights λi. The
root lattice is the sublattice of the fundamental weights generated by the combinations:

α1 = 2λ1 − λ2 α2 = −λ1 + 2λ2 − λ3 − λ4
α3 = −λ2 + 2λ3 α4 = −λ2 + 2λ4.

Equivalently it is the lattice consisting of elements
∑4

i=1 niλi where ni ∈ Z such that n1, n3

and n4 are either all even or all odd. There are three intermediate lattices corresponding to
the weight lattices of the three subgroups SO(8), Spin(8)/Z′

2 and Spin(8)/Z′′
2 : Λ1 = Λr ∪

(Λr + λ1) ,Λ3 = Λr ∪ (Λr + λ3), and Λ4 = Λr ∪ (Λr + λ4). Equivalently,
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Λ1 =

{
4∑
i=1

niλi | n3 ≡ n4(2)

}

Λ3 =

{
4∑
i=1

niλi | n1 ≡ n4(2)

}

Λ4 =

{
4∑
i=1

niλi | n1 ≡ n3(2)

}

all other integers ni unconstrained. We can easily find a Z-basis for these lattices as follows:

Λ1 = Z ⟨λ1, λ2, λ3 ± λ4⟩
Λ3 = Z ⟨λ2, λ3, λ1 ± λ4⟩
Λ4 = Z ⟨λ2, λ4, λ1 ± λ3⟩

The dual picture is as follows. Take as a basis the canonical dual basis {αi} to the roots:
αi (αj) = δij. Their Z-span is the lattice Λ∗

r and all lattices of interest are contained in it, so
their elements will be integer linear combinations of the αi. Given a sublattice Λ ⊆ Λw described
as the Z-span of some vectors vi in the weight lattice Λw, the dual lattice will be the sublattice
Λ∗ ⊆ Λ∗

r given by the Z-span of the canonical dual basis vi to the vi. Let vi =
∑

jMi
jλj, where

Mi
j ∈ Z since Λ is a sublattice of Λw. Similarly vi =

∑
j N

i
jα

j, where N i
j ∈ Z. We can solve

for N in terms of M and the Cartan matrix C as follows. By definition, vi (vj) = δij, whence

δij = vj
(
vi
)

= N i
kM

ℓ
jλℓ
(
αk
)

= N i
kM

ℓ
j

(
C−1

)
ℓ
k

where we have used that λℓ = (C−1)ℓ
kαk. In other words, N = (CM−1)

t. Computing this
for each of the lattices above, we find:

Λ∗
1 = Z

〈
2α1 − α2, α1 − α2 + α3 + α4, α2 − α3 − α4, α3 − α4

〉
Λ∗

3 = Z
〈
α1 − α2 + α4, α1 − α2 + α3 + α4, α2 − 2α3, α1 − α4

〉
Λ∗

4 = Z
〈
α1 − α2 + α3, α1 − α2 + α3 + α4, α1 − α3, α2 − 2α4

〉
We can understand these lattices as sublattices of Λ∗

r by changing basis to the αi and
constraining the coefficients. We find

Λ∗
1 =

{
4∑
i=1

niα
i | n3 ≡ n4(2)

}

Λ∗
3 =

{
4∑
i=1

niα
i | n1 ≡ n4(2)

}

Λ∗
4 =

{
4∑
i=1

niα
i | n1 ≡ n3(2)

}

whence we conclude that all three lattices are self-dual, in agreement with Table 6.4.
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Another example: Spin(12) and its quotients

As a final example, and to illustrate the other behaviour of the D2ℓ series, we will work out the
example of Spin(12) and its factor groups. The root system of Spin(12) is D6, whose Cartan
matrix follows from Table 6.2:


2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 −1
0 0 0 −1 2 0
0 0 0 −1 0 2


The fundamental weights are given by

λ1 = α1 + α2 + α3 + α4 +
1

2
α5 +

1

2
α6

λ2 = α1 + 2α2 + 2α3 + 2α4 + α5 + α6

λ3 = α1 + 2α2 + 3α3 + 3α4 +
3

2
α5 +

3

2
α6

λ4 = α1 + 2α2 + 3α3 + 4α4 + 2α5 + 2α6

λ5 =
1

2
α1 + α2 +

3

2
α3 + 2α4 +

3

2
α5 + α6

λ6 =
1

2
α1 + α2 +

3

2
α3 + 2α4 + α5 +

3

2
α6

It follows that the centre Λw/Λr ∼= Z2×Z2 consists of the following Λr-cosets: 0, λ1, λ5 and
λ6, with multiplication table:

0 λ1 λ5 λ6

0 0 λ1 λ5 λ6
λ1 λ1 0 λ6 λ5
λ5 λ5 λ6 0 λ1
λ6 λ6 λ5 λ1 0

where as usual all entries are modulo Λr.
Letting Λr = Z ⟨λi⟩, the root lattice is the sublattice Λr = Z ⟨αi⟩ spanned by the following

combinations:

α1 = 2λ1 − λ2 α2 = −λ1 + 2λ2 − λ3
α3 = −λ2 + 2λ3 − λ4 α4 = −λ3 + 2λ4 − λ5 − λ6
α5 = −λ4 + 2λ5 α6 = −λ4 + 2λ6

Equivalently it is the lattice consisting of elements
∑6

i=1 niλi where ni ∈ Z such that n1 +
n3, n5 and n6 are either all even or all odd. There are three intermediate lattices corresponding
to the weight lattices of the three subgroups SO(12), Spin(12)/Z′

2 and Spin(12)/Z′′
2 : Λ1 =

Λr ∪ (Λr + λ1), Λ5 = Λr ∪ (Λr + λ5), and Λ6 = Λr ∪ (Λr + λ6). Equivalently,
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Λ1 =

{
6∑
i=1

niλi | n5 ≡ n6(2)

}

Λ5 =

{
6∑
i=1

niλi | n1 + n3 ≡ n6(2)

}

Λ6 =

{
6∑
i=1

niλi | n1 + n3 ≡ n5(2)

}
all other integers ni unconstrained. We can easily find a Z-basis for these lattices as follows:

Λ1 = Z ⟨λ1, λ2, λ3, λ4, λ5 ± λ6⟩
Λ5 = Z ⟨λ2, λ4, λ5, λ1 + λ3, λ1 + λ6, λ3 + λ6⟩
Λ6 = Z ⟨λ2, λ4, λ6, λ1 + λ3, λ1 + λ5, λ3 + λ5⟩

Following the discussion given in the previous example, the dual lattices are given by

Λ∗
1 = Z

〈
2α1 − α2, α1 − 2α2 + α3, α2 − 2α3 + α4, α3 − 2α4 + α5 + α6

α5 − α6, α4 − α5 − α6
〉

Λ∗
5 = Z

〈
α1 − α2 + α3 − α6, α1 − α3 + α4 − α6, α3 − 2α4 + α5 + α6

α1 − 2α2 + α3, α5 − 2α6, α1 − α3 + α6,
〉

Λ∗
6 = Z

〈
α1 − α2 + α3 − α5, α1 − α3 + α4 − α5, α3 − 2α4 + α5 + α6

α1 − 2α2 + α3, α1 − α3 + α5, α4 − 2α6
〉

We can understand these lattices as sublattices of Λ∗
r by changing basis to the αi and

constraining the coefficients. We find

Λ∗
1 =

{
6∑
i=1

niα
i | n5 ≡ n6(2)

}

Λ∗
5 =

{
6∑
i=1

niα
i | n1 + n3 ≡ n5(2)

}

Λ∗
6 =

{
6∑
i=1

niα
i | n1 + n3 ≡ n6(2)

}
whence we conclude that Λ1 is self-dual, whereas duality interchanges the groups whose

weight lattices are Λ5 and Λ6. It can be shown that the group whose weight lattice is Λ1 is
SO(12). Again this is in agreement with Table 6.4.

13 Duality Transformations in Supersymmetric
Yang-Mills Theories coupled to Supergravity by
Ceresole, Ferrara, Proeyen

Abstract

We consider duality transformations in N = 2, d = 4 Yang-Mills theory coupled to N =
2 supergravity. A symplectic and coordinate covariant framework is established, which
allows one to discuss stringy ’classical and quantum duality symmetries’ (monodromies),
incorporating T and S dualities. In particular, we shall be able to study theories (like
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13.1 1 Introduction

N = 2 heterotic strings) which are formulated in symplectic basis where a ’holomorphic
prepotential’ F does not exist, and yet give general expressions for all relevant physical
quantities. Duality transformations and symmetries for the N = 1 matter coupled Yang-
Mills supergravity system are also exhibited. The implications of duality symmetry on all
N > 2 extended supergravities are briefly mentioned. We finally give the general form
of the central charge and the N = 2 semiclassical spectrum of the dyonic BPS saturated
states (as it comes by truncation of the N = 4 spectrum).

13.1 1 Introduction

Recently, proposals for the quantum moduli space of N = 2 rigid Yang-Mills theories [1]
have been given in terms of particular classes of genus r Riemann surfaces parametrized by
r complex moduli[2], r being the rank for the gauge group G broken to U(1)r for generic
values of the moduli. The effective action for such theories, with terms up to two derivatives,
is described by N = 2 supersymmetric lagrangians of r abelian massless vector multiplets[3],
whose dynamics is encoded in a holomorphic prepotential F

(
XA
)
, function of the moduli

coordinates XA(A = 1, . . . , r). According to Seiberg and Witten [1] this effective theory has
classical, perturbative and non perturbative duality symmetries which reflect on monodromy
properties of certain holomorphic symplectic vectors

(
XA, FA(X)

)
, eventually related to periods

of holomorphic one-forms [1]

ω = XAαA + FAβ
A (1.1)

where αA, βA is a basis for the 2r homology cycles of a genus r Riemann surface. The Picard-
Fuchs equations satisfied by the holomorphic vector one-form Ui =

(
∂iX

A, ∂iFA
)
(i = 1, . . . , r)

can be regarded as differential identities for "rigid special geometry" [7]. To attach a particu-
lar algebraic curve to "rigid special geometry" is therefore equivalent to exactly compute the
holomorphic data Ui, and thus to exactly reconstruct the effective action for the self interac-
tion of the r massless gauge multiplets once the massive states, both perturbative and non
perturbative, have been integrated out. Indeed it is a virtue of N = 2 supersymmetry that all
the couplings in the effective Lagrangian, including 4 -fermion terms, can be computed purely
in terms of the holomorphic data. Quite remarkably the quantum monodromies dictate the
monopole and dyon spectrum of the effective theory [17.27] which turns out to be "dual" to
non-perturbative instanton effects [5] in the original G-invariant microscopic theory [6]:7].

This paper considers several issues in order to extend the approach pursued in the rigid case
to the more challenging case of coupling an N = 2 Yang-Mills theory to gravity. In particular
we shall include in the N = 2 supergravity theory a dilaton-axion vector multiplet which is an
essential ingredient to describe effective N = 2 theories which come from the low energy limit
of N = 2 heterotic string theories in four dimensions [8]. Another ingredient is the extension
of the "classical monodromies" to N = 2 local supersymmetry. For rigid theories the classical
metric is essentially the Cartan matrix of the group G and the classical monodromies are
related to the Weyl group of the Cartan subalgebra of G [2]. For N = 2 supergravity theories
coming from N = 2 heterotic strings, the classical metric of the moduli space of the pure
gauge sector is based on the homogeneous space O(2, r)/O(2) × O(r) [3. [8 [10] and the
classical monodromies are related to the T -duality group O(2, r;Z) which in particular is an
invariance of the massive charged states 11]. This state of affair is quite analogous to the
analysis performed by Sen and Schwarz 12] for the N = 4 heterotic string compactifications, in
which case an exact quantum duality symmetry SL(2,Z)×O(6, r;Z) was conjectured [12 [16]
and a resulting spectrum for BPS states with both electric and magnetic states was proposed.
In the N = 4 theory the SL(2,Z)×O(6, r;Z) symmetry, using general arguments [17,18, has a
natural embedding in Sp(2(6+r);Z), acting on the 6+r vector self-dual field strengths F +A

µν and
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13.2 2 Résumé of rigid special geometry

their "dual" defined through Gµν
+A ≡ −i δL

δF +A
µν

. In generic N = 2 theories, because of quantum
corrections [19, 20], we do not expect such factorized S − T duality to occur anymore [4].
Indeed this can be argued with a pure supersymmetry argument, related to the fact that once
the classical moduli space O(2, r)/O(2) × O(r) is deformed by quantum corrections, then the
factorized structure with the dilaton degrees of freedom is lost and a non trivial moduli space,
mixing the S and T degrees of freedom should emerge. This result is in fact a consequence of a
theorem on "special geometry" [21,22] which asserts that the only factorized special manifolds
are the SU(1,1)

U(1)
× O(2,r)

O(2)×O(r)
series, which precisely describe the "classical moduli space" of S − T

moduli. Because of the coupling to gravity, the symplectic structure and identification of
periods, coming from special geometry, is also remarkably different from rigid special geometry.
Indeed the interpretation of

(
XΛ, FΛ

)
,Λ = 0, 1, . . . , r + 1 as periods of algebraic curves is

no longer appropriate to genus r Riemann surfaces, as it can be seen from the Picard-Fuchs
equations [23.24] and from the form of the metric giȷ̄ = −∂i∂ȷ̄ log i

(
F̄AX

A − X̄AFA
)

of the
moduli space 23 29. In fact special geometry is known to be appropriate to a particular class
of complex manifolds (Calabi-Yau manifolds or their mirrors) and to describe the deformations
of the complex structure [23]. It is therefore tempting to argue that the quantum moduli space
including S − T duality and its monodromies is related to 3 -manifolds (or their mirrors) with
h(2,1) = r + 1.

The paper is organized as follows: In chapter 2 we give a résumé of rigid theories, also
discussing duality for the fermionic sector and the physical significance of monodromies and ge-
ometrical data, such as the holomorphic tensor Cijk, related to the gaugino anomalous magnetic
moment. In chapter 3 we describe in detail the coupling to gravity, the extension of duality to
the fermionic sector and the existence of
symplectic bases which do not admit a prepotential function F , as it occurs in certain formula-
tions of N = 2 supergravities coming from N = 2 heterotic strings. The general form of duality
transformations and symmetries as they occur in N = 1 locally supersymmetric Yang-Mills
theories coupled to matter is also described. In chapter 4 we use such a formulation where
all the perturbative duality symmetries become invariances of the action. Then, we discuss
the implementation of duality symmetries in N > 2 extended supergravities for the spectrum
of dyonic states. In chapter 5 we analyze classical and quantum duality symmetries and give
generic formulae for the spectrum of the BPS states and the "semiclassical formulae" when
the non perturbative spectrum is computed in terms of the "classical periods". The explicit
expression for the r = 2 case is given as an example, and the special occurrence of enhanced
symmetry points is described. The paper ends with some concluding remarks.

13.2 2 Résumé of rigid special geometry

13.2.1 2.1 Basics

N = 2 supersymmetric gauge theory on a group G broken to U(1)r, with r = rankG, corre-
sponds to a particular case of the most general N = 1 coupling of r chiral multiplets

(
XA, χA

)
to rN = 1 abelian vector multiplets

(
AA
µ , λ

A
)

in which the Kähler potential K and the holo-
morphic kinetic term function fAB

(
XA
)

are given by

K = i
(
F̄AX

A − FAX̄A
)
, (FA = ∂AF ) (2.1)

fAB = ∂A∂BF ≡ FAB

in terms of the single prepotential F (X) [3]. One can show that the Kähler geometry is
constrained because the Riemann tensor satisfies the identity [26,4]
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13.2.1 2.1 Basics

RAB̄CD̄ = −∂A∂C∂PF∂B̄∂D̄∂Q̄F̄ gPQ̄ (2.2)

with

gPQ̄ = ∂P∂Q̄K = 2 Im ∂P∂QF (2.3)

The lagrangian has the form

L = gAB̄∂µX
A∂µX̄

B +
(
gAB̄λ

IAσµDµλ̄
B̄
I + h.c.

)
(2.4)

+ Im
(
FABF

−A
µν F

−B
µν

)
+ LPauli + L4− fermi

where A,B, . . . run on the adjoint representation of the gauge group G, I = 1, 2 and F +A
µν =

F A
µν − i

2
ϵµνρσF

Aρσ (and F −A
µν = F

+A

µν ). As we shall see, also LPauli and L4− Fermi contain the
function F and its derivatives up to the fourth.

The previous formulation, derived from tensor calculus, is incomplete because it is not
coordinate covariant. It is written in a particular coordinate system ("special coordinates")
which is not uniquely selected. In fact, eq.(2.1) is left invariant under particular coordinate
changes of the XA → X̃A with some new function F̃ (X̃) described by

X̃A(X) = AABX
B +BABFB(X) + PA

F̃A

(
X̃A(X)

)
= CABX

B +DB
AFB(X) +QA (2.5)

where
(
A B
C D

)
is an Sp(2r,R) matrix

ATC − CTA = 0 , BTD −DTB = 0 , ATD − CTB = 1 (2.6)

and PA, QA can be complex constants which from now on will be set to zero.
It can be shown that a function F̃ exists such that [3]

F̃A =
∂F̃

∂X̃A
(2.7)

provided the mapping XA → X̃A is invertible.
It is well known that the equations of motion and the Bianchi identities [3] [17] [18]

∂µ ImF −A
µν = 0 Bianchi identities

∂µ ImGµν
−A = 0 Equations of motion (2.8)

transform covariantly under (2.5) (with PA = QA = 0), so that
(
F −A
µν , Gµν

−A ) is a symplectic
vector. Here, Gµν

−A ≡ i δL

δF −A
µν

= NABF
−B
µν + fermionic terms, where we have set FAB = NAB

in order to unify the notations to the gravitational case [3]. The transformations (2.5) leave
invariant the whole lagrangian but the vector kinetic term. Indeed, neglecting for the moment
fermion terms (see section 2.2) and setting
for simplicity F −A

µν = F A and Gµν
−A = GA the vector kinetic lagrangian transforms as follows

ImF ANABF
B → Im F̃ AG̃A =

= Im
(
F AGA + 2F A

(
CTB

)B
A
GB+ (2.9)

+F A
(
CTA

)
AB
F B +GA

(
DTB

)AB
GB

)
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13.2.1 2.1 Basics

If C = B = 0 the lagrangian is invariant. If C ̸= 0, B = 0 it is invariant up to a
four-divergence. In presence of a topologically non-trivial F −A

µν background,(
CTA

)
AB

∫
ImF −A

µν F
−B
µν ̸= 0, one sees that in the quantum theory duality transformations

must be integral valued in Sp(2r,Z) [1] and transformations with B = 0 will be called
perturbative duality transformations.

If B ̸= 0 the lagrangian is not invariant. As it is well known, then the duality transformation
is only a symmetry of the equations of motion and not of the lagrangian.

Since G̃µν
−A = ÑABF̃

−B
µν one also has

Ñ = (C +DN )(A+BN )−1 (2.10)

A duality transformation will be a symmetry of the theory if Ñ (X̃) = N (X̃), which implies
F̃ (X̃) = F (X̃).

Note that B ̸= 0 means that the coupling constant Ñ is inverted and symmetry transfor-
mations with B ̸= 0 will be called quantum non perturbative duality symmetries.

The perturbative duality rotations are of the form(
A 0

C
(
AT
)−1

)
, A ⊂ GL(r), ATC symmetric (2.11)

In rigid supersymmetry the tree level symmetries are of the form
(
A 0

0
(
AT
)−1

)
while the

quantum perturbative monodromy introduces a C ̸= 0.
The general form of the central charge for BPS states in a generic N = 2 rigid theory is

given by [1]

|Z| =M =
∣∣∣nA(m)FA − n

(e)
A XA

∣∣∣ (2.12)

where nA(m), n
(e)
A denote the values of magnetic and electric charges of the state of mass M .

The above expression is manifestly symplectic covariant provided the vector(
nA(m), n

(e)
A

)
is also transformed under Sp(2r;Z). This equation shows again that a duality

symmetry can only be a (perturbative) symmetry if B = 0, otherwise the vector subspace with
nA(m) = 0 cannot be left invariant.

If the original unbroken gauge group is G = SU(r + 1), then A ∈ Weyl group and ATC is
the Cartan matrix ⟨αi | αj⟩ of SU(r + 1) [2].

Eq. (2.10) shows that A+ BN has to be invertible in order that the new tensor Ñ exists.
This is insured by the positive definiteness of ImN , which is the kinetic matrix. Here A+BN =
∂X̃/∂X, so this implies the invertibility of the mapping X → X̃. As explained in (2.7), this
then also implies the existence of F̃ . We will see that in local supersymmetry NAB ̸= F̄AB, so
that the existence of F̃ is not equivalent to the invertibility of ImN , and F̃ not always exists.

Special coordinates do not give a coordinate independent description of the effective action.
A coordinate independent description is obtained by introducing a holomorphic symplectic
bundle V =

(
XA(z), FA(z)

)
and holomorphic (1, 0) forms on the Kähler manifold 4 , 1

Ui ≡ ∂iV =
(
∂iX

A, ∂iFA
)

with i = 1, . . . , r (2.13)

In rigid special geometry the Ui satisfy the constraints [4]

DiUj = iCijkg
kl̄Ūl̄ (2.14)

∂iŪȷ̄ = 0
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13.2.2 2.2 Symplectic transformations in the fermionic sector

Taking then the metric

giȷ̄ = ∂i∂ȷ̄K = i
(
∂ȷ̄F̄A∂iX

A − ∂ȷ̄X̄A∂iFA
)

= i∂iX
A∂ȷ̄X̄

B
(
NAB −NAB

)
(2.15)

where we used

∂ı̄F̄A = NAB∂ı̄X̄
B (2.16)

one may derive the tensor Cijk

Cikp = ∂iX
ADk∂pFA − ∂iFADk∂pX

A

= ∂iX
B
(
∂k∂pFB − ∂k∂pXANAB

)
(2.17)

The integrability conditions on (2.14) yields

Rij̄kl̄ = −CikpC̄j̄lp̄gpp̄ (2.18)

The Bianchi identities of (2.18) also imply that Cijk is a holomorphic completely symmetric
tensor obeying D[iCj]kl = 0.

Note that from (2.17) it also follows

Cijk = ∂iX
A∂jX

B∂kX
C∂A∂B∂CF (2.19)

which in special coordinates reduces to

CABC = ∂A∂B∂CF (2.20)

13.2.2 2.2 Symplectic transformations in the fermionic sector

In the total supersymmetric action, the vectors also couple to fermions by terms linear in
the field strength. We will first give the general features of the formulation of symplectic
transformations in the presence of a fermionic sector, which could even be non-supersymmetric.
Afterwards, we will specify the formulae for generic fermionic terms which we encounter in
N = 2 lagrangians.

The general form of the Lagrangian, deleting terms which are by themselves symplectic
invariant, is

L = − i
2
NABF

−AµνF −B
µν − iF −AµνH−

Aµν + c.c. + L4f (2.21)

where H−
Aµνare quadratic in the fermions, and L4f are the quartic terms in fermions. Then

G−
Aµν ≡ i

δL

δF −Aµν = NABF
−B
µν +H−

Aµν = G−
bAµν +H−

Aµν (2.22)

As argued in ref [17], the point where the equations of motions (2.8) are satisfied is an
invariant point. Thus, the first term of the action is (omitting the obvious A indices)
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13.2.3 2.3 Fermions in N = 2 rigid Yang-Mills theory

LV ≡ −
i

2
NF −

µνF
−µν + c.c.

= − i
2
G−
bµνF

µν + c.c.

= i∂µG−
bµνA

ν + c.c. (2.23)

= −i∂µH−
µνA

ν + c.c. − 2∂µ ImG−
µνA

ν

=
i

2
H−
µνF

−µν + c.c. − 2∂µ ImG−
µνA

ν

Therefore

L| δL
δA

=0 = −
i

2
H−
µνF

−µν + c.c. + L4f ≡ Linv (2.24)

which should thus be invariant. The Lagrangian (2.21) is then

L = − i
2
F −AµνG−

Aµν + c.c. + Linv (2.25)

Now we suppose H−
Aµνto be of the form

H−
Aµν =

(
PAa −NABQ

B
a

)
T −a
µν (2.26)

where a denotes a new index, whose meaning depends on the model. T −a
µν is a tensor not

transforming under the symplectic group. Then

Linv = −
i

2
F −Aµν (PAa −NABQ

B
a

)
T −a
µν + c.c. + L4f

= − i
2

(
F −AµνPAa −G−µν

bA QA
a

)
T −a
µν + c.c. + L4f (2.27)

Invariance of Linv is then guaranteed if
(
QA, PA

)
is a symplectic vector, and L4f is con-

structed as the completion of Gb to G in the above formula (plus possible completely invariant
terms). These completions are thus

L4f =
i

2
H−µν
A QA

a T
−a
µν + c.c. + invariant terms (2.28)

13.2.3 2.3 Fermions in N = 2 rigid Yang-Mills theory

The coordinate independent description of fermions is given by SU(2) doublets
(
λiI , λv̄I

)
where

upper and lower SU(2) indices I mean positive and negative chiralities respectively [3] 26]. As
such the spinors are symplectic invariant and contravariant world vector fields. The antiselfdual
field strength F −A

αβ and positive chiralities spinors are in the same N = 2 multiplet, which is,
in two component spinor notation, * (

XA, ∂iX
AλiIα ,F

−A
αβ

)
(2.29)

with α, β ∈ SL(2,C).

⋆F −A
αβ is σµναβF

−A
µν .

In our application of (2.26) only T is dependent on the fermions λiI , while P and Q depend
on the scalars XA. The index a is now replaced by ı̄, and we have
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13.2.4 2.4 Positivity and monodromies

QA
ı̄ = ∂ı̄X̄

A; PAı̄ = ∂ı̄F̄A (2.30)

T ı̄
αβ = kg ı̄jCjkpλ

kI
α λ

pJ
β ϵIJ

where k is a constant to be determined by supersymmetry. Then

Hαβ
−A = k∂ı̄X̄

B
(
NBA −NBA

)
gījCjkpλ

αkIλβpJϵIJ (2.31)

This yields

LPauli = −i(N −N )AB∂ı̄X̄
AT ı̄

αβF
Bαβ + c.c.

L4f =
i

2
∂ı̄X̄

A∂ȷ̄X̄
B
(
NAB −NAB

)
T ı̄
αβT

ȷ̄αβ + c.c.+ invariant terms (2.32)

in agreement with Cremmer et al. 30].
In special coordinates, setting λi1α = χiα, λ

i2
α = λiα, the Pauli term reduces to

LPauli = −k∂A∂B∂CF
(
χAαλ

B
β − λAαχBβ

)
F −Cαβ + c.c. (2.33)

in agreement with the standard N = 1 supersymmetric action with fAB = FAB [30]. We see
from (2.32) that in rigid supersymmetry the physical meaning of Cijk is that of an anomalous
magnetic moment. Note that Cijk vanishes at tree-level and it is ∼ 1

⟨X⟩ at one loop-level as it
must be [19] 20] [1]. It is obviously singular at ⟨X⟩ = 0. In the SU(2) quantum theory [1], the
SU(2) symmetry is not restored at X = 0, and then one rather expects such terms to behave
as c0

Λ
where c0 is a dimensionless number. The vanishing at tree-level of both Pauli terms and

the corresponding four fermions terms is consistent with renormalizability arguments.
The other fermionic terms which are already duality invariant read

λiIα λ
kJ
β ϵ

αβλ̄ȷ̄α̇I λ̄
l̄
β̇J
ϵα̇β̇Riȷ̄kl̄ (2.34)

and

DiCjlmλ
iI
α λ

jK
β ϵαβλlJγ λ

mL
δ ϵγδϵIJϵKL (2.35)

Note that, because of eq. (2.18), all couplings in the lagrangian are expressed through the
tensors Cijk.

From a tensor calculus point of view, all quartic terms but the last come from the equations
of motion of the Y i

IJ auxiliary field triplet [3].

13.2.4 2.4 Positivity and monodromies

Let us consider a submanifoldMr of the moduli space of a Riemann surface of genus r such that
its tangent space is isomorphic to the Hodge bundle. In particular the dimension ofMr is equal
to the genus r of the Riemann surface Cr†. In this case, decomposing an abelian differential in
terms of the 2r harmonic forms dual to the canonical basis of cycles, we have

ω = XA
(
zi
)
αA + FA

(
zi
)
βA A, i = 1, . . . , r∫

αA ∧ βB = δBA ,

∫
αA ∧ αB =

∫
βA ∧ βB = 0 (2.36)

where zi are coordinates on the moduli space submanifold, and
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13.3 3 Coupling to gravity

∂iω = ∂iX
AαA + ∂iFAβ

A (2.37)

Then the metric, given by the norm

gı̄j = i

∫
∂iω ∧ ∂ȷ̄ω̄ = i∂i∂ȷ̄

∫
ω ∧ ω̄ (2.38)

is manifestly positive. Using eqs. (2.36), (2.37) we find

giȷ̄ = i∂i∂ȷ̄
(
F̄AX

A − X̄AFA
)

which coincides with the metric of N = 2 rigid special geometry (2.15) [1.[4].
Formula (2.37) implies by supersymmetry a similar expansion for the full multiplet (2.29).

For the upper component F −A
µν we get a self dual three form

w = F AαA +GAβ
A (2.39)

on R4 × Cr when (2.8) hold. We observe that an N = 2, 4D abelian vector multiplet can
be obtained from dimensional reduction from six dimensions either of a vector multiplet or of
a tensor multiplet containing a self-dual field strength. This remarkable coincidence actually
suggests a physical picture for the characterization of this subclass Cr of Riemann surfaces.
Namely, they should appear in the compactification on R4 × Cr of N = 1 six-dimensional
theory of a self interacting tensor multiplet.

As shown in ref. [4], the Picard-Fuchs equations for Cr have a general form dictated by the
differential constraints of rigid special geometry. A general proposal for Cr has been given in [2]
and can be used to write down the Picard-Fuchs equations for the periods and to determine their
monodromies. Such proposal can be checked by comparing the explicit form of the Picard-Fuchs
equations with their general form given by rigid special geometry.

In the one parameter case (G = SU(2)), where C1 is given by the elliptic curve of ref. [1],
the special geometry equations reduce to one ordinary second order equation(

d

dz
+ Γ̂

)
C−1

(
d

dz
− Γ̂

)
U = 0 (2.40)

where Γ̂ = d
dz
log e, e = dX

dz
and C is the 3 -tensor appearing in (2.14). This agrees with the

Picard-Fuchs equations derived from C1. The general solution of this equation is [4]

U =

(
e, e

d2F

dX2

)
(2.41)

with τ = d2F
dX2 being the uniformizing variable for which the differential equation reduces to

d2

dτ2
() = 0.

13.3 3 Coupling to gravity

13.3.1 3.1 Special geometry and symplectic transformations

The coupling to gravity modifies the constraints of rigid special geometry because of the intro-
duction of a U(1) connection due to the U(1) Kähler -Hodge structure of moduli space. For n
vector multiplets one introduces 2(n+ 1) covariantly holomorphic sections [26, 23, 27, 29]

V =
(
LΛ,MΛ

)
(Λ = 0, . . . , n) (3.1)

where 0 is the graviphoton index.
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13.3.1 3.1 Special geometry and symplectic transformations

The new differential constraints of special geometry are

Ui ≡
(
DiL

Λ,DiMΛ

)
=
(
fΛ
i , hiΛ

)
DiUj = iCijkg

kŪl̄ (3.2)
DiŪȷ̄ = giV̄

DiV̄ = 0

where now Di is the covariant derivative with respect to the usual Levi-Civita connection
and the Kähler connection ∂iK. That is, under K → K + f + f̄ a generic field ψi which under
U(1) transforms as ψi → e−(

p
2
f+ p̄

2
f̄)ψi has the following covariant derivative

Diψ
j = ∂iψ

j + Γjikψ
k +

p

2
∂iKψ

j (3.3)

and analogously for Dı̄ with p → p̄. This U(1) is related to the U(1) in the N = 2
superconformal group, and the weights for all the fields were determined in 331 (p̄ = c). In our
notations,

(
LΛ,MΛ

)
have been given conventionally weights p = −p̄ = 1.

Since LΛ,MΛ are covariantly holomorphic, it is convenient to introduce holomorphic sections
XΛ = e−K/2LΛ, FΛ = e−K/2MΛ.

The Kähler potential is fixed by the condition [3] [26]

i
(
L̄ΛMΛ − LΛM̄Λ

)
= 1 (3.4)

to be

K = − log i
(
X̄ΛFΛ −XΛF̄Λ

)
(3.5)

As it is well known [3] [32], the differential constraints (3.2) can in general be solved in
terms of a holomorphic function homogeneous of degree two F (X). However, as we will see in
the sequel, there exist particular symplectic sections for which such prepotential F does not
exist. In particular this is the case appearing in the effective theory of the N = 2 heterotic
string. For this reason it is convenient to have the fundamental formulas of special geometry
written in a way independent of the existence of F .

First of all we note that quite generally we may write

MΛ = NΛΣL
Σ; hΛi = NΛΣf

Σ
i (3.6)

From (3.6) we can define the two (n+ 1)× (n+ 1) matrices

hΛĪ = (hΛ0 ≡MΛ, hΛı̄) , fΛ
Ī =

(
fΛ
0 ≡ LΛ, fΛ

ı̄

)
(3.7)

to obtain an explicit expression for NΛΣ in terms of
(
LΛ,MΛ

)
as

NΛΣ = hΛĪ
(
f−1
)Ī
Σ

(3.8)

Note that hΛĪ , fΣ
Ī

are invertible matrices and the above expression implies the transforma-
tion law (2.10).

When F exists, NΛΣ has the form [3] 27]

NΛΣ = F̄ΛΣ + 2i
(ImFΛΓ) (ImFΣΠ)L

ΓLΠ

(ImFΞΩ)LΞLΩ
(3.9)

which turns out to be the coupling matrix appearing in the kinetic term of the vector fields.
However, as we show below, (3.6) are symplectic covariant and therefore they always hold even
in some specific coordinate system in which F does not exist.
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13.3.1 3.1 Special geometry and symplectic transformations

In the same way as in the rigid case, from eqs. (3.2) and (3.4) we find

giȷ̄ = i
(
fΛ
i h̄ȷ̄Λ − hiΛf̄Λ

ȷ̄

)
= i
(
NΛΣ −NΛΣ

)
fΛ
i f

Σ
ȷ̄ (3.10)

Cijk = fΛ
i DjhkΛ − hiΛDjf

Λ
k = fΛ

i ∂jNΛΣf
Σ
k (3.11)

which are symplectic invariant. (Note that NΛΣ has zero Kähler weight).
Furthermore, the integrability conditions (3.2) give [26 [25 230 29 270

Riȷ̄lk̄ = giȷ̄glk̄ + gik̄glȷ̄ − CilpCȷ̄k̄p̄gpp̄ (3.12)

replacing eq. (2.6).
Here Cilp is a covariantly holomorphic tensor of weight p = −p̄ = 2,

Dl̄Cijk = ∂l̄Cijk − ∂l̄KCijk = 0 (3.13)

which implies ∂l̄Wijk = 0 with Cijk = eKWijk.
Some additional consequences of the previous formulae are the following: from DiFΛ =

NΛΣDiX
Σ, applying Dȷ̄ to both sides we also find

Dȷ̄DiFΛ = ∂ȷ̄NΛΣDiX
Σ +NΛΣDȷ̄DiX

Σ (3.14)

which implies, using the third line of (3.2),(
FΛ −NΛΣX

Σ
)
giȷ̄ = ∂ȷ̄NΛΣDiX

Σ (3.15)

Note that the left-hand side of (3.15) defines the graviphoton projector

TΛ =MΛ −NΛΣL
Σ (3.16)

From the first of equations (3.6) it also follows that

∂ı̄NΛΣL
Σ = 0 , hiΛ = NΛΣf

Σ
i + ∂iNΛΣL

Σ (3.17)

and therefore

∂iNΛΣL
Σ =

(
NΛΣ −NΛΣ

)
fΣ
i (3.18)

by contraction with fΛ
ȷ̄ we get

fΛ
ȷ̄ ∂iNΛΣL

Σ = igiȷ̄ (3.19)

Taking the complex conjugate of (3.19) and using (3.15) it follows that

TΛL̄
Λ = −i (3.20)

which is nothing but (3.4). An alternative form for the Kähler potential is

K = − log i
(
NΛΣ −NΛΣ

)
XΛX̄Σ (3.21)

Duality transformations are now in Sp(2n + 2,Z) and act on XΛ, FΛ as in the rigid case.
The symplectic action on

(
LΛ,MΛ

)
( or

(
XΛ, FΛ

))
is(

L

M

)′

=

(
A B
C D

)(
L

M

)
= S

(
L

M

)
S ∈ Sp(2n+ 2,Z) (3.22)

Then it follows, because of eq. (3.2) and (3.6),
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13.3.1 3.1 Special geometry and symplectic transformations

(
fΛ
i

hiΛ

)′

=

(
A BN
C DN

)(
fΛ
i

fΛ
i

)
(3.23)

which implies again (2.10). These two transformations laws imply the covariance of (3.6).
The symplectic action on F +Λ

µν , Gµν
+Λ is the same as on

(
LΛ,MΛ

)
, so eq. (2.8) is unchanged.

Therefore the discussion of the previous section on perturbative and non perturbative duality
transformations in the rigid case remains unchanged when gravity is turned on.

When the sections
(
XΛ, FΛ

)
are chosen in such a way that a function F exists ⋆, from (3.4)

and the degree two homogeneity of F it follows that [26] 27]

ImFΛΣL
Λf̄Σ

ı̄ = 0 (3.24)

so that the second of eq. (3.6) becomes hiΛ = FΛΣf
Σi. Furthermore from (3.11) and (3.24)

it also follows

eK/2Cijk = fΛ
i f

Γ
j f

Σ
k FΛΓΣ (3.25)

By the same token, we have (
fΛ
i

hiΛ

)′

=

(
A BF
C DF

)(
fΛ
i

fΛ
i

)
(3.26)

where F = FΛΣ. Note that in these cases

2F̃ (X̃) = F̃ΛX̃
Λ = (3.27)

2F + 2XΛ
(
CTB

)Σ
Λ
FΣ +XΛ

(
CTA

)
ΛΣ
XΣ + FΛ

(
DTB

)ΛΣ
FΣ

Note also that the homogeneity of F implies

X̃ = (A+BF )X (3.28)

where F = FΛΣ and

F̃ = (C +DF )X (3.29)

Special coordinates in supergravity are defined by tΛ = XΛ/X0 since we now have a set of
n + 1 homogeneous coordinates. If we assume that Di

(
XΛ

X0

)
is an invertible matrix, then we

may choose a frame for which ∂i

(
XΛ

X0

)
= δΛi . This is possible only if XΛ are unconstrained

variables and so FΛ = FΛ(X), which implies FΛ = ∂ΛF (X) with F homogeneous of degree 2.
A résumé of the duality transformations for this case, including the supergravity corrections

has been given in appendix C of 32.
We now discuss the possible non-existence of F (X). If we start with some special coordinates

XΛ, FΛ(X), it is possible that in the new basis the X̃Λ are not good special coordinates in the
sense that the mapping X → X̃ is not invertible. This happens whenever the (n+1)× (n+1)

matrix A+BF is not invertible (its determinant vanishes). This does not mean that X̃, F̃ are

not good symplectic sections since the symplectic matrix S =

(
A B
C D

)
is always invertible. It

simply means that F̃Λ ̸= F̃Λ(X̃) and therefore a prepotential F̃ (X̃) does not exist. However
our formulation of special geometry never explicitly used the fact that FΛ be a functional of the
X ’s and indeed the quantities

(
XΛ, FΛ

)
,
(
fΛ
i , hiΛ

)
,NΛΣ and Cijk, giȷ̄ are well defined for any
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13.3.2 3.2 The fermionic sector

choice of the symplectic sections
(
XΛ, FΛ

)
since they are symplectic invariant or covariant. For

example, to compute the "gauge coupling" Ñ in such a basis (X̃Λ, F̃Λ) one uses the formula

Ñ (X̃, F̃ ) = (C +DN (X))(A+BN (X))−1 (3.30)

and expresses the X = X(X̃, F̃ ) by using the fact that the symplectic mapping can be
inverted. All other quantities can be computed in this way.

We will see the relevance of this observation in the sequel, while discussing low energy
effective action of N = 2 heterotic string. A simple example is the following. Consider F =
iX0X1, leading to

N =

(
iX

1

X0 0

0 iX
0

X1

)
(3.31)

This appears in the N = 2 reduction of pure N = 4 supergravity in the so-called SO(4)
formulation [33]. Consider now the symplectic mapping defined by

A = D =

(
1 0
0 0

)
; C = −B =

(
0 0
0 1

)
(3.32)

Then the transformation is

X̃0 = X0X̃1 = −F1

F̃0 = F0F̃1 = X1 (3.33)

Using in the first line F1 = iX0 would lead to a non-invertible mapping X → X̃, and using
(3.27) would lead to F̃ = 0. One observes also that A+BF is non-invertible. However, A+BN

is invertible, and one obtains Ñ = iX1 (X0)
−1
1 = iF̃1

(
X̃0
)−1

1. This form appears in the
N = 2 reduction of the SU(4) formulation of pure N = 4 supergravity 34]. These two forms
of the N = 2 reduced action and the duality transformation have been studied in (35] to relate
electric and magnetic charges of black holes.

13.3.2 3.2 The fermionic sector

As far as the fermions are concerned, the vector N = 2 multiplet is now(
LΛ, fΛ

i λ
iI
α ,F

−Λ
αβ

)
(3.34)

The tensor T ı̄
αβ is still the same as in (2.30), and

QΛ
ı̄ = Dı̄L̄

Λ; PΛı̄ = Dı̄M̄Λ (3.35)

Correspondingly, the gaugino Pauli terms have the form

i
(
Dı̄L̄

ΛGαβ
b−Λ −Dı̄M̄ΛF

−Λαβ
)
T ı̄
αβ (3.36)

quite analogous to eq. (2.32).
Gravitino Pauli and quartic terms [3] 30 27] are defined by the formulas (2.21) and (2.28)

with ⋆

QΛ = LΛ; PΛ =MΛ

T µν = k1ψ̄
I
ρψ

J
σ ϵIJϵ

µνρσ (3.37)
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13.3.3 3.3 The three-form cohomology

for the purely gravitino terms, in which case the index a of the general treatment is obsolete.
For the mixed gaugino-gravitino Pauli terms we use

QΛ
ı̄ = Dı̄L̄

Λ; PΛı̄ = Dı̄M̄Λ

T ı̄
αβ = k2λ̄IγρψσJϵ

IJϵµνρσ (3.38)

and the index ı̄ plays again the role of a. The constants k, k1 and k2 should also be fixed
by supersymmetry. So, as before, the unique quartic terms are generated by requiring duality
invariance of the action. Of course many of these terms are absent in N = 1 [30] theories
because of the absence of the second gravitino. This is one of the differences between rigid
supersymmetry and local supersymmetry. What happens is that in N = 2 supergravity, one
introduces an extra

(
3
2
, 1
)

multiplet, with respect to the N = 1 case. This has the effect of
having extra auxiliary fields in the supergravity multiplet 36

VI
Jµ, Aµ, T

−
µν , D (3.39)

⋆ The Kähler weights of the fermions are p = −p̄ = 1
2

for ψµI , and p = −p̄ = −1
2

for λiI . The
scalars and the fermions of the hypermultiplets, not discussed here, have respectively Kähler
weights p = p̄ = 0 and p = −p̄ = −1

2
.

other than the matter auxiliary field of the vector multiplet Y iIJ (traceless, real, symmetric in
IJ), i, j = 1, 2, i.e. a real SU(2) triplet. The meaning of the auxiliary fields is straightforward.
The Y ′ ’s correspond to the three auxiliary fields of a N = 1 vector multiplet and a chiral
multiplet. The D auxiliary field gives the equation (3.4) (i.e (3.5)), T−

µν is the graviphoton
(symplectic invariant) combination of the gauge fields T−

µν = TΛF
−Λ
µν , and VI

Jµ, Aµ are the
composite SU(2) and U(1) connections of the quaternionic manifold and Kähler-Hodge manifold
respectively. Note that comparison between N = 1 and N = 2 theories shows that the spinors
χi of the scalar multiplet and λΣ of the vector multiplet of the N = 1 theory are related to the
doublet λiI of the N = 2 theory by

χi = λi1 , λΣ = fΣ
i λ

i2 (3.40)

13.3.3 3.3 The three-form cohomology

We recall that special geometry in N = 2 supergravity, unlike rigid special geometry, is suitable
for three-form cohomology for Calabi-Yau manifolds. Let’s define a holomorphic three-form
25,23

Ω = XΛαΛ + FΛβ
Λ (3.41)

where αΛ, β
Λ is a 2n+ 2 dimensional cohomology basis dual to the 2n+ 2 homology cycles

(n = h21) .Ω is a holomorphic section of a line bundle. Then it follows that if one defines

e−K = i

∫
Ω ∧ Ω̄ > 0 (3.42)

then

giȷ̄ =
−i
∫
DiΩ ∧Dȷ̄Ω̄

i
∫
Ω ∧ Ω̄

= −∂i∂ȷ̄ log i
∫

Ω ∧ Ω̄ > 0 (3.43)

The (2n+2) three-forms DiΩ,DiΩ̄,Ω, Ω̄ with the cohomology basis
(
αΛ, β

Λ
)

correspond to
the decomposition
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13.3.4 3.4 Duality transformations in N = 1 locally supersymmetric Yang-Mills theories

H3(R) = H(2,1)(C) +H(1,2)(C) +H(3,0)(C) +H(0,3)(C) (3.44)

Note that since Ω =
(
XΛ, FΛ

)
, then DiΩ =

(
DiX

Λ,DiFΛ

)
, with fΛ

i = e
K
2 DiX

Λ, hiΛ =

e
K
2 DiFΛ. The relations ∫

Ω ∧ Ω =

∫
Ω ∧DiΩ̄ = 0 (3.45)

are obvious since DiΩ = ∂iΩ− 1
(Ω,Ω̄)

(
∂iΩ, Ω̄

)
Ω. However the relation∫

Ω ∧DiΩ = 0 (3.46)

which is suitable for three-form cohomology, implies∫
Ω ∧ ∂iΩ = 0 (3.47)

i.e.

∂iX
ΛFΛ − ∂iFΛX

Λ = 0 (3.48)

for any choice of the symplectic section. Eq. (3.48) is equivalent to

XΛDiFΛ −DiX
ΛFΛ = 0 (3.49)

13.3.4 3.4 Duality transformations in N = 1 locally supersymmetric Yang-Mills
theories

In N = 1 super Yang-Mills theories coupled to supergravity [30], duality transformations are
implemented as follows. Define the symplectic Sp(2r) vectors

V =

(
F −A
µν , G−µν

A = i
∂L

∂F −A
µν

)
(3.50)

Uα =
(
λAα , fAB(z)λ

B
α

)
where

(
λA,F −A

µν

)
is the vector field strength multiplet and fAB(z) is the holomorphic cou-

pling introduced in [30] ⋆, which depends on the scalars of chiral multiplets, and which plays here
the role of NAB in the general treatment of sections 2.1 and 2.2. Then the N = 1 supergravity
lagrangian is invariant under the symplectic transformations

V → SV , U → SU , f → (C +Df)(A+Bf)−1 , S ∈ Sp(2, r;R) (3.51)

This is best seen using the N = 1 tensor calculus (or superfield) notation of ref. [30]. The
part of the action which contains the field strength chiral multiplet

WA
α = T

(
DαV

A
)

(3.52)

We replaced the f in 30] by 2if .
where T is the generalisation of to local supersymmetry of the chiral projection DD (similar

to the operation obtaining kinetic multiplets introduced in 37]), can be written in first order form
by introducing an unconstrained chiral multiplet WA

α and a (vector) real lagrangian multiplier
UA (fAB is a chiral superfield)
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13.3.4 3.4 Duality transformations in N = 1 locally supersymmetric Yang-Mills theories

4 ImWA
α DβUAϵ

αβ
∣∣
D
+ ifAB(z)W

A
αW

B
β ϵ

αβ
∣∣
F

(3.53)

Variation with respect to UA yields the Bianchi identity

DαWA
α = Dα̇W̄

α̇A (3.54)

which is solved by

WA
α = T

(
DαV

A
)

(3.55)

which leads to the original form of the action. The dual form of the theory is obtained, in
a manner analogous to the rigid case [1], by varying the same lagrangian with respect to WA

α .
Defining W (D)

αA ≡ T (DαUA), and using the fact that the first term in (3.53) can also be written
as − 2iWA

αW
(D)
βB ϵ

αβ
∣∣∣
F
, yields

WA
α =

(
f−1
)AB

W
(D)
αB (3.56)

which implies the Bianchi identity also for W (D). The dual lagrangian is

LD = − i
(
f−1
)AB

W
(D)
αA W

(D)
βB ϵ

αβ
∣∣∣
F

(3.57)

This realises the symplectic transformation of (3.51) with B = −C = 1 and A = D = 0.
A duality rotation is a symmetry if for some coordinate changes z → z̃ (z is the first

component of a chiral multiplet)

f̃AB(z̃) = fAB(z̃) (3.58)

and the superpotential W is a symplectic invariant section of a Hodge bundle, i.e.

∥W̃ (z̃)∥2 = ∥W (z̃)∥2 (3.59)

where ∥W (z)∥2 = |W (z)|2eK ≡ eG. In component form, we can exhibit the symplectic
invariance of the gaugino kinetic term and the Pauli terms by noticing that they can be written
as

e−1Lkin (λ, λ̄) = iUαΩ (σµ)αα̇DµU α̇

e−1LPauli (ψ, λ) = Im
(
U α̇Ω (σµ)α̇βVbβγψ

γ
µ

)
(3.60)

e−1LPauli (χ, λ) = Im
(
∂ifABλ

A
α χ̄

i
βF

−Bαβ)
where Ω is the symplectic metric

(
0 1
−1 0

)
(such that STΩS = Ω) and Vb is the bare V

(only bosonic part).
The (ψ, λ) Pauli term can be written in the form as in (2.21) and we identify in (2.26) the

symplectic vector (Q,P ) with U α̇, and

T α̇
βγ = −1

2
(σµ)α̇ βψµγ.

The last Pauli term, e−1LPauli (χ, λ), has the form (2.21), with

HAαβ =
1

2
∂ifABλ

B
α χ̄

i
β
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13.4 4 Duality symmetries

This we rewrite in the form (2.26)using the following identifications (note that (Im f)AB is
the matrix of the kinetic terms of the vectors, and is thus invertible)

QA
iα ≡ (Im f)−1AB∂ifBCλ

C
α ; PAiα ≡ f̄ABQ

B
iα

T iα
βγ = i

4
δα(βχ

i
γ)

To prove that these (Q,P ) form a symplectic vector, one uses the following relations (which
are in general true for fAB replaced by NAB):

f̃ = (C +Df)(A+Bf)−1 =
(
AT + fBT

)−1 (
CT + fDT

)
∂if̃ = D∂if(A+Bf)−1 − (C +Df)(A+Bf)−1B∂if(A+Bf)−1

=
(
AT + fBT

)−1
∂if(A+Bf)−1 (3.61)

Im f̃ =
(
AT + fBT

)−1
(Im f)(A+Bf̄)−1

λ̃ = (A+Bf)λ

These formulas then give automatically quartic fermionic terms as discussed in section 2.
We observe that the requirements for having symplectic transformations, (3.58) and (3.59),

are in principle weaker than what is necessary to have an N = 2 theory.

13.4 4 Duality symmetries

13.4.1 4.1 The facts

Duality transformations in generic N = 2 supergravity theories are a different choice of the sym-
plectic representative

(
XΛ, FΛ

)
of the underlying special geometry. If the fields F +Λ

µν , G+
Λµνhave

no electric or magnetic sources these dualities are simply a different equivalent choice of sections(
XΛ, FΛ

)
since they are defined up to a symplectic transformation [3]. However if the gauge

fields are coupled to (abelian) sources then duality transformations map theories into different
theories with a duality transformed source. Since the matrix NΛΣ plays the role of a coupling
constant it is clear that in perturbation theory the only possible duality transformations are
those with B = 0 and have a lower triangular block form

S =

(
A 0
C AT−1

)
(4.1)

Under such change, the action changes in a total derivative which, up to fermion terms, is

L′(A,C) = L + ImF −Λ
(
CTA

)
ΛΣ
F −Σ (4.2)

So the lagrangian is invariant up to a surface term. A duality transformation is a symmetry
if

Ñ (X̃, F̃ ) = N (X̃, F̃ ) (4.3)

If FΛ = FΛ(X) this implies

F̃ (X̃) = F (X̃) (4.4)

Then using (3.27) we should have [3] 38]

2F [(A+BF )X] = 2F + 2XΛ
(
CTB

)
Λ

ΣFΣ

+XΛ
(
CTA

)
ΛΣ
XΣ + FΛ

(
DTB

)ΛΣ
FΣ (4.5)
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13.4.2 4.2 Heterotic N = 2 superstring theories

which is a functional relation for F given A,B,C,D. Note that because of (3.27) it may
happen that F̃ (X̃) = 0. This is so when ∂X̃Λ

∂XΣ is not an invertible matrix.

13.4.2 4.2 Heterotic N = 2 superstring theories

In N = 2 heterotic string theories, as the one obtained by the fermionic construction or by
compactification on T2 ×K3, one often encounters classical moduli spaces which are locally of
the form [39] 40 (19] (41 42

O (2, nv)

O(2)×O (nv)
× O (4, nh)

O(4)×O (nh)
(4.6)

where nv and nh are respectively the number of the moduli in vector and hypermultiplets.
If there are no charged massless hypermultiplets with respect to the gauge group U(1)r, with
r = nv, we may avoid holomorphic anomalies 43 46] and the situation for this theory may be
similar to the rigid Yang-Mills theory coupled to supergravity with an additional dilaton axion
multiplet. According to the previous discussion, all perturbative duality symmetries are those
for which the previous formula holds for a subgroup of lower triangular matrices(

A 0
C AT−1

)
(4.7)

with ATC symmetric.
The (r + 2) × (r + 2) block A contains the target space T duality and C contains the

Peccei-Quinn axion symmetry [12] (for the definition of S in the N = 2 context, see below)

S → S + 1 (4.8)

These are the tree level stringy symmetries of the massive states with M = |Z| where Z is
the central charge of the N = 2 supersymmetry algebra. If the number of T -moduli is r then
the duality symmetries are in Sp(2r + 4;Z).

An important point is that we would like to make the tree level (string) symmetry manifest.
This means that the gauge fields

AΛ
µ =

(
Gµ, Bµ,A

A
µ

)
A = 2, . . . , r + 1 (4.9)

(Gµ is the graviphoton and the Bµ is the vector of the dilaton-axion multiplet) should
transform in the 2+r dimensional (vector) representation of the target space duality symmetry

A′ = AA; ATηA = η; ηΛΣ = Diag(1, 1,−1,−1, . . .) (4.10)

with A ∈ O(2, r;Z). Under the axion Peccei-Quinn symmetry S → S + 1

AΛ′
= AΛ , GΛµν → GΛµν + ηΛΣF

Σ
µν (4.11)

where

NΛΣ(S + 1) = NΛΣ(S) + ηΛΣ (4.12)

This formulation is directly obtained by N = 2 reduction of the standard form of the N = 4
supergravity action 12 with a moduli space of the type O(6, r)/O(6) × O(r)/Γ and duality
group Γ = O(6, r;Z). However to get this in a standard N = 2 supergravity form, one must
introduce 2 + r symplectic sections

(
XΛ, FΛ

)
(Λ = 0, 1, . . . , r + 1) for which O(2, r) is block

diagonal and the S → S + 1 shift is lower triangular. This formulation can be obtained by
making a symplectic rotation, with S given by
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S =
1√
2

(
1 −1
1 1

)
(4.13)

from a representation in which only O(2)×O(r) is block diagonal [47, namely

O(2, r) :

(
A 0
0 ηAη

)
= SA1S

−1 (4.14)

S → S + 1 :

(
1 0
η 1

)
= SA2S

−1

where A1, A2 are the matrices given in ref. [47]. The new sections are given explicitly by
eqs. (3.28), (3.29),

X̂Λ =
1√
2
(δΛΣ − FΛΣ)X

Σ

F̂Λ =
1√
2
(δΛΣ + FΛΣ)X

Σ (4.15)

where the function

F = −
√
X2
i

√
X2
α i = 0, 1; α = 2, . . . , r + 1 (4.16)

was obtained in ref. 47]. From (4.15),(4.16) one can verify that the X̂Λ, F̂Λ satisfy the
constraints X̂ΛηΛΣX̂

Σ = F̂Λη
ΛΣF̂Σ = X̂ΛF̂Λ = 0. In particular, the new variables X̂Λ are not

independent. The previous constraints imply that we may set

F̂Λ = SηΛΣX̂
Σ (4.17)

and from eq. (3.27) we find F̂ (X̂) = 0. Note that this is precisely the case for which
F̂Λ = F̂Λ

(
X̂Λ
)

does not hold.

Since O(2, r) is block diagonal, the new sections
(
X̂Λ, F̂Λ

)
are O(2, r) vectors. Recalling

that the manifold O(2,r)
O(2)×O(r)

can be described by the following equations

ηΛΣΦ
ΛΦΣ = 0

ηΛΣΦ
ΛΦ̄Σ = 1 (4.18)

where ΦΛ are coordinates in CP (1, r), we may actually set

ΦΛ =
X̂Λ√

X̂ΣηΣΠ
ˆ̄XΠ

(4.19)

The Kähler potential is

K = − log i

(
X̂Λ ̂̄FΛ − ̂̄XΛ

F̂Λ

)
= − log i(S̄ − S)− log X̂ΛηΛΣ

̂̄XΣ

(4.20)

Under S → S + 1
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13.4.2 4.2 Heterotic N = 2 superstring theories

X̂Λ → X̂Λ

F̂Λ → F̂Λ + ηΛΣX̂
Σ. (4.21)

In the same basis the (non-perturbative) inversion S → − 1
S

is given by the symplectic

matrix
(

0 η
−η 0

)
. This element, together with the one corresponding to S → S + 1 generates

an Sl(2,Z) commuting with the O(2r,Z) in Sp(2r + 4,Z). The inversion is actually the only
symmetry generator with B ̸= 0. It leaves invariant (4.20) up to a Kähler transformation and it
will be a symmetry of the classical spectrum (as it comes by truncation of the N = 4 spectrum
[12]) of electrically and magnetically charged states discussed in chapter 5.

The holomorphic sections X̂Λ can be written as [8]

X̂Λ =

(
1

2

(
1 + y2α

)
,
i

2

(
1− y2α

)
, yα
)

(4.22)

where the yα are coordinates of the O(2, r)/O(2)×O(r) manifold. In terms of the Φ variables
the kinetic matrix N̂ΛΣ turns out to be [80 [10] [12]

N̂ΛΣ(X̂) = (S − S̄)
(
ΦΛΦ̄Σ + Φ̄ΛΦΣ

)
+ S̄ηΛΣ (4.23)

where ΦΛ = ηΛΣΦ
Σ, and we will also further raise or lower indices with η.

Notice that (4.23) cannot be computed directly from (3.9) since in the new basis the de-
nominator identically vanishes. On the other hand, one can use the formula (2.10), which in
our case becomes

N̂ (X̂, F̂ ) = (1+N (X))(1−N (X))−1 (4.24)

and substitute for XΛ the right hand side of the inverse transformations of (4.15)

XΛ =
1√
2
(δΛΣ + SηΛΣ) X̂

Σ

FΛ =
1√
2
(−δΛΣ + SηΛΣ) X̂

Σ (4.25)

Formula (4.23) is precisely what is obtained from N = 4 supergravity. Because of target
space duality we expect that also the X̂Λ, F̂Λ become, because of one loop corrections, a lower
triangular representation of Sp(2r + 4,Z)(

X̂Λ

F̂Λ

)
→
(

A 0
AT−1C AT−1

)(
XΛ

FΛ

)
(4.26)

where the matrix C comes from the monodromy of the one-loop term [1,2].
It is interesting to compute explicitly the coupling of the dilaton to the vector fields. The

vector kinetic term is

ImNΛΣF
−Λ
µν F

−Σµν = −2 ImNΛΣF
Λ
µνF

Σµν +ReNΛΣF
Λµν F̃ Σ

µν (4.27)

and, in particular, setting in (4.22)yα = 0, it becomes

−2 ImS
(
F 0F 0 + F 1F 1 + F αF α

)
+ReS

(
F 0F̃ 0 + F 1F̃ 1 − F αF̃ α

)
(4.28)

We see that the dilaton couples in a universal way to the vectors while in the topological
term we have a coupling with lorentzian signature.
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13.4.3 4.3 Duality symmetries in N > 2 supergravities

The general considerations of section 2 about duality symmetries will apply to any higher
N > 2 extended supergravity theory. Therefore, it is worth to briefly mention the implications
of duality symmetries for some non-perturbative properties that these theories may exhibit.
The important fact about N > 2 theories is that the scalar field space is (at least locally) a
homogeneous symmetric space G/H, where G is some non compact subgroup of Sp(2n) (n is
the total number of vector fields existing in the theory). H is its maximal compact subgroup,
as it must be for the kinetic matrix of the scalar field space to be positive definite.

On general grounds, we also know that the fields
(
F −A, G−

A

)
must belong to a linear represen-

tation of G which is given by the decomposition of the (2n-dimensional) vector representation
of Sp(2n) under G. Thus, it is obvious that if this representation remains irreducible in G, the
duality symmetry will necessarily mix electrically and magnetically charged states, since the
Sp(2n) vector

(
nA(m) = 0, n

(e)
A

)
cannot be an invariant vector of G.

It is now a fact of life that the full duality (continuous) symmetry G of any N > 2 theory
has a 2n dimensional representation which remains irreducible under Sp(2n) (see table below
[48]). This immediately implies that, if we assume, as conjectured in ref. [49], that the full
G(Z) is a symmetry of the dyonic states, then G(Z) must be non-perturbative since the matrix
B (see eq. (2.5)) in G(Z) will not be vanishing. N = 3, 5, 6 supergravities can be obtained as
low energy limits of d = 4 string models 50.

Another implication of this conjecture, for the case of N = 4 theories, is that, as pointed out
in ref. [49], the spectrum of the BPS states of the ten dimensional heterotic string compactified
on T6 should be identical to the spectrum of the same states for type II strings compactified
on K3 × T2, since the full N = 4 BPS spectrum, invariant under Sl(2;Z) × SO(6, n − 6;Z) is
completely fixed by supersymmetry. This has the striking effect that at the non-perturbative
level the type II theory should exhibit enhanced gauge symmetries equivalent to the N = 4
heterotic string*.

N G repr.
3 SU(3, n− 3) (nc)
4 SU(1, 1)× SO(6, n− 6) (2, n)
5 SU(5, 1) (20)
6 SO∗(12) (32)
8 E7(7) (56)

Table: Representations of G for
(
F−Λ, G−

Λ

)
Λ=1,...,n

in extended supergravities

13.5 5 On monodromies in string effective field theories

13.5.1 5.1 Classical and quantum monodromies

We have just seen that the tree-level values of the symplectic sections
(
XΛ(z), FΛ(z)

)
are given

by

XΛ ≡ XΛ
tree , FΛ = SηΛΣX

Σ
tree (5.1)

The target space duality group O(2, r;Z) acts non-trivially on them

Γcl :

(
XΛ

FΛ

)
tree
→
(
A 0
0 ηAη

)(
XΛ

FΛ

)
tree

(5.2)

generalizing the action of the Weyl group of the rigid case [2].
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13.5.1 5.1 Classical and quantum monodromies

At the one loop level, one expects that F tree
Λ is changed to 46

F tree
Λ → SXΣηΛΣ + fΛ(X) (5.3)

where fΛ(X) is a modular covariant structure.
The associated perturbative monodromy can be obtained assuming, according to ref. [1],

that the rigid perturbative monodromy does not affect the gravitational sector X0, X1, F0, F1.
Thus the perturbative lower triangular monodromy matrix is ΓclT , where[1] [2]

T =

(
1 0
C 1

)
(5.4)

and C is an (r+2)× (r+2) symmetric matrix with non-vanishing entries on the r× r block

C =


0 0 . . . 0
0 0 . . . 0
0 0
...

... Cij
0 0

 i, j = 1, . . . , r (5.5)

Indeed, we may think of decomposing Sp(4 + 2r) into Sp(4) × Sp(2r) and simply assume
that the rigid monodromy Γr ∈ Sp(2r) commute with the gravitational Sp(4) sector. This
argument should at least apply when the vectors of the Cartan subalgebra of the enhanced
gauge symmetry belong to the compact O(r) in O(2, r).

In string theory, the classical stringy moduli space corresponds to the broken phase U(1)r
of several gauge groups with the same rank. For instance, for r = 2, O(2, 2;Z) interpolates
between SU(2)×U(1), SU(2)×SU(2) and SU(3)51. In the N = 4 theory the O(6; 22) moduli
space corresponds to broken phases of several gauge groups of rank 22 such as, U(1)6×E8×E8

or SO(32)× U(1)6 or SO(44) which are not subgroups one of the other [39].
It is obvious that generically this means that the one loop β-function term [19] 20] should

have non-trivial monodromies at the points where some higher symmetry is restored. For
instance, for r = 2 we may expect non trivial monodromies around t = u (SU(2)× U(1)
symmetry restored) and t = u = i, t = u = e2iπ/3(SU(2)×SU(2) or SU(3) symmetry restored),
t, u being the parameters defined below.

This means that in supergravity theories derived from strings, because of target space
T-duality, the enhanced symmetry points are richer than in the rigid case. Since different
enhancement points are consequence of O(2, r;Z) duality, we expect that a modular invariant
treatment of quantum monodromies will automatically ensure non trivial monodromy at the
enhanced symmetry points.

In the sequel we shall discuss in some more detail the classical and perturbative monodromies
in the r = 1 case (O(2, 1;Z)) and the classical monodromies for r = 2 (O(2, 2;Z))

Consider the tree level prepotential F in the so-called cubic form [3] for SU(1,1)
U(1)

× O(2,1)
O(2)

:

F =
1

2

(
X0
)2
st2 (5.6)

where s = X1

X0 is the dilaton coordinate and t = X2

X0 is the single modulus of the classical
target space duality. We parametrize the O(2, 1;Z) vector as follows
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13.5.1 5.1 Classical and quantum monodromies

X0 =
1

2

(
1− t2

)
X1 = −t (5.7)

X2 = −1

2

(
1 + t2

)
(
X0
)2

+
(
X1
)2 − (X2

)2
= 0

The symplectic transformation relating
(
XΛ, FΛ

)
, (Λ = 0, 1, 2) to the

(
X̂Λ, F̂Λ

)
where

O(2, 1) is linearly realized is easily found to be(
X̂Λ

F̂Λ

)
=

(
P −2R
R P ′

)(
XΛ

FΛ

)
(5.8)

where

P =

 1
2

0 0
0 0 −1
−1

2
0 0

 ; P ′ =

 1 0 0
0 0 −1
−1 0 0

 ; R =

 0 1
2
0

0 0 0
0 1

2
0

 (5.9)

Let us now implement the t-modulus Sl(2,Z) transformations t→ −1
t
, t→ t+n (note that

while t→ −1
t

corresponds to the SU(2) Weyl transformation of the rigid theory, t→ t+ n has
no counterpart in the rigid case, being of stringy nature). Using the parametrization (5.7) we
find

t→ −1
t
:

−1 0 0
0 −1 0
0 0 1

 ≡ −η ∈ O(2, 1;Z)
t→ t+ n :

 1− n2

2
n n2

2

−n 1 n

−n2

2
n 1 + n2

2

 ≡ V (n) ∈ O(2, 1;Z)

(5.10)

Note that (5.10) implies n ∈ 2Z, i.e. the subgroup Γ(0)(2) of SL(2,Z). Actually this gives a
projective representation in the subgroup in O(2, 1;Z) of the matrices congruent to the identity
mod 2.

It follows that Γcl is generated by (Γ1,Γ2) where

Γ1 =

(
−η 0
0 −η

)
∈ Sp(6,Z)

Γ2 =

(
V (2) 0
0 ηV (2)η

)
∈ Sp(6,Z) (5.11)

On the other hand it is possible to go to a stringy basis with a new metric X2
0 + X2

1−
X2

2 = X̃2
1 + 2XY such that SL(2,Z) is integral valued in O(2, 1;Z).

The O(2, 1;Z) generators corresponding to translation and inversion are respectively given
by:  1 −2n 0

0 1 0
n −n2 1

 ;

−1 0 0
0 0 −1
0 −1 0

 (5.12)
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13.5.1 5.1 Classical and quantum monodromies

To make contact with the rigid theory it is convenient to define the inversion generator in
O(2, 1;Z) with the opposite sign with respect to the previous definition.

Let us now examine the perturbative monodromy matrices T . If we assume as before that the
t→ −1

t
pertaining to the rigid theory does not affect the gravitational sector (X0, X1, F0, F1),

then we have

T =

(
η 0
C η

)
, C =

 0 0 0
0 0 0
0 0 2

 (5.13)

corresponding to the embedding of the Sp(2,Z) rigid transformations acting on the rigid
section (X2, F2) in Sp(6,Z). Furthermore, considering the transformation of the NΛΣ matrix
and setting D = A = η,B = 0 we find

N̂22 = −2 +N22 (5.14)

for all other entries N̂ΛΣ = NΛΣ. This is exactly the rigid result [1]. However conjugating
the T matrix with Γ2 one gets

CΛΣ =

 8 −8 −12
−8 8 12
−12 12 18

 (5.15)

which shows that O(2, 1;Z) introduces non-trivial perturbative monodromies for all cou-
plings. The other perturbative lower diagonal monodromy is the dilaton shift (4.14) which
commutes with O(2, 1;Z).

Analogous considerations hold for O(2, n;Z), n > 1. We limit ourselves to write down the
generators of Γcl for the O(2, 2;Z) case. We use the parametrization of O(2, 2)/O(2) × O(2)
given by

X0 =
1

2
(1− tu)

X1 = −1

2
(t+ u) (5.16)

X2 = −1

2
(1 + tu)

X3 =
1

2
(t− u)

(
X0
)2

+
(
X1
)2 − (X2

)2 − (X3
)2

= 0

where t, u are the moduli appearing in the F function F = (X0)
2 stu. In the same way as

for the r = 1 case it is easy to find the symplectic transformations relating the sections of the
cubic parametrization to the XΛ defined in (5.16). They are given by(

X

F

)
→
(

A B
−B A

)(
X

F

)
(5.17)

with

X =
(
X0, X1, X2, X3

)T
, F = (F0, F1, F2, F3)

T

A =
1√
2


1 0 0 0
0 0 −1 −1
−1 0 0 0
0 0 1 −1

 , B =
1√
2


0 −1 0 0
0 0 0 0
0 −1 0 0
0 0 0 0

 . (5.18)
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It is convenient to use the string basis where the metric η takes the form 12]

η =

(
0 12×2

12×2 0

)
(5.19)

corresponding to the basis 1√
2
(X0 ∓X2) , 1√

2
(X1 ∓X3). Then one finds the following

O(2, 2;Z) representation

ut→ +
1

ut
:

(
0 −1
−1 0

)
= γut

t→ −1

t
:

(
ϵ 0
0 ϵ

)
= γt

u→ −1

u
:

(
0 ϵ
ϵ 0

)
= γu (5.20)

t→ t+ n :

(
Nt(−n) 0

0 N(n)

)
= γn

t→ u :

(
a b
b a

)
= γ; a =

(
1 0
0 0

)
; b =

(
0 0
0 1

)

where ϵ =
(
0 −1
1 0

)
and N(n) =

(
1 n
0 1

)
.

Γcl is then generated by the matrices:

Γut =

(
γut 0
0 γut

)
; Γt =

(
γt 0
0 γt

)
; Γu =

(
γu 0
0 γu

)
; Γn =

(
γn 0
0 γT−n

)
(5.21)

We note that the points t = u; t = u = i; t = u = e
2πi
3 are enhanced symmetry points

corresponding to SU(2) × U(1), SU(2) × SU(2), and SU(3) respectively [51]. Therefore we
expect non-trivial quantum monodromies at these points according to the previous discussion.

13.5.2 5.2 The BPS mass formula

The classical and one loop monodromies are of course reflected in symmetries of the electrically
charged massive states belonging to O(2, n;Z) lorentzian lattice [39]. The BPS mass formula
[55] in the gravitational case is

M = |Z| =
∣∣∣n(e)

Λ LΛ − nΛ
(m)MΛ

∣∣∣ = eK/2
∣∣∣n(e)

Λ XΛ − nΛ
(m)FΛ

∣∣∣ (5.22)

Note that the central charge Z has definite U(1) weight

Z → e(f̄−f)/2Z (5.23)

while the mass M is Kähler invariant. The symplectic invariance of M also implies that(
nΛ
(m), n

(e)
Λ

)
transforms as

(
XΛ, FΛ

)
(
nΛ
(m)

n
(e)
Λ

)
→
(
A B
C D

)(
nΛ
(m)

n
(e)
Λ

)
(5.24)

where according to our previous discussion the perturbative symmetries have B = 0. Note
that nΛ

(m), n
(e)
Λ must satisfy a lattice condition. In the tree level approximation we may write

M =
∣∣∣(n(e)

Λ − n
Σ
(m)ηΛΣS

)
XΛ
∣∣∣ eK/2 (5.25)
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13.5.2 5.2 The BPS mass formula

which is invariant under the tree level symmetry S → S + 1, but also under the non-
perturbative inversion S → − 1

S
[34] [13] [12] [14] [15] taking into account that

K = − log i(S̄ − S)− log
XΛX̄Σ

M2
Pl

ηΛΣ (5.26)

Formula (5.25) is therefore invariant under the S − T duality symmetry Sl(2;Z)×
O(2, r;Z) ⊂ Sp(2r + 4;Z)

The electric mass spectrum can be written as

M2
(e) = |Z|2 =

M2
Pl

2i(S̄ − S)
QΛΣn

(e)
Λ n

(e)
Σ (5.27)

where i(S̄ − S) = 8π
g2
> 0 and QΛΣ = ΦΛΦ̄Σ + Φ̄ΛΦΣ. Formula (5.27) has exactly the same

form as the analogous one obtained in N = 4 (see ref 12]). When also magnetic charges are
present, then

M2 =
M2

Pl

i(S̄ − S)
(neΛ − SnmΛ )

(
1

2
QΛΣ −

i

2
Q̂ΛΣ

)(
neΣ − S̄nmΣ

)
(5.28)

=
M2

Pl

4
(nm, ne) (MQ + LQ̂)

(
nm
ne

)

where M = 1
ImS

(
SS̄ −ReS
−ReS 1

)
,L =

(
0 −1
1 0

)
and Q̂ = i

(
ΦΛΦ̄Σ − Φ̄ΛΦΣ

)
.

Recalling that QΛΣ = 1
2

(
ηΛΣ + ImNΛΣ

ImS

)
, this becomes

M2 =
M2

Pl

i(S̄ − S)
(neΛ − SnmΛ )

[
1

4

(
ImNΛΣ

ImS
+ ηΛΣ

)
− i

2
Q̂ΛΣ

] (
neΣ − S̄nmΣ

)
=

1

4
M2

Pl (nm, ne)

[
1

2
M

(
ImN

ImS
+ η

)
+ LQ̂

](
nm
ne

)
(5.29)

From this expression one can see that the antisymmetric term Q̂ vanishes if

n
(e)
Λ = m1nΛ , nΛ

(m) = m2nΣη
ΛΣ (5.30)

or, as it happens for the perturbative string, if no magnetic states are present (nmΛ = 0, neΛ ≡
nΛ). In such case eq. (5.28) becomes

M2 =
M2

Pl

8 ImS
|m1 − Sm2|2

[
nΛnΣ

(
2QΛΣ − ηΛΣ

)
+ nΛnΣη

ΛΣ
]

(5.31)

and since ImNΛΣ, being the vector kinetic matrix, is always positive definite,

M2 = 0⇐⇒ nΛnΣηΛΣ < 0
(
nΛ ̸= 0

)
(5.32)

As an example, take O(2, 2;Z) and look for solutions of (5.32) corresponding to the string
condition nΛnΛ = −2. Using the parametrization (5.16) we have

nΛX
Λ = n0X

0 + n1X
1 − n2X

2 − n3X
3

=
1

2
[(n0 + n2)− (n1 + n3) t− (n1 − n3)u− (n0 − n2) tu] (5.33)
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Setting

n0 + n2 = −p2
√
2

n1 + n3 = q1
√
2

n1 − n3 = −p1
√
2

n0 − n2 = q2
√
2

nΛnΛ =
(
n0 + n2

) (
n0 − n2

)
+
(
n1 + n3

) (
n1 − n3

)
= −2 (p2q2 + p1q1) = −2

→ p2q2 + p1q1 = 1 (5.34)

we have

nΛX
Λ =

1√
2
(−p2 − q1t+ p1u− q2tu) (5.35)

Let us verify that at the three enhancement points we get the correct number of massless
states. If we take t = u (X2 = 0) we find

nΛX
Λ(t = u) =

1√
2

[
−p2 − (q1 − p1) t− q2t2

]
→ q2 = p2 = 0 q1 = p1 = ±1

yielding the two massless states (q1, q2) = (±1, 0). In particular, for t = u = i we have the
solutions

nΛX
Λ(t = u = i) =

1√
2
[−p2 + q2 − (q1 − p1) i] (5.36)

→ p2 = q2 , q1 = p1, q21 + q22 = 1

yielding the four states (q1, q2) = (±1, 0), (0,±1). Taking instead t = u = e2πi/3 (such that
t2 = t̄), we get

nΛX
Λ
(
t = u = e2πi/3

)
= 0

→ +
1

2
(q1 + q2 − p1)− p2 = 0, q1 − q2 − p1 = 0 (5.37)

→ p1 = q1 − q2, p2 = q2 → q21 + q22 − q1q2 = 1

yielding the six states (q1, q2) = (±1,±1), (±1, 0), (0,±1). As expected, these massless states
together with the two original (0, 0) states, fill the adjoint representation of SU(2)⊗ U(1)(t =
u), SU(2)⊗ SU(2)(t = u = i), SU(3)

(
t = u = e2πi/3

)
.

Unlike in N = 4 theories, in N = 2 theories the quantum spectrum will not coincide with
the classical spectrum. It will be found by substituting FΛ tree ≡ SηΛΣX

Σ → FΛ tree + quantum
corrections in (5.22).

13.6 6 Conclusions

In this paper we have formulated electromagnetic duality transformations in genericD = 4, N =
2 supergravities theories in a form suitable to investigate non-perturbative phaenomena. Our
formulation is manifestly duality covariant for the full Lagrangian, including fermionic terms,
which unlike the rigid case, cannot be retrieved from the N = 1 formulation, nor from the
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N = 2 tensor calculus approach. Particular attention has been given to classical T -duality
symmetries which actually occur in string compactifications and whose linear action on the
gauge potential fields do not allow for the existence of a prepotential function F for the N = 2
special geometry. As examples we described the "classical" electric and monopole spectrum for
T -duality symmetries of the type O(2, r;Z), with particular details for the r = 1, 2 cases, by
using the N = 2 formalism.

For "classical" monodromies this spectrum is of course related to the spectrum of N = 4
theories studied by Sen and Schwarz [12]. Possible extensions of duality symmetries to type II
strings have been conjectured by Hull and Townsend 49] and also discussed in [2]. In the present
context of N = 2 heterotic strings the corresponding type II theories, having N = 2 space-
time supersymmetry would correspond to (2, 2) superconformal field theories, i.e. quantum
Calabi-Yau manifolds.

Due to the non-compact symmetries the BPS saturated states with nonvanishing central
charges have a spectrum quite different from the rigid case. Indeed in rigid theories the "clas-
sical" central charge Z(cl) vanishes at the enhanced symmetry points where the original gauge
group is restored since there is no dimensional scale other than the Higgs v.e.v.. On the con-
trary, in the supergravity theory the BPS spectrum at these particular points corresponds in
general to electrically and magnetically charged states with Planckian mass (black holes, grav-
itational monopoles and dyons) 53, 12, 54 57. The only charged states which become massless
at the enhanced symmetric point are those with ηΛΣn(e)

Λ n
(e)
Σ < 0.

We also discussed perturbative monodromies and their possible relations with the rigid case.
Non perturbative duality symmetries are more difficult to guess, but it is tempting to conjecture
that a quantum monodromy consistent with positivity of the metric and special geometry may
be originated by a 3-dimensional Calabi-Yau manifold or its mirror image. If this is the case this
manifold should embed in some sense the class of Riemann surfaces studied [1] [2] in connection
with the moduli space of N = 2 rigid supersymmetric Yang-Mills theories.

14 Other methods and theories with duality

15 5d/4d U-dualities and N =8 black holes Anna
Ceresole, Ferrara, Gnecchi

We use the connection between the U-duality groups in d = 5 and d = 4 to derive properties
of the N = 8 black hole potential and its critical points (attractors). This approach allows to
study and compare the supersymmetry features of different solutions.

15.0.1 Introduction

The N = 8 supergravity theory in d = 4 [1] and d = 5 [2] dimensions is a remarkable theory
which unifies the gravitational fields with other lower spin particles in a rather unique way,
due to the high constraints of local N = 8 supersymmetry, the maximal one realized in a 4d
Lagrangian field theory. These theories, particularly in four dimensions, are supposed to enjoy
exceptional ultraviolet properties. For this reason, 4d supergravity has been advocated not only
as the simplest quantum field theory [3] but also as a potential candidate for a finite theory of
quantum gravity, even without its completion into a larger theory [4]. Maximal supergravity
in highest dimensions has a large number of classical solutions [5] which may survive at the
quantum level. Among them, there are black p-branes of several types[52] and interestingly, 4d
black holes of different nature.
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15.0.1 Introduction

On the other hand, theories with lower supersymmetries (such as N = 2) emerging from
Calabi-Yau compactifications of M-theory or superstring theory, admit extremal black hole
solutions that have been the subject of intense study, because of their wide range of classical
and quantum aspects. For asymptotically flat, stationary and spherically symmetric extremal
black holes, the attractor behaviour [26, 8] has played an important role not only in determining
universal features of fields flows toward the horizon, but also to explore dynamical properties
such as wall crossing[9] and split attractor flows[10], the connections with string topological
partition functions[11] and relations with microstates counting[12]. Therefore, it has become
natural to study the properties of extremal black holes not only in the context of N = 2, but
also in theories with higher supersymmetries, up to N = 8[13]-[22].

In N = 8 supergravity, in the Einsteinian approximation, there is a nice relation between
the classification of large black holes which undergo the attractor flow and charge orbits which
classify, in a duality invariant manner, the properties of the dyonic vector of electric and
magnetic charges Q = (pΛ, qΛ) (Λ = 0, ..., 27 in d = 4) [23, 24]. The attractor points are given
by extrema of the 4d black hole potential, which is given by [16, 17]

VBH =
1

2
ZABZ

∗AB = ⟨Q, VAB⟩ ⟨Q, V
AB⟩ , (15.1)

where the central charge is the antisymmetric matrix (A,B = 1, ..., 8)

ZAB = ⟨Q, VAB⟩ = QT ΩVAB = fΛ
AB qΛ − hΛAB pΛ , (15.2)

the symplectic sections are

VAB = (fΛ
AB, hΛAB) , (15.3)

and Ω is the symplectic invariant metric.
An important role is played by the Cartan quartic invariant I4[25, 1] in that it only depends

on Q and not on the asymptotic values of the 70 scalar fields φ. This means that if we
construct I4 as a combination of quartic powers of the central charge matrix ZAB(q, p, φ) [26],
the φ dependence drops out from the final expression

∂

∂φ
I4(ZAB) = 0. (15.4)

Analogue (cubic) invariants I3 exist for black holes and/or (black) strings in d = 5[8, 23]. These
are given by

I3(p
I) =

1

3!
dIJKp

IpJpK , (15.5)

I3(qI) =
1

3!
dIJKqIqJqK , (15.6)

where dIJK , dIJK are the (27)3 E6(6) invariants. Consequently, the d = 4 E7(7) quartic invariant
takes the form

I4(Q) = −(p0q0 + pIqI)
2 + 4

[
−p0I3(q) + q0I3(p) +

∂I3(q)

∂qI

∂I3(p)

∂pI

]
. (15.7)

On the other hand, in terms of the central charge matrices Zab(ϕ, q) (in d = 5 this is the 27
representation of USp(8)) and ZAB(ϕ, p, q) (in d = 4 this is the 28 of SU(8)), their expression
is

I3(q) = ZabΩ
bcZcdΩ

dqZqpΩ
pa , ZabΩ

ab = 0 , (15.8)

I4(p, q) =
1

4

[
4Tr(ZZ†ZZ†)− (Tr ZZ†)2 + 32 (Pf ZAB)

]
, (15.9)
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15.0.1 Introduction

where ZZ† = ZABZ̄
CB, Ωab is the 5d symplectic invariant metric, and the Pfaffian of the central

charge is [1]

Pf (ZAB) =
1

244!
ϵABCDEFGHZABZCDZEFZGH . (15.10)

In fact, these are simply the (totally symmetric) invariants which characterize the 27 dimen-
sional representation of E6(6) and the 56 dimensional representation of E7(7), which are the
U -duality [27] symmetries of N = 8 supergravity in d = 5 and d = 4, respectively.

When charges are chosen such that I4 and I3 are not vanishing, one has large black holes
and in the extremal case the attractor behaviour may occur. However, while at d = 5 there is
a unique (1

8
-BPS) attractor orbit with I3 ̸= 0, associated to the space[24, 28]

Od=5 =
E6(6)

F4(4)

, (15.11)

at d = 4 two orbits emerge, the BPS one

Od=4, BPS =
E7(7)

E6(2)

, (15.12)

and the non BPS one with different stabilizer

Od=4, non−BPS =
E7(7)

E6(6)

. (15.13)

Such orbits have further ramifications in theories with lower supersymmetry , but it is the aim
of this paper to confine our attention to the N = 8 theory.

In this paper, extending a previous result forN = 2 theories [29], we elucidate the connection
between these configurations and we relate the critical points of the N = 8 black hole potential
of the 5d and 4d theories. To achieve this goal we use a formulation of 4d supergravity in a
E6(6) duality covariant basis [30], which is appropriate to discuss a 4d/5d correspondence. This
is not the same as the Cremmer-Julia[1] or de Wit-Nicolai[31] manifest SO(8) (and SL(8, b̄R))
covariant formulation, but it is rather related to the Sezgin-Van Nieuwenhuizen 5d/4d dimen-
sional reduction[32]. These two formulations are related to one another by dualizing several of
the vector fields and therefore they interchange electric and magnetic charges of some of the
28 vector fields of the final theory. The precise relation between these theories was recently
discussed in [33].

The paper is organized as follows. In sec. 15.0.2 we rewrite the 4d black hole potential in
terms of central charges. This is essential in order to discuss the supersymmetry properties of
the solutions. In fact, in the specific solutions we consider in sec. 15.0.3 and 15.0.4, BPS and
non-BPS critical points are simply obtained by some charges sign flip. This will manifest in
completely different symmetry properties of the central charge matrix, in the normal frame, at
the fixed point. These properties reflect the different character of the BPS and non BPS charge
orbits.

The solutions of the critical point equations are particularly simple in the “axion free” case,
discussed in sec. 15.0.3 and 15.0.4, which only occur for some chosen charge configurations. In
sec. 15.0.3 we derive critical point equations that are completely general and that may be used
to study any solution.

The formula for the N = 8 potential given in sec. 15.0.2 was obtained in an earlier work
[33], and it is identical to the N = 2 case [29]. The only difference relies in the kinetic matrix
aIJ which, in N = 2 is given by real special geometry while in N = 8 is given in terms of the
E6(6) coset representatives [32, 16]. However, in the normal frame, when we suitably restrict to
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15.0.2 4d/5d relations for the N = 8 extremal black hole potential

two moduli, this matrix does indeed become an N = 2 matrix, although the interpretation in
terms of central charges is completely different.

The supersymmetry properties of the solutions in the N = 8 and N = 2 theories are
compared in subsection 15.0.4. We will see that in the N = 2 interpretation, depending on
the sign of the charges, both a BPS and a non-BPS branch exist in d = 5 while two non BPS
branches exist in the d = 4 theory. In N = 8, the occurrence of one less branch in both
dimensions is due to the fact that the central and matter charges of the N = 2 theory are all
embedded in the central charge matrix of the N = 8 theory. The higher number of attractive
orbits can also be explained by the different form of the relevant non compact groups and their
stabilizers for the moduli space of solutions.

15.0.2 4d/5d relations for the N = 8 extremal black hole potential

In this section we remind the reader how the N = 8 potential was derived in a basis that
illustrates the relation between 4 and 5 dimensions [33].

Using known identities [17, 34], the black hole potential can be written as a quadratic form
in terms of the charge vector Q and the symplectic 56 × 56 matrix M(N ), related to the 4d
vector kinetic matrix NΛΣ

VBH = −1

2
QTM(N )Q , (15.14)

where M is

M(N ) =

 ImN +ReN (ImN)−1ReN −ReN (ImN )−1

−(ImN )−1ReN (ImN )−1

 . (15.15)

The indices Λ ,Σ of NΛΣ are now split as (0, I), according to the decomposition of 4d charges
with respect to 5d ones, thus NΛΣ assumes the block form

NΛΣ =

(
N00 N0 J

NI 0 NI J

)
, (15.16)

The kinetic matrix depends on the 70 scalars of the N = 8 theory, which are given, in the
5d/4d KK reduction, by the 42 scalars of the 5d theory (encoded in the 5d vector kinetic matrix
aIJ = aJI), by the 27 axions aI and the dilaton field eϕ. In a normalization that is suitable for
comparison to N = 2 , it has the form

NΛΣ =


1
3
d− i

(
e2ϕaIJa

IaJ + e6ϕ
)
−1

2
dJ + ie2ϕaKJa

K

−1
2
dI + ie2ϕaIKa

K dIJ − ie2ϕaIJ

 , (15.17)

where
d ≡ dIJKa

IaJaK , dI ≡ dIJKa
JaK , dIJ ≡ dIJKa

K . (15.18)

The black hole potential of [33], computed from (15.14) using the above formulas, can be
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15.0.2 4d/5d relations for the N = 8 extremal black hole potential

rearranged as

VBH =
1

2

(
p0eϕaI

)
aIJ
(
p0eϕaJ

)
+

1

2

(
p0e3ϕ

)2
+

1

2

(
d

6
p0e−3ϕ

)2

+

+
1

2

(
1

2
e−ϕp0dI

)
aIJ
(
1

2
e−ϕp0dJ

)
+

1

2
× 2

(
−p0eϕaI

)
aIJ
(
pJeϕ

)
+

+
1

2
× 2

(
d

6
p0e−3ϕ

)(
−1

2
pIdIe

−3ϕ

)
− 1

2
× 2

(
1

2
p0e−ϕdI

)
aIJ
(
pKdKJe

−ϕ)+
+
1

2

(
eϕpI

)
aIJ
(
eϕpJ

)
+

1

2

(
1

2
e−3ϕpKdK

)2

+

+
1

2

(
e−ϕpKdKI

)
aIJ
(
e−ϕpLdJL

)
+

1

2
× 2

(
q0e

−3ϕ
)(d

6
p0e−3ϕ

)
+

+
1

2
× 2

(
qIa

Ie−3ϕ
)(d

6
p0e−3ϕ

)
+

1

2
× 2

(
qIe

−ϕ) aIJ (1

2
p0dJe

−ϕ
)
+

−1

2
× 2

(
q0e

−3ϕ
)(1

2
pIdIe

−3ϕ

)
− 1

2
× 2

(
qIa

Ie−3ϕ
)(1

2
pJdJe

−3ϕ

)
+

−1

2
× 2

(
qIe

−ϕ) aIJ (pKdKJe−ϕ)+ 1

2

(
q0e

−3ϕ
)2

+
1

2
× 2

(
q0e

−3ϕ
) (
qIa

Ie−3ϕ
)
+

+
1

2

(
qIa

Ie−3ϕ
)2

+
1

2

(
qIe

−ϕ) aIJ (qJe−ϕ) ,
(15.19)

with aIJ = a−1
IJ . This form shows that it can be written in terms of squares of electric and

magnetic components as

VBH =
1

2
(Ze

0)
2 +

1

2

(
Z0
m

)2
+

1

2
Ze
Ia

IJZe
J +

1

2
ZI
maIJZ

J
m , (15.20)

provided one defines,

Ze
0 = e−3ϕq0 + e−3ϕqIa

I + e−3ϕd

6
p0 − 1

2
e−3ϕpIdI ,

Z0
m = e3ϕp0 ,

Ze
I =

1

2
e−ϕp0dI − pJdIJe−ϕ + qIe

−ϕ ,

ZI
m = eϕpI − eϕp0aI . (15.21)

In order to get the symplectic embedding of the four dimensional theory, we still need to
complexify the central charges. To this end, we define the two complex vectors

Z0 ≡
1√
2
(Ze

0 + iZ0
m) ,

Za ≡
1√
2
(Ze

a + iZa
m) , (15.22)

where

Ze
a = Ze

I (a
−1/2)Ia , Za

m = ZI
m(a

1/2)aI (15.23)

such that

VBH = |Z0|2 + ZaZ̄a , (15.24)
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15.0.2 4d/5d relations for the N = 8 extremal black hole potential

where now a = 1, ..., 27 is a flat index, which can be regarded as a USp(8) antisymmetric
traceless matrix.

The potential at the critical point gives the black hole entropy corresponding to the given
solution, which in d = 4 reads

SBH
π

=
√
|I4| = V crit.

BH , (15.25)

while in d = 5 it is [38]

SBH
π

= 33/2|I3|1/2 =
(
3V crit

5

)3/4
, (15.26)

where I4 and I3 are the invariants of the N = 8 theory in d = 4 and d = 5 respectively.

Symplectic sections

In virtue of the previous discussion, we can trade the central charge (15.2)for the 28-component
vector

ZA = fΛ
AqΛ − hΛApΛ , (15.27)

where f and h are symplectic sections satisfying the following properties [40, 41]

a) NΛΣ = hΛA(f
−1)AΣ ,

b) i(f †h− h†f) = Id ,

c) fTh− hT f = 0.

Notice that one still has the freedom of a further transformation

h→ hM ,

f → fM , (15.28)

as it leaves invariant the vector kinetic matrix N , as well as relations a) − c), when M is a
unitary matrix

MM † = 1. (15.29)

Indeed, when the central charge transforms as

Z → ZM ,

ZZ† → ZMM †Z† = ZZ† , (15.30)

the black hole potential

VBH ≡ ZZ† (15.31)

is left invariant. In our case, we rearrange the 28 indices into a single complex vector index,
to be identified, for a suitable choice of M , with the two-fold antisymmetric representation of
SU(8), according to the decomposition 28→ 27+ 1 of SU(8)→ USp(8); we thus have

Z0 = fΛ
0qΛ − hΛ0p

Λ =

= f 0
0q0 + fJ0qJ − h0 0p0 − hJ 0p

J ,

Za = fΛ
aqΛ − hΛ apΛ =

= f 0
aq0 + fJaqJ − h0 ap0 − hJ apJ ;

(15.32)
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which, from the definition in (15.22) yields

Z0 =
1√
2

[
e−3ϕq0 + e−3ϕaIqI +

(
e−3ϕd

6
+ ie3ϕ

)
p0 − 1

2

(
e−3ϕdI

)
pI
]
,

Za =
1√
2

[
e−ϕqI(a

−1/2)Ia +

(
1

2
e−ϕdI(a

−1/2)Ia − ieϕaJ(a1/2) a
J

)
p0+

−
(
e−ϕdIJ(a

−1/2)Ia − ieϕ(a1/2) a
J

)
pJ
]
.

(15.33)

Thus we consider

fΛ
A =

1√
2


e−3ϕ 0

e−3ϕaI e−ϕ(a−1/2)Ia

 , (15.34)

hΛA =
1√
2


−e−3ϕ d

6
− ie3ϕ −1

2
e−ϕdK(a

−1/2)Ka + ieϕaK(a1/2) a
K

1
2
e−3ϕdI e−ϕdIJ(a

−1/2)Ja − ieϕ(a1/2) a
I

 . (15.35)

From f−1

(f−1) A
Λ =

√
2


e3ϕ 0

−eϕaI(a1/2) a
I eϕ(a1/2) a

I

 , (15.36)

by matrix multiplication, we find that relations a) b) and c) are fulfilled by f and h, that we
now recognize to be the symplectic sections.

We finally perform the transformation f ′ = fM (where M = f−1f ′ = h−1h′), with M
unitary matrix, in virtue of identities a), b) and c), valid for both (f, h) and (f ′, h′). A model
independent formula for M valid for any N = 2 d-geometry (in particular, for any truncation
of N = 8 to an N = 2 geometry, such as the models treated in this paper) is given by the
matrix [42]

M = A1/2M̂G−1/2 , (15.37)

with

A =

 1 0...0
0 . .
0

aIJ

 , G =

 1 0...0
0 . .
0

gIJ

 , gIJ =
1

4
e−4ϕaIJ , (15.38)

where M̂ is given by

M̂ =
1

2

(
1 ∂J̄K

−iλIe−2ϕ e−2ϕδI
J̄
+ ie−2ϕλI∂J̄K

)
, (15.39)
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15.0.3 Attractors in the 5 dimensional theory

where “−λI” are the imaginary parts of the complex moduli zI = aI − iλI , and K is the Kähler
potential K = − ln(8V), with V = 1

3!
dIJKλ

IλJλK ; the matrix M̂ satisfies the properties

AM̂G−1M̂ † = Id ,

G−1M̂ †AM̂ = Id. (15.40)

For the models considered below, this matrix M does indeed reproduce, for the given special
configurations, the formula in eq. (15.59).

Note that M̂ performs the change of basis between the central charges defined as

Z0 =
1√
2
(Ze

0 + iZ0
m) ,

ZI =
1√
2
(Ze

I + iaIJZ
J
m) , (15.41)

and the special geometry charges (Z, DĪZ), that is the charges in “curved” rather than the
“flat” indices.

15.0.3 Attractors in the 5 dimensional theory

It was shown in [23] that the cubic invariant of the five dimensions can be written as

I3 = Z5
1 Z

5
2 Z

5
3 , (15.42)

where Z5
a ’s are related to the skew eigenvalues of the USp(8) central charge matrix in the

normal frame

eab =


Z5

1 + Z5
2 − Z5

3 0 0 0
0 Z5

1 + Z5
3 − Z5

2 0 0
0 0 Z5

2 + Z5
3 − Z5

1 0
0 0 0 −(Z5

1 + Z5
2 + Z5

3 )

⊗ ( 0 1
−1 0

)
.

(15.43)

We consider a configuration of only three non-vanishing electric charges (q1, q2, q3), that we
can take all non-negative. We further confine to two moduli λ1, λ2, describing a geodesic
submanifold SO(1, 1)2 ∈ E6(6)/USp(8) whose special geometry is determined by the constraint

1

3!
dIJK λ̂

I λ̂J λ̂K = λ̂1λ̂2λ̂3 = 1 , (15.44)

where λ̂I = V−1/3λI , defining the stu−model [29].
The metric aIJ , restricted to this surface, takes the diagonal form

aIJ = − ∂2

∂λ̂I∂λ̂J
logV

∣∣
V=1

=


1

λ̂21
0 0

0 1

λ̂22
0

0 0 1

λ̂23
= λ̂21λ̂

2
2

 , (15.45)

and the five dimensional black hole potential for electric charges is∗

V e
5 = qIa

IJqJ =
3∑

a=1

Z5
a (q)Z

5
a (q) , (15.46)

∗In an analogous way, the black hole potential for magnetic charges, V m
5 =

∑3
a=1 Z

5
a (p)Z

5
a (p), is obtained

by replacing qI → pI and aIJ → aIJ [29, 38], with Z5
a (p) = pI(a1/2) a

I .
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with Z5
a (q) = (a−1/2)Ia qI ; the moduli at the attractor point of the 5-dimensional solution are

(see eq. 4.4 and 4.7 of [29])

λ̂Icrit =
I
1/3
3

qI
, (15.47)

and

V crit
5 = 3|q1q2q3|2/3 = 3I

2/3
3 ,

aIJcrit =
I
2/3
3

q2I
δIJ (15.48)

with no sum over repeated indices. We find

Z5 , crit
a = I

1/3
3 , I3 = Z5

1 Z
5
2 Z

5
3 . (15.49)

These relations also allow to connect the potential in (15.46)

V5 = (Z5
1 )

2 + (Z5
2 )

2 + (Z5
3 )

2 , (15.50)

with the form given in terms of the central charges [38], where it is the trace of the square
matrix

V5 =
1

2
Z5
abZ

5 ab. (15.51)

The eigenvalues of Z5
ab are written in (15.43) in terms of Z5

1 , Z
5
2 , Z

5
3 . The 5d central charge

matrix in the normal frame at the attractor point thus becomes

eab =


I
1/3
3 ϵ 0 0 0

0 I
1/3
3 ϵ 0 0

0 0 I
1/3
3 ϵ 0

0 0 0 −3I1/33 ϵ

 , (15.52)

which shows the breaking USp(8)→ USp(6)× USp(2).

15.0.4 Attractors in the 4 dimensional theory

In this section we reconsider the attractor solutions found in [33, 29]and we reformulate them
in terms of the present formalism based on central charges. We separately examine the three
“axion free" configurations.

Electric solution Q = (p0 , qi)

Let us first compute the 4dim central charge for the electric charge configuration with vanishing
axions; using (15.33) we find

Z0 =
i√
2
e3ϕp0 , Za =

1√
2
e−ϕqI(a

−1/2)Ia. (15.53)

The 4-dim potential is

VBH =
1

2
e−2ϕV e

5 +
1

2
e6ϕ(p0)2 , (15.54)
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(where ϕ is connected to the volume used in ref.[29] by the formula V = e6ϕ) and has the same
critical points of the 5 dimensional potential, since

∂VBH
∂λI

= 0 ⇐⇒ ∂V e
5

∂λ̂I
= 0 , ∀ I = 1, 2 . (15.55)

The attractor values of λ̂I are still given by (15.47), while the ϕ field at the critical point is [29]

e8ϕ|crit. = I
2/3
3 (p0)−2. (15.56)

This fixes the central charges at the attractor point to be

Z attr
0 =

i√
2
|p0q1q2q3|1/4sign(p0) =

i

2
|I4|1/4sign(p0) ,

Z attr
a =

1√
2
I
−1/12
3 (p0)1/4qI

I
1/3
3

qI
=

1

2
|I4|1/4 , (15.57)

where the quartic invariant is I4 = −4 p0q1q2q3. So we find

Zcrit
1 = Zcrit

2 = Zcrit
3 =

1

2
|I4|1/4 ≡ Z , Zcrit

0 =
i

2
|I4|1/4sign(p0) ≡ iZ0. (15.58)

Let us define the 4d central charge matrix as

2ZAB = eAB − iZ0Ω , (15.59)

where eAB is the matrix in (15.43) in which, instead of Z5
1 , Z

5
2 , Z

5
3 of the 5d theory, we now

write the 4d Za’s defined in (15.33). it can be readily seen that for axion free solutions eq.
(15.59) correctly gives

VBH =
∑
i

|zi|2 = |Z0|2 +
∑
a

|Za|2 (15.60)

where zi’s, for i = 1, .., 4, are the (complex skew-diagonal) elements of ZAB. We then have

2ZAB =


Zϵ 0 0 0
0 Zϵ 0 0
0 0 Zϵ 0
0 0 0 −3Zϵ

+


Z0ϵ 0 0 0
0 Z0ϵ 0 0
0 0 Z0ϵ 0
0 0 0 Z0ϵ

 =

=


(Z + Z0)ϵ 0 0 0

0 (Z + Z0)ϵ 0 0
0 0 (Z + Z0)ϵ 0
0 0 0 (−3Z + Z0)ϵ

 .

(15.61)

Since (15.57) and (15.58) yield that Z = |Z0|, depending on the choice p0 > 0 or p0 < 0, two
different solutions arise. In fact,

Z + Z0 = 0 → ZAB =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 2Z0

⊗ ϵ , (15.62)
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15.0.4 Attractors in the 4 dimensional theory

gives the 1
8
-BPS solution when p0 < 0 and shows SU(6)× SU(2) symmetry. Conversely,

Z = Z0 → ZAB =


Z0 0 0 0
0 Z0 0 0
0 0 Z0 0
0 0 0 −Z0

⊗ ϵ , (15.63)

is the non-BPS solution that corresponds to the choice p0 > 0, with residual USp(8) symmetry.

Magnetic solution Q = (pi , q
0)

This case is symmetric to the electric solution of Section 15.0.4. If we take all positive magnetic
charges, then the cubic invariant is I3 = p1p2p3 , the quartic invariant is I4 = 4 q0 p

1p2p3 and
the values of the critical 5d moduli are now (see eq. (5.3) of [29])

λ̂I =
pI

I
1/3
3

. (15.64)

The central charges for this configuration are, from (15.33),

Z0 =
1√
2
e−3ϕq0 , Za =

i√
2
eϕpI(a1/2) a

I , (15.65)

and the black hole potential is

VBH =
1

2
e2ϕV m

5 +
1

2
e−6ϕ(q0)

2. (15.66)

This gives the attractor value of the ϕ field as

e8ϕ|crit. = I
−2/3
3 (q0)

2. (15.67)

At the attractor point (a
1/2
crit.)IJ = (λ̂I)−1δIJ , and the magnetic central charges are

Zcrit
a =

i√
2
(I3)

1/4|q0|1/4 =
i

2
|I4|1/4 ≡ iZ , a = 1, 2, 3. (15.68)

We can then write the central charge matrix corresponding to the 27 representation in the
normal frame as

eAB =


Zϵ 0 0 0
0 Zϵ 0 0
0 0 Zϵ 0
0 0 0 −3Zϵ

 . (15.69)

To describe the four dimensional solution we need the electric central charge, that at the
attractor point is

Zcrit
0 =

1√
2
(I3)

1/4|q0|1/4 sign(q0) =
1

2
|I4|1/4 sign(q0) ≡ Z0.
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15.0.4 Attractors in the 4 dimensional theory

Then, using the definition(15.59) the complete 4d central charge matrix is

2ZAB = i


Zϵ 0 0 0
0 Zϵ 0 0
0 0 Zϵ 0
0 0 0 −3Zϵ

− i

Z0ϵ 0 0 0
0 Z0ϵ 0 0
0 0 Z0ϵ 0
0 0 0 Z0ϵ

 =

= eiπ/2


(Z − Z0)ϵ 0 0 0

0 (Z − Z0)ϵ 0 0
0 0 (Z − Z0)ϵ 0
0 0 0 (−3Z − Z0)ϵ

 .

(15.70)

The sign(q0) determines whether the solution is supersymmetric or not. We may have

q0 > 0 → Z = Z0 ,

ZAB = eiπ/2


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −2Z0

⊗ ϵ (15.71)

which is a magnetic 1
8
-BPS solutions with SU(6)× SU(2) symmetry, or

q0 < 0 → Z = −Z0 ,

ZAB = eiπ/2


−Z0 0 0 0
0 −Z0 0 0
0 0 −Z0 0
0 0 0 Z0

⊗ ϵ (15.72)

which is the non-BPS solution with USp(8) symmetry. These solutions have the same Z0 as
the electric ones, but now the choice of positive q0 charge leads to the supersymmetric solution
while the negative q0 charge gives the non-supersymmetric one, in contrast with what happened
for the choice of p0 in the electric case in eq. (15.62) and (15.63).

KK dyonic solution Q = (p0 , q0)

This charge configuration also has vanishing axions, and the only non-zero charges give

Ze
0 = e−3ϕq0 , Z0

m = e3ϕp0 ,
⇓

Z0 =
1√
2
(e−3ϕq0 + ie3ϕp0).

(15.73)

Since none of the 5 dimensional charges are turned on, the four dimensional black hole potential
is

VBH =
1

2

[
e−6ϕq20 + e6ϕ(p0)2

]
, (15.74)

which is extremized at the horizon by the value of the ϕ field

e6ϕ|crit. =
∣∣∣∣q0p0
∣∣∣∣ . (15.75)
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We only focus on the case p0 > 0 and q0 > 0, since all the other choices are related to this by
a duality rotation. Evaluating the central charge at the attractor point we find

Zcrit
0 =

√
|p0q0|

1 + i√
2

=
√
|p0q0|eiπ/4.

1√
2

√
q20 + (p0)2 eiϕ/4 , (15.76)

Following the prescription in (15.59) we find that at the attractor point

2ZAB = −iZ0Ω =

= −ieiπ/4


√
|p0q0|ϵ 0 0 0

0
√
|p0q0|ϵ 0 0

0 0
√
|p0q0|ϵ 0

0 0 0
√
|p0q0|ϵ

 (15.77)

that gives a non-BPS 4 dimensional black hole with I4 = −(p0q0)2.
Note that eqs. (15.63), (15.72) and (15.77) imply that the sum of the phases of the four

complex skew entries is π, as appropriate to a non-BPS N = 8 solution [17]. Also, in all cases,
VBH |crit. =

√
|I4|.

N = 8 and N = 2 attractive orbits at d = 5 and d = 4

We now compare the different interpretations in the N = 8 and N = 2 theories of the critical
points of the very same black hole 4d potential, in terms of the axion-free electric solution (sec.
15.0.4) as discussed in this paper and in ref. [29].

Since the “normal frame” solution is common to all symmetric spaces (with rank three), it
can be regarded as the generating solution of any model. So we confine our attention to the
exceptional N = 2 (octonionic) E7(−25) model [39] which has a charge vector in 5d and 4d of
the same dimension as in N = 8 supergravity. At d = 5 the duality group is E6(−26), with
moduli space of vector multiplets E6(−26)/F4.

It is known [24, 35] that in d = 5 there are two different charge orbits,

ON=2
d=5, BPS =

E6(−26)

F4

, (15.78)

the BPS one, and the non BPS one

ON=2
d=5, non−BPS =

E6(−26)

F4(−20)

, (15.79)

The latter one precisely corresponds to the non supersymmetric solution and to (+ + −),
(− − +) signs of the q1, q2, q3, charges (implying ∂Z ̸= 0). For charges of the same sign
(+ + +), (−−−) one has the 1

8
BPS solution (∂Z = 0), as discussed in [29].

It is easy to see that in the N = 8 theory all these solutions just interchange Z1, Z2, Z3 and
Z4 = −3Z3 but always give a normal frame matrix of the form

Zab =


Zϵ 0 0 0
0 Zϵ 0 0
0 0 Zϵ 0
0 0 0 −3Zϵ

 , (15.80)

which has USp(6)×USp(2) ∈ F4(4) as maximal symmetry. Another related observation is that
while E6(−26) contains both F4 and F4(−20), so that one expects two orbits and two classes of
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solution, in the N = 8 case E6(6) contains only the non compact F4(4), thus only one class of
solutions is possible.

These orbits and critical points at d = 5 have a further story when used to study the
d = 4 critical points with axion free solutions as it is the case for the electric (p0, q1, q2, q3)
configuration. Since in this case I4 = −4p0q1q2q3, in theN = 8 case, once one choose q1, q2, q3 >
0, the I4 > 0, p0 < 0 solution is BPS, while the I4 < 0, p0 > 0 is non BPS.

Things again change in N = 2 [37], when now we consider the solution embedded in the
Octonionic model with 4d moduli space E7(−25)/E6 × U(1). A new non BPS orbit in d = 4
is generated, corresponding to Z = 0 (∂Z ̸= 0) solution, so three 4d orbits exist in this case
depending whether the (+ + +) and (+ +−) solutions are combined with −p0 ≶ 0. So

(+,+++) is BPS with I4 > 0 , O =
E7(−25)

E6

, (15.81)

(−,−++) is non BPS with I4 > 0 , O =
E7(−25)

E6(−14)

, (15.82)

(+,−++) or (−,+++) is non BPS with I4 < 0 , O =
E7(−25)

E6(−26)

. (15.83)

15.0.5 Maurer-Cartan equations of the four dimensional theory

Let us call Maurer-Cartan equations[16] those which give the derivative of the central charges
(coset representatives) with respect to the moduli ϕ, aI , λi. Using (15.21) we have

∂ϕZ
e
0 = −3Ze

0 , ∂ϕZ
0
m = 3Z0

m ,

∂ϕZ
e
I = −Ze

I , ∂ϕZ
I
m = ZI

m , (15.84)

and
∂Ze

0

∂aI
= e−2ϕZe

I ,
∂Z0

m

∂aI
= 0 ,

∂ZI
m

∂aJ
= −δIJe−2ϕZ0

e ,
∂Ze

I

∂aJ
= −e−2ϕdIJKZ

K
m . (15.85)

In our notation the 5d metric aIJ , (I, J = 1, .., 27) can also be rewritten with a pair of anti-
symmetric (traceless) indices

aΛΣ ,∆Γ = LabΛΣL∆Γ ab , (15.86)

where LabΛΣ is the coset representative; in a fixed gauge (where a, b and Λ,Σ indices are
identified)

L a
I = (a1/2) a

I , (L̄Ia = LTIa) (15.87)

The object b̄Pi ≡ a1/2∂ia
−1/2 can be regarded as the Maurer-Cartan connection (see reference

[32]). In fact, by reminding that Ze
a = Ze

I (a
−1/2)Ia, we have ∂iZ

e
a = (∂ia

−1/2)IaZ
e
I ( since

∂iZ
e
I = 0). Since we can also write

∂iZ
e
a = (∂ia

−1/2)Ia(a
1/2) b

I Z
e
b (15.88)

we find that b̄P b
i,a is such that

∂iZ
e
a = b̄P b

i,a Z
e
b . (15.89)

Notice that using b̄P b
i,a = Q b

i,a + V b
i,a , we identify a connection which satisfies

∇iZ
e
a = V b

a Ze
b , (15.90)

with ∇i = ∂i −Qi.
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Attractor equations from Maurer-Cartan equations

We can now use this formalism to write the attractor equations for the potential

VBH =
1

2
(Ze

0)
2 +

1

2
(Z0

m)
2 +

1

2
Ze
Ia

IJZe
J +

1

2
ZI
maIJZ

J
m. (15.91)

By differentiating with respect to ϕ, aI , λi, we get

∂ϕVBH = −3(Ze
0)

2 + 3(Z0
m)

2 − Ze
Ia

IJZe
J + ZI

maIJZ
J
m = 0 , (15.92)

∂aIVBH = e−2ϕ
[
Ze

0Z
e
I − Ze

Ja
JKdIKLZ

L
m − Z0

maIJZ
J
m

]
= 0 , (15.93)

∂λiVBH ≡ ∂iVBH =
1

2
Ze
I ∂ia

IJ Ze
J +

1

2
ZI
m ∂iaIJ Z

J
m = 0. (15.94)

From (15.93) we see that a solution with aI = 0 implies

∂aIVBH
∣∣
aI=0

= 0 = e−2ϕ
[
e−4ϕq0qI − qJaJKdIKLpL − e4ϕp0aIJpJ

]
= 0 , (15.95)

which is trivially satisfied if we set ̸= 0 (q0, p
0) or (q0, p

I) or (p0, qI).
From (15.92) we see that for an axion-free solution, if Ze

0 , Z
I
m = 0, we get

3(Z0
m)

2 = Ze
Ia

IJZe
J , (15.96)

and if aIJ is diagonal, I = J = 1, 2, 3, we obtain

3(Z0
m)

2 = (Ze
1)

2a11 + (Ze
2)

2a22 + (Ze
3)

2a33 , (15.97)

which is compatible with Ze
1 = Ze

2 = Ze
3 = ±Z0

m .
The derivative with respect to the 5d moduli λi, i = 1, .., 42 for N = 8 theory, only receives

contributions from the matrix aIJ . Indeed since Ze
I , ZI

m do not depend on the λi(see eq.15.21),
one finds

∂iV4 = 0 = Ze
I ∂ia

IJ Ze
J + ZI

m ∂iaIJ Z
J
m. (15.98)

By rewriting the charges multiplied by (a−1/2)Ia and (a1/2) a
I so that

Ze
a ≡ Ze

I (a
−1/2)Ia , Za

m = ZI
m(a

1/2)aI , (15.99)

we have

∂iZ
e
a = b̄P b

i,a Z
e
b , b̄P b

i,a = ∂i(a
−1/2)Ia(a

1/2) b
I ,

∂iZ
a
m = b̄P a

i bZ
b
m , b̄P a

i b = ∂i(a
1/2) a

I (a−1/2)Ib , (15.100)

where b̄P a
i b = −b̄P a

i b since ∂i(Ze
aZ

a
m) = 0. Then we also have

∂i(Z
e
aZ

e
a) = Ze

a(b̄P
b

ia )Ze
b =

= Ze
a b̄Pi,abZ

e
b =

= Ze
a b̄Pi (ab)Z

e
b = 0 , (15.101)

and if we split b̄Pi,ab = Qi [ab] + Vi (ab), with

b̄P a
i b = Q a

i b + V a
i b ,

b̄P b
i,a = Q b

i,a − V b
i,a , (15.102)
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the critical condition implies

∂i(Z
eZe) = Ze

aVi (ab)Z
e
b = 0 , (15.103)

and the analogue equation for magnetic charges

∂i(Z
mZm) = Za

mVi (ab)Z
b
m = 0 , (15.104)

so that only the vielbein Vi ,ab enters in the equations of motion.
The criticality condition on the potential of eq. (15.98) now gives

∂iVBH = 0 → Ze
aV

ab
i Ze

b + Za
mVi, abZ

b
m = 0 , (15.105)

thus, for electric configurations (Zb
m = 0) with aI = 0,

Ze
aV

ab
i Ze

b = 0. (15.106)

Comparing results of [38] with our formulæ we see that V1, V2, V3, with V1 + V2 + V3 = 0, in
the case where the metric aIJ is diagonal, correspond to

(a−1/2)Ia∂i(a
1/2) a

J = (a−1/2)I∂i(a
1/2)I = b̄P I

i I = V I
i I ≡ V I

i , (15.107)

where (a−1/2)II ≡ (a−1/2)I , (a1/2) I
I ≡ (a1/2)I , I = 1, 2, 3, and using (15.45) we find

V I
1 =

(
1

λ̂1
, 0 ,− 1

λ̂1

)
,

V I
2 =

(
0 ,

1

λ̂2
,− 1

λ̂2

)
. (15.108)

Indeed, ∑
i=1,2,3

V I
i = 0 , (15.109)

so, by using eq. (2.31)-(2.33) of ref. [38] one gets the desired result. In fact, using the definitions
of b̄P I

1 and b̄P I
2 we get from the λ̂i equations of motion∑

I

Ze
IV

I
i Z

e
I = 0 , (15.110)

which explicitly gives

Ze
1Z

e
1 − Ze

3Z
e
3 = 0 ,

Ze
2Z

e
2 − Ze

3Z
e
3 = 0 , (15.111)

whose solution, combined with eq. (15.97), gives

(Ze
1)

2 = (Ze
2)

2 = (Ze
3)

2 = (Z0
m)

2 ,

⇓
Ze

1 = Ze
2 = Ze

3 = ±Z0
m , (15.112)

all the other sign choices being equivalent in the 5d theory.
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15.1 Self-Duality in Nonlinear Electromagnetism by Gaillard
Zumino

15.1.1 Duality rotations in four dimensions

The invariance of Maxwell’s equations under “duality rotations” has been known for a long
time. In relativistic notation these are rotations of the electromagnetic field strength Fµν into
its dual, which is defined by

F̃µν =
1

2
ϵµνλσF

λσ, ˜̃Fµν = −Fµν . (15.113)

This invariance can be extended to electromagnetic fields in interaction with the gravitational
field, which does not transform under duality. It is present in ungauged extended supergravity
theories, in which case it generalizes to a nonabelian group [1]. In [2, 3] we studied the most
general situation in which duality invariance of this type can occur. More recently [4] the
duality invariance of the Born-Infeld theory, suitably coupled to the dilaton and axion [5], has
been studied in considerable detail. In the present note we will show that most of the results
of [4, 5] follow quite easily from our earlier general discussion. We shall also present some new
results that were not made explicit in [2, 3], especially some properties of the scalar fields.

We begin by recalling and completing some basic results of our paper [2, 3]. Consider a
Lagrangian which is a function of n real field strengths F a

µν and of some other fields χi and
their derivatives χiµ = ∂µχ

i:
L = L

(
F a, χi, χiµ

)
. (15.114)

Since
F a
µν = ∂µA

a
ν − ∂νAaµ, (15.115)

we have the Bianchi identities
∂µF̃ a

µν = 0. (15.116)

On the other hand, if we define

G̃a
µν =

1

2
ϵµνλσG

aλσ ≡ 2
∂L

∂F µν
a
, (15.117)

we have the equations of motion
∂µG̃a

µν = 0. (15.118)

We consider an infinitesimal transformation of the form

δ

(
F
G

)
=

(
A B
C D

)(
F
G

)
, (15.119)

δχi = ξi(χ), (15.120)

where A,B,C,D are real n×n constant infinitesimal matrices and ξi(χ) functions of the fields
χi (but not of their derivatives), and ask under what circumstances the system of the equations
of motion (15.181) and (15.183), as well as the equation of motion for the fields χi are invariant.
The analysis of [2] shows that this is true if the matrices satisfy

AT = −D, BT = B, CT = C, (15.121)

(where the superscript T denotes the transposed matrix) and in addition the Lagrangian changes
under (15.184) and (15.185) as

δL =
1

4

(
FCF̃ +GBG̃

)
. (15.122)
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The relations (15.186) show that (15.184) is an infinitesimal transformation of the real non-
compact symplectic group Sp(2n,R) which has U(n) as maximal compact subgroup. The finite
form is (

F ′

G′

)
=

(
a b
c d

)(
F
G

)
, (15.123)

where the n× n real submatrices satisfy

cTa = aT c, bTd = dT b, dTa− bT c = 1. (15.124)

Notice that the Lagrangian is not invariant. In [2] we showed, however, that the derivative
of the Lagrangian with respect to an invariant parameter is invariant. The invariant parameter
could be a coupling constant or an external background field, such as the gravitational field,
which does not change under duality rotations. It follows that the energy-momentum tensor,
which can be obtained as the variational derivative of the Lagrangian with respect to the
gravitational field, is invariant under duality rotations. No explicit check of its invariance, as
was done in [4]–[8], is necessary.

The symplectic transformation (15.188) can be written in a complex basis as(
F ′ + iG′

F ′ − iG′

)
=
(
ϕ0 ϕ

∗
1ϕ1 ϕ

∗
0

)(F + iG
F − iG

)
, (15.125)

where ∗ means complex conjugation and the submatrices satisfy

ϕT0 ϕ1 = ϕT1 ϕ0, ϕ†
0ϕ0 − ϕ†

1ϕ1 = 1. (15.126)

The relation between the real and the complex basis is

2a = ϕ0 + ϕ∗
0 + ϕ1 + ϕ∗

1, −2ib = ϕ0 − ϕ∗
0 + ϕ1 − ϕ∗

1,

2ic = ϕ0 − ϕ∗
0 − ϕ1 + ϕ∗

1, 2d = ϕ0 + ϕ∗
0 − ϕ1 − ϕ∗

1. (15.127)

In [2, 3] we also described scalar fields valued in the quotient space Sp(2n,R)/U(n). The
quotient space can be parameterized by a complex symmetric n × n matrix K = KT whose
real part has positive eigenvalues, or equivalently by a complex symmetric matrix Z = ZT such
that Z†Z has eigenvalues smaller than 1. They are related by

K =
1− Z∗

1 + Z∗ , Z =
1−K∗

1 +K∗ . (15.128)

These formulae are the generalization of the well-known map between the Lobachevskii unit disk
and the Poincaré upper half-plane: Z corresponds to the single complex variable parameterizing
the unit disk; iK to the one parameterizing the upper half plane.

Under Sp(2n,R)

K → K ′ = (−ic+ dK) (a+ ibK)−1 , Z → Z ′ = (ϕ1 + ϕ∗
0Z) (ϕ0 + ϕ∗

1Z)
−1 , (15.129)

or, infinitesimally,

δK = −iC +DK −KA− iKBK, δZ = V + T ∗Z − ZT − iZV ∗Z, (15.130)

where
T = −T †, V = V T . (15.131)

The invariant nonlinear kinetic term for the scalar fields can be obtained from the Kähler
metric [9]

Tr

(
dK∗ 1

K +K∗dK
1

K +K∗

)
= Tr

(
dZ

1

1− Z∗Z
dZ∗ 1

1− ZZ∗

)
(15.132)
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15.1.2 Born-Infeld theory

which follows from the Kähler potential

Tr ln (1− ZZ∗) or Tr ln(K +K∗), (15.133)

which are equivalent up to a Kähler transformation. It is not hard to show that the metric
(15.200) is positive definite. Throughout this paper we assume a flat background space-time
metric; the generalization to a nonvanishing gravitational field is straightforward [2]–[5].

15.1.2 Born-Infeld theory

As a particularly simple example we consider the case when there is only one tensor Fµν and
no additional fields. Our equations become

G̃ = 2
∂L

∂F
, (15.134)

δF = λG, δG = −λF (15.135)

and
δL =

1

4
λ
(
GG̃− FF̃

)
. (15.136)

We have restricted the duality transformation to the compact subgroup U(1) ∼= SO(2), as
appropriate when no additional fields are present. So A = D = 0, B = −C = λ.

Since L is a function of F alone, we can also write

δL = δF
∂L

∂F
= λG

1

2
G̃. (15.137)

Comparing (15.204) and (15.205), which must agree, we find

GG̃+ FF̃ = 0. (15.138)

Together with (15.202), this is a partial differential equation for L(F ), which is the condition
for the theory to be duality invariant. If we introduce the complex field

M = F − iG, (15.139)

(15.206) can also be written as
MM̃∗ = 0. (15.140)

Clearly, Maxwell’s theory in vacuum satisfies (15.206), or (15.208), as expected. A more
interesting example is the Born-Infeld theory [7], given by the Lagrangian

L =
1

g2

(
−∆

1
2 + 1

)
, (15.141)

where

∆ = − det (ηµν + gFµν) = 1 +
1

2
g2F 2 − g4

(
1

4
FF̃

)2

. (15.142)

For small values of the coupling constant g (or for weak fields) L approaches the Maxwell
Lagrangian. We shall use the abbreviation

β =
1

4
FF̃ . (15.143)

Then
∂∆

∂F
= g2F − βg4F̃ , (15.144)
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15.1.3 Schrödinger’s formulation of Born’s theory

G̃ = 2
∂L

∂F
= −∆− 1

2

(
F − βg2F̃

)
, (15.145)

and
G = ∆− 1

2

(
F̃ + βg2F

)
. (15.146)

Using (15.213) and (15.214), it is very easy to check that GG̃ = −FF̃ : the Born-Infeld theory
is duality invariant. It is also not too difficult to check that ∂L/∂g2 is actually invariant
under (15.203) and the same applies to L − 1

4
FG̃ (which in this case turns out to be equal to

−g2∂L/∂g2). These invariances are expected from our general theory.
It is natural to ask oneself whether the Born-Infeld theory is the most general physically

acceptable solution of (15.206). This was investigated in [4] where a negative result was reached:
more general Lagrangians satisfy (15.206), the arbitrariness depending on a function of one
variable.

15.1.3 Schrödinger’s formulation of Born’s theory

Schrödinger [8] noticed that, for the Born-Infeld theory (15.209), F and G satisfy not only
(15.206) [or (15.208)], but also the more restrictive relation

M
(
MM̃

)
− M̃M2 =

g2

8
M̃∗

(
MM̃

)2
. (15.147)

We have verified this by an explicit, although lengthy, calculation using (15.207), (15.213),
(15.214) and (15.210). Schrödinger did not give the details of the calculation, presenting instead
convincing arguments based on particular choices of reference systems. One can write (15.215)
as

∂L

∂M
= g2M̃∗, (15.148)

where

L = 4
M2(
MM̃

) , (15.149)

and Schrödinger proposed L as the Lagrangian of the theory, instead of (15.209). Of course,
L is a Lagrangian in a different sense than L, which is a field Lagrangian in the usual sense.
Multiplying (15.215) by M and saturating the unwritten indices µν, the left hand side vanishes,
so that (15.208) follows. Using (15.215) it is easy to see that L is pure imaginary: L = −L∗.
Schrödinger also pointed out that, if we introduce a map

1

g2
∂L

∂M
= f(M), (15.150)

so that (15.215) or (15.216) can be written as

f(M) = M̃∗, (15.151)

the square of the map is the identity map

f (f(M)) =M. (15.152)

This, together with the properties

f(M̃) = −f̃(M), f(M∗) = f(M)∗, (15.153)
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15.1.4 Axion, dilaton and SL(2, R)

ensures the consistency of (15.215). Schrödinger used the Lagrangian (15.217) to construct a
conserved, symmetric energy-momentum tensor. We have checked that, when suitably normal-
ized, his energy-momentum tensor agrees with that of Born and Infeld up to an additive term
proportional to ηµν .

Schrödinger’s formulation is very clever and elegant and it has the advantage of being
manifestly covariant under the duality rotation M →Meiλ which is the finite form of (15.203).
It is also likely that, as he seems to imply, his formulation is fully equivalent to the Born-Infeld
theory (15.209), which would mean that the more restrictive equation (15.215) eliminates the
remaining ambiguity in the solutions of (15.208). This virtue could actually be a weakness if
one is looking for more general duality invariant theories.

15.1.4 Axion, dilaton and SL(2, R)

It is well known that, if there are additional scalar fields which transform nonlinearly, the
compact group duality invariance can be enhanced to a duality invariance under a larger non-
compact group (see, e.g., [2] and references therein). In the case of the Born-Infeld theory, just
as for Maxwell’s theory, one complex scalar field suffices to enhance the U(1) ∼= SO(2) invari-
ance to the SU(1, 1) ∼= SL(2, R) noncompact duality invariance. This is pointed out in [5], but
it also follows the considerations of our paper [2]. We shall use the letter S instead of K for the
scalar field, which, in the example under consideration, is a single complex field, not an n× n
matrix. In today’s more standard notation

S = S1 − iS2 = e−ϕ − ia, S1 > 0, (15.154)

where ϕ is the dilaton and a is the axion. For SL(2, R) ∼= Sp(2, R), the matrices A,B,C,D
are real numbers and A = −D, B and C are independent. Then the infinitesimal SL(2, R)
transformation is

δS = −2AS − iBS2 − iC. (15.155)

For the SO(2) ∼= U(1) subgroup, A = 0, B = −C = λ,

δS = −iλS2 + iλ. (15.156)

The scalar kinetic term, proportional to

∂µS
∗∂µS

(S + S∗)2
, (15.157)

is invariant under the nonlinear transformation (15.247) which, in terms of S1, S2, takes the
form

δS1 = −2AS1 − iBS1S2, δS2 = −2AS2 +B
(
S2
1 − S2

2

)
+ C. (15.158)

The full noncompact duality transformation on Fµν is now

δF = AF +BG, δG = DF +DG, D = −A, (15.159)

and we are seeking a Lagrangian L̂(F, S) which satisfies

δL̂ =
1

4

(
FCF̃ +GBG̃

)
, (15.160)

where

δL̂ = δF
∂L̂

∂F
+ δS1

∂L̂

∂S1

+ δS2
∂L̂

∂S2

, (15.161)
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15.1.4 Axion, dilaton and SL(2, R)

and now

G̃ = 2
∂L̂

∂F
. (15.162)

Equating (15.253) and (15.254) we see that L̂ must satisfy

1

4

(
BGG̃− CFF̃

)
+

1

2
AFG̃+ δS1

∂L̂

∂S1

+ δS2
∂L̂

∂S2

= 0. (15.163)

This equation can be solved as follows. Assume that L(F ) satisfies (15.202) and (15.206),
i.e.

GG̃ + F F̃ = 0, (15.164)

where
G̃ = 2

∂L

∂F
. (15.165)

For instance, the Born-Infeld Lagrangian L(F ) does this. Then

L̂(S, F ) = L(S
1
2
1 F ) +

1

4
S2FF̃ (15.166)

satisfies (15.256). Indeed
∂L̂(S, F )

∂F
=
∂L

∂F
S

1
2
1 +

1

2
S2F̃ . (15.167)

So
G̃ = G̃S

1
2
1 + S2F̃ , (15.168)

G = GS
1
2
1 + S2F, (15.169)

where we have defined
F = S

1
2
1 F, (15.170)

and G̃ is given by (15.258). Now

GG̃ = GG̃S1 + S2
2FF̃ + 2S2F G̃. (15.171)

Using (15.257) in this equation we find

GG̃ =
(
S2
2 − S2

1

)
FF̃ + 2S2F G̃. (15.172)

We also have
FG̃ = F G̃ + S2FF̃ . (15.173)

On the other hand, since
∂L

∂S
1
2
1

=
∂L

∂F
F =

1

2
G̃F, (15.174)

we obtain
∂L̂

∂S1

=
∂L

∂S
1
2
1

1

2
S
− 1

2
1 =

1

4
G̃S

− 1
2

1 F =
1

4
G̃F S−1

1 . (15.175)

In addition
∂L̂

∂S2

=
1

4
FF̃ . (15.176)
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Using (15.265), (15.266), (15.268) and (15.269), together with (15.251), we see that (15.256) is
satisfied. It is easy to check that the scale invariant combinations F and G, given by (15.263)
and (15.258) have the very simple transformation law

δF = S1BG, δG = −S1BF , (15.177)

i.e., they transform according to the U(1) ∼= SO(2) compact subgroup just as F and G in
(15.203), but with the parameter λ replaced by S1B. If L(F ) is the Born-Infeld Lagrangian,
the theory with scalar fields given by L̂ in (15.259) can also be reformulated à la Schrödinger.
From (15.262) and (15.263) solve for F and G in terms of F,G, S1 and S2. ThenM = F − iG
must satisfy the same equation (15.215) that M does when no scalar fields are present.

15.1.5 Connections to string theory

The duality rotations considered here are relevant to effective field theories from superstrings.
The supersymmetric extension [17] of the Lagrangian (15.259) with L(F ) = −1

4
F 2 describes

the dilaton plus Yang-Mills sector of effective N = 1 supergravity theories obtained from
superstrings in the weak coupling (S1 →∞) limit. The SL(2, Z) subgroup of SL(2, R) that is
generated by the elements 4πS → 1/4πS and S → S− i/4π relates different string theories [12]
to one another. The generalization of [2] to two dimensional theories [19] has been used to derive
the Kähler potential for moduli and matter fields in effective field theories from superstrings. In
this case the scalars are valued on a coset space K /H , K ∈ SO(n, n), H ∈ SO(n)× SO(n).
The kinetic energy is invariant under K , and the full classical theory is invariant under a
subgroup of K . String loop corrections reduces the invariance to a discrete subgroup that
contains the SL(2, Z) group generated by T → 1/T, T → T − i, where T is the squared radius
of compactification in string units.

15.2 Nonlinear Electromagnetic Self-Duality and Legendre
Transformations by Gaillard Zumino

Abstract

We discuss continuous duality transformations and the properties of classical theories
with invariant interactions between electromagnetic fields and matter. The case of scalar
fields is treated in some detail. Special discrete elements of the continuous group are shown
to be related to the Legendre transformation with respect to the field strengths.

15.2.1 Duality rotations in four dimensions

The invariance of Maxwell’s equations under “duality rotations” has been known for a long
time. In relativistic notation these are rotations of the electromagnetic field strength Fµν into
its dual, which is defined by

F̃µν =
1

2
ϵµνλσF

λσ, ˜̃Fµν = −Fµν . (15.178)

This invariance can be extended to electromagnetic fields in interaction with the gravitational
field, which does not transform under duality. It is present in ungauged extended supergravity
theories, in which case it generalizes to a nonabelian group [1]. In [2, 3] we studied the most
general situation in which classical duality invariance of this type can occur. More recently [4]
the duality invariance of the Born-Infeld theory, suitably coupled to the dilaton and axion [5],
has been studied in considerable detail. In the present note we will show that most of the
results of [4, 5] follow quite easily from our earlier general discussion. We shall also present
some new results.
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15.2.1 Duality rotations in four dimensions

We begin by recalling and completing some basic results of [2, 3, 6]. Consider a Lagrangian
which is a function of n real field strengths F a

µν and of some other fields χi and their derivatives
χiµ = ∂µχ

i:
L = L

(
F a, χi, χiµ

)
. (15.179)

Since
F a
µν = ∂µA

a
ν − ∂νAaµ, (15.180)

we have the Bianchi identities
∂µF̃ a

µν = 0. (15.181)

On the other hand, if we define

G̃a
µν =

1

2
ϵµνλσG

aλσ ≡ 2
∂L

∂F µν
a
, (15.182)

we have the equations of motion
∂µG̃a

µν = 0. (15.183)

We consider an infinitesimal transformation of the form

δ

(
G
F

)
=

(
A B
C D

)(
G
F

)
, (15.184)

δχi = ξi(χ), (15.185)

where A,B,C,D are real n×n constant infinitesimal matrices and ξi(χ) functions of the fields
χi (but not of their derivatives), and ask under what circumstances the system of the equations
of motion (15.181) and (15.183), as well as the equation of motion for the fields χi are invariant.
The analysis of [2] shows that this is true if the matrices satisfy

AT = −D, BT = B, CT = C, (15.186)

(where the superscript T denotes the transposed matrix) and in addition the Lagrangian changes
under (15.184) and (15.185) as

δL =
1

4

(
FBF̃ +GCG̃

)
. (15.187)

The relations (15.186) show that (15.184) is an infinitesimal transformation of the real non-
compact symplectic group Sp(2n,R) which has U(n) as maximal compact subgroup. The finite
form is (

G′

F ′

)
=

(
a b
c d

)(
G
F

)
, (15.188)

where the n× n real submatrices satisfy

cTa = aT c, bTd = dT b, dTa− bT c = 1. (15.189)

For the U(n) subgroup, one has in addition

A = D, B = −C, (15.190)

or, in finite form,
a = d, b = −c. (15.191)

Notice that the Lagrangian is not invariant. In [2] we showed, however, that the derivative
of the Lagrangian with respect to an invariant parameter is invariant. The invariant parameter
could be a coupling constant or an external background field, such as the gravitational field,
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15.2.1 Duality rotations in four dimensions

which does not change under duality rotations. It follows that the energy-momentum tensor,
which can be obtained as the variational derivative of the Lagrangian with respect to the
gravitational field, is invariant under duality rotations. No explicit check of its invariance, as
was done in [4, 5, 7, 8], is necessary. Using (15.184) and (15.186) it is easy to verify that

δ

(
L− 1

4
FG̃

)
= δL− 1

4

(
FBF̃ +GCG̃

)
, (15.192)

so (15.187) is equivalent to the invariance of L− 1
4
FG̃.

The symplectic transformation (15.188) can be written in a complex basis as(
F ′ + iG′

F ′ − iG′

)
=
(
ϕ0 ϕ

∗
1ϕ1 ϕ

∗
0

)(F + iG
F − iG

)
, (15.193)

where ∗ means complex conjugation and the submatrices satisfy

ϕT0 ϕ1 = ϕT1 ϕ0, ϕ†
0ϕ0 − ϕ†

1ϕ1 = 1. (15.194)

The relation between the real and the complex basis is

2a = ϕ0 + ϕ∗
0 − ϕ1 − ϕ∗

1, 2ib = ϕ0 − ϕ∗
0 − ϕ1 + ϕ∗

1,

−2ic = ϕ0 − ϕ∗
0 + ϕ1 − ϕ∗

1, 2d = ϕ0 + ϕ∗
0 + ϕ1 + ϕ∗

1. (15.195)

In [2, 3] we also described scalar fields valued in the quotient space Sp(2n,R)/U(n). The
quotient space can be parameterized by a complex symmetric n × n matrix K = KT whose
real part has positive eigenvalues, or equivalently by a complex symmetric matrix Z = ZT such
that Z†Z has eigenvalues smaller than 1. They are related by

K =
1− Z∗

1 + Z∗ , Z =
1−K∗

1 +K∗ . (15.196)

These formulae are the generalization of the well-known map between the Lobachevskii unit disk
and the Poincaré upper half-plane: Z corresponds to the single complex variable parameterizing
the unit disk, iK to the one parameterizing the upper half plane.

Under Sp(2n,R)

K → K ′ = (−ib+ aK) (d+ icK)−1 , Z → Z ′ = (ϕ1 + ϕ∗
0Z) (ϕ0 + ϕ∗

1Z)
−1 , (15.197)

or, infinitesimally,

δK = −iB + AK −KD − iKCK, δZ = V + T ∗Z − ZT − iZV ∗Z, (15.198)

where
T = −T †, V = V T . (15.199)

The invariant nonlinear kinetic term for the scalar fields can be obtained from the Kähler
metric [9]

Tr

(
dK∗ 1

K +K∗dK
1

K +K∗

)
= Tr

(
dZ

1

1− Z∗Z
dZ∗ 1

1− ZZ∗

)
(15.200)

which follows from the Kähler potential

Tr ln (1− ZZ∗) or Tr ln(K +K∗), (15.201)

which are equivalent up to a Kähler transformation. It is not hard to show that the metric
(15.200) is positive definite. In this section the normalization of the fields F a

µν has been chosen
to be canonical when iK is set equal to the unit matrix, i.e., when the self-duality group reduces
to the U(n) subgroup; the full Sp(2n,R) self-duality can be realized when the matrix K is a
function of scalar fields. Throughout this paper we assume a flat background space-time metric;
the generalization to a nonvanishing gravitational field is straightforward [2]–[5].
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15.2.2 Born-Infeld theory

15.2.2 Born-Infeld theory

As a particularly simple example we consider the case when there is only one tensor Fµν and
no additional fields. Our equations become

G̃ = 2
∂L

∂F
, (15.202)

δF = λG, δG = −λF (15.203)

and
δL =

1

4
λ
(
GG̃− FF̃

)
. (15.204)

We have restricted the duality transformation to the compact subgroup U(1) ∼= SO(2), as
appropriate when no additional fields are present. So A = D = 0, C = −B = λ.

Since L is a function of F alone, we can also write

δL = δF
∂L

∂F
= λG

1

2
G̃. (15.205)

Comparing (15.204) and (15.205), which must agree, we find

GG̃+ FF̃ = 0. (15.206)

Together with (15.202), this is a partial differential equation for L(F ), which is the condition
for the theory to be duality invariant. If we introduce the complex field

M = F − iG, (15.207)

(15.206) can also be written as
MM̃∗ = 0. (15.208)

Clearly, Maxwell’s theory in vacuum satisfies (15.206), or (15.208), as expected. A more
interesting example is the Born-Infeld theory [7], given by the Lagrangian

L =
1

g2

(
−∆

1
2 + 1

)
, (15.209)

where

∆ = − det (ηµν + gFµν) = 1 +
1

2
g2F 2 − g4

(
1

4
FF̃

)2

. (15.210)

For small values of the coupling constant g (or for weak fields) L approaches the Maxwell
Lagrangian. We shall use the abbreviation

β =
1

4
FF̃ . (15.211)

Then
∂∆

∂F
= g2F − βg4F̃ , (15.212)

G̃ = 2
∂L

∂F
= −∆− 1

2

(
F − βg2F̃

)
, (15.213)

and
G = ∆− 1

2

(
F̃ + βg2F

)
. (15.214)

Using (15.213) and (15.214), it is very easy to check that GG̃ = −FF̃ : the Born-Infeld theory
is duality invariant. It is also not too difficult to check that ∂L/∂g2 is actually invariant
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under (15.203) and the same applies to L − 1
4
FG̃ (which in this case turns out to be equal to

−g2∂L/∂g2). These invariances are expected from our general theory.
It is natural to ask oneself whether the Born-Infeld theory is the most general physically

acceptable solution of (15.206). This was investigated in [4] where a negative result was reached:
more general Lagrangians satisfy (15.206), the arbitrariness depending on a function of one
variable. We discuss this in detail in Section 6.

15.2.3 Schrödinger’s formulation of Born’s theory

Schrödinger [8] noticed that, for the Born-Infeld theory (15.209), F and G satisfy not only
(15.206) [or (15.208)], but also the more restrictive relation

M
(
MM̃

)
− M̃M2 =

g2

8
M̃∗

(
MM̃

)2
. (15.215)

We have verified this by an explicit, although lengthy, calculation using (15.207), (15.213),
(15.214) and (15.210). Schrödinger did not give the details of the calculation, presenting instead
convincing arguments based on particular choices of reference systems. One can write (15.215)
as

∂L

∂M
= g2M̃∗, (15.216)

where
L = 4

M2(
MM̃

) , (15.217)

and Schrödinger proposed L as the Lagrangian of the theory, instead of (15.209). Of course,
L is a Lagrangian in a different sense than L, which is a field Lagrangian in the usual sense.
Multiplying (15.215) by M and saturating the unwritten indices µν, the left hand side vanishes,
so that (15.208) follows. Using (15.215) it is easy to see that L is pure imaginary: L = −L∗.
Schrödinger also pointed out that, if we introduce a map

1

g2
∂L

∂M
= f(M), (15.218)

so that (15.215) or (15.216) can be written as

f(M) = M̃∗, (15.219)

the square of the map is the identity map

f (f(M)) =M. (15.220)

This, together with the properties

f(M̃) = −f̃(M), f(M∗) = f(M)∗, (15.221)

ensures the consistency of (15.215). Schrödinger used the Lagrangian (15.217) to construct a
conserved, symmetric energy-momentum tensor. We have checked that, when suitably normal-
ized, his energy-momentum tensor agrees with that of Born and Infeld up to an additive term
proportional to ηµν .

Schrödinger’s formulation is very clever and elegant and it has the advantage of being
manifestly covariant under the duality rotation M →Meiλ which is the finite form of (15.203).
It is also likely that, as he seems to imply, his formulation is fully equivalent to the Born-Infeld
theory (15.209), which would mean that the more restrictive equation (15.215) eliminates the
remaining ambiguity in the solutions of (15.208). This virtue could actually be a weakness if
one is looking for more general duality invariant theories.
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15.2.4 General solution of the self-duality equation

The self-duality equation (15.206) can be solved in general as follows. Assuming Lorentz invari-
ance in four dimensional space-time, the Lagrangian must be a function of the two invariants

α =
1

4
F 2, β =

1

4
FF̃ , L = L(α, β). (15.222)

Now
G̃ = 2

∂L

∂F
= LαF + LβF̃ , G = −LαF̃ + LβF, (15.223)

where we have used the standard notation Lα = ∂L/∂α, Lβ = ∂L/∂β. Substituting these
expressions in (15.206) we obtain[

(Lβ)
2 − (Lα)

2 + 1
]
β + 2LαLβα = 0. (15.224)

This partial differential equation for L can be simplified by the change of variables

x = α, y =
(
α2 + β2

) 1
2 , (15.225)

which gives
(Lx)

2 − (Ly)
2 = 1. (15.226)

Alternatively one can use the variables

p =
1

2
(x+ y), q =

1

2
(x− y), (15.227)

to obtain the form
LpLq = 1. (15.228)

The equation (15.226), or (15.228), has been studied extensively in mathematics and there
are several methods to obtain its general solution [10]. (It is interesting that the same equation
occurs in a study of 5-dimensional Born-Infeld theory [11].) In our case we must also impose the
physical boundary condition that the Lagrangian should approximate the Maxwell Lagrangian

LM = −α = −x = −p− q (15.229)

when the field strength F is small.
According to one of the methods given in Courant-Hilbert, the general solution of (15.228)

is given by

L =
2p

v′(s)
+ v(s), (15.230)

q =
p

[v′(s)]2
+ s, (15.231)

where the arbitrary function v(s) is determined by the initial values:

L(p = 0, q) = v(q), (15.232)

Lp(p = 0, q) =
1

v′(q)
. (15.233)

One must solve for s(p, q) from (15.231) and substitute into (15.230). To verify [11] that these
equations solve (15.228), differentiate (15.230) and (15.231):

dL =
2dp

v′
+

(
v′ − 2p

[v′]2
v′′
)
ds, (15.234)

dq =
dp

v′2
+

(
1− 2p

[v′]3
v′′
)
ds, (15.235)
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and eliminate ds between (15.234) and (15.235) to obtain

dL =
1

v′
dp+ v′dq, (15.236)

i.e.,

Lp =
1

v′
, Lq = v′, LpLq = 1. (15.237)

The condition that L should approach the Maxwell Lagrangian for small field strengths
implies that

v(s) = L(p = 0, s) ∼= −s (15.238)

for small s.
It is trivial to check the above procedure for the Maxwell Lagrangian, and we shall not do

it here. The Born-Infeld Lagrangian (with g = 1 for simplicity) is given by

LBI = −∆
1
2 + 1, (15.239)

∆ = (1 + 2p)(1 + 2q), (15.240)

in terms of the variables p and q. Setting p = 0 we see that this corresponds to

v(s) = −(1 + 2s)
1
2 + 1, (15.241)

v′(s) = −(1 + 2s)−
1
2 . (15.242)

Then (15.231) gives
q = p(1 + 2s) + s, (15.243)

which is solved by

s =
q − p
1 + 2p

, 1 + 2s =
1 + 2q

1 + 2p
. (15.244)

Using (15.230), we reconstruct the Lagrangian

LBI = −2p
(
1 + 2q

1 + 2p

) 1
2

−
(
1 + 2q

1 + 2p

) 1
2

+ 1 = − [(1 + 2p)(1 + 2q)]
1
2 + 1. (15.245)

Unfortunately, in spite of this elegant method for finding solutions of the self-duality equation, it
seems very difficult to find new explicit solutions given in terms of simple functions. The reason
is that, even for a simple function v(s), solving the equation (15.231) for s gives complicated
functions s(p, q).

15.2.5 Axion, dilaton and SL(2, R)

It is well known that, if there are additional scalar fields which transform nonlinearly, the
compact group duality invariance can be enhanced to a duality invariance under a larger non-
compact group (see, e.g., [2] and references therein). In the case of the Born-Infeld theory, just
as for Maxwell’s theory, one complex scalar field suffices to enhance the U(1) ∼= SO(2) invari-
ance to the SU(1, 1) ∼= SL(2, R) noncompact duality invariance. This is pointed out in [5], but
it also follows from the considerations of our paper [2]. In the example under consideration, K
is a single complex field, not an n × n matrix. In order to agree with today’s more standard
notation we shall use

S = iK = S1 + iS2 = a+ ie−ϕ, S2 > 0, (15.246)
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where ϕ is the dilaton and a is the axion. For SL(2, R) ∼= Sp(2, R), the matrices A,B,C,D
are real numbers and A = −D, B and C are independent. Then the infinitesimal SL(2, R)
transformation is

δS = B + 2AS − CS2, (15.247)

and the finite transformation is

S ′ =
aS + b

cS + d
, ad− bc = 1. (15.248)

For the SO(2) ∼= U(1) subgroup, A = 0, C = −B = λ,

δS = −λ− λS2. (15.249)

The scalar kinetic term, proportional to

∂µS
∗∂µS

(S − S∗)2
, (15.250)

is invariant under the nonlinear transformation (15.247) which, in terms of S1, S2, takes the
form

δS1 = B + 2AS1 − C
(
S2
1 − S2

2

)
, δS2 = 2AS2 − 2CS1S2. (15.251)

Since the scalar kinetic term is separately invariant, we assume from now on that L̂(S, F ) does
not depend on the derivatives of S.

The full noncompact duality transformation on Fµν is now

δG = AG+BF, δF = CG+DF, D = −A, (15.252)

and we are seeking a Lagrangian L̂(S, F ) which satisfies

δL̂ =
1

4

(
FBF̃ +GCG̃

)
, (15.253)

where

δL̂ = δF
∂L̂

∂F
+ δS1

∂L̂

∂S1

+ δS2
∂L̂

∂S2

, (15.254)

and now

G̃ = 2
∂L̂

∂F
. (15.255)

Equating (15.253) and (15.254) we see that L̂ must satisfy

1

4

(
CGG̃−BFF̃

)
− 1

2
AFG̃+ δS1

∂L̂

∂S1

+ δS2
∂L̂

∂S2

= 0. (15.256)

This equation can be solved as follows. Assume that L(F ) satisfies (15.202) and (15.206),
i.e.

GG̃ + F F̃ = 0, (15.257)

where
G̃ = 2

∂L

∂F
. (15.258)

For instance, the Born-Infeld Lagrangian L(F ) does this. Then

L̂(S, F ) = L(S
1
2
2 F ) +

1

4
S1FF̃ (15.259)
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satisfies (15.256). Indeed
∂L̂(S, F )

∂F
=
∂L

∂F
S

1
2
2 +

1

2
S1F̃ . (15.260)

So
G̃ = G̃S

1
2
2 + S1F̃ , (15.261)

G = GS
1
2
2 + S1F, (15.262)

where we have defined
F = S

1
2
2 F, (15.263)

and G̃ is given by (15.258). Now

GG̃ = GG̃S2 + S2
1FF̃ + 2S1F G̃. (15.264)

Using (15.257) in this equation we find

GG̃ =
(
S2
1 − S2

2

)
FF̃ + 2S1F G̃. (15.265)

We also have
FG̃ = F G̃ + S1FF̃ . (15.266)

On the other hand, since
∂L

∂S
1
2
2

=
∂L

∂F
F =

1

2
G̃F, (15.267)

we obtain
∂L̂

∂S2

=
∂L

∂S
1
2
2

1

2
S
− 1

2
2 =

1

4
G̃S

− 1
2

2 F =
1

4
G̃F S−1

2 . (15.268)

In addition
∂L̂

∂S1

=
1

4
FF̃ . (15.269)

Using (15.265), (15.266), (15.268) and (15.269), together with (15.251), we see that (15.256) is
satisfied. It is easy to check that the scale invariant combinations F and G, given by (15.263)
and (15.258) have the very simple transformation law

δF = S2CG, δG = −S2CF , (15.270)

i.e., they transform according to the U(1) ∼= SO(2) compact subgroup just as F and G in
(15.203), but with the parameter λ replaced by S2C. If L(F ) is the Born-Infeld Lagrangian,
the theory with scalar fields given by L̂ in (15.259) can also be reformulated à la Schrödinger.
>From (15.262) and (15.263) solve for F and G in terms of F,G, S1 and S2. ThenM = F −iG
must satisfy the same equation (15.215) that M does when no scalar fields are present.

15.2.6 Duality as a Legendre transformation

We have observed that, even in the general case of Sp(2n,R), although the Lagrangian is not
invariant, the combination [see (15.192)]

L̂− 1

4
FG̃ (15.271)

is invariant. Here we restrict ourselves to the case of SL(2, R), one tensor Fµν and one complex
scalar field S = S1 + iS2. As in Section 5, we use the notation L̂ to denote the part of the
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Lagrangian that depends on the scalar fields, as well as on Fµν , but not on scalar derivatives.
Then

L̂(S1, S2, F )−
1

4
FG̃ = L̂(S ′

1, S
′
2, F

′)− 1

4
F ′G̃′, (15.272)

where (
G′

F ′

)
=

(
a b
c d

)(
G
F

)
, S ′ =

aS + b

cS + d
, ad− bd = 1, (15.273)

G̃ = 2
∂L̂

∂F
. (15.274)

There are several interesting special cases of this invariance statement. The first corresponds
to a = d = 1, c = 0, b arbitrary, which gives

G′ = G+ bF, F ′ = F, S ′
1 = S1 + b, S ′

2 = S2. (15.275)

The second corresponds to b = c = 0, d = 1/a, a arbitrary, which gives

G′ = aG, F ′ =
1

a
F, S ′ = a2S, S ′

1 = a2S1, S ′
2 = a2S2. (15.276)

The third corresponds to a = d = 0, b = −1/c, c arbitrary, which gives

G′ = −1

c
F, F ′ = cG, S ′ = − 1

c2S
, S ′

1 = −
S1

c2|S|2
, S ′

2 =
S2

c2|S|2
. (15.277)

Using (15.275) in (15.272) we find

L̂(S1, S2, F )−
1

4
FG̃ = L̂(S1 + b, S2, F )−

1

4
F
(
G̃+ bF̃

)
. (15.278)

Taking b = −S1, we obtain

L̂(S1, S2, F ) = L̂(0, S2, F ) +
1

4
S1FF̃ , (15.279)

which gives the dependence of L̂ on S1, in agreement with (15.259). This choice for the constant
b is allowed because this part of the Lagrangian, which does not include the kinetic term for
the scalar fields, does not contain derivatives of the scalar fields. Using (15.276) in (15.272) we
find

L̂(S1, S2, F )−
1

4
FG̃ = L̂

(
a2S1, a

2S2,
1

a
F

)
− 1

4
FG̃, (15.280)

i.e.,

L̂(S1, S2, F ) = L̂

(
a2S1, a

2S2,
1

a
F

)
. (15.281)

Setting S2 = 0 in this equation, we see that L̂(S1, 0, F ) is a function of S
1
2
1 F , in agreement

with the more precise statement (15.279). Setting instead S1 = 0, we find that L̂(0, S2, F ) is a
function of S

1
2
2 F , in agreement with (15.259).

Using (15.277) in (15.272) we find

L̂(S1, S2, F )−
1

4
FG̃ = L̂

(
− S1

c2|S|2
,
S2

c2|S|2
, cG

)
+

1

4
GF̃ , (15.282)

i.e.,

L̂

(
− S1

c2|S|2
,
S2

c2|S|2
, cG

)
= L̂(S1, S2, F )−

1

2
FG̃, (15.283)
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or

L̂

(
− 1

c2S
, cG

)
= L̂(S, F )− 1

2
FG̃. (15.284)

We have shown that the Ansatz (15.259) of Section 5 is a natural consequence of the
invariance of L̂ − 1

4
FG̃. Equation (15.284) with (15.274) can be interpreted as a Legendre

transformation. Given a Lagrangian L̂(S, F ), define the dual Lagrangian L̂D(S, FD), a function
of the dual field FD, by

L̂D(S, FD) + L̂(S, F ) =
1

2
FFD, (15.285)

FD = 2
∂L̂

∂F
, F = 2

∂L̂D
∂FD

. (15.286)

With these definitions, the dual of the dual of a function equals the original function.∗ In
general, the dual Lagrangian is a very different function from the original Lagrangian. For a
self-dual theory, if we set

FD = G̃, F̃D = −G, (15.287)

we see from (15.284) that

−L̂
(
− 1

c2S
, cG

)
= L̂D(S, G̃), (15.288)

which must be independent of c, since G is.
The above argument can be inverted. Let the Legendre transformation (15.285) produce a

dual Lagrangian given by (15.288) with c = 1, or

L̂D(S, FD) = −L̂
(
− 1

S
,−F̃D

)
= −L̂

(
− 1

S
,G

)
. (15.289)

It then follows that L̂− 1
4
FG̃ is invariant under (15.277) with c = 1, i.e.,

G′ = −F, F ′ = G, S ′ = − 1

S
. (15.290)

If we now assume that it is also invariant under (15.275) with arbitrary b, it follows that it is
invariant under the entire group SL(2, R). Indeed, if we call tb the transformation (15.275) and
s the transformation (15.290), the product tbstb′stb′′ gives the most general transformation of
SL(2, R).

If we normalize the scalar field differently, taking e.g., instead of S,

τ = cS, L′(τ, F ) = L̂(S, F ), (15.291)

L′
D(τ, F

′
D) + L′(τ, F ) =

1

2c
FF ′

D, (15.292)

and write the Legendre transformation as

2
∂L′(τ, F )

∂F
=

1

c
F ′
D, 2

∂L′
D(τ, F

′
D)

∂F ′
D

=
1

c
F, (15.293)

we see that
F ′
D = cFD = cG̃, (15.294)

∗The unconventional factor 1/2 on the right hand side of (15.285) is introduced to avoid overcounting when
summing over the indices of the antisymmetric tensors F and FD.
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and

L′
D(τ, F

′
D) = L̂D(S, FD) = −L̂

(
− 1

c2S
,−cF̃D

)
= −L′

(
− 1

cS
,−cF̃D

)
= −L′

(
−1

τ
,−F̃ ′

D

)
, (15.295)

for a self-dual theory.
A standard normalization [12, 13] is c = 4π, in which case the expectation value of the field

τ is
< τ >=

θ

2π
+ i

4π

g2
. (15.296)

In the presence of magnetically charged particles and dyons (both electrically and magnetically
charged) the invariance of the charge lattice restricts [14] the SL(2, R) group to the SL(2, Z)
subgroup generated by

τ → −1

τ
, τ → τ + 1. (15.297)

At the quantum level the Legendre transformation corresponds to the integration over the field
F in the functional integral, after adding to the Lagrangian L̂ a term −1

2
FFD.

15.2.7 Concluding remarks

Nonlinear electromagnetic Lagrangians, like the Born-Infeld Lagrangian, can be supersym-
metrized [15, 16] by means of the four-dimensional N = 1 superfield formalism, and this can
be done even in the presence of supergravity. When the Lagrangian is self-dual, it is natural
to ask whether its supersymmetric extension possesses a self-duality property that can be for-
mulated in a supersymmetric way. We were not able to do this in the nonlinear case. When
the Lagrangian is quadratic in the fields F a

µν , the problem as been solved in [17], where the
combined requirements of supersymmetry and self-duality were used to constrain the form or
the weak coupling (S2 →∞) limit of the effective Lagrangian from string theory, in which one
neglects the nonabelian nature of the gauge fields.

The SL(2, Z) subgroup of SL(2, R) that is generated by the elements 4πS → −1/4πS and
S → S + 1/4π relates different string theories [18] to one another.

The generalization of [2] to two dimensional theories [19] has been used to derive the Kähler
potential for moduli and matter fields in effective field theories from superstrings. In this case
the scalars are valued on a coset space K /H , K ∈ SO(n, n), H ∈ SO(n)×SO(n). The kinetic
energy is invariant under K , and the full classical theory is invariant under a subgroup of K .
String loop corrections reduces the invariance to a discrete subgroup that contains the SL(2, Z)
group generated by T → 1/T, T → T − i, where ReT is the squared radius of compactification
in string units.

15.3 Exact electromagnetic duality by David I Olive

15.3.1 Introduction

Electromagnetic duality is a very old idea, possibly predating Maxwell’s equations. Although
the route that has recently led to a precise and convincing formulation has been long, it has
turned out to be of quite surprising interest. This is because it has synthesised many hitherto
independent lines of thought, and so intriguingly interelated disparate ideas arising in the
quest for a unified theory of particle physics valid in the natural space-time with three space
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and one time dimension. Despite the progress, final proof is lacking and likely to require further
breakthroughs in fundamental mathematics.

Although nature does not seem to display exact electromagnetic duality, realistic theories
could well be judiciously broken versions of the exact theory in which sufficient structure sur-
vives to explain such long-standing puzzles as quark confinement in the way advocated by
Seiberg and Witten [1]. Spectacular support for their arguments comes from applications in
pure mathematics where new insight has been gained into the classification of four-manifolds
[2], transcending the celebrated work of Donaldson [3].

Here I shall review the developments leading up to the formulation of exact electromagnetic
duality, taking the view that an understanding of this must precede that of the symmetry
breaking.

The Original Idea

The apparent similarity between the electric and magnetic fields E and B was confirmed and
made more precise by Maxwell’s discovery of his equations. In vacuo, they can be written
concisely as just two equations [4]:

∇.(E + iB) = 0, (1a)

∇∧ (E + iB) = i
∂

∂t
(E + iB) (1b)

at the expense of introducing a complex vector field E + iB. These equations display sev-
eral symmetries whose physical importance became clear subsequently. They display Poincaré
(rather than Galilean) symmetry, and, beyond that, conformal symmetry (with respect to
space-time transformations preserving angles and not just lengths). Unlike the Poincaré sym-
metry, the conformal symmetry is specific to four space-time dimensions. Even more sensitive
to the precise space-time metric is the electromagnetic duality rotation symmetry of Maxwell’s
equations

E + iB → eiϕ(E + iB) (2)

since only in 3 + 1 dimensions do the electric and magnetic fields both constitute vectors so
that the complex linear combination E + iB appearing in (1) and (2) can be formed. It is the
extension of the fascinating symmetry (2) of (1) that is the main theme of what follows.

Notice that we can form two real, quadratic expressions invariant with respect to (2) [4]:

1

2
|E + iB|2 = 1

2
(E2 +B2),

1

2i
(E + iB)∗ ∧ (E + iB) = E ∧B,

respectively the energy and momentum densities of the electromagnetic field.
On the other hand, 1

2
(E + iB)2 is complex with real and imaginary parts given by

1

2
(E2 −B2) + iE.B.

As the real part is the Lagrangian density, this shows that it forms a doublet under (2) when
combined with E.B which is a total derivative. Thus the Maxwell action forms a doublet with
a “topological quantity" which is proportional to the instanton number in non-abelian theories.

We would like to generalise the electromagnetic duality rotation symmetry (2) to include
matter. We could also consider generalisations to non-abelian gauge theories of the type which
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seem to unify the fundamental interactions. In either case we meet the same difficulty that
the gauge potentials enter the equations of motion and that we do not know how to extend
the transformation (2) to include them. Eventually we shall find a way of combining the two
generalisations, thereby extending the symmetry.

There is another, familiar, difficulty with the equations of motion in non-abelian gauge
theories; that they are conformally invariant (in 3 + 1 dimensions). As a consequence, the
gauge particles which are the quanta of the gauge potentials, should be massless. This is fine
for the photon, but not for any other gauge particles. This problem seems to be rather general
and deep: unified theories chosen according to geometric principles tend to exhibit unwelcome
conformal symmetry. This occurs in string theory too, at least as a world sheet symmetry.
As a consequence, there is a general problem of understanding the origin of mass through
a geometrical mechanism for breaking conformal symmetry. We know of only two possible
solutions, at first sight different, but related in what follows.

The first is the idea that mass arises from the vacuum spontaneously breaking some of the
gauge symmetry via a “Higgs" scalar field [5,6,7]. The second is a principle due to Zamolod-
chikov [8] that we now discuss.

15.3.2 Zamolodchikov’s Principle and Solitons

The second insight into the origin of mass comes from another area of physics. Yet, as we shall
see, it seems connected to the first, in four dimensions at least. The conformal symmetry on
the world sheet needed for the internal consistency of string theory hinders the emergence of a
physically realistic mass spectrum in an otherwise unified theory. However, when string theory
is abstracted to the study of “conformal field theory", and applied to the study of second order
phase transitions of two dimensional materials, it is seen that the simple application of heat
breaks the conformal symmetry controlling the behaviour at the critical temperature. In specific
models it was learnt by Onsager, Baxter and their followers [9] that it is possible to supply heat
while maintaining integrability (or solvability). Zamolodchikov [8] has elevated this observation
to a principle which has rationalised the theory of solitons and more. In two dimensions, the
local conservation laws characteristic of conformal symmetry (or augmented versions such as W-
symmetry) are chiral. This means that the densities are either left moving or right moving (at
the speed of light) and so can be added, multiplied or differentiated. If conformal symmetry is
judiciously broken, a certain (infinite) subset of the chiral densities remain conserved, although
no longer chirally so. Their conserved charges, that is their space integrals, generate an infinite
dimensional extension of the Poincaré algebra in which the charges carry integer spins. The
charges with spin plus or minus 1 are the conventional light cone components of momentum.
The sinh-Gordon equation illustrates this nicely. It can be written

∂2ϕ

∂t2
− ∂2ϕ

∂x2
+
µ2

2β

(
eβϕ − e−βϕ

)
= 0. (3)

The last term, proportional to e−βϕ, can be multiplied by a variable coefficient η so that η = 1
yields (3), while η = 0 yields the Liouville equation. Liouville exploited the conformal symmetry
of his equation in order to solve it completely, long ago.

It is interesting to investigate the behaviour as η varies from 1 to 0. As long as η > 0,
a simple redefinition of the field ϕ by a displacement restores the sinh-Gordon form (3) but
with µ replaced by µη1/4. As µλ is the mass of the particle which is the quantum excitation
of ϕ, we see that it is singular as η approaches zero with critical exponent 1/4. So we see how
mass arises from the breaking of conformal symmetry. This short discussion was classical but
it extends to the quantum regime as envisaged by Zamolodchikov [8].
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The sine-Gordon equation is obtained from the sinh-Gordon equation (3) by replacing β by
iβ. It then exhibits the symmetry

ϕ→ ϕ+
2π

β
(4)

and, consequently, possesses an infinite number of vacuum solutions ϕn = 2πn
β

, n ∈ ZZ, all with
the same minimum energy, zero. The particle of mass µλ describes fluctuations about any of
these vacua. But there also exist classical solutions which interpolate two successive vacua and
which are stable with respect to fluctuations. These solutions can be motionless, describing
a new particle, the soliton, at rest, or can be boosted to any velocity less than that of light.
The jump in n, equal to ±1, can be regarded as a topological quantum number, indicating
either a soliton or an antisoliton. What is particularly remarkable is that one can consider
a solution with an arbitrary number of solitons and/or antisolitons, initially well separated,
but approaching each other, then colliding and finally emerging with velocities unchanged
and energy profiles generally unscathed except for time advances relative to uninterrupted
trajectories [10]. Thus the solitons persist in their structure despite their collisions and can
legitimately be regarded as providing classical models of a particle with a finite mass and a
structure of finite extent. This phenomenon is a very special feature of sine-Gordon theory that
can be ascribed to the infinite number of conservation laws mentioned previously, themselves
relics of conformal symmetry.

This sort of integrable field theory has two “sorts" of particle, the quanta of the fluctuation
of the field ϕ (obtained by second quantisation) and the solitons which are classical solutions.
Skyrme [11] was the first to ask whether these two “sorts" of particle are intrinsically different
and found that they were not. His explanation was that, in the full quantum theory, it is
possible to construct a new quantum field whose fluctuations are the solitons. The new field
operator is obtained by an exponential expression in the original field ϕ

ψ±(x) = eiβ(ϕ±
∫ x
−∞ dx′ ∂ϕ

∂t
) (5)

with two spin components (and a normal ordering understood). Coleman and Mandelstam
[12,13] later confirmed that ψ satisfied the equations of motion of the massive Thirring model.

The construction (5) is an example of the vertex operator construction later to be so im-
portant in string theory and in the representation theory of infinite dimensional algebras (re-
sembling quantum field theories).

There are multicomponent generalisations of the sine-Gordon equations called the affine
Toda theories, likewise illustrating Zamolodchikov’s principle in a nice way, and revealing the
role of algebraic structures such as affine Kac Moody algebras [14]. Again there are particles
created by each field component, now possessing interesting mass and coupling patterns (related
to group theory). Remarkably, there are an equal number of soliton species and these display
very similar properties [15].

15.3.3 Magnetic Charge and its Quantisation

Let us now return to the question of extending the electromagnetic duality rotation symmetry
(2) to matter carrying electric and magnetic charges. Suppose first that matter can be regarded
as being composed of classical point particles carrying typical electric and magnetic charges q
and g, say. Then it is easy to include the source charges on the right hand side of Maxwell’s
equations (1) and to supplement (1) by the equations of motion for the individual particles
subject to a generalised Lorentz force. This system maintains the symmetry (2) if, in addition,

q + ig → eiϕ(q + ig). (6)
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The price to be paid for achieving this is the inclusion of unobserved magnetic charge. We must
therefore suppose that the failure to observe magnetic charge is either due to an associated very
large mass or some other reason.

Turning from the classical to the quantum theory, we immediately find a difficulty, namely
that the electromagnetic couplings of the matter wave functions require the introduction of
gauge potentials, a procedure which is not straightforward in the presence of magnetic charge.

Nevertheless, in 1931, Dirac overcame this difficulty and showed that the introduction of
magnetic charge could be consistent with the quantum theory, provided its allowed values were
constrained [16]. His result was that a magnetic charge g1, carrying no electric charge, could
occur in the presence of an electric charge q2, like the electron carrying no magnetic charge,
provided

q2g1 = 2πnλ n = 0,±1,±2, . . . (7)

As he pointed out, this condition had a stunning consequence: provided g1 exists somewhere in
the universe, even though unobserved, then any electric charge must occur in integer multiples
of the unit 2πλ

g1
, by (7). This quantisation of electric charge is indeed a feature of nature and

this explanation is actually the best yet found. Although apparent alternative explanations,
evading the necessity for magnetic charge, have appeared, they turn out to be unexpectedly
equivalent to the above argument, as we shall see.

There is a problem with the Dirac condition (7), namely that it does not respect the sym-
metry (6). In fact (7) is not quite right because, although Dirac’s argument is impeccable,
there is an implicit assumption hidden within the situation considered. It took a surprisingly
long time to rectify this and hence restore the symmetry (2) and (6), as we see later.

Given that this difficulty is overcome, we can seek a consistent quantum field theory with
both electric and magnetic charges. Then, presumably, the particles carrying magnetic charge
would have a structure determined by the theory, and hence a mass dependent on the charges
carried. Just as the Maxwell energy density respected the symmetry (2), we would expect this
mass formula to respect (6) so that

M(q, g) =M(|q + ig|) =M(
√
q2 + g2). (8)

We now proceed to find such a theory.

15.3.4 Magnetic Monopoles (and dyons) as Solitons

We can now draw together several clues in the ideas already discussed. One concerns the
quantisation of electric charge: since the electric charge operator, Q, is the generator of the
U(1) gauge group of Maxwell theory, its quantisation could be explained by supposing that it is
actually a generator of a larger, simple gauge group (that could unify it with other interactions).
If the larger group were SU(2), for example, Q would then be a generator of an SU(2) Lie
algebra, that is, an internal angular momentum algebra. Consequently its eigenvalues would be
quantised, thereby providing an alternative explanation of electric charge quantisation which
apparently evades the need for magnetic charge.

However, we still have to furnish a mechanism selecting the direction of Q amongst the
three SU(2) directions. This can be achieved by a scalar field with three components
(ϕ1(x), ϕ2(x), ϕ3(x)), like the SU(2) gauge fields. This scalar field has to have the unusual
feature of not vanishing in the vacuum, so that it can select the Q direction there. It is
therefore a “Higgs" field providing the mechanism whereby the vacuum spontaneously breaks
the SU(2) gauge symmetry down to the U(1) subgroup [5,6,7]. As well as this, it also breaks
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conformal symmetry, introducing mass for two of the gauge particles, leaving the photon
massless.

There is a simple formula for the resultant masses of the gauge particles

M(q, 0) = a|q|, (9)

where q is the eigenvalue of Q specifying the electric charge of a specific mass eigenstate. a
constitutes a new fundamental parameter specifying the magnitude of the vacuum expectation
value of the scalar Higgs field. Actually the mass formula (9) is much more general. Instead of
the gauge group being SU(2), it could have been any simple Lie group, G, say, and (9) holds
as long as the Higgs field lies in the adjoint representation of G, like the gauge fields.

In the vacuum, the gauge group G is spontaneously broken to a subgroup

U(1)Q ×K/Z, (10)

where Q still generates the invariant U(1) subgroup commuting with K. The denominator Z
indicates a finite cyclic group in which the U(1)Q intersects K, and will not be important for
what we have to say.

But this setup, a spontaneously broken gauge theory with a Higgs in the adjoint representa-
tion, is very much the analogue in four dimensions of the sine-Gordon theory in two dimensions.
Instead of the symmetry relating the degenerate vacua being discrete, (4), it is now continuous,
being the gauge symmetry, G, and it is again possible to trap nontrivial topologically stable
field configurations of finite energy. Indeed in 1974, ’t Hooft and Polyakov [17,18] found a
classical soliton solution emitting a U(1) magnetic flux with strength 4πλ/q in the SU(2) the-
ory with heavy gauge particles carrying electric charges ±q. Thus there is a soliton which is
a magnetic monopole whose charge indeed satisfies the Dirac condition (7). Thus the desired
novelty of this explanation of electric charge quantisation is illusory as it reduces to Dirac’s
original argument [16]. For a more detailed review of the material in this section see [19].

However what we have done is inadvertently achieve our other aim, that of constructing
a theory in which the magnetic monopoles have structure and a definite mass which can be
calculated by feeding the field configuration into the energy density and integrating over space.
The result is the following inequality, known as the “Bogomolny" bound [20],

M(0, g) ≥ a|g|. (11)

The similarity to the Higgs formula (9) prompts the question as to whether the inequality
in (11) can be saturated to give equality. This is possible in the “Prasad-Sommerfield" limit
in which the self interactions of the Higgs field vanish [21]. Then the lower bound in (11) is
achieved if the fields satisfy certain first order differential equations, known as the “Bogomolny
equations" [19]

Ei = 0, D0ϕ = 0, Bi = ±Diϕ, (12)

where Ei and Bi denote the nonabelian electric and magnetic fields. Solutions to (12) have zero
space momentum and therefore describe a magnetic monopole at rest, with mass a|g| (if |g| has
its minimum least positive value).

The sine-Gordon solitons satisfy similar first order differential equations that imply that the
mass can also be expressed as a surface term, but there is an important difference. This is that
the Bogomolny equations (12) (unlike the first order sine-Gordon equations) can also be solved
for higher values of the topological charge, here magnetic charge. When the magnetic charge
is m times its least positive value, the space of solutions to (12), called the moduli space, form
a manifold of 4m dimensions. 3m of these dimensions can be interpreted as referring to the
space coordinates of m individual magnetic monopoles of like charge.

347



15.3.5 Electromagnetic Duality Conjectures

This means that m like magnetic monopoles can exist in arbitrary configurations of static
equilibrium (unlike m sine-Gordon solitons, which must move). So, as they have no inclination
to move relatively, like magnetic monopoles at rest must fail to exert forces on each other [22].
(This is reminiscent of the multi-instanton solutions to self-dual gauge theories: indeed the Bo-
gomolny equations (12) can be interpreted as self-dual equations in four Euclidean dimensions).

The remaining m coordinates, one for each monopole, have a more subtle, but nevertheless,
important interpretation: they correspond to degrees of freedom conjugate to the electric charge
of each monopole. Because of this, it is possible for each magnetic monopole soliton to carry
an electric charge, q, say [23]. In this case, they are called “dyons", following the terminology
introduced by Schwinger [24]. Then the mass of an individual dyon is given by, [25],

M(q, g) = a|q + ig| = a
√
q2 + g2. (13)

The first remarkable fact about this formula is that it is universal. It applies equally to the
dyon solitons of the theory and to the gauge particles, as it includes the Higgs formula (9). In
fact it applies to all the particles of the theory created by the fundamental quantum fields, as
it also includes the photon and Higgs particles which are both chargeless and massless. Thus,
whatever G, (13) unifies the Higgs and Bogomolny formulae and is therefore democratic in the
sense that it does not discriminate as to whether the particle considered arises as a classical
soliton or as a quantised field fluctuation [26].

Secondly the mass formula (13) does indeed respect the electromagnetic duality rotation
symmetry (6) as it has the structure (8).

15.3.5 Electromagnetic Duality Conjectures

We have seen that spontaneously broken gauge theories with adjoint Higgs (in the Prasad-
Sommerfield limit) have remarkable properties, at least according to the naive arguments just
outlined. Magnetically neutral particles occur as quantum excitations of the fields present in
the action, whereas magnetically charged particles occur as solitons, that is, solutions to the
classical equations of motion. Yet, despite this difference in description, all particles enjoy a
universal mass formula (13).

Skyrme showed that, in two dimensions, the soliton of sine-Gordon theory could be consid-
ered as being created by a new quantum field obeying the equations of motion of the massive
Thirring model [11,12,13]. Thus the same quantum field theory can be described by two distinct
actions, related by the vertex operator transformation (5). It is natural to ask if something
similar can happen in four dimensions, with the theory under consideration. There, the soli-
tons carry magnetic charge with an associated Coulomb magnetic field. This suggests that
the hypothetical quantum field operator, creating the monopole solitons, should couple to a
“magnetic" gauge group with strength inversely related to the original “electric" gauge coupling
because of Dirac’s quantisation condition,

q0 → g0 = ±
4πλ

q0
, (14)

or possibly half this.
Thinking along these lines, two more specific conjectures were proposed in 1977. First,

considering a more general theory, with a simple exact gauge symmetry group H, (i.e. not
of the form (10)), Goddard, Nuyts and Olive established a non-abelian version of the Dirac
quantisation condition (7) and used it to propose the conjecture that the magnetic, or dual
group Hv could be constructed in two steps as follows [27].
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(i) The Lie algebra of Hv is specified by saying that its roots αv are the coroots of H:-

α→ αv =
2α

α2
. (15a)

(ii) The global structure of the group Hv is specified by constructing its centre Z(Hv) from
that of H, Z(H):-

Z(H)→ Z(Hv) =
Z(H̃)

Z(H)
, (15b)

where H̃ is the universal covering group of H, that is, the unique simply connected Lie group
with the same Lie algebra as H.

This conjecture remains open. Notice the similarity between (15) and (14). In order to
make progress, Montonen and Olive sought a more specific proposal in a simpler context, and
considered spontaneously broken gauge theories of the type discussed above, but with the gauge
group henceforth definitely chosen to be SU(2) [26]. This is broken to U(1) by a triplet Higgs
field so that the mass formula (13) holds good.

The possible quantum states of the theory carry values of q and g which form an integer
lattice when plotted in the complex q + ig plane (with Cartesian coordinates (q,g)). Ignoring
possible dyons, the single particle states correspond to five points of this lattice. The photon
and the Higgs particle correspond to the origin (0,0), the heavy gauge particles W± to the
points (±q0, 0). Thus the particles created by the fundamental fields in the original, “electric"
action lie on the real, electric axis. The magnetic monopole solitons M± lie on the imaginary,
magnetic axis at (0,±g0), while the dyons could lie on the horizontal lines through these two
points. Since, at this stage, it is unclear what values of their electric charges are allowed, they
will temporarily be omitted, to be restored later.

Now, if we follow the transformation (14) by a rotation through a right angle in the q + ig
plane, the five points just described are rearranged. This suggests that the “dual" or magnetic
formulation of the theory with M± created by fields present in the action will also be a similar
spontaneously broken gauge theory, but with the coupling constant altered by (14). In this
new formulation it is the W± particles that would occur as solitons.

This is the Montonen-Olive electromagnetic duality conjecture in its original form [26]. In
principle, it could be proven by finding the analogue of Skyrme’s vertex operator construction
(5) [11], but, even with present knowledge, this seems impossibly difficult. Notice that the
sine-Gordon quantum field theory was described by two quite dissimilar actions whereas in the
four dimensional theories the two hypothetical actions have a similar structure but refer to
electric and magnetic formulations.

The magnitudes of physical quantities should agree whichever of the two actions is chosen as
a starting point for their calculation. The conjecture will immediately pass at least two simple
tests of this kind, showing that it is not obviously inconsistent. The first test concerns the mass
formula (13) and is passed precisely because of the universal property that has already been
emphasised.

A second test concerns the fact that, according to the existence of static solutions to the
Bogomolny equations with magnetic charge 2g0 discussed earlier, an M+M+ pair exert no static
forces on each other. This result is according to the electric formulation of the theory and ought
to be confirmed in the magnetic formulation. This is equivalent to checking that there is no
W+W+ force in the electric formulation. In the Born approximation, two Feynman diagrams
contribute, photon and Higgs exchange. Using Feynman rules, one finds that photon exchange
yields the expected Coulomb repulsion but that the second contribution precisely cancels the
first. This can happen because the Higgs is massless in the Prasad-Sommerfield limit [26].

Thus, at the level considered, the conjecture is consistent, but there are more searching
questions to be asked. Their answers will lead to a reformulation of the conjecture that passes
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even more stringent tests.

15.3.6 Catechism concerning the Duality Conjecture

The Montonen Olive electromagnetic duality conjecture immediately provokes the following
questions:-
(1) How can the magnetic monopole solitons possess the unit spin necessary for heavy gauge
particles?
(2) Will not the quantum corrections to the universal mass formula (13) vitiate it?
(3) Surely the dyon states, properly included, will spoil the picture just described?

Clearly the answers to the first two questions will depend on the choice of quantisation
procedure, and presumably the most favourable one should be selected. The idea of what the
appropriate choice was, and how it answered the first two questions came almost immediately,
though understanding has continued to improve until the present. The answer to the third
question remained a mystery until it was decisively answered by Sen in 1994, as we shall
describe [28].

The immediate response of D’Adda, Di Vecchia and Horsley was the proposal that the
quantisation procedure be supersymmetric [29]. The point is that the theory we have described
is begging to be made supersymmetric since this can be achieved without spoiling any of the
features we have described. For example, since the scalar and gauge fields lie in the same, adjoint
representation of the gauge group they can lie in the same supermultiplet. The vanishing
of the Higgs self-interaction implied by the Prasad-Sommerfield limit is then a consequence
of supersymmetry. Because the helicity change between scalar and vector is one unit, the
supersymmetry is presumably of the “extended" kind, with either N = 2 or N = 4 possible.
Osborn was the first to advocate the second possibility [30].

The reason supersymmetry helps answer the first question is that, given that it holds in
the full quantum theory, it must be represented on any set of single particle states carrying
the same specific values of the charges and of energy and momentum. This is so, regardless
of the nature of the particles, whether they are created by quantum fields or arise as soliton
states, that is, whether or not they carry magnetic charge. When the extended supersymmetry
algebra with N supercharges acts on massive states, the algebra is isomorphic to a Clifford
algebra in a Euclidean space with 4N dimensions [31]. This algebra has a unique irreducible
representation of 22N dimensions. This representation includes states whose helicity h varies
over a range ∆h = N with intervals of 1/2. The limits of this range may differ but should not
exceed 1 in magnitude if the states can be created by fields satisfying renormalisable equations
of motion, according to the standard wisdom.

So, of necessity, the monopoles carry spin, quite likely unit spin. Secondly, quantum cor-
rections tend to cancel in supersymmetric theories, essentially because the supersymmetric
harmonic oscillator has no zero point energy. This is relevant to the second question because
the small fluctuations about the soliton profile decompose into such oscillators, with the mass
correction equal to the sum of zero point energies.

The structure of the representation theory raises some questions. According to the renor-
malisability criterion, the maximum range of helicity is ∆h = 1 − (−1) = 2, which is just
consistent with N = 2 supersymmetry, but apparently forbids N = 4 supersymmetry. Another
difficulty concerns the understanding of how the Higgs mechanism providing the mass of the
gauge particles, works in the presence of supersymmetry. The point is that the expression on
the right hand side of the supercharge anticommutator, γ.P , is a singular matrix when P 2 = 0,
that is, for massless states. As a consequence, the supersymmetry algebra acting on massless
states is isomorphic to an Euclidean algebra in 2N dimensions and so now possesses a unique
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irreducible representation of 2N dimensions (the square root of the number in the massive case),
with helicity range ∆h = N/2. This now accommodates both N = 2 and N = 4 superalgebras
but no more. Indeed it is the reason we cannot envisage a more extended supersymmetry, such
as N = 8, which requires gravitons of spin 2, whose interactions are not renormalisable.

The question arises of how to reconcile the jump in the dimensions of the representations
with the acquisition of mass for a given field content of scalar and gauge fields. The answer, due
to Witten and Olive [32], is that something special happens precisely when the Higgs field lies in
the adjoint representation, as we have assumed, and so can lie in the same supermultiplet as the
gauge field. Then the electric charge, q, occurs as a central charge, providing an additional term
on the right hand side of the supercharge anticommutator, thereby altering the structure of the
algebra. The condition for a “short" representation, that is, of dimension 2N , is now P 2 = a2q2,
rather than P 2 = 0. Thus, providing the Higgs formula (9) holds, mass can be acquired without
altering the dimension of the irreducible representation. Furthermore, magnetic charge can
occur as yet another additional central charge with the condition for a “short" representation
being simply the universal Bogomolny-Higgs formula (13). In particular, this means that this
formula now has an exact quantum status as it follows from the supersymmetry algebra which is
presumably an exact, quantum statement (though there may be subtle renormalisation effects)
[32].

15.3.7 More on Supersymmetry and N = 2 versus N = 4

The possibility that, unlike the unextended supersymmetry algebra, the extended ones could
be modified by the inclusion of central charges was originally noted by Haag, Lopuszanski and
Sohnius [33], while the physical identification of these charges was due to Witten and Olive
[32]. The confirmation of the result involved a new matter of principle. Hitherto supersymmetry
algebras had been checked via the algebra of transformations of the fields entering the action.
But since these will never carry magnetic charge in the electric formulation, this method will
not detect the presence of magnetic charge in the algebra. Instead, it is necessary to manipulate
all the charges explicitly, treating them as space integrals of local polynomials in the fields and
their derivatives.

The supersymmetry algebras possess an automorphism (possibly outer) involving chiral
transformations of the supercharges

Qα
L,R → e±iϕ/2Qα

L,R α = 1, 2 . . . N (16)

where the suffices refer to the handedness. When the central charges are present, this automor-
phism requires them to simultaneously transform by (6) (at least in the N = 2 case). Thus the
electromagnetic duality rotation is now seen to relate to a chiral rotation of the supercharges,
sometimes known as R-symmetry.

So far, the theory could possess either N = 2 or N = 4 supersymmetry and it is necessary
to determine which, if possible. At first sight, N = 2 is simpler as there are precisely two
central charges, q and g, as we have described, whereas in N = 4 there are more. However the
N = 4 theory has one very attractive feature, namely that there is precisely one irreducible
representation of the supersymmetry algebra fitting the renormalisability criterion |h| ≤ 1,
which, moreover, has to be “short", and therefore satisfy the universal mass formula (13) [30].
It follows that any dyon state must, willynilly, lie in a multiplet isomorphic to the one containing
the gauge particles. Correspondingly there is only one supermultiplet of fields and, as a result,
the supersymmetric action is unique apart from the values of the coupling constants.

However, there is an even more compelling reason for N = 4 supersymmetry which emerged
some years later. In a series of papers it became apparent that the Callan-Symanzik β-function
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vanished identically in the unique N = 4 supersymmetric theory [34,35]. This was therefore the
first example of a quantum field theory in four dimensions with this property. The vanishing
has at least three remarkable consequences favourable to the ideas considered:
(1) As β controls the running of the coupling constant, its vanishing means that the gauge
coupling constant does not renormalise. Presumably this applies in both the electric and
magnetic formulations and it means that there is no question whether the Dirac quantisation
applies to the bare or renormalised coupling constants, as these are the same (Rossi [36]).
(2) The trace of the energy momentum tensor is usually proportional to β times a local quantity
and so it should vanish in this theory, indicating that the theory is exactly conformally invariant
(if a vanishes). Thus the N = 4 supersymmetric gauge theory is the first known example of
a quantum conformal field theory in four dimensions, to be compared with the rich spectrum
of examples in two dimensions. Furthermore, the Higgs mechanism producing a nonzero value
for the vacuum expectation value parameter a presumably provides an integrable deformation
realising Zamolodchikov’s principle in four dimensions [8]. Notice that the naive idea that
conformal field theories should be more numerous in four rather than two dimensions seems
to be false despite the fact that the conformal algebra has only fifteen rather than an infinite
number of dimensions. Besides the N = 4 supersymmetric gauge theory, there are now a few
other known conformal field theories in four dimensions, all supersymmetric gauge theories.
(3) Finally, just as the trace anomaly vanishes, so does the axial anomaly. In fact the two prop-
erties are related by a supersymmetry transformation. This means that the chiral symmetry
(16) can be extended to the fields of the theory and is an exact symmetry for N = 4. Thus we
have answered an earlier question and seen that, indeed, electromagnetic duality rotations can
be extended to include matter, albeit in a very special case.

The second point above, concerning the realisation of Zamolodchikov’s principle in four
dimensions via a special sort of Higgs mechanism [8], raises questions about the nature of
“integrability" in four dimensions. As far as is known, the N = 4 supersymmetry algebra
is the largest extension of Poincaré symmetry there, but only provides a finite number of
conservation laws, unlike the infinite number available in two dimensions. On the other hand,
there are, apparently, monopole/dyon solutions with particle-like attributes (certainly if the
duality conjecture is to be believed). But a complete and direct proof is lacking, even though
the results for like monopoles are encouraging.

For each value of magnetic charge, the moduli space of solutions to the Bogomolny equations
(12) forms a manifold whose points correspond to static configurations of distinct monopoles
with total energy a|g|. The problem of describing their relative motion was answered by Manton
[37], at least if it was slow. His idea follows from the analogy with a Newtonian point particle
confined to move freely on a Riemannian manifold. It can remain at rest at any point of the
manifold, but, if it moves, it follows a geodesic on the manifold determined by the Riemannian
metric. He realised that the moduli spaces of the Bogomolny equations must possess such
a metric and saw how to derive it from the action. Actually it has a hyperkähler structure
which makes it very interesting mathematically. Moreover, Atiyah and Hitchin calculated the
metric explicitly for the moduli space with double magnetic charge [38]. This is sufficient
to determine the classical scattering of two monopoles at low relative velocity and yielded
surprisingly involved behaviour, including a type of incipient breathing motion perpendicular
to the scattering plane, visible on a video prepared by IBM.

Despite these beautiful results, there is no idea of how to describe relative motion of
monopole solitons with unlike charge. The duality conjecture predicts the possibility of pair
annihilation, unlike the sine-Gordon situation. This is why we say the soliton behaviour is
incompletely understood. It is certainly more complicated than in two dimensions.
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15.3.8 The Schwinger Quantisation Condition and the Charge Lattice

The remaining difficulty, one that has been repeatedly deferred, concerns the dyon spectrum.
We know that there exist dyon solutions carrying magnetic charge, but we do not know what
values of the electric charge are allowed. The problem is that the Dirac quantisation condition
(7) does not determine this, nor does it respect the electromagnetic duality rotation (6) which
is apparently so fundamental.

It was Schwinger and Zwanziger who independently resolved the problem [39,24]. They
saw that Dirac’s assumption that the monopole carried no electric charge was unjustified, and
responsible for the difficulties. Instead, they applied Dirac’s argument to two dyons, carrying
respective charges (q1, g1) and (q2, g2), and found

q1g2 − q2g1 = 2πnλ, n = 0,±1,±2, . . . . (17)

This is known (somewhat unfairly) as the Schwinger quantisation condition and it does now
respect the duality rotation symmetry (6) applied simultaneously to the two dyons. Notice that
it is significant that the group SO(2) has two invariant tensors, the Kronecker delta entering
the mass formula (13) and the antisymmetric tensor entering (17).

As mentioned earlier, the values of q + ig realised by localised states composed of particles
should lie at the points of a lattice in the complex plane. The origin of this lattice structure
are the conservation laws for charge and the TCP theorem. The set of allowed values must be
closed under both addition and reversal of sign as these operations can be realised physically
by combining states and by TCP conjugation.

Without loss of generality, it can be assumed that there exist a subset of states carrying
purely electric charge. As long as magnetic charge exists (17) implies that there is a minimum
positive value, q0, say. Then the allowed values of pure electric charge are nq0, n ∈ ZZ, that is,
a discrete one dimensional lattice. Now let us examine the most general values of q+ ig allowed
by the Schwinger quantisation condition, (17). By it, the smallest allowed positive magnetic
charge, g0 satisfies

g0 =
2πn0λ

q0
, (18)

where n0 is a positive integer dependent on the detailed theory considered. Now consider two
dyons with magnetic charge g0 and electric charges q1 and q2 respectively. By (17) and (18)

q1 − q2 =
2πnλ

g0
=
nq0
n0

.

However, as there must consequently be a state with pure electric charge q1 − q2, n must be a
multiple of n0. Hence for any dyon with magnetic charge g0, its electric charge

q = q0

(
n+

θ

2π

)
,

where θ is a new parameter of the theory which is, in a sense, angular since increasing it by 2π
is equivalent to increasing n by one unit. So

q + ig = q0(n+ τ),

where
τ =

θ

2π
+

2πin0λ

q20
. (19)

Repeating the argument for more general states with magnetic charge mg0

353



15.3.8 The Schwinger Quantisation Condition and the Charge Lattice

q + ig = q0(mτ + n), m, n ∈ ZZ. (20)

This is the charge lattice and it finally breaks the continuous symmetry (2) and (6) in a
spontaneous manner [40]. This lattice has periods q0 and q0τ with ratio τ , (19). Notice that
τ is a complex variable formed of dimensionless parameters dependent on the detailed theory.
Its imaginary part is positive, being essentially the inverse of the fine structure constant.

So far, this part of the argument has been very general, but, given a specific theory, an
important question for electromagnetic duality concerns the identification of the subset of the
charge lattice that can be realised by single particle states, rather than multiparticle states.

It is easy to show that, if single particle states obey the universal mass formula (13), and are
stable with respect to any two-body decay into lighter particles permitted by the conservation
of electric and magnetic charge, then they must correspond to points of the charge lattice which
are “primitive vectors".

A point P of the charge lattice is a primitive vector if the line OP contains no other points
of the lattice strictly between O, the origin, and P . Thus the only primitive vectors on the real
axis are (±q0, 0). Equivalently, a primitive vector is a point given by (20) in which the integers
m and n are coprime (in saying this we must agree that 0 is divisible by any integer).

The proof of the assertion is simple: it relies on the fact that the mass of a particle at
P is proportional to its Euclidean distance OP from the origin, by (13). So, by the triangle
inequality, any particle is stable unless its two decay products correspond to points collinear
with itself and the origin. This is impossible, providing the original particle corresponds to a
primitive vector.

There are an infinite number of primitive vectors on the charge lattice, for example, all the
points with m = ±1 or n = ±1. The corresponding masses can be indefinitely large. If m = 2,
every second point is a primitive vector. If m = 3, every third point fails to be a primitive
vector, and so on.

This result tells us what to expect for the spectrum of dyons, namely that they correspond
to the primitive vectors off the real axis. Since the mass formula used in this argument is
characteristic of supersymmetric gauge theories as discussed above, it ought to be possible to
recover this result from consideration of the Bogomolny moduli spaces governing the static
soliton solutions. This is what Sen achieved in 1994, [28], and a simplified explanation follows.

For m = ±1, the dyons relate to points in the m = ±1 moduli space since the single
monopoles are solutions to the Bogomolny equations. However, as discussed earlier, the points
of the m = ±2 moduli space correspond to configurations of a pair of like monopoles in static
equilibrium. Thus the m = ±2 single particle states cannot be Bogomolny solutions. Instead
they must be regarded as quantum mechanical bound states, with zero binding energy (in order
to satisfy the mass formula). Remembering Manton’s treatment of moving monopoles following
geodesics on the moduli space determined by the hyperkähler metric thereon, it is clear that
it is crucial to examine the spectrum of the Laplacian determined by this metric, as this is
proportional to the quantum mechanical Hamiltonian [41]. In particular, zero modes in the
discrete spectrum are sought. There is some subtlety, treated by Sen, concerning the fact that
the quantum mechanics possesses N = 4 supersymmetry because the metric is hyperkähler,
but using the Atiyah-Hitchin metric, Sen was able to solve for the zero modes, and show that
only every other permitted value of the electric charge could occur. Thus the dyons with
magnetic charge 2g0 do indeed correspond precisely to the primitive vectors on the charge
lattice. For higher values of |m|, the explicit metric is not known, but Hodge’s theorem relates
the counting of the zero modes of the Laplacian on the moduli space to its cohomology, which
can be determined without knowledge of the metric. (This argument is said to be due to Segal,
unpublished).

These are the results that finally clear up the dyon problem and leave the electromagnetic
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duality conjecture in good shape, though a reassessment will be in order. Before discussing this,
we ask whether the angle θ, occurring in (19), appears explicitly as a parameter in the action
of the spontaneously broken gauge theory. Witten found the answer in 1979 [40]. Because the
gauge group is non abelian, SU(2), a term proportional to the instanton number, k can be
added to the action, so that the Feynman weighting factor becomes:

exp

(
iAction

λ

)
→ exp

(
iAction

λ
+
iθ̃

2π
k

)
. (21)

As k is proportional to an integral of FF̃ over space time, it is a surface term which cannot
affect the classical equations of motion, but it does affect the quantum theory. Note that, like θ,
θ̃ is an angular variable as the theory is unaffected if it is increased by 2π. In fact the two angles
are indeed equal as Witten showed by an elementary calculation of the electric and magnetic
charges using Noether’s theorem. Thus θ is what is known as the instanton or vacuum angle.

The above result has another consequence, yet again singling out the N = 4 supersymmetric
theory as the only viable one for exact electromagnetic duality. This is because an application
of the chiral rotation (16) to the fermion fields alters the Lagrangian density by an anomalous
term proportional to the axial anomaly βFF̃ . This means that the instanton angle can be
altered by a redefinition of the fermion field, and so has no physical meaning, unless β, and
hence the axial anomaly, vanishes. This forces us back to the N = 4 theory, with the conclusion
that only in this theory does the charge lattice really make sense. Finally note that in this
theory the integer n0 occurring in (19) equals 2. This is because the N = 4 theory has only
one supermultiplet which includes the gauge particle and hence must be an SU(2) triplet. No
doublets are allowed in N = 4, unlike N = 2.

15.3.9 Exact Electromagnetic Duality and the Modular Group

Armed with the new insight that the spectrum of single particle states correspond to the
primitive vectors of the charge lattice, augmented by the origin, rather than the five points
previously considered, we can see that the original Montonen-Olive conjecture was too modest.
Instead of possessing two equivalent choices of action, the N = 4 supersymmetric gauge theory
apparently possesses an infinite number of them, all with an isomorphic structure, but with
different values of the parameters [28].

Roughly speaking, the reason is that it is the charge lattice that describes the physical
reality. Choices of action correspond to choices of basis in the lattice, that is a pair of non
collinear primitive vectors (or, a pair of periods). As the charge lattice is two dimensional, these
choices are related by the action of the modular group, an infinite discrete group containing
the previous transformation (14).

Let us choose a primitive vector in the charge lattice, represented by a complex number, q′0,
say. Then we may ascribe short N = 4 supermultiplets of quantum fields to each of the three
points ±q′0 and 0. The particles corresponding to the origin are massless and neutral whereas
the particles corresponding to ±q′0 possess complex charge ±q′0 and mass a|q′0|. We may form an
N = 4 supersymmetric action with these fields. It is unique, given the coupling |q′0|, apart from
the vacuum angle whose specification requires a second primitive vector, q′0τ ′, say, non-collinear
with q′0. The remaining single particle states are expected to arise as monopole solitons or as
quantum bound states of them as discussed above.

Since the two non-collinear primitive vectors q′0 and q′0τ
′ form an alternative basis for the

charge lattice, they can be expressed as integer linear combinations of the original basis, q0 and
q0τ :

q′0τ
′ = aqoτ + bq0, (22a)
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q′0 = cq0τ + dq0, (22b)

where
a, b, c, d ∈ ZZ. (22c)

Equally, q0τ and q0 can be expressed as integer linear combinations of q′0τ ′ and q′0. This requires
that the matrix of coefficients in (22a) and (22b) has determinant equal to ±1,

ad− bc = ±1. (23)

By changing a sign we can take this to be plus one. Then the matrices(
a b
c d

)
form a group, SL(2, ZZ), whose quotient by its centre is called the modular group. Equation
(22a) divided by (22b) yields

τ ′ =
aτ + b

cτ + d
.

These transformations form the modular group and preserve the sign of the imaginary part of
τ . This gives the relation between the values of the dimensionless parameters in the two choices
of action corresponding to the two choices of basis. It is customary to think of the modular
group as being generated by elements T and S where

T : τ → τ + 1 S : τ → −1

τ

According to (19), T increases the vacuum angle by 2π. This is obviously a symmetry of (21).
If the vacuum angle vanishes, S precisely yields the transformation (14) previously considered.

Proof of the quantum equivalence of all the actions associated with each choice of basis
in the charge lattice would presumably require a generalised vertex operator transformation
relating the corresponding quantum fields. Since these transformations would represent the
modular group the prospect is challenging.

Meanwhile it has been possible to evaluate the partition function of the theory on certain
space-time manifolds, provided that the theory is simplified by a “twisting procedure" that
renders it “topological". Vafa and Witten verified that the results indeed possessed modular
symmetry [42].

15.3.10 Conclusion

According to the new results reviewed above, it now appears increasingly plausible that electro-
magnetic duality is realised exactly in the N = 4 supersymmetric SU(2) gauge theory in which
the Higgs field acquires a non-zero vacuum expectation value. This theory is a deformation of
one of the very few exact conformal field theories in Minkowski space time. The supporting
analysis involves an array of almost all the previously advanced ideas particular to quantum
field theories in four dimensions, but awaits definitive proof.

Despite its remarkable quantum symmetry this theory is apparently not physical unless
further deformed. Seiberg and Witten have proposed deformations such that enough structure
remains as to offer an explanation of quark confinement, perhaps the outstanding riddle in
quantum field theory [1,43].

More generally, the potential validity of exact electromagnetic duality in at least one theory
means that quantum field theory in four dimensions is much richer than the sum of its parts,
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quantum mechanics and classical field theory. This is because the new symmetry is essentially
quantum in nature with no classical counterpart. Moreover it relates strong to weak coupling
regimes of the theory. Consequently, the new insight opens a veritable Pandora’s box whose
contents are now subject to urgent study.
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15.4 Duality in Quantum Field Theory and String Theory by
Álvarez-Gaumé Zamora

These lectures give an introduction to duality in Quantum Field Theory. We discuss the
phases of gauge theories and the implications of the electric-magnetic duality transformation to
describe the mechanism of confinement. We review the exact results of N = 1 supersymmetric
QCD and the Seiberg-Witten solution of N = 2 super Yang-Mills. Some of its extensions to
String Theory are also briefly discussed.

15.4.1 The duality symmetry.

From a historical point of view we can say that many of the fundamental concepts of twentieth
century Physics have Maxwell’s equations at its origin. In particular some of the symmetries
that have led to our understanding of the fundamental interactions in terms of relativistic
quantum field theories have their roots in the equations describing electromagnetism. As we
will now describe, the most basic form of the duality symmetry also appears in the source free
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Maxwell equations:

∇ · (E+ iB) = 0 ,

∂

∂t
(E+ iB) + i∇× (E+ iB) = 0. (15.298)

These equations are invariant under Lorentz transformations, and making all of Physics compat-
ible with these symmetries led Einstein to formulate the Theory of Relativity. Other important
symmetries of (15.298) are conformal and gauge invariance, which have later played important
roles in our understanding of phase transitions and critical phenomena, and in the formulation
of the fundamental interactions in terms of gauge theories. In these lectures however we will
study the implications of yet another symmetry hidden in (15.298): duality. The simplest form
of duality is the invariance of (15.298) under the interchange of electric and magnetic fields:

B→ E ,

E→ −B . (15.299)

In fact, the vacuum Maxwell equations (15.298) admit a continuous SO(2) transformation
symmetry ∗

(E+ iB)→ eiϕ(E+ iB) . (15.300)

If we include ordinary electric sources the equations (1.1) become:

∇ · (E+ iB) = q ,

∂

∂t
(E+ iB) + i∇× (E+ iB) = je . (15.301)

In presence of matter, the duality symmetry is not valid. To keep it, magnetic sources have to
be introduced:

∇ · (E+ iB) = )q + ig) ,

∂

∂t
(E+ iB) + i∇× (E+ iB) = (je + i jm) . (15.302)

Now the duality symmetry is restored if at the same time we also rotate the electric and
magnetic charges

(q + ig)→ eiϕ(q + ig) . (15.303)

The complete physical meaning of the duality symmetry is still not clear, but a lot of work
has been dedicated in recent years to understand the implications of this type of symmetry.
We will focus mainly on the applications to Quantum Field Theory. In the final sections, we
will briefly review some of the applications to String Theory, where duality make striking an
profound predictions.

15.4.2 Dirac’s charge quantization.

From the classical point of view the inclusion of magnetic charges is not particularly prob-
lematic. Since the Maxwell equations, and the Lorentz equations of motion for electric and
magnetic charges only involve the electric and magnetic field, the classical theory can accom-
modate any values for the electric and magnetic charges.

However, when we try to make a consistent quantum theory including monopoles, deep
consequences are obtained. Dirac obtained his celebrated quantization condition precisely by

∗Notice that the duality transformations are not a symmetry of the electromagnetic action. Concerning this
issue see [1].
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studying the consistency conditions for a quantum theory in the presence of electric and mag-
netic charges [2]. We derive it here by the quantization of the angular momentum, since it
allows to extend it to the case of dyons, i.e., particles that carry both electric and magnetic
charges.

Consider a non-relativistic charge q in the vicinity of a magnetic monopole of strength g,
situated at the origin. The charge q experiences a force m¨⃗r = q ˙⃗r× B⃗, where B⃗ is the monopole
field given by B⃗ = gr⃗/4πr3. The change in the orbital angular momentum of the electric charge
under the effect of this force is given by

d

dt

(
mr⃗ × ˙⃗r

)
= mr⃗ × ¨⃗r

=
qg

4πr3
r⃗ ×

(
˙⃗r × r⃗

)
=

d

dt

(
qg

4π

r⃗

r

)
. (15.304)

Hence, the total conserved angular momentum of the system is

J⃗ = r⃗ ×m ˙⃗r − qg

4π

r⃗

r
. (15.305)

The second term on the right hand side (henceforth denoted by J⃗em) is the contribution coming
from the electromagnetic field. This term can be directly computed by using the fact that the
momentum density of an electromagnetic field is given by its Poynting vector, E⃗×B⃗, and hence
its contribution to the angular momentum is given by

J⃗em =

∫
d3x r⃗ × (E⃗ × B⃗) =

g

4π

∫
d3x r⃗ ×

(
E⃗ × r⃗

r3

)
.

In components,

J iem =
g

4π

∫
d3xEj∂j(x̂

i)

=
g

4π

∫
S2

x̂iE⃗ · d⃗s− g

4π

∫
d3x(∇⃗ · E⃗) x̂i . (15.306)

When the separation between the electric and magnetic charges is negligible compared to their
distance from the boundary S2, the contribution of the first integral to J⃗em vanishes by spherical
symmetry. We are therefore left with

J⃗em = − gq
4π
r̂ . (15.307)

Returning to equation (15.305), if we assume that orbital angular momentum is quantized.
Then it follows that

qg

4π
=

1

2
n , (15.308)

where n is an integer. Equation (15.308) is the Dirac’s charge quantization condition. It implies
that if there exists a magnetic monopole of charge g somewhere in the universe, then all electric
charges are quantized in units of 2π/g. If we have a number of purely electric charges qi and
purely magnetic charges gj, then any pair of them will satisfy a quantization condition:

qigj = 2πnij . (15.309)

Thus, any electric charge is an integral multiple of 2π/gj. For a given gj, let these charges have
n0j as the highest common factor. Then, all the electric charges are multiples of q0 = n0j2π/gj.
Similar considerations apply to the quantization of the magnetic charge.
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Till now, we have only dealt with particles that carry either an electric or a magnetic
charge. Consider now two dyons of charges (q1, g1) and (q2, g2). For this system, we can repeat
the calculation of J⃗em by following the steps in (15.306) where now the electromagnetic fields
are split as E⃗ = E⃗1 + E⃗2 and B⃗ = B⃗1 + B⃗2. The answer is easily found to be

J⃗em = − 1

4π
(q1g2 − q2g1) r̂ (15.310)

The charge quantization condition is thus generalized to

q1g2 − q2g1
4π

=
1

2
n12 (15.311)

This is referred to as the Dirac-Schwinger-Zwanziger condition [3].

15.4.3 A charge lattice and the SL(2,Z) group.

In the previous section we derived the quantization of the electric charge of particles without
magnetic charge, in terms of some smallest electric charge q0. For a dyon (qn, gn), this gives
q0gn = 2πn. Thus, the smallest magnetic charge the dyon can have is g0 = 2πm0/q0, with
m0 a positive integer dependent on the detailed theory considered. For two dyons of the
same magnetic charge g0 and electric charges q1 and q2, the quantization condition implies
q1 − q2 = nq0, with n a multiple of m0. Therefore, although the difference of electric charges
is quantized, the individual charges are still arbitrary. It introduces a new parameter θ that
contributes to the electric charge of any dyon with magnetic charge g0 by

q = q0

(
ne +

θ

2π

)
. (15.312)

Observe that the parameter θ + 2π gives the same electric charges that the parameter θ by
shifting ne → ne + 1. Thus, we look at the parameter θ as an angular variable.

This arbitrariness in the electric charge of dyons through the θ parameter can be fixed if
the theory is CP invariant. Under a CP transformation (q, g) → (−q, g). If the theory is CP
invariant, the existence of a state (q, g0) necessarily leads to the existence of (−q, g0). Applying
the quantization condition to this pair, we get 2q = q0 × integer. This implies that q = nq0 or
q = (n+ 1

2
)q0. If θ ̸= 0, π, the theory is not CP invariant. It indicates that the θ parameter is

a source of CP violation. Later on we will identify θ with the instanton angle.
One can see that the general solution of the Dirac-Schwinger-Zwanziger condition (15.311)

is

q = q0

(
ne +

θ

2π
nm

)
, (15.313)

g = nmg0 , (15.314)

with ne and nm integer numbers These equations can be expressed in terms of the complex
number

q + ig = q0(ne + nmτ) , (15.315)

where
τ ≡ θ

2π
+

2πim0

q20
. (15.316)

Observe that this definition only includes intrinsic parameters of the theory, and that the
imaginary part of τ is positive definite. This complex parameter will play an important role in
supersymmetric gauge theories. Thus, physical states with electric and magnetic charges (q, g)

361



15.4.3 A charge lattice and the SL(2,Z) group.

are located on a discrete two dimensional lattice with periods q0 and q0τ , and are represented
by the corresponding vector (nm, ne) (see fig. 1).

qq0

g

q0τ

Figure 1: The charge lattice with periods q0 and q0τ . The physical states are located on the
points of the lattice.

Notice that the lattice of charges obtained from the quantization condition breaks the clas-
sical duality symmetry group SO(2) that rotated the electric and magnetic charges (15.303).
But another symmetry group arises at quantum level. Given a lattice as in figure 1 we can
describe it in terms of different fundamental cells. Different choices correspond to transforming
the electric and magnetic numbers (nm, ne) by a two-by-two matrix:

(nm, ne)→ (nm, ne)

(
α β
γ δ

)−1

, (15.317)

with α, β, γ, δ ∈ Z satisfying αδ − βγ = 1. This transformation leaves invariant the Dirac-
Schwinger-Zwanziger quantiztion condition (15.311). Hence the duality transformations are
elements of the discrete group SL(2,Z). Its action on the charge lattice can be implemented
by modular transformations of the parameter τ

τ → ατ + β

γτ + δ
. (15.318)

This transformations preserve the sign of the imaginary part of τ , and are generated just by
the action of two elements:

T : τ → τ + 1 , (15.319)

S : τ → −1
τ
. (15.320)

The effect of T is to shift θ → θ+2π. Its action is well understood: it just maps the charge
lattice (nm, ne) to (nm, ne−nm). As physics is 2π-periodic in θ, it is a symmetry of the theory.
Then, if the state (1, 0) is in the physical spectrum, the state (1, ne), with any integer ne, is
also a physical state.

The effect of S is less trivial. If we take θ = 0 just for simplicity, the S action is q0 → g0
and sends the lattice vector (nm, ne) to the lattice vector (−ne, nm). So it interchanges the
electric and magnetic roles. In terms of coupling constants, it represents the transformation
τ → −1/τ , implying the exchange between the weak and strong coupling regimes. In this
respect the duality symmetry could provide a new source of information on nonpertubative
physics.
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If we claim that the S transformation is also a symmetry of the theory we have full SL(2,Z)
symmetry. It implies the existence of any state (nm, ne) in the physical spectrum, with nm and
ne relatively to-prime, just from the knowledge that there are the physical states ±(0, 1) and
±(1, 0). There are some examples of theories ‘duality invariant’, for instance the SU(2) gauge
theory with N = 4 supersymmetry and the SU(2) gauge theory with N = 2 supersymmetry
and four flavors [4].

A priori however there is no physical reason to impose S-invariance, in contrast with T -
invariance. The stable physical spectrum may not be SL(2,Z) invariant. But if the theory
still admits somehow magnetic monopoles, we could apply the S-transformation as a change
of variables of the theory, where a magnetic state is mapped to an electric state in terms of
the dual variables. It could be convenient for several reasons: Maybe there are some physical
phenomena where the magnetic monopoles become relevant degrees of freedom; this is the case
for the mechanism of confinement, as we will see below. The other reason could be the difficulty
in the computation of some dynamical effects in terms of the original electric variables because
of the large value of the electric coupling q0. The S-transformation sends q0 to 1/q0. In terms
of the dual magnetic variables, the physics is weakly coupled.

Just by general arguments we have learned a good deal of information about the duality
transformations. Next we have to see where such concepts appear in quantum field theory.

15.4.4 The Higgs Phase

The Higgs mechanism and mass gap.

We start considering that the relevant degrees of freedom at large distances of some theory in
3+1 dimensions are reduced to an Abelian Higgs model:

L(ϕ∗, ϕ, Aµ) = −
1

4
FµνF

µν + (Dµϕ)
∗(Dµϕ)

− λ

2
(ϕ∗ϕ−M2)2 , (15.321)

where

Fµν = ∂µAν − ∂νAµ ,
Dµϕ = (∂µ + iqAµ)ϕ , (15.322)

and q is the electric charge of the particle ϕ.
An important physical example of a theory described at large distances by the effective

Lagrangian (15.321) (in its nonrelativistic approximation) is a superconductor. Sound waves of
a solid material causes complicated deviations from the ideal lattice of the material. Conducting
electrons interact with the quantums of those sound waves, called phonons. For electrons near
the Fermi surface, their interactions with the phonons create an attractive force. This force
can be strong enough to cause bound states of two electrons with opposite spin, called Cooper
pairs. The lowest state is a scalar particle with charge q = −2e, which is represented by ϕ in
(15.321). To understand the basic features of a superconductor we only need to consider its
relevant self-interactions and the interaction with the electromagnetic field resulting from its
electric charge q. This is the dynamics which is encoded in the effective Lagrangian (15.321).
The values of the parameters λ and M2 depend of the temperature T , and in general contribute
to increase the energy of the system. To have an stable ground state, we require λ(T ) > 0 for
any value of the temperature. But the function M2(T ) do not need to be negative for all T .
In fact, when the temperature T drops below a critical value Tc, the function M2(T ) becomes
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positive. In such situation, the ground state reaches its minimal energy when the Higgs particle
condenses,

|⟨ϕ⟩| =M . (15.323)

If we make perturbation theory around this minima,

ϕ(x) =M + φ(x), (15.324)

with vanishing external electromagnetic fields, we find that there is a mass gap between the
ground state and the first excited levels. There are particles of spin one with mass square

M2
V = 2qM2, (15.325)

which corresponds to the inverse of the penetration depth of static electromagnetic fields in the
superconductor. There are also spin zero particles with mass square

M2
H = 2λM2. (15.326)

So perturbation theory already shows a quite different behavior of the Higgs theory from the
Coulomb theory. There is only one real massive scalar field and the electromagnetic interaction
becomes short-ranged, with the photon correlator being exponentially suppressed. This is
a distinction that must survive nonperturbatively. But up to now, the above does not yet
distinguish a Higgs theory from just any non-gauge theory with massive vector particles. There
is yet another new phenomena in the Higgs mode which shows the spontaneous symmetry
breaking of the U(1) gauge theory.

Vortex tubes and flux quantization.

We have seen that the Higgs condensation produces the electromagnetic interactions to be
short-range. Ignoring boundary effects in the material, the electric and magnetic fields are zero
inside the superconductor. This phenomena is called the Meissner effect.

If we turn on an external magnetic field H0 beyond some critical value, one finds that
small regions in the superconductor make a transition to a ‘non-superconducting’ state. Stable
magnetic flux tubes are allowed along the material, with a transverse size of the order of the
inverse of the mass gap. Their magnetic flux satisfy a quantization rule that can be understood
only by a combination of the spontaneous symmetry breaking of the U(1) gauge symmetry and
some topological arguments.

Parameterize the complex Higgs field by

ϕ(x) = ρ(x)eiχ(x), (15.327)

and perform fluctuations around the configuration which minimizes the energy. i.e., we consider
that ρ(x) ≃ M almost everywhere, but at some points ρ may be zero. At such points χ needs
not be well defined and therefore in all the rest of space χ could be multivalued. For instance, if
we take a closed contour C around a zero of ρ(x), then following χ around C could give values
that run from 0 to 2πn, with n an integer number, instead of coming back to zero. These are
exactly the field configurations that produce the quantized magnetic flux tubes [5].

Consider a two-dimensional plane, cut somewhere through a superconducting piece of ma-
terial, with polar coordinates (r, θ) and work in the time-like A0 = 0. To have a finite energy
per unit length static configuration we should demand that

ϕ(x)→Meiχ(θ) ,

Ai(x)→
const

r
, (15.328)
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for r →∞. Obviously, to keep the fields single valued, we must have

χ(2π) = χ(0) + 2πn . (15.329)

If n ̸= 0, it is clear that at some point of the two-dimensional plane we should have that the
continuous field ϕ vanishes. Such field configurations do not correspond to the ground state.

Solve the field equations with the boundary conditions (15.328) and (15.329) fixed, and
minimize the energy. We find stable vortex tubes with non-trivial magnetic flux through the
two-dimensional plane. To see this, perform a singular gauge transformation ∗

ϕ(x)→ eiqΛ(x)ϕ(x) ,

Aµ(x)→ Aµ(x)− ∂µΛ(x) , (15.330)

with Λ = 2πnθ/q. We compute the magnetic flux in such a gauge and we find

Φ =

∮
Aµdx

µ = Λ(2π)− Λ(0) =
2πn

q
. (15.331)

It is important to realize that such field configurations, called Abrikosov vortices, are stable.
The vortex tube cannot break since it cannot have an end point: as the magnetic flux is
quantized, we would have be able to deform continuously the singular gauge transformation Λ
to zero, something obviously not possible for n ̸= 0. Physically this is the statement that the
magnetic flux is conserved, a consequence of the Maxwell equations. Mathematically it means
that for n ̸= 0 the function χ(θ) belongs to a nontrivial homotopy class of the fundamental
group Π1(U(1)) = Z.

The existence of these macroscopic stable objects can be used as another characterization
of the Higgs phase. They should survive beyond perturbation theory.

Magnetic monopoles and permanent magnetic confinement.

The magnetic flux conservation in the Abelian Higgs model tells us that the theory does not
include magnetic monopoles. But it is remarkable that the magnetic flux is precisely a multiple
of the quantum of magnetic charge 2π/q found by Dirac. If we imagine the effective gauge
theory (15.321) enriched somehow by magnetic monopoles, they would form end points of the
vortex tubes. The energy per unit length, i.e., the string tension σ, of these flux tubes is of the
order of the scale of the Higgs condensation,

σ ∼M2. (15.332)

It implies that the total energy of a system composed of a monopole and an anti-monopole,
with a convenient magnetic flux tube attached between them, would be at least proportional
to the separation length of the monopoles. In other words: magnetic monopoles in the Higgs
phase are permanently confined.

15.4.5 The Georgi-Glashow model and the Coulomb phase.

The Georgi-Glashow model is a Yang-Mills-Higgs system which contains a Higgs multiplet
ϕa (a = 1, 2, 3) transforming as a vector in the adjoint representation of the gauge group SO(3),
and the gauge fields Wµ = W a

µT
a. Here, T a are the hermitian generators of SO(3) satisfying

[T a, T b] = ifabcT c. In the adjoint representation, we have (T a)bc = −ifabc and, for SO(3),
fabc = ϵabc. The field strength of Wµ and the covariant derivative on ϕa are defined by

Gµν = ∂µWν − ∂νWµ + ie[Wµ,Wν ] ,

Dµϕ
a = ∂µϕ

a − eϵabcW b
µϕ

c . (15.333)
∗Singular in the sense of being not well defined in all space.
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The minimal Lagrangian is then given by

L = −1

4
Ga
µνG

aµν

+
1

2
DµϕaDµϕ

a − V (ϕ) , (15.334)

where,

V (ϕ) =
λ

4

(
ϕaϕa − a2

)2
. (15.335)

The equations of motion following from this Lagrangian are

(DνG
µν)a = −e ϵabc ϕb (Dµϕ)c,

DµDµϕ
a = −λϕa(ϕ2 − a2) . (15.336)

The gauge field strength also satisfies the Bianchi identity

Dν G̃
µνa = 0 . (15.337)

Let us find the vacuum configurations in this theory. Introducing non-Abelian electric and
magnetic fields, G0i

a = −Eia and Gij
a = −ϵijkBka , the energy density is written as

θ00 =
1

2

(
(Eia)

2 + (Bia)
2

+
(
D0ϕa)

2+)Diϕa)
2
)
+ V (ϕ) . (15.338)

Note that θ00 ≥ 0, and it vanishes only if

Gµν
a = 0, Dµϕ = 0, V (ϕ) = 0 . (15.339)

The first equation implies that in the vacuum, W a
µ is pure gauge and the last two equations

define the Higgs vacuum. The structure of the space of vacua is determined by V (ϕ) = 0 which
solves to ϕa = ϕavac such that |ϕvac| = a. The space of Higgs vacua is therefore a two-sphere
(S2) of radius a in field space. To formulate a perturbation theory, we have to choose one of
these vacua and hence, break the gauge symmetry spontaneously The part of the symmetry
which keeps this vacuum invariant, still survives and the corresponding unbroken generator is
ϕcvacT

c/a. The gauge boson associated with this generator is Aµ = ϕcvacW
c
µ/a and the electric

charge operator for this surviving U(1) is given by

Q = e
ϕcvacT

c

a
. (15.340)

If the group is compact, this charge is quantized. The perturbative spectrum of the theory can
be found by expanding ϕa around the chosen vacuum as

ϕa = ϕavac + ϕ′a .

A convenient choice is ϕcvac = δc3a. The perturbative spectrum (which becomes manifest after
choosing an appropriate unitary gauge) consists of a massive Higgs of spin zero with a square
mass

M2
H = 2λa2, (15.341)

a massless photon, corresponding to the U(1) gauge boson A3
µ, and two charged massive W-

bosons, A1
µ and A2

µ, with square mass

M2
W = e2a2. (15.342)

This mass spectrum is realistic as long as we are at weak coupling, e2 ∼ λL1. At strong
coupling, nonperturbative effects could change significatively eqs. (15.341) and (15.342). But
the fact that there is an unbroken subgroup of the gauge symmetry ensures that there is some
massless gauge boson, which a long range interaction. This is the characteristic of the Coulomb
phase.
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15.4.6 The ’t Hooft-Polyakov monopoles

Let us look for time-independent, finite energy solutions in the Georgi-Glashow model. Finite-
ness of energy requires that as r →∞, the energy density θ00 given by (15.338) must approach
zero faster than 1/r3. This means that as r →∞, our solution must go over to a Higgs vacuum
defined by (15.339). In the following, we will first assume that such a finite energy solution
exists and show that it can have a monopole charge related to its soliton number which is,
in turn, determined by the associated Higgs vacuum. This result is proven without having
to deal with any particular solution explicitly. Next, we will describe the ’t Hooft-Polyakov
ansatz for explicitly constructing one such monopole solution, where we will also comment on
the existence of Dyonic solutions. In the last two subsections we will derive the Bogomol’nyi
bound and the Witten effect.

The Topological nature of the magnetic charge.

For convenience, in this subsection we will use the vector notation for the SO(3) gauge group
indices and not for the spatial indices.

Let ϕ⃗vac denote the field ϕ⃗ in a Higgs vacuum. It then satisfies the equations

ϕ⃗vac · ϕ⃗vac = a2 ,

∂µϕ⃗vac − e W⃗µ × ϕ⃗vac = 0 , (15.343)

which can be solved for W⃗µ. The most general solution is given by

W⃗µ =
1

ea2
ϕ⃗vac × ∂µϕ⃗vac +

1

a
ϕ⃗vacAµ . (15.344)

To see that this actually solves (15.343), note that ∂µϕ⃗vac · ϕ⃗vac = 0, so that

1

ea2
(ϕ⃗vac × ∂µϕ⃗vac)× ϕ⃗vac =

1

ea2

(
∂µϕ⃗vaca

2 − ϕ⃗vac(ϕ⃗vac · ∂µϕvac)
)
=

1

e
∂µϕ⃗vac . (15.345)

The first term on the right-hand side of Eq. (15.344) is the particular solution, and ϕ⃗vacAµ is
the general solution to the homogeneous equation. Using this solution, we can now compute
the field strength tensor G⃗µν . The field strength Fµν corresponding to the unbroken part of the
gauge group can be identified as

Fµν =
1

a
ϕ⃗vac · G⃗µν = ∂µAν − ∂νAµ

+
1

a3e
ϕ⃗vac · (∂µϕ⃗vac × ∂νϕ⃗vac) . (15.346)

Using the equations of motion in the Higgs vacuum it follows that

∂µF
µν = 0 , ∂µ F̃

µν = 0 .

This confirms that Fµν is a valid U(1) field strength tensor. The magnetic field is given by
Bi = −1

2
ϵijkFjk. Let us now consider a static, finite energy solution and a surface Σ enclosing

the core of the solution. We take Σ to be far enough so that, on it, the solution is already in
the Higgs vacuum. We can now use the magnetic field in the Higgs vacuum to calculate the
magnetic charge gΣ associated with our solution:

gΣ =

∫
Σ

Bidsi

= − 1

2ea3

∫
Σ

ϵijk ϕ⃗vac ·
(
∂jϕ⃗vac × ∂kϕ⃗vac

)
dsi . (15.347)
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It turns out that the expression on the right hand side is a topological quantity as we explain
below: Since ϕ2 = a; the manifold of Higgs vacua (M0) has the topology of S2. The field ϕ⃗vac
defines a map from Σ intoM0. Since Σ is also an S2, the map ϕvac : Σ→M0 is characterized by
its homotopy group π2(S2). In other words, ϕvac is characterized by an integer ν (the winding
number) which counts the number of times it wraps Σ around M0. In terms of the map ϕvac,
this integer is given by

ν =
1

4πa3

∫
Σ

1

2
ϵijkϕ⃗vac ·

(
∂jϕ⃗vac × ∂kϕ⃗vac

)
dsi . (15.348)

Comparing this with the expression for magnetic charge, we get the important result

gΣ =
−4πν
e

. (15.349)

Hence, the winding number of the soliton determines its monopole charge. Note that the above
equation differs from the Dirac quantization condition by a factor of 2. This is because the
smallest electric charge which could exist in our model is e/2 for an spinorial representation of
SU(2), the universal covering group of SO(3). Then, in this model m0 = 2.

The ’t Hooft-Polyakov ansatz.

Now we describe an ansatz proposed by ’t Hooft [6] and Polyakov [7] for constructing a monopole
solution in the Georgi-Glashow model. For a spherically symmetric, parity-invariant, static
solution of finite energy, they proposed:

ϕa =
xa

er2
H(aer) ,

W a
i = −ϵaij

xj

er2
(1−K(aer)) ,

W a
0 = 0 . (15.350)

For the non-trivial Higgs vacuum at r →∞, they chose ϕcvac = axc/r = ax̂c. Note that this maps
an S2 at spatial infinity onto the vacuum manifold with a unit winding number. The asymptotic
behavior of the functions H(aer) and K(aer) are determined by the Higgs vacuum as r →∞
and regularity at r = 0. Explicitly, defining ξ = aer, we have: as ξ → ∞, H ∼ ξ, K → 0 and
as ξ → 0, H ∼ ξ, (K − 1) ∼ ξ. The mass of this solution can be parameterized as

M =
4πa

e
f (λ/e2) .

For this ansatz, the equations of motion reduce to two coupled equations for K and H which
have been solved exactly only in certain limits. For r → 0, one gets H → ec1r

2 and K =
1 + ec2r

2 which shows that the fields are non-singular at r = 0. For r → ∞, we get H →
ξ + c3exp(−a

√
2λr) and K → c4ξexp(−ξ) which leads to W a

i ≈ −ϵaijxj/er2. Once again,
defining Fij = ϕcGc

ij/a, the magnetic field turns out to be Bi = −xi/er3. The associated
monopole charge is g = −4π/e, as expected from the unit winding number of the solution. It
should be mentioned that ’t Hooft’s definition of the Abelian field strength tensor is slightly
different but, at large distances, it reduces to the form given above.

Note that in the above monopole solution, the presence of the Dirac string is not obvious.
To extract the Dirac string, we have to perform a singular gauge transformation on this solution
which rotates the non-trivial Higgs vacuum ϕcvac = ax̂c into the trivial vacuum ϕcvac = aδc3. In
the process,the gauge field develops a Dirac string singularity which now serves as the source
of the magnetic charge [6].
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The ’t Hooft-Polyakov monopole carries one unit of magnetic charge and no electric charge.
The Georgi-Glashow model also admits solutions which carry both magnetic as well as electric
charges. An ansatz for constructing such a solution was proposed by Julia and Zee [8]. In
this ansatz, ϕa and W a

i have exactly the same form as in the ’t Hooft-Polyakov ansatz, but
W a

0 is no longer zero: W a
0 = xaJ(aer)/er2. This serves as the source for the electric charge

of the dyon. It turns out that the dyon electric charge depends of a continuous parameter
and, at the classical level, does not satisfy the quantization condition. However, semiclassical
arguments show that, in CP invariant theories, and at the quantum level, the dyon electric
charge is quantized as q = ne. This can be easily understood if we recognize that a monopole is
not invariant under a gauge transformation which is, of course, a symmetry of the equations of
motion. To deal with the associated zero-mode properly, the gauge degree of freedom should be
regarded as a collective coordinate. Upon quantization, this collective coordinate leads to the
existence of electrically charged states for the monopole with discrete charges. In the presence
of a CP violating term in the Lagrangian, the situation is more subtle as we will discuss later.
In the next subsection, we describe a limit in which the equations of motion can be solved
exactly for the ’tHooft-Polyakov and the Julia-Zee ansatz. This is the limit in which the soliton
mass saturates the Bogomol’nyi bound.

The Bogomol’nyi bound and the BPS states.

In this subsection, we derive the Bogomol’nyi bound [9] on the mass of a dyon in term of its
electric and magnetic charges which are the sources for F µν = ϕ⃗ · G⃗µν/a. Using the Bianchi
identity (15.337) and the first equation in (15.336), we can write the charges as

g ≡
∫
S2
∞

BidS
i =

1

a

∫
Bai (D

iϕ)ad3x ,

q ≡
∫
S2
∞

EidS
i =

1

a

∫
Eai (D

iϕ)ad3x . (15.351)

Now, in the center of mass frame, the dyon mass is given by

M ≡
∫
d3xθ00 =

∫
d3x

(
1

2

[
(Eak)

2 + (Bak)
2

+ (Dkϕ
a)2 + (D0ϕ

a)2
]
+ V (ϕ)

)
, (15.352)

where, θµν is the energy momentum tensor. Using (15.351) and some algebra we obtain

M =

∫
d3x

(
1

2

[
(Eak −Dkϕ

a sin θ)2

+ (Bak −Dkϕ
a cos θ)2 + (D0ϕ

a)2
]

+ V (ϕ)) + a(q sin θ + g cos θ) , (15.353)

where θ is an arbitrary angle. Since the terms in the first line are positive, we can write
M ≥ (q sin θ+g cos θ). This bound is maximized for tan θ = q/g. Thus we get the Bogomol’nyi
bound on the dyon mass as

M ≥ a
√
g2 + q2 . (15.354)

For the ’t Hooft-Polyakov solution, we have q = 0, and thus, M ≥ a|g|. But |g| = 4π/e and
MW = ae = aq, so that

M ≥ a
4π

e
=

4π

e2
MW =

4π

q2
MW =

ν

α
MW .
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Here, α is the fine structure constant and ν = 1 or 1/4, depending on whether the electron
charge is q or q/2. Since α is a small (∼ 1/137 for electromagnetism), the above relation implies
that the monopole is much heavier than the W-bosons associated with the symmetry breaking.

From (15.353) it is clear that the bound is not saturated unless λ → 0, so that V (ϕ) = 0.
This is the Bogomol’nyi-Prasad-Sommerfield (BPS) limit of the theory [9, 10]. Note that in
this limit, ϕ2

vac = a2 is no longer determined by the theory and, therefore, has to be imposed
as a boundary condition on the Higgs field. Moreover, in this limit, the Higgs scalar becomes
massless. Now, to saturate the bound we set

D0ϕ
a = 0 ,

Eak = (Dkϕ)
a sin θ ,

Bak = (Dkϕ)
a cos θ , (15.355)

where, tan θ = q/g. In the BPS limit, one can use the ’t Hooft-Polyakov (or the Julia-Zee)
ansatz either in (15.336), or in (15.355) to obtain the exact monopole (or dyon) solutions [9, 10].
These solutions automatically saturate the Bogomol’nyi bound and are referred to as the BPS
states. Also, note that in the BPS limit, all the perturbative excitations of the theory saturate
this bound and, therefore, belong to the BPS spectrum. As we will see later, BPS states appears
in a very natural way in theories with N = 2 supersymmetry.

The θ parameter and the Witten effect.

In this section we will show that in the presence of a θ-term in the Lagrangian, the magnetic
charge of a particle always contributes to its electric charge in the way given by formula (15.313)
[11].

To study the effect of CP violation, we consider the Georgi-Glashow model with an addi-
tional θ-term as the only source of CP violation:

L = −1

4
F a
µνF

aµν +
1

2
(Dµϕ

a)2 − λ(ϕ2 − a2)2

+
θe2

32π2
F a
µνF̃

aµν . (15.356)

Here, F̃ aµν = 1
2
ϵµνρσF a

ρσ. The presence of the θ-term does not affect the equations of motion
but changes the physics since the theory is no longer CP invariant. We want to construct the
electric charge operator in this theory. The theory has an SO(3) gauge symmetry but the
electric charge is associated with an unbroken U(1) which keeps the Higgs vacuum invariant.
Hence, we define an operator N which implements a gauge rotation around the ϕ̂ direction with
gauge parameter Λa = ϕa/a. These transformations correspond to the electric charge. Under
N , a vector va and the gauge fields Aaµ transform as

δva =
1

a
ϵabcϕbvc , δAaµ =

1

ea
Dµϕ

a .

Clearly, ϕa is kept invariant. At large distances where |ϕ| = a, the operator e2πiN is a 2π-rotation
about ϕ̂ and therefore exp (2πiN) = 1. Elsewhere, the rotation angle is 2π|ϕ|/a. However, by
Gauss’ law, if the gauge transformation is 1 at∞, it leaves the physical states invariant. Thus,
it is only the large distance behavior of the transformation which matters and the eigenvalues
of N are quantized in integer units. Now, we use Noether’s formula to compute N :

N =

∫
d3x

(
δL

δ∂0Aai
δAai +

δL

δ∂0ϕa
δϕa
)
.
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Since δϕ⃗ = 0, only the gauge part (which also includes the θ-term) contributes:

δ

δ∂0Aai

)
F a
µνF

aµν
)
= 4F aoi = −4Eai ,

δ

δ∂0Aai

(
F̃ a
µνF

aµν
)
= 2ϵijkF a

jk = −4Bai .

Thus,

N =
1

ae

∫
d3xDiϕ⃗ · E⃗i −

θe

8π2a

∫
d3xDiϕ⃗ · B⃗i

=
1

e
Qe −

θe

8π2
Qm ,

where, we have used (15.351). Here, Qe and Qm are the electric and magnetic charge operators
with eigenvalues q and g, respectively, and N is quantized in integer units. This leads to the
following formula for the electric charge:

q = ne+
θe2

8π2
g .

For the ’t Hooft-Polyakov monopole, n = 1, g = −4π/e, and therefore, q = e(1− θ/2π). For a
general dyonic solution we get

g =
4π

e
nm, q = nee+

θe

2π
nm . (15.357)

and we recover (15.313) and (15.314) for q0 = e. In the presence of a θ-term, a magnetic
monopole always carries an electric charge which is not an integral multiple of some basic unit.
In section III we introduced the charge lattice of periods e and eτ . In this parameterization,
the Bogomol’nyi bound (15.354) takes the form

M ≥
√
2|ae(ne + nmτ)| . (15.358)

Notice that for a BPS state, equation (15.358) implies that its mass is proportional to the
distance of its lattice point from the origin.

15.4.7 The Confining phase.

The Abelian projection.

In non-Abelian gauge theories, gauge fixing is a subject full of interesting surprises (ghosts,
phantom solitons,...) which often obscure the physical content of the theory [12].

’t Hooft gave a qualitative program to overcome these difficulties and provided a scenario
that explains confinement in a gauge theory. The idea is to perform the gauge fixing procedure
in two steps. In the first one a unitary gauge is chosen for the non-Abelian degrees of freedom. It
reduces the non-Abelian gauge symmetry to the maximal Abelian subgroup of the gauge group.
Here one gets particle gauge singularities ∗. This procedure is called the Abelian projection
[12]. In this way, the dynamics of the Yang-Mils theory will be reduced to an Abelian gauge
theory with certain additional degrees of freedom.

We need a field that transforms without derivatives under gauge transformations. An ex-
ample is a real field, X in the adjoint representation of SU(N),

X → ΩXΩ−1. (15.359)
∗We will discuss the physical meaning of them later on.
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Such a field can always be found; take for instance Xa = Ga
12. We will use the field X to

implement the unitary gauge condition which will carry us to the Abelian projection of the
SU(N) gauge group. The gauge is fixed by requiring that X be diagonal:

X =

λ1 0
. . .

0 λN

 . (15.360)

The eigenvalues of the matrix X are gauge invariant. Generically they are all different, and the
gauge condition (15.360) leaves an Abelian U(1)N−1 gauge symmetry. It corresponds to the
subgroup generated by the gauge transformations

Ω =

e
iω1 0

. . .
0 eiωN

 ,

N∑
i=1

ωi = 0 . (15.361)

There is also a discrete subgroup of transformations which still leave X in diagonal form. It is
the Weyl group of SU(N), which corresponds to permutations of the eigenvalues λi. We also
fix the Weyl group with the convention λ1 > λ2 > · · ·λN .

At this stage, we have an Abelian U(1) gauge theory with N−1 photons, N(N−1) charged
vector particles and some additional degrees of freedom that will appear presently.

The nature of the gauge singularities.

So far we assumed that the eigenvalues λi coincide nowhere. But there are some gauge field
configurations that produce two consecutive eigenvalues to coincide at some spacetime points

λi = λi+1 = λ, for certain i. (15.362)

These spacetime points are ‘singular’ points of the Abelian projection. The SU(2) gauge
subgroup corresponding to the 2× 2 block matrix with coinciding eigenvalues leaves invariant
the gauge-fixing condition (15.360).

Let us consider the vicinity of such a point. Prior to the complete gauge-fixing we may take
X to be

X =


D1 0 0 0
0 λ+ ϵ3 ϵ1 − iϵ2 0
0 ϵ1 + iϵ2 λ− ϵ3 0
0 0 0 D2

 , (15.363)

where D1 and D2 may safely be considered to be diagonalized because the other eigenvalues
do not coincide. With respect to that SU(2) subgroup of SU(N) that corresponds to rotations
among the ith and i+ 1st components, the three fields ϵa(x) form an isovector. We may write
the central block as

λI2 + ϵaσ
a, (15.364)

where σa are the Pauli matrices.
Consider static field configurations. The points of space where the two eigenvalues coincide

correspond to the points x0 that satisfy

ϵa(x0) = 0 . (15.365)

These three equations define a single space point, and then the singularity is particle-like.
Which is its physical interpretation?.
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15.4.7 The Confining phase.

By analyticity we have that ϵa ∼ (x−x0)a, and our gauge condition corresponds to rotating
the isovector ϵa such that

ϵ =

 0
0
|ϵ3|

 . (15.366)

From the previous sections, we know that the zero-point of ϵa at x0 behaves as a magnetic
charge with respect to the remaining U(1) ⊂ SU(2) rotations. We realize that those gauge field
configurations that produce such a gauge ‘singularities’ correspond to magnetic monopoles.

The non-Abelian SU(N) gauge theory is topologically such that it can be cast into a U(1)N−1

Abelian gauge theory, which will feature not only electrically charged particles but also magnetic
monopoles.

The phases of the Yang-Mills vacuum.

We can now give a qualitative description of the possible phases of the Yang-Mills vacuum. It
is only the dynamics which, as a function of the microscopic bare parameters, determines in
which phase the Yang-Mills vacuum is actually realized.

Classically, the Yang-Mills Lagrangian is scale invariant. One can write down field configu-
rations with magnetic charge and arbitrarily low energy. But quantum corrections are likely to
violate their masslessness. If dynamics simply chooses to give a positive mass to the monopoles,
we are in a Higgs or Coulomb phase. We must look for the magnetic vortex tubes to figure out
if we are in a Higgs phase. It will be a signal that the ordinary Higgs mechanism has taken place
in the Abelian gauge formulation of the Yang-Mills theory. The role of the dynamically gener-
ated Higgs field could be done by some scalar composite operator charged respect the U(1)N−1

gauge symmetries. There is also the possibility that no Higgs phenomenon occurs at all in the
Abelian sector, or that some U(1) gauge symmetries are not spontaneously broken. In this
case we are in the Coulomb phase, with some massless photons, or in a mixed Coulomb-Higgs
phase.

There is a third possibility however. Maybe the quantum corrections give a formally negative
mass squared for the monopole: a magnetically charged object condenses. We apply an ‘electric-
magnetic dual transformation’ to write an effective Lagrangian which encodes the relevant
magnetic degrees of freedom in the infrared limit. In such effective Lagrangian, the Higgs
mechanism takes place in terms of dual variables. We are in a dual Higgs phase. We have
electric flux tubes with finite energy per unit of length. There is a confining potential between
electrically charged objects, like quarks.

In 1994, Seiberg and Witten gave a quantitative proof that such dynamical mechanism of
color confinement takes place in N = 2 super-QCD (SQCD) broken to N = 1 [13], giving a
non-trivial realization of ’t Hooft scenario. When N = 2 SQCD is softly broken to N = 0 the
same mechanism of confinement persists [14, 15].

Oblique confinement.

For simplicity let us consider an SU(2) gauge group. We have seen that for a non-zero CP
violating parameter θ, the physical electric charge of a particle with electric (resp. magnetic)
number ne (resp. nm) is:

q = (ne +
θ

2π
nm)e. (15.367)

Dyons with large electric charges may have larger self-energies contributing positively to
their mass squared. If the state (ne, nm) condenses at θ ≃ 0, it is likely that the state (ne−1, nm)
condenses at θ ≃ 2π. It suggests that there is a phase transition around θ ≃ π. Such first order
phase transitions has been observed in softly broken N = 2 SQCD to N = 0 [16].
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15.4.8 The Higgs/confining phase.

’t Hooft proposed a new condensation mode at θ ≃ π [12]. He imagined the possibility that
a bound state of the dyons (ne, nm) and (ne − 1, nm), with zero electric charge at θ = π, could
be formed. Its smaller electric charge could favor its condensation, leading to what he called
an oblique confinement mode. These oblique modes have also been observed in softly broken
N = 2 SQCD with matter [14, 15].

15.4.8 The Higgs/confining phase.

In the previous section we have characterized the confining phase as the dual of the Higgs phase,
i.e., the physical states are gauge singlets made by the electric degrees of freedom bound by
stable electric flux tubes. A good gauge invariant order parameter measuring such behavior is
the Wilson loop [17]:

W (C) = Tr exp

(
ig

∮
C

dxµAµ

)
. (15.368)

For SU(N) Yang-Mills in the confining phase, for contours C, the Wilson loop obeys the area
law,

⟨W (C)⟩ ∼ exp(−σ · (area)), (15.369)

with σ the string tension of the electric flux tube.
But dynamical matter fields in the fundamental representation immediately create a problem

in identifying the confining phase of the theory through the Wilson loop. The criterion used
for confinement in the pure gauge theory, the energy between static sources, no longer works.
Even if the energy starts increasing as the sources separate, it eventually becomes favorable to
produce a particle-antiparticle pair out of the vacuum. This pair shields the gauge charge of
the sources, and the energy stops growing. So even in a theory that ‘looks’ very confining our
signal fails, and the perimeter law replaces (15.369),

⟨W (C)⟩ =∼ exp(−Λ · (perimeter)) (15.370)

If some scalar field is in the fundamental representation of the gauge group, there is no
distinction at all between the confinement phases and the Higgs phase. Using the scalar field
in the fundamental representation one can build gauge invariant interpolating operators for all
possible physical states. As the vacuum expectation value of the Higgs field in the fundamental
representation continuously changes from large values to smaller ones, the spectrum of all
physical states, and all other measurable quantities, changes smoothly [18]. There is no gauge
invariant operator which can distinguish between the Higgs or confining phases. We are in a
Higgs/confining phase.

In supersymmetric gauge theories, it is common to have scalar fields in the fundamental
representation of the gauge group, the scalar quarks. In such situation, when the theory is not
in the Coulomb phase, we will see that the theory is presented in a Higgs/confining phase. We
could take the phase description which is more appropriate for the theory. For instance, if the
theory is in the weak coupling region, it is better to realize it in the Higgs phase; if the theory
in the strong coupling region, it is better to think it in a confining phase.

15.4.9 Supersymmetry

The supersymmetry algebra and its massless representations.

The N = 1 supersymmetry algebra is written as [19]

{Qα, Qα̇} = 2σµαα̇Pµ

{Qα, Qβ} = 0 , {Qα̇ , Qβ̇} = 0 . (15.371)
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15.4.9 Supersymmetry

Here, Q and Q are the supersymmetry generators and transform as spin 1/2 operators, α, α̇ =
1, 2. Moreover, the supersymmetry generators commute with the momentum operator Pµ
and hence, with P 2. Therefore, all states in a given representation of the algebra have the
same mass. For a theory to be supersymmetric, it is necessary that its particle content form a
representation of the above algebra. The irreducible representations of (15.371) can be obtained
using Wigner’s method.

For massless states, we can always go to a frame where P µ = E(1, 0, 0, 1). Then the
supersymmetry algebra becomes

{Qα, Qα̇} =
)
0 0
0 4E

)
.

In a unitary theory the norm of a state is always positive. Since Qα and Qα̇ are conjugate to
each other, and {Q1, Q1̇} = 0, it follows that Q1|phys >= Q1̇|phys >= 0. As for the other
generators, it is convenient to re-scale them as

a =
1

2
√
E
Q2 , a† =

1

2
√
E
Q2̇ .

Then, the supersymmetry algebra takes the form

{a, a†} = 1 , {a, a} = 0 , {a†, a†} = 0 .

This is a Clifford algebra with 2 fermionic generators and has a 2-dimensional representation.
From the point of view of the angular momentum algebra, a is a rising operator and a† is a
lowering operator for the helicity of massless states. We choose the vacuum such that J3|Ωλ >=
λ|Ωλ > and a|Ωλ >= 0. Then

J3(a
†|Ωλ >) = (λ− 1

2
)(a†|Ωλ >). (15.372)

The irreducible representations are not necessarily CPT invariant. Therefore, if we want to
assign physical states to these representations, we have to supplement them with their CPT
conjugates | − λ >CPT . If a representation is CPT self-conjugate, it is left unchanged. Thus,
from a Clifford vacuum with helicity λ = 1/2 we obtain the N = 1 supermultiplet:(

{ |1/2 >, | − 1/2 >CPT }
{ |0 >, |0 >CPT }

)
(15.373)

which contains a Weyl spinor ψ and a complex scalar ϕ. It is called the scalar multiplet.
The other relevant representation of a renormalizable quantum field theory is the vector

multiplet. It is constructed from a Clifford vacuum with helicity λ = 1:(
{ |1 >, | − 1 >CPT }
{ |1/2 >, | − 1/2 >CPT }

)
. (15.374)

It contains a vector Aµ and a Weyl spinor λ.

Superspace and superfields.

To make supersymmetry linearly realized it is convenient to use the superspace formalism and
superfields [20]. Superspace is obtained by adding four spinor degrees of freedom θα, θα̇ to
the spacetime coordinates xµ. Under the supersymmetry transformations implemented by the
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15.4.9 Supersymmetry

operator ξαQα + ξα̇Q
α̇ with transformation parameters ξ and ξ, the superspace coordinates

transform as

xµ → x′µ = xµ + iθσµξ − iξσµθ ,
θ → θ′ = θ + ξ ,

θ → θ
′
= θ + ξ . (15.375)

These transformations can easily be obtained by the following representation of the supercharges
acting on (x, θ):

Qα =
∂

∂θα
− iσµαα̇θ

α̇
∂µ ,

Qα̇ = − ∂

∂θ
α̇
+ iθασµαα̇ ∂µ . (15.376)

These satisfy {Qα, Qα̇} = 2iσµαα̇ ∂µ. Moreover, using the chain rule, it is easy to see that ∂/∂xµ
is invariant under (15.375) but not ∂/∂θ and ∂/∂θ. Therefore, we introduce the super-covariant
derivatives

Dα =
∂

∂θα
+ iσµαα̇ ∂µ ,

Dα̇ = − ∂

∂θ
α̇
− iσµαα̇θα ∂µ . (15.377)

They satisfy {Dα, Dα̇} = −2iσµαα̇ ∂µ and anti-commute with Q and Q.
The quantum fields transform as components of a superfield defined on superspace,

F (x, θ, θ). Since the θ-variables are anti-commuting, the Taylor expansion of F (x, θ, θ) in
(θ, θ) is finite, indicating that the supersymmetry representations are finite dimensional. The
coefficients of the expansion are the component fields.

To have irreducible representations we must impose supersymmetric invariant constraints
on the superfields. The scalar multiplet (15.373) is represented by a chiral scalar superfield, Φ,
satisfying the chiral constraint

Dα̇Φ = 0 . (15.378)

Note that for yµ = xµ + iθσµθ, we have Dα̇y
µ = 0, Dα̇θ

β = 0 . Therefore, any function of
(y, θ) is a chiral superfield. It can be shown that this also is a necessary condition. Hence, any
chiral superfield can be expanded as

Φ(y, θ) = ϕ(y) +
√
2θψ(y) + θθF (y) . (15.379)

Here, ψ and ϕ are the fermionic and scalar components respectively and F is an auxiliary field
linear and homogeneous. Similarly, an anti-chiral superfield is defined by DαΦ

† = 0 and can be
expanded as

Φ†(y†, θ) = ϕ†(y†) +
√
2θψ(y†) + θθF †(y†) , (15.380)

where, yµ† = xµ − iθσµθ.
The vector multiplet (15.374) is represented off-shell by a real scalar superfield

V = V †. (15.381)

In local quantum field theories, spin one massless particles carry gauge symmetries [21].
These symmetries commute with the supersymmetry transformations. For a vector superfield,
many of its component fields can be gauged away using the Abelian gauge transformation
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V → V + Λ + Λ†, where Λ (Λ†) are chiral (anti-chiral) superfields. In the Wess-Zumino gauge
[19], it becomes

V = −θσµθAµ + iθ2θλ− iθ2θλ+
1

2
θ2θ

2
D .

In this gauge, V 2 = 1
2
AµA

µθ2θ
2 and V 3 = 0. The Wess-Zumino gauge breaks supersymmetry,

but not the gauge symmetry of the Abelian gauge field Aµ. The Abelian superfield gauge field
strength is defined by

Wα = −1

4
D

2
DαV , W α̇ = −1

4
D2Dα̇V .

It can be verified that Wα is a chiral superfield. Since it is gauge invariant, it can be computed
in the Wess-Zumino gauge,

Wα = −iλα(y) + θαD −
i

2
(σµσνθ)α Fµν

+ θ2(σµ∂µλ)α , (15.382)

where, Fµν = ∂µAν − ∂νAµ.
In the non-Abelian case, V belongs to the adjoint representation of the gauge group: V =

VAT
A, where, TA† = TA. The gauge transformations are now implemented by

e−2V → e−iΛ
†
e−2V eiΛ ,

where Λ = ΛAT
A is a chiral superfield. The non-Abelian gauge field strength is defined by

Wα =
1

8
D

2
e2VDαe

−2V

and transforms as
Wα → W ′

α = e−iΛWαe
iΛ .

In components, in the WZ gauge it takes the form

W a
α = −iλaα + θαD

a − i

2
(σµσνθ)αF

a
µν

+ θ2σµDµλ
a
, (15.383)

where,

F a
µν = ∂µA

a
ν − ∂νAaµ + fabcAbµA

c
ν ,

Dµλ
a
= ∂µλ

a
+ fabcAbµλ

c
.

Now we are ready to construct supersymmetric Lagrangians in terms of superfields.

Supersymmetric Lagrangians.

Clearly, any function of superfields is, by itself, a superfield. Under supersymmetry, the super-
field transforms as δF = (ξQ + ξQ)F , from which the transformation of the component fields
can be obtained. Note that the coefficient of the θ2θ2 component is the field component of
highest dimension in the multiplet. Then, its variation under supersymmetry is always a total
derivative of other components. Thus, ignoring surface terms, the spacetime integral of this
component is invariant under supersymmetry. This tells us that a supersymmetric Lagrangian
density may be constructed as the highest dimension component of an appropriate superfield.
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Let us first consider the product of a chiral and an anti-chiral superfield Φ†Φ. This is a
general superfield and its highest component can be computed using (15.379) as

Φ†Φ |
θ2θ

2 = − 1

4
ϕ†2ϕ− 1

4
2ϕ†ϕ+

1

2
∂µϕ

†∂µϕ

− i

2
ψσµ∂µψ +

i

2
∂µψσ

µψ + F †F . (15.384)

Dropping some total derivatives we get the free field Lagrangian for a massless scalar and a
massless fermion with an auxiliary field.

The product of chiral superfields is a chiral superfield. In general, any arbitrary function of
chiral superfields is a chiral superfield:

W(Φi) =W(ϕi +
√
2θψi + θθFi)

=W(ϕi) +
∂W

∂ϕi

√
2θψi

+ θθ

(
∂W

∂ϕi
Fi −

1

2

∂2W

∂ϕiϕj
ψiψj

)
. (15.385)

W is referred to as the superpotential. Moreover, the space of the chiral fields Φ may have a non-
trivial metric gij in which case the scalar kinetic term, for example, takes the form gij∂µϕ

†
i∂

µϕj,
with appropriate modifications for other terms. In such cases, the free field Lagrangian above
has to be replaced by a non-linear σ-model [22]. Thus, the most general N = 1 supersymmetric
Lagrangian for the scalar multiplet is given by

L =

∫
d4θ K(Φ,Φ†) +

∫
d2θW(Φ) +

∫
d2θW(Φ†) .

Note that the θ-integrals pick up the highest component of the superfield and in our conventions,∫
d2θ θ2 = 1 and

∫
d2θ θ

2
= 1. In terms of the non-holomorphic function K(ϕ, ϕ†), the metric

in field space is given by gij = ∂2K/∂ϕi∂ϕ
†
j, i.e., the target space for chiral superfields is always

a Kähler space. For this reason, the function K(Φ,Φ†) is referred to as the Kähler potential.
Remember that the super-field strength Wα is a chiral superfield spinor. Using the normal-

ization Tr(T aT b) = 1
2
δab, we have that

Tr(WαWα) |θθ = −iλaσµDµλ
a
+

1

2
DaDa

− 1

4
F aµνF a

µν +
i

8
ϵµνρσF a

µνF
a
ρσ . (15.386)

The first three terms are real and the last one is pure imaginary. It means that we can include
the gauge coupling constant and the θ parameter in the Lagrangian in a compact form

L =
1

4π
Im

(
τ Tr

∫
d2θWαWα

)
= − 1

4g2
F a
µνF

aµν +
θ

32π2
F a
µνF̃

aµν

+
1

g2
(
1

2
DaDa − iλaσµDµλ

a
) , (15.387)

where, τ = θ/2π + 4πi/g2.
We now include matter fields by the introduction of the chiral superfield Φ in a given

representation of the gauge group in which the generators are the matrices T aij. The kinetic
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energy term Φ†Φ is invariant under global gauge transformations Φ′ = e−iΛΦ. In the local case,
to insure that Φ′ remains a chiral superfield, Λ has to be a chiral superfield. The supersymmetric
gauge invariant kinetic energy term is then given by Φ†e−2VΦ. We are now in a position to
write down the full N=1 supersymmetric gauge invariant Lagrangian as

L =
1

8π
Im

(
τTr

∫
d2θWαWα

)
+

∫
d2θd2θ (Φ†e−2VΦ) +

∫
d2θW +

∫
d2θW . (15.388)

Note that since each term is separately invariant, the relative normalization between the scalar
part and the Yang-Mills part is not fixed by N = 1 supersymmetry. In fact, under loop
effects, by virtue of the perturbative non-renormalization theorem [23], only the term with the
complete superspace integral

∫
d2θd2θ gets an overall renormalization factor Z(µ, g(µ)), with

µ the renormalization scale and g(µ) the renormalized gauge coupling constant. Observe the
unique dependence on Re(τ) in Z, breaking the holomorphic τ -dependence of the Lagrangian L.
But quantities as the superpotentialW are renormalization group invariant under perturbation
theory [23] (we will see dynamically generated superpotentials by nonperturbative effects).

In terms of component fields, the Lagrangian (15.388) becomes

L = − 1

4g2
F a
µνF

aµν +
θ

32π2
F a
µνF̃

aµν

− i

g2
λaσµDµλ

a
+

1

2g2
DaDa

+ (∂µϕ− iAaµT aϕ)†(∂µϕ− iAaµT aϕ)−Daϕ†T aϕ

− i ψσµ(∂µψ − iAaµT aψ) + F †F

+

(
−i
√
2ϕ†T aλaψ +

∂W

∂ϕ
F − 1

2

∂2W

∂ϕ∂ϕ
ψψ + h.c.

)
.

(15.389)

Here, W denotes the scalar component of the superpotential. The auxiliary fields F and Da

can be eliminated by using their equations of motion:

F =
∂W

∂ϕ
, (15.390)

Da = g2(ϕ†T aϕ) . (15.391)

The terms involving these fields, thus, give rise to the scalar potential

V = |F |2 + 1

2g2
DaDa . (15.392)

Using the supersymmetry algebra (15.371) it is not difficult to see that the hamiltonian P 0 = H
is a positive semi-definite operator, ⟨H⟩ ≥ 0, and that the ground state has zero energy if and
only if it is supersymmetric invariant. At the level of local fields, the equation (15.392) means
that the supersymmetric ground state configuration is such that

F = Da = 0 . (15.393)

R-symmetry.

The supercharges Qα and Qα̇ are complex spinors. In the supersymmetry algebra (15.371)
there is a U(1) symmetry associated to the phase of the supercharges:

Q→ Q′ = eiβQ

Q→ Q
′
= e−iβQ. (15.394)
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This symmetry is called the R-symmetry. It plays an important role in the study of supersym-
metric gauge theories.

In terms of superspace, the R-symmetry is introduced through the superfield generator
(θQ + θQ). Then, it rotates the phase of the superspace components θ and θ in the opposite
way as Q and Q. It gives different R-charges for the component fields of a superfield. Consider
that the chiral superfield Φ has R-charge n,

Φ(x, θ)→ Φ′(x, θ) = einβΦ(x, e−iβθ) . (15.395)

In terms of its component fields we have that:

ϕ → ϕ′ = einβϕ ,
ψ → ψ′ = ei(n−1)βψ ,
F → F ′ = ei(n−2)βF .

Since d2(e−iβθ) = e2iβd2θ, we derive that the superpotential has R-charge two,

W(Φ)→W(Φ′, θ) = e2iβW(Φ, e−iβθ) , (15.396)

and that the Kähler potential is R-neutral.

15.4.10 The uses of supersymmetry.

Flat directions and super-Higgs mechanism

We have seen that the fields configuration of the supersymmetric ground state are those cor-
responding to zero energy. To find them we solve (15.393). Consider a supersymmetric gauge
theory with gauge group G, and matter superfields Φi in the representation R(f) of G. The
classical equations of motion of the Da (a = 1, ..., dimG) auxiliary fields give

Da =
∑
f

ϕ†
fT

a
f ϕf . (15.397)

The solutions of Da = 0 usually lead to the concept of flat directions. They play an important
role in the analysis of SUSY theories. These flat directions may be lifted by F -terms in the
Lagrangian, as for instance mass terms.

As an illustrative example of flat directions and some of its consequences, consider the SU(2)
gauge group, one chiral superfield Q in the fundamental representation of SU(2) and another
chiral superfield Q̃ in the anti-fundamental representation of SU(2). This is supersymmetric
QCD (SQCD) with one massless flavor. In this particular case, the equation (15.397) becomes

Da = q†σaq − q̃σaq̃†. (15.398)

The equations Da = 0 have the general solution (up to gauge and global symmetry transfor-
mations)

q = q̃† =

(
a
0

)
, a arbitrary . (15.399)

The scalar superpartners of the fermionic quarks, (q, q), called squarks, play the role of Higgs
fields. As these are in the fundamental representation of the gauge group, SU(2) is completely
broken by the super-Higgs mechanism (for a ̸= 0). It is just the supersymmetric generalization
of the familiar Higgs mechanism: three real scalars are eaten by the gluon, in the adjoint
representation, and three Weyl spinor combinations of the quark spinors are eaten by the
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gluino to form a massive Dirac spinor in the adjoint of SU(2). Gluons and gluinos acquire the
classical square mass

M2
g = 2g20|a|2, (15.400)

where g0 is the bare gauge coupling. We see that the theory is in the Higgs/confining phase.
But there is not mass gap; it remains a massless superfield. Its corresponding massless scalar
must move along some flat direction of the classical potential. This flat direction is given by the
arbitrary value of the real number |a|. This degeneracy is not unphysical, as in the spontaneous
breaking of a symmetry. When we move along the supersymmetric flat direction the physical
observables change, as for instance the gluon mass (15.400). Different values of |a| correspond
to physically inequivalent vacua. The space they expand is called the moduli space. It would
be nice to have a gauge invariant parameterization of such an additional parameter of the gauge
invariant vacuum. It can only come from the vacuum expectation value of some gauge invariant
operator, since it is an independent new classical parameter which does not appear in the bare
Lagrangian. The simplest choice is to take the following gauge invariant chiral superfield:

M = QQ̃ . (15.401)

Classically, its vacuum expectation value is

⟨M⟩ = |a|2, (15.402)

a gauge invariant statement and a good parameterization of the flat direction.
There is one consequence of the flat directions in supersymmetric gauge theories that, when

combined with the property of holomorphy, will be important to obtain exact results in su-
persymmetric theories. SQCD depends of the complex coupling τ(µ) = θ(µ)/2π + 4πi/g2(µ)
at scale µ. The angle θ(µ) measures the strength of CP violation at scale µ. By asymptotic
freedom, the theory is weakly coupled at scales higher than the dynamically generated scale
|Λ|, which is defined by

Λ ≡ µ0e
2πiτ(µ0)

b0 , (15.403)

where µ0 is the ultraviolet cut-off where the bare parameter τ0 = τ(µ0) is defined, and b0 is the
one-loop coefficient of the beta function,

µ
∂g

∂µ
(µ) = g

(
−b0(g2/16π2) + O(g4)

)
. (15.404)

The complex parameter Λ is renormalization group invariant in the scheme of the Wilsonian
effective actions, where holomorphy is not lost (see below). Observe also that the bare instanton
angle θ0 plays the role of the complex phase of Λb0 .

At scales µ ≤Mg all the gluons decouple and the relevant degrees of freedom are those of
the ‘meson’ M . Its self-interactions are completely determined by the ‘microscopic’ degrees of
freedom of the super-gluons and super-quarks. We must perform a matching condition for the
physics at some scale of orderMg; the renormalization group will secure the physical equivalence
at the other energies. IfMgĝΛ, this matching takes place at weak coupling, where perturbation
theory in the gauge coupling g is reliable, and we can trust the semiclassical arguments, like
those leading to formulae (15.400) and (15.402).

So far we have shown the existence of a flat direction at the classical level. When quantum
corrections are included, the flat direction may disappear and a definite value of ⟨M⟩ is selected.
For the Wilsonian effective description in terms of the relevant degrees of freedom M , this is
only possible if a superpotential W(M) is dynamically generated for M . By the perturbative
non-renormalization theorem, this superpotential can only be generated by nonperturbative
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effects, since classically there was no superpotential for the massless gauge singlet M because
of the masslessness of the quark multiplet.

If we turn on a bare mass for the quarks, m, the flat direction is lifted at classical level and
a determined value of mass dependent function ⟨M⟩ is selected. But the advantage of the flat
direction to carry ⟨M⟩ → ∞ to be at weak coupling is not completely lost. This limit can now
be performed by sending the free parameter m to the appropriate limit, as far as we are able to
know the mass dependence of the vacuum expectation value of the meson superfield M . Here
holomorphy is very relevant.

Wilsonian effective actions and holomorphy.

The concept of Wilsonian effective action is simple. Any physical process has a typical scale.
The idea of the Wilsonian effective action is to give the Lagrangian of some physical processes
at its corresponding characteristic scale µ:

L(µ)(x) =
∑
i

gi(µ)Oi(x, µ) . (15.405)

Oi(x, µ) are some relevant local composite operators of the effective fields φa(p, µ). These are
the effective degrees of freedom at scale µ, with momentum modes p running from zero to µ.
There could be some symmetries in the operators Oi that our physical system could realize in
some way, broken or unbroken. The constants gi(µ) measure the strength of the interaction Oi
of φa at scale µ.

Behind some macroscopic physical processes, there is usually a microscopic theory, with a
bare Lagrangian L(µ0)(x) defined at scale µ0. The microscopic theory has also its characteristic
scale µ0, much higher than the low energy scale µ. Also its corresponding microscopic degrees
of freedom, ϕj(p, µ0), may be completely different than the macroscopic ones φa(p, µ). The
bare Lagrangian encodes the dynamics at scales below the ultraviolet cut-off µ0. The effective
Lagrangian (15.405) is completely determined by the microscopical Lagrangian L(µ0)(x). It is
obtained by integrating out the momentum modes p between µ and µ0. It gives the values of
the effective couplings in terms of the bare couplings gi0(µ0),

gi(µ) = gi(µ;µ0, g
i
0(µ0)) . (15.406)

In the macroscopic theory there is no reference to the scale µ0. Physics is independent of the
ultraviolet cut-off µ0:

∂gi

∂µ0

= 0 . (15.407)

The µ0-dependence on the bare couplings gi0(µ0) cancel the explicit µ0-dependence in (15.406).
This is the action of the renormalization group. It allows to perform the continuum limit
µ0 →∞ without changing the low energy physics.

In supersymmetric theories, there are some operators Oi(z), depending only on z = (x, θ),
the chiral superspace coordinate, not on θ. Clearly, their field content can only be made of chiral
superfields. Those of most relevant physical importance are the superpotentialW(Φi, τ0,mf ),
and the gauge kinetic operator τ(µ/µ0, τ0)W

αWα. We say that the superpotential W and
the effective gauge coupling τ are holomorphic functions, with the chiral superfields Φi, the
dimensionless quotient µ/µ0 and the bare parameters τ0 and mf playing the role of the complex
variables. The Kähler potential K(Φ†,Φ) is a real function of the variables Φi, but as far as
supersymmetry is not broken and the theory is not on some Coulomb phase, the vacuum
structure is determined by the superpotential in the limit µ→ 0.

We know that complex analysis is substantially more powerful than real analysis. For
instance, there are a lot of real functions f(x) that at x→ 0 and x→∞ go like f(x)→ x. But
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15.4.11 N = 1 SQCD.

there is only one holomorphic function f(z) (∂zf(z) = 0) with those properties: f(z) = z. The
holomorphic constraint is so strong that sometimes the symmetries of the theory, together with
some consistency conditions, are enough to determine the unique possible form of the functions
W and τ [24].

An illustrative example is the saturation at one-loop of the holomorphic gauge coupling
τ(µ/µ0, τ0) at any order of perturbation theory. Since τ0 = θ0/2π+ i4π/g

2
0, physical periodicity

in θ0 implies

τ(
µ

µ0

, τ0) = τ0 +
∞∑
n=0

cn

(
µ

µ0

)
e2πniτ0 , (15.408)

where the sum is restricted to n ≥ 0 to ensure a well defined weak coupling limit g0 → 0.
The unique term compatible with perturbation theory is the n = 0 term. Terms with n > 0
corresponds to instanton contributions. The function c0(t) must satisfy c0(t1t2) = c0(t1)+c0(t2)
and hence it must be a logarithm. Hence

τpert

(
µ

µ0

, τ0

)
= τ0 +

ib0
2π

ln
µ

µ0

, (15.409)

with b0 the one-loop coefficient of the beta function. We can use the definition (15.403) of the
dynamically generated scale Λ to absorb the bare coupling constant inside the logarithm

τpert

(µ
Λ

)
=
ib0
2π

ln
µ

Λ
, (15.410)

showing explicitly the independence of the effective gauge coupling in the ultraviolet cut-off µ0.
We would like to comment that the one-loop saturation of the perturbative beta function

and the renormalization group invariance of the scale Λ can be lost by the effect of the Konishi
anomaly [25, 26]. In general, after the integration of the modes µ < p < µ0 the kinetic terms
of the matter fields Φi are not canonically normalized,

L(µ) =
∑
i

Zi(
µ

µ0

, g0)

∫
d4θΦ†

ie
−2VΦi + · · · (15.411)

These terms have an integral on the whole superspace (θ, θ) and hence are not protected by
any non-renormalization theorem. For N = 1 gauge theories, holomorphy is absent there,
and the functions Zi( µµ0 , g0) are just real functions with perturbative multi-loops contributions.
A canonical normalization of the matter fields in the effective action, defining the canonical
fields Φ′

i = Z
1/2
i Φi do not leaves invariant the path integral measure ΠiDΦi. The anomaly

is proportional to (
∑

i lnZi) W
αWα, giving a non-holomorphic contribution to the effective

coupling τ . For N = 2 theories, Zi = 1 and holomorphy is not lost for τ [26, 27].

15.4.11 N = 1 SQCD.

Classical Lagrangian and symmetries.

We now analyze N = 1 SQCD with gauge group SU(Nc) and Nf flavors ∗ . The field content is
the following: There is a spinor chiral superfield Wα in the adjoint of SU(Nc), which contains
the gluons Aµ and the gluinos λ. The matter content is given by 2Nf scalar chiral superfields
Qf and Q̃f , f, τf = 1, ..., Nf , in the Nc and Nc representations of SU(Nc) respectively. The

∗Some reviews on exacts results in N = 1 supersymmetric gauge theories are [28].
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15.4.11 N = 1 SQCD.

renormalizable bare Lagrangian is the following:

LSQCD =
1

8π
Im

(
τ0

∫
d2θ WαWα

)
+

∫
d4θ
(
Q†
fe

−2VQf + Q̃fe
2V Q̃†

f

)
+

(∫
d2θ mfQ̃fQf + h.c.

)
, (15.412)

with τ0 = θ0/2π+ i4π/g
2
0 and mf the bare couplings. In the massless limit the global symmetry

of the classical Lagrangian is SU(Nf )L × SU(Nf )R × U(1)B × U(1)A × U(1)R. For Nc = 2 the
representations 2 and 2 are equivalent, and the global symmetry group is enlarged. In general
we consider Nc > 2. The U(1)A and U(1)R symmetries are anomalous and are broken by
instanton effects. But we can perform a linear combination of U(1)A and U(1)R, call it U(1)AF ,
that is anomaly free. We have the following table of representations for the global symmetries
of SQCD:

SU(Nf )L SU(Nf )R U(1)B U(1)AF

Wα 1 1 0 1

Qf Nc 1 1
(Nf−Nc)

Nf

Q̃f 1 Nc −1 (Nf−Nc)

Nf

The anomaly free R-charges, RAF , are derived by the following. The superfield Wα is neutral
under U(1)A and its R-transformation is fixed to be

Wα(x, θ)→ eiβWα(x, e
−iβθ). (15.413)

Consider now that the fermionic quarks ψ have charge Rψ under an U(1)AF transformation. In
the one-instanton sector, λ has 2Nc zero modes, and one for each Qf and Q̃f . In total we have
2Nc + 2NfRψ = 0 to avoid the anomalies. We derive that Rψ = −Nc/Nf . Since this is the
charge of the fermions, the superfields (Qf , Q̃f ) have RAF charge 1−Nc/Nf = (Nf −Nc)/Nf .

The classical moduli space.

The classical equations of motion of the auxiliary fields are

F qf = −mf q̃f = 0 ,

F q̃f = −mfqf = 0 ,

Da =
∑
f

(
q†fT

aqf − q̃fT aq̃†f
)
= 0 . (15.414)

If there is a massive flavor mf��=0, then we must have qf = q̃f = 0. As we want to go to
the infrared limit to analyze the vacuum structure, the interesting case is the situation of Nf

massless flavors. If some quark has a non-zero mass m, its physical effects can be decoupled
at very low energy, by taking into account the appropriate physical matching conditions at
the decoupling scale m (see below). If all quarks are massive, in the infrared limit we only
have a pure SU(Nc) supersymmetric gauge theory. The Witten index of pure SU(Nc) super
Yang-Mills is tr(−1)F = Nc [29]. We know that supersymmetry is not broken dynamically in
this theory, and that there are Nc equivalent vacua. The 2Nc gaugino zero modes break the
U(1)R symmetry to Z2Nc by the instantons. Those Nc vacua corresponds to the spontaneously
broken discrete symmetry Z2Nc to Z2 by the gaugino condensate ⟨λλ⟩ ≠ 0.
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15.4.11 N = 1 SQCD.

If there are some massless super-quarks, they can have non-trivial physical effects on the
vacuum structure. Consider that we have Nf massless flavors. We can look at the qf and q̃f
scalar quarks as Nc × Nf matrices. Using SU(Nc) × SU(Nf ) transformations, the qf matrix
can be rotated into a simple form. There are two cases to be distinguished:

a) Nf < Nc:
In this case we have that the general solution of the classical vacuum equations (15.414) is:

qf = q̃†f =



v1 0 · · · 0
0 v2

. . .
0 · · · vNf

...
...

0 · · · 0


, (15.415)

with vf arbitrary. These scalar quark’s vacuum expectation values break spontaneously the
gauge group to SU(Nc−Nf ). By the super-Higgs mechanism, N2

c − (Nc−Nf )
2 = 2NcNf −N2

f

chiral superfields are eaten by the vector superfields. This leaves 2NfNc− (2NfNc−N2
f ) = N2

f

chiral superfields. They can be described by the meson operators

Mfg ≡ Q̃fQg. (15.416)

which provide a gauge invariant description of the classical moduli space.
b) Nf ≥ Nc:
In this case the general solution of (15.414) is:

qf =


v1 0 · · · 0 · · · 0
0 v2

...
...

. . . ...
vNc · · · 0

 , (15.417)

q̃†f =


ṽ1 0 · · · 0 · · · 0
0 ṽ2

...
...

. . . ...
ṽNc · · · 0

 , (15.418)

with the parameters vi, ṽi (i = 1, ..., Nc) subject to the constraint

|vi|2 − |ṽi|2 = constant independent of i. (15.419)

Now the gauge group is completely higgsed. The gauge invariant parameterization of the
classical moduli space must be done by 2NfNc − (N2

c − 1) chiral superfields. For instance, if
Nf = Nc, we need N2

c + 1 superfields. The meson operators Mfg provide N2
c . The remaining

degree of freedom comes from the baryon-like operators

B = ϵf1···fNfQf1 · · ·QfNf
,

B̃ = ϵf1···fNf Q̃f1 · · · Q̃fNf
, (15.420)

with the color indices also contracted by the ϵ-tensor. These are two superfields, but there is a
holomorphic constraint

detM − B̃B = 0 . (15.421)
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15.4.12 The vacuum structure of SQCD with Nf < Nc.

For Nf = Nc + 1, we need 2Nc(Nc + 1) − (N2
c − 1) = N2

c + 2Nc + 1 independent chiral
superfields. We can construct the baryon operators:

Bf = ϵff1···fNcQf1 · · ·QfNc
,

B̃f = ϵff1···fNc Q̃f1 · · · Q̃fNc
. (15.422)

Mfg, Bf and B̃f have (Nc + 1)2 + 2(Nc + 1) components. The matrix Mfg has rank Nc, which
can be expressed by the 2(Nc + 1) constraints:

MfgB
g =MfgB̃

g = 0 . (15.423)

And in total we get the needed N2
c + 2Nc + 1 independent chiral superfields.

As Nf increases, we get more and more constraints. Each case with Nf ≥ Nc is interesting
by itself and we will have to look at them in different ways.

15.4.12 The vacuum structure of SQCD with Nf < Nc.

The Afleck-Dine-Seiberg’s superpotential.

First we consider the case of massless flavors. At the classical level there are flat directions
parameterized by the free vacuum expectation values of the meson fields Mfg. They belong
to the representation (Nf ,Nf , 0, 2(Nf − Nc)/Nf ) of the global symmetry group SU(Nf )L ×
SU(Nf )R × U(1)B × U(1)AF . If nonperturbative effects generate a Wilsonian effective super-
potentialW , it must depend in a holomorphic way of the light chiral superfields Mfg and the
bare coupling constant τ0. The renormalization group invariance of the Wilsonian effective
action demands that the dependence on the bare coupling constant τ0 of W enters thought
the dynamically generated scale ΛNf ,Nc . The invariance of W under SU(Nf )L × SU(Nf )R
rotations reduces the dependence in the mesons fields to the combination detM . There is only
one holomorphic functionW =W(detM,ΛNf ,Nc), with RAF charge two that can be built from
the variables detM and ΛNf ,Nc , which have RAF charge 2(Nf − Nc) and zero, respectively. It
is the Afleck-Dine-Seiberg’s superpotential [30, 31]

W = cNf ,Ng

(
ΛNf ,Nc

detM

) 1
(Nc−Nf )

, (15.424)

where cNf ,Nc are some undetermined dimensionless constants. If cNf ,Nc��=0, (15.424) corre-
sponds to an exact nonperturbative dynamically generated Wilsonian superpotential. It has
catastrophic consequences, the theory has no vacuum. If we try to minimize the energy derived
from the superpotential (15.424) we find that |⟨detM⟩| → ∞.

Massive flavors.

When we add mass terms for all the flavors we expect to find some physical vacua. In fact, by
Witten index, we should find Nc of them. To verify this, let us try to compute ⟨Mfg⟩ taking
advantage of its holomorphy and symmetries.

A bare mass matrix mfg��=0 breaks explicitly the SU(Nf ) × SU(Nf )R × U(1)AF global
symmetry of the bare Lagrangian (15.412). In terms of the meson operator the mass term is

Wtree = tr (mM). (15.425)

We see that, under an L and R rotation of SU(Nf )L and SU(Nf )R respectively, we can recover
the SU(Nf )L×SU(Nf )R invariance if we require m to transform as m→ L−1mR. In the same
way, as the superpotential has R-charge two, the U(1)AF invariance is recovered if we assign
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15.4.12 The vacuum structure of SQCD with Nf < Nc.

the charge 2−2(Nf −Nc)/Nf = 2Nc/Nf to the mass matrix m. The vacuum expectation value
of the matrix chiral superfield M is a holomorphic function of ΛNf ,Nc and m. To implement
the same action under SU(Nf )L × SU(Nf )R rotations, we must have

⟨M⟩ = f(detm,ΛNf ,Nc)m
−1. (15.426)

The dependence in detm of the function f is determined by the RAF charge. Then, the ΛNf ,Nc

dependence is worked out by dimensional analysis. The result is

⟨M⟩ = (const)
(
Λ

3Nc−Nf

Nf ,Nc
detm

) 1
Nc
m−1 . (15.427)

The Nc roots give Nc vacua. Observe that this is an exact result, and valid also for Nf ≥ Nc.
There is only an dimensionless constant (in general Nf and Nc dependent) to be determined. It
would be nice to be able to carry its computation in the weak coupling limit, since holomorphy
would allow to extend (15.427) also to the strong coupling region.

The result (15.427) suggest the existence of an effective superpotential out of which (15.427)
can be obtained. Holomorphy and symmetries tell us that the possible superpotential would
have to be

W(M,ΛNf ,Nc ,m) =

(
ΛNf ,Nc

detM

) 1
(Nc−Nf )

·

f

(
t = tr(mM)

(
ΛNf ,Nc

detM

) −1
(Nc−Nf )

)
. (15.428)

In the limit of weak coupling, ΛNf ,Nc → 0, we know that f(t) = cNf ,Nc + t. But we can play at
the same time with the free values of m to reach any desired value of t. This fixes the function
f(t) and the superpotentialW(M,ΛNf ,Nc ,m) to be

W(M,ΛNf ,Nc ,m) = cNf ,Nc

(
ΛNf ,Nc

detM

) 1
(Nc−Nf )

+ tr (mM). (15.429)

As a consistency check, when we solve the equations ∂W/∂M = 0, we obtain the previously
determined vacuum expectation values (15.427).

Finally, we have to check the non-vanishing of cNf ,Nc . We take advantage of the decoupling
theorem to obtain further information about the constants cNf ,Nc . Let us add a mass term m
only for the Nf flavor,

W(M,ΛNf ,Nc ,m) =

(
ΛNf ,Nc

detM

) 1
(Nc−Nf )

+ mMNfNf
. (15.430)

Solving for the equations:

∂W

∂MfNf

(M,ΛNf ,Nc ,m) = 0,

∂W

∂MNff

(M,ΛNf ,Nc ,m) = 0, (15.431)

for f < Nf gives that MfNf
= MNff = 0. Hence detM = MNfNf

· detM̂ , with M̂ the
(Nf − 1)× (Nf − 1) matrix meson operator of the Nf − 1 massless flavors. At scales below m,
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the Nf -th flavor decouples and its corresponding MNfNf
meson operator is frozen to the value

that satisfies:

∂W

∂MNfNf

(M,ΛNf ,Nc ,m) = −
cNf ,Nc

(Nf −Nc)
·

Λ
(3Nf−Nc)/(Nf−Nc)
Nf ,Nc

(detM)
1

(Nc−Nf )
−1
detM̂ +m = 0. (15.432)

If we substitute the solution ⟨MNfNf
⟩ of the previous equation into the superpotential

W(M,ΛNf ,Nc ,m), we should obtain the superpotentialW(M̂,ΛNf−1,Nc , 0) of Nf − 1 massless
flavors with the dynamically generated scale ΛNf−1,Nc . The matching conditions at scale m
between the theory with Nf flavors and the theory with Nf − 1 flavors gives the relation

mΛ
3Nc−Nf

Nf ,Nc
= Λ

3Nc−Nf+1
Nf−1,Nc

, (15.433)

thus,

W(M,ΛNf ,Nc ,m)|⟨MNfNf
⟩ = (Nc −Nf + 1) ·(

cNf ,Nc

Nc −Nf

) Nc−Nf
Nc−Nf+1

(
ΛNf−1,Nc

detM̂

) 1
(Nc−Nf+1)

, (15.434)

and we obtain the relation(
cNf ,Nc

Nc −Nf

)Nc−Nf

=

(
cNf−1,Nc

Nc −Nf + 1

)Nc−Nf+1

. (15.435)

Similarly, we can try to obtain another relation between the constants cNf ,Nc for different
numbers of colors. To this end we give a large expectation value to MNfNf

with respect the
expectation values of M̂ . Then below the scale ⟨MNfNf

⟩ we have SQCD with Nc − 1 colors
and Nf − 1 flavors. Following the same strategy as before we find that cNf−1,Nc−1 = cNc,Nf

. It
means that cNc,Nf

= cNf−Nc , which together with the relation (15.435) gives

cNf ,Nc = (Nc −Nf )c1,2 . (15.436)

We just have to compute the dimensionless constant c1,2 of the gauge group SU(2) with one
flavor. In this case, or for the general case of Nf = Nc − 1, the gauge group is completely
higgsed and there are not infrared divergences in the instanton computation. In the weak
coupling limit the unique surviving nonperturbative contributions come from the one-instanton
sector. A direct instanton calculation reveals that the constant c2,1��=0 [31] ∗.

For Nf < Nc − 1 there is an unbroken gauge group SU(Nc − Nf ). At scales below the
smallest eigenvalue of the matrix ⟨Mfg⟩ we have a pure super Yang-Mills theory with Nc −Nf

colors. This theory is believed to confine with a mass gap given by the gaugino condensate
⟨λλ⟩ ≠ 0. Consider the simplest case of ⟨Mfg⟩ = µ21Nf

. Matching the gauge couplings at scale
µ gives Λ

3Nc−Nf

Nf ,Nc
= (detM) Λ

3(Nc−Nf )
0,Nc−Nf

, which implies for the effective superpotential

W = (Nc −Nf )Λ
3
0,Nc−Nf

. (15.437)

On the other hand, the gaugino bilinear λλ is the lowest component of the chiral superfield
S = WαWα, which represents the super-glueball operator. The bare gauge coupling τ0 acts as
the source of the operator S. If we differentiate (15.437) with respect to lnΛ3(Nc−Nf ) we obtain
the gaugino condensate

⟨λλ⟩ = Λ3
0,Nc−Nf

. (15.438)

∗In the DR scheme c2,1 = 1 [32]. If we do not say the contrary, we will work on such a scheme.
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In fact, following the ‘integrating in’ procedure [33, 34], we would obtain the Veneziano-
Yankielowicz effective Lagrangian [35].

It is not possible to extend the Afleck-Dine-Seiberg’s superpotential to the case of Nf ≥ Nc.
For these values the quantum corrections do not lift the flat directions, and we still have a
moduli space which may be different from the classical one. This is the case of Nf = Nc.

15.4.13 The vacuum structure of SQCD with Nf = Nc.

A quantum modified moduli space.

For Nf = Nc, the classical moduli space is spanned by the gauge singlet operators Mfg, B and
B̃ subject to the constraint detM − B̃B = 0. At quantum level, instanton effects could change
the classical constraint to

detM − B̃B = Λ2Nc , (15.439)

since Λ2Nc ∼ e−8π/g2+iθ corresponds to the one-instanton factor, it has the right dimensions,
and the operators (Qf , Q̃f ) have RAF charge zero.

To check if the quantum correction (15.439) really takes place, add a mass term for the
quarks. The unique possible holomorphic term with RAF charge two that can be generated
with the variables (Mfg, B, B̃,Λ,m) is

W = trmM . (15.440)

Imagine now that the Nc-flavor is much heavier, with bare mass m, than the Nc−1 other ones,
with bare mass matrix m̂. The degree of freedom MNcNc is given by the constraint. Locate at
B = B̃ = MfNc = 0. By equation (15.427) we know that the (Nc − 1)× (Nc − 1) matrix M̂ is
determined to be

M̂ =
(
Λ2Nc+1
Nc−1,Nc

detm̂
) 1

Nc m̂−1, (15.441)

which has a non-zero determinant. It indicates that the constraint (15.439) is really generated
at quantum level [36]. As a final check, consider the simplest situation of Nc − 1 massless
flavors. When we use the constraint (15.439) to express MNcNc as function of detM̂ we obtain

W =
mΛ2Nc

detM̂
, (15.442)

the Afleck-Dine-Seiberg’s superpotential for Nf = Nc − 1 massless flavors.
Far from the origin of the moduli field space we are at weak coupling and the quantum moduli

space given by the constraint (15.439) looks like the classical moduli space (15.421). But far
from the origin of order Λ, the one-instanton sector is sufficiently strong to change significatively
the vacuum structure. Observe that the classically allowed point M = B = B̃ = 0 is not a
point of the quantum moduli space and the gluons never become massless.

Patterns of spontaneous symmetry breaking and ’t Hooft’s anomaly matching con-
ditions.

Our global symmetries are SU(Nf )L × SU(Nf )R × U(1)B × U(1)AF . Since for Nf = Nc the
super-quarks are neutral with respect to the non-anomalous symmetry U(1)AF , it is never
spontaneously broken. The other symmetries present different patterns of symmetry breaking
depending on which point of the moduli space the vacuum is located ∗.

For instance, the point
M = Λ21Nf

, B = B̃ = 0, (15.443)

∗Different patterns of symmetry breaking have also been observed in softly broken N = 2 SQCD [15].

389



15.4.13 The vacuum structure of SQCD with Nf = Nc.

suggests the spontaneous symmetry breaking

SU(Nf )L × SU(Nf )R × U(1)B × U(1)AF
−→ SU(Nf )V × U(1)B × U(1)AF , (15.444)

with SU(Nf )V the diagonal part of SU(Nf )×SU(Nf )R. To check it, the unbroken symmetries
must satisfy the ’t Hooft’s anomaly matching conditions [37].

With respect to the unbroken symmetries the quantum numbers of the elementary and
composite massless fermions, at high and low energy respectively, are

SU(Nf )V U(1)B U(1)AF

λ 1 0 1
ψq Nf 1 −1
ψq̃ Nf −1 −1

ψM N2
f − 1 0 −1

ψB 1 Nf −1
ψB̃ 1 −Nf −1

Observe there are only N2
f − 1 independent meson fields, arranged in the adjoint of SU(Nf )V ,

since the constraint (15.439) eliminates one of them. There are N2
f − 1 gluinos and Nf extra

components for each quark ψq and anti-quark ψq̃ because of the gauge group SU(Nc). The
anomaly coefficients are:

triangles high energy low energy

SU(Nf )
2 × U(1)AF −2NfT (Nf ) −T (N2

f − 1)
U(1)3AF −2N2

f + (N2
f − 1) −(N2

f − 1)− 2
U(1)2B × U(1)AF −N2

f −N2
f −2N2

f

trU(1)AF −2N2
f +N2

f − 1 −(N2
f − 1)− 2

The constants T (R) are defined by tr(T aT a) = T (R)δab, with T a in the representation
R of the group SU(N). For the fundamental representation, T (N) = 1/2. For the adjoint
representation, T (N2 − 1) = N . The coefficient of trU(1)AF corresponds to the gravitational
anomaly. One can check that all the anomalies match perfectly, supporting the spontaneous
symmetry breaking pattern of (15.444).

The quantum moduli space of Nf = Nc allows another particular point with a quite different
breaking pattern. It is:

M = 0, B = −B̃ = ΛNc . (15.445)

At this point, only the vectorial baryon symmetry is broken, all the chiral symmetries
SU(Nf )L × SU(Nf )R × U(1)AF remain unbroken. We check this pattern with the help of the
’t Hooft’s anomaly matching conditions again. In this case we have the quantum numbers:
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SU(Nf )L SU(Nf )R U(1)AF

λ 1 1 1
ψq Nf 1 −1
ψq̃ 1 Nf −1

ψM Nf Nf −1
ψB 1 1 −1
ψB̃ 1 1 −1

and the anomaly coefficients are:

triangles high energy low energy

SU(Nf )
3
L NfC3 NfC3

SU(Nf )
3
R NfC3 NfC3

SU(Nf )
2 × U(1)AF −NfT (Nf ) −NfT (Nf )

U(1)3AF −2N2
f +N2

f − 1 −N2
f − 1

where C3 is defined by tr(T a{T b, T c}) = C3d
abc, with T a in the fundamental representation of

SU(Nf ). Because of the constraint (15.439) there is only one independent baryonic degree of
freedom. The anomaly coefficients match perfectly.

15.4.14 The vacuum structure of SQCD with Nf = Nc + 1.

The quantum moduli space.

First we consider if the classical constraints:

MfgB
g =MfgB̃

f = 0, (15.446)
detM(M−1)fg −BfτBg = 0, (15.447)

are modified quantum mechanically. For Nf = Nc + 1 the quark multiplets (Qf , τQf ) have
RAF charge equal to 1/Nf . The mass matrix breaks the U(1)AF symmetry with a charge of
2− 2/Nf = 2Nc/Nf . It is exactly the charge U(1)AF of equation (15.447). On the other hand,
the instanton factor Λ2Nc−1 supplies the right dimensionality. Then, there is the possibility that
the classical constraint (15.447) is modified by nonperturbative contributions to

detM(M−1)fg −BfτBg = Λ2Nc−1mfg. (15.448)

On the other hand, one can see that the classical constraints (15.446) do not admit modification.
Then if M ̸= 0 we have Bf = τBg = 0. Using (15.427), we obtain

detM(M−1)fg = Λ2Nc−1mfg , (15.449)

and the quantum modification (15.448) really takes place [36].
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S-confinement.

In the massless limit mfg → 0, (15.446) and (15.447) are satisfied at the quantum level. It
means that the origin of field space, M = B = τB = 0, is an allowed point of the quantum
moduli space. On such a point, there is no spontaneous symmetry breaking at all. We use
the ’t Hooft’s anomaly matching conditions to check it. The quantum numbers of the massless
fermions at high and low energy are:

SU(Nf )L SU(Nf )R U(1)B U(1)AF

λ 1 1 0 1
ψq Nf 1 1 1

Nf
− 1

ψq̃ 1 Nf −1 1
Nf
− 1

ψM Nf Nf 0 2
Nf
− 1

ψB Nf 1 Nf − 1 − 1
Nf

ψB̃ 1 Nf 1−Nf − 1
Nf

and the anomaly coefficients are:

triangles high energy low energy

SU(Nf )
3 NcC3 NfC3 + C3

SU(Nf )
2 NcT (Nf )(−Nc

Nf
) NfT (Nf )(

2
Nf
− 1)

×U(1)AF +T (Nf )(− 1
Nf

)

U(1)2B × U(1)AF 2NcNf (−Nc

Nf
) 2NfN

2
c (− 1

Nf
)

U(1)3AF (N2
c − 1) N2

f (
2
Nf
− 1)3

+2NfNc(−Nc

Nf
)3 +2Nf (− 1

Nf
)3

trU(1)AF (N2
c − 1) N2

f (
2
Nf
− 1)

+2NfNc(−Nc

Nf
) +2Nf (− 1

Nf
)

with complete agreement. Hence, at the origin of field space we have massless mesons and
baryons, and the full global symmetry is manifest. It is a singular point, with the number of
massless degrees of freedom larger than the dimensionality of the space of vacua. As we move
along the moduli space away from the origin, the ‘extra’ fields become massive and the massless
fluctuations match with the dimensionality of the moduli space. As we are in a Higgs/confining
phase, there should be a smooth connection of the dynamics at the origin of field space with
the one away from it. This dynamics must be given by some nonperturbative superpotential
of mesons and baryons. A theory with the previous characteristics is called s-confining.

There is a unique effective superpotential yielding all the constraints [36],

W =
1

Λ2Nf−3
(τBgMgfB

f − detM) , (15.450)

it satisfies:
i) Invariance under all the symmetries.
ii) The equations of motion ∂W/∂M = ∂W/∂B = ∂W/∂τB = 0 give the constraints

(15.446, 15.447).
iii) At the origin all the fields are massless.
iv) Adding the bare term tr (mM) + bfB

f + τbfτB
f we recover the Nf < Nc + 1 results.
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15.4.15 Seiberg’s duality.

The dual SQCD.

If we try to extend the same view of SU(Nc) SQCD for the case of Nf > Nc + 1, i.e., as
being in a Higgs/confining phase with the vacuum structure determined by meson and baryons
operators satisfying the corresponding classical constraints, to the case of Nf > Nc+1 (it is not
possible to modify the classical constraints for Nf > Nc + 1), we obtain inconsistencies. It is
not possible to generate a superpotential yielding to the constraints, and the ’t Hooft’s anomaly
matching conditions are not satisfied. It indicates that for Nf > Nc + 1 the Higgs/confining
description of SQCD at large distances in terms of just M , B and τB is no longer valid.

For Nf > Nc + 1, Seiberg conjectured [38] that the infrared limit of SQCD with Nf flavors
admits a dual description in terms of an N = 1 super Yang-Mills gauge theory with τN c =
Nf − Nc number of colors, Nf flavors Df and τDf in the fundamental and anti-fundamental
representations of SU(Nf−Nc) respectively, and N2

f gauge singlet chiral superfields M (m)
gf . The

fields M (m)
gf couple to Df and τDf through the relevant bare superpotential

W =M
(m)
gf τDgDf . (15.451)

If both theories are going to describe the same physics at large distances, we must be able
to give a prescription of the gauge invariant operators Mgf , Bf1···fτNc and τBf1···fτNc in terms
of the dual microscopic operators (Df , τDf ) and M (m)

gf . The simplest identification is:

Mgf = µM
(m)
gf ,

Bf1···fτNc = Df1 · · ·DfτNc ,

τBf1···fτNc = τDf1 · · · τDfτNc . (15.452)

In the baryon operators the SU(τN c) color indices of (Df , τDf ) are contracted with the τN c

antisymmetric tensor. The scale µ is introduced because the dimension of the bare operator
M

(m)
gf , derived from (15.451), is one. This mass scale relates the intrinsic scales Λ and τΛ of

the SU(Nc) and SU(τN c) gauge theories through the equation

Λ3Nc−Nf τΛ3τNc−Nf = (−1)Nf−NcµNf . (15.453)

We see that an strongly coupled SU(Nc) gauge theory corresponds to a weakly coupled SU(τN c)
gauge theory, in analogy with the electric-magnetic duality. From this analogy, we call the
SU(Nc) gauge theory the electric one, and the SU(τN c) gauge theory the magnetic one.

Both theories must have the same global symmetries. The mapping (15.452) gives the
quantum numbers of the magnetic degrees of freedom. Once more, ’t Hooft’s anomaly matching
conditions for the electric and magnetic theories give a non-trivial check of (15.452). In the
following table we write the quantum numbers for the fermions of the magnetic theory:

SU(Nf )L SU(Nf )R U(1)B U(1)AF

τλ 1 1 0 1
ψd Nf 1 Nc

τNc

τNc

Nf

ψd̃ 1 Nf − Nc

τNc

τNc

Nf

ψm Nf Nf 0 1− 2Nc

Nf

with τλ the magnetic gluinos. One can check that both theories give the same anomalies.
It can be verified that applying duality again we obtain the original theory.
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Nc + 1 < Nf ≤ 3Nc/2. An infrared free non-Abelian Coulomb phase.

In this range of Nf the magnetic theory is not asymptotically free and has a trivial infrared
fixed point. At large distances the physical effective degrees of freedom are the fields Df , Df ,
Mgf and the massless super-gluons of the gauge group SU(Nf−Nc). At the origin of field space
we are in an infrared free non-Abelian Coulomb phase, with a complete screening of its charges
in the infrared limit. Observe that the strongly coupled electric theory is weakly coupled in
terms of the magnetic degrees of freedom, according to the philosophy of the electric-magnetic
duality.

3Nc/2 < Nf < 3Nc. An interacting non-Abelian Coulomb phase.

As in QCD, the N = 1 SQCD has a Banks-Zaks fixed point [39] for Nc, Nf → ∞, when
Nf/Nc = 3 − ϵ with ϵL1. We still have asymptotic freedom and under the renormalization
group transformations the theory flows from the ultraviolet free fixed point to an infrared fixed
point with a non-zero finite value of the gauge coupling constant. If there is an interacting
superconformal gauge theory the scaling dimensions of some gauge invariant operators should
be non-trivial.

The superconformal invariance includes an R-symmetry, from which the scaling dimensions
of the operators satisfy the lower bound

D ≥ 3

2
|R| (15.454)

with equality for chiral and anti-chiral operators. The R-current is in the same supermultiplet
as the energy-momentum tensor, whose trace anomaly is zero on the fixed point. It implies
that there the R-symmetry must be the anomaly-free U(1)AF symmetry. It gives the scaling
dimensions of the following chiral operators:

D(M) =
3

2
RAF (M) = 3

Nf −Nc

Nf

, (15.455)

D(B) = D(τB) =
3

2

Nc(Nf −Nc)

Nf

. (15.456)

Unitarity restricts the scaling dimensions of the gauge invariant operators to be D ≥ 1. If
D = 1, the corresponding operator O satisfies the free equation of motion ∂2O = 0. If D > 1,
there are non-trivial interactions between the operators.

For the range 3Nc/2 < Nf < 3Nc, the gauge invariant chiral operators M , B and τB satisfy
the unitarity constraint with D > 1. Seiberg conjectured the existence of such a non-trivial
fixed point for any value of 3Nc/2 < Nf < 3Nc, at least for large Nc.

As 3
2
(Nf − Nc) < Nf < 3(Nf − Nc), there is also a non-trivial fixed point in the magnetic

theory. Seiberg’s claim is that both theories flow to the same infrared fixed point [38].

15.4.16 N = 2 supersymmetry.

The supersymmetry algebra and its massless representations.

The N = 2 supersymmetry algebra, without central charge, is

{Q(I)
α , Qβ̇(J)} = 2(σµ)αβ̇Pµδ

I
J ,

{Q(I)
α , Q

(J)
β } = 0 (15.457)

with I, J = 1, 2. The algebra (15.457) has a new symmetry. We can perform unitary rotations
of the two supercharges Q(I)

α that do leave the anti-commutator relations (15.457) invariant.
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15.4.16 N = 2 supersymmetry.

We have an U(2)R = U(1)R × SU(2)R symmetry. The Abelian factor U(1)R corresponds
to the familiar R-symmetry of supersymmetric theories that rotate the global phase of the
supercharges Q(I)

α . With respect the SU(2)R group, the supercharges Q(I)
α are in the doublet

representation 2.
As in massless N = 1 supersymmetric representations, half of the supercharges are realized

as vanishing operators: Q(I)
2 = 0. We normalize the other two supercharges,

a
(I)
1 =

1

2
√
E
Q

(I)
1 , (15.458)

which are an SU(2)R doublet. The massless N = 2 vector multiplet is a representation con-
structed from the Clifford vacuum |1 >, which has helicity λ = 1 and is an SU(2)R sin-
glet. From it we obtain two fermionic states, |1/2 >(I)= (a(I))†|1 >, and a scalar boson
|0 >= (a(1))†(a(2))†|1 >. After CPT doubling we obtain the N = 2 vector multiplet:

{ |1 >, | − 1 >CPT }

{ |1
2
>(1), | − 1

2
>

(1)
CPT } { |12 >

(2), | − 1
2
>

(2)
CPT }

{ |0 >, |0 >CPT }

 (15.459)

In terms of local fields we have: a vector Aµ (the gauge bosons of some gauge group G,
since we consider massless representations), which is SU(2)R singlet; two Weyl spinors λ(I),
the gauginos, arranged in an SU(2)R doublet; and a complex scalar ϕ, playing the role of the
Higgs, a singlet of SU(2)R but in the adjoint of the gauge group G. These fields arrange as

Aµ
↙

λ(1) λ(2)

↙
ϕ

 (15.460)

where the arrows indicate the action of the supercharge Q(1)

·α . We can use a manifest N = 1
supersymmetry representation taking into account that the N = 2 vector multiplet is composed
of an N = 1 vector multiplet Wα = (Aµ, λ

(1)) and an N = 1 chiral multiplet Φ = (ϕ, λ(2)).
The massless N = 2 hypermultiplet is a representation constructed from a Clifford vacuum

|1/2 >, which is an SU(2)R singlet. The action of the two grassmanian operators aIα seems to
produce the same particle content that the N = 1 chiral multiplet, but |1/2 >= |1/2,R > is
usually in some non-trivial representation R of a gauge group G. As R → R under a CPT
transformation, it forces to make the CPT doubling, and the N = 2 hypermultiplet is built
from two N = 1 chiral multiplets in complex conjugate gauge group representations:

{ |1
2
,R > , | − 1

2
,R >CPT }

{ |0,R >(1), |0,R >
(1)
CPT} { |0,R >(2) , |0,R >

(2)
CPT}

{ | − 1
2
,R > , |1

2
,R >CPT }

 (15.461)

Which represents the local fields 
ψq
↙

q τq†

↙
ψτq

 (15.462)
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with the complex scalar fields (q, τq†) in a doublet representation of SU(2)R. In terms of N = 1
superfields we have one chiral superfield Q = (q, ψq) in gauge representation R and another
chiral superfield τQ = (τq, τψτq) in gauge representation R. All the field in the hypermultiplet
have spin ≤ 1/2. Because of the CPT doubling, the matter content of extended supersymmetry
(N > 1) is always in vectorial representations of the gauge group.

The central charge and massive short representations.

As shown by Haag, Lapuszanski and Sohnius [40], the N = 2 supersymmetry algebra admits a
central extension:

{Qa
α, Q

b
β} = 2

√
2ϵαβϵ

abZ ,

{Qα̇a, Qβ̇b} = 2
√
2ϵα̇β̇ϵabZ . (15.463)

Since Z commutes with all the generators, we can fix it to be the eigenvalue for the given
representation. Now, let us define:

aα =
1

2
{Q1

α + ϵαβ(Q
2
β)

†} , (15.464)

bα =
1

2
{Q1

α − ϵαβ(Q2
β)

†} . (15.465)

Then, in the rest frame, the N = 2 supersymmetry algebra reduces to

{aα, a†β} = δαβ(M +
√
2Z) , (15.466)

{bα, b†β} = δαβ(M −
√
2Z) , (15.467)

with all other anti-commutators vanishing. Since all physical states have positive definite norm,
it follows that for massless states, the central charge is trivially realized (i.e.„ Z = 0), as we
used before. For massive states, this leads to a bound on the mass M ≥

√
2|Z|. When

M =
√
2|Z|, the operators in (15.467) are trivially realized and the algebra resembles the

massless case. The dimension of the representation is greatly reduced. For example, a reduced
massive N = 2 multiplet has the same number of states as a massless N = 2 multiplet. Thus
the representations of the N = 2 algebra with a central charge can be classified as either long
multiplets (when M >

√
2|Z|) or short multiplets (when M =

√
2|Z|).

From (15.467) it is clear that the BPS states [9, 10] (which saturate the bound) are anni-
hilated by half of the supersymmetry generators and thus belong to reduced representations
of the supersymmetry algebra. An important consequence of this is that, for BPS states, the
relationship between their charges and masses is dictated by supersymmetry and does not re-
ceive perturbative or nonperturbative corrections in the quantum theory. This is so because a
modification of this relation implies that the states no longer belong to a short multiplet. On
the other hand, quantum corrections are not expected to generate the extra degrees of freedom
needed to convert a short multiplet into a long multiplet. Since there is no other possibility, we
conclude that for short multiplets the relationM =

√
2|Z| is not modified either perturbatively

or nonperturbatively.

15.4.17 N = 2 SU(2) super Yang-Mills theory in perturbation theory.

The N = 2 Lagrangian.

The N = 2 superspace has two independent chiral spinors θ(I), I = 1, 2. The N = 2 vector
multiplet can be written in terms of N = 2 superspace by the N = 2 superfield Ψ(x, θ(I))
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subject to the superspace constraints [41]:

∇(I)

·α Ψ = 0 ,

∇(I)∇(J)Ψ = ϵIKϵJL∇
(K)∇(L)

Ψ . (15.468)

where ∇(I)α = D(I)α+Γ(I)α is the generalized supercovariant derivative of the variable θ(I), with
Γ(I)α the superconnection. The N = 1 superfields are connected to the N = 2 vector superfield
through the equations:

Ψ|
θ(2)=θ

(2)
=0

= Φ(x, θ(1), θ
(1)
) ,

∇(2)αΨ|θ(2)=θ(2)=0
= i
√
2Wα(x, θ

(1), θ
1
) . (15.469)

It results that the renormalizable N = 2 super Yang-Mills Lagrangian is

L =
1

8π
Im

(
τ

∫
d2θ(1)d2θ(2) ΨaΨa

)
(15.470)

with our old friend τ = θ/2π + i4π/g2. In terms of N = 1 superspace, using (15.468) and
(15.469), with θ ≡ θ(1), the Lagrangian is

L =
1

8π
Im

(
τ

∫
d2θ WαWα

)
+

1

g2

∫
d2θd2θ Φ†e−2VΦ . (15.471)

It looks like N = 1 SU(2) gauge theory with an adjoint chiral superfield Φ. The point is that
the 1/g2 normalization in front of the kinetic term of Φ gives N = 2 supersymmetry. In fact,
when we perform the remaining superspace integral in (15.471), we obtain a Lagrangian that
looks like a Georgi-Glashow model with a complex Higgs triplet and the addition of a Dirac
spinor (λ(1), λ

(2)
) in the adjoint also. This Lagrangian does not have all the gauge invariant

renormalizable terms. N = 2 supersymmetry restricts the possible terms and gives relations
between their couplings, such that at the end there are only the parameters g2 and θ.

If we apply perturbation theory to the Lagrangian (15.470) we only have to perform a one
loop renormalization. This is an indication that in N = 2 supersymmetry, holomorphy is
not lost by radiative corrections. The reason is the following: We expained that the multi-
loop renormalization of the coupling τ came from the generation of non-holomorphic factors
Z(µ/µ0, g) in front of the complete N = 1 superspace integrals. At the level of the Lagrangian
(15.471), consider the bare coupling τ0 at scale µ0 and integrate out the modes between µ0 and
µ. If we consider only the renormalizable terms, N = 1 supersymmetry gives us

Lren =
1

8π
Im

(
τ(µ/Λ)

∫
d2θWαWα

)
+ Z

(
µ

µ0

, g0

)
1

g2( µ
Λ
)

∫
d2θd2θ Φ†e−2VΦ (15.472)

where

τ(
µ

Λ
) =

2i

π
ln
µ

Λ
+

∞∑
n=0

cn

(
Λ

µ

)4n

(15.473)

is the renormalized coupling constant at scale µ. We used the one-loop beta function of N = 2
SU(2) gauge theory b0 = 4 and the renormalization group invariant scale Λ ≡ µ0exp(iπτ0/2).
The dimensionless constants cn are the coefficients of the n-instanton contribution (Λ/µ)4n =
exp(−8πn/g2(µ) + iθ(µ)n).

If we compare with the N = 2 renormalizable Lagrangian (15.471) we derive that
Z(µ/µ0, g0) = 1. Then, there is no Konishi anomaly and the one-loop renormalization of τ is
all there is in perturbation theory.
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The flat direction.

Unlike N = 1 super Yang-Mills, N = 2 super Yang-Mills theory includes a complex scalar ϕ in
the adjoint of the gauge group. This scalar plays the role of a Higgs field through the potential
derived from the Lagrangian (15.471),

V (ϕ, ϕ†) =
1

2g2
[ϕ†, ϕ]2 . (15.474)

The supersymmetric minimum is obtained by the solution of

[ϕ†, ϕ] = 0 , (15.475)

whose solution, up to gauge transformations, is ϕ = aσ3, with a an arbitrary complex number.
This is our flat direction. Along it, the SU(2) gauge group is spontaneously broken to the U(1)
subgroup. The Ψ± = 1√

2
(Ψ1 ± iΨ2) superfield components have U(1) electric charge Qe = ±g,

respectively, and they have the classical squared mass

M2
W = 2|a|2 . (15.476)

The A ≡ Ψ3 superfield component remains massless. We know that the Lagrangian (15.470)
admits semi-classical dyons with electric charge Qe = neg + θ/2π and magnetic charge Qm =
(4π/g), i.e., the points (1, ne) in the charge lattice. They have the classical squared mass

M2(1, ne) = 2|a|2|ne + τ |2 . (15.477)

Physical masses are gauge invariant. We can use the gauge invariant parametrization of the
moduli space in terms of the chiral superfield

U = trΦ2 , (15.478)

and traslate the a-dependence in previous formulae by an u-dependence through the relation
u = tr⟨ϕ2⟩. The classical relation is just u = a2/2.

Then, semi-classical analysis gives A as the unique light degree of freedom. Only at u = 0
the full SU(2) gauge symmetry is restored. How is this picture modified by the nonperturbative
corrections?. The Seiberg-Witten solution answers this question [13] ∗.

15.4.18 The low energy effective Lagrangian.

The N = 2 vector superfield A is invariant under the unbroken U(1) gauge transformations.
At a scale of the order of the MW mass, i.e., of the order or |u|1/2, the most general N = 2
Wilsonian Lagrangian, with two derivatives and four fermions terms, that can be constructed
from the light degrees of freedom in A is

Leff =
1

4π
Im

(∫
d2θ(1)d2θ(2) F (A)

)
(15.479)

with F a holomorphic function of A, called the prepotential. We stress that the unique inputs
to equation (15.479) are N = 2 supersymmetry and that A is a vector multiplet. We derive
an immediate consequence of the general form of the effective Lagrangian (15.479): N = 2
supersymmetry prevents the generation of a superpotential for the N = 1 chiral superfield of
A. It means that the previously derived flat direction, parametrized by the arbitrary value
u = tr⟨ϕ2⟩, is not lifted by nonperturbative corrections.

∗Some additional reviews on the Seiberg-Witten solution are [42].
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15.4.19 BPS bound and duality.

In terms of N = 1 superspace we have

Leff =
1

4π
Im

(∫
d2θ

1

2
τ(A)WαWα

)
+

∫
d2θd2θ K(A,A) , (15.480)

where

τ(A) =
∂2F

∂A2
(A), (15.481)

K(A,A) = Im

(
∂F

∂A
A

)
, (15.482)

and A is the N = 1 chiral multiplet of A.
The Wilsonian Lagrangian (15.480) is an Abelian gauge theory defined at some scale of

order MW ∼ |u|1/2. Interaction terms come out after the expansion A = a + Â, with a the
vacuum expectation value of the Higgs field, and Â the quantum fluctuations of the chiral
superfield. The matching at scale |u|1/2 with the high energy SU(2) theory is performed by the
renormalization group:

τ(u) =
i

π
ln
u

Λ2
+

∞∑
n=0

cn

(
Λ2

u

)2n

. (15.483)

Observe that the phase of the dimensionless quotient u/Λ2 plays the role of the bare θ0 angle.
If we are able to know the relation between the u and a variables, i.e., the function u(a), we
can replace it into (15.483) to obtain τ(a). Integrating twice in the variable a we obtain the
prepotential

F (a) =
i

2π
a2ln

a2

Λ2
+ a2

∞∑
n=1

Fk

(
Λ

a

)4k

. (15.484)

If we look at the terms of the Lagrangian (15.480) proportional to the dimensionless constant
Fn, they correspond to the effective interaction terms created by the n-instanton contribution,
as expected. For a → ∞, the instanton contributions go to zero. This is an expected result,
since at a → ∞ the matching takes place at weak coupling due to asymptotic freedom. In
this region perturbation theory is applicable and we can believe the semi-classical relation,
u ∼ a2/2.

15.4.19 BPS bound and duality.

The N = 2 supersymmetry algebra gives the mass bound

M ≥
√
2|Z| , (15.485)

with Z the central charge. The origin of the central charge is easy to understand: the su-
persymmetry charges Q and Q are space integrals of local expressions in the fields (the time
component of the super-currents). In calculating their anti-commutators, one encounters sur-
face terms which are normally neglected. However, in the presence of electric and magnetic
charges, these surface terms are non-zero and give rise to a central charge. When one calculates
the central charge that arises from the classical Lagrangian (15.470) one obtains [43]

Z = ae(n+mτ) , (15.486)

so that M ≥
√
2|Z| coincides with the Bogomol’nyi bound (15.354).
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But the equation (15.486) is a classical result. The effective Lagrangian (15.479) includes
all the nonperturbative quantum corrections of the higher modes. To get their contribution to
the BPS bound, we just have to compute the central charge that is derived from the effective
Lagrangian (15.479). The result is

Z(nm, ne) = nea+ nmaD , (15.487)

for a supermultiplet located in the charge lattice at (nm, ne). We have defined the aD function

aD ≡
∂F

∂a
(a) . (15.488)

This function plays a crucial role in duality. Observe that under the SL(2,Z) transformation

M =

(
α β
γ δ

)
of the charge lattice,

(nm, ne)→ (nm, ne)M
−1 , (15.489)

the invariance of the central charge demands(
aD
a

)
→M

(
aD
a

)
. (15.490)

Its action on the effective gauge coupling τ = ∂aD/∂a is

τ → ατ + β

γτ + δ
. (15.491)

The S-transformation, that interchanges electric with magnetic charges, makes

aD → a ,

a→ −aD . (15.492)

Then, aD is the dual scalar photon, that couples locally with the monopole (1, 0) through the
dual gauge coupling τD = −1/τ .

From (15.481) and (15.482), we see that Imτ(a) is the Kähler metric of the Kähler potential
K(a, a),

d2s = [Imτ(a)]dada . (15.493)
Physical constraints demands the metric be positive definite, Imτ > 0. However, if τ(a) is
globally defined the metric cannot be positive definite as the harmonic function Imτ(a) cannot
have a minimum. This indicates that the above description of the metric in terms of the variable
a must be valid only locally. In the weak coupling region, |u|ĝ|Λ|, where τ(a) ∼ (2i/π)ln(a/Λ),
we have that Imτ(a) > 0, but for a ∼ Λ, when the theory is at strong coupling and the
nonperturbative effects become important, the perturbative result does not give the correct
physical answer. Two things should happen: the instanton corrections must secure the positivity
of the metric and physics must be described in terms of a new local variable a′. Which is this
new local variable? If we do not want to change the physics, the change of variables must be
an isometry of the Kähler metric (15.493). In terms of the variables (aD, a) the Kähler metric
is

d2s = Im(daDda) = −
i

2
(daDda− dadaD) , (15.494)

The complete isometry group of (15.494) is
(
aD
a

)
→M

(
aD
a

)
+

(
p
q

)
with M ∈ SL(2,R) and

p, q ∈ R. But the invariance of the central charge puts p = q = 0 ∗ and the Dirac quantization
condition restricts M ∈ SL(2,Z). We arrive to an important result: in some region of the
moduli space we have to perform an electric-magnetic duality transformation.

∗In N = 2 SQCD with massive matter, the central charge allows to have p, q ̸= 0 [44].
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15.4.20 Singularities in the moduli space.

As Imτ cannot be globally defined on the u plane, there must be some singularities ui indicating
the multivaluedness of τ(u). If we perform a loop arround a singularity ui, there is a non-trivial
monodromy action Mi on τ(u). This action should be an isometry of the Kähler metric, if we
do not want to change the physics. It implies that the monodromies Mi are elements of the
SL(2,Z) group.

In fact, we have found already one non-trivial monodromy because of the perturbative
contributions. The multivalued logarithmic dependence of τ gives the monodromy. For u ∼ ∞,
τ ∼ (i/π)ln(u/Λ2). In that region, the loop u→ e2πiu applied on τ(u) gives

τ → τ − 2 . (15.495)

Its associated monodromy is

M∞ =

(
−1 2
0 −1

)
= PT−2 . (15.496)

which acts on the variables (aD, a) as

aD → −aD + 2a , (15.497)
a→ −a . (15.498)

As it should be, the monodromy is a symmetry of the theory. T−2 just shifts the θ parameter
by −4π, and P is the action of the Weyl subgroup of the SU(2) gauge group. Then, the
monodromy at infinity M∞ leaves the a variable invariant (up to a gauge transformation).

The monodromy at infinity means there must be some singularity in the u plane. How
many singularities?. We know that the anomalous U(1)R symmetry is broken by instantons,
and that there is an unbroken Z8 subgroup because the one-instanton sector has eight fermionic
zero modes. The U = trΦ2 operator has R-charge four. It means that the u→ −u symmetry
is spontaneously broken, leading to equivalent physical vacua. Then, if u0 is a singular point,
−u0 must be also another singular point.

Let us assume that there is only one singularity. If this were the situation, the monodromy
group would be Abelian, generated only by the monodromy at infinity. From the monodromy
invariance of the variable a under M∞, we would have that a is a good variable to describe the
physics of the whole moduli space. This is in contradiction with the holomorphy of τ(a).

Seiberg and Witten made the assumption that there are only two singularities, which they
normalized to be u1 = Λ2 and u2 = −Λ2. This assumption leads to a unique and elegant
solution that passes many tests.

15.4.21 The physical interpretation of the singularities.

The most natural physical interpretation of singularities in the u plane is that some additional
massless particles appear at the singular point u = u0.

The particles will arrange in some N = 2 supermultiplet and will be labeled by some
quantum numbers (nm, ne). If the massless particle is purely electric, the Bogomol’nyi bound
implies a(u0) = 0. It would mean that the W-bosons become massless at u0 and the whole
SU(2) gauge symmetry is restored there. It would imply the existence of a non-Abelian infrared
fixed point with ⟨trϕ2⟩ ̸= 0. By conformal invariance, the scaling dimension of the operator
trϕ2 at this infrared fixed point would have to be zero, i.e., it would have to be the identity
operator. It is not possible since trϕ2 is odd under a global symmetry.

Then, the particles that become massless at the singular point u0 are arranged in an N = 2
supermultiplet of spin ≤ 1/2. The possibilities are severely restricted by the structure of N = 2
supersymmetry: the multiplet must be an hypermultiplet that saturates the BPS bound. As
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we have derived that we should have a ̸= 0 for all the points of the moduli space, the singular
BPS state must have a non-zero magnetic charge.

Near its associated singularity, the lightN = 2 hypermultiplet is a relevant degree of freedom
to be considered in the low energy Lagrangian. The coupling to the massless photon of the
unbroken U(1) gauge symmetry has to be local. Therefore, we apply a duality transformation
to describe the relevant degree of freedom (nm, ne) as a purely electric state (0, 1),

(0, 1) =)nm, ne)N
−1 , (15.499)

with N the appropiate SL(2,Z) transformation. The dual variables are the good local variables
near the u0 singularity. It implies that the monodromy matrix must leave invariant the singular
state (nm, ne). This constraint plus the U(1) β-function give the monodromy matrix

M(nm, ne) =

(
1 + 2nmne 2n2

e

−2n2
m 1− 2nenm

)
. (15.500)

In fact, in terms of the local variables,(
a′D
a′

)
= N

(
aD
a

)
, (15.501)

the monodromy matrix is just T 2. This result can be understood as follows: The renormalizable
part of the low energy Lagrangian is just N = 2 QED with one light hypermultiplet with mass√
2|a′| =

√
2|nmaD+nea|. It has a trivial infrared fixed point, and the theory is weakly coupled

at large distances. Perturbation theory gives

τ ′ ≃ − i
π
lna′ . (15.502)

On the other hand, by the monodormy invariance of a′, we have a′(u) ≃ c0(u− u0), this gives
the monodromy matrix T 2: τ ′ → τ ′ + 2.

With all the monodromies taken in the counter clockwise direction, and the monodromy
base point chosen in the negative imaginary part of the complex u plane, we have the topological
constraint

M−Λ2MΛ2 =M∞ . (15.503)

If we use the expression (15.500) for the monodromies M±Λ2 and that M∞ = PT−2, (15.503)
implies that the magnetic charge of the singular states must be ±1. Then, they exist semi-
classically and are continuousy connected with the weak coupling region. Moreover, if the
state (1, ne) becomes massless at u = Λ2, then (15.503) gives the massless state (1, ne − 1) at
u = −Λ2. It is consistent with the action of the spontaneously broken symmetry u→ −u, since
by the expression of τ(u) in (15.483) we have that θeff (−Λ2) = 2πRe(τ(−Λ2)) = 2π, and by
the Witten effect gives the same physical electric charge to the massless states at u = ±Λ2.

Seiberg and Witten took the simplest solution: a purely magnetic monopole (1, 0)
∗

becomes massless at u = Λ2. With our chosen monodromy base point, the state with
quantum numbers (1,−1) has vanishing mass at u = −Λ2.

∗Observe that by Witten effect, the shift θ → θ + 2πn transforms (1, 0) → (1, n). There is a complete
democracy between the semi-classical stable dyons.
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15.4.22 The Seiberg-Witten solution.

The inputs.

After this long preparation, we can present the solution of the model. The moduli space is
the compactified u-plane punctured at u = Λ2,−Λ2,∞. These singular points generate the
monodromies:

MΛ2 =

(
1 0
−2 1

)
,

M−Λ2 =

(
−1 2
−2 3

)
,

M∞ =

(
−1 2
0 −1

)
, (15.504)

which act on the holomorphic function τ(u) by the corresponding modular transformations.
Physically, the function τ(u) is the effective coupling at the vacuum u and its asymptotic
behavior near the punctured points u = Λ2,−Λ2,∞, is known.

The geometrical picture.

A torus is a two dimensional compact Riemann surface of genus one. Topologically it can be
described by a two dimensional lattice with complex periods ω and ωD. The construction is the
following: a point z in the complex plane is identifyed with the points z+ω and z+ωD (with the
convention Im(ωD/ω) > 0), to get the topology of a torus. Then, the SL(2,Z) transformations(

ωD
ω

)
→M

(
ωD
ω

)
(15.505)

leave invariant the torus. If we rescale the lattice with 1/ω, the torus is characterized just by
the modulus

τ ≡ ωD
ω
,

up to SL(2,Z) transformations,

τ ∼ ατ + β

γτ + δ
.

Algebraically the torus can be described by a complex elliptic curve

y2 = 4(x− e1)(x− e2)(x− e3) . (15.506)

The toric structure arises because of the two Riemman sheets in the x plane joined through
the two branch cuts going from e1 to e2 and e3 to infinity (see fig. 2).

x-plane

e3

e2e1

α

e1 e2

β

e3

β

α

e1

e2

Figure 2: The elliptic curve (15.506) gives the topology of a torus.
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The lattice periods are obtained by integrating the Abelian differential of first kind dx/y
along the two homologically non-trivial one-cycles α and β, with intersection number β ·α = 1,

ωD =

∮
β

dx

y
,

ω =

∮
α

dx

y
. (15.507)

They have the property that Imτ > 0.

The Physical connection with N = 2 super Yang-Mills.

The breakthough of Seiberg and Witten for the solution of the model was the identification of
the complex effective coupling τ(u) at a given vacuum u with the modulus of a u-dependent
torus. At any point u of the moduli space, they associated an elliptic curve

y2 = 4
3∏
i=1

(x− ei(u)) , (15.508)

with its lattice periods given by (15.507).
The identification of the physical coupling τ(u) = ∂aD/∂a with the modulus

τu = ωD(u)/ω(u) of the elliptic curve (15.508),

τ(u) =
∂aD/∂u

∂a/∂u
=

∮
β
dx/y∮

α
dx/y

= τu , (15.509)

leads to the formulae:

aD =

∮
β

λ(u) , (15.510)

a =

∮
α

λ(u) , (15.511)

where λ(u) is an Abelian differential with the property that

∂λ

∂u
= f(u)

dx

y
+ dg . (15.512)

Then, the solution of the problem is reduced to finding the family of elliptic curves (15.508)
and the holomorphic function f(u). The conditions at the begining of this section fix a unique
solution. The family of elliptic curves is determined by the monodromy group generated by the
monodromy matrices. The matrices (15.504) generate the group Γ(2), the subgroup of SL(2,Z)
consisting of matrices congruent to the identity modulo 2. It gives the elliptic curves

y2 = (x2 − Λ4)(x− u) . (15.513)

Finally, the function f(u) is determined by the asymptotic behavior of (aD, a) at the singular
points. The answer is f = −

√
2/4π.

15.4.23 Breaking N = 2 to N = 1. Monopole condensation and confinement.

In this section we will exhibit an explicit realization of the confinement mechanism envisaged
by Mandelstam [45] and ’t Hooft’s through the condensation of light monopoles.
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In the N = 2 model, we have found points in the moduli space where the relevant light
degrees of freedom are magnetic particles. Since we have the exact solution of the low energy
N = 2 model, it would be nice to answer in which phase the dynamics of the model, or
controlable deformations of it, locates the vacuum.

For the N = 2 model we already know from section XVIII that N = 2 supersymmetry does
not allow the generation of a superpotential just for the N = 1 chiral multiplet of the N = 2
vector multiplet. It means that the theory is always in an Abelian Coulomb phase. The exact
solution of the model allowed us to know which are all the instanton corrections to the low
energy Lagrangian. Remarkably enough, the instanton series admits a resumation in terms of
magnetic variables.

To go out of the Coulomb branch, we need a superpotential for the chiral superfield Φ. In
[13] an explicit mass term for the chiral superfield was added in the bare Lagrangian,

Wtree = m tr Φ2 . (15.514)

It breaks N = 2 to N = 1 supersymmetry. At low energy, we will have an effective superpo-
tential W(m,M, τM,AD). Once again, holomorphy of the superpotential and selection rules
from the symmeries will fix the exact form of W . In terms of N = 1 superspace, only the
subgroup U(1)J ⊂ SU(2)R is manifestly a symmetry. It is a non-anomalous R-symmetry (ro-
tates the complex phases of θ(I), I = 1, 2, in opposite directions.). The corresponding charge
of Φ is zero. As superpotentials should have charge two, from (15.514) we derive that the
parameter m ̸= 0 breaks the U(1)J symmetry by two units. On the other hand, the N = 1
chiral superfields M and τM are in an N = 2 hypermultiplet and therefore, both have charge
one. Imposing that W is a regular function at m = τMM = 0, we find that it is of the form
W = mf1(AD) + τMMf2(AD). For m→ 0, the effective superpotential flows to the tree level
superpotential (15.514) plus the term

√
2ADτMM . As the functions f1 and f2 are independent

of m, we obtain the exact result

W =
√
2ADτMM +mU(AD) . (15.515)

We found what we were looking for: an exact effective superpotential with a term which
depends only of the N = 1 chiral composite operator U . It presumely will remove the flat
direction. The N = 2 to N = 1 breaking makes no loger valid the hiden N = 2 holomorphy in
the Kähler potential K(A,A). But as long as there is an unbroken supersymmetry, the vacuum
configuration corresponds to the solution of the equations

dW = 0 , (15.516)
D = |M |2 − |τM |2 = 0 . (15.517)

From the exact solution we know that du/daD ̸= 0 at aD = 0. Thus (up to gauge transforma-
tions)

M = τM =
(
−mu′(0)/

√
2
)1/2

,

aD = 0 . (15.518)

Expanding around this vacuum we find:
i) There is a mass gap of the order (mΛ)1/2.
ii) The objects that condense are magnetic monopoles. There are electric flux tubes with a

non-zero string tension of the order of the mass gap, that confines the electric charges of the
U(1) gauge group.

The spontaneously broken symmetry u→ −u carries the theory to the ‘dyon region’, with
the local variable aD − a. The perturbing superpotential there, mU(aD − a), also produces the
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condensation of the ‘dyon’ with physical electric charge zero at the point aD − a = 0. Then,
we have two physically equivalent vacua, related by an spontaneously broken symmetry, in
agreement with the Witten index of N = 1 SU(2) gauge theory.

15.4.24 Breaking N = 2 to N = 0.

When the N = 2 theory is broken to the N = 1 theory through the decoupling of the chiral
superfield Φ in the adjoint, we have seen that the mechanism of confinement takes place because
of the condensation of a magnetic monopole. The natural question is if this results can be
extended to non supersymmetric gauge theories.

The N = 1, 2 results were based on the use of holomorphy; the question is whether the
properties connected with holomorphy can be extended to the N = 0 case. The answer is
positive provided supersymmetry is broken via soft breaking terms.

The method is to promote some couplings in the supersymmetric Lagrangian to the quality
of frozen superfields, called spurion superfields. We could think they correspond to some heavy
degrees of freedom which at low energies have been decoupled. Their trace is only through their
vacuum expectation values appearing in the Lagrangian and are parametrized by the spurion
superfields [46].

In the N = 2 theory we will promote some couplings to the status of spurion superfields.
The property of holomorphy in the prepotential will be secured if the introduced spurions are
N = 2 vector superfields [14, 15]

∗.
In the bare Lagrangian of the N = 2 SU(2) gauge theory (15.470), there is only one

parameter: τ0. The N = 2 softly broken theory is obtained by the bare prepotential

F0 =
1

π
SAaAa , (15.519)

where S is an dimensionless N = 2 vector multiplet whose scalar component gives the bare
coupling constant, s = π

2
τ0. The factor of proporcionality is related with the one loop coefficient

of the beta function, such that Λ = µ0exp(is). Inspired by String Theory, we call S the dilaton
spurion. The source of soft breaking comes from the non vanishing auxiliary fields, F0 and D0,
in the dilaton spurion S.

The tree level mass terms arising from the softly broken bare Lagrangian (15.519) are the
following: the W-bosons get a mass term by the usual Higgs mechanism, with the mass square
equal to 2|a|2; the photon of the unbroken U(1) remains massless; the gauginos get a mass
square M2

1/2 = (|F0|2 + D2
0/2)(4Ims)

−1; all the scalar components, except the real part of ϕ3

which do not have a bare mass term, get a square mass M2
0 = 4M2

1/2.
At low energy, i.e., at scales of the order |u|1/2 ∼ Λ, the Wilsonian effective Lagrangian up

to two derivatives and four fermions terms is given by the effective prepotential F (a,Λ) found
in the N = 2 model, but with the difference that the bare coupling constant is replaced by the
dilaton spurion, i.e., Λ→ µ0exp(iS). Then, the prepotential depends on two vector multiplets
and the effective Lagrangian becomes

L =
1

4π
Im

(∫
d4θ

∂F

∂Ai
A
i
+

∫
d2θ

1

2

∂2F

∂Ai∂Aj
W iW j

)
+ LHM . (15.520)

with Ai = (S,A) and LHM the N = 2 Lagrangian that includes the monopole hypermultiplet.
Observe that the dilaton spurion do not enter in the Lagrangian of the hypermultiplets, in

∗Soft breaking of N = 1 SQCD has been studied in [47].
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agreement with the N = 2 non-renormalization theorem of [27]. The low energy couplings are
determined by the 2× 2 matrix

τij(a, s) =
∂2F

∂ai∂aj
. (15.521)

The supersymmetry breaking generates a non-trivial effective potential for the scalar fields,

Veff =

(
b00 −

b201
b11

)(
|F0|2 +

1

2
D2

0

)
+
b01
b11

[√
2(F0mτm+ F 0mτm) +D0)|m|2 − |τm|2)

]
+

1

2b11
(|m|2 + |τm|2)2 + 2|a|2(|m|2 + |τm|2) , (15.522)

where we have defined bij = (4π)−1Imτij. m and τm are the scalar components of the chiral
superfields M and τM of the monopole hypermultiplet, respectively. Observe that the first
line of (15.522) is independent of the monopole degrees of freedom. To be sure that such
quantity gives the right amount of energy at any point of the moduli space, where different
local descriptions of the physics are necessary, it must be duality invariant. This is the case for
any SL(2,Z) transformation.

The auxiliary fields of the dilaton spurion are in the adjoint representation of the group
SU(2)R and have U(1)R charge two. We can consider the situation of D0 = 0, F0 = f0 > 0
without any loss of generality, since it is related with the case of D0 ̸= 0 and complex F0 just
by the appropiate SU(2)R rotation.

We have to be careful with the validity of our approximations. Because of supersymmetry,
the expansion in derivatives is linked with the expansion in fermions and the expansion in
auxiliary fields. The exact solution of Seiberg and Witten is only for the first terms in the
derivative expansion of the effective Lagrangian, in particular up to two derivatives. At the level
of the softly broken effective Lagrangian, the exact solution of Seiberg and Witten only gives
us the terms at most quadratic in the supersymmetry breaking parameter f0. The expansion is
performed in the dimensionless parameter f0/Λ. Our ignorance on the higher derivative terms
of the effective Lagrangian is traslated into our ignorance the terms of O)(f0/Λ)4). Hence our
results are reliable for small values of f0/Λ, and this is far from the supersymmetry decoupling
limit f0/Λ→∞.

But for moderate values of the supersymmetry breaking parameter, the effective Lagrangian
(15.520) gives the large distance physics of a non-supersymmetric gauge theory at strong cou-
pling. If we minimize the effective potential (15.522) with respect to the monopoles, we obtain
the energy of the vacuum u

Veff (u) =

(
b00(u)−

b201(u)

b11(u)

)
|F0|2

− 2

b11(u)
ρ4(u) , (15.523)

where ρ(u) is a positive function that gives the monopole condensate at u

|m|2 = |τm|2 = ρ2(u) =
|b01|f0√

2
− b11|a|2 > 0 (15.524)

or m = τm = ρ(u) = 0 if |b01|f0 <
√
2b11|a|2.
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Figure 3: The monopole condensate ρ2, at the monopole region u ∼ Λ2, for f0 = Λ/10.

Notice that b11 diverges logarithmically at the singularities u = ±Λ2, but the corresponding
local variable a vanishes linearly at u = ±Λ2. It implies that b11|a|2 → 0 for u → ±Λ2. It
can be shown that the Seiberg-Witten solution gives b01 ∼ Λ/8π for u ∼ Λ. It means that
the monopole condenses at the monopole region (see fig. 3), since from the expression of the
effective potential (15.523), such condensation is energetically favoured. If we look at the dyon
region, we find that b01 → 0 for u→ −Λ2. Numerically, there is a very small dyon condensate
without any associated minimum in the effective potential in that region. On the other hand,
there is a clear absolute minimum in the monopole region (see fig. 4). The different behaviors
of the broken theory under the transformation u → −u is an expected result if we take into
account that f0 ̸= 0 breaks explicitly the U(1)R symmetry.
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Figure 4: The effective potential Veff (u) (15.523), at the monopole region u ∼ Λ2, for f0 =
Λ/10.

The softly broken theory selects a unique minimum at the monopole region, with a non
vanishing expectation value for the monopole. The theory confines and has a mass gap or order
(f0Λ)

1/2.

15.4.25 String Theory in perturbation theory.

String Theory is a multifaceted subject. In the sixties strings were first introduced to model
the dynamics of hadron dynamics. In section VII we described the confining phase as the dual
Higgs phase, where magnetic degrees of freedom condense. The topology of the gauge group
allows the existence of electric vortex tubes, ending on quark-antiquark bound states. The
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transverse size of the electric tubes is of the order of the compton wave length of the ‘massive’
W-bosons. At large distances, these electric tubes can be considered as open strings with a
quark and an anti-quark at their end points. This is the QCD string, with an string tension of
the order of the characteristic length square of the hadrons, α′ ∼ (1GeV)−2.

But the major interest in String Theory comes from being a good candidate for quantum
gravity [48]. The macroscopic gravitational force includes an intrinsic constant, GN , with
dimensions of length square

GN = l2p = (1.6× 10−33cm)2 . (15.525)

In a physical process with an energy scale E for the fundamental constituents of matter, the
strength of the gravitational interaction is given by the dimensionless coupling GNE

2 to the
graviton. This interaction can be neglected when the graviton probes length scales much larger
than the Planck’s size, GNE

2L1. The interaction is also non-renormalizable. From the point of
view of Quantum Field Theory, it corresponds to an effective low energy interaction, with lp the
natural length scale at which the effects of quantum gravity become important. The natural
suspicion is that there is new physics at such short distances, which smears out the interaction.
The idea of String Theory is to replace the point particle description of the interactions by
one-dimensional objects, strings with size of the order of the Planck’s length lp ∼ 10−33cm (see
fig. 5). Such simple change has profound consequences on the physical behavior of the theory,
as we will briefly review below. It is still not clear whether the stringy solution to quantum
gravity should work. Because Planck’s length scale is so small, up to now String Theory is
only constructed from internal consistency. But it is at the moment the best candidate we
have. Let us quickly review some of the major implications of String Theory, derived already
at perturbative level.

graviton

Figure 5: The point particle graviton interchange is replaced by the smeared string interaction.

The first important consequence of String Theory is the existence of vibrating modes of the
string. They correspond to the physical particle spectrum. For phenomenology the relevant
part comes from the massless modes, since the massive modes are excited at energies of the
order of the Planck’s mass l−1

p . At low energies all the massive modes decouple and we end
with an effective Quantum Field Theory for the massless modes. In the massless spectrum of
the closed string, there is a particle of spin two. It is the graviton. Then String Theory includes
gravity. If we know how to make a consistent and phenomenologically satisfactory quantum
theory of strings, we have quantized gravity.

Up to now, String Theory is only well understood at the perturbative level. The field theory
diagrams are replaced by two dimensional Riemann surfaces, with the loop expansion being
performed by an expansion in the genus of the surfaces. It is a formulation of first quantization,
where the path integral is weighed by the area of the Riemann surface and the external states
are included by the insertion of the appropiate vertex operators (see fig. 6). The perturbative
string coupling constant is determined by the vacuum expectation value of a massless real
scalar field, called the dilaton, through the relation gs = exp⟨s⟩. The thickening of Feynman
diagrams into ‘surface’ diagrams improves considerably the ultraviolet behavior of the theory.
String Theory is ultraviolet finite.
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15.4.25 String Theory in perturbation theory.

+ + + . . . .

Figure 6: The preturbative loop expansion in String Theory is equivalent to expand in the
number of genus of the Riemann surfaces.

The third important consequence is the introduction of supersymmetry. For the bosonic
string, the lowest vibrating mode correponds to a tachyon. It indicates that we are performing
perturbation theory arround an unestable minimum. Supersymmetry gives a very economical
solution to this problem. In a supersymmetric theory the hamiltonian operator is positive
semi-definite and the ground state has always zero energy. It is also very appealing from the
point of view of the cosmological constant problem. Furthermore, supersymmetry also intro-
duces fermionic degrees of freedom in the physical spectrum. If nature really chooses to be
supersymmetric at sort distances, the big question is: How is supersymmetry dynamically bro-
ken? The satisfactory answer must include the observed low energy phenomena of the standard
model and the vanishing of the cosmological constant. As a last comment on supersymmetry
we will say that the Green-Schwarz formulation of the superstring action demands invariance
under a world-sheet local fermionic symmetry, called κ-symmetry. It is only possible to con-
struct κ-symmetric world-sheet actions if the number of spacetime symmetries is N ≤ 2 (in ten
spacetime dimensions).

The fourth important consequence is the prediction on the number of dimensions of the
target space where the perturbative string propagates. Lorentz invariance on the target space
or conformal invariance on the world-sheet fixes the number of spacetime dimensions (twenty-six
for bosonic strings and ten for superstrings). As our low energy world is four dimensional, String
Theory incorporates the Kaluza-Klein idea in a natural way. But again the one-dimensional
nature of the string gives a quite different behavior of String Theory with respect to field theory.
The dimensional reduction of a field theory in D spacetime dimensions is another field theory
in D− 1 dimensions. The effect of a non-zero finite radius R for the compactified dimension is
just a tower of Kaluza-Klein states with masses n/R. But in String Theory, the string can wind
m times around the compact dimension. This process gives a contribution to the momentum
of the string proportional to the compact radius, mR/α′. These quantum states become light
for R → 0. The dimensional reduction of a String Theory in D dimensions is another String
Theory in D dimensions. This is T duality [49].

The fifth important consequence comes from the cancellation of spacetime anomalies (gauge,
gravitational and mixed anomalies). It gives only the following five anomaly-free superstring
theories in ten spacetime dimensions.

The type IIA and type IIB string theories.

A type II string theory is constructed from closed superstrings with N = 2 spacetime supersym-
metries. The spectrum is obtained as a tensor product of a left- and right-moving world-sheet
sectors of the closed string. Working in the light-cone gauge, the massless states of each sec-
tor are in the representation 8v ⊕ 8± of the little group SO(8). The representations 8v and
8± are the vector representation and the irreducible chiral spinor representations of SO(8),
respectively.

The type IIA string theory corresponds to the choice of opposite chiralities for the spinorial
representations in the left- and right-moving sectors,

Type IIA : (8v ⊕ 8+)⊗ (8v ⊕ 8−) . (15.526)
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15.4.25 String Theory in perturbation theory.

The bosonic massless spectrum is divided between the NS-NS fields:

8v ⊗ 8v = 1⊕ 28⊕ 35 , (15.527)

which corresponds to the dilaton s, the antisymmetric tensor Bµν and the gravitation field gµν ,
respectively, and the R-R fields:

8+ ⊗ 8− = 8v ⊕ 56, (15.528)
which correspond to the light-cone degrees of freedom of the antisymmetric tensors Aµ and
Aµνρ, respectively. As the chiral spinors have opposite chiralities, in the vertex operators of the
R-R fields only even forms appear, F2 and F4. The physical state conditions on the massless
states give the following equations on these even forms:

dF = 0 d ⋆ F = 0 , (15.529)

with ⋆F the Poincare dual (10 − n)-form of the n-form Fn. These are the Bianchi identity
and the equation of motion for a field strength. Their relation with the R-R fields is then
Fn = dAn−1. The Abelian field strengths Fn are gauge invariant, and since these are the fields
that appear in the vertex operators, the fundamental strings do not carry RR charges.

The fermionic massless spectrum is given by the NS −R and R−NS fields:

8v ⊗ 8− = 8+ ⊕ 56− ,

8+ ⊗ 8v = 8− ⊕ 56+ . (15.530)

The 8± states are the two dilatini. The 56± states are the two gravitini, with a spinor and a
vector index. Observe that the fermions have opposite chiralities, which prevent the type IIA
theory from gravitational anomalies.

The Type IIB String Theory corresponds to the choice of the same chirality for the spinor
representations of the left- and right-moving sector,

Type IIB : (8v ⊕ 8+)⊗ (8v ⊕ 8+) . (15.531)

The NS-NS fields are the same as for the type IIA string. The difference comes from the R-R
fields:

8+ ⊗ 8+ = 1+⊕28⊕ 35+ . (15.532)
They correspond, respectively, to the forms A0, A2 and A4 (self-dual).

For the massless fermions there are two dilatini and two gravitini, but now all of them have
the same chirality. In spite of it, the theory does not have gravitational anomalies [50].

Under spacetime compactifications, the type IIA and the type IIB string theories are unified
by the T -duality symmetry. It is an exact symmetry of the theory already at the perturbative
level and maps a type IIA string with a compact dimension of radius R to a type IIB string
with radius α′/R.

The Type I string theory.

It is constructed from unoriented open and closed superstrings, leading only N = 1 spacetime
supersymmetry. The massless states are:

Open : 8v ⊗ 8+ (15.533)
Closed sym. : [(8v ⊕ 8+)⊗ (8v ⊕ 8+)]sym =

= [1⊕ 28⊕ 35]bosonic ⊕ [8− ⊕ 56−]fermionic . (15.534)

The massless sector of the spectrum that comes from the unoriented open superstring (15.533)
gives N = 1 super Yang-Mills theory, with a gauge group SO(Nc) or USp(Nc) introduced by
Chan-Paton factors at the ends of the open superstring. The sector coming from the unoriented
closed string (15.534) gives N = 1 supergravity. Cancellation of spacetime anomalies restricts
the gauge group to SO(32).
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The SO(32) and E8 × E8 heterotic strings.

The heterotic string is constructed from a right-moving closed superstring and a left-moving
closed bosonic string. Conformal anomaly cancellation demands twenty-six bosonic target
space coordinates in the left-moving sector. The additional sixteen left-moving coordinates
XI
L, I = 1, ..., 16, are compactified on a T 16 torus, defined by a sixteen-dimensional lattice,

Λ16, with some basis vectors {eIi }, i = 1, ..., 16. The left-moving momenta pIL live on the dual
lattice τΛ16. The mass operator gives an even lattice (

∑16
I=1 e

I
i e
I
i = 2 for any i). The modular

invariance of the one-loop diagrams restricts the lattice to be self-dual (τΛ16 = Λ16). There
are only two even self-dual sixteen-dimensional lattices. They correspond to the root lattices
of the Lie groups SO(32)/Z2 and E8 × E8.

For the physical massless states, the supersymmetric right-moving sector gives the factor
8v ⊗ 8+, which together with the lattice points of length squared two of the left-moving sector,
give an N = 1 vector multiplet in the adjoint representation of the gauge group SO(32) or
E8 × E8.

There is also a T -duality symmetry relating the two heterotic strings.

15.4.26 D-branes.

Perturbation theory is not the whole history. In the field theory sections we have learned
how much the nonperturbative effects could change the perturbative picture of a theory. In
particular, there are nonperturbative stable field configurations (solitons) that can become the
relevant degrees of freedom in some regime. In that situation it is convenient to perform a
duality transformation to have an effective description of the theory in terms of these solitonic
degrees of freedom as the fundamental objects.

What about the nonperturbative effects in String Theory?. Does String Theory incorpo-
rate nonperturbative excitations (string solitons)?. Are there also strong-weak coupling duality
transformations in String Theory?. Before the role of D-branes in String Theory were appreci-
ated, the answers to these three questions were not clear.

For instance, it was known, by the study of large orders of string perturbation theory, that
the nonperturbative effects in string theory had to be stronger than in field theory, in the sense
of being of the order of exp(−1/gs) instead of order exp(−1/g2s) [51], but it was not known
which were the nature of such nonperturbative effects.

With respect the existence of nonperturbative objects, the unique evidence came form soli-
tonic solutions of the supergravity equations of motion which are the low energy limits of string
theories. These objects were in general extended membranes in p+1 dimensions, called p-branes
[52].

In relation to the utility of the duality transformation in String Theory, there is strong
evidence of some string dualities [53]. There is for instance the SL(2,Z) self-duality conjecture
of the type IIB theory [54]. Under an S-transformation,the string coupling value gs is mapped
to the value 1/gs, and the NS-NS field Bµν is mapped to the R-R field Aµν . Then, self-duality
of type IIB demands the existence of an string with a tension scaling as g−1

s and non-zero RR
charge.

Dirichlet boundary conditions.

In open string theory, it is possible to impose two different boundary conditions at the ends of
the open string:

Neuman : ∂⊥X
µ = 0 . (15.535)

Dirichlet : ∂tX
µ = 0 . (15.536)
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15.4.26 D-branes.

An extended topological defect with p+1 dimensions is described by the following boundary
conditions on the open strings:

∂⊥X
0,1,···p = ∂tX

p+1,···9 = 0 . (15.537)

We call it a D p-brane (for Dirichlet [55]), an extended (p+1)-dimensional object (located at
Xp+1,···9 = const) with the end points of open strings attached to it.

The Dirichlet boundary conditions are not Lorentz invariant. There is a momentum flux
going from the ends of open strings to the D-branes to which they are attached. In fact,
the quantum fluctuations of the open string endpoints in the longitudinal directions of the
D-brane live on the world-volume of the D-brane. The quantum fluctuations of the open string
endpoints in the transverse directions of the D-brane, makes the D-brane fluctuate locally. It
is a dynamical object, characterized by a tension Tp and a RR charge µp. If µp ̸= 0, the
world-volume of a p-brane will couple to the R-R (p+ 1)-form Ap+1.

Far from the D-brane, we have closed superstrings, but the world-sheet boundaries (15.537)
relates the right-moving supercharges to the left-moving ones, and only a linear combination
of both is a good symmetry of the given configuration. In presence of the D-brane, half of the
supersymmetries are broken. The D-brane is a BPS state. In fact, in [56] it was shown that
the D-brane tension arises from the disk and therefore that it scales as g−1

s . This is the same
coupling constant dependence as for BPS solitonic branes carrying RR charges [52].

The Dirichlet boundary condition becomes the Neuman boundary condition in terms of the
T -dual coordinates, and vice versa. It implies that if we T -dualize a direction longitudinal to
the world- volume of the D p-brane, it becomes a (p − 1)-brane. Equally, if the T -dualized
direction is transverse to the D p-brane, we obtain a D (p + 1)-brane. Consider a 9-brane in
a type IIB background. The 9-brane fills the spacetime and the endpoints of the open strings
attached to it are free to move in all the directions. It is a type I theory, with only N = 1
supersymmetry. Now T -dualize one direction of the target space. We obtain an 8-brane in a
type IIA background. If we proceed further, we obtain that a type IIB background can hold
p = 9, 7, 5, 3, 1,−1 p-branes. A D (−1)-brane is a D-instanton, a localized spacetime point. For
a type IIA background we obtain p = 8, 6, 4, 2, 0 p-branes.

BPS states with RR charges.

Figure 7: Two parallel D-branes with the one-loop vacuum fluctuation of an open string at-
tached between them. By modular invariance, it also corresponds to a tree level interchange of
a closed string.

To check if really the D-branes are the nonperturbative string solitons required by string du-
ality, Polchinski computed explicitly the tension and RR charge of a D p-brane [57]. He first
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15.4.27 Some final comments on nonperturbative String Theory.

computed the one-loop amplitude of an open string attached to two parallel D p-branes. The
resulting Casimir force between the D-branes was zero, supporting its BPS nature. By modular
invariance, it can also be interpreted as the amplitude for the interchange of a closed string
between the D-branes (see fig. 7). In the large separation limit, only the massless closed modes
contribute. These are the NS-NS fields (graviton and dilaton) and the R-R (p + 1) form. On
the space between the D-branes these fields follow the low energy type II action (type IIA for p
even and type IIB for p odd). On the D p-branes, the coupling to the NS-NS and R-R fields is

Sp = Tp

∫
dp+1ξ e−s |detGab|1/2 + µp

∫
p−brane

Ap+1 . (15.538)

From (15.538) we see that the actual D-brane action includes a dilaton factor τp = Tp/gs,
with gs the coupling constant of the closed string theory. Comparing the field theory calculation
with the contribution of the massless closed modes in the string theory computation, one can
obtain the values of Tp and µp. The result is [57]

µ2
p = 2T 2

p = (4π2α′)3−p . (15.539)

Observe that the R-R charge is really non-zero. In fact, if one checks (the generalization of)
the Dirac’s quantization condition for the charge µp and its dual charge µ(6−p), one obtains that
µpµ(6−p) = 2π. They satisfy the minimal quantization condition. It means that the D-branes
carry the minimal allowed RR charges.

15.4.27 Some final comments on nonperturbative String Theory.

D-instantons and S-duality.

The answers to the three questions at the beginning of the previous section can now be more
concrete, since some nonperturbative objects in String Theory has been identified: the D-branes.

Consider a D p-brane wrapped around a non-trivial (p + 1)-cycle. This configuration is
topologically stable. Its action is TpVp+1/gs, with Vp+1 the volume of the non-trivial (p + 1)
cycle. It contributes in amplitudes with factors e−TpVp+1/gs , a generalized instanton effect. Now
we understand why the nonperturbative effects in String Theory are stronger than in field
theory, it is related to the peculiar nature of the string solitons.

The D-branes also give the necessary ingredient for the SL(2,Z) self-duality of the type
IIB string theory. This theory allows D 1-branes, with a mass τ1 ∼ (2πα′gs)

−1 in the string
metric and non-zero RR charge. Also, one can see that on the D 1-brane there are the same
fluctuations of a fundamental IIB string [58]. Then, it is the required object for the S-duality
transformation of the type IIB string. In fact, at strong coupling the D 1-string becomes light
and it is natural to formulate the type IIB theory in terms of weakly coupled D 1-branes.

There is another S-duality relation in String Theory. Observe that the type I theory and
the SO(32) heterotic theory have the same low energy limit. It could be that they correspond
to the same theory but for different values of the string coupling constant. Again D-branes
help to make this picture clearer. Consider a D 1-brane in a type I background with open
strings attached to it, but also with open strings with one end point attached to a 9-brane.
We call them 1− 9 strings. The 9-brane fills the spacetime, and the 1− 9 strings, having one
Chan-Paton index, are vectors of SO(32). One can see that the world-sheet theory of the D
1-brane is precisely that of the SO(32) heterotic string [59]. Having a tension that scales as g−1

s ,
one can argue that this D heterotic string sets the lightest scale in the theory when gsĝ1. The
strong coupling behavior of the type I string can be modeled by the weak coupling behavior of
the heterotic string.
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An eleventh dimension.

Type IIA allows the existence of 0-branes that couple to the R-R one-form A1. The 0-brane
mass is τ0 ∼ (α′)−1/2/gs in the string metric. At strong coupling in the type IIA theory, gsĝ1,
this mass is the lightest scale of the theory. In fact, n 0-branes can form a BPS bound state
with mass nτ0. This tower of states becoming a continuum of light states at strong coupling
is characteristic of the appearance of an additional dimension. Type IIA theory at strong
coupling feels an eleventh dimension of some size 2πR, with the 0-branes playing the role of
the Kaluza-Klein states [60].

If we compactify 11D supergravity [61] on a circle of radius R and compare its action with
the 10D type IIA supergravity action, we obtain the relation

R ∼ g2/3s . (15.540)

This eleventh dimension is invisible in perturbation theory, where we perform an expansion
near gs = 0.

This has been a lightning review of some aspects of duality in String Theory. We hope it will
serve to whet the appetite of the reader and encourage her/him to learn more about the subject
and to eventually contribute to some of the outstanding open problems. More information can
be found from the references [62].

15.5 Other dualities

15.5.1 Duality in Poincare group

(подробно обсужу это, пока не до этого.)

15.5.2 Duality and coset manifolds (???)

(Проен сказал, что это может быть связано, но пока это для меня разные вещи.)
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Part V

Appendix
.1 Additional general information

.1.1 Additional motivation

В дуальности простая идея, но чтобы проделать преобразования, нужно на
самом деле уметь работать с формулами, так что можно очень круто прокачать
навык организации работы с информацией

(раскрою эту мысль, поэтому очень прикольно когда-то думать про то, как доделать
какую-то формулу в теории этой. На самом деле это часто как вызов в сложных
вычислениях мотивирует даже больше, чем другие аспекты.)

.1.2 Literature

Литература об основах

[3] Freedman, Daniel Z., Van Proeyen, Antoine Supergravity
Книга, где очень много теоретических основ, в том числе общий формализм дуальности

обсуждается.
[2] JM Figueroa-O’Farrill Electromagnetic Duality for Children
Примерно 200 страниц очень крутой, вводной теории, Зи тоже ее рекомендует.
[5] Mary K. Gaillard, Bruno Zumino Duality rotations for interacting fields
Статья, где разбирается дуальность. Написана ужасно, математика соврешенно

непонятная, физику вообще крайне сложно увидеть. Но хотя бы результаты получены
известные многим, так что если не известна лучшая статья, можно и ее разбирать, но
это будет неприятно и многое время не так уж полезно.

[4] Fré, Pietro Lectures on Special Kähler geometry and electric—magnetic duality rotations
Хорошие лекции для прояснения дуальности и не только. Тема 2х недель изучений.

Больше там про Кэлерову геометрию, а про дуальность не знаю, насколько она полезная,
но много хорошего обзора точно.
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[15] J. Ellis, M.K. Gaillard, L. Maiani and B. Zumino, Unification of the fundamental
particle interactions, ed. S. Ferrara, J. Ellis and P. Van Nieuwenhuizen (Plenum Press, New
York, 1980) p. 69

[16] J. Ellis, M.K. Gaillard and B. Zumino, Phys. Lett. 94B (1980) 143

Литература о приложениях

[1] Andrianopoli, L. et. al. N = 2 supergravity and N = 2 super Yang-Mills theory on general
scalar manifolds: Symplectic covariance gaugings and the momentum map

Применение в супергравитации дуальности, с нее начинается и что-то дальше с ней
делается, не особо въехал, но если нужно будет - только ее и буду читать про это. Она
же первая гуглится.

Другая литература об основах

Киселев Лекции по квантовой механике 2022
Там есть небольшой раздел про дуальность и про вывод уравнений электродинамики,

так что тоже чуть почитать полезно, но совсем мало про нее.

.1.3 History of research in duality

.2 Мышление профессионала в дуальности

.2.1 Насколько же на самом деле дуальность полезна и работает?

(словами критический обзор)

.2.2 Об изучении дуальности

Что на самом деле стоит изучать в дуальности, а что нет?

(тут же рассуждения, что некоторые вещи не стоит изучать, например, Гиллард Зумино
статью, потому что трата времени. не знаю, продумаю это лучше потом, все-таки стоит,
просто тормозить много на этом не нужно, многие вещи просто такие, что можно более
простыми способами доказать, а не через крышесносную математику..)

Не нужно недооценивать теории дуальности!

Это большие теории, в которых можно пару месяцев только сидеть. Не нужно думать,
что за неделю работа сделается и понятно хотя бы многое будет.

(раскрою мысль, итак это очевидно из всей этой записи)

.3 Mathematical tricks for duality

.3.1 On variational methods in duality (!?)

Main variational properties

Let’s discuss some properties for variations that we will use later.
1.

FG̃ = F̃G.

This is because FG̃ ≡ 1
2
F µνεµνρσG

ρσ = 1
2
GρσερσµνF

µν = F̃G.
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.3.2 Hodge duality of forms

3. For any symmetric matrix B (B = BT ) and arbitrary matrix Gs

∂(GBG̃)

∂χ
= 2

∂G

∂χ
BG̃, ⇔ ∂G

∂χ
BG̃ =

1

2

∂(GBG̃)

∂χ

Proof:

GB
∂G̃

∂χ
≡ GµνB

1

2
εµνρσ

∂Gρσ

∂χ
=
∂Gµν

∂χ
B
1

2
εµνρσG

ρσ =
∂G

∂χ
BG̃

so
1

2

∂(GBG̃)

∂χ
=

1

2

(
∂G

∂χ
BG̃+GB

∂G̃

∂χ

)
=
∂G

∂χ
BG̃

4.
∂(δL) = ∂(δ)L+ δ∂L.

Example (??????????????) (it didn’t work, so I just believe in this, I’ll try later again and ask
about it!)

5. For (?? which matrices???)
F̃BG = G̃BTF.

Proof:

F̃BG =
1

2
εµνρσF

aρσBabGbµν =
1

2
ερσµνF

aµνBabGbρσ =
1

2
ερσµνG

bρσBT baF aµν = G̃BTF.

6. (!??! for potentials lemma for obtaining the current)

.3.2 Hodge duality of forms

(??? позже обсуждение, как они конкретно нужны в теорполе???)

By Proyen’s book

Since p - and q-forms have the same number of components when p + q = D, it is possible to
define a 1 : 1 map between them. This map is the Hodge duality map from Λp(M)→ Λq(M),
and it is quite useful in the physics of supergravity. The map is denoted by Ω(q) = ∗ω(p)

Since the map is linear we can define it on a basis of p-forms and then extend to a general
form. It is convenient to use the local frame basis initially and define

∗ea1 ∧ · · · ∧ eap = 1

q!
eb1 ∧ · · · ∧ ebqεb1···bqa1···ap .

A general p-form can be expressed in this basis, and we can proceed to define its dual via

Ω(q) = ∗ω(p) = ∗
(
1

p!
ωa1···ape

a1 ∧ · · · ∧ eap
)

=
1

p!
ωa1···ap

∗ea1 ∧ · · · ∧ eap

Exercise 7.15 Show that the frame components of Ω(q) are given by

Ωb1···bq = (∗ω)b1···bq =
1

p!
εb1···bq

a1···apωa1···ap

These formulas are far less complicated than they look since there is only one independent
term in each sum. For example, for D = 4 the dual of a 3-form is a 1-form. For basis elements
we have ∗e1∧e2∧e3 = e0 and ∗e0∧e1∧e2 = e3. For components, (∗ω)0 = ω123 and (∗ω)3 = ω012.
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.3.2 Hodge duality of forms

The duality has an important involutive property, which can be inferred from the following
sequence of operations on basis elements:

∗∗ea1 ∧ · · · ∧ eap) = 1

q!
eb1 ∧ · · · ∧ ebqεb1···bqa1···ap

=
1

p!q!
ec1 ∧ · · · ∧ ecpεc1···cpb1···bqεb1···bqa1···ap

= −(−)pqec1 ∧ · · · ∧ ecpδa1···apc1···cp

= −(−)pqea1 ∧ · · · ∧ eap

This leads to the general relation ∗ (∗ω(p)
)
= −(−)pqω(p). This is the correct relation for a

Lorentzian signature manifold. For Euclidean signature the involution property is ∗
(∗ω(p)

)
=

(−)pqω(p).
For even dimension D = 2m, it is possible to impose the constraint of self-duality (or anti-

self-duality) on forms of degree m, i.e. Ω(m) = ±∗Ω(m). In a given dimension this condition
is consistent only if duality is a strict involution, i.e. −(−)m2

= −(−)m = +1 for Lorentzian
signature and (−)m = +1 for Euclidean signature. Thus it is possible to have self-dual Yang-
Mills instantons in four Euclidean dimensions. A self-dual F (5) is possible in D = 10 Lorentzian
signature, and it indeed appears in Type IIB supergravity.

The duality relations defined above in a frame basis are easily transformed to a coordinate
basis using the relations ea = eaµ(x)dx

µ and dxµ = eµa(x)e
a. For coordinate basis elements the

duality map is

∗ ( dxµ1 ∧ · · · ∧ dxµp) =
1

q!
egµ1ρ1 · · · gµpρp dxν1 ∧ · · · ∧ dxνpεν1···νqρ1···ρp .

For antisymmetric tensor components, we have

(∗ω)µ1···µq =
1

p!
eεµ1···µqρ1···ρpg

ν1ρ1 . . . gvpρpων1···vp

Following the discussion in Sec. 7.5, we may take as a volume form on M the wedge product
∗ω(p) ∧ ω(p) of any p-form and its Hodge dual. The integral of this volume form is simply the
standard invariant norm of the tensor components of ω(p), i.e.∫

∗ω(p) ∧ ω(p) =
1

p!

∫
dDx
√
−gωµ1···µpωµ1···µp

Exercise 7.16 Prove (7.56). Use the definitions above and those in Sec. 7.5 and the fact that

ea1 ∧ · · · ∧ eaq ∧ eb1 ∧ · · · ∧ ebp = −εa1···aqb1···bp dV

where dV is the canonical volume element of (7.48).
Exercise 7.17 Show that the volume form dV can also be written as ∗1.
Exercise 7.18 Compare these definitions with Sec. 4.2.1, to obtain

F̃µν = −i (∗F )µν .

Show that the factor i ensures that the tilde operation squares to the identity. Self-duality
is then possible for complex 2-forms.

Exercise 7.19 For applications to gauge field theories it is useful to record the relation
between the components of the field strength 2-form and its dual:

∗Fµν ≡
1

2

√
−gεµνρσF ρσ, ∗F µν =

1

2
√
−g

εµνρσFρσ
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.3.3 Properties of the non-compact real symplectic group

Verify the second relation. Since both Fµν and ∗Fµν are tensors, their indices are raised by
gµν .

.3.3 Properties of the non-compact real symplectic group

Theory

We recall briefly some basic properties of the non-compact real symplectic group Sp(2n,R). It
can be defined as the group of real 2n× 2n matrices S which satisfy

STΩS = Ω

where Ω is a 2n× 2n non-singular antisymmetric matrix which can be taken to be

Ω =

(
0 −1
1 0

)
Writing

S = 1 +X

where X is an infinitesimal matrix, (A.1) gives

XTΩ = −ΩX

If we write

X =

(
A B
C D

)
where A,B,C and D are n× n real matrices, (A.4) is equivalent to

BT = B, CT = C, AT = −D.

It is often convenient to rewrite the infinitesimal transformation of Sp(2n,R),

δ

(
F
G

)
=

(
A B
C D

)(
F
G

)
in the complex basis F ± iG. One obtains

δ

(
F + iG
F − IG

)
=

(
T V ∗

V T ∗

)(
F + iG
F − iG

)
where

2T = A+D + i(C −B),

2V = A−D − i(C +B),

so that T is antihermitian and V is symmetric:

T † = −T, V T = V

In the complex basis a finite transformation of Sp(2n,R) takes the form

S =

(
ϕ0 ϕ

∗
1

ϕ1 ϕ
∗
0

)
where the n× n complex matrices ϕ0 and ϕ1 satisfy the constraint
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.3.3 Properties of the non-compact real symplectic group

ϕ†
0ϕ0 − ϕ†

1ϕ1 = 1

The inverse matrix is

S−1 =

(
ϕ†
0 −ϕ

†
1

−ϕT
1 ϕT

0

)
The maximal compact subgroup U(n) of Sp(2n,R) is easily recognized in (A.8) for V = 0

and in (A.11), (A.12) for ϕ1 = 0.
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[14] L. Álvarez-Gaumé, J. Distler, C. Kounnas and M. Mariño, Int. J. Mod. Phys. A11 (1996)
4745;
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