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This draft is not aimed for distribution.
Duality is discussed in details, especially duality in QFT, Strings by Alvarez-Gaumé Zamora,
and Electromagnetic Duality for Children by J. M. Figueroa-O’Farrill. Problems and solutions are

provided.

Duality was a topic that I studied in 2024 in the scope of the course “Advanced Field Theory” in
KU Leuven. Later maybe I’ll continue learning it, but it is too specific, big, and deep subject to study
it without related research.

Before continuing this research I want to spend 1 week on differential geometry and 1 week on
general preparation for special field theories.
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Preface

1 Preface

Description of the note
Overview of applications

We will specify the applications
(I'1l reveal it later)

Main motivation

O6cy,ILI/IM CaMbI€ THUIITMYHBIC IIPDUYINHBI, 3a9€M U3yY1aTb ,Z[ya,ﬂbHOCTb?
Amazing facts (T'll reveal it later)

Puzzles for motivation

Ob6cyum TeopeTudeckne 3a/1a4un, KOTOpble MOTHBUPYIOT U3YYaTh JYaJIbHOCTD.

Why Pauli-Lubanski vector works? (mamwurry, aro Mot o rpymmnsl [lyankape MOXKHO
TO JOWTH, & BOT 9TO JIaJIbIIe JIeJIATh - HEIIOHSITHO, a C MTOMOIIBIO JIyaJTbHOCTHA MOYKHO JIOTaaThCS
1o Taynu-JTiobarckoro BekTopa n Tak MOCTPOUTH KazuMupbl. [lodemy rakoe paboraer?)



Part 1
Duality in a Nutshell

2 Main dual constructions and formulas

2.1 Main formulas and ideas of duality

(TyT camble BazkHbIe ObIIHe c10Bal OTOM HAIMUIILY UX)

~ 1 .
F/.Ll/ - §€,uzzpan )

Main formulas of Duality

Main basic properties of dual tensors

- 1
H" = — e Hyo

HE = % (Hw ) HZ = (HT)".

% %

1 ~
i Hyo = HI™.

]‘- o S == +
i i = H,

G«HMJHle _ O,
1
Gip(uHiV)p - _Zn#VGimHipm G+p[uH_y]p =0,

G, = Ay G, — GO,

FG = FG.
This is because FG = S 0o GPT = LGP FHY = FG.

— 2

For any symmetric matrix B (B = BT) and arbitrary matrix Gs

d(GBG) _0G _ - oG _ - 19(GBG)
TP _ 9”7 R ZBG=-22"""2
dx ox ¢, ox G 2 Oy
Proof: ~
oG 1 oGre  oG™ 1 G _ ~
B— =G"B- —— = ——B- P = —B
G Iy G QEWW ax Iy 25/wpaG By G



2.1 Main formulas and ideas of duality

1 a(GBé) oG oG oG
- B B —B
2 Ox (ax G+@ 8x> ox G
5. For (7?7 which matrices???) . )
FBG = GB'F.

Proof:

1 1

= 1 v o o a ~
FBG = 5glw/pcr‘Fapa‘Babi.“ _ §€pa‘ija,ul/BabiP 2 po,uuGbp BTb Famv _ GBTF

05
OF

Dual tensors are not independent form original one,

FTAT — (F+T+F— ) AT< )GMV _ (F+T—|— F— ) AT( )(G—Hw G—lw) — %F-FYATG—F + h.c.

OFt 0 1 —i
wo - F, oy Fre 0P + —¢g,,"°
3F,y 5Fp02(“+2€“ ¢ ) (ﬂ”+25“ )

Duality for one free electromagnetic field We know that 0,F" = o,a,j re = 0.
There is a dual symmetry - change of variables:

F#v s P — i

(the “i” is included to make the transformation real).

Since F'™ also obeys both equations of (4.41) we have defined a symmetry of the free
electromagnetic field.

The symmetry (4.42) exchanges the electric and magnetic fields: E; — E! = —B; and

0, F"™ =0, 9,F"™ =0,

We can now consider the change of variables (the i is included to make the transformation
real):
FHY — R — R

Since F'™ also obeys both equations of (4.41) we have defined a symmetry of the free
electromagnetic field.

The symmetry (4.42) exchanges the electric and magnetic fields: E; — E! = —B; and
B, —» B, =FE,.

The self-dual combinations FjE contain only photons of one polarization in their plane wave
expansions:

d3k : - .
+ _ o ik-x —1km * *

To perform this exercise, check first that with the polarization vectors given in Sec. 4.1.2,
one has

1' vVpo 7 14 7
=i ke, (, &) = kL (k, +).



2.1 Main formulas and ideas of duality

Fl F" = 19, (" A,F,,) .

<FM,,FW> (z) — det A~ (FWFW> (Ax).

Thus F),, F** transforms as a scalar under proper Lorentz transformations but changes sign
under space or time reflections.

1 .
woE) = =N Fpo B

4
General duality rotations
L=1L (Fa,X’,XL) :
Fy, = 0,9 — 0,49,
MF, = 0.
1 oL

o _ - apo —
G, = 25WWG = 20F‘WV’

MG, =0

()= (5)(a)
ox' = €'(x),

Covariance of the equations of motion:

C=C" B=B",
Dab+Aba — 55&177

g 5L = 9 (EFCF + iGBG‘ + sL) .

oF® oFe* \ 4
oL 0L
% “8)(}L
1

oL = Z(Fcﬁ + GBG)

Proof:
()

10



2.1 Main formulas and ideas of duality

Conserved current under duality rotations
~ 1 /-~ ~ ~ ~
Jr =3 (G A, — P Cat, + G BA, - DA,

. 0L N
pr=g Ok g
x|,
o, J" = 0.

Proof:
()

(777, see theory about it, 777)

Duality formalizm in vector-+spinor+scalar field theory We considered there ac-
tions S(F) that depend on field strengths F),, which are determined in terms of (abelian)
vectors Aﬁ. We consider actions at most quadratic in spacetime derivatives, and thus also at

. . A
most quadratic in Fj;,,.

. 1 1 .

Py = =5ie5upm PP, Ff =3 (FW + F,“,> ,
V#1Im Flﬁf = 0 Bianchi identities,

V,Im G =0 Equations of motion of A%,

y . _10S(FT,F~,9) _ ~ . _10S5(F,¢)
G = 2ie™! SEL ,  le. G i=2e I;T,ﬁ,'
S(F,¢) =S (F', F~,¢)
Nap = —ifap
Gjuy = NAB(QZS)F;Z/B + HZ,U,V(gb) = Gl—)‘rAuu + HXMV(QS)

S FA\_ (A% BN (F
¢ GA/u/ B C’AB DE GB;W ’

BAP = B4 Cap=Cpa, Df=—Ap

0S
E~ = —
7 5¢17
5S 5L oL
— 4 v S 50, b
S = /d zeL (¢,0,0), S e l&bz v“éaugb%} )
5d¢i - £Z(¢>7
b=t (AAFE + BAPGy )—5
S T HOR
55 = (62 4 (F'A" +G'B) s
— ¢, - % (i (F7AT+GTB) G +he. )

11



2.1 Main formulas and ideas of duality

o 5 5 5
s 0e = duspr + (AT + N B) s
0iba = 0a0; + (0:€7) 0; + (@G*TB(SF% +h.c. ) .
5%5515 = —%i (6.G* + (AT +NB)G*) = —%i [CF*" + NBBG"]
= —}115% [F*TCF* + G BG]

0,045 = uEi+ (06) B, — 5 (1 (DG B) G* +hc. )

1 .
048 = —i [FTTCFT + GTT'BG"] + hee. , 6,B; = — (0:8) E;.
1
(SdS = _g/d4x€,uzxpa (Fﬁ,CABFpB;. + GA/,LI/DABGBPO') ’

1 1
[ _ZiFMG; +he = 8y(F, ¢)— 1 (iF*H} +he. ),

1 1
Sa(F.¢) = = [AFHAGY, +he. = —ZiF Ny F™ + hee.

1 1
S / d*z [e (Im Nag) Fjp FP — 55“””’ (Im Nap) F2 FB

4 ur= po |9

v

1 1
Si(F,¢) = —§iF+AH;{ +hec = 7 /d%e“"””FIj‘ H gpo-
1
Sinv = §Sl(F7 ¢) + SO<¢)7

Symplectic vector notation
0aNap(¢) = EOiNap = (C— NA— ATN = NBN)
SaH'(¢) =E¢O,HY = — (AT + NB) H™.
5%51(12 }) = —iiH*TBHﬂ
(@, PY)
Pr=NapQ*5.

Hl, = (NQ" - P+)W = 2i(Im N)Q,.

1 1, 1.
351(F,0) = —ZIF+A (NQT = PT) =i (FH P — GHQY) +hee. .

If we replace Gy, by the full G, this is a symplectic invariant.

So(¢) = liHJr

4 AMVQ+AHV + h.c. + S()7 inv -

12



2.2 Special methods of duality

Invariance of the energy-momentum tensor

i oL NYapv ra
05 = _an_m+5§L+Gl )
is conserved as a consequence of the equations of motion (2.3), (2.5) and (2.15):

0,04 = 0.

(777 B wem mjes B wore ero??? u uzjes BuIBOgA???)
On construction of the lagrangian

1 - 1
L=-FG+ (FI = GH)+ Liny (X),

4 o 0jG
jG—]:(F+jH)8]—F.

1 1 1
L= FKF + S F(I = jKH) + JjH(I = jKH) + Lins (X).

(777 ToKe BIHMIILY WJIEIO, UTO MIPOUCXOTUT???)

2.2 Special methods of duality

(OTOM CJIEJIA0 HECKOJIBKO PA3JIEJIOB, CIPYIIIUPYIO METOJIbI, TIOKA TYT METO/IbI, KOTOPBIE 1 TLIOXO
HOHUMAIO )

Basics

N = 2 supersymmetric gauge theory on a group G broken to U(1)", with r = rank G, corre-
sponds to a particular case of the most general N = 1 coupling of r chiral multiplets (X 4 XA)
to rIN = 1 abelian vector multiplets (fﬂf, /\A) in which the Kahler potential K and the holo-

morphic kinetic term function fp (X A) are given by

K =i(FAX? = FuX?), (Fa=04F) (2.1)
fap = 040pF = Fyp

Rugep = —0a0c0pFo5dp05F g"? (2.2)
L =9450,X0,X" + (gAB)\IAU“Z)#X? + h.c. > (2.4)

+ Im (FAB?L;A?:;B) + -£Pauli + -£4— fermi

where A, B, ... run on the adjoint representation of the gauge group G, I = 1,2 and T;;A =
. —+A
7-;‘; — 5€uwpe T Aro (and 7':“’,‘4 = T:V ). As we shall see, also Lpau; and Ly perm; contain the

function F' and its derivatives up to the fourth.

13



2.2 Special methods of duality

The previous formulation, derived from tensor calculus, is incomplete because it is not
coordinate covariant. It is written in a particular coordinate system ("special coordinates")
which is not uniquely selected. In fact, eq.(2.1) is left invariant under particular coordinate
changes of the X4 — X X4 with some new function F (X ) described by

XAX) = ARXP + B*PFp(X) + P4
Fy (R4(X)) = CapX® + DEF(X) + Qu (2.5)

(é g) € Sp(2r,R)

ATc-c™A=0 , B'D-D'B=0 , A'D-C"B=1 (2.6)

and P4, Q4 can be complex constants which from now on will be set to zero.
It can be shown that a function F' exists such that [3]

=~ OF
Fp=— 2.7
D 27)
provided the mapping X4 — X4 is invertible.
O* Im ﬂ;A = 0 DBianchi identities (2.8)
0, Im G"", =0 Equations of motion '
(7, G24)
@g_%fA_NM¢B+
F o A TAandG’iA—GA
Im TANABTB — Im %AéA =
— T (FAGa+ 27 (CTB) Gt (2.9)

FFA(CTA) T 4 G (D7B) G

If ¢ = B = 0 the lagrangian is invariant. If C' # 0, B = 0 it is invariant up to a four-
divergence.

In presence of a topologically non-trivial %, background, (CTA) . [Im ¥, AF, P # 0,
one sees that in the quantum theory duality transformations must be integral valued in Sp(2r, Z)
[1] and transformations with B = 0 will be called perturbative duality transformations.

If B # 0 the lagrangian is not invariant. As it is well known, then the duality transformation
is only a symmetry of the equations of motion and not of the lagrangian.

14



2.2 Special methods of duality

G, = Nap¥,,”,
N = (C + DN)(A+ BN)™ (2.10)
N(X) = N(X),
F(X) = F(X)
A 0 TC symmetric
(C (AT)l) ,ACGL(r), A" C sy t (2.11)

The general form of the central charge for BPS states in a generic N = 2 rigid theory is
given by
7 = M = ‘n(‘m)FA - nff)XA‘ (2.12)
ATC = {a; | aj) of SU(r+1)

U=0V = (0:X"0,Fa) withi=1,...,r (2.13)

In rigid special geometry the U; satisfy the constraints

D,U; = iCijng™ Uy (2.14)
ain - 0

Gi7 = azajK =1 (ajFAaiXA — anAaiFA)
= iaiXAanB (NAB — NAB) (2'15)

0 Fy = Nap0, XP (2.16)

Cirp = i XA DO, Fa — 0;FaD0, X

= 0; X" (010,Fp — 0,0, XN ap) (2.17)
Rz‘jk? = —Cikpéﬁﬁgpp (2.18)

C’ijk - aiXAanBakXcaAaBacF (219)
Capc = 040p0cF (2.20)

15



2.2 Special methods of duality

Symplectic transformations in the fermionic sector
I e — o Ay 17—
L=—5NasF g B —iF M H L, + e + Liy (2.21)

H , are quadratic, and L,y are the quartic terms in fermions.

_ . 0L — _ _ _ _
GA;LV = 2(57:_‘4“” = NAB]Q';WB + HA;W = GbAuu + HA;LV (222>
7 —
Ly = —§N7‘;;7:_’“’ + c.c.
—%G,)_WT“” + c.c.
=i0"G,, A"+ cc. (2.23)
= —i0"H A"+ cc. —20"ImG, A"
U _
= §HW7: "+ ce —20"ImG, A
i - —puv
‘1:‘%:0 = _éHH”T " + c.c. + .£4f = ~£inv (224)
U Ay e
L=—3F MG F e+ Ling (2.25)
Hg,uu = (PAa - NABQE) 7;;(1 (226)

a denotes a new index, whose meaning depends on the model. 7, is a tensor not trans-
forming under the symplectic group.

1 _
—£in’u - _57:714!“} (PAa - NABQCLB) 7;;(1 + c.c. + -£4f

_ _% (F =4 Py — G Q) T + oo + Ly (2.27)

Invariance of L;,, is then guaranteed if (QA, PA) is a symplectic vector, and Lyf is con-

structed as the completion of Gy, to G in the above formula (plus possible completely invariant
terms). These completions are thus

7

2H;””QA‘T_“ + c.c. + invariant terms (2.28)

a’pv

Ly =

Compact duality rotations
5 F+i:G\ (T O F +1G
F—iG) \0T* F—iG )’

1
FI-GH == (F*+G*) = 5 (F —iG)(F + iG),

N | —

16



2.3 Applications and examples in a nutshell

Special methods by Gaillard, Zumino

Non-linear realizations
Dug = 8#9 - gQ,ua
Dyug — (Dyg) [k(x)] ™,
g_lDug — kg_lD#gk_l.
§L =Trdgg™'0, (Dugg_l) =0.

Now, dgg~! is an arbitrary element of the Lie algebra of G; therefore, one has the equations
of motion

9y (Dugg™) =0,
or

0u (9P.g™") = 0.

(7?7 HEdero TyT MOKa HE 3HAIO. )

Non-compact duality transformations (7?7 mudero TyT moka He 3HAI0. HO TYT KCTATH
MHOTO BCEro)

2.3 Applications and examples in a nutshell
2.3.1 Main illustrative examples

(HamuMIIy, TTOyMATh YyTh HYKHO PO HUX, [TOKA HE MOHST X KaK CJIeJyeT eI )

Changing little coupling constant to a big one (?7?77)

(77?7 have plans to find such examples)

Duality for gauge field and complex scalar
L= —}L(Im 2)F,, F" — é(Re Z)eM P F, F .
O, F"™ =0, 9, |(ImZ)F"™ +i(Re Z)F"| = 0.

GWJEEWWWS%%;::—aanlz)FWJ+(ReZ)FMZ

GH— = ZFm- . GEt = Z R

Oy ImF"™ =0, 0,ImG"™ =0.

SL(2,R)S = (dz), ad —bc =1

<g:)=m5(g:).

,  aZ+b

o Z+d

G/uyf — Z/ F/,uzxf ,

17



2.3.1 Main illustrative examples

L(F2) = 5 Tm (2, ).

SL(2,R),a=d=1,b=0

L(F.7) = _% Im (Z(1 + cZ)F, F™) # L(F. Z).

1
oM = (Im Z) (FWF; - Zn“”FpoF’)"> .

Im~Z

ImZ' = E—
BT Z T d)(cZ + d)

~ 1 .
F,,F,f=—F,F'+ ET]WFPUFP .

1 1
Fppbf = b 177 = |eZ + df’ {FWFV" - ZnWFp(,Fﬂ”] :

1 1 nIg
L= 1 (RefAB)F/fVFWB - 1 (Im fap) FMAVFM 5,

1 A e
= IRt
1 — v— * v
:_ZL (-11‘14BF1,111/AF"u B+fABF;jl_/AFu +B)7
v uvpo 05 uvB : ruvB
GA =£ W:_(ImfAB)F —1(RefAB)F
_ S (FT,F)
G~ = 2i———2 = ifugF" P,
OF A
y OS(FT F7) s ,
GIIZ + = 21W = —lfABFN +B.
77
Since the field equation for the action containing (4.67) is
05 05
- = = 99, —
0= 54z = 205Fa

the Bianchi identity and the equation of motion can be expressed in the concise form

O"Im F;,~ =0 Bianchi identities,

0, ImG""" =0 equations of motion.

(The same equations hold for Im F4* and ITm G4+.)

(o) =5(6-)=(e0) ().

18



2.3.2 Fermions in N = 2 rigid Yang-Mills theory

with real m x m submatrices A, B,C,D. Owing to the reality of these matrices, the same
relations hold for the self-dual tensors Ftand G*. In Sec. 4.2.3, these matrices were just
numbers:

A=d, B=c¢, C=b, D=a.

We require that the transformed field tensors F'4 and G', are also related by the definitions
(4.68), with appropriately transformed fsp. We work out this requirement in the following
steps:

G~ =(C+iDf)F~ = (C +iDf)(A+iBf)'F'~,

such that we conclude that
if = (C+iDf)(A+iBf)™ .

ATCc —-cTA=0, B'™D-D'B=0, A"D-CTB=1.

These relations among A, B, C, D are the defining conditions of a matrix of the symplectic
group in dimension 2m so we reach the conclusion that

AB
S = <c D) € Sp(2m, R).

The conditions (4.75) may be summarized as

T B (01
S'QS =Q  where Q_(—EO)‘

The duality transformations in four dimensions are transformations in the symplectic group
Sp(2m, R).

1 1
L= =5 Re(fapl, P 7) = =5 Tm (FAGL7)
we obtain
ImF~G~ =Im (FG7)+Im[2F~ (C"B)G~+ F (CTA)F~+ G~ (D"B)G7].

If ¢ # 0,B = 0 the Lagrangian is invariant up to a 4-divergence, since Im F~F~ =
—ie”“p”F w e and the matrices A and C' are real constants. For B # 0 neither the Lagrangian
nor the action is invariant.

2.3.2 Fermions in N = 2 rigid Yang-Mills theory

The coordinate independent description of fermions is given by SU(2) doublets (A, A7) where
upper and lower SU(2) indices I mean positive and negative chiralities respectively. As such
the spinors are symplectic invariant and contravariant world vector fields.

(XA, 0. XN, Fog) (2.29)
a,f € SL(2,C).
*Fog' is ohgFo

aB’ p

19



2.3.3 Example: duality transformations in NV =1 locally SUSY YM theories

A=09XY Py=0F, (2.30)
s = kg Cip AN €15

H = k0, X7 (Npa — Npa) g7C i, NP e (2.31)

Lpaai = —i(N = N)apd X T5F P + c.c.
Ly = &XAZ? X5 (NAB — NAB) 7’57']“6 + c.c. + invariant terms (2.32)
Lpaui = —k0a00cF (X2NF — NIXE) F9°% + c.c. (2.33)
NN €PN XL €% Ry (2.34)
DiClim NI NS e PNINI e yexcr (2.35)

2.3.3 Example: duality transformations in N =1 locally SUSY YM theories

72 3¢ A
U, = (M), fap(2)AD)

V= (7—‘ G =i 0L ) (3.50)

V8V, U—SU , [f—(C+Df)A+Bf)™" | SeSp2rR) (3.51)

Wi =T (D.V?) (3.52)

AIm WEDsUAe™| ) + i fap(2)WEWF e (3.53)
DW= DWWt (3.54)

W2 =T (D,V*) (3.55)

Wi = ()i (3.56)

L0 = —i( ) wRwige?| (3.57)
fas(®) = fas(®) (3.58)

W@ = W@ (3.59)

20



2.3.4 Duality in electrodynamics in brief

W (2)|* = [W(z)[?e" = €.

e Liin (A, N) = iU, (0“)0@ DU,
e Loau (10, \) = Im (mﬂ () (vbw;) (3.60)
e Lpaui (X, A) = Im (9, fapA2XLF —2F)

1 .
Hpop = éaifAB)\fX%

i =M f)7150, fpe XS Paia = faQi

5y = 10(5X5)

f=(C+Df)(A+Bf)" = (AT + fBT) " (CT + D7)
O;f = DO, f(A+Bf) ' —(C+ Df)(A+ Bf) 'Bo;f(A+ Bf)™*

= (A" + fB") " O.f(A+ Bf)! (3.61)
Im f = (AT + fBT) " (Im f)(A+ Bf)™"
X=(A+Bf)A

2.3.4 Duality in electrodynamics in brief

(all about it here.)

2.3.5 On duality examples in Dirac, 't Hooft—Polyakov, BPS- monopoles

The Dirac Monopole

111 And in the beginning there was Maxwell12
112 The Dirac quantisation condition 14

Dyons and the Zwanziger—-Schwinger quantisation condition (!?) (uwmran, =Ho
HYZKHO Pa300apThCs €IIg, OT/IeIbHAs TOXKE TeMa)

The 't Hooft—Polyakov Monopole

121 The bosonic part of the Georgi-Glashow model 18
122 Finite-energy solutions: the 't Hooft-Polyakov Ansatz 20
123 The topological origin of the magnetic charge 24

BPS-monopoles

131 Estimating the mass of a monopole: the Bogomol'nyi bound 27
132 Saturating the bound: the BPS-monopole 28
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2.3.6 On duality examples in Poincare group

14 Duality conjectures 30

141 The Montonen—Olive conjecture 30
142 The Witten effect 31
143 SL(2, Z) duality

2.3.6 On duality examples in Poincare group

(BIHIITY TTOTOM OCHOBHBIE (DOPMYJIBI)

2.3.7 On Duality examples in black holes (77?)

(moKa He JI0 9TOro, CMOTPEJI HEMHOIO, HO 3TO OTJIEJIbHOE HallpaBJIeHue BOODIIIE )
2.3.8 Overview of other applications

2.4 Background for duality in a nutshell

2.4.1 On variation,....

Properties of variation

2.4.2 On supersymmetry and sypergravity basics

The super-Poincaré algebra in four dimensions

2.1.1 Some notational remarks about spinors 40
2.1.2 The Coleman—Mandula and Haag—ALopusza'nski—Sohnius theorems 42

Reminder of idea and main formulas of supergravity

(6e3 aTOrO MaJIO KTO HE MONMET TO, UTO BBIIIE, IIPH 3TOM Ha 1/2-2/3 crpaHuIpl Bcero hopmyit
¥ CJIOB IJTAHUPYTO. )

2.2 Unitary representations of the supersymmetry algebra 44

2.2.1 Wigner’s method and the little group 44
2.2.2 Massless representations 45

2.2.3 Massive representations 47

No central charges

Adding central charges

2.5 Very special duality methods in a nutshell

(moKa 9TO He HuIlLy, B Teopuu Oyjy MUCATH YyTh YTO. TYT TO, YTO KpaiiHe PejKO HY:KHO JIJIsi
PEJIKIX METOJIOB - 9aCTh BBIIIE €CTh.)

2.5.1 On Effective Action for N=2 Supersymmetric Yang—Mills
(look at Figueroa-O’Farrill, his last part, I don’t need it now)
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2.5.2 On Monopoles for Arbitrary Gauge Groups by Figueroa-O’Farrill

2.5.2 On Monopoles for Arbitrary Gauge Groups by Figueroa-O’Farrill

(look at Figueroa-O’Farrill, his last part, I don’t need it now)
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Part 11
Main Theory

('l add especially useful theory form part below to here later)

3 Duality in united formalism

(My theory about all the theory below in one consistent formalism. No need to write it now
and I need several months of practice to do it)

4 Most used theory of duality

4.1 Duality in simple coupled theories by Freedman, Proeyen

(M ryr 1o ke, uro ['miutaps 3yMUHO, HO JIy4IIUM Kak ckaszaj [IpoeH merojom, Tak 9To
epeiesnao! )

4.1.1 Duality for one free electromagnetic field

Duality operates as an interesting symmetry of field theories containing one or more abelian
gauge fields which may interact with other fields, principally scalars. In this section we discuss
the simplest case, namely a single free gauge field. First note that, after contraction with the
e-tensor, the Bianchi identity (4.11) can be expressed as 8“}3’ = 0.

6 The definition (4.35) is valid in Minkowski space, but must be modified in curved space-
times as we will discuss in Ch. 7.

So we can temporarily ignore the vector potential and regard F},, as the basic field variable
which must satisfy both the Maxwell and Bianchi equations:

O F"™ =0, 0,F" =0.

We can now consider the change of variables (the i is included to make the transformation
real):

F#v s P — i

Since F'* also obeys both equations of (4.41) we have defined a symmetry of the free
electromagnetic field.

Exercise 4.8 Show that the symmetry (4.42) exchanges the electric and magnetic fields:

It is not possible to extend the symmetry to the vector potentials F),, = d,A, — 0,A, and
F, = 0,4, — 0,A) because A, and A are not related by any local transformation.

Here are some basic exercises involving the duality transform of the field strength tensor
F,

-
Exercise 4.9 Show that the self-dual combinations F'Z contain only photons of one polariza-

uv
tion in their plane wave expansions:

. d3k ik-x T 7 —ik-x *x (7. x(1
Rz [ Gy [ b (B £)alk ) — ek () ()]
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4.1.2 Basic Properties of Dual Tensors

To perform this exercise, check first that with the polarization vectors given in Sec. 4.1.2,
one has

1 — —
=i P ke (, %) = kL (k, +).
Exercise 4.10 Show that the quantity FWF“” is a total derivative, i.e.

Fl " = 19, ("7 A, F,,)

Show, using (1.45), that under a Lorentz transformation
(FWF“”> () — det A" (FWF“”) (Az)

Thus F WF # transforms as a scalar under proper Lorentz transformations but changes sign
under space or time reflections. Use the Schouten identity (3.11) to prove that

. 1 -
B, F) = ZWVFPUFP

4.1.2 Basic Properties of Dual Tensors

For a second rank antisymmetric tensors H,, in four-dimensional Minkowski spacetime we
define a dual tensor as

- 1
H" = i H,,

In this conventions the dual tensor is imaginary. The indices of H can be raised and lowered
with the Minkowsk metric 7,,,. We also define the self-dual and anti-self-dual tensors as linear
combinations

=g (M L) = )

They obey

1 -
i Hy = H"

(7777 proof!!???) The validity of this property is the reason for the i in the definition (4.35).

Also
1

—iiguypUH;; = :l:H;tl,
(7777 proof!!?77)

Let G, be another antisymmetric tensor with G, defined as in (4.36). Prove the following
relations (where (ur) means symmetrization between the indices):

1
+uv rr— +p( tv) - pveytpo ppt + -
G Hy, =0, GHVHE) = — GRS, G Hp

Hint: you could first prove
GPE Y — _1 WY PO B PV FTH
b 277 po p-

The duality operation can also be applied to matrices of the Clifford algebra. Define
the quantity L,, = 7, FPr. Show that this is anti-self-dual. Hint: check first that v,,v. =

1: po
ng,uupo"y .
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4.1.3 Duality for gauge field and complex scalar

4.1.3 Duality for gauge field and complex scalar

The simplest case of electromagnetic duality in an interacting field theory occurs with one
abelian gauge field A,(z) and a complex scalar field Z(z). The electromagnetic part of the
Lagrangian is

1 1
L=—(ImZ)F P — 2 (Re Z)e™" Flu Flo.

Actions in which the gauge field kinetic term is multiplied by a function of complex scalar
fields are quite common in supersymmetry and supergravity. We now define an extension of
the duality transformation (4.42) which gives a non-abelian global SL(2, R) symmetry of the
gauge field equations of this theory. In Sec. 7.12.2 we will discuss a generalized scalar kinetic
term that is invariant under SL(2,R). The field Z(z) carries dynamics, and the equations of
motion of the combined vector and scalar theory are also invariant.

The gauge Bianchi identity and equation of motion of our theory are

0,F™ =0, 9, |(Im Z)F" +i(Re Z)FW] — 0.
It is convenient to define the real tensor

G = gﬂvpﬂ% = —i(Im Z)F™ + (Re Z)F"

and to consider the self-dual combinations F*** and G***. Note that these are related by

G~ =ZF"-, GMt = ZFMT,

The information in (4.49) can then be reexpressed as

9,Im F*™~ =0, 9,ImG"~ =0
We define a matrix of the group SL(2,R) by

SE(dC), ad —bc =1
b a

The group SL(2,R) acts on the tensors F'~and G~ as follows:

(5)-<(5)

Since 8 is real, the conjugate tensors F'"and GTalso transform in the same way.

Exercise 4.11 Assume that Im F'~and Im G~ satisfy (4.52), and show that Im F’~ and Im G'~
also obey the same equations. Show that G'~ and a transformed scalar Z’ satisfy G~ =
Z'F'*=if Z' is defined as the following nonlinear transform of Z:

, aZ+b

cZ+d

The two equations (4.54) and (4.55) specify the SL(2,R) duality transformation on the field
strength and complex scalar of our system. The exercise shows that the Bianchi identity and
generalized Maxwell equations are duality invariant. In general the duality transform is not a
symmetry of the Lagrangian or the action integral. The following exercise illustrates this.

Exercise 4.12 Show that the Lagrangian (4.48) can be rewritten as

L(FZ)= —% Im (ZF,, F*~).
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4.1.3 Duality for gauge field and complex scalar

Consider the SL(2,R) transformation with parameters a = d =1 and b = 0. Show that

L(F.7) = —% Im (Z(1 + cZ)Ey F*~) # L(F, 2)

The symmetric gauge invariant stress tensor of this theory is

1
" = (Im Z) (F“”Fp” - Znﬂ”Fngﬂg)

As we will see in Ch. 8, when the theory is coupled to gravity, it is this stress tensor that
is the source of the gravitational field; see (8.4). It is then important that Im Z is positive,
which restricts the domain of Z to the upper half-plane. It is also important that the stress
tensor is invariant under the duality transformations (4.54) and (4.55). This is the reason for
the duality symmetry of many black hole solutions of supergravity,

Exercise 4.13 Prove that the energy-momentum tensor (4.58) is invariant under duality.
Here are some helpful relations which you will need:

ImZ
(cZ +d)(cZ + d)

Further you need again (4.47) and a similar identity (proven by contracting e-tensors)

Im 7' =

F,

1 g
wly = —Fu, B + 577WFpon .

This leads to

F F’— }lnwFéaF”’” =|cZ +d)* |F,,F,” — inﬂ,,FngM :

When the SL(2,R) duality transformation appears in supergravity, there is also a scalar
kinetic term in the Lagrangian which is invariant under the symmetry, specifically under the
transformation (4.55). The prototype Lagrangian with this symmetry is the nonlinear o-model
whose target space is the Poincaré plane. This model and its SL(2,R) symmetry group will
be discussed in Sec. 7.12; see (7.151) and (7.152). The Poincaré plane is the upper half-plane
ImZ > 0. The relation (4.59) shows that duality transformations map the upper half-plane
into itself. The positive sign is preserved by SL(2,R) transformations and the energy density
obtained from the stress tensor ©% above will be positive!

Exercise 4.14 The free Maxwell theory is the special case of (4.48) with fixed Z = i. Suppose
that the gauge field is coupled to a conserved current as in (4.14). Check that the electric charge
can be expressed in terms of F' or G by

) 1 .
q = /deJO = /d?’f&-FOZ = —i/d?’fa”k&-ij

A magnetic charge can be introduced in Maxwell theory as the divergence of B (recall
E' = F" and B' = $¢%*F};.). This leads to a definition 7

1 .
=3 / A3 Tk 0, Fyy,

Show that (Z ) is a vector that transforms under SL(2,R) in the same way as the tensors
F~and G™in (4.54).

In many applications of electromagnetic duality, magnetic and electric charges appear as
sources for the Bianchi "identity” and generalized Maxwell equations of (4.49). As exemplified in
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4.1.4 Electromagnetic duality for coupled Maxwell fields

Ex. 4.14 this leads to an SL(2, R) vector of charges. Particles that carry both electric and mag-
netic charge are called dyons. In quantum mechanics, dyon charges must obey the Schwinger-
Zwanziger quantization condition. If a theory contains two dyons with charges (pi,q) and
(p2, g2), these charges must satisfy pigs — poqi = 27n, where n is an integer. ® This condition is
invariant under SL(2, R) transformations of the charges. However, one can show [25] that there
is a lowest non-zero value of the electric charge and that all allowed charges are restricted to
an infinite discrete set of points called the charge lattice. The allowed SL(2) transformations
must take one lattice point to another, and this restricts the group parameters in (4.53) to be
integers. This restriction defines the subgroup SL(2,Z), often called the modular group. ® One
can show that this subgroup is generated by the following choices of S:

() (5)

7' =Z+1, Z =-——.
+1, ~

This means that one can express any element of SL(2,7Z) as the product of (finitely many)
factors of the two generators above and their inverses.

Exercise 4.15 In (4.48), the kinetic terms of the electromagnetic fields are determined by a
variable Z that was treated as a scalar field. Z can also be replaced by a coupling constant,
and typically one takes Z to be the imaginary number °i/¢g?, where ¢ is a coupling constant.
Observe that the first transformation of (4.64) does not preserve the restriction that Z is
imaginary. However, the second one does. Prove that this transformation is of the type (4.42),
interchanging the electric and magnetic fields. It transforms g to its inverse, and thus relates
the strong and weak coupling descriptions of the theory. In

7 In order to obtain a symplectic vector (p,q) and not (—p,q), we changed the sign of the
magnetic charge with respect to some classical works. This implies that we have V-B=-— e
where 59 is the magnetic charge density.

8 For the case (p1,¢1) = (p,0) and (pa, ¢2) = (0, ¢), this reduces to condition pg = 27n found
by Dirac in 1933.

9 The modular group generated by the matrices (4.64) is in fact PSL(2, Z). In PSL(2, Z),
the elements M and —M of SL(2,7Z) are identified. Both these elements give in fact the same
transformation Z'(7).

10 One often adds an extra term that is a real so-called #-parameter, but we will omit this
here.

Secs. 4.1 and 4.2.2 we considered Z = ig = i. Check that general duality transformations
in this case are of the form

F, =(d+ic)F,, ie F,, =dF, —icF

pv? pv-

4.1.4 Electromagnetic duality for coupled Maxwell fields

In this section we explore how the duality symmetry is extended to systems containing a set of
abelian gauge fields Aﬁ(az), indexed by A = 1,2,...,m together with scalar fields ¢’. Scalars
enter the theory through complex functions fap(¢) = fpa(¢). We consider the action

1 1 ~
S = / d'zL, L= - (Re fag) Fip ™7 + 71 (m fap) FoFrB

which is real since F* is pure imaginary, as defined in (4.35). The first term is a generalized
kinetic Lagrangian for the gauge fields, so we usually require that Re fap is a positive definite
matrix. This ensures that gauge field kinetic energies are positive. Although F),, F*" is a
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4.1.4 Electromagnetic duality for coupled Maxwell fields

total derivative, the second term does contribute to the equations of motion when Im f45 is a
function of the scalars ¢'. Our discussion will not involve the scalars directly. However, as in
Sec. 4.2.3, additional terms to specify the scalar dynamics will appear when theories of this
type are encountered in extended D = 4 supergravity. The treatment that follows is modeled
on Sec. 4.2.3 (where fap was taken to be —i7).

Using the self-dual tensors of (4.36), we then rewrite the Lagrangian (4.66) as

L(FYF7) = —% Re (fapF,, F* ")

1 — v— * 12
:_Z (-fABF,uVAFM B+fABF;j;/AFM +B)7
and define the new tensors
Guu _ _pvpo ) _ (I f )FMVB s (R f )FuuB _ Guu-‘r + Guu—
W =€ —5FpaA_ m fap 1{R€ JaB =Gy A
Y OS (FH F~ , b
Gy = _21% = ifapF"™ ",
pv
Y OS(FT,F7) . Y
G{lj4 + — 21W = _lfABFM +B‘
Since the field equation for the action containing (4.67) is
08 08
0= —=—-20,—+
JAA # OF,
the Bianchi identity and the equation of motion can be expressed in the concise form
O* Im Flf‘; =0 Bianchi identities
2, ImGY"" =0 equations of motion.

(The same equations hold for Im F4* and Im G4+.)

Duality transformations are linear transformations of the 2m tensors F4*” and GY’ (accom-
panied by transformations of the f4p) which mix Bianchi identities and equations of motion,
but preserve the structure that led to (4.70). Since the equations (4.70) are real, we can mix
them by a real 2m x 2m matrix. We extend these transformations to the (anti-)self-dual tensors,

and consider
F—\ S F~ _ A B F~
G=- ) G- ) \CD G~

with real m x m submatrices A, B,C, D. Owing to the reality of these matrices, the same
relations hold for the self-dual tensors FTand G*. In Sec. 4.2.3, these matrices were just
numbers:

A=d, B=c¢, C=b, D=a.

We require that the transformed field tensors F’4 and G’; are also related by the definitions
(4.68), with appropriately transformed fsp. We work out this requirement in the following
steps:

G~ =(C+iDf)F~ = (C+iDf)(A+iBf)'F~,

such that we conclude that
if = (C+iDf)(A+iBf)™*
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4.1.4 Electromagnetic duality for coupled Maxwell fields

The last equation gives the symmetry transformation relating fz to fap. If G}, is to be
the variational derivative of a transformed action, as (4.68) requires, then the matrix f’ must
be symmetric. For a generic ! symmetric f, this requires that the matrices A, B, C, D satisfy

ATCc —-cTA=0, B'D-D'B=0, A"D-CTB=1.

These relations among A, B, C, D are the defining conditions of a matrix of the symplectic
group in dimension 2m so we reach the conclusion that

AB
S = <C’D> € Sp(2m, R)

The conditions (4.75) may be summarized as

T B B 01
S'QS =Q  where Q_(—]l())

11 If the initial fap is non-generic, then the matrix 1 in the last equation can be replaced
by any matrix which commutes with f4g. For generic f4p, this must be a constant multiple
of the unit matrix. The constant, which should be positive to preserve the sign of the kinetic
energy of the vectors, can be absorbed by rescaling the matrices A, B, C, D.

The duality transformations in four dimensions are transformations in the symplectic group
Sp(2m, R).

The matrix (2 is often called the symplectic metric, and the transformations (4.71) are then
called symplectic transformations. This is the main result originally derived in [26]. Duality
transformations in four spacetime dimensions are transformations of the group Sp(2m, R), which
is a non-compact group.

Exercise 4.16 The dimension of the group Sp(2m, R) is the number of elements of the matrix
S, namely 4m? minus the number of independent conditions contained in (4.77). Show that
the dimension is m(2m + 1).

Duality transformations have two types of applications: they can describe symmetries of
one theory and they can describe transformations from one theory to another. In the first case,
the symmetries concerned form a subgroup of the 'maximal’ duality group Sp(2m, R) discussed
above. The subgroup consists of transformations (4.74) of fap (¢%) induced by the symmetry
transformations of the elementary scalars ¢’. These scalar transformations must be symmetries
of the scalar kinetic term and other parts of the Lagrangian. The model of Sec. 4.2.3 is one
example. The transformation of Z defined in (4.55) is the standard SL(2,R) symmetry of the
Poincaré plane. This could be part of the full symmetry group of all the scalar fields of the
theory. In extended supergravities it turns out that all the symmetry transformations that act
on the scalars appear also as transformations of the vector kinetic matrix. Hence, the symmetry
group is then a subgroup of the 'maximal’ group Sp(2m, R) discussed above.

However, another application is of the type that we encountered in Ex. 4.15. In that case
constants that specify the theory under consideration change under the duality transformations.
The constants that transform are sometimes called ’spurionic quantities’. The transformations
thus relate two different theories. Solutions of one theory are mapped into solutions of the
other one. This is the basic idea of dualities in M-theory.

Symplectic transformations always transform solutions of (4.70) into other solutions. How-
ever, they are not always invariances of the action. Indeed, writing

1 1 .
L= —5Re (fapF, P ") = — S Im (F,'GL7)
we obtain
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4.1.4 Electromagnetic duality for coupled Maxwell fields

ImF'~G~ =Im (F-G™)+Im [2F (C"B)G~ + F (CTA)F~ +G (D"B)G™].

If ¢ # 0,B = 0 the Lagrangian is invariant up to a 4-divergence, since Im F~F~ =
—%5’“’"’"F w e and the matrices A and C' are real constants. For B # 0 neither the Lagrangian
nor the action is invariant.

Electromagnetic duality has important applications to black hole solutions of extended
supergravity theories. Supergravity is also very relevant to the analysis of black hole solutions
of string theory. Many black holes are dyons; they carry both magnetic and electric charges for
the gauge fields of the system. The general situation is a generalization of what was discussed
Ui
GeA
as in (4.71). The Dirac-Schwinger-Zwanziger quantization condition restricts these charges to a
lattice. Invariance of this lattice restricts the symplectic transformations of (4.71) to a discrete
subgroup Sp(2m, Z), which is analogous to the SL(2,7Z) group discussed previously.

Finally, we comment that symplectic transformations with B # 0 should be considered as
non-perturbative for the following reasons. A system with no magnetic charges as in classical
electromagnetism is transformed to a system with magnetic charges. The elements of fap
may be regarded as coupling constants (see Ex. 4.15), and a system with weak coupling is
transformed to one with strong coupling. A duality transformation which mixes electric and
magnetic fields cannot be realized by transformation of the vector potential A,. One would
need a ‘magnetic’ partner of A, to reexpress the F, and G;W in terms of potentials.

The important properties of the matrix fap are that it is symmetric and that Re f4p define
a positive definite quadratic form in order to have positive gauge field energy. These properties
are preserved under symplectic transformations defined by (4.74).

at the end of Sec. 4.2.3. The charges form a symplectic vector ( ) which must transform

On general formulas

The historical standard reference on dualities in field theories is [2]|, though they appeared
before in [13,14, 15] and some extensions are in [16]. Duality transformations were explained
in [1, Sec. 4.2] for coupled Maxwell fields in D = 4. We want to extend these transformations
to the other parts of the action, including all other fields ¢ (bosons and fermions). Here is first
a summary of the main concepts that were in [1, Sec. 4.2]. We considered there actions S(F)
that depend on field strengths F) ;3,, which are determined in terms of (abelian) vectors A;‘. We
consider actions at most quadratic in spacetime derivatives, and thus also at most quadratic in
F?,. Having introduced the dual and self-dual combinations in [1, (4.35 — 36)]"

. 1 1 -

the Bianchi identities and equation of motions for the vectors can be written as

V#Im Fﬁﬁf = 0 Bianchi identities,
V,Im G =0 Equations of motion of A2,

where 55 (F*, F~, ) 5S(F, 6)
2 e GY =21
SF A 1
In the first part above, the action S(F,¢) = S (F*, F~, ¢) is considered as a function of the
self-dual and anti-self-dual parts of F. In |1, Sec. 4.2] only the part of the action quadratic in

F was considered, and thus GG was linear in F'. Now we consider that there can also be parts

Gj’“’ = 2ie~ !
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4.1.4 Electromagnetic duality for coupled Maxwell fields

independent of F' (terms in the action linear in F) and thus (here Nyp = —ifap in terms of
fap in chapter 4 (as also done in ch. 21))

Gl = Nap(0)F,7 + H3, (6) = Gy, + HE,, ().

Since N is by the last two equations the second derivative of the action w.r.t. F, it is a
symmetric tensor. Since the indices pu, v should go somewhere and we do not consider higher
derivative actions, the H will in practice depend on fermion bilinears, but we just write that
they are functions of all the fields ¢.

The dynamical equations (A.2) are then invariant under real symplectic transformations

(o) - (el o) (ar)
GA/“, C1AB DE GB;U/ ’

B = BPY, Cap=Cpa, Df=-Ap

2

I We insert here factors e as in [1, (7.59)] to take into account that we can be in curved space-
time, though this is not important for the duality transformations. After the first definitions,
we will omit the factors e.

2 We write here the infinitesimal transformations, while in [1, (4.71)], A, B, C, D were used
for global transformations

Now we can consider also the field equations for the other fields, which we denote as ¢'. We
can omit the frame fields e, which are inert under the duality transformations. We write

05

FE, = —
7 5¢z’

using DeWitt notation, which means for an action that is function of fields and derivatives of
fields (and adding a total derivative)

5:/d4meL(¢,8u¢)v 55 :e{aL 5L }

Yol Yol K 00,0
We will use the notation that a derivative w.r.t. a field is a left derivative. For bosons left

or right derivative makes no difference.
We consider transformations of these fields under the duality transformations:

a9 = €'(),
where £ is not dependent on F,,. Full duality transformation can then be written as
5 _ et (5 AAFB BABG 5
d—f(gﬁr(BWJr Buu)@a
E.g. the total transformation of the action S(F,¢) is
845 = gii + (FTA" + G"B) s
d 5 a

4 1
=B — 5 (i(FtTA"+G""B) G +he. )

Check this equation, and also (A.3), using properties of dual tensors explained in [1, Sec.
4.2.1 and Ex. 4.6]. From here onwards we use simplifications in the equations. We consider
matrix multiplication to write the expression in the brackets in (A.9). We omit the indices
[uv] on F4 and G4 and they are summed over in (A.10). We use DeWitt notation, ? i.e.
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4.1.4 Electromagnetic duality for coupled Maxwell fields

£'F; contains an integral over spacetime, and derivatives w.r.t. spacetime can be treated as in
(A.7). Furthermore we will omit dependence on the frame. fields. They can be reinserted in
an obvious way such that they reinstall general coordinate transformations. It is easier to work
with self-dual combinations as in the last expression of (A.10). Some of the above relations are
then simpler written as

o o 1. 0G
sErS 30 gpes

3 This simplifies many expressions in [2], where the first term would be written as
4 | 5L i 0L
[t |68 + 0,658L

= Nug.

It is useful to write the commutator of field derivatives with d,: (with 0; = 5%1- and using
that & does not depend on F4)
) ) T )
, )
_ +T

On the action we thus obtain

) 1, 1
s 0eS = =51 (06T + (AT + NB)G*) = —5i[CFT + NBBG]
1. 6
= _1_115}7_"" [F+TCF+ + G+TBG+:|
0045 = 4Ei+ (08) B, — 5 (1(2G™B) G +he. )

Thus we find
1 .
0aS = =7 [FTTCF* + GT"BG*Y] +he. , 04B; = — (8:¢) E;.
For the first equation, note that this is, reinserting all notations,
1
84S = -3 / d*we?” (FA,CapF o + GawD*PGppy)
and the first term is a total derivative. The second equation in (A.14) then implies that field

equations transform to field equations, hence preserving the dynamics.
Note that the transformation 045 is the transformation of

1 1
Son—iny = —ZiF“‘Gj +he = Sy(F, ¢)— 1 (iF™H} +he. ),

where Sy(F, ¢) is the part of the action that is quadratic in F' and can be written in various
ways:

1 1
Sy(F, ¢) = —ZiFMGgA +he = —11F+ANABF+B + h.c.
1 1
=7 / d*z [e (Im Nup) Fp FP* — &7 (Im Nap) FF2 |

where we gave also the full expression in curved space. The linear part in F' is
Py p—
Sl(F,¢):—§1F Hy +he.

1
=1 / Az F) H gy
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4.2 Duality by Gaillard-Zumino

This implies that one half of this S;(F, ¢) sits in S,,,_iny and the other half is in the invariant
part

Sine = %&(F, 6) + So(6),

where Sy(¢) is the part of the action without gauge fields: Note that this is also the remaining
part when G, = 0, i.e. when the equations of motion of the vector fields are satisfied.

We can obtain aspects of the duality transformations more in detail. First we consider the
consistency of (A.4) with (A.5). This implies that

8aNap(¢) = EONap = (C —NA—A"N —NBN) ,,,
SaH*(¢) =EOHY = — (A" + NB)H™.

The transformation of the first term of the invariant part (A.19) under the duality is
1 Lo s
i3 51(F,0) = —iH T BI,

which is only function of the ¢" and should thus be compensated by a transformation of Sy(¢).

The way in which a H"in agreement with the transformation in (A.20) appears, is from a
symplectic vector (Q*A, PX)With P = N apQ*B. Check that this is then a 'symplectic vector’,
which means that the vector transforms as (F 4.G A) in (A.5. The H*from this symplectic
vector is

H,, = (NQ"—P")  =2(ImnN)Q,,.
Then

1 1, 1,
3(F, ) = —ZIF+A (NQT = PT) =i (FHPf - GHQT) +hee. .

If we replace G}, by the full GG, this is a symplectic invariant. Hence this determines which
parts of Sy(¢) are separately invariant:

1

So(¢) = iH;

4 A/LVQ+AMV + he. + SO, inv -

Note that by the remarks after (A.4) the first term is in practice a 4 -fermion term. The
scalar action is thus in the invariant part, which means that the scalar transformations should
be isometries. This will determine a subalgebra of the symplectic algebra that is the symmetry
of the theory. Hopefully this will be clarified with the example.

4.2 Duality by Gaillard-Zumino

HAIINIILY IIOTOM
y

4.2.1 Introduction and formalism by Gaillard, Zumino

Introduction by Gaillard, Zumino

It has long been known that the free Maxwell’s equations are invariant under a rotation of the
electric field and the magnetic field into each other. In relativistic notation this means that the
electromagnetic field strength F),, and its dual,

~ 1 .
F,UJ/ - §5uup0Fp )
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4.2.1 Introduction and formalism by Gaillard, Zumino

rotate into each other. For this reason the transformation has been called a "duality rota-
tion". It is easy to see [1,2] that duality rotation invariance can be extended to the case when
the electromagnetic field interacts with the gravitational field, which does not transform under
duality. On the other hand, it is obvious that duality invariance is violated by electromag-
netic couplings of the minimal type. Related to this is the fact that there is no non-abelian
generalization of duality under which the pure Yang-Mills equations could be invariant [2].

Non-minimal couplings of the magnetic moment type can, however, be made duality in-
variant, and this invariance can in fact be generalized to a non-abelian group. This is the
situation [3] in extended supergravity theories without gauging. The assumption that the the-
ory is invariant under duality rotations has been used [4-6] to simplify the search for the correct
supersymmetric lagrangian. For N = 4 supergravity it was discovered [6] that the U(4) du-
ality could be extended to a larger SU(4) x SU(1, 1) non-compact duality invariance. Similar
situations occur for N > 4 supergravities; in the particular case of N = 8 supergravity, Crem-
mer and Julia [7] have shown that the theory is invariant under a non-compact E; duality. A
non-compact duality invariance is possible only when there are scalar fields in the theory, and
is related to non-linear transformations of the scalars.

Our purpose in this paper is to clarify the structure of theories admitting both compact
and non-compact duality. Our analysis will not make explicit reference to supersymmetry,
although of course we have in mind the application to supergravity theories. In fact, we have
been strongly influenced by the work of Cremmer and Julia [7] on N = 8 supergravity, and
some of our results can be found in their paper although in a less explicit and systematic form.

The first point we wish to emphasize is that the requirement that the equations of motion
be duality invariant is not identical to the invariance of the lagrangian. This is already apparent
in the case of the free electromagnetic field, where the lagrangian is

2 2
L= (E® — H?)

and is obviously not invariant under rotations * of F into H. Nevertheless, when the equa-
tions of motion are duality invariant, the lagrangian has some special properties; in particular
it changes under a duality transformation in a specific way which will be described below.

A second point we make is that the invariance of the equations of motion under duality
rotations implies the existence of conserved currents, both for the compact and the non-compact
cases. These currents are constructed in terms of the basic fields of the theory and in terms of
a set of dual vector potentials, and are not invariant under the abelian gauge transformations
up to which these potentials are determined. However, the currents change under these gauge
transformations by the divergence of an antisymmetric tensor, and therefore the integrated
charges are gauge invariant. These charges are in fact the generators of the duality rotations.

In sect. 2 we discuss the general properties of duality transformations. We find that the most
general group which can be realized with n field strengths is the non-compact real symplectic
group Sp(2n,R), which has U(n) as its maximal compact subgroup. In the absence of scalar
fields, U(n) is the largest group of duality transformations **. In specific examples the actual
group of duality transformations can be smaller. For example, in N = 8 supergravity there
are 28 field strengths. The non-compact invariance is the E; 7 subgroup of Sp(56,R), and
its maximal compact subgroup is the SU(8) subgroup of U(28). We derive the transformation
property of the lagrangian which is required for the equations of motion to be duality invariant,
and show that this property implies the existence of conserved currents and the invariance of
the energy-momentum tensor. We further exploit this property for the explicit construction of
the lagrangian, which we illustrate first by specializing to the compact case in sect. 3.

By the way, for the free Maxwell equations with n field strengths, the largest duality group
is GL(n, C), the non-compact general linear group of complex n x n matrices, which operate
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4.2.1 Introduction and formalism by Gaillard, Zumino

on the complex field strengths F' + iF. In the presence of interactions without scalars this
is reduced to its maximal compact subgroup U(n) which can be enlarged to Sp(2n,R) in the
presence of interacting scalars. Observe however that, even for the free Maxwell theory, the
energy-momentum tensor is only invariant under U(n).

In order to generalize to the non-compact case it is necessary to consider non-linear realiza-
tions of the symmetry group and the corresponding scalar lagrangians and currents which we
discuss in sect. 4. In sect. 5 we describe in more detail non-compact duality invariant theories.
In sect. 6 we conclude with some comments relevant to the N = 8 supergravity theory.

Lagrangian formalism in electrodynamics
We consider a lagrangian which is a function of n real field strengths F7i, and of a certain number

of additional fields x* = x(x) (scalars or fermions) and their derivatives x}, = d,x' = gxi; :

L= L)F“,X",X;).

Note that x are coordinates, but they will appear rear, so there should not be confusions. So
from definitions we have properties:

L 0e
e =i
8xk 82[/ oL

Ox OxIOY" B Hoxi
The field strengths are the curls of vector potentials
Fi, = 0,A, — 0,A,
and therefore they satisfy

5 5 1
a“F[Zu =0, F = égu,,pUFpU,
because of symmetry-antisymmetry of the terms. (77?7 mno, I don’t know. wepr, s 3a6bL1
cripocuTh!!!)
If we define the antisymmetric tensors G, by

. 1 OL
GZV = SEupe G =
2 oF e
So:
OL _1:a
O Fanv )
The equations of motion obtained by varying A, are
oGy, = 0.
because
(TyT 9Ta reHnaabHas wies po Bapuanuio, Harmry morom! !

if current is non-zero, 8“C~¥ZV = 47“]'”. (777 yes??? why don’t we write this for x fields??7?)
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4.2.2 Derivations of properties of dual transformations by GZ

Duality definitions

The definitions were:

1
F— loa
Fu = z€upe F*7,

2
~ 1 oL
a — apo . __
Gy = S22

The system of equations 9" F’ 4 = 0and 3“@21, = 0 is invariant under linear transformations
among the F’s and G’s. We therefore consider an infinitesimal transformation of the form

Q-0
o' =& (x(2)),

where A, B,C, D are arbitrary real n x n matrices and £(y) non-derivative functions of the
additional fields x*(z).

In “Duality Rotations in Nonlinear Electrodynamics and in Extended Supergravity” it is

written that “a practical convention is to define gl;i = 01y rather than giﬁ = 080, — drok.
% pv

(" a6szar mpo To, uro or 4ero 3aBucut! BoOOIIE, y Hac F u G 3aBucar apyr or apyra, a
Takzke 0T (pepMUOHHBIX moJIeit! )

In general F' and G are independent (an exception is the free field case, G=-F ). Because
we have other field that consist in G (Gailard, Zumino wrote that).

In indices we write:

0F* = A"F" + B*G", 0F* = A®F" + B*G",
5G = Cabe + Dabi' 5@(1 _ Cabﬁb + DabGN«b7

We omit pr indexes, because it is obvious, where they should be.

(srommuity, 9TO BOOOIIE-TO PO MATPHUITLI BCE U3BECTHO. )

We shall study the conditions under which G by the definition is invariant (?7?7) and the
equations of motion for the y* are invariant. Notice that we do not impose the invariance of the
lagrangian itself: we shall see that the system of the equations of motion can be invariant only
if 6L does not vanish. Instead the variation of L is required to have a specific form which can
be used to demonstrate the existence of a conserved current and leads to an essentially unique
construction of the vector field couplings.

(7777 Tl think more about the idea later, until I really understand what exactly we want
and why we are doing it specifically.)

List of meaning of symbols, parameters and letters for GZ methods

(later I'll add a list of them not to get confused in a lot of letters!!!)

4.2.2 Derivations of properties of dual transformations by GZ
Variation of the lagrangian and its derivative

Uraxk, wiest B Tom, aro...(?? moaymaro!!!)
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4.2.2 Derivations of properties of dual transformations by GZ

The variation of the lagrangian L = L (F @\ XL) under the linear transformations is

0L = _5 aa o +5Fba(;b}L:
- _g %‘Z 8?&; + (FeA™ + G°BY) aib] L=
) 5 aii 7 %ai; AT GO a?rb] b=
= f aii +xu(§f; o (FeA™ + G°B™) %} L

We differentiate 6L with respect to F'®, remembering that here 6 = 0(F%), so aa(ffa) =

BN 45 (k)

= O
= %Abaéb ;gg B"G" + 5Ga
If we now require our linear transformation 6G* = CFb + D“bi, we obtain
Q?TL —Cab b | (Dab +Aba) e %Bbcéb _
(meb 4 ;g? Bbecb 1 (Dab+Aba) .2625“/_"_10@1%6 ;;? RBbedb —
:%Cabe Jobafh ;ggaBchb ;gg BG4 o (Dab Aba) %4_
I |:§Cabﬁwb_%cbaﬁwb ;gga Bbec_ ;gga Bchb:| _

_10(FCF) 1a(GBTG) w ey OL L[ pay = OGS ]
=5ap« T35 g +2 (D*+A )W‘Fé (C*—C") F +W(B —B*) G*| =
_1 6 T A~ ab ba aL

Here, as discussed before, (7777 manurmy sro!!l) “grey” terms vanish because this expression
should be a derivative with respect to F'*, and we have used the property

OFa, 10,00 F 1 1 1
aF:”U = ) ngPU = §5uV/\95Ap50052 = §5uvr)052 = 55/)0#1/527
a(FCF) — 8(F’chbﬁ1b) a b b i zban ab b PV b € ,DUMV b
Spa = S _6C’F+FC'8F—C’FF Cc"—+—==0, ) )
= Cabe+cmrza — C«abe+ Cban,
O(GBTG) _ 0(G°B™G®)  0G° .~ b OGY  0Ge o L OGe
= B> ‘B> = —B" BY— =
9Fa ope =l Ot G B g = g BN G+ G B )
— oG* be b oG* cb b
:8F“B G +8F“B G".
In general F and G are independent (an exception is the free field case, G=-F ), so to vanish

the “grey” terms we must impose the conditions below on the infinitesimal transformation
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4.2.2 Derivations of properties of dual transformations by GZ

matrices:
C = CT,
B = BT,
Dab+Aba — 65ab'

Now we have

0 o (1 | -
8Fa5L = 37 (ZFCF + ZGBG + z—:L) )
Equation of motion

Next we study the equations of motion for x* using the properties of matrices in the linear
transformation. We define

oL oL
Ei == (TSR
ox’ X},
so that the equations of motion are

The covariance of these equations under the linear dual transformation requires

since dp + 0, + 6, = 0.
Euler-Lagrange operator applies to 6L as showed below. But first let us note that

9 oL oG . 0G
Voo = (0, F° - = (0, F° - =
0L ~. 0G
b _ b _

(0.G )8F”8xi (O )8% 0
825)‘
oxixi
QuX, =
aqu) =0,

since we are working with partial derivatives. Also note that below 7 is a free index.
(HU2Ke BCe elle MHIEKChI Hy?KHO PacCTaBUTh, HY U eIlle Pa3 MepecMOTPIO ITO. )

We have:

0 0 0 0 0 I \ by O
- - g - J J c C c C - —
(axi a“axi;) 0L = (axi a“axi) {5 o Mgy % + (FeA* + G°B™) L

L og oL, L, 9 AL 08 L 0Ge 8L

= 1 J J
oo T oo Xk ayioy o X By axioxs | ax
L o oL o8 0L o L  aGY
o, g T . i 95" e pbe . " ghe
O [5 Ixidx, T Ox Oxh NPy OxAOxE OF Oxi, Dy, OF

oL

Bbc 5 + (

FCAbC—I—GcBbC)

aLb 4 GbBbc

0L
OF*Ox,
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4.2.2 Derivations of properties of dual transformations by GZ

¢ 9L . O’L 08 0L 9Ge . 0L , b 2L
= Sy T T T— _pbe FeAbe L Gepbe -
O o0 T Oyion gy xioxs | oy gt AT+ GBY) Fa
Q08 L L 9N 2L
2l Py s T, Y
“é’x’“ OXIOX oxIox:, “POxI " Ox)0X,
o . OL oGt . 9L 2L
—FeA* _—9 —0, ( .BbC)—a (G”B”C—.> =
OF® “8)( oxi,  Or® a OF*OX,
j j 2 92 , 2 9N 92, Y 2
_og oL L og L +gzaL__gja L 0 L 08, &L

“avon ok aea T avae S Panian, oy v a raa T

2 2
+ (FCAbC+GCBbC) "L _ FCAbCia a_L _ aﬂ (GbBbCa—L)+

OFbOy! OF® "oy, OFOX,
0G*© oL oG® oL
_Bbc o .Bbﬁ —
o aF (aX; an>

i J

¢ oL 08, &L

o¢i oL ¢ AL . 0O (aL 0L>

OO Oy “8)(,1+ o \ax ~ oxa) oo oxy  Pax Maxaox,,
2L 0 . 0L o _ 0°L
c Abe c pbe . b Rbe _
—|—(FA +G°B )8Fb3Xi FeAbe 8Fbaua z G°B anaﬂa z
0G*© aL OGP? oL
BbC - Bbci =
axi~ OF® 9 (0><L 8Fl’>

_353‘(3 aL) 51 (aL_ 0L> oy 0 (aL_08L>+
~ Oy \ oy “% o oxd) Mok \ox ox

0 (0L oL\ oG _,. OL oG _,. OL
FcAbc cBbc — = _ . : Bbc o fBbci
+ (FATHGBY) o (axz Ou aX;) o P o O (aX; an>

o o a5 0 . 9 oGe , OL oGe , OL
| (oAt 4 gepe) —L | g 09 e 92 _pre 02
o) ZE+{ o T o aXf(FA +GBY) g | Bt i B g O o, OF
g oGe , OL oGe , OL
= S EAEGG S B  —0, <8><§; an)'

We have proven that

9 9 ogi oGe , OL oGe , OL
9 9 Y9 \sr =% p ssp 4 08 pre ol B9 )
(axz a"axz) 0L =gt H ok + 55 B g — Ou (ax an>

, SO we have

Also we know that 0E; = —gE and B = BT, -2 oL = G
(9 3 1 aGC 8Gc
- I (5L:——.Bb — = Bbc b =
_19(GBG) 1 5 a(GBG) B
4 0y 470 ot
1/ 0 0 -
-1 (a_xi _ 8“87;;) (GBG)
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4.2.3 The conserved current

0 0 | R
(v~ ) (72 3606) =

We see that this equation is consistent with %5[/ = % (}lFC'F + }LGBCNJ + 6L> only if

SO

e=0 — D=—-AT

(7777 no, I am not sure why it is so). We have obtained the transformation property:
1 . -
oL = é_l(FCF + GBG).

We learned that dual transformations

5 F\ _ (AB F
G) \CD G )’
C=cC" B=B"T D=—AT.

is a transformation of Sp(2n,R), the real non-compact form of Sp(2n) in a real basis for the
2n-dimensional representation.

Given two vectors F,G and H,I which transform by the same duality matrix, one can
construct an invariant (77?7 don’t fully see, why, maybe it is in the appendix)

(H 1) ((1) _01) (g) — IF - HG.

This property that will prove useful in the construction of the lagrangian. In specific exam-
ples the group of duality transformations leaving invariant the equations of motion may be a
subgroup of Sp(2n, R).

(777 why they are not always a subgroup???)

Same derivations on example (!!7?777)

(ﬂaBHO XOTeJI 9TO 2Ke IIPOoJiejiaThb, HO Ha KOHKPETHOM JIaI‘paH}KI/IaHe!!! BOT M cleJialo - 1 6y,ZLeT
IIOHATHO, IIPpaBUJIbHAsA JIOTUKA MOA ObLIa WJIN HeT.)

N nes nuis qokasaresibcTBa CBOUCTB AyanbHocTu (MO Kak IIpoen ckazadt, ujes B TOM,
MBI TIPOCTO 00001Ias TEMBI, 3HAEM, UTO JIOKA3ATh XOTUM, 9TO U TOJIyYaeM. JOyMato i HAIIUIIY )

4.2.3 The conserved current

Derivation of the current

(! T'll rewrite it and start with the idea, how we will get it!!!)
In order to construct a conserved current we extract the variation of L due to the variation

of the x’s alone:
0L o
oL :=0x'=— +x\,=— =0L — épL
X X aXZ + X“@XL F

where

L aaL_ ab b ab blNa_l b T\ba Sa b T\ba Sa _1 T A A
brL = 6F 5 = (A"F" + BYG)SG _§(F(A) G+ GH(B") G’>_§<FA G+GBG),

1 . N
5L = J(FCF + GBG),
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4.2.3 The conserved current

which was obtained before. We have

1 -1 ~ 1
L=-FCF+-GBG + -
0L =, FCF + JGBG +

:i (F(]F — GBG + FDG + FDG) - i (FGF — GBG + FDG — éAF) ,

FDG — %GBG’ = i(F’CF —~ GBG) + %F’DG =

because of general property FBG = GBTF.

From basic electrodynamics we know that equations of motion al‘é’fw = (0 imply that we
can introduce a vector potential 8, of which G, is the curl: G}, = 0,8, — 0,8;.

If we consider transformations §¢'(x) = A A ¢'(x), we can obtain the current as

oL .
Jhy = — A" + K.
A= T AT
We need to find K%, such that by definition 6L = ¢4, K*. We will consider only transforma-
tions of the scalar fields x*, so € = 1,8¢%(x) = dx = &'. We can check that if we define

N 1 /-~ ~ ~ ~
k¥ i= 2 (GAR, = PCA, + GBS, — DB, )
than it has divergence R
0, K" = —0,L,
so we need exactly K* = —K* for the term in the formula for the current. Indeed, the
divergence has four parts:

N . - 1 -~
20,0 1= 0,(CPAR,) = 0u(G) AR, + G ADL(A,) = 0+ SG* AR,

(M nommiy HyzKHBIE CJIOBa PO STOT MEepexo/, 9To ¥y Hac G TyT eCcTh aHTUCHMM, U3-3a Hee Tak
samensem!!!)

Basically we showed that if we have some arbitraty electronagnetic tensors P, with 8u]5W =
1, arbitrary matrix M and R, := J,R, — 0,R,,, then

. 1~ 1~
0 (P MR,) = §PWMRW = §PMR.
So we see how the divergence of different parts of K looks like. We see that

1 /1 -~ 1 -~ 1~ 1=~
Ky =-|-GAF — -FCF + -GBG — -FDG | = —§, L.
0. K 5 ( 2G 5 CF + 2G G 5 G) 0y

The current off-shell is not a total derivative, because G, is a curl only in virtue of the
equations of motion "G, = 0.

Now, by the usual Noether argument, the equations of E; = g)@ — 0y 86; = 0 for }* imply
that oL oL oL oL oL
0L =0x—+0xu=— =0x0,— + 0, (6x)=— =0 (51 A),
X aX H@XL HaXL H( )aXu K @XL

so backwards

. OL
On (g W) =0l

m
Therefore, the current

oL

—Jt = —I—Siax

N . 0L
- Kt = +fla—i + K*
? O
is conserved:

0y J" = —(0,L — 0,L) = 0.

So, indeed we’ve obtained the current for the duality transformations:
0L 1/~ - N .
oL 1 (GraR, — FCA, + GBS, ~ FDB,) .
ox;, 2

JH = ¢
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4.2.4 Invariance of the energy-momentum tensor

Current is not gauge invariant

The current is not invariant under the gauge transformations
AL — AL+ 0t B, — B, + 0,0
which leave invariant Fj, = 0,A; — J,A}, and G}, = 9,87 — J,8;,. It changes by the
divergence of an antisymmetric tensor
1 _ . _ .
T I+ 50, (G“”Aa — P Ca+ GBS — F‘“’Dﬁ) .

Therefore the corresponding charge [ J° d?z is gauge invariant and is actually the generator
of the duality rotations, as one can see by constructing the potentials A, and B, in a special
gauge.

A conserved current of this kind does not preclude [8,9] the existence of massless spin-one
states which couple to the charge operator, as we shall discuss in more detail in sect. 6.

4.2.4 Invariance of the energy-momentum tensor

Theory
The energy-momentum tensor is obtained by
oL
TV := ——————0,¢0 — 0L,
0 (9uta)

(7777 no, forgot the idea)
we will modify it a little (??7? why do we need it7??) and consider another energy-momentum
tensor:

By = Ty + 9 = Wit Ot =05 gy =GR,
- 0L ~
= —X\=— + XL + G*"F4;
XA o, +oyL+ VA
only because of this property we can add *,.
Indeed

auwu/\ = au(éaWFz(})\> = au(éaw)Fz?)\ + éaw&u( :A) =0+ Gauyau( ~3>\) =0,

because of the equations of motion O F i = 0 and al‘é’fw =0 (77?7 no, I don’t understand
this!!!!).
The energy-momentum tensor is conserved as a consequence of the equations of motion
(2.3), (2.5) and (2.15):
80", =0

We will show that 6L = §(F CF + GBQG) implies also that 6%, is invariant under duality
rotations. We must evaluate

oL . oL _ . - -
0 = -5 | — L — —— Oy, + ONOL + SGME, mer,
A <8XL>X/\ aXL Xyt 0y0L + G A+ G A

Now, from (2.7),

J pv
OL _ 0 . 0¢ 0L 109G

X, N X, 5% 8;& 20X, o
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4.2.5 Construction of the lagrangian

Therefore

oL oL _ . .0 1 ~
Od—X5 + =—0x4 = Z—,((SL——GBG)
aXLXA 3XL X anxz 4

In order to evaluate the other terms of (2.35) we take §F from (2.6a) and 6G from (2.6a)
or (2.9). Using also (2.19), we obtain

SGM"E,\ + GMF, = F*CF,\ + G* BG,».

This expression can be simplified if one remembers that, for any two antisymmetric tensors
Flul/ and FQW”

~ ~ 1. =
F}l/tVFZ/)\ + FQMVFL/)\ = _EégFlpaFQpU-

Since the matrices C' and B are symmetric we can use (2.39) in (2.38). Combining the result
with (2.37) we obtain finally

.0 1~ 1~
0= —xo=—+0N||(0L—--FCF - -GBG
(= (i +3) (- grer —omc)
since the field F' does not depend on x,. This equation shows that our basic relation (2.20)
implies
305 = 0.

The invariance of the symmetric energy-momentum tensor will be shown in appendix B.
Since the hamiltonian and the equations of motion are invariant under duality rotations, it
follows that the S-matrix is also invariant.

Nnest nns BeiBoga toka u TOU  (Tyr cyrb Toro, 4rto jajbiie GyjeM JelaTb. 3TO Ke
BO MHOTHUX MPEJJIOKEHUSX Hepe]T hopMyJIaMi. )

4.2.5 Construction of the lagrangian

(9TO He aKTyaJbHO, TIOKa He CMOTPIO)

Theory
We start by noting the identity

1 .
oL = J8(FG),

which follows from the comparison of the transformation (2.6a) subject to the constraints
(2.11) and (2.19), with the property (2.20). As a consequence of (2.42) the lagrangian can be
written in the form

L= ;lFé—i-LinV.

Under the most general group of duality transformations, namely Sp(2n, R), the only * in-
variant which can be constructed from vectors in the fundamental 2n-dimensional representation
is an antisymmetric bilinear. If we introduce two antisymmetric Lorentz-tensor functions of
the fields x*, (H,u (X)L (X)), which transform under (2.6) like (F),,, G}, then the lagrangian
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4.2.6 Compact duality rotations

1 _~ 1

where Liy (X) is an invariant function of the x (and their derivatives), has the property that
the equations of motion are invariant. The definition (2.4) of G,

OL 1~ 1. 1_0G 1. 190G -
—=-G=-G+-F—+-1+-—H
oF 2 4 +4 8F+4 +48F
where we have used F}F5 = —F 1 FQ, gives a differential equation for G-
. - 0G
G-1=(F —
(F+H)om

At this point it is convenient to introduce the operator ;7 which changes an antisymmetric
tensor into its dual

jTMV - Tuw (])2 =-1

and to rewrite (2.46) in the form

. 095G
]G—I:(F+jH)5—F

If the true invariance group is a subgroup of Sp(2n, R), other invariants may exist.
The similarity of the operator j with the usual imaginary unit ¢ has been noted and used
before [1,7]. The general solution of (2.48) is
JjG —1=—-K(x)(F+jH)

where K (y) is a priori an arbitrary n X n symmetric matrix function of the x and can
contain j. To verify that (2.49) is a solution of (2.48), observe that the definition (2.4) implies
that

~a b
oGy, _ oG,
oFY, — OFg,
The transformation law of K under (2.6) is determined by those of (F,G) and (H,I).
Varying both sides of (2.49) one finds
SK(z) = —jC — jKBK + DK — KA
where the matrices A, B, C, D satisfy (2.11) and (2.19). In addition, it is clear that the form

of the kinetic energy term for the vector fields requires

K(x) =1+ f(x)

with f(0) = 0. As we shall see in sect. 5, these properties permit the determination of the
matrix K as a function of the fields x. Substituting (2.49) in (2.44) we find the lagrangian

1 1 1
L=—JFKF+ F(I — jKH) + [jH(I = jKH) + Lun(x).

4.2.6 Compact duality rotations

(3TO HE aKTyaJIbHO, [MOKA HE CMOTPIO)
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4.2.6 Compact duality rotations

Theory

As an example, let us consider the case where f(x) = 0 in (2.52), i.e. K(x) = 1 in (2.49).

Then, since K = 0, the transformation law (2.51) restricts the matrices further:
B=-C=B" A=D=-A"T.

The subgroup of Sp(2n, R) determined by (3.1) is just its maximal compact subgroup U(n).
This becomes obvious if one writes (2.6a) in the complex basis given by the combinations

F +{G. One finds
5 F+:G\ (T O F+iG
F—iG) \0oT* F —iG

where

T=A—iB=-T"

is an antihermitian n X n matrix. Whether or not the invariance group is actually U(n)
or some (compact) subgroup thereof, one sees that the tensors F' 4 iG and F — iG transform
according to an n-dimensional representation (which may be reducible) and to its conjugate.

The complex basis defined in (3.2) allows a simple physical interpretation: spin-one states
of opposite helicity transform according to conjugate representations of the duality group, just
as massless fermions do under chiral transformations. However, the equations become more
concise and are more easily generalized to the non-compact case if we choose a similar basis
with i — j, where j is the operator defined in eqs. (2.47), i.e.

F+iG — F+jG
ReT £:¢ImT — ReT £ 5ImT

in eq. (3.2). Then if we introduce antisymmetric tensor functions of x,

jHy = (H £j1) = £j(I ¥ jH)
transforming like F' + jG, the lagrangian (2.53) with K = 1 becomes

1 1 1 1
L=—"F*+_FH, —-H? — —H,H_+ Liny(x).
TR M g+ — g+ + (x)
Clearly, without loss of generality, we may set H_ = 0: since this field does not couple to

F', its couplings must be themselves invariant (and indeed H, H_is an invariant) and can be
absorbed in L,y (x). Then (H, I) reduces to (H, —jH ), and we see that the correct transforma-
tion properties for L are obtained in the compact case by introducing a tensor H = % jH which
transforms according to the same j-complex representation of the unitary group as does the
field F'+ jG. In practice H is constructed from fermion fields v, e.g.

a a 7.1 7
Hj, = Citouny

and the transformation (2.6b) is chiral. Finally we remark that by setting H_ = 0 we can
rewrite the invariant

FI-GH = % (F*+G?) = %(F —iG)(F +iG),

which is manifestly invariant under linear unitary transformations among F' and G. The
models of ref. [3| are examples of the developments of this subsection.
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4.2.7 Non-linear realizations

In order to generalize the above construction to the case of non-compact duality transforma-
tions without introducing ghosts, we must add scalar fields in the way recalled in the following
section.

4.2.7 Non-linear realizations

(9TO He aKTyaJbHO, TIOKa He CMOTPIO)

Theory

In this section we recall the well-known description of non-linear models for scalars valued in
the quotient space of a group by a subgroup [10,11]. Although the formalism is very general,
and can be applied to a compact group as well, we have in mind the special case when the
semisimple group G is non-compact but the subgroup K is its maximal compact subgroup. As
pointed out in refs. [12-14], this case leads to a non-linear scalar lagrangian without ghosts.

The scalars can be described by a group element g(z) € G (in some representation) and are
therefore at first as many as the parameters of G. However, we consider as equivalent all group
elements which differ by multiplication (on the right) by an element of .#. This reduces the
scalars to as many as the parameters of the quotient space (coset space). To implement the
equivalence we require the lagrangian to be invariant under a gauge transformation which we
choose to write as

9(x) = g(@) k()]

We require it also to be invariant under the rigid transformation

g9(x) — gog(x)

with go € G.
In order to construct the lagrangian, we introduce a gauge field ), which belongs to the
Lie algebra of .7 and which transforms as

Q. — kQ k™' —0,kk™!
under the gauge transformation (4.1). With it one can construct a covariant derivative
Dug = g — 9Qu
which transforms as
Dug = (Dug) [k(2)] ™
so that

g 'D,g— kg 'D,gk™!
Under (4.2), g 'D,g is invariant. Therefore the lagrangian

L= —% Tr (gleug)2

is invariant under both (4.1) and (4.2). Here Tr can be defined as the trace in some repre-
sentation, suitably normalized. The field ), enters the lagrangian without derivatives. If one
varies (), keeping ¢ fixed, one obtains the equation of motion

L =TréQ, (9 '0.9—Qu) =0
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4.2.7 Non-linear realizations

Since §Q,,, like @, is in the Lie algebra of ¢, this means that P, = ¢'d,9 — @, is in the
orthogonal complement. The element ¢g~'0,¢ of the Lie algebra of G is decomposed as

g_l ud = Qu + Pu
and @), is its part in the Lie algebra of J#". This equation can be thought of as giving @,
and P, in terms of g and its derivatives. One can rewrite (4.9) as

P, = g_lDug

and give (4.7) the form
1 2
L= —5 Tr PM

Substitution into (4.7) of @, expressed in terms of g from (4.9) gives a lagrangian which
depends only on ¢ and its derivatives. Clearly it is given by (4.11) in which P, is expressed in
terms of g from (4.9).

To obtain the equations of motion for the scalar fields one must vary ¢ in the lagrangian
keeping (), fixed. With a little algebra and up to a total derivative one finds

SL =Trdgg ', (Duggfl) =0

Now, dgg~! is an arbitrary element of the Lie algebra of G; therefore, one has the equations
of motion
O (Dugg™) =0
or

9 (9Pug™") =0

These equations can also be written as

D,P,=0,P,—[P,,Q. =0

One could have obtained these equations of motion also by varying ¢ in the lagrangian
(4.11) where @), no longer appears as an independent field.

Our lagrangian is invariant under (4.1) and (4.2). In particular it is invariant under the
rigid transformation

g— gk,

with k independent of z. According to a general argument due to Emmy Noether, the current
corresponding to (4.16) vanishes identically as a consequence of the gauge invariance (4.1). The
current corresponding to (4.2) does not vanish, however, and the current corresponding to the
subtransformation

g — kg

is the same as that for

g — kgk™.

According to the Noether prescription, we construct the currents by replacing in the la-
grangian the derivatives of the scalar fields by the variation of the same fields under the corre-
sponding transformations. This amounts to varying the lagrangian (4.11),
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4.2.7 Non-linear realizations

L =—Tr PP,
and replacing 6P, by 0P (and 0Q, by 0Q) when it appears in the lagrangian, as below)
defined from
g 109 =6Q + 6P

with the same decomposition of the Lie algebra. So the current is

J,=-TrP,P
where ¢ is the infinitesimal transformation in question. This equation can also be written
J,=—TrP,(6Q +JP)
=-Tr P, g 10g
since the term we have added vanishes by orthogonality. For (4.2) let

dg=(q¢+p)g

where ¢ and p are infinitesimals in the Lie algebra of #" and perpendicular to it, respectively.
We find

Ju=—TrgP.g™"(q+p)
So the current of (4.2) is given by the operator

Jy = —gl’:’ug_1

which is in the Lie algebra of G. Its part in the Lie algebra of J# gives the current of (4.17)
and also of (4.18). The equations of motion, in the form (4.14), state just the conservation of
the current in agreement with Noether’s theorem. We can also check directly that the current
of (4.16) vanishes identically. Indeed we must now use (4.20) and (4.21) with

09 = —9q
This gives
0Q =—q, O0P=0.

Coupling to other fields, which we denote by v, can be introduced as follows. Let 1 be
invariant under (4.2) and let it belong to some unitary representation of H so that it transforms
under (4.1) as

() = k()¢ (x).

It is easy to construct lagrangians invariant under (4.1), (4.28) by means of the covariant
derivative

DMD = 3;@ + Q,ﬂﬁ

where k(x) and (), are matrices in the appropriate representation. For instance, the kinetic
term of the Dirac lagrangian would be

_%W_WH (l_ju - B;) (0
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4.2.7 Non-linear realizations

One can also have derivative coupling interaction terms such as

1;17“13“%

where P, is now a matrix in the appropriate representation of the Lie algebra of 7.

In presence of other fields, the derivatives of the scalars enter also in terms like (4.30)
and (4.31) through @, and P,. Therefore, the current receives additional contributions. For
instance (4.30), which contains

— i Qi
gives, from (4.20) and (4.23),

g, = —ip7,0Q¢ = —ithy,q) + - -

where the dots represent terms of higher order in the scalar fields. Similarly, (4.31) gives

J,Z:@ZWMP%—I—---

We have assumed that the fields ¢ are invariant under (4.2) because the group G is non-
compact: if we had attributed them to a linear representation of G we would have obtained a
lagrangian with ghosts.

The gauge field @, in (4.29) can be taken as given by (4.9), a function of the scalar fields
and their derivatives. On the other hand, @), could be introduced as an independent field both
in the scalar lagrangian and in the lagrangian of the other fields ). The field @), can still be
determined from its own equation of motion but it has now additional terms which are functions
of the fields .

It is often convenient to use the gauge equivalence (4.1) to choose a special gauge. For
instance, one can always transform any group element g by (4.1) to the form

g =¢e" =gk,

where P is an element of the Lie algebra of G perpendicular to those in the Lie algebra of
K. The scalars are now described by P(z), the coset space G/K is parametrized by P and g*
represents the equivalence class. A transformation (4.2) is now represented by

(909) = (goep). =l = goepk‘_l,

where P’ (go, P) and k (go, P) are functions of the variables indicated and are determined
by the group structure. The transformation

P — P’ (g0, P)

is a non-linear realization of (4.2). Correspondingly one must transform the other fields as

=k (9o, P) ¢

in order to maintain the special gauge. Similarly @), transforms as in (4.3), but with the
above k (go, P). Clearly the lagrangian is invariant under the non-linear transformations (4.37)
and (4.38), while the gauge invariance (4.1) is no longer apparent; it has been used to establish
and maintain the special gauge.
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4.2.8 Non-compact duality transformations

4.2.8 Non-compact duality transformations

Theory

In sect. 2 we derived general formulae in terms of the vector field strength F' and the remaining,
unspecified fields y. Here we wish to study in more detail the case of non-compact groups,
requiring the introducing of scalar fields which are valued in the coset space G/K as described
in sect. 4. We saw that the most general non-compact group of dual rotations for n vectors is
G = Sp(2n,R) with R = U(n) as its maximal compact subgroup. In this case the scalar fields
can be represented by an Sp(2n, R) matrix which is most easily expressed in the complex basis

used in eq. (3.2) (see appendix A) as
_ %ﬂ)
! (@%

where ¢y and ¢; are complex n X n matrices which satisfy the constraint

dhdo — dly = 1

The transformation law of the scalar fields under Sp(2n, R) is
S0 — Tve

T=-T'=M—iN,
V=VT=R—-iS
and the real matrices M, N, R, S are related to those of eq. (2.6a) by

where

A=M+R, B=S+N, C=S-N, D=M-R.

Then eq. (2.51) for the transformation law of the matrix K can be written in the form

K =[M,K]—{R,K} —jK(S+ N)K —j(S—N)
It is easy to verify that this equation is solved by

—1
K= (sh+al) (o} -o)
where complex numbers are to be interpreted as having ¢ replaced by the operator j defined
in eq. (2.47), so that, for instance

¢; = Re¢; + jIm ¢;

This trick [1,7] allows one to write the equations for K in a very compact form.

Next we introduce couplings to fermions fields ¢ in a way which is a straightforward gener-
alization of the compact case. As discussed in sect. 4,1 belongs to some representation of the
compact gauge group K. We form an antisymmetric Lorentz tensor Hgy(w) which transforms
under the gauge group ¢ in the same way as F' + iG (or, in terms of the transformation
matrices defined with i — j, F' + jG) transforms under the subgroup of the rigid non-compact
symmetry which is isomorphic to J#. Then the tensors H and I entering eq. (2.44) may,
without loss of generality, be constructed as:

(4) )
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4.2.8 Non-compact duality transformations

H and [ are invariant under the gauge transformation of #". We could, of course, replace the
zero in (5.8) by a tensor H' which transforms according to the representation of J#" conjugate
to that of H°. However, as in the compact case described in sect. 3, H' does not couple to F
so that its couplings to the remaining fields must be themselves invariant and can be absorbed
in Liny(x). We have verified explicitly this invariance. Eq. (5.8) gives two equations for H and
I in terms of the scalar and fermion fields:

1-jKH = () +6}) H'w)
[—jK*H=0

Once one has specified H%(v)) and Ly, (1, ¢), the lagrangian is uniquely constructed as given
by egs. (2.53), (5.6) and (5.9). The compact case of sect. 3 is recovered by setting ¢y = 1 and
¢1 =0.

We would like to observe that the solution (2.49) of the differential equation (2.48) must be
invariant under Sp(2n, R) transformations. Since H and I transform, respectively, in the same
way as F' and G, an invariant linear relation among them can be obtained by writing

e [G8) i EE - (7

g1:(¢$—¢5
—01

is the inverse of (5.1). The coefficient A can be determined by considering the limit K —
1,09 — 1,¢1 — 0, which gives A = 1. Then one finds that in the general case, the relation
given by the upper component of (5.10) is identical with (2.49) when K is given by eq. (5.6).
In fact, this is how the expression for K was found. K is invariant under gauge transformations
of the local U(n) which operates on the matrix g from the right. It can also be expressed in
the form

where

-z
147

where

Z =61 (o) =27

In the special gauge in which

_¢¢*_ 0 P*
g_(£¢9‘”“pQ’0>

the symmetry of the non-compact generator matrix P implies that

b0 =y, P1 =1

This construction can be applied to the N = 8 supergravity lagrangian of Cremmer and
Julia, except that the specific expressions they obtained for Li.(x) and H}, (1) were deter-
mined by the additional constraints of supersymmetry. (The inclusion of the gravitational field
presents no difficulty, since it is invariant under duality transformations.) The prescription
given in subsect. 2.2 and sect. 4 for obtaining the conserved currents can be directly applied
for the subgroups SU(8) and even E; using their lagrangian.
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4.2.9 Invariance of a special derivative of a lagrangian

The conserved currents associated with the non-compact generators can be constructed only
when the interaction with the scalar fields is present. To understand what happens in the limit
in which the scalar coupling constant tends to zero, let us recall that this coupling constant x
has the dimension of a reciprocal mass (in supergravity x is the gravitational constant itself).
In the special gauge of sect. 4, the coupling constant x can be introduced explicitly in the
lagrangians by rescaling P — kP after which the lagrangian (4.11) must be divided by x?. The
currents associated with the non-compact generators become

1
JM:—EauP_i_...’

where the dots denote terms containing the scalar fields which vanish with x and terms
containing the vector field strengths and other fields which have a finite limit as k — 0. To go
to the limit we multiply (5.16) by s and obtain

lim xJ, = —0,P.

k—0

All terms involving fields other than the scalars drop out, the scalars become free massless
fields and the non-compact part of the group becomes abelian, corresponding to a contraction
of the original non-compact group.

4.2.9 Invariance of a special derivative of a lagrangian

We have emphasized in the text that the lagrangian is not invariant under duality rotations;
rather it transforms as given in (2.20). Here we will show that a suitably defined derivative of the
lagrangian with respect to an invariant parameter is invariant. The invariant parameter could
be a coupling constant or it could represent an invariant external field like the gravitational
field in the matter lagrangian. An important consequence of this result is that the symmetric
energy-momentum tensor is invariant under duality rotations, since it is obtained by taking the
functional derivative of the matter action with respect to the gravitational field.

Let us assume that the lagrangian depends upon an invariant parameter \. If £ is indepen-
dent of A, differentiating (2.7) with respect to A we obtain

) oL 9G . OL
0L =050+ 5 B

Using (2.4) and (2.11), this equation can be written

oL 0 1 ~ 1 ~
—=—|0L—-GBG—--FCF ).
58)\ oA (5 4G G 4 ¢ )
We are free to add the last term in the right-hand side since the field F' is independent of

A. We see that, if L satisfies our basic equation (2.20), then

oL
5= —
o\ 0

This observation provides a method for constructing invariant lagrangians, by switching on
couplings in an invariant way, or for checking if a lagrangian is invariant.

In deriving (B.1) we assumed that the & are independent of the parameter X. When
the transformation is non-linear, if it is expressed in terms of scalar fields ¢ with canonical
dimensions, the ¢ will in general have an explicit dependence on some dimensional coupling
constant k. If we wish to apply the above argument to the parameter s, we must first re-express
the lagrangian and the transformation laws in terms of the dimensionless fields k¢. The partial
derivative OL/0k, taken keeping the fields k¢ constant instead of ¢, is invariant.
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4.2.10 Conclusion and examples

We further wish to point out that the formalism developed in this paper applies directly
to the case in which the fields F' and y of sect. 2 interact with an external gravitational field,
described by a tensor g, or by a vierbein e,*. Now we must distinguish between tensors
(denoted by ordinary letters) and densities (denoted by script letters). The field F,, is an
antisymmetric tensor with lower indices as in (2.2). The lagrangian is a density & and (2.4)
must be written more precisely as

0L

G =2
OF,,

If we use the tensor

1 S p0
G/u/ = _éeuupagp

and the density

- 1
ﬁ.ﬂy = §€“VPUFPU

we can write (2.20) as

5¢ = }1 (FWCQW + GWB@“’> .
Eq. (2.6a) remains correct as written, using tensors with lower indices. Remember that the
numerical antisymmetric symbol e#77 transforms a tensor into a density, while ¢,,,,, transforms
a density into a tensor.
As already emphasized, the gravitational field does not transform under the duality rotations
discussed in this paper. We have not considered here those duality rotations which act on the
gravitational field, because they are an invariance only of the linearized gravitational equations.

4.2.10 Conclusion and examples

Conclusion by GZ

We have shown how a general theory invariant under dual rotations may be constructed. These
theories still have a considerable degree of arbitrariness, namely in the choice of the tensor
H),(¢) and of Li,y (x) (see sects. 4, 5). In supergravity theories these quantities, and in fact
the field content itself, are fixed by supersymmetry. It appears that the duality invariance of
supergravity theories is implied by supersymmetry, a fact which still remains very mysterious.

There has recently been an attempt [15,16] to connect N = 8 supergravity with gauge
theory phenomenology by assuming that the fields of grand unified theories are composites of
the fundamental fields of supergravity. This means in particular that the gauge bosons should
be zero-mass bound states. There are arguments which show that, in a theory where there is a
vector current, no zero-mass spin-one state can exist which carries the associated charge [8]. A
related argument [9] shows that a vector current operator applied to the vacuum state cannot
create a massless spin-one state. In N = 8 supergravity, these arguments would forbid the
existence of massless states associated with the composite SU(8) gauge fields @, since, as we
have seen, a current associated with the SU(8) generators can indeed be constructed, and is even
conserved. However, as we have pointed out, this current is not gauge invariant, and therefore
is not a true Lorentz vector. To construct a current operator one has to choose a particular
gauge, in which case the Lorentz transformation properties become rather complicated, and
the above-mentioned arguments can no longer be applied. Supergravity escapes this difficulty
in much the same way as do
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4.2.10 Conclusion and examples

Yang-Mills theories where one can define a conserved vector current carrying the same
quantum numbers as the Yang-Mills field, but which is not gauge invariant.

Finally, we wish to clear up some confusion concerning the composite vector fields in the
N = 8 supergravity theory. In the manifestly gauge-invariant formulation, the conserved
current J, was constructed to be invariant under SU(8) gauge transformations, and to transform
linearly under non-compact E;. We emphasize that J, contains the vector potentials A, and
B, and is therefore not invariant under their abelian gauge transformation; without these
terms it would not integrate to the correct generator of E;. On the other hand the composite
gauge potential (), was constructed to be invariant under E;, and to transform like a gauge
field under local SU(8); it does not contain A, and B,,. A source of confusion could be the fact
that in the special gauge of sects. 4 and 5 these two operators appear similar at the bilinear
level in the scalar fields and even in the spinor fields if these are included in @),. However, even
in the special gauge the higher non-linear terms are different. In this gauge the non-compact
part of E7 is realized non-linearly, while its SU(8) subgroup is realized linearly. The SU(8) part
of J,, gives a conserved SU(8) current in terms of the physical fields of the special gauge.

An unanswered question is the precise definition of the vector operator for which the spectral
function may develop a zero mass pole in the spin-one channel. Cremmer and Julia 7] took
this to be @), as defined from the scalar fields alone. As discussed in sect. 4, other definitions,
including fermion fields, are possible. Presumably the correct combination is one which belongs
to an irreducible supermultiplet. The issue we believe to have clarified in this paper is simply
that there is no inconsistency in the existence of zero-mass bound states which transform like
gauge bosons under local SU(8) and therefore couple to the conserved current associated with
the rigid SU(8) transformations defined in eq. (4.18).

Examples of applications of GZ methods (777)

(question: how is it applied??7?)
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Part 111
Questions and Problems in Duality

4.3 Typical questions and problems

(M!' T want to create a lot of illustrative examples!!! but for now it is too time consuming task.
Maybe later I'll collect them!)

4.3.1 Questions about understanding duality

4.3.2 Problems about duality in electrodynamics

(HO,ZLyMaIO IIOTOM, MHTEPECHO OBLJIO OBI Tak C,ZL@JI&TI)!! IIOKa J0Yy4dHUBalO U3BECTHYIO TeOpHIo.)

4.3.3 Problems about duality in general field theories
Duality in N = 2 supergravity

The example is (a part of) a theory in N' = 2 supergravity with one vector multiplet. * Hence
there are two vectors, one from the gravity multiplet and one from the vector multiplet, but
they will be mixed. We thus use A = 1,2. We will neglect the frame field and the gravitinos,
but still consider the complex scalar z, and two fermions x¢,i = 1,2. The Lagrangian is
3 1
— 8 a,u = - 71P 1 72P 2
L o [ 2 Z+2 (X' PLdx' + X*Pudx?)
1.1 3
+ {_Zi [522(32 + 2)F P — 32(2 + 2)F P 4 5(3z + Z)F 2T
3 _ .
—gxlpm” Xy (—2F ) + F:VQ)} + he +...

Here appears also a variable y. In terms of z only its modulus is determined by

lyl* = (i(z — 2)) .

Choosing the phase of y is in fact a choice of a phase symmetry, that could also act on the
fermions, but we will fix this below by the form of the transformations of y. First look at the
scalar part, which determines the isometries.

Obtain all the quantities of the main text, where the matrices in the duality transformations
are in terms of the parameters for the isometries:

—362 —363 0 O 00
_ 2 — _
A‘( o' —36%)" b= 0-26°)° =106
The variable y transforms consistently with (A.26) as (here a phase has been chosen for y)
1
8qj = —3 (502 + 203) 7.
Since Ppx* is the supersymmetry transform of z under the two supersymmetries:
Saz = k(2) = 8aPpx’ = (0.k) PrX’,

and the complex conjugate for §;Prx’. Are the... terms in (A.25) invariant, or what should we

still add?
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Part IV
Other topics

5 Duality Rotations in Nonlinear Electrodynamics and in
Extended Supergravity by Aschieri, Ferrara, Zumino

Abstract

We review the general theory of duality rotations which, in four dimensions, exchange
electric with magnetic fields. Necessary and sufficient conditions in order for a theory to
have duality symmetry are established. A nontrivial example is Born-Infeld theory with n
abelian gauge fields and with Sp(2n,R) self-duality. We then review duality symmetry in
supergravity theories. In the case of N = 2 supergravity duality rotations are in general
not a symmetry of the theory but a key ingredient in order to formulate the theory itself.
This is due to the beautiful relation between the geometry of special Kahler manifolds and
duality rotations.

5.1 Introduction

It has long been known that the free Maxwell’s equations are invariant under the rotation of the
electric field into the magnetic fields; this is also the case if electric and magnetic charges are
present. In 1935, Schrodinger [2] showed that the nonlinear electrodynamics of Born and Infeld
[1], (then proposed as a new fundamental theory of the electromagnetic field and presently
relevant in describing the low energy effective action of D-branes in open string theory), has
also, quite remarkably, this property. Extended supergravity theories too, as first pointed out in
[3, 5] exhibit electric-magnetic duality symmetry. Duality symmetry thus encompasses photons
self-interactions, gravity interactions and couplings to spinors (of the magnetic moment type,
not minimal couplings).

Shortly after [3, 4, 5] the general theory of duality invariance with abelian gauge fields
coupled to fermionic and bosonic matter was developped in [6, 39]. Since then the duality
symmetry of extended supergravity theories has been extensively investigated [8, 9, 10, 11|, and
examples of Born-Infeld type lagrangians with electric-magnetic duality have been presented,
in the case of one abelian gauge field [12, 13, 14, 15, 16| and in the case of many abelian gauge
fields [17, 18, 19, 20]. Their supersymmetric generalizations have been considered in [21, 22]
and with different scalar couplings and noncompact duality group in [17, 18, 23, 24, 25].

We also mention that duality symmetry can be generalized to arbitrary even dimensions
by using antisymmetric tensor fields such that the rank of their field strengths equals half the
dimension of space-time, see [26, 27|, and [30, 11, 31, 28, 16, 18, 24, 25]|.

We provide a rigorous formulation of the general theory of four-dimensional electric-magnetc
duality in lagrangian field theories where many abelian vector fields are coupled to scalars,
fermions and to gravity. When the scalar fields lagrangian is described by a non-linear sigma
model with a symmetric space G/H where GG is noncompact and H is its maximal compact
subgroup, the coupling of the scalars with the vector fields is uniquely determined by a sym-
plectic representation of G (i.e. where the representation space is equipped with an invariant
antisymmetric product). Moreover fermions coupled to the sigma model, which lie in repre-
sentations of H, must also be coupled to vectors through particular Pauli terms as implied by
electric-magnetic duality.

This formalism is realized in an elegant way in extended supergravity theories in four di-
mensions and can be generalized to dyons [32] in D-dimensions, which exist when D is even
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5.1 Introduction

and the dyon is a p-brane with p = D/2 — 2. In the context of superstring theory or M theory
electric-magnetic dualities can arise from many sources, namely S-duality, T-duality or a com-
bination thereof called U-duality [29]. From the point of view of a four dimensional observer
such dualities manifest as some global symmetries of the lowest order Euler-Lagrange equations
of the underlying four dimensional effective theory.

The study of the relations between the symmetries of higher dimensional theories and their
realization in four dimension is rich and fruitful, and duality rotations are an essential ingredient.
Seemingly different lagrangians with different elementary dynamical fields can be shown to
describe equivalent equation of motions by using duality. An interesting example is provided
by the N = 8, D = 4 supergravity lagrangian whose duality group is G = FE7 (7), this is the
formulation of Cremmer and Julia [5]. An alternative formulation obtained from dimensional
reduction of the D = 5 supergravity, exhibits an action that is invariant under a different group
of symmetries. These two theories can be related only after a proper duality rotation of electric
and magentic fields which involves a suitable Legendre transformation (a duality rotation that
is not a symmetry transformation).

Let us also recall that duality rotation symmetries can be further enhanced to local sym-
metries (gauging of duality groups). The corresponding gauged supergravities appear as string
compactifications in the presence of fluxes and as generalized compactifications of (ungauged)
higher dimensional supergravities.

As a main example consider again the N = 8, D = 4 supergravity lagrangian of Cremmer
and Julia, it is invariant under SO(8) (compact subgroup of E7 (7). The gauging of SO(8)
corresponds to the gauged N = 8 supergravity of De Witt and Nicolai [33]. As shown in [34]
the gauging of a different subgroup, that is the natural choice in the equivalent formulation
of the theory obtained from dimensional reduction of D = 5 supergravity, corresponds to the
gauging of a flat group in the sense of Scherk and Schwarz dimensional reduction [35], and
gives the massive deformation of the N = 8 supergravity as obtained by Cremmer, Scherk and
Schwarz [36].

Electric-Magnetic duality is also the underlying symmetry which encompasses the physics
of extremal black holes and of the “attractor mechanism” [37, 38, 39], for recent reviews on the
attractor mechanism see [40, 41, 42|. Here the Bekenstein-Hawking entropy-area formula

S=-A

is directly derived by the evaluation of a certain black hole potential 7zy at its attractive
critical points [43]
S =m7su ‘c

where the critical points C' satisfy 07pg|c = 0. The potential Y5y is a quadratic invariant
of the duality group; it depends on both the matter and the gauge fields configuration. In
all extended supersymmetries with N > 2, the entropy S can also be computed via a certain
duality invariant combination of the magnetic and electric charges p, q of the fields configuration
[44, 45|

S=nS(p,q) -

In the remaining part of this introduction we present the structure of the paper by summa-
rizing its different sections.

In Section 2 we give a pedagogical introduction to U(1) duality rotations in nonlinear
theories of electromagnetism. The basic aspects of duality symmetry are already present in this
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5.1 Introduction

simple case with just one abelian gauge field: the hamiltonian is invariant (duality rotations are
canonical transformations that commute with the hamiltonian); the lagrangian is not invariant
but must transform in a well defined way. The Born-Infeld theory is the main example of
duality invariant nonlinear theory.

In Section 3 the general theory is formulated with many abelian gauge fields interacting
with bosonic and fermionic matter. Necessary and for the first time sufficient conditions in
order for a theory to have duality symmetry are established. The maximal symmetry group in
a theory with n abelian gauge fields includes Sp(2n,R). If there are no scalar fields the maximal
symmetry group is U(n). The geometry of the symmetry transformations on the scalar fields
is that of the coset space Sp(2n,R)/U(n) that we study in detail. The kinetic term for the
scalar fields is constructed by using this coset space geometry. In Subsection 3.6 we present
the Born-Infeld lagrangian with n abelian gauge fields and Sp(2n,R) duality symmetry [18].
The self-duality of this lagrangian is proven by studying another example: the Born-Infeld
lagrangian with n complex gauge fields and U(n,n) duality symmetry. Here U(n,n) is the
group of holomorphic duality rotations. We briefly develop the theory of holomorphic duality
rotations.

The Born-Infeld lagrangian with U(n,n) self-duality is per se interesting, the scalar fields
span the coset space %, in the case n = 3 this is the coset space of the scalars of N = 3
supergravity with 3 vector multiplets. This Born-Infeld lagrangian is then a natural candidate
for the nonlinear generalization of N = 3 supergravity.

We close this sections by presenting, in a formulation with auxiliary fields, the supersymmet-
ric version of this Born-Infeld Lagrangian [17, 18|. We also present the form without auxiliary
fields of the supersymmetric Born-Infeld Lagrangian with a single gauge field and a scalar field;
this theory is invariant under SL(2,R) duality, which reduces to U(1) duality if the value of
the scalar field is suitably fixed. Versions of this theory without the scalar field were presented
in [46, 47, 48].

In Section 4 we apply the general theory of duality rotation to supergravity theories with
N > 2 supersymmetries. In these supersymmetric theories the duality group is always a
subgroup G of Sp(2n,R), where G is the isometry group of the sigma model G/H of the scalar
fields. Much of the geometry underlying these theories is in the (local) embedding of G in
Sp(2n,R). The supersymmetry transformation rules, the structure of the central and matter
charges and the duality invariants associated to the entropy and the potential of extremal black
holes configurations are all expressed in terms of the embedding of G in Sp(2n,R) [11]. We
thus present a unifying formalims. We also explicitly construct the symplectic bundles (vector
bundles with a symplectic product on the fibers) associated to these theories, and prove that
they are topologically trivial; this is no more the case for generic N = 2 supergravities.

In Section 5 we introduce special Kgeometry as studied in differential geometry, we follow
in particular the work of Freed [49], see also [50] (and [51]) and then develop the mathematical
definition up to the construction of those explicit flat symplectic sections used in N = 2 super-
gravity. We thus see for example that the flat symplectic bundle of a rigid special Kmanifold
M is just the tangent bundle TM with symplectic product given by the Kform. A similar
construction applies in the case of local special geometry (there the flat tangent bundle is not
of the Kmanifold M but is essentially the tangent bundle of a complex line bundle L — M).
This clarifies the global aspects of special geometry and the key role played by duality rotations
in the formulation of N = 2 supergravity with scalar fields taking value in the target space M.
Duality rotations are needed for the theory to be globally well defined.

In Section 6 duality rotations in nonlinear electromagnetism are considered on a noncom-

99



5.2 U(1) gauge theory and duality symmetry

mutative spacetime, [/, x¥] = i©". The noncommutativity tensor ©* must be light-like. A
nontrivial example of nonlinear electrodynamics on commutative spacetime is presented and
using Seiberg-Witten map between commutative and noncommutative gauge theories noncom-
mutative U(1) Yang Mills theory is shown to have duality symmetry. This theory formally is
nonabelian, ﬁuv = Guflu — &,EM — i[ﬁu, gy}, its self-duality is in this respect remarkable. One
can also enhance the duality group to Sp(2,R) and couple this noncommutative theory to axion,
dilaton and Higgs fields, these latter via minimal couplings. Duality in noncommutative space-
time allows to relate space-noncommutative magnetic monopoles to space-noncommutative
electric monopoles |52, 53].

A special kind of noncommutative spacetime is a lattice space (it can be studied with

noncommutative geometry techniques). Duality rotations on a lattice have been studied in
[54].

In Appendix 7 we prove some fundamental properties of the symplectic group Sp(2n,R)
and of the coset space Sp(2n,R)/U(n). We also collect for reference some main formulae and
definitions.

In Appendix 8 a symmetry property of the trace of a solution of a polynomial matrix
equation is proven. This allows the explicit formulation of the Born-Infeld lagrangian with
Sp(2n,R) duality symmetry presented in Section 3.7.

5.2 U(1) gauge theory and duality symmetry

Maxwell theory is the prototype of electric-magnetic duality invariant theories. In vacuum the
equations of motion are

9 F" =0,
9, Fm =0, (5.1)

uy — 1 uvpo : : : F cosa —sina) (F :
where F* = Se"P?F,,. They are invariant under rotations ( F) — (Sina o )(F)’ or using

vector notation under rotations (B) — (53¢ osne)(E). This rotational symmetry, called
duality symmetry, and also duality invariance or self-duality, is reflected in the invariance of
the hamiltonian H = 1(E? + B?), notice however that the lagrangian £ = 1(E* — B?) is
not invariant. This symmetry is not an internal symmetry because it rotates a tensor into a
pseudotensor.

We study this symmetry for more general electromagnetic theories. In this section and the
next one conditions on the lagrangians of (nonlinear) elecromagnetic theories will be found that

guarantee the duality symmetry (self-duality) of the equations of motion.

The key mathematical point that allows to establish criteria for self-duality, thus avoiding
the explicit check of the symmetry at the level of the equation of motions, is that the equations
of motion (a system of PDEs) can be conveniently split in a set of equations that is of degree 0
(no derivatives on the field strengths F), the so-called constitutive relations (see e.g. (5.5), or
(5.8)), and another set of degree 1 (see e.g. (5.2), (5.3) or (5.9), (5.10)). Duality rotations act
as an obvious symmetry of the set of equations of degree 1, so all what is left is to check that
they act as a symmetry on the set of equations of degree 0. It is therefore plausible that this
check can be equivalently formulated as a specific transformation property of the lagrangian
under duality rotations (and independent from the spacetime dependence F,, (z) of the fields),
indeed both the lagrangian and the equations of motions of degree 0 are functions of the field
strength F' and not of its derivatives.

60



5.2.1 Duality symmetry in nonlinear electromagnetism

5.2.1 Duality symmetry in nonlinear electromagnetism

Maxwell equations read

B=-VxE , V-B=0
D=VxH , V-D=0

they are complemented by the relations between the electric field E, the magnetic field H, the
electric displacement D and the magnetic induction B. In vacuum we have

D=E, H=B. (5.4)

In a nonlinear theory we still have the equations (5.2), (5.3), but the relations D = E, H = B
are replaced by the nonlinear constitutive relations

D=D(E,B) , H=H(E,B) (5.5)

(if we consider a material medium with electric and magnetic properties then these equations
are the constitutive relations of the material, and (5.2) and (5.3) are the macroscopic Maxwell
equations).

Equations (5.2), (5.3), (5.4) are invariant under the group of general linear transformations

E)-EnE - E-enE . e

We study under which conditions also the nonlinear constitutive relations (5.5) are invariant.
We find constraints on the relations (5.5) as well as on the transformations (5.6).

We are interested in nonlinear theories that admit a lagrangian formulation so that relativis-
tic covariance of the equations (5.2), (5.3), (5.5) and their inner consistency is automatically
ensured. This requirement is fulfilled if the constitutive relations (5.5) are of the form

_0L(E.B) . 0LEB)

D = OE : = 9B : (5.7)

where L(E, B) is a Poincaré invariant function of E and B. Indeed if we consider E and B
depending on a gauge potential A, and vary the lagrangian L(E, B) with respect to A, we
recover (5.2), (5.3) and (5.7). This property is most easily shown by using four component
notation. We group the constitutive relations (5.7) in the constitutive relation*

~ OL(F)
G = 2 : 5.8
OF,, ' (58)
we also define G, = —%ewpoép", so that GH = 27 Gy (€M% = —€g193 = 1). If we consider

the field strength F),, as a function of a (locally defined) gauge potential A, then equations
(5.2) and (5.3) are respectively the Bianchi identities for £, = 0,4, — 0, A,, and the equations
of motion for L(F(A)),

O F" =0, (5.9)
9,G" =0 . (5.10)

*a practical convention is to define gg& = 00y rather than % = 086y — 0,0 . This explains the factor
v v

2 in (5.8).
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5.2.1 Duality symmetry in nonlinear electromagnetism

In our treatment of duality rotations we study the symmetries of the equations (5.9), (5.10)
and (5.8). The lagrangian L(F) is always a function of the field strength F'; it is not seen as a
function of the gauge potential A,; accordingly the Bianchi identities for F' are considered part
of the equations of motions for F'

Finally we consider an action S = [ £ d*r with lagrangian density £ = £L(F) that depends
on I’ but not on its partial derivatives; it also depends on a spacetime metric g,, that we
generally omit writing explicitly*, and on at least one dimensionful constant in order to allow
for nonlinearity in the constitutive relations (5.8) (i.e. (5.5)). We set this dimensionful constant
to 1.

The duality rotations (5.6) read

(&)= (en) (&) o

Since by construction equations (5.9) and (5.10) are invariant under (5.11), these duality rota-
tions are a symmetry of the system of equations (5.9), (5.10), (5.8) (or (5.2), (5.3), (5.5)), iff

on shell the constitutive relations are invariant in form, i.e., iff the functional dependence of G’
from F” is the same as that of G from F, i.e. iff

0L(F')

G o= 2 :
OF),

(5.12)

where F, and G, are given in (5.11). This is the condition that constrains the lagrangian
L(F) and the rotation parameters in (5.11). This condition has to hold on shell of (5.8)-(5.10);
however (5.12) is not a differential equation and therefore has to hold just using (5.8), i.e., off
shell of (5.9) and (5.10) (indeed if it holds for constant field strengths F' then it holds for any

In order to study the duality symmetry condition (5.12) let (& B) = (3 9) +€(¢}) +..., and
consider infinitesimal GL(2,R) rotations G — G 4+ eAG, F — F + eAF,

>e)=(00) () o1

so that the duality condition reads

OL(F + AF)

G+AG =2 I(F+ AF) (5.14)
The right hand side simplifies tof
OL(F +AF) O0L(F+AF) oF
O(F+AF) oF J(F+ AF)
_ OL(F +AF) B OL(F)J0(AF)
B OF OF  OF
then, using (5.13) and (5.8), condition (5.14) reads
~ 5 SO(L(F+AF)— L(F)) 0L(F) ~0G
cF+dG =2 T2 —2a oF —bGa—F : (5.15)

*Notice that (5.9), (5.10) are also the equation of motions in the presence of a nontrivial metric. Indeed
S = [Ld'z = [L,/gd*z. The equation of motions are d,,(,/g F**) = 9,F" =0, 0,(/gG*") = 9,G" =
0, where the Hodge dual of a two form €, is defined by 2, = % G €uvpa§2P7

there and in the following we suppress the spacetime indices so that for example FG = F,Wé“”; notice that

FG=FG, F=—F, and FG = —FG where FG = FF'G,,.
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5.2.1 Duality symmetry in nonlinear electromagnetism

In order to further simplify this expression we write 2F = %FF and we factorize out the

partial derivative %. We thus arrive at the equivalent condition
b .
L(F + AF) - L(F) - EFF —1GG = (a+d)(L(F) — L) . (5.16)

The constant term (a + d)Lp—, nonvanishing for example in D-brane lagrangians, is obtained
by observing that when F' = 0 also G = 0. . .

Next use L(F + AF) — L(F) = ag(lf)AF = 2aFG + 3bGG in order to rewrite expression
(5.16) as

b .~ ¢ _= a _ ~
ZGG—ZFF:aHﬁmL@v—L&@—QR?. (5.17)

If we require the nonlinear lagrangian £(F') to reduce to the usual Maxwell lagrangian in the
weak field limit, F* << F?, i.e., L(F) = Lo —1/4 [FFd'z + O(F*), then G = —F + O(F?),

and we obtain the constraint (recall that G = —G)
b=—c , a=d,

the duality group can be at most SO(2) rotations times dilatations. Condition (5.17) becomes

Z(GG + FF) = 2a(£(F> — Lpo— %Fg—ﬁ) : (5.18)

The vanishing of the right hand side holds only if either L(F) — Lpg is quadratic in F' (usual
electromagnetism) or a = 0. We are interested in nonlinear theories; by definition in a nonlinear
theory L(F) is not quadratic in F. This shows that dilatations alone cannot be a duality
symmetry. If we require the duality group to contain at least SO(2) rotations then

GG+ FF =0, (5.19)
and SO(2) is the maximal duality group. Relation (5.18) is nontrivially satisfied iff
a=d=0,
and (5.19) hold.

In conclusion equation (5.19) is a necessary and sufficient condition for a nonlinear electro-
magnetic theory to be symmetric under SO(2) duality rotations, and SO(2) C GL(2,R) is the
maximal connected Lie group of duality rotations of pure nonlinear electromagnetism®.

This conclusion still holds if we consider a nonlinear lagrangian L(F') that in the weak
field limit F* << F? (up to an overall normalization factor) reduces to the most general linear
lagrangian

1 1 ~
L(F) = Lo — {FF + {OFF + O(F*) .

In this case G = '+ OF + O(F?). We substitute in (5.17) and obtain the two conditions (the
coefficients of the scalar F? and of the speudoscalar F'F' have to vanish separately)

c=-b(1+0% , d—a=26b. (5.20)

*This symmetry cannot even extend to O(2) because already in the case of usual electromagnetism the
finite rotation (61 ? ) does not satisfy the duality condition (5.12). It is instructive to see the obstruction at the
hamiltonian level. The hamitonian itself is invariant under D — D, B — —B, but this transformation is not a
canonical transformation: the Poisson bracket (5.33) is not invariant.
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5.2.2 Legendre Transformations

The most general infinitesimal duality transformation is therefore

a b _(a+©b 0 0 b .
(—b(1+@2) a+2®b) - ( 0 a+@b)+@(_bo)@ (5.21)
10 ‘ ' ‘ .
where © = ( o1 ) We have dilatations and SO(2) rotations, they act on the vector a

via the conjugate representation given by the matrix ©. Let’s now remove the weak field limit
assumtion F* << F2. We proceed as before. >From (5.12) (or from (5.17)) we immediately
obtain that dilatations alone are not a duality symmetry of the nonlinear equations of motion.
Then if SO(2) rotations are a duality symmetry we have that they are the maximal duality
symmetry group. This happens if

GG+ (1+0)*FF =20FG . (5.22)

Finally we note that the necessary and sufficient conditions for SO(2) duality rotations
(5.22) (or (5.19)) can be equivalently expressed as invariance of

1 -
L(F) - ZFG . (5.23)
Proof: the variation of expression (5.23) under F' — F'+ AF is given by L(F +AF) — L(F) —
TAFG—1FAG . Use of (5.16) with a+d = 0 (no dilatation) shows that this variation vanishes.

5.2.2 Legendre Transformations

In the literature on gauge theories of abelian p-form potentials, the term duality transformation
denotes a different transformation from the one we have introduced, a Legendre transformation,
that is not a symmetry transformation. In this section we relate these two different notions,
see [15] for further applications and examples.

Consider a theory of nonlinear electrodynamics (p = 1) with lagrangian £(F'). The equa-
tions of motion and the Bianchi identity for F' can be derived from the Lagrangian L(F, Fp)

defined by

L@jm:LW%éF%, Fp' = 0" Ap” — 0" Ap* | (5.24)

where F' is now an unconstrained antisymmetric tensor field, Ap a Lagrange multiplier field
and Fp its electromagnetic field. [Hint: varying with respect to Ap gives the Bianchi identity
for F', varying with respect to F' gives G* = Fp*” that is equivalent to the initial equations of
motion 9,G* = 0 because Fp” = 9*Ap” — 9" Ap* (Poincaré lemma)].

Given the lagrangian (5.24) one can also first consider the equation of motion for F

G(F) = Fp, (5.25)

that is solved by expressing F' as a function of the dual field strength, F' = F(Fp). Then
inserting this solution into L(F, Fp), one gets the dual model

1 .
Ln(Fp) = L(F(Fp)) — §F(FD) Fp . (5.26)
Solutions of the (5.26) equations of motion are, tothether with (5.25), solutions of the (5.24)
equations of motion. Therefore solutions to the (5.26) equations of motion are via (5.25) in 1-1
correspondence with solutions of the L(F') equations of motion.
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5.2.3 Hamiltonian theory

One can always perform a Legendre transformation and describe the physical system with
the new dynamical variables Ap and the new lagrangian Lp rather than A and L.

The relation with the duality rotation symmetry (self-duality) of the previous section is that
if the system admits duality rotations then the solution Fp of the Lp equations of motion is
also a solution of the £ equations of motion, we have a symmetry because the dual field Fp is
a solution of the original system. This is the case because for any solution £ of the self-duality
equation, its Legendre transform Lp satisfies:

Lp(F) = L(F). (5.27)

This follows from considering a finite SO(2) duality rotation with angle 7/2. Then F' —

F' = G(F) = Fp, and invariance of (5.23), ie. L(F') — 1F'G' = L(F) — 1FG , implies
Lp(Fp) = L(Fp), ie., (5.27).

In summary, a Legendre transformation is a duality rotation only if the symmetry condition

(5.8) is met. If the self-duality condition (5.8) does not hold, a Legendre transformation leads

to a dual formulation of the theory in terms of a dual Lagrangian Lp, not to a symmetry of
the theory.

5.2.3 Hamiltonian theory

The symmetric energy monentum tensor of a nonlinear theory of electromagnetism (obtained
via Belinfante procedure or by varying with respect to the metric) is given by*

T" = G"F,,+ 0" L . (5.28)

The equations of motion (5.10) and (5.9) imply its conservation, 0,7* = 0. Invariance of
the energy momentum tensor under duality rotations is easily proven by observing that for a
generic antisymmetric tensor £,

~ 1 -
FMF,, = —Za’gFﬂana : (5.29)

and then by recalling the duality symmetry condition (5.19).
In particular the hamiltonian
H=T"=DE - L (5.30)
of a theory that has duality rotation symmetry is invariant.

In the hamiltonian formalism duality rotations are canonical transformations, since they
leave the hamiltonian invariant they are usual symmetry transformations. We briefly describe
the hamiltonian formalism of (nonlinear) electromagnetism by avoiding to introduce the vector
potential A,; this is appropriate since duality rotations are formulated independently from the
notion of vector potential. Maxwell equations (5.2), (5.3) and the expression of the hamiltonian
suggest to consider B and D as the analogue of canonical coordinates and momenta ¢ and p,
while FE, that enters the lagrangian togheter with B, is the analogue of ¢.

*symmetry of TH follows immediately by observing that the tensor structure of GHv implies GH =
fs(F)F™ 4 f,(F)F* with scalars fs(F) and f,(F) depending on F, the metric = diag(—1,1,1,1) and
the completely antisymmetric tensor density €,,,,. (Actually, if the lagrangian is parity even, f, is a scalar
function while f, is a pseudoscalar function).
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5.2.4 Born-Infeld lagrangian

Recalling the constitutive relations in the lagrangian form (5.7) we obtain that the hamil-
tonian H = H (D, B) is just given by the Legendre transformation (5.30). Moreover H = 2%
and FE = %. The equations of motion are

OH
OH

The remaning equations V- B = 0, V - D = (0 are constraints that imposed at a given time
are satisfied at any other time. The Poisson bracket between two arbitrary functionals U, V' of
the canonical variables is

ou oV )% ou N
{U,V}—/@-(an—B) a—D.(vX@) &r (5.33)
in particular the only nonvanishing parenthesis between the canonical variables B and D are
{B'(r), D’ (")} = €7%0,,0%(r — r'). The equations of motion (5.31) and (5.32) assume then the
canonical form 0,B = —{B,H} , 0,D = {D,H} where H = [H d’r is the hamiltonian (H
being the hamiltonian density). We see that H as usual is the generator of time evolution. The
consitency and the hidden Poincaré invariance of the present formalism is proven in [55].

In the canonical formalism the generator of duality rotations is the following nonlocal inte-
gral [57], [56]

d37’1d37"2 (534)

A= 1 / Dl'(VXDg)—l—Bl'(VXBg)
T 8

71 — 73|

where the subscripts indicate that the fields are taken at the points r; and r,. We have
{D,A\} =B and {B,A\}=—-D .

Finally we remark that it is straighforward to establish duality symmetry in the hamiltonian
formalism. Indeed there are three independent scalar combinations of the canonical fields B
and D, they can be taken to be: D? + B?, D? — B? and (D x B)?. The last two scalars
are duality invariant and therefore any hamiltonian that depends just on them leads to a
theory with duality symmetry. The nontrivial problem in this approach in now to constrain
the hamiltonian so that the theory is Lorentz invariant [58], [57]. The condition is again (5.19)
ie., D-H = E-B.

5.2.4 Born-Infeld lagrangian

A notable example of a lagrangian whose equations of motion are invariant under duality
rotations is given by the Born-Infeld one [1]

Ly =1—+/—det(n+ F) (5.35)
1 -
— _ 2 _ 2
—1 \/1 +SF?— —(FF) (5.36)
—1-\1-E*+ B~ (E-B). (5.37)

In the second line we have simply expanded the 4x4 determinant and espressed the lagrangian

in terms of the only two independent Lorentz invariants associated to the electromagnetic field:
F*=F,F", FF=F,Fm".
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5.2.5 Extended duality rotations

The explicit expression of G is

F.+1FFF,

G = | (5.38)
1+ 32— L(FEy
and the duality condition (5.19) is readily seen to hold. The hamiltonian is
Hor = \/1+ D’ + B>+ (D x B)? —1. (5.39)

Notice that while the E and B variables are constrained by the reality of the square root in
the lagrangian, the hamiltonian variables D, B are unconstrained. By using the equations of

motion and (5.19) it can be explicitly verified that the generator of duality rotations is time
independent, {A, H} = 0.

5.2.5 Extended duality rotations

The duality symmetry of the equations of motion of nonlinear electromagnetism can be extended
to SL(2,R). We observe that the definition of duality symmetry we used can be relaxed by
allowing the I’ dependence of G to change by a linear term: G = Qg—ﬁ and G = Zg—ﬁ + UF
togheter with the Bianchi identities for F' give equivalent equations of motions for F'. Therefore

the transformation
F 10 F
(&)= (1) (6) 540

is a symmetry of any nonlinear electromagnetism. It corresponds to the lagrangian change
L — L+ }LﬁF F. This symmetry alone does not act on F, but it is useful if the nonlinear
theory has SO(2) duality symmetry. In this case (5.40) extends duality symmetry from SO(2)
to SL(2,R) (i.e. Sp(2,R)). Notice however that the SL(2,R) transformed solution, contrary
to the SO(2) one, has a different energy and energy momentum tensor (recall (5.28)). On the
other hand, as we show in Section 5.3.6, if the constant 1} is promoted to a dynamical field we
have invariance of the energy momentum tensor under SL(2,R) duality.

5.3 General theory of duality rotations

We study in full generality the conditions in order to have theories with duality rotation sym-
metry. By properly introducing scalar fields (sigma model on coset space) we enhance theories
with a compact duality group to theories with an extended noncompact duality group. A Born-
Infeld lagrangian with n abelian field strengths and U(n) duality group (or Sp(2n,R) in the
presence of scalars) is constructed.

5.3.1 General nonlinear theory

We consider a theory of n abelian gauge fields possibly coupled to other bosonic and fermionic
fields that we denote ¢*, (o = 1,...p). We assume that the U(1) gauge potentials enter the

action S = S[F, ¢] only trough the field strengths Fé\y (A=1,...,n), and that the action does
oL

not depend on partial derivatives of the field strengths. Define éA“ Y= 2555, ie,
5 0S[F, ¢]
G = 2——=; 5.41
A (SFlﬁ\V ) ( )
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5.3.1 General nonlinear theory

then the Bianchi identities and the equations of motions for S[F ¢| are

0, F M =0, (5.42)
9,G" =0, (5.43)
0S[F
OSIE ¢l _ 0 (5.44)
dp@
The field theory is described by the system of equations (5.41)-(5.44). Consider the duality
transformations
F’ A B F
(&)= (e)(e) 09
¢ =Z%p) (5.46)
where (é %) is a generic constant L(2n,R) matrix and the ¢* fields transformation in full detail
reads ¢ = Z%(¢, (& 8)), with no partial derivative of ¢ appearing in =.

These duality rotations are a symmetry of the system of equations (5.41)-(5.44) iff, given F,
G, and ¢ solution of (5.41)-(5.44) then F’, G and ¢/, that by construction satisfy 9, F"*#* = 0
and 0,G)\*" = 0, satisfy also

IS[F', ¢

v —
Gy 2 SFR (5.47)
SS[F, ]
L _ 9. 4
S5 0 (5.48)

We study these on shell conditions in the case of infinitesimal GL(2n,R) rotations

FoF=F+AF , GG =G0+AG,

(5)-(9()
Ap®

=£%(p) - (5.50)
The right hand side of (5.47) can be rewritten as
OF™ , OF%(y) oF™
SF' §F' 3 .
We now invert the matrix ( gf g f > , recall that F} Fy, = F1F, and observe that
5F b

OS[F, o] , 0G(y t
/y5F() b(SFA 45FA/GbG+ /Gb—b SFA
We thus obtain

5S[F/790/] . 5S[F/790I] EA(SS[F/’CP t
ll L e 45FA/GbG——/Gb—b S (552)
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5.3.1 General nonlinear theory

Since the left hand side of (5.47) is Gip + 3525 J, FeF+i(e—c)anF>+2d7 B4 we rewrite
(5.47) as

5% (S[F’, ¢'] — S[F, ] — i/y(FcF + G’bG)) (5.53)
- @ PSR+ e DR g [G0- 1)

Since this expression does not contain derivatives of F', the functional variation becomes just a
partial derivative, and (5.53) is equivalent to

) ., 1~ 1
m<~£<F,QO)—.£(F,QO)—ZFCF——GbG) (5.54)
1 oG
= (a +d)A 8FZ£( ) 4(C—C)A2FE—|— G(b—bt)aFA .

Here L(F, ) is a shorthand notation for a lagrangian that depends on F, ¢®, 0p* and eventu-
ally higher partial derivatives of the fields ¢®, say up to order ¢. Equation (5.54) has to hold on
shell of (5.41)-(5.44). Since this equation has no partial derivative of F' and at most derivatives
of o up to order ¢, if it holds on shell of (5.41)-(5.44) then it holds just on shell of (5.41),
and of the fermions fields equations, the scalar and vector partial differential equations being of
higher order in derivatives of F' or ¢® fields. In particular if no fermion is present (5.54) holds
just on shell of (5.41).

Since the left hand side of (5.54) is a derivative with respect to F'* so must be the right
hand side. This holds if we consider infinitesimal dilatations, parametrized by § € R, and
infinitesimal Sp(2n,R) transformations

ad+d=rkl , b=b, =c. (5.55)
We can then remove the derivative a% and obtain the equivalent condition

L(F'. @) — L(F.0) — kL(F, ) — tiF - ;LébG — () (5.56)

where f(p) can contain partial derivatives of ¢ up to the same order as in the lagrangian.

We now show that f() in (5.56) is independent from . Consider the ¢-equations of motion
(5.48),

OS[F, ¢ _ /5S[F’,w’] 07 (y) +/5S[F790] 0F (y)

o' 6pP(y) o™ OF(y) oy
/AN B 5
dp* P D™ 4op>
- - F' ol = S[F, o — = | Gb
b 507 07 opn SIE, 0] = SIF ¢l = 7 yG G

where only first order infinitesimals have been retained, and where techniques similar to those
used in the study of (5.51) have been applied. On shell the left hand side has to vanish; since
the first two addends on the right hand side are proportional to the p-equations of motion, this
happens iff on shell

)
dp®

(S[F’, ¢'] — S[F,¢] — kS[F, ] — }l/(ébG + FCF)) =0. (5.57)
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5.3.2 The main example and the scalar fields fractional transformations

Comparison with (5.56) shows that on shell

)
— =0. 5.58
() (5.58)
In this expression no field strength F' is present and therefore the equations of motion of our
interacting system are of no use; equation (5.58) holds also off shell and we conclude that f(y) is
¢ independent, it is just a constant depending on the parameters a, b, ¢, d (it usually vanishes).

We thus have the condition

L(F' @) — L(F, o) — kL(F, o) — tiF - iébG = conslyped (5.59)

If we expand F” in terms of F' and G, we obtain the equivalent condition

J 1~ 1~
A, L(F,p) = ZFCF — ZGbG +rL(F,p)— éGaF + constap.e.d (5.60)

where A, L(F,p) = L(F,¢") — L(F,p).

Equation (5.60), where G = 20L/0F ", is a necessary and sufficient condition in order
to have duality symmetry. This condition is on shell of the fermions equations of motion,
in particular if no fermion is present this condition is off shell. In the presence of fermions,
equation (5.60) off shell is a sufficient condition for duality symmetry.

The duality symmetry group is
R™" x SL(2n,R) , (5.61)

the group of dilatations times symplectic transformation; it is the connected Lie group generated
by the Lie algebra (5.55). It is also the maximal group of duality rotations as the example (or
better, the limiting case) studied in the next section shows.

We have considered dynamical fermionic and bosonic fields ¢®. If a subset x" of these
fields is not dynamical the corresponding equations of motion are of the same order as those
defining G, and thus (5.54) and (5.60) hold on shell of all these equations. Moreover since no
Ox" appears in the lagrangian, the duality transformations for these fields can include the field
strength F, ie., X" — X = Z"(F,x). In this case there is an extra addend in (5.51). The
necessary and sufficient duality condition (5.60) does not change.

We also notice that condition (5.59) in the absence of dilatations (k = 0), and for
constypcqa = 0 is equivalent to the invariance of

L— EFG . (5.62)

5.3.2 The main example and the scalar fields fractional transformations
Consider the Lagrangian

1 %) ~
ZNE FF + ZNDO7:7: + Z (o) (5.63)

where the real symmetric matrices N (¢) and Nc(¢) and the lagrangian £ (¢) are just functions
of the bosonic fields ¢%, i = 1,...m, (and their partial derivatives).

Any nonlinear lagrangian in the limit of vanishing fermionic fields and of weak field strengths
F* << F? reduces to the one in (5.63). A straighforward calculation shows that this lagrangian
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has R>% x SL(2n,R) duality symmetry if the matrices N, and Nc of the scalar fields transform
as

ANo =c+dNo — Nod — Noo | Noo + N L NG, (5.64)
ANe =dNe — Ne4 — Noo | Ne = Ne | Noo (5.65)
and
AZL(p) =rZL (o) . (5.66)
If we define
N = No + )N,

ie., No =ReN , Nc=ImAN, the transformations (5.64), (5.65) read
AN = |+[N=N4-N[|N, (5.67)
the finite version is the fractional transformation
N =(C+DN)A+BN)™. (5.68)
Under (5.68) the imaginary part of N transforms as
N = (A+BN) N(A+BN)™ (5.69)
where —1 is a shorthand notation for the hermitian conjugate of the inverse matrix.

The kinetic term %Ne F F is positive definite if the symmetric matrix N; is negative definite.
In Appendix 7.2 we show that the matrices N = N+ ) Nc with N, and N¢ real and symmetric,

and Ng positive definite, are the coset space SpéQ(Z’)R)
A scalar lagrangian that satisfies the variation (5.66) can always be constructed using the

%, see Section 5.3.4.

geometry of the coset space

This example also clarifies the condition (5.55) that we have imposed on the GL(2n,R)
generators. It is a straighfoward calculation to check that the equations (5.42), (5.43) and

G = NF + NoF (5.70)

have duality symmetry under GL(2n,R) transformations with AN given in (5.67). However
it is easy to see that equation (5.54) implies, for the lagrangian (5.63), that condition (5.55)
must hold. The point is that we want the constitutive relations G = G[F, ¢] to follow from a
lagrangian. Those following from the lagrangian (5.63) are (5.70) with N, and N necessarily
symmetric matrices. Only if the transformed matrices N, and N/ are again symmetric we can
have G = 282D a9 in (5.47), (or more generally G/ = M). The constraints N/, = N.",

OF” OF’
N! = N" reduce the duality group to R>? x SL(2n,R).

In conclusion equation (5.60) is a necessary and sufficient condition for a theory of n abelian
gauge fields coupled to bosonic matter to be symmetric under R>%x SL(2n, R) duality rotations,
and R% x SL(2n,R) is the maximal connected Lie group of duality rotations.

5.3.3 A basic example with fermi fields

Consider the Lagrangian with Pauli coupling

1

S S T B
Ly = _ZF/LVF - §¢@¢ - 55@5 + 5/\F Youwé (5.711)
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where o = %‘[fy“, ~*] and 1, £ are two Majorana spinors. We have

~ &LO _
w9 S Z 72
G 5. + Ao E (5.72)

and the duality condition (5.60) for an infinitesimal U(1) duality rotation (°,%) reads

b~ boy—
Ay Lo+ ALy = —ZAFwag + Zv Y E DG ,,E (5.73)

It is natural to assume that the kinetic terms of the fermion fields are invariant under this
duality rotation (this is also the case for the scalar lagrangian £ (¢) in (5.66)), then using
vs0 = ig" we see that the coupling of the fermions with the field strength is reproduced if
the fermions rotate according to

]

Ay = 55’751/1 ) (5.74)

7

AE = Sbys (5.75)
we also see that we have to add to the lagrangian L, a new interaction term quartic in the
fermion fields. Its coupling is also fixed by duality symmetry to be —\?/8.

The theory with U(1) duality symmetry is therefore given by the lagrangian 3|

L=t %E@w - %@g + %AF H1)0,0€ — é” bouE Pats . (5.76)

4
Notice that fermions transform under the double cover of U(1) indeed under a rotation of angle
b = 27w we have v — —1, & — —&, this is a typical feature of fermions transformations under
duality rotations, they transform under the double cover of the maximal compact subgroup
of the duality group. This is so because the interaction with the gauge field is via fermions
bilinear terms.

5.3.4 Compact and noncompact duality rotations

Compact duality rotations

The fractional transformation (5.68) is also characteristic of nonlinear theories. The subgroup
of Sp(2n,R) that leaves invariant a fixed value of the scalar fields N is U(n). This is easily seen
by setting N' = —)oeo. Then infinitesimally we have relations (5.55) with xk = 0 and b = —c,

a = —a', i.e. we have the antisymmetric matrix
a b
~ba)l’
a = —a', b =b". For finite transformations the Sp(2n,R) relations (5.391) are complemented
by
A=D , B=-C. (5.77)

Thus A —iB is a unitary matrix (see also (5.397)). U(n) is the maximal compact subgroup of
Sp(2n,R), it is the group of orthogonal and symplectic 2n x 2n matrices.
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More in general from Section 3.1 we easily conclude that a necessary and sufficient condition
for a theory with just n abelian gauge fields to have U(n) duality symmetry is (cf. (5.60))

FARE £ GAGE =0 (5.78)
GAF® — GPFA =0 (5.79)

for all A,¥. Moreover since any nonlinear lagrangian in the limit of weak field strengths
F* << F? reduces to the one in (5.63) (with a fixed value of N'), we conclude that U(n) is the
maximal duality group for a theory with only gauge fields.

Condition (5.79) is equivalent to

0 0
F*—— —F"
( OF? OF>
i.e. to the invariance of the Lagrangian under SO(n) rotations of the n field strengths F>.
Condition (5.78) concerns on the other hand the invariance of the equations of motion under
transformation of the electric field strengths into the magnetic field strengths.
In a theory with just n abelian gauge fields the field strengths appear in the Lagrangian

only through the Lorentz invariant combinations

1 1~
o ZFAFE, pAE = ZFAFE, (5.81)

)L=0, (5.80)

and equation (5.80), tell us that £ is a scalar under SO(n) rotations; e.g. £ is a sum of traces,
or of products of traces, of monomials in @ and # (we implicitly use the metric dzx in the «
and [ products).

If we define or or
= — = — .82
-£o¢ 3ozt ) L,B 35t ) (5 8 )
then using the chain rule and the definitions (5.81) we obtain that (5.78) is equivalent to
LpBLg — LofLo+ LoaLs+ LpaL,+3=0. (5.83)
If we define ) )
then (5.83) simplifies and reads
p—LypLy=q9g—LyqL,. (5.85)

Condition (5.83) in the case of a single gauge field was considered in [15] togheter with
other equivalent conditions, in particular £,£, = 1, where v = (o + (a? + B2)2), v =
S(a—(a? + 32)2), see also [20].

Coupling to scalar fields and noncompact duality rotations

By freezing the values of the scalar fields N we have obtained a theory with only gauge fields
and with U(n) duality symmetry. Vice versa (following [16] that extends to U(n) the U(1)
interacting theory discussed in [14, 15|) we show that given a theory invariant under U(n)
duality rotations it is possible to extend it via n(n + 1) scalar fields N to a theory invariant
under Sp(2n,R). Let L(F') be the lagrangian of the theory with U(n) duality. From (5.59) we
see that under a U(n) duality rotation

L(F) - L(F) = —iﬁbFJr%ébG. (5.86)
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In particular £(F) is invariant under the orthogonal subgroup SO(n) C U(n) given by the
matrix ({ °.). This is the so-called electric subgroup of the duality rotation group U(n)
because it does not mix the electric fields F' with the dual fields G.

Define the new lagrangian

£(F,R,N.) = L(RF) + %?:NJ (5.87)

where R = (RAE) Ax=1,.n 18 an arbitrary nondegenerate real matrix and N, is a real symmetric
matrix. Because of the O(n) symmetry the new lagrangian depends only on the combination

N = —RUR | (5.88)

rather than on R. Thus £(F, R, No) = £(F,N) where N = N, + ) Ne.
We show that £ satisfies the duality condition (5.60),

00 ~ 00 ~
(Ap+Ar+ Ay )S(F, B No) = —F | F + GG (5.89)

where as always G = 2g—§, and where N, transforms as in (5.64) and
AR = —R(a+ bNx) , (5.90)
so that N = —RYR transforms as in (5.65). Notice that we could also have chosen the

transformation AR = AR — R(a + bN,) with A an infinitesimal SO(n) rotation.

We first immediately check (5.89) in the case of the rotation (25). Then in the case (§3),
where a = —d'. Finally we consider the duality rotation (88). It is convenient to introduce the
notation

0L(F)

oF
We observe that L(F) satisfies the U(n) duality conditions (5.78), (5.79) with F — ¥, G — G.
Equation (5.89) holds because of (5.78) and proves Sp(2n,R) duality invariance of the theory
with lagrangian £.

F=RF , G=2 (5.91)

We end this subsection with few comments. We notice that (5.79) is equivalent to the
invariance of the lagrangian under the infinitesimal SO(n) transformation R — AR.

We also observe that under an Sp(2n,R) duality transformation (ZZ), the dressed fields 7

and G transform via the field dependent rotation (_%§) = (_ R%RtR%Rt),

AF = RbR' G, (5.92)
AG = —RbR'F . (5.93)

The geometry underlying the construction of Sp(2n,R) duality invariant theories from U(n)

ones is that of coset spaces. The scalar fields N parametrize the coset space SP(2R) Jum)y (see
proof in...). We also have SPGB /1 = 560, \GF" () x R*™ where GL*(n) is the connected

component of GL(n) and the equivalence classes [R] = {R' € GL*(n); RR™' = ¢* € SO(n)}
parametrize the coset space So(n)\GL+(”).

The proof of Sp(2n,R) duality symmetry for the theory described by the lagrangian £ holds
also if we add to £ an Sp(2n,R) invariant lagrangian for the fields N like the lagrangian ¥
in (5.105). Of course we can also consider initial lagrangians in (5.86) that depend on matter
fields invariant under the U(n) rotation, they will be Sp(2n,R) invariant in the corresponding
lagrangian £. Moreover, by considering an extra scalar field ®, we can always extend an
Sp(2n,R) duality theory to an R>? x Sp(2n,R) one.
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5.3.5 Nonlinear sigma models on G/H

In this section we briefly consider the geometry of coset spaces G/H. This is the geometry
underlying the scalar fields and needed to formulate their dynamics [59, 60].

We study in particular the case G = Sp(2n.R), H = U(n) 6] and give a kinetic term for
the scalar fields N.

The geometry of the coset space G/H is conveniently described in terms of coset represen-
tatives, local sections L of the bundle G — G/H. A point ¢ in G/H is an equivalence class
gH = {g|g~'g € H}. We denote by ¢' (i = 1,2...m) its coordinates (the scalar fields of
the theory). The left action of G on G/H is inherited from that of G on G, it is given by
gH — ¢'gH, that we rewrite ¢ — ¢'¢ = ¢’. Concerning the coset representatives we then have

g L(¢) = L(¢")h (5.94)

because both the left and the right hand side are representatives of ¢’. The geometry of G/H
and the corresponding physics can be constructed in terms of coset representatives. Of course
the construction must be insensitive to the particular representative choice, we have a gauge
symmetry with gauge group H.

When H is compact the Lie algebra of G splits in the direct sum G = H + K, where

HHCH , KKcH+K, HKCcCK . (5.95)

The last expression defines the coset space representation of H. The representations of the com-
pact Lie algebra H are equivalent to unitary ones, and therefore there exists a basis (H,, K,),

where [H,, K,] = C° K, with C, = (Cga)a,bzl,mm:dimgw antihermitian matrices. Since the
coset representation is a real representation then these matrices C, belong to the Lie algebra
of SO(m).

Given a coset representative L(¢), the pull back on G/H of the G Lie algebra left invariant
1-form I' = L~='dL is decomposed as

I'=L'dL = P"(¢)K, + w*(¢)H, .

I and therefore P = P%(¢)K, and w = w*(¢) H, are invariant under diffeomorphisms generated
by the left G action. Under the local right H action of an element h(¢) (or under change of
coset representative L'(¢) = L(¢p)h(¢)) we have

P—h'Ph , w—hwh+htdh. (5.96)

The 1-forms P*(¢) = P%(¢$);d¢" are therefore vielbain on G/ H transforming in the fundamental
of SO(m), while w = w(¢);d¢’ is an H-valued connection 1-form on G/H. We can then define
the covariant derivative VP = [P,w]* = P* @ —C%w®".

There is a natural metric on G/H,

g = 0uP" @ P, (5.97)

(this definition is well given because we have shown that the coset representation is via in-
finiesimal SO(m) rotations). It is easy to see that the connection V is metric compatible,
Vg=0.

If the coset is furthermore a symmetric coset we have
K,K] Cc H,
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then the identity dI'+T'AT" = 0, that is (the pull-back on G/H of) the Maurer-Cartan equation,
in terms of P and w reads

R+PAP=0, (5.98)
dP+PANw+wAP=0. (5.99)

This last relation shows that w is torsionfree. Since it is metric compatible it is therefore the
Riemannian connection on G/H. Equation (5.98) then relates the Riemannian curvature to
the square of the vielbeins.

By using the connection w and the vierbein P we can construct couplings and actions
invariant under the rigid G and the local H transformations, i.e. sigma models on the coset
space G/H.

For example a kinetic term for the scalar fields, which are maps from spacetime to G/H, is
given by pulling back to spacetime the invariant metric (5.97) and then contracting it with the
spacetime metric

1 a 1 a z j
Lin(0) = QPMP“ = —P ' POt . (5.100)
By construction the lagrangian %, (¢) is invariant under G' and local H transformations; it
depends only on the coordinates of the coset space G/H.

The case G = Sp(2n,R), H = U(n)

A kinetic term for the Sp CrB) alued scalar fields is given by (5.100). This lagrangian is invariant

under Sp(2n,R) and therefore satisfies the duality condition (5.66) with G = Sp(2n,R) and

k = 0. We can also write . )
Liin(0) = S PIPL = ST (P,P") 5 (5.101)
where in the last passage we have considered generators K, so that Tr(K,K}) = 04 (this is

doable since U(n) is the maximal compact subgroup of Sp(2n,R)).

Sp(2n,R)
U(n)
in the complex basis discussed in the appendix (and frequently used in the later sections) and

we give a more explicit expression for the lagrangian (5.101).

We now recall the representation of the group Sp(2n.R) and of the associated coset

Rather than using the symplectic matrix S = (C D) of the fundamental representation of

Sp(2n,R), we consider the conjugate matrix A~ 1SA where A = \%(J}n 4). In this complex

basis the subgroup U(n) C Sp(2n,R) is simply given by the block diagonal matrices (3%). We

also define the n X 2n matrix
1 A—1B
(1) -7(en) 1)

and the matrix

_(ff\_(AB
(D)= (20)n -
Then (cf. (5.398), (5.399)),
o i(fidh = Bidf) i(fidh— hidf) \ _ (w P
Vv = (—i(ftdh— htdf) —i(fdh — htdf)) = (50 w) ! (5.104)

where in the last passage we have defined the n x n sub-blocks w and # corresponding to the
U(n) connection and the vielbein of Sp(2n,R)/U(n) in the complex basis, (with slight abuse
of notation we use the same letter w in this basis too).
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We finally obtain the explicit expression
_ 1 _
Lan(¢) = Te(P.P") = ZTr(N;‘"’é‘MN NZZOMN) (5.105)

where P = P, da" = P;0,¢'dz", N = Now — YNe and N = No + YNe = ReN + )ImN. The
matrix of scalars N parametrizes the coset space Sp(2n,R)/U(n) (see Appendix 7.2); in terms
of the f and h matrices it is given by (cf. (5.408))

N=1{(, N-==—¢e({l. (5.106)

Under the symplectic rotation (25) — (éﬁf;i) (&5) the matrix N changes via the fractional
transformation N — (C'+ D'N) (A" + B'N )=, (cf. (5.68)).

Another proof of the invariance of the kinetic term (5.105) under the Sp(2n,R) follows
by observing that (5.105) is obtained from the pullback to the spacetime manifold of the

metric associated to the SP&Z’)R) Kform Tr(NZdN N-*dN) (here d = 9 + 0 is the exterior

derivative). This metric is obtained from the Kpotential

K = —4Trlog i(N — N) . (5.107)

Under the action of Sp(2n,R), N and N — N change as in (5.68), (5.69) and the Kpotential
changes by a Ktransformation, thus showing the invariance of the metric.

3.4.2 The case G =R>? x Sp(2n,R), H = U(n)

In this case the duality rotation matrix (‘C’Z) belongs to the Lie algebra of R>% x Sp(2n,R), as
defined in (5.55). In particular infinitesimal dilatations are given by the matrix % (7). The
coset space is

R>Y x Sp(2n,R Sp(2n, R

p( n’ ) :R>0X p( n? ) , (5108)

U(n) U(n)
there is no action of U(n) on R>%. We consider a real positive scalar field ® = ¢° invariant
under Sp(2n,R) transformations. The fields ® and N parametrize the coset space (5.108).
Let’s first consider the main example of Section 3.2. The duality symmetry conditions for
the lagrangian (5.63) are (5.64)-(5.66). >From equations (5.64),(5.65) (that hold for (%) in
the Lie algebra of R™% x Sp(2n,R)) we see that the fields N, and henceforth the lagrangian
Zin(@), are invariant under the R>% action. It follows that the scalar lagrangian

2 Lin(0) + 0, D" (5.109)

satisfies the duality condition (5.66). This shows that the lagrangian (5.63) with the scalar
kinetic term given by (5.109) has R>? x Sp(2n,R) duality symmetry. We see that in the
lagrangian (5.63) the scalar ® does not couple to the field strenght F'. The coupling of ® to F
is however present in lagrangians where higher powers of F' are present.

More in general expression (5.109) is a scalar kinetic term for lagrangians that satisfy the
R~ x Sp(2n,R) duality condition (5.60).

5.3.6 Invariance of energy momentum tensor

Duality rotation symmetry is a symmetry of the equations of motion that does not leave in-
variant the lagrangian. The total change AL = L(F', ') — L(F, ) of the lagrangian is given
in equation (5.59). Even if x = 0 this variation is not a total derivative because F' and G are
the curl of vector potentials Ar and Ag only on shell.
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We show however that the variation of the action with respect to a duality rotation invariant
parameter A is invariant under Sp(2n,R) rotations if the duality rotation (5.50) of the ¢ fields
is A independent.

Consider the A-variation of AS|F,¢| = S[F’, ¢'| — S[F, ¢| = fy SLAF + A,S,

) 0 ,0L oL o )
= R AT ]GRBT R85
0 0L ~ 0S
8_F(ﬁ) AF+§/G5(AF)+AW(§)
- +15/G1)G (5.110)

where in the second line we used that SA¢ = 0. Thus A(%) = S(AS — —f GbG) and
therefore from (5.59) we have,

55 55
(53) =5y (5.111)

thus showing invariance of %3 under Sp(2n, R) rotations (k = 0 rotations).

An important case is when A is the metric g, this is invariant under duality rotations. This
shows that the energy momentum tensor 6‘;—5 is invariant under Sp(2n,R) duality rotations.
nv

Another instance is when )\ is the dimensional parameter typically present in a nonlinear
theory. Provided the matter fields are properly rescaled ¢ — @ = Ay, so that they become
adimensional and therefore their transformation A, usually nonlinear, does not explicitly

involve )\, then 2 5)\ is invariant, where it is understood that =0.
For the action of the Born-Infeld theory coupled to the axion and dilaton fields, £ =
%(1—\/ — SANCF© — 2XNL (FF)e ) we obtain the invariant 28 = —1(£—1FG); we already

found this invariant in (5.62).

5.3.7 Generalized Born Infeld theory

In this section we present the Born-Infeld theory with n abelian gauge fields coupled to n(n +
1)/2 scalar fields N and show that is has an Sp(2n, R) duality symmetry. If we freeze the scalar
fields N to the value N = —)oeo then the lagrangian has U(n) duality symmetry and reads

£ =Tl — S,/ 4 20— 3], (5.112)

where as defined in (5.81), the componets of the m X n matrices a and [ are

¥ = 1FAFE BN = i}?AFz. The square root is to be understood in terms of its power
series expansion, and the operator S, s acts by symmetrizing each monomial in the o and 3
matrices. A world (monomial) in the letters « and f is symmetrized by averaging over all
permutations of its letters. The normalization of S, s is such that if & and 5 commute then
S5 acts as the identity. Therefore in the case of just one abelian gauge field (5.112) reduces
to the usual Born-Infeld lagrangian.

The Sp(2n,R) Born-Infeld lagrangian is obtained by coupling the lagrangian (5.112) to the
scalar fields NV as described in Subsection 5.3.4 and explicitly considered in (5.149).

Following [18] we prove the duality symmetry of the Born-Infeld theory (5.112) by first
showing that a Born-Infeld theory with n complex abelian gauge fields written in an auxiliary
field formulation has U(n,n) duality symmetry. We then eliminate the auxiliary fields by
proving a remarkable property of solutions of matrix equations [19]. Then we can consider real

fields.
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Duality rotations with complex field strengths

>From the general study of duality rotations we know that a theory with 2n real fields F
and F* (A =1,...n) has at most Sp(4n, R) duality if we consider duality rotations that leave
invariant the energy-momentum tensor (and in particular the hamiltonian). We now consider
the complex fields

FA=FrMgFy  FA=F)—iF) (5.113)

the corresponding dual fields
1 -1
G=5(Gi+iG) , G=5(G1—iG), (5.114)

and restrict the Sp(4n,R) duality group to the subgroup of holomorphic transformations,

>6)=(23)(6) 19
»e) = () (6)- 10

Iy
This requirement singles out those matrices, acting on the vector gZ , that belong
1
to the Lie algebra of Sp(4n,R) and have the form Go
T =,b0, 7_
AG0)AT BA(D A
(5.117)
,c0, 7_ -,d0, 7_
2A(0 A ! A(O A4 !

where A = % (% A). The matrix (5.117) belongs to Sp(4n, R) iff the n x n complex matrices

a, b, c,d satisfy

al=—a, bl=b, cf=c. (5.118)
Matrices (i 2), that satisfy (5.118), define the Lie algebra of the real form U(n,n). The group
U(n,n) is here the subgroup of GL(2n,C) caracterized by the relations*

.MT(E_%)AIZ(E_%>. (5.119)

One can check that (5.119) implies the following relations for the block components of M =

A B
CD)’
C'A=A'C, B'D=D'B, D'A-BiC=1. (5.120)
The Lie algebra relations (5.118) can be obtained from the Lie group relations (5.120) by

writing (85) = (39) + €(25) with € infinitesimal. Equation (5.117) gives the embedding of
U(n,n) in Sp(4n, R).

The theory of holomorphic duality rotations can be seen as a special case of that of real du-

ality rotations, but (as complex geometry versus real geometry) it deserves also an independent

formulation based on the holomorphic variables (Z) and maps <2 Z)

*In Appendix 7.1 we define U(n, n) as the group of complex matrices that satisfy the condition UT (§°)U =
(8%4). The similarity transformation between these two definitions is M = AUA™!.
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The dual fields in (5.114), or rather the Hodge dual of the dual field strength, G, =
%qu,poG V7, is equivalently defined via

~ 0L = 0L
Gl =2— G =2 .
MRy, TR T ok,
Repeating the passages of Section 3.1 we have that the Bianchi identities and equations of
motion 9, F**" =0, 9,G/" =0, % = 0 transform covariantly under the holomorphic
infinitesimal transformations (5.115) if the lagrangian satisfies the condition (cf. (5.59))

(5.121)

_ _ _ 1- - 1.
L(F+AFF+AF, o+ Ap) — L(F, F,p) — §FCF— éGbG = constapcd (5.122)

Of course we can also consider dilatations x # 0, then in the left hand side of (5.122) we have
to add the term —x L(F, F, ¢).

The maximal compact subgroup of U(n,n) is U(n) x U(n) and is obtained by requiring
(5.120) and
A=D, B=—-C.

The corresponding infinitesimal relations are (5.118) anda=d, b= —c..

The coset space %
U(n,n), see for example [18] (the proof is similar to that for Sp(2n,R)/U(n) in Appendix
7.2). All these matrices are for example of the form M* = gt g with g € U(n,n). These

matrices can be factorized as

. (1 =N, N 0 1 0
M‘(o 1 ><0N;°°>(—N;11>

_ <N€ NG NTE NG —Ne Ng“’)

is the space of all negative definite hermitian matrices M* of

_Ne_oo No]; Ne_oo

. (0-1 NIm N~ N —NTm N~
"“\1 0 ~ImN=NT Im AN

N B G I B

where N, is hermitian, N¢ is hermitian and negative definite, and
N = No +)Ne . (5.124)

Since any complex matrix can always be decomposed into hermitian matrices as in (5.124), the
only requirement on N is that Nc is negative definite.
The left action of U(n,n) on itself ¢ — (’é S) g, induces the action on the coset space

M* — (,E ’2) M* (,E ’i)T because M* = —gTilgfl. Expression (5.123) then immediately
gives the action of U(n,n) on the parametrization N of the coset space,

N >N =(C+DN)A+BN)™, (5.125)
Ne = N, = (A+BN)TN(A+BN)™. (5.126)
As in Section 3.4, given a theory depending on n complex fields F* and invariant under the

maximal compact duality group U(n) x U(n) it is possible to extend it via the complex scalar
fields N, to a theory invariant under U(n,n). The new lagrangian is

S(F, R, Now) = L(RF) + %%Nof (5.127)
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5.3.7 Generalized Born Infeld theory

where R = (RAE) Ax=1,.n is now an arbitrary nondegenerate complex matrix. Because of the
U(n) maximal compact electric subgroup this new lagrangian depends only on the combination

Ne = —RIR (5.128)

rather than on R. Thus £(F, R, Ns) = £(F,N) where N = N + )Ne. A transformation for
R compatible with (5.125) is

R = R(A+BN)™™, (5.129)
whose infinitesimal transformation is AR = —R(a + bN).

Conversely, if we are given a Lagrangian £ with equations of motion invariant under U(n,n)
we can obtain a theory without the scalar field N by setting N = —)oeo. Then the duality
group is broken to the stability group of N = —)oeo which is U(n) x U(n), the maximal
compact subgroup.

Similarly to Section 3.4.1 we define the Lorentz invariant combinations
1 - 1~ -
a® = §F“F”, Y = §F“F”. (5.130)

If we consider lagrangians £(F, F') that depend only on gauge fields and only through sum of
traces (or of products of traces) of monomials in @ and [, then the necessary and sufficient
condition for U(n) x U(n) holomorphic duality symmetry is still (5.83), where now « and [ are
as in (5.130).

Born-Infeld with auxiliary fields
A lagrangian that satisfies condition (5.122) is

L=ReTr[i(N —Nx— é/\XTNeX —Na+)0)], (5.131)

The auxiliary fields y and A and the scalar field N are n dimensional complex matrices. We can
also add to the lagrangian a duality invariant kinetic term for the scalar field N, (cf (5.105))

Tr(NCONT NTCOMN) (5.132)

In order to prove the duality of (5.131) we first note that the last term in the Lagrangian

can be written as
—ReTr[iNa +i8)] = —Tr(Aeax + A1) .

If the field A transforms by fractional transformation and A;, Ay and the gauge fields are real
this is the U(1)" Maxwell action (5.63), with the gauge fields interacting with the scalar field \.
This term by itself has the correct transformation properties under the duality group. Similarly
for hermitian «, 8, A; and Ao this term by itself satisfies equation (5.122). It follows that the
rest of the Lagrangian must be duality invariant. The duality transformations of the scalar and
auxiliary fields are*

N = (C+DXN(A+BN, (5.133)
X = (A+BN)x(A+BANT | (5.134)

and (5.125). Invariance of Tr[i(N — A)x] is easily proven by using (5.120) and by rewrit-
ing (5.133) as
N = (A4 BA)T(C+DANT. (5.135)

Invariance of the remaining term which we write as Re Tr [—$ATAcx] = Tr[2AcxNey] , is
straightforward by using (5.126) and the following transformation obtained from (5.135),

Ny = (A +BA)TTA (A + BAT)7L. (5.136)

*In [18] we use different notations: N — ST, A — Ay — xT, (é S) — (g 2)
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5.3.7 Generalized Born Infeld theory

Elimination of the Auxiliary Fields

The equation of motion obtained by varying A gives an equation for Y,

1
X+§ﬂMﬁ+a+vﬁ=/, (5.137)

using this equation in the Lagrangian (5.131) we obtain

L =ReTr (iNy) (5.138)
= ReTr (—=Nex) + Tr (Nof) (5.139)

where y is now a function of «, # and Nc that solves (5.137). In the second line we observed
that the anti-hermitian part of (5.137) implies yo = —f.

In this subsection we give the explicit expression of L in terms of o, 5 and N.

First notice that (5.137) can be simplified with the following field redefinitions

X
a = RaR', (5.140)
B

Uv+a—-ig=0. (5.141)

The anti-hermitian part of (5.141) implies Xy = —B, thus X = ¥ — 2i3. This can be used
to eliminate X' from (5.141) and obtain a quadratic equation for Y. If we define Q = %5{ this
equation reads

Q=q+(p—9Q+Q* (5.142)
where

p=-3a+if), 4= —gla—if).

The lagrangian is then
L=2ReTrQ + Tr (N.A) . (5.143)

If the degree of the matrices is one, we can solve for () in the quadratic equation (5.142). Apart
from the fact that the gauge fields are complex, the result is the Born-Infeld Lagrangian coupled
to the dilaton and axion fields N,

L=1—+/1-2Nca+ NEB+ Nuof3 . (5.144)
For matrices of higher degree, equation (5.142) can be solved perturbatively,

Qo=0, Qur1i=q+(p—qQk+ Q% , (5.145)

and by analyzing the first few terms in an expansion similar to (5.145) in [17, 18] it was
conjectured that

1
TrQ=§Tr 11+q—p—3p,q\/11—2(p+Q)+(p—Q)2] , (5.146)

The right hand side formula is understood this way: first expand the square root as a power
series in p and ¢ assuming that p and ¢ commute. Then solve the ordering ambiguities arising
from the noncommutativity of p and ¢ by symmetrizing, with the operator S, ;, each monomial
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5.3.7 Generalized Born Infeld theory

in the p and ¢ matrices. A world (monomial) in the letters p and ¢ is symmetrized by considering
the sum of all the permutations of its letters, then normalize the sum by dividing by the number
of permutations. This normalization of S, , is such that if p and ¢ commute then S, , acts as
the identity. Therefore in the case of just one abelian gauge field (5.112) reduces to the usual
Born-Infeld lagrangian. An explicit formula for the coefficients of the expansion of the trace of

Q is [19, 69]
at ) (rjiIZ) (T;LS)S(IJ’”QS)] : (5.147)

r,s>1

Tr@ ="Tr

In Appendix 8, following [19], see also [70] and |71], we prove that the trace of @) is completely
symmetrized in the matrix coefficients ¢ and p — ¢. Since this is equivalent to symmetrization
in ¢ and p (5.146) follows. Since symmetrization in p and ¢ is equivalent to symmetrization in
a and B, the Born-Infeld lagrangian also reads

L£=Tr[ll — Sap\/1 428 — 52 + Nofi] . (5.148)

In [69] the convergence of perturbative matrix solutions of (5.137), are studied. A sufficient
condition for the convergence of the sequence (5.145) to a solution of (5.142) is that the norms
of p — q and ¢ have to satisfy (1 — ||p — ¢||)?> > 4||q||. Here || || denotes any matrix norm with
the Banach algebra property ||[MM'|| < ||M]||||M'|| (e.g. the usual norm). This condition is
surely met if the field strengths F/ lﬁ\y are weak.

If equation (5.142) is written as (I + ¢ — p)Q = ¢ + @Q?, then the sequence given by
Qo=0, Qi1 =(1+qg—p) g+ (14+¢—p) 'Q3% converges and is a solution of equation (5.142)
if |[[(L+q—p)~Y|||(14+q—p)~q|| < 1/4. Notice that the matrix 1 +¢g—p is always invertible, use
t(1+g—p)+3i(1+¢g—p)’ =1, and the same argument as in (5.407). Notice also that if p and
q commute then /1 —2(p+q) + (p — ¢)2 = (1 +¢—p)y/1 — 4(1 + ¢ — p)~2q and convergence
of the power series expansion of this latter square root holds if ||(1 + ¢ — p) " 2q|| < 1/4.

Real field Strengths

We here construct a Born-Infeld theory with n real field strengths which is duality invariant
under the duality group Sp(2n,R).

We first study the case without scalar fields, i.e. N, =7 and —N: = R = ooo. Consider a
Lagrangian £ = L(«, ) with n complex gauge fields which describes a theory symmetric under
the maximal compact group U(N) x U(N) of holomorphic duality rotations. Assume that the
Lagrangian is a sum of traces (or of products of traces) of monomials in @ and 5. It follows that
this Lagrangian satisfies the self-duality equations (5.83) with o and 8 complex (recall end of
Section 3.7.1). This equation remains true in the special case that o and 3 assume real values.
That is £ = L(a, 3) satisfies the self-duality equation (5.83) with o = o” = @ and g = 7 = j3.
We now recall that equation (5.83) is also the self-duality condition for Lagrangians with real
gauge fields provided that o and 3 are defined as in (5.81) as functions of field strengths F**
that are real (cf. the different complex case definition (5.130)). This implies that the theory
described by the lagrangian £(«, ) that is now function of n real field strengths is self-dual
with duality group U(n), the maximal compact subgroup of Sp(2n,R). The duality group can
be extended to the full noncompact Sp(2n,R), by introducing the symmetric matrix of scalar
fields N via the prescription (5.87).

As a straighforward application we obtain the Born-Infeld Lagrangian with n real gauge
fields describing an Sp(2n,R) duality invariant theory

L=Tr[1-8 /142 — B+ NoB], (5.149)
where & = RaR!, B = RAR!, N. = —R“R, and o" = TFARE pAE = FAF® as in (5.81).

1
4
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5.4 Dualities in N > 2 extended Supergravities

Supersymmetric Theory

In this section we briefly discuss supersymmetric versions of some of the Lagrangians introduced.
First We discuss the supersymmetric form of the Lagrangian (5.131). Consider the superfields

VA = ﬁ[ (VA +iV)) and VA = \/ii(VlA — iVY) where Vi and Vi} are real vector superfields,
and define
1~ . 1 .
WA = —ZD2DQVA , W = —11)21)&\/A :

Both W and W* are chiral superfields and can be used to construct a matrix of chiral super-
fields

MM = WA
The supersymmetric version of the Lagrangian (5.131) is then given by

éMWMMM+MM),

L= Re/ d’e [Tr (((N —X)x —
where N, A and y denote chiral superfields with the same symmetry properties as their corre-
sponding bosonic fields. While the bosonic fields N and A\ appearing in (5.131) are the lowest
component of the superfields denoted by the same letter, the field x in the action (5.131) is the
highest component of the superfield y. A supersymmetric kinetic term for the scalar field N
can be written using the Kéahler potential (5.107) as described in [72].

Just as in the bosonic Born-Infeld theory, one would like to eliminate the auxiliary fields.
This is an open problem if n # 1. For n = 1 just as in the bosonic case the theory with
auxiliary fields also admits both a real and a complex version, i.e. one can also consider a
Lagrangian with a single real superfield. Then by integrating out the auxiliary superfields the
supersymmetric version of the Born-Infeld lagrangian (5.144) is obtained

NEWeWe i
LZ/&]+A+ﬁT@E§5 UV%SMwﬂ’ (5.150)

where

A= i(Dz(NgWG) FDUNW) L B = (DI NW) — DN
If we only want a U(1) duality invariance we can set N = —) and then the lagrangian (5.150)
reduces to the supersymmetric Born-Infeld lagrangian described in [46, 47, 48|.

In the case of weak fields the first term of (5.150) can be neglected and the Lagrangian is
quadratic in the field strengths. Under these conditions the combined requirements of super-
symmetry and self duality can be used [73] to constrain the form of the weak coupling limit
of the effective Lagrangian from string theory. Self-duality of Born-infeld theories with N = 2
supersymmetries is discussed in [24].

5.4 Dualities in N > 2 extended Supergravities

In this section we consider N > 2 supergravity theories in D = 4; in these theories the graviton
is also coupled to gauge fields and scalars. We study the corresponding duality groups, that are
subgroups of the symplectic group. It is via the geometry of these subgroups of the symplectic
group that we can obtain the scalars kinetic terms, the supersymmetry transformation rules and
the structure of the central and matter charges of the theory with their differential equations
and their duality invariant combinations ¥py and . (that for extremal black holes are the
effective potential and the entropy).
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5.4.1 Extended supergravities with target space G/H

Four dimensional N-extended supergravities contain in the bosonic sector, besides the met-
ric, a number n of vectors and m of (real) scalar fields. The relevant bosonic action is known
to have the following general form:

1 1 1
S= / V—gd'z (—5 R+ Im Nyr ) F'H 4 = Re Nape"*” FiL Fl +
1 ) )
+ §g¢j(¢)8u¢18”¢]> s (5151)
where g;;(¢) (i,7,--- =1,--- ,m) is the scalar metric on the o-model described by the scalar

manifold M., of real dimension m and the vectors kinetic matrix Nyn(¢) is a complex,
symmetric, n X n matrix depending on the scalar fields. The number of vectors and scalars,
namely n and m, and the geometric properties of the scalar manifold M., depend on the
number N of supersymmetries and are summarized in Table 1.

The duality group of these theories is in general not the maximal one Sp(2n,R) because the
requirement of supersymmetry constraints the number and the geometry of the scalar fields in
the theory. In this section we study the case where the scalar fields manifold is a coset space
G/H, and we see that the duality group in this case is G.

In Section 5 we then study the general N = 2 case where the target space is a special
Kéhler manifold M and thus in general we do not have a coset space. There the Sp(2n,R)
transformations are needed in order to globally define the supergravity theory. We do not have
a duality symmetry of the theory; Sp(2n,R) is rather a gauge symmetry of the theory, in the
sense that only Sp(2n,R) invariant expressions are physical ones.

The case of duality rotations in N = 1 supergravity is considered in [9], [74], see also
[25]. In this case there is no vector potential in the graviton multiplet hence no scalar central
charge in the supersymmetry algebra. Duality symmetry is due to the number of matter vector
multiplets in the theory, the coupling to eventual chiral multiplets must be via a kinetic matrix
N holomorphic in the chiral fields. We see that the structure of duality rotations is similar
to that of N = 1 rigid supersymmetry. For duality rotations in N = 1 and N = 2 rigid
supersymmetry using superfields see the review [24].

5.4.1 Extended supergravities with target space G/H

In N > 2 supergravity theories where the scalars target space is a coset G/H, the scalar
sector has a Lagrangian invariant under the global GG rotations. Since the scalars appear in
supersymmetry multiplets the symmetry G should be a symmetry of the whole theory. This is
indeed the case and the symmetry on the vector potentials is duality symmetry.

Let’s examine the gauge sector of the theory. We recall from Section 3.1 that we have an
Sp(2n,R) duality group if the vector (&) transforms in the fundamental of Sp(2n,R), and the

gauge kinetic term N transforms via fractional transformations, if (g g) € Sp(2n,R),

N =N =(C+DN)(A+BN)™. (5.152)

Thus in order to have G duality symmetry, G needs to act on the vector (£) via symplectic

transformations, i.e. via matrices (2 ];) in the fundamental of Sp(2n,R). This requires a
homomorphism

S:G— Sp(2n,R) . (5.153)

Different infinitesimal G transformations should correspond to different infinitesimal symplectic
rotations so that the induced map Lie(G) — Lie(Sp(2n,R)) is injective, and equivalently the
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5.4.1 Extended supergravities with target space G/H

homomorphism S is a local embedding (in general S it is not globally injective, the kernel of S
may contain some discrete subgroups of G).

Since U(n) is the maximal compact subgroup of Sp(2n,R) and since H is compact, we
have that the image of H under this local embedding is in U(n). It follows that we have a
G-equivariant map

N:G/H =S (e\,R)/U(\), (5.154)

\/

explicitly, for all g € G,
N(¢) = (C+DN(d)) (A+BN(9) ™, (5.155)

where with g¢ we denote the action of G on G/H, while the action of G on Sp(2n,R)/U(n)
is given by fractional transformations. Notice that we have identified Sp(2n,R)/U(n) with the

space of complex symmetric matrices N that have imaginary part Im N' = —) (N — N') negative
definite (see Appendix 7.2).

The D = 4 supergravity theories with N > 2 have all target space G/H, they are char-

acterized by the number n of total vectors, the number N of supersymmetries, and the coset
space G/H, see Table 1*.

Table 1: Scalar Manifolds of N > 2 Extended Supergravities

N Duality group G isotropy H M catar n m

3 SU(3,n) S(U3) x U(n')) L Cxam 3+n' | 60

4 | SU(1,1) x SO(6,1') | U(1) x S(0(6) x O(n)) | S5 x 55808 s [ 640/ | 60/ +2
5 SU(5,1) S(U(5) x U(1)) e 10 10

6 SO*(12) U(6) e 16 30
7.8 Erry SU(8)/Zs e 28 70

In the table, n stands for the number of vectors and m = dim M .44, for the number of real
scalar fields. In all the cases the duality group G is (locally) embedded in Sp(2n,R). The
number n of vector potentials of the theory is given by n = n, + n' where n’ is the number
of vectors potentials in the matter multiplet while n, is the number of graviphotons (i.e. of

vector potentials that belong to the graviton multiplet). We recall that n, = N(gfl) if N #6
; and ng = w +1 =16 if N = 6 ; we also have n’ = 0 if N > 4. The scalar manifold
of the N = 4 case is usually written as SO,(6,n)/SO(6) x SO(n') where SO,(6,n’) is the
component of SO(6,n') connected to the indentity. The duality group of the N = 6 theory
is more precisely the double cover of SO*(12). Spinors fields transform according to H or its

double cover.

In general the isotropy group H is the product

H = Hpy X Hpagter (5156)

*In Table 1 the group S(U(p) x U(q)) is the group of block diagonal matrices (58) with P € U(p),
Q € U(q) and detPdet@Q = 1. There is a local isomorphism between S(U(p) x U(q)) and the direct product
group U(1) x SU(p) x SU(q), in particular the corresponding Lie algebras coincide. Globally these groups are
not the same, for example S(U(5) x U(1)) =U(5) = U(1) x PSU(5) #U(1) x SU(5).
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5.4.1 Extended supergravities with target space G/H

where Hay is the authomorphism group of the supersymmetry algebra, while H.iter depends
on the matter vector multiplets, that are not present in N > 4 supergravities.

In Section 3.5 we have described the geometry of the coset space G/H in terms of coset
representatives, local sections L of the bundle G — G/H. Under a left action of G they
transform as gL(¢) = L(¢')h, where the g action on ¢ € G/H gives the point ¢ € G/H.

We now recall that duality symmetry is implemented by the symplectic embeddings (5.153)
and (5.154) and conclude that the embeddings of the coset representatives L in Sp(2n,R) will
play a central role. Recalling (5.102) these embeddings are determined by defining

L— f(L) and L — h(L). (5.157)

In the following we see that the matrices f(L) and h(L) determine the scalar kinetic term N,
the supersymmetry transformation rules and the structure of the central and matter charges of
the theory. We also derive the differential equations that these charges satisfy and consider their
positive definite and duality invariant quadratic expression #3y. These relations are similar to
the Special Geometry ones of N = 2 supergravity.

>From the equation of motion

dF? = 4752 (5.158)
dG* = 47jop (5.159)

we associate with a field strength 2-form F a magnetic charge p® and an electric charge g,

given respectively by:
1 1
A FY | ghn=— [ Ga (5.160)

p 47 52

47 S2

where S? is a spatial two-sphere containing these electric and magnetic charges. These are
not the only charges of the theory, in particular we are interested in the central charges of
the supersymmetry algebra and other charges related to the vector multiplets. These latter
charges result to be the electric and magnentic charges p* and g, dressed with the scalar fields
of the theory. In particular these dressed charges are invariant under the duality group G and
transform under the isotropy subgroup H = Hay: X Hpnatter-

While the index A is used for the fundamental representation of Sp(2n; R) the index M is
used for that of U(n). According to the local embedding

H = Hpw X Hoagrer — U(n) (5.161)

the index M is further divided as M = (AB,I) where I refers to H,aer and AB = —BA
(A =1,...,N) labels the two-times antisymmetric representation of the R-symmetry group
H 4,;. We can understand the appearence of this representation of H 4,; because this is a typical
representation acting on the central charges. The index I rather than I is used because the
image of H,,ser in U(n) will be the complex conjugate of the fundamental of H,,44se,-, this agrees
with the property that under Kéahler transformations of the U(1) bundle Sp(2n,R)/SU(n) —
Sp(2n,R)/U(n) the coset representatives of the scalar fields in the gravitational and matter
multiplets transform with opposite Kéhler weights. This is also what happens in the generic
N =2 case (cf. (5.357)).

The dressed graviphotons field strength 2-forms 745 may be identified from the supersym-
metry transformation law of the gravitino field in the interacting theory, namely:

§ta = Vea + aTupuwy VeV + ... (5.162)
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Here V is the covariant derivative in terms of the space-time spin connection and the composite
connection of the automorphism group H 4., a is a coefficient fixed by supersymmetry, V¢ is
the space-time vielbein. Here and in the following the dots denote trilinear fermion terms
which are characteristic of any supersymmetric theory but do not play any role in the following
discussion. The 2-form field strength T4 is constructed by dressing the bare field strengths F*
with the image f(L(¢)), h(L(¢)) in Sp(2n; R) of the coset representative L(¢) of G/H. Note
that the same field strengths T4p which appear in the gravitino transformation law are also
present in the dilatino transformation law in the following way:

0xaBc = Papopdud"e” + BTiap " ecy (5.163)

Analogously, when vector multiplets are present, the matter vector field strengths 77 appearing
in the transformation laws of the gaugino fields, are linear combinations of the field strengths
dressed with a different combination of the scalars:

SAra = iPrap 0,0 Ve + 41wV ea + ... (5.164)

Here Pagcp = Papcepedd’ and Ple = PﬁBrdqﬁT are the vielbein of the scalar manifolds
spanned by the scalar fields ¢! = (¢, ¢") of the gravitational and vector multiplets respectively
(more precise definitions are given below), and 5 and v are constants fixed by supersymmetry.

According to the transformation of the coset representative gL(¢) = L(¢')h, under the
action of g € G on G/H we have

S(¢)A — S(¢)A = S(g)S(6)S(h™")A = S(9)S(9) AU (5.165)

where A = —=(_4, 1) is unitary and symplectic (cf. (5.394)), S(g) = (&42) and S(h) are the

_2 =
embeddings of g and & in the fundamental of Sp(2n, R), while U = A~1S(h)A is the embedding

of h in the complex basis of Sp(2n,R). Explicitly U = (6‘%), where v is in the fundamental of
U(n) (cf. (5.402) and (5.397)). Therefore the symplectic matrix

V=8A= <££) (5.166)
transforms according to
Vo) -+ vie) = savie (g ) (5.167)

The dressed field strengths transform only under a unitary representation of H and, in accor-
dance with (5.167), are given by [11]

(_TT) — V(o) (g) : (5.168)

T —ul ul . (5.169)
Explicitly, since
R ht _ft

we have

Tap = haagF* — A5G

Tr = hytF* — fAGA (5.171)
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where we used the notation T' = (TM) = (T;) = (Tap, T7),

f=05)=FPas D
h = (har) = (haas, hag) , (5.172)
2

that enphasizes that (for every value of A) the sections <BAT> have Kweight opposite to the

haaB
gravity fields, in virtue of the fact that gravitinos and fotinos with the same chirality have

opposite Kéahler weight. Notice that this notation (as in [41]) differs from the one in [11], where
(fh) = (Fa: f1) 5 (hanr) = (haap, har) -

Consequently the central charges are

A
(f AB) ones. This may be seen from the supersymmetry transformation rules of the super-

1

Zap = e Tag = fYpar — ha app™ (5.173)
T Sgo
_ 1 o _
=] Ti= fRan — harpt (5.174)
v Sgo

where the integral is considered at spatial infinity and, for spherically symmetric configurations,
fand hin (5.173), (5.174) are f(¢o) and h(¢s) With ¢, the constant value assumed by the
scalar fields at spatial infinity.

The integral of the graviphotons Tp,, gives the value of the central charges Zsp of the
supersymmetry algebra, while by integrating the matter field strengths 77,, one obtains the
so called matter charges Z;. The charges of these dressed field strength that appear in the
supersymmetry transformations of the fermions have a profound meaning and play a key role
in the physics of extremal black holes. In particular, recalling (5.167) the quadratic combination
(black hole potential)

1- _
Yon = 5ZABZAB +2'7; (5.175)

(the factor 1/2 is due to our summation convention that treats the AB indices as independent)
is invariant under the symmetry group G. In terms of the charge vector

Q= (pA) : (5.176)

qa

we have the formula for the potential (also called charges sum rule)
15 - 1
Yo = 5ZABZAB + 217, = —éQtM(N)Q (5.177)

where

M(N) = -V HliV =1 = —(§71)is! (5.178)

is a negative definite matrix, here depending on ¢.,. In Appendix 7.2 we show that the set of
matrices of the kind SS* with S € Sp(2n, R) are the coset space Sp(2n,R)/U(n), hence the ma-
trices M(N) parametrize Sp(2n,R)/U(n). Also the matrices N parametrize Sp(2n,R)/U(n).
The relation between M(N) and N is

MY (N) = (g _RneN) (IHBN Im/%“’") (—R]LN ?1) : (5.179)

This and further properties of the M(AN') matrix are derived in Appendix 7.2.
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5.4.1 Extended supergravities with target space G/H

For each of the supergravities with target space G/H there is another G invariant expression
& quadratic in the charges [63]; the invariant .# is independent from the scalar fields of the
theory and thus depends only on the electric and magnetic charges p* and gr. In extremal
black hole configurations 7. is the entropy of the black hole. In the N = 3 supergravity
theory . is the absolute value of a quadratic combination of the charges, while for N > 4 it
is the square root of the absolute value of a quartic combination of the charges. The positive
or negative value of this quadratic combination is related to the different BPS properties of
the black hole. It turns out that . coincides with the potential Y35 computed at its critical
point (attractor point) [43, 45, 63]. In the next section we give the explicit expressions of the
invariants .. They are obtained by considering among the H invariant combination of the
charges those that are also G invariant, i.e. those that do not depend on the scalar fields. This
is equivalent to require invariance of . under the coset space covariant derivative V defined
in Section 3.5, see also (5.184).

We now derive some differential relations among the central and matter charges. We recall
the symmetric coset space geometry G/H studied in Section 3.5, and in particular relations
(5.98), (5.99) that express the Maurer-Cartan equation dI'+I' AT = 0 in terms of the vielbein
P and of the Riemannian connection w. Using the (local) embedding of G in Sp(2n,R) we
consider the pull back on G/H of the Sp(2n,R) Lie algebra left invariant one form V~1dV
given in (5.104), we have

gy - ((iftdh = htdp) i(fldh—htdf) \ (@ P
Voldy = (—i(ftdh — htdf) —i(f'dh — htdf)> = (p w) : (5.180)

where with slight abuse of notation we use the same letters V., £ and w for the pulled back
forms (we also recall that  denotes P in the complex basis). Relation (5.180) equivalently

reads _
w P
dVV(ng) , (5.181)
that is equivalent to the n x n matrix equations:
Vi=fP, (5.182)
Vh=h?P, (5.183)
where
Vf=df — fw , Vh=dh—hw. (5.184)

Recalling that ® is symmetric (cf. (5.419)) we equivalently have Vf = Pf, Vh = Ph. In
these equations we can now see w and P as our data (vielbein and Riemannian connection)
on a manifold M, while f and h are the unknowns. By construction these equations are
automatically satisfied if M = G/H and G is a Lie subgroup of Sp(2n,R). More in general
equations (5.182),(5.183) hold (with f and h invertible) iff the integrability condition, i.e. the
Cartan-Maurer equation, d(‘;,%f) + (gf) A (;%ﬁ) = 0 holds. With abuse of terminology we
sometimes call (5.182), (5.183) the Maurer-Cartan equations.

The differential relations among the charges Z,p and Z; follow after rewriting (5.182),

(5.183) with AB and I indices. The embedded connection w and vielbein P are decomposed

as follows:
= ( N ) = WACI?D O, (5.185)
w=\Wa = 0 w§— ’ '
. PAB pAB Papcp Paps
P = (PN) = (Pyy) = P 7 :( ABJ) : 5.186
(P) = (Punr) (P[CD P}) Prep  Pri ( )
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5.4.1 Extended supergravities with target space G/H

the subblocks being related to the vielbein of G/H, written in terms of the indices of H 4, X
H,atter- We used the following indices conventions:

f=0) » =)= (fiaa)  ete (5.187)

where in the last passage, since we are in U(n), we have lowered the index M with the U(n)
hermitian form n = (UMN)M Ne1_ ., = diag(1,1,...1). Similar conventions hold for the AB and

I indices, for example f_A = fAI— = fAL

Using further the index decomposition M = (AB,I), relations (5.182), (5.183) read (the
factor 1/2 is due to our summation convention that treats the AB indices as independent):

Viip = %JFACDPCDAB + fAPLs (5.188)
Vhig = %hACDPCDAB + NP (5.189)
Vi = %fACDPCDI_ + NP, (5.190)
VhA = %BACDSDCDI + M P (5.191)

As we will see, depending on the coset manifold, some of the sub-blocks of (5.186) can be actually
zero. For N > 4 (no matter indices) we have that $ coincides with the vielbein Papgcp of the
relevant G/H. Using the definition of the charges (21) we then get the differential relations
among charges: VZy = ZxPY,, where VZ), = gi{” det, — Zywh,, with ¢! the value of the
i-th coordinate of ¢, € G/H and ¢, = ¢(r = 00). ooExplicitly, using the AB and I indices,

1.
VZap = 2Py + 527 Pepas | (5.192)
_ 1_- 7
VZi=52"Papr+ 2Py . (5.193)

The geometry underlying the differential equation (5.181) is that of a flat symplectic vector
bundle of rank 2n, a structure that appears also in the special Kmanifolds of scalars of N =
2 supergravities. Indeed if we are able to find 2n linearly independent row vectors V¢ =
(Vi)czl’._gn then the matrix V' in (5.181) is invertible and therefore the connection (32) is
flat. If these vectors are mutually symplectic then we have a symplectic frame, the transition
functions are constant symplectic matrices, the connection is symplectic.

In the present case we naturally have a flat symplectic bundle,

GxyR™— G/H;

this bundle is the space of all equivalence classes [g,v] = {(gh, S(h) '), g € G,v € R*" h €
H}. The symplectic structure on R?*” immediately extends to a well defined symplectic structure
on the fibers of the bundle. Using the local sections of G/H and the usual basis {e;} =
{ear, M} of R*™ (e; is the column vector with with 1 as first and only nonvanishing entry,
etc.) we obtain immediately the local sections s¢ = [L(¢), e¢] of G xy R** — G/H. Since the
action of H on R*" extends to the action of G on R*"*, we can consider the new sections e =

SC,S‘*l(L(ng))Qé = [L(¢), ST (L(¢))e¢] , that are determined by the column vectors S~ (L(¢)) ¢ =

S~ L(¢ ¢ —1...2n- These sections are globally defined and linearly independent. Therefore
¢J¢=1,

this bundle is not only flat, it is trivial. If we use the complex local frame V, = {SC/_lcé} rather
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5.4.2 Specific cases

%l

than the {s¢} one (we recall that A = == (_Jy ), cf. (5.394)), then the global sections e; are
determined by the column vectors V=1(L(¢)) ¢ = (V (L((b))cg)c_l’“gn,

ee =V, V', . (5.194)
The sections V¢ too form a symplectic frame (a symplectonormal basis, indeed VZQPUV% = Q¢c,
where Q = (?1_011)), and the last n sections are the complex conjugate of the first n ones,

{Ve} = {Vau, Vir}. Of course the column vectors V,, = (V%)gzl’mgn, are the coefficients of the
sections V, with respect to the flat basis {e¢}.

Also the rows of the V' matrix define global flat sections. Let’s consider the dual bundle
of the vector bundle G' xz R*" — G/H, i.e. the bundle with fiber the dual vector space. If
{s¢} is a frame of local sections of G x g R*™ — G/H, then {s°}, with (s¢, s¢) = 5§, is the dual
frame of local sections of the dual bundle. Concerning the transition functions, if SIC = snS"C

then s = S~1°, $*. This dual bundle is also a trivial bundle and a trivialization is given by the
global symplectlc sections e = V5 V", whose coefficients are the row vectors V¢ = (Vgc)gzl,_ugn
i.e., the rows of the symplectic matrlx V' defined in (5.166),

(VAC)C:L---Qn - ( AM’J?AM)M:L‘..n )
(VAC)CZL.._Qn - (hAM> BAM)M:I,...n . (5195)

5.4.2 Specific cases

We now describe in more detail the supergravities of Table 1. The aim is to write down
the group theoretical structure of each theory, their symplectic (local) embedding S : G —
Sp(2n,R)and N : G/H — S\/(e\ ,R)/U(\), the vector kinetic matrix N, the supersymmetric

transformation laws, the structure of the central and matter charges, their differential relations
originating from the Maurer-Cartan equations (5.98),(5.99), and the invariants Y5y and .. As
far as the boson transformation rules are concerned we prefer to write down the supercovariant
definition of the field strengths (denoted by a superscript hat), from which the supersymmetry
transformation laws are retrieved. As it has been mentioned in previous section it is here that
the symplectic sections (f%,5, f/}—, A, ) appear as coefficients of the bilinear fermions in
the supercovariant field strengths while the analogous symplectic section (hpap, h AT haag, ha 7)
would appear in the dual magnetic theory. We include in the supercovariant field strengths also
the supercovariant vielbein of the G/H manifolds. Again this is equivalent to giving the susy
transformation laws of the scalar fields. The dressed field strengths from which the central and
matter charges are constructed appear instead in the susy transformation laws of the fermions
for which we give the expression up to trilinear fermion terms. We stress that the numerical
coefficients in the aforementioned susy transformations and supercovariant field strengths are
fixed by supersymmetry (or, equivalently, by Bianchi identities in superspace), but we have not
worked out the relevant computations being interested in the general structure rather that in
the precise numerical expressions. These numerical factors could also be retrieved by comparing
our formulae with those written in the standard literature on supergravity and performing the
necessary redefinitions. The same kind of considerations apply to the central and matter charges
whose precise normalization has not been fixed.

Throughout this section we denote by A, B, ... indices of SU(N), SU(N) x U(1), being
H,.; the automorphism group of the N—extended supersymmetry algebra. Lower and upper
SU(N) indices on the fermion fields are related to their left or right chirality respectively. If
some fermion is a SU(N) singlet, chirality is denoted by the usual (L) or (R) suffixes.
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5.4.2 Specific cases

Furthermore for any boson field v carrying SU(N) indices we have that lower and upper
indices are related by complex conjugation, namely: (vap..) = 948

The N =4 theory
The field content is given by the

— Gravitational multiplet (vierbein for the graviton, gravitino, graviphoton, dilatino, dila-
ton):
(Vi pap, AP xapeon) (A, B=1,---4) (5.196)

frequently the upper half plane parametrization S = x is used for the axion-dilaton field.

— Vector multiplets:

(AH7)‘Aa6¢)I (]: L 7”) (5197)
The coset space is the product
1,1
0 Pl CRYRV: 1% G0 (5.198)

u) — S(0(6) x O(n))

We have to embed
Sp(2,R) x SO(6,n) — Sp(2(6 + n),R) . (5.199)

We first consider the embedding of SO(6,n),
S :50(6,n) — Sp(2(6 +n),R)

L S(L) = (Ltol 2) (5.200)

we see that under this embedding SO(6,n) is a symmetry of the action (not only of the equation
of motions) that rotates electric fields into electric fields and magentic fields into magnetic fields.
The natural embedding of SU(1,1) ~ SL(2,R) ~ Sp(2,R) into Sp(2(6+n), R) is the S-duality
that rotates each electric field in its corresponding magnetic field, we also want the image
of Sp(2,R) in Sp(2(6 + n),R) to commute with that of SO(6,n) (since we are looking for a
symplectic embedding of all Sp(2,R) x SO(6,n)) and therefore we have

S:Sp(2,R) — Sp(2(6 +n),R)
(éﬁ)ws(éﬁ)z(‘éﬂ fjg) (5.201)

where n = diag(1,1,...,—1,—1,...) is the SO(6,n) metric.

Concerning the coset representatives, on one hand we denote by L(t) the representative
in SO(6,n) of the point ¢ € SO(6,n)/S(O(6) x O(n)). On the other hand we have that
SU(1,1)/U(1) ~ Sp(2,R)/U(1) is the lower half plane (see appendix) and is spanned by the
complex number » with Im ~» < 0, (frequently the upper half plane parametrization S = » is
used). A coset representative of SU(1,1)/U(1) is

1 1 ﬂ —4Im »
— . 1+N = 2 2
U(N) n(/v) (H——N 1 ) ’ n<N) \/1 —+ |N’2 —2Imw <5 0 )

i—N

(In order to show that the SU(1,1) matrix U(~) projects to » use (5.402) and (5.408), that
reads v = hf™! with h and f complex numbers). The coset representative U(x) is defined
for any »~ in the lower complex plane and therefore U(x) is a global section of the bundle
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5.4.2 Specific cases

SU(1,1) — SU(1,1)/U(1). (The projection SU(1,1) — SU(1,1)/U(1) can be also obtained
by extracting » from M*(x) = ($ HNAUVUTAL(0, 1)), cf. (5.415)).

A
With the given coset parametrizations the symplectic embedded section (f > ) is

has

= 1 2 1A 2 1A
fAZ = (f/;BafAf) = ( L' AB> ?Lt j>

n(y) \1+ix IN
iz = (haap, hat) = S <i~ R 1) (5.203)

We now have all ingredients to compute the matrix N in terms of » and L. The coset
representative in Sp(2(6 +m),R) of (v, L) is S(AU (v) A 1)S(L), and recalling that N = ({ =
and (5.102), we obtain after elementary algebra the kinetic matrix

N =ReN +)ImN =Renn+ )Imny LL . (5.204)

Table 2: Group assignments of the fieldsin D =4, N =4

| | Vie [ ap | Ap [ xase [Ara | UL)LAp | UWLE | B |
SULL [ L] 1 - 1 | 1 2% 1 2% 1 -
SOG.n) | 1| 1 |6+ | 1 | I |Ix(6+n)|1x®G+rn)]| -
SO0®6) | 1] 4 1 1 | 1 1x6 1 6
SO(n') 1 1 1 1 n' 1 n’ n’
U(1) 0] 3 0 s | -1 1 1 0

In this and in the following tables, Ry is the representation under which the scalar fields of the
linearized theory, or the vielbein P of G/H of the full theory transform (recall text after (5.95)
and that P is P in the complex basis). Only the left-handed fermions are quoted, right handed
fermions transform in the complex conjugate representation of H. Care must be taken in the
transformation properties under the H subgroups; indeed according to (5.167) the inverse right
rep. of the one listed should really appear, i.e. since we are dealing with unitary rep., the
complex conjugate

The supercovariant field strengths and the vielbein of the coset manifold are:

FY = dAM + [ FAp(@d™? + expeyax POV

+ M ety ANV 4 e By AN P eapop VOV + h.c.} (5.205)

P =P —axpepe PP (5.206)
5{)1 —pl (@E A\ 5C\ID

a8 = Pan AAp + €apopt ) (5.207)

(5.208)

SU(1,1)
U(1)

SO(6,n") .
and S0G) X0 respectively.

where P = Py dyv and Pl p = P, d¢" are the vielbein of
The fermion transformation laws are:

5@[)14 = DEA + alTAB“V’}/aW“VEBVa + - (5209)
dxapc = P, Oun ’y”eDeABCD + asTiapwy" ec) + -+ (5.210)
A, = aPlp; 0ud'y"€® + %TJJVWEA +--- (5.211)
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where the 2-forms Typ and T are defined in eq.(5.171). By integration of these two-forms
we find the central and matter dyonic charges given in equations (5.173), (5.174). >From the
equations (5.182),(5.183) for f, h and the definitions of the charges one easily finds:

_ 1 =
VSUAXUW 7, o — ZIp, o+ §€ABCDZCDP (5.212)
, - —
v S50(n )ZI _ §ZABPIAB + 7P (5.213)

where %8ABCDZCD = Z4p. In terms of the kinetic matrix (5.203) the invariant Y5y for the
charges is given by, cf. (5.177),

1 - - 1
/%S’H = §ZABZAB -+ Z]ZI = —§QtM(N>Q . (5214)

The unique SU(1,1) x SO(6,n') invariant combination of the charges that is independent
from the scalar fields is I? — 515, so that

S =\/|I} — LI . (5.215)

Here, I}, I and I, are the three SO(6,n’) invariants given by

1 - - 1 _
I = §ZABZAB —Zi1Z" L= ZEABCDZABZCD — 717" (5.216)

The N = 3 theory
In the N = 3 case [64] the coset space is:

SU(3,n')
G/H = - 5.217
M= 50 < v o210
and the field content is given by:
(Ve ¥, AP x () A=1,2,3 (gravitational multiplet) (5.218)
(A, Aa. Aw).32)8 I=1,...,n"  (vector multiplets) (5.219)

The transformation properties of the fields are given in Table 3. We consider the (local)

Table 3: Transformation properties of fields in D =4, N =3

| Vi [ | Aw (x| M | My [ Ddp [ 15 | Bu |
SUBAY[ 1 [ 1 [3+a] 1 | 1 1 3+n [3+0 ] -
SUB) |1 1 RE 1 3 1 3
SU(n') 1 1 1 1 n' n' 1 n' n’
U(1) 0] 2] 0 [3%2[3+2]|-30+2)] « -3 [ 3+

embedding of SU(3,7n') in Sp(3 + n’,R) defined by the following dependence of the matrices f
and h in terms of the G/H coset representative L,

1 _

fAZ = E(LAA&LAI) (5.220)
, 1 0

has = —i(nfn)as n= < ?E)Xg —1,x /) (5:221)
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where AB are antisymmetric SU(3) indices, I is an index of SU(n’) and L*, denotes the complex
conjugate of the coset representative. We have:

Nas = (hf as = —i(nfnf Has (5.222)

The supercovariant field strengths and the supercovariant scalar vielbein are:

~ Z — 1 - . — a
Y = dAM + [§f}\)\f4”yawAV“ — §fﬁB¢AwB + i fApX (R Yaloe POV + h.c.]
PA = P A NLipoeBC Mg (5.223)
where the only nonvanishing entries of the vierbein # are

1 .
P = S POP e = P de (5.224)

2% being the (complex) coordinates of G/H. The chiral fermions transformation laws are given
by:

01 = De + 20Ty V"V Vae” + - - - (5.225)
Ox(r) = 1/2Typ " cce™ + - (5.226)
OAfa = —Z'PIBZ-auZi")/MECEABC + T[W,"YNVEA + . (5.227)
SNy = P02 Y ea+ - - (5.228)

where Typ and T have the general form given in equation (5.171). >From the general form of
the equations (5.182), (5.183) for f and h we find:

vﬂx\B = AIP[AB ) (5~229)

Vihg = WPy (5.230)
1 -

V= §fACD7%Df ; (5.231)
1_

VhA = ihACDPCDf . (5.232)

According to the general study of Section 4.1, using (5.173), (5.174) one finds

VH Z45 = Z'P,%espc (5.233)
1_
vz, = §ZABPIC€ABC (5.234)

and the formula for the potential, cf. (5.177),

1, in» _ 1
You = 5ZABZAB +7217; = —iQtM(N)Q (5.235)

where the matrix M(N) has the same form as in equation (5.179) in terms of the kinetic matrix
N of equation (5.222), and @) is the charge vector @ = (¢).

The G = SU(3,n’) invariant is Z4Z, — Z;Z' (one can check that 9;(Z4Z, — Z;21) =
VgH)(ZAZA — 717" = 0) so that

SNV TR AVALE (5.236)

96



5.4.2 Specific cases

The N =5 theory

For N > 4 the only available supermultiplet is the gravitational one, so that Hatter = 1. The
coset manifold of the scalars of the N = 5 theory [33] is:

SU(5,1)

G/H=—"-+ 5.237

The field content and the group assignments are displayed in Table 4.

Table 4: Transformation properties of fields in D =4, N =5
| LV [ s [ xapesxe [ A™ [ L5 | R |

SU(5,1) || 1 1 1 - 6 -

SU(5) 1 5 (10,1) 1 5 5

U(1) 0] 5 | 3-9 1| 2
In Table 4 the incides z,y,... = 1,...,6 and A,B,C,... = 1,...,5 are indices of the

fundamental representations of SU(5,1) and SU(5), respectively. L% denotes as usual the
coset representative in the fundamental representation of SU(5,1). The antisymmetric couple
AY, A,Y = 1,...,5, enumerates the ten vector potentials. The local embedding of SU(5,1)
into the Gaillard-Zumino group Usp(10, 10) is given in terms of the three-times antisymmetric
representation of SU(5, 1), this is a 20 dimensional complex representation, we denote by t*¥* a
generic element. This representation is reducible to a complex 10 dimensional one by imposing
the self-duality condition

1Y = %Ezyz ol (5.238)
here indices are raised with the SU(5,1) hermitian structure n = diag(1,1,1,1,1,—1). The
self duality condition (5.238) is compatible with the SU(5,1) action (on %% acts the complex
conjugate of the three-times antisymmetric of SU(5,1)). Due to the self-duality condition we
can decompose t"Y* as follows:

tAEG
oY = (tAEﬁ) (5.239)
where (A 3,--- = 1,---,5). In the following we set t*> = tA%6 A% = (A6 o = f,00 =
—t,5°. The symplectic structure in this complex basis is given by the matrix <](i _0]1 >,
_ Loas as 0 —dasrm ) [
(t,0) = §(t L) Sisr 0 Pt (5.240)
1 1
= §tAEfA2 - itAEEAZ
1
_ TYz uvwW
= 3|3't Ezyzuvw? (5.241)

this last equality implies that the SU(5, 1) action preserves the symplectic structure. We have
thus embedded* SU(5,1) into Sp(20,R) (in the complex basis).

*Strictly speaking we have immersed SU(5,1) into Sp(20,R), in fact this map is a local embedding but fails
to be injective, indeed the three SU(5,1) elements +/1 1 are all mapped into the identity element of Sp(20, R).
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The 20 dimensional real vector (F** G y) transforms under the 20 of SU(5, 1), as well as,

for fixed AB, each of the 20 dimensional vectors (iig‘fB> of the embedding matrix:
1 (f+ih f+ih
U‘ﬁ(f—ihf—iﬁ) . (5.242)
The supercovariant field strengths and vielbein are:
A = gAN 4 | A% (a0™PP + asheyax POV + h.c.] (5.243)
Papcp = Papop — Xjasctn] — €apopeX DYP (5.244)
where Pagcp = €ABCD rPT is the complex vielbein, completely antisymmetric in SU (5) indices
and PABCD = ?)ABCD.
The fermion transformation laws are:
0tha = Dey + agTABW’ya’y“”eB% 4+ .- (5.245)
Sxapc = aPapcpiOud' V"€’ + asTiap wy" ec) + - - (5.246)
oxw) = acPPP 0,9 P eapcpp + - - (5.247)
where:
1
Typ = §<hAEABFAE — M5Gax) (5.248)
1
Nas an = §hAEAB(f_1)AiH - (5.249)
With a by now familiar procedure one finds the following (complex) central charges:
—1
Zag =1V (po) Q (5.250)

where the charge vector is

P\ (L[
= (%2) a (ﬁfsz Gas (5.251)

and ¢, is the constant value assumed by the scalar fields at spatial infinity. >From the
equations (Maurer-Cartan equations)

1_
vUE)pAS EfAECDPABCD (5.252)
and the analogous one for A we find:
1.
\VACIC)) /g §ZCDPABCD _ (5.253)

Finally, the formula for the potential is, cf. (5.177),
1_ 1
You = §ZABZAB = —5Q'M(N)Q (5.254)

where the matrix M(N') has exactly the same form as in equation (5.179), and N is given in
(5.249).

For SU(5,1) there are only two U(5) quartic invariants. In terms of the matrix A% =
ZacZCE they are:

TrA = ZABZBA s TI(A2) == ZABZBCZCDZDA . (5255)

The SU(5,1) invariant expression is

S = %\/|4Tr(A2) — (TrA)?] . (5.256)
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The N =6 theory
The scalar manifold of the N = 6 theory has the coset structure [65]:

SO*(12)

G/H = 5.257
H = "5 (5257)
We recall that SO*(2n) is the real form of O(2n, C) defined by the relation:
0 —1
T — _
L'CL=C, O_(ll O) (5.258)
The field content and transformation properties are given in Table 5, where A, B,C' =1,--- .6
Table 5: Transformation properties of fields in D =4, N =6
\ [ V[ 4a [ xaBc,xa | AY | Sy | Ry |
SO(12) [ 1 | 1 1 - 32 -
SU(6) 1 16| (20+6) | 1 (15,1) + (15,1) | 15
are SU(6) indices in the fundamental representation and A = 1,--- 16. The 32 spinor repre-

sentation of SO*(12) can be given in terms of a Sp(32,R) matrix, which in the complex basis
we denote by S (a,r = 1,---,32). It is the double cover of SO*(12) that embeds in Sp(32,R)
and therefore the duality group is this spin group. Employing the usual notation we may set:

L (A +ihan [+ ihan

St =— M 0 5.259

" ﬂ(fl}w—lhAM F — than ( )

where A, M = 1,---,16. With respect to SU(6), the sixteen symplectic vectors (f%,, han),

(M = 1,---,16) are reducible into the antisymmetric 15 dimensional representation plus a
singlet of SU(6): -

(fars hane) = (Fap: haas) + (F%, ha) - (5.260)

It is precisely the existence of a SU(6) singlet which allows for the Special Geometry structure

of SOU*((61)2) (cf. (5.367), (5.368))*. Note that the element S® has no definite U(1) weight since

the submatrices f*,;, f* have the weights 1 and —3 respectively. The vielbein matrix is

[ Pascp Pas
P = ( Por 0 ) , (5.261)
where {
PAB = ZEABCDEFPCDEF; @AB = PAB . (5.262)

The supercovariant field strengths and the coset manifold vielbein have the following expression:

FAN = dAr + [ A s(a P + aghery x BEVY)
+as fA ey x Ve + h.c.] (5.263)

Pascp = Papep — Xjapc¥p) — €apopprX ¥ (5.264)

*Due to its Special Geometry structure the coset space SOU* é.m) is also the scalar manifold of an N = 2

supergravity. The two supergravity theories have the same bosonic fields however the fermion sector is different.
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5.4.2 Specific cases

The fermion transformation laws are:

0pa = Dey + blTABWv“v“”eBVa + - (5.265)
Sxapc = boPapcpifaz' v e’ + bsTiapay™ec) + - - (5.266)
oxa = b4PBCDEiaaZi’ya€F€ABCDEF + b5Tab”)/ab€A + - (5.267)

where according to the general definition (5.171):

Tap = haapF* — fA5GA

T = hpaF* — fAG, (5.268)
With the usual procedure we have the following complex dyonic central charges:

Zap = haapp™ — fipaa (5.269)
Z = iLApA - fTAqA (5270)

in the 15 (recall (5.169)) and singlet representation of SU(6) respectively. Notice that although
we have 16 graviphotons, only 15 central charges are present in the supersymmetry algebra.
The singlet charge plays a role analogous to a “matter” charge (hence our notation Z, f*, hy).
The charges differential relations are

1- 1
vliO®z,p = §ZCD7)ABCD + EZGABCDEFPCDEF (5.271)

_ 1
V(U(l))Z = MZABEABCDEFPCDEF (5272)
and the formula for the potential reads, cf. (5.177),

1 _ 1
You = 5ZABZAB + 27 = —iQtM(N)Q . (5.273)

The quartic U(6) invariants are

I, = (TrA)? (5.274)
I, = Tr(A?) (5.275)
1
Iy = 23—3|Re (eABCPEY 7 5 Zop ZppZ) (5.276)
I, = (TrA)ZZ (5.277)
IAENAYA (5.278)
where A = Z,cZ%P. The unique SO*(12) invariant is
1
S = 5\/|412 — Iy + 3213 + 414 + 415 . (5.279)
The N =8 theory
In the N = 8 case [5] the coset manifold is:
Erny
G/H=——-". 5.280
M= SU) /2 (5.280)

The field content and group assignments are given in Table 6.
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5.4.2 Specific cases

Table 6: Field content and group assignments in D = 4, N = 8 supergravity

| LV [¥a [A™ [ xapo [ S | Ru |
By || 1] 1| - 1 56 -
SURY| 1 [ 8 1 | 56 |28+28] 70

The embedding in Sp(56, R) is automatically realized because the 56 defining representation
of E7(7) is a real symplectic representation. The components of the f and h matrices and their
complex conjugates are

r AB BAE AB

e, hasas, fus?, : (5.281)

here AY, AB are couples of antisymmetric indices, with A, >, A, B running from 1 to 8. The
70 under which the vielbein of G/H transform is obtained from the four times antisymmetric
of SU(8) by imposing the self duality condition

—ARCD ]_ AR I slrall /
t BCD _ EEABC A/B’C’D’tA B'C'D (5282)
The supercovariant field strengths and coset manifold vielbein are:
B = AN 4 [P (P + asx PO e V) + huel (5.283)
Papcp = Papcep — XjaBc¥p) + h.c. (5.284)

where Papcp = HeapcppreanPPF = (L'VYO L) apep = Papepidd’ (¢° coordinates of
G/H). In the complex basis the vielbein Papcp of G/H are 28 x 28 matrices completely
antisymmetric and self dual as in (5.282). The fermion transformation laws are given by:

0va = Deyg + asTap u,/y“fy’“’eBVa SEEE (5.285)
Sxapc = asPapcpifad Y€’ + asTiapwy" ec) + - - (5.286)
where: .
Tap = §(hAgABFAE — [M15Gax) (5.287)
with: )
Nysra = §hA2AB(f71>A?A : (5.288)
With the usual manipulations we obtain the central charges:
Zap = %(hAEABpAE )] (5.289)
the differential relations:
VO Z ap = %Z “PPapep (5.290)
and the formula for the potential, cf. (5.177),
Yo = %ZABZAB = —%QtM(N)Q (5.291)

where the matrix M(N) is given in equation (5.179), and N in (5.288).

For N = 8 the SU(8) invariants are

I, = (TrA)? (5.292)

I, = Tr(A? (5.293)
1

Iy=PfZ = MeABCDEmHZABZCDZMZGH (5.294)
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5.4.2 Specific cases

where PfZ denotes the Pfaffian of the antisymmetric matrix (Zag)ap=1.. 8 and where A P =
ZacZ%B. One finds the following Fr(7) invariant [44]:

S = %\/ |4Tr(A2) — (T'rA)? 4 32Re (Pf Z)| (5.295)

For a very recent study of Er(7) duality rotations and of the corresponding conserved charges
see [66].

Electric subgroups and the D =4 and N = 8 theory.

A duality rotation is really a strong-weak duality if there is a rotation between electric and
magnetic fields, more precisely if some of the rotated field strengths F'* depend on the initial
dual fields G*, i.e. if the submatrix B # 0 in the symplectic matrix (ég). Only in this case the
gauge kinetic term may transform nonlinearly, via a fractional transformation. On the other
hand, under infinitesimal duality rotations (39) + (29), with b = 0, the lagrangian changes by
a total derivative so that (in the absence of instantons) these transformations are symmetries
of the action, not just of the equation of motion. Furthermore if ¢ = 0 the lagrangian itself is
invariant.

We call electric any subgroup G. of the duality group G with the property that it (locally)
embeds in the symplectic group via matrices (ég) with B = 0. The parameter space of true

strong-weak duality rotations is G/G..

The electric subgroup of Sp(2n,R) is the subgroup of all matrices of the kind

(é Ato_l ) : (5.296)

we denote it by Sp.(2n,R). It is the electric subgroup because any other electric subgroup is
included in Sp.(2n,R). This subgroup is maximal in Sp(2n, R) (see for example the appendices
in[50, 68]). In particular if an action is invariant under infinitesimal Sp.(2n, R) transformations,
and if the equations of motion admit also a 7/2 duality rotation symmetry F* — G*, G* —
—F2 for one or more indices A (no transformation on the other indices) then the theory has
Sp(2n,R) duality.

It is easy to generalize the results of Section 2.2 and prove that duality symmetry under
these /2 rotations is equivalent to the following invariance property of the lagrangian under
the Legendre transformation associated to F,

Lo(FN') = L(F.N) , (5.297)

where N/ = (C + DN)(A + BN)~ are the transformed scalar fields, the matrix (25) im-
plementing the 7/2 rotation F* — G* G» — —F*. We conclude that Sp(2n,R) duality
symmetry holds if there is Sp.(2n,R) symmetry and if the lagrangian satisfies (5.297).

When the duality group G is not Sp(2n,R) then there may exist different maximal electric
subgroups of G, say G, and G.. Consider now a theory with G duality symmetry, the electric
subgroup G, hints at the existence of an action S = [ £ invariant under the Lie algebra Lie(G.)
and under Legendre transformation that are 7/2 duality rotation in G. Similarly G leads to a
different action S” = [ £’ that is invariant under Lie(G%) and under Legendre transformations
that are m/2 duality rotation in G. The equations of motion of both actions have G duality
symmetry. They are equivalent if £ and £’ are related by a Legendre transformation. Since
LI(F,N') # L(F,N), this Legendre transformation cannot be a duality symmetry, it is a 7/2
rotation FA — G*, G» — —F? that is not in G, this is possible since G' # Sp(2n, R).
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5.5 Special Geometry and N = 2 Supergravity

As an example consider the G, = SL(8,R) symmetry of the N = 8, D = 4 supergravity
lagrangian whose duality group is G = E7 (7) this is the formulation of Cremmer-Julia. An al-
ternative formulation, obtained from dimensional reduction of the D = 5 supergravity, exhibits
an electric group G, = [Eg ) x SO(1,1)] x Ty where the nonsemisimple group G, is realized
as a lower triangular subgroup of E; (7) in its fundamental (symplectic) 56 dimensional repre-
sentation. G. and G, are both maximal subgroups of F7 7). The corrseponding lagrangians can
be related only after a proper duality rotation of electric and magnetic fields which involves a
suitable Legendre transformation.

A way to construct new supergravity theories is to promote a compact rigid electric subgroup
symmetry to a local symmetry, thus constructing gauged supergravity models (see for a recent
review [67], and references therein). Inequivalent choices of electric subgroups give different
gauged supergravities. Consider again D = 4, N = 8 supergravity. The maximal compact
subgroups of G, = SL(8,R) and of G = [Egs x SO(1,1)] x Ty are SO(8) and Sp(8) =
U(16) N Sp(16,C) respectively. The gauging of SO(8) corresponds to the gauged N = 8
supergravity of De Witt and Nicolai [33]. As shown in [34] the gauging of the nonsemisimple
group U(1) x Ty; C G’ corresponds to the gauging of a flat group in the sense of Scherk
and Schwarz dimensional reduction [35], and gives the massive deformation of the N = 8
supergravity as obtained by Cremmer, Scherk and Schwarz [36].

5.5 Special Geometry and N = 2 Supergravity

In the case of N = 2 supergravity the requirements imposed by supersymmetry on the scalar
manifold M. of the theory dictate that it should be the following direct product: M.q10r =
M x M@ where M is a special Kihler manifold of complex dimension n and M® a quater-
nionic manifold of real dimension 4ny, here n and ny are respectively the number of vector
multiplets and hypermultiplets contained in the theory. The direct product structure imposed
by supersymmetry precisely reflects the fact that the quaternionic and special Kéahler scalars
belong to different supermultiplets. We do not discuss the hypermultiplets any further and refer
to |77 for the full structure of N=2 supergravity. Since we are concerned with duality rotations
we here concentrate our attention to an N = 2 supergravity where the graviton multiplet,
containing besides the graviton g,, also a graviphoton Aﬁ, is coupled to n’ vector multiplets.
Such a theory has a bosonic action of type (5.151) where the number of (real) gauge fields is
n =14 n’ and the number of (real) scalar fields is 2n’. Compatibiliy of their couplings with
local N = 2 supersymmetry lead to the formulation of special Kgeometry [75],|76].

The formalism we have developed so far for the D = 4, N > 2 theories is completely
determined by the (local) embedding of the coset representative of the scalar manifold M =
G/H in Sp(2n,R). It leads to a flat -actually a trivial- symplectic bundle with local symplectic
sections V), determined by the symplectic matrix V', or equivalently by the matrices f and h.
We want now to show that these matrices, the differential relations among charges and their
quadratic invariant ¥y (5.177) are also central for the description of N = 2 matter-coupled
supergravity. This follows essentially from the fact that, though the scalar manifold M of the
N = 2 theory is not in general a coset manifold, nevertheless, as for the N > 2 theories, we have
a flat symplectic bundle associated to M, with symplectic sections V,. While the formalism is
very similar there is a difference, the bundle is not a trivial bundle anymore, and it is in virtue
of duality rotations that the theory can be globally defined on M.

In the next section we study the geometry of the scalar manifold M and in detail its as-
sociated flat symplectic bundle. Then in Section 5.2 we see how, in analogy with N > 2
supergravities, the flat symplectic bundle geometry of M enters the supersymmetry transfor-
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5.5.1 Special Geometry

mations laws of N = 2 supergravity and the differential relations among the matter and central
charges.

5.5.1 Special Geometry

There are two kinds of special geometries: rigid and local. While rigid special Kmanifolds
are the target space of the scalar fields present in the vector multiplets of N = 2 Yang Mills
theories, the (local) special Kmanifolds, in the mathematical literature called projective special
Kmanifolds, describe the target space of the scalar fields in the vector multiplets of N = 2
supergravity (that has local supersymmetry). In order to describe the structure of a (local or
projective) special Kmanifold it is instructive to recall that of rigid Kmanifold.

Rigid Special Geometry

In short a rigid special Kmanifold is a Kmanifold M that has a flat connection on its tangent
bundle. This connection must then be compatible with the symplectic and complex structure
of M.

More precisely, following [49], see also [50], a rigid special Kstructure on a Kmanifold M
with Kform K is a connection V that is real, flat, torsionfree, compatible with the symplectic
structure w:

Vw =0 (5.298)

and compatible with the almost complex structure J of M:
dyJ =0 (5.299)

where dy : QYTM) — Q?*(TM) is the covariant exterior derivative on vector-valued forms.
Explicitly, if J = J¢d; where J¢ are 1-forms, and V9, = A% O¢, with ACg 1-forms, then
dyJ = dJ* 9 — J* A A% e = (dJ* + Ai A J¢) O¢. Notice that the torsionfree condition can
be similarly written dy/ = 0, where I is the identity map in T'M, locally I = da® @ ;. The
two conditions dyJ = 0, dyI = 0 for the real connection V can be written in the complexified
tangent bundle simply as

dym® =0, (5.300)
where 710 is the projection onto the (1,0) part of the complexified tangent bundle; locally
0 =d2 ® 8‘;.

The flatness condition is equivalent to require the existence of a covering of M with local
frames {e¢} that are covariantly constant, Ve, = 0. The corresponding transition functions
of the real tangent bundle T'M are therefore constant invertible matrices; compatibility with
the symplectic structure, equation (5.298), further implies that these matrices belong to the
fundamental of Sp(2n,R), where 2n is the real dimension of M (each frame {e;} can be chosen
to have mutually symplectic vectors e;).

Flatness of V (i.e., the vanishing of the curvature Ry or equivalently d%, = 0) implies that
(5.300) is equivalent to the existence of a local complex vector field £ that satisfies

V¢ =qgt? (5.301)

[hint: in a flat reference frame dy = d, and Poincaré lemma for d implies that any dg-closed
section is also dy-exact]. Studying the components of this vector field (with respect to a flat
Darboux coordinate system) we obtain the existence of local holomorphic coordinates on M,
called special coordinates, their transition functions are constant Sp(2n,R) matrices, so that
the holomorphic tangent bundle T'M is a flat symplectic holomorphic one. Corresponding to
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5.5.1 Special Geometry

these special coordinates we have a holomorhic function ¥, the holomorphic prepotential. In
terms of this data the Kpotential and the Kform read

1. 0F i\, :
K = EIm(a—Zzl)dzl AdZ (5.302)
_ ; o2 A o , .
K =i00K = %Im(azi;j)dz’ NdZ = %Im(nj)dzZ NdZ (5.303)
where 2' are special coordinates, and 7;; = %.

An equivalent way of characterizing rigid special Kmanifolds is via a holomorphic symmetric
3-tensor C'. This tensor measures the difference between the symplectic connection V and the
Levi-Civita connection D, whose connection coefficients we here denote 'yfj and "yfj.

Define

Pr=V—-D.

The nonvanishing components of Pg are

Al —Ak AL AR kAL (5.304)

ij i

this is so because the components A of the connection V are constrained by condition (5.300).
Since D and V are real and torsionfree we further have that the lower indices in (5.304) are

symmetric, and the reality conditions Af; —~f = A% — 7%7 A_% = A% Since both D and V
are symplectic we have that for any vector u € T,,,M, (Pr)y : T;nM — T,,M is a generator of

a symlectic transformation,

w(K(v,w)) = Dy(K(v,w)) = K(D,v,w) + K (v, D,w)
w(K(v,w)) = Vi (K(v,w)) = K(V,u,w) + K(v, V,w)
0= K((Pr)uv,w) + K(v, (Pr)yw) . (5.305)

If we set u = Oy, v = 0;, w = 9;, and use that K is a (1, 1)-form, we obtain
k ko
Ak k0 (5.306)

Then the components of o
Pr=P+P

are just Afj and A% This leads to define the tensor

Cijk = —igiZAfk : (5.307)

Setting u = Oy, v = 0;, w = 0; in (5.305) we obtain that C;j is totally symmetric in its indices.
Since Dm0 = 0 we easily compute, recalling (5.301), Cijr = —(V,£, V;Vi€), hence we obtain
the coordinate independent expression for C' = Cjjpdz @ dz? @ dz*,

C =—(VE VVE) . (5.308)
Flatness of V = D + Pg, i.e. d% =0, is equivalent to
R+dpP +dpP+PAP+PAP =0 (5.309)

where R = d?% is the Levi-Civita curvature and dy® is the exterior covariant derivative action
on the 1-form # with values in Te M @ Tz M (where T M is the complexified cotangent bundle).
Now in (5.309), the term R+P AP +P AP € QU (M, End(Te M, TeM)), i.e., this term maps
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TEOM (or TOY M) vectors into (1,1)-forms valued in T4 M (or TV M). On the other hand
P € Q(End(Te M, TcM)), in particular it maps T M vectors into forms valued in TV M,
and annihilates TV M vectors (hence $ A P = 0). Similar properties hold for the complex
conjugate P, with 7O M replaced by TV M, and for dp®P and dpP. It follows that equation
(5.309) is equivalent to two independent equations,

R+PAP+PAP=0 (5.310)
dpP =0 . (5.311)

Since the covariant derivative of the metric vanishes, this last equation is equivalent to dpC' = 0.
In local coordinates we have

dCo; =" N Crj =7 AN Cou = 0. (5.312)
where C;; = C’ikjdzk. This equation splits in the condition
0C =0, (5.313)
so that C' is holomorphic, and the condition 0pC = 0, that can be equivalently written
D,C; = D;C; (5.314)

where C; is the matrix C; = (Ckir)go=1,.n, 1.€., C; € QO(M, T+ N T*(I’O)M), so that D is
the covariant derivative on functions valued in T+ M @ T*H00 7.
The local coordinates expression of (5.310) is

Rijfcf = _Uﬁggggpopjé . (5.315)

In conclusion a rigid special Kstructure on M implies the existence of a holomorphic sym-
metric 3-tensor (cubic form) C' that satisfies (5.310) and (5.314).

Viceversa if a Kmanifold M admits a symmetric holomorphic 3-tensor C' that satisfies
(5.310) and (5.314), then M is a special Kmanifold. Indeed the contraction of C' with the
metric gives P, so that we can define V = D — Pg. The symmetry of C' implies that dy7'? = 0
so that V is torsionfree and compatible with the complex structure, dyJ = 0. The symmetry
of C' also implies (5.305) so that V is symplectic. Finally (5.310) and (5.314) imply that V is
flat.

In special coordinates the holomorphic 3-tensor C' is simply given by Cj;, = 07

1
10210270zF *

Local Special Geometry

We have recalled that to a rigid special Kmanifold of dimension n there is canonically associated
a holomorphic n dimensional flat symplectic vector bundle. On the other hand, to a projective
(or local) special Kmanifold M, of dimension n’ there is canonically associated a holomorphic
n = n'+1 dimensional flat symplectic vector bundle. The increase by one unit of the rank of the
vector bundle with respect to the dimension of the manifold is due to the graviton multiplet.
The mathematical description involves the n = n’ 4+ 1 dimensional manifold L, total space of a
line bundle over M.

KHodge manifolds and their associated principal bundles M — M
Consider a K-Hodge manifold, i.e. a triple (M, L, K'), where M is Kwith integral Kform K, so
that it defines a class [K] € H*(M,Z), and
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is a holomorphic hermitian line bundle with first Chern class equal to [K], and with curva-
ture equal to —27iK (recall that on a hermitian holomorphic vector bundle there is a unique
connection compatible with the hermitian holomorphic structure).

Consider the complex manifold M, that is L without the zero section of L —» M. The
manifold M is a principal bundle over M, with structure group C* (complex numbers minus the
zero); the action of C* on M is holomorphic. The hermitian connection canonically associated
to L — M induces a connection on M so that in TM we have the subspaces of horizontal and
vertical tangent vectors.

Another property of the manifold M is that it has a canonical hermitian line bundle 7*L —
M: it is the pullback to M of L — M, so that the fiber on the point 7 € M is just the fiber
of L on the point m = n(m) € M,

L — L

L

M I M

Explicitly 7L = {(m,¢); w(¢) = n(m)}. The line bundle 7*L is trivial indeed we have the
globally defined nonzero holomorphic section

QO: M — 7L

m  +— (m,m)
(m, A) = (m, A\, \) . (5.316)

In the last line we used a local trivialization of M — M (and henceforth of L — M) given by a
local section s, say m = As(m) ~ (m, \). This induces a local trivialization § = 7*s of the line
bundle 7*L — M. Explicitly § associates to 1 the point s(m) of L, so that a generic element
{ = 05(m) € L is described by the triple (m, A, o), and in particular

Q) = Q(As(m)) = A3(1) ~ (m, A, \) . (5.317)

It can be shown that M is a pseudo-Kmanifold (i.e. a Kmanifold where the metric has
pseudo-Riemannian signature). The Kform is

~ _L‘_ 9
K= 000" . (5.318)

where |Q|? is the evaluation on 2 of the hermitian structure of 7*(L) (this latter is trivially
inherited from the hermitian structure of L). With respect to the corresponding Kmetric,
horizontal and vertical vectors are orthogonal, moreover the Kmetric is negative definite along
vertical vectors, and positive definite along horizontal vectors, where K|, = |Q>7*K.* Thus
(M, K) has Lorentzian signature.

Concerning the pullback 7*K on M of the Kform K on M; while K is in general only closed,
™ K is exact,

i -
*K = —00log|Q* . 5.319
w K = - 00log|) (5319

*Hint: in the coordinates (2%, \), associated to the local trivialization m = As(m) ~ (m, ) induced by a
section s of L, we have || = A|s|2. Moreover horizontal vectors read u = u'0d; — u'a; A% where the local
connection 1-form on M is a = a;dz* = |s| 28|s|2. The pseudo-Kform reads —2miK = AXD;0y|s|2dz" A dz7 +
|8|2dX A dX + N0;|s|2dzt A A\ + AOy|s|2dA\ A dZ.
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This last formula easily follows by pulling back the usual local curvature formula for the hermi-
tian connection K = 5-991og |s|> and by observing that 7*log|s|* = log|3|* = log|Q|* — log —
log .

In conclusion, one can canonically associate to a K-Hodge manifold (M, L, K) a pseudo-
Kmanifold (M, K) that carries a free and holomorphic C* action, and a line bundle 7*L — M
that has a canonical global holomorphic section (2.

The bundle L can be naturally identified as the holomorphic subbundle of TM given by
the vertical vectors of M with respect to the holomorphic C* action. The global holomorphic
section €2 corresponds to the vertical vector field that gives the infinitesimal C* action. Under
this identification we have

R(Q,Q) = —%mﬁ . (5.320)

This equation shows that under the identification TM lvert = L the corresponding hermitian
structures are mapped one into minus the other.

Special Kmanifolds o
Following [49], (M, L, K) is special Kif (M, K) is rigid special Kand if 2 is compatible with the
symplectic connection V.

A (projective or local) special Kmanifold is a K-Hodge manifold (M, L, K') such that the
associated pseudo-Kmanifold (M K ) has a rigid special pseudo-Kstructure V which satisfies

vQ = a0 (5.321)

Notice that (5.321) is equivalent to the condition V,Q = u for any v € THO M. As shown
in [50], since V is torsionfree and flat, then condition (5.321) implies the C* invariance of V,
ie. de(V v) = Vdeudev where R}, denotes the action of b € C*. Notice also that equation
(5.321) is the global version of eq. (5.301).

For case of notation in the following we denote the flat torsionfree symplectic connection V
on M simply by V.

We now construct a flat symplectic 2n = 2n’ + 2 dimensional bundle H on M that is
frequently used in the literature in order to characterize projective special Kmanifolds. We
introduce a new C* action on TM. On M it is the usual one Ry = mb = b, where b € C*,
while on vectors we have

Vg, = b ARy vy, (5.322)

>From now on by C* action we understand the new above defined one. Thus for example
since b d Ry = b1, then  is not invariant under (5.322). On the other hand the local
section (vertical vector field) 3, obtained from a local section s of L, satisfies b dRy35 = Sy
(or b 'Ry,8 = 35) and is therefore C* invariant. A C* invariant frame associated with local
coordinates 2z of M and with the local section s of L is (A~ 8‘31 , a,\) it is given by the coordinates
(X%, X% = (A2, \), they are C* invariant (b~'R,*X = X) and therefore are homogeneous

(projective) coordinates of M.

We define the 2n = 2n’ + 2 dimensional real vector bundle on M (dimgM = 2n'),
H — M (5.323)

by identifying its local sections with the C* invariant sections of TM. In other words H is
the quotient of TM via the C* action (5.322). A point (m,h) € H is the equivalence class
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(1, )] where (1, v) ~ (1, uz) if m' = mb and b~'dRyvz = ug. Under this quotient
7L C TM becomes L, while the subbundle T'M |, of horizontal vectors becomes L ® T'M .*
Therefore we have two natural inclusions

LCH and LTMCH. (5.324)

Since the C* action is holomorphic, then H is a holomorphic vector bundle on M of rank
n' + 1. Since K is a C* invariant 2-form the symplectic structure of TM goes to the quotient
H: indeed K (u,v) is a homogeneous function on M if u and v are C* invariant vector fields of
TM. Similarly also the flat symplectic connection V induces a flat symplectic connection on
H (see for example [50]). The inclusion L C H implies that

L'o@H—-M (5.325)
has a nonvanishing global holomorphic section.

In the following we work in TM, but we choose C* invariant tensors and therefore our
results immediately apply to the bundle H. Let’s consider a C* invariant flat local symplectic
framing of TM, that we denote by {ec} = {ea,f2}, €=1,...2n, A =1,...n. The framing is
flat because Ve, = 0, Vf* = 0, and it is symplectic because in this basis the symplectic matrix
is in canonical form: the components K (ey, ex), K (eq,f”), K(fA ex), K(f*,f*) read

( ](i —011 ) (5.326)

With respect to the {ey,f*} frame, the global section  has local components 2 = Qfe; =
X2ey + Fyf*. We also denote by € this column vector of coefficients,

Q= (0% = (?AA) : (5.327)

The local functions X*, Fy on M are holomorphic, indeed (5.321) implies that VQ is a (1,0)-
form valued in T'M, since V(Qfee) = dQ¢ e¢ = 90 e+ e¢, we obtain Q¢ = 0. In conclusion
(XA, Fy) are local components of the global symplectic section € of the tangent bundle TM.

Each entry X#, Fy is also a local holomorphic section of the line bundle L=! — M. Indeed
from the transformation properties of € under the C* action m + R,—swm () = e~/™m (or
under a change of local trivialization s'(m) = /(™ s(m)) we have

XM (XD
_ —f(m)
(FA) —e <FA : (5.328)

therefore for each invertible ¢ we have that 95_1(3)3 is a section of L — M or equivalently
each X and each F) are the coefficients of sections of L~! — M.

In conclusion (X A Fy) are local components of the global symplectic section € of the tangent
bundle T'M. Each entry is also a local holomorphic section of the line bundle L' — M. Under
change of local trivialization of T'M we have

XM\ g XA\ [(ABY (XM (5.329)
Fy ) Fy ) \CD Fy ) '
*Hint: denote by ¥p, | the horizontal lift in TT;LM of the vector v,, € T,, M. Then the map L ® TM —

(TM|hOT)/CXaction defined by (£, @ vim) = [(bmsUmle,,)] if £ # 0, and by 0 +— 0 is well defined, linear and
injective.
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where S = (3%9) is a constant symplectic matrix. We can also consider a change of coordinates

on M, say z — z'. Provided we keep fixed the frame of TM and the trivalization of L we then
have that X* and F, behave like local functions on M, X*(z) = X"*(2), Fa(z) = F4(2') (here
XA(2) = XA(s(2)) etc.).

It can be shown [50] that from the set of 2n elements {X*, F)} one can always choose
a subset of n elements that form a local coordinate system on M. Contrary to the Kcase
(where the metric is Riemanninan) in this pseudo-Kcase in general neither {X*} nor {F,} are
coordinates systems on M. The frame {ex, fA} is determined up to a symplectic transformation,
if using this freedom we have that the { X} are coordinates functions then the { X} are named
special coordinates. The sections F) can then be seen as functions of the X* and are obtained
via a prepotential F

oF
Fy=—. 5.330
T oxA (5.850)
Recalling (5.319) and (5.320) we have
TK = %5810@'(9,5) (5.331)
and for the corresponding “K’ potential K we have*
K = —logi{Q, Q) ; (5.332)
in these formulae we used the standard notation
(Q,Q) =K(Q,9) .
Using the components (X*, F)) expression (5.332) reads
% = —log[i(X, F) (g —011) ()ﬁf) | = “logli(FAX" — XMFy)] . (5.333)

By considering local sections of the bundle M — M, we can then pull back the potential K to
local Kpotentials on M.
Under the action of e=/™ € C* on M (or equivalently under change of trivialization of
M — M) we have
K =K+f+f (5.334)

thus showing that e~* defines a global nonvanishing section of the bundle L ® L — M, in
particular this bundle is trivial. Explicitly this global section is eX()[s, 5] where s is any local
section of M — M and [s, 5] = {(sA\, A\7'5), A € C*} is the corresponding local section of L® L.

Symplectic Sections and Matrices from local coordinates frames on M
Let’s examine few more properties of special Kmanifolds and introduce those symplectic vectors
that we have seen characterizing the geometry of the supergravity scalar fields. Consider a

vector u € T4 M, this can be lifted to a horizontal vector @& € T M. Because of (5.321)

m
the covariant derivative V£ is again a vector in 7| Tg DN, then

(Q, Vi) =0, (Q, Vi) =0 ; (5.335)

the first relation holds because K = ( , ) is a (1, 1)-form, the second relation holds because
horizontal and vertical vectors are orthogonal under K (recall paragraph after (5.318)).

*As usual when K is integral K = 5-g;;d2" A d2? = 520,0,Kdz" A dz? = 5-00K.
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Subordinate to a holomorphic coordinate system {z%} of M, and a local section s of L — M

we have the local coordinates (2, A) on M. The corresponding vector fields are (;, ). A more

natural frame on M is given by considering the vertical vector field associated to the action of
C* on M,

A 0
=0 =)= .
Ao )\8>\ , (5.336)
and the horizontal lift (‘i of the vector fields 9; on M
5 0 0
8—8—|| 8||)\——8 + 0K A\— 8+8‘K80 (5.337)

oA

In (5.337), |s|> = h(s, s) is the hermitian form of L — M. All these vector fields have degree 1
and are independent from the section s of L — M.
We define
Vi=Vg . (5.338)

The new sections V() are exactly the horizontal vector fields 8;, indeed from (5.321) we obtain

V=0 , Vor=9,=0Q . (5.339)
Similarly o B
Vii=0, V=0 . (5.340)
Recalling (5.335) we obtain
(Q,V,Q) =0 (5.341)
(ViQ,V,Q) =0 (5.342)
(Q, V) =0. (5.343)

Notice also that (€2, Q) is invariant under horizontal vector fields,
9;(Q, Q) = V{0, Q) = (V,Q,Q) + (Q,V,Q) = 0 (5.344)

where in the last passage we used (5.335) and (5.340). Similarly Vi(Q, Q) = 0.
The metric associated to the Kform (5.318) on M is block diagonal in the o, 0; basis, (see
paragraph following (5.318)),

goo 0\ _ (=M\s* 0 (=192 0
( 0 g) ) ( 0 Misgger ) ~\ 0 |0 gger ) - (5:315)
Because of (5.344) the associated Levi-Civita connection coefficients of M in the d; basis of
8‘; basis,
T = §M0:g1 = g™ 0igp = T . (5.346)

In terms of the symplectic frame {e;} = {ex,f*}, that is flat, we have VQ = V(Qfe;) =
d(Q%)ee, and V;Q = 9;(2%)ee = 9,05 + 9, KO, ie

v, (;{AA) 5 (;{AA) + oK (iﬁ:) | (5.347)

Recalling the interpretation of X* or F) as coefficients of local sections of L™ — M, we read
in equation (5.347) the covariant derivative of L= — M.
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It is also convenient to normalize €2 and thus consider the (non holomorphic) nonvanishing
global vector field on M given by
V=2 (5.348)

>From (5.344) the covariant derivatives of V are
ViV =PV . ViV =Pva=0,
V,V = 67(/2?5(_2 . ViV = eW/QViQ =0

Explicitly we have*

1 _ _ 1-
ViV = 0,V + 5aﬂﬂ/ﬁ) ee , ViV =0V~ 50K V& e =0 (5.349)
_ _ 1- _ _ _ 1 _
ViV = (0 V¢ + 70K Ve , ViV =(0V¢— 7K Ve =0. (5.350)

Each coefficient V¢ of V with respect to the C* invariant basis e is also a coefficient of a local
section of the bundle L=*/2 @ L'/?2 — M. This bundle has connection %@7( — %557(. Equation
(5.349) can be interpreted as the covariant derivative of these line bundle local sections.

From (5.332), and (5.341)-(5.343) we have

(V,V)=—i , (5.351)
(V,.V:V) =0, (5.352)
(VV,V;V)y=0 , (5.353)
(V,V:V) = (5.354)

>From (5.345), or also from [V}, V;] = —9,0,K = —g;; and (V;V;V, V) + (V;V,V;V) =0,
we have

ViV, ViV) =g , (5.355)

(where g;; = 9,0,K = —2mi 7" K; is actually gj;om, the pull back via 7 of the positive definite
metric on M). If we consider an orthonormal frame {e;}, (/ =1,...n") on M,

er = 631'3]' , 0= €]I~€I y 957 = zj(su ) (5.356)
we lift this frame to a frame of horizontal vectors of T M, and if we set

Vy=(V,V;V) , M=01,..17, (5.357)
(where V; = &} V;), then relations (5.352), (5.353), (5.351), (5.355) read

(Var, V) =0, (Va, V) =0 - (5.358)

The index M mixes holomorphic and antiholomorphic indices in order to compensate for the

Lorentian signature of the metric (' 9(3)'2) in (5.351), (5.355).

*we find also instructive to obtain the covariant derivative of the section V via this straighforward calculation
that uses )\8%’7( = -1,

VZ(V = vi(ew/29565) = éi(e(](/Zflg)eg = ai(e(K/2QE)e§ + 82»7()\(%(67(/2(25)% = (&Vg + %817(‘/5) €¢
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Explicitly the column vectors of the components of the sections Vy, = VgMeg are

LA XA = - VLA
&\ K2 ey [ VI
(V)—<MA>—6 (FA) , (v,v)_<vIMA) : (5.359)
and they can be organized in a 2n X n matrix
o LA ?,LA fA f
&y 8 — Ay = M) =
(V) = (V,ViVe) = (MA VfMA> (hAM ) (5.360)

In the last passage we have denoted by f (respectively h) the n x n matrix of entries f%,
(respectively hapr).
The N = 2 special geometry relations (5.358) are equivalent to

(ff, ) (g —011> ({L) =il de. —flh+hif=1il (5.361)

and
(ft,hf)(]?_oﬂ) (£)=0 ie. — fth+h'f=0 (5.362)

These two relations are equivalent to require the real matrix

ABY\ Ref —Imf
<C’ D) = V2 (Reh —Imh) (5.363)

to be symplectic. Vice versa any symplectic matrix (25) leads to relations (5.361), (5.362) by
defining (i) = L(é:ﬁg) . The matrix

V2
V:({L%):(ég)ﬂ, (5.364)

where A = \%(_%M]}I), rotates the flat real symplectic frame {e;} = {e",fi} in the frame
{Vur, (‘ZM} that up to a rotation by A~ = A is also real and symplectic (but not flat). This
{Var, Viz} frame comes from a local coordinate frame on M, indeed Vy; = (e%/2Q, */2¢70;).
The symplectic connection 1-form in this frame is simply I' = V~1dV, indeed Ve; = 0 is
equivalent to

AV =VT . (5.365)

w P
P w
w and the tensor P of M. The block decomposition (;‘,ﬁg) follows by recalling that M is in
particular a rigid special Kmanifold. The difference Pr = V — D between the flat symplectic
connection and the Levi-Civita connection is given by the holomorphic symmetric three form

C (c.t. (5.308))

We can write I' = < ) , and see this equation as a condition on the Levi-Civita connection

O = —(VQ,VVQ) . (5.366)

The properties of C' previously discussed in the rigid case apply also to this projective special
geometry case.
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5.5.2 The N = 2 theory

>From the previous section we see that the N = 2 supergravity theories and the higher N
theories have a similar flat symplectic structure. The formalism is the same, indeed since the
antisymmetric of the U(2) authomorphism group of the N = 2 supersymmetry algebra is a

singlet we have

Mp = fheas s haap = haoeas (5.367)

where f4, hao are the components of the global section V, therefore from (5.360) we have as
in (5.172),

h = (han) = (haas, har) . (5.368)
rA
as it should be, the sections (;Afl ) have Kweight opposite to the (iiﬁB) sections.

The difference between the N = 2 cases and the N > 2 cases is that the scalar manifold M
of the N = 2 case is not in general a coset manifold. The flat symplectic bundle is therefore
not in general a trivial bundle. The gauge kinetic term N = (y{ —eoM depends on the choice
of the flat symplectic frame {e;} = {es,f*}. This latter can be defined only locally on M (and
therefore on M). In another region we have a different frame {e’c} = {¢’y,f"*} and therefore a
different gauge kinetic term N’. In the common overlapping region the two formulations should
give the same theory, this is indeed the case because the corresponding equations of motion
are related by a duality rotation. As a consequence the notion of electric or magnetic charge
depends on the flat frame chosen. In this sense the notion of electric and magnetic charge is
not a fundamental one. The symplectic group is a gauge group (where just constant gauge
transformations are allowed) and only gauge invariant quantities are physical.

A related aspect of the comparison between the N = 2 and the N > 2 theories is that the
special Kstructure determines the presence of a new geometric quantity, the holomorphic cubic
form C, which physically corresponds to the anomalous magnetic moments of the N = 2 theory.
When the special Kmanifold M is itself a coset manifold [78|, then the anomalous magnetic
moments C;;;, are expressible in terms of the vielbein of G/H, this is for example the case of

the N = 2 theories with scalar manifold G/H = Sg(é’)l) X O(%(S’é)@) and G/H = S%*(él)Z) [78].

To complete the analogy between the N = 2 theory with n’ vector multiplets and the
higher N theories in D = 4, we also give the supersymmetry transformation laws, the central
and matter charges, the differential relations among them and the formula for the potential
Vi A

The supercovariant electric field strength F™ is

FA = N P %P e s — ifAN 7.0 5e PV + e (5.369)

The transformation laws for the chiral gravitino ¢4 and gaugino A\ fields are:

577Z)A/L - vu €A + 6Asz,u,l/}/VEB + - 5 (5370)
SNIA — i@uziv"eA + % _juy,y,uugijeABeB oo (5.371)
where:
T = hyF* — fAG,, (5.372)
T, = Tre',, with Ty = hyF* — fAGy (5.373)
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are respectively the graviphoton and the matter vectors. In (5.370), (5.371) the position of the
SU(2) automorphism index A (A4, B = 1,2) is related to chirality, namely (¢4, \*') are chiral,
(¥4, \Y) antichiral.

In order to define the symplectic invariant charges let us recall the definition of the magnetic
and electric charges (the moduli independent charges) in (5.160). The central charges and the
matter charges are then defined as the integrals over a sphere at spatial infinity of the dressed
graviphoton and matter vectors (5.171), they are given in (5.173), (5.174):

(Zn) = (2,21) =iV(pw) Q (5.374)

where ¢o is the value of the scalar fields at spatial infinity. Because of (5.357) we get immedi-
ately:
ViZ=1;. (5.375)

This relation can also be written V;Z4p = Zreap, and considering the vielbein 1-form P! dual
to the frame e; introduced in (5.356) and setting V = PV we obtain VZap = Z;Pleap .
The positive definite quadratic invariant 73y in terms of the charges Z and Z; reads

1 - _ 1
Yon = 522+ 717" = —§QtM(N)Q : (5.376)

Equation (5.376) is obtained by using exactly the same procedure as in (5.177). Invariance of
Y implies that it is a well defined positive function on M.

5.6 Duality rotations in Noncommutative Spacetime

Field theories on noncommutative spaces have received renewed interest since their relevance
in describing Dp-branes effective actions (see [79] and references therein). Noncommutativity
in this context is due to a nonvanishing NS background two form on the Dp-brane. First
space-like (magnetic) backgrounds (B% # 0) were considered, then NCYM theories also with
time noncommutativity (B% # 0) have been studied [82]. The NCYM theories that can be
obtained from open strings in the decoupling limit o/ — 0 are those with B space-like or
light-like (e.g. Bo; = —Bi;), these were also considered the only theories without unitatrity
problems [83|, however by applying a proper perturbative setup it was shown that also time-
space noncommutative field theories can be unitary [84].

Following [79], gauge theory on a Dp-brane with constant two-form B can be described
via a commutative Lagrangian and field strength L(F + B) or via a noncommutative one
f(ﬁ), where ﬁuv = 0,A, — 0,A, —i1[A, % A)]. Here x is the star product, on coordinates
[2F % 2] = 2t x 2V — 2¥ % ¥ = 1©"", where © depends on B and the metric on the Dp-brane.
The commutative and the noncommutative descriptions are complementary and are related
by Seiberg-Witten map (SW map) [79], [80, 81]. In the o/ — 0 limit [79] the exact effective
electromagnetic theory on a Dp-brane is noncommutative electromagnetism (NCEM), this is
equivalent, via SW map, to a nonlinear commutative U(1) gauge theory.

In this section we consider a D3-brane action in the slowly varying field approximation, we
give an explicit expression of this nonlinear U(1) theory and we show that it is self-dual when
B (or ©) is light-like. Via SW map solutions of U(1) nonlinear electromagnetism are mapped
into solutions of NCEM, so that duality rotations are also a symmetry of NCEM, i.e., NCEM is
self-dual [85], [52]. When O is space-like we do not have self-duality and the S-dual of space-like
NCYM is a noncommutative open string theory decoupled from closed strings [87]. Related
work appeared in 88, 89, 90]. We mention that self-duality of NCEM was initially studied
in [86] to first order in ©. On one hand it is per se interesting to provide new examples of
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self-dual nonlinear electromagnetism, as the one we give with the lagrangian (15.355). On the
other hand this lagrangian is via Seiberg-Witten map, and for slowly varying fields, just NCEM.
Formally NCEM resembles U(N) YM on commutative space, and on tori with rational © the
two theories are T-dual [91]. Self-duality of NCEM then hints to a possible duality symmetry
property of the equations of motion of U(N) YM.

Self-Duality of the D3-brane action

Consider the D3-brane effective action in a IIB supergravity background with constant axion,
dilaton NS and RR two-forms. The background two-forms can be gauged away in the bulk
and we are left with the field strength ¥ = F' + B on the D3-brane. Here B is defined as the
constant part of 7, or B = F |spatialco Since F' vanish at spatial infinity. For slowly varying
fields the Lagrangian, in Einstein frame is essentially the Born-Infeld action with axion and
dilaton. We set for simplicity N = —)oeo and g5 = 1, where g, is the string coupling constant.
The lagrangian is then £ = ;—,%\/ —det(g + o/F ). The explicit expression of G, is obtained
from the definition G := %% and is (cf. (5.38))

G __ Tt L FF* Fu
S 12 14 ’
1+ LFe e (F )2

(5.377)

Here 7, = \/9€up0F 7, cf. footnote 2, Section 2.1. One can then consider a duality rotation
by an angle v and extract how B (the constant part of ) transforms

By, + 4BB By
V1t B (BB

B',, = cosy B,, — siny 5.378
n n

Open/closed strings and light-like noncommutativity
The open and closed string parameters are related by (see [79], the expressions for G and ©
first appeared in [92])

1 )

=Glt4+=

g+ao'B * o
g =(GC1'-0/d)G(GC'+0/d)=G1-a?0GO

oB=—(G1'-0/d)0/d (G'+06/d)

detG
G = Y= det G det (G! 1 —= det -1 det B
* = 9\ det(g + 'B) gs\/det G det (G~ +©/a’) = g,\/det g~! det (g + o/ B)

The decoupling limit o/ — 0 with Gy, G,© nonzero and finite [79] leads to a well defined
field theory only if B is space-like or light-like. Looking at the closed and open string coupling
constants it is easy to see why one needs this space-like or light-like condition on B in performing
this limit. Consider the coupling constants ratio G,/g,, that expanding the 4x4 determinant
reads (here B* = B, B,,g""¢g"?, ©? = ©""0/°G,,G,, and so on)

G, \/ o/ 2 o/ \/ a’? o
— =14/1 2 - 2 = 4/1+ —B2?2 - —(BB*)?. )
0 + 5 © 16 (00) + 5 16 ( ) (5.379)

Both G, and g, must be positive; since G and O are by definition finite for o’ — 0 this implies
OO* =0 and ©2 > 0. Now O0* =) < det® =0 < det B = 0 & BB* = 0. In this case
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from (5.379) we also have ©2 = o/*B2. In conclusion in order for the o/ — 0 limit defined by
keeping Gy, G, © nonzero and finite [79], to be well defined we need

B*>0, BB*=0 ie. 0*>0, 00*=0 (5.380)

This is the condition for B (and ©) to be space-like or light-like. Indeed with Minkowski metric
and in three vector notation (5.380) reads B> — E* > 0 and E | B.

If we now require the o/ — 0 limit to be compatible with duality rotations, we immediately
see that we have to consider only the light-like case B> = BB* = 0. Indeed under U(1) rotations
the electric and magnetic fields mix up, in particular under a 7/2 rotation (5.378) a space-like
B becomes time-like.

In the light-like case det(g + o/ B) = det(g), relations (5.379) simplify considerably. The
open and closed string coupling constants coincide, since we set g, = 1 we have G, = g, = 1,
this also implies det(G) =det(g) so that the hodge dual field F* with the g metric equals the
one with the G metric. Use of the relations

* *pV v 1 v * PV * v —1 * SV
U7 = Q2 = SOR8Y Q= 0,0 = 00, (5.381)

valid for any antisymmetric tensor €2, shows that any two-tensor at least cubic in © (or B)
vanishes. It follows that ¢7!G© = © and that the raising or lowering of the © and B indices
is independent from the metric used. We also have

B, = —a' 0, . (5.382)

Self-duality of NCBI and NCEM
We now study duality rotations for noncommutative Born-Infeld (NCBI) theory and its zero
slope limit that is NCEM. The relation between the NCBI and the BI Lagrangians is |79

L5i(F,G,0,G,) = Lg(F + B, g) + O(OF) + tot.der. (5.383)

where O(OF) stands for higher order derivative corrections, F is the noncommutative U (1) field
strength and we have set g; = 1. The NCBI Lagrangian is

L/ —det(G + o' F) + O(0F) . (5.384)

-EBI(FaG;@a GS) - 0/2Gs

In the slowly varying field approximation the action of duality rotations on L gr is derived from
self-duality of £p;. If F is a solution of the Lg 2% EOM then F’ obtained via

F S\W ma/p F duality rot. g SN may SW map F,
is a solution of the LEIG ©" EOM where G.,G',©" are obtained using (5.379) from ¢, B’ and

gs =0gs= L.
In the light-like case we have G5 = g5 = 1, the B rotation (5.378) simplifies to

B, = cosy B, —siny B}, . (5.385)
Using (5.385) the U(1) duality action on the open string variables is
G'=G , O" =cosyO" —siny O . (5.386)

For © light-like, solutions F of £6© are mapped into solutions ' of L9 Thus we can
map solutions of £&® into solutions of £%€, therefore the theory described by £%© has U(1)
duality rotation symmetry.
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In order to show self-duality of NCEM we consider the zero slope limit of (5.383) and verify
that the resulting lagrangian on the r.h.s. of (5.383) is self-dual. We rewrite Lg; in terms of
the open string parameters G, ©

-1 —V/G [det(g + /B + a'F)
— o/ —det(g + @F) =
Lar a’2\/ etly +a'F) o’ det(g + o/ B)
1 /
:aﬁ¢—@uc+aF+G@Fy (5.387)

The determinant in the last line can be evaluated as sum of products of traces (Newton-
Leverrier formula). Each trace can then be rewritten in terms of the six basic Lorentz invariants

F? FF* FO, FO*, ©? = 00* = 0, explicitly
detG™1det(G + o/F + GOF) = (1 — $0F)? + o[ F? + 10F* FF*] — o/ (A FF*)?
Finally we take the o/ — 0 limit of (5.387), by dropping the infinite constant and total deriva-
tives the resulting Lagrangian is v/G times
—1p2 _loF* FF*

(5.388)
— 10F

We thus have an expression for NCEM in terms of F', © and G (of course G,, can be taken

77/,“/)7 EEM = \/EEEMv

- 1o~ —iF?_lop FF*
LEM =——-FF = 1
1 —1oF

+ O(0F) + tot. der. (5.389)

The Lagrangian (15.355) satisfies the self-duality condition (5.60) with ¢ = ©, Kk = 0, a =
d =0, ¢ = —b and therefore NCEM is self-dual under the U(1) duality rotations (5.386) and
F’' = cosy F'—siny G. The change in © — ©’, that is not a dynamical field, can be cancelled by

a rotation in space so that therefore we can map solution of the EOM of (5.389) into solutions
of the EOM of (5.389) with the same value of ©.

This duality can be enhanced to Sp(2,R) by considering also axion and dilaton fields; also
Higgs fields can be coupled, the coupling is minimal in the noncommutative theory. Using this
duality one can relate space-noncommutative magnetic monopoles with a string (D1-string D3-
brane configuration) to space-noncommutative electric monopoles (possibly an F-string ending
on a D3-brane) [52, 53].
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5.7 Appendix: Symplectic group and transformations

5.7.1 Symplectic group (A4,B,C,D and f,h and V matrices)

The symplectic group Sp(2n,R) is the group of real 2n x 2n matrices that satisfy

St (]01 —011) S = (g _0]1) (5.390)

Setting S = (gg) we explicitly have
A'C-C'A=0 , B'D-D'B=0, AD-C'B=1. (5.391)
Since the transpose of a symplectic matrix is again symplectic we equivalently have
AB'—BA'=0 , OCD'-DC'=0, AD'—-BC'=1. (5.392)

In particular A'C, B'D,CA™', BD™', A"'B, D7'C, AB!, DC" are symmetric matrices (in case
they exist).

If D is invertible we have the factorization

A B 1 BD! Do 1 0
<C D) = (o 1 ) ( o p)\pica (5:393)
where A = Dt™' + BD~1C follows from BD~! = Dt ' Bt.

The complex basis
It is often convenient to consider the complex basis \/LE (?f;g) rather than (%). The transition

from the real to the complex basis is given by the symplectic and unitary matrix A~', where

1 /1 1 R
ﬂ—ﬁ(_m Z.ﬂ) L Al=aAl (5.394)
A symplectic matrix S, belonging to the fundamental representation of Sp(2n,R), in the com-

plex basis reads

U=A"'SA . (5.395)

There is a 1-1 correspondence between matrices U as in (5.395) and complex 2n X 2n matrices
belonging to U(n,n) N Sp(2n,C),

U(%_%)U:(%_%) : Ut(?l_oﬂ)U:(g_o'ﬂ). (5.396)

Equations (5.396) define a representation of Sp(2n,R) on the complex vector space C*". Tt
is the direct sum of the representations (g) and (jfZ)’ these are real representations of real
dimension 2n. (The representation (g) is the vector space of all linear combinations, with

coefficients in R, of vectors of the kind (E))
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5.7.2 The coset space Sp(2n,R)/U(n) (M* and N matrices)

The maximal compact subgroup of U(n,n) is U(n) x U(n); because of the second relation
in (5.396) the maximal compact subgroup of Sp(2n,R) is U(n). The usual embedding of U(n)
into the complex and the fundamental representations of Sp(2n,R) are respectively

u 0 Reu —Imwu
(0 u) ’ (Imu Rewu ) ’ (5.397)
where u belongs to the fundamental of U(n).

The f and h matrices
The f and h matrices are n x n complex matrices that satisfy the two conditions

(f*,h*)(g_0ﬂ> ({L):z‘]l ie. —flh+hTf =il (5.398)
and
(ft,hf)(g_oﬂ) (£)=0 ie. —fth+h'f=0 (5.399)

These two relations are equivalent to require the real matrix

A B Ref —Imf
(C D) = V2 (Reh —Imh) (5.400)

to be in the fundamental representation of Sp(2n,R). Vice versa any symplectic matrix (ég)

leads to relations (5.398), (5.399) by defining

<£)2%<£:§g> ' (5.401)

In terms of the f and h matrices we have

o (ABY L (f+ih f+ih
U_ﬂl( )ﬂ_\/i<f—z‘h f_ih). (5.402)

The V matrix and its symplectic vectors

The matrix
_(AB B ff
V_(C'D)ﬂ_<hl_l) (5.403)

transforms from the left via the fundamental representation of Sp(2n,R) and from the right via
the complex representation of Sp(2n,R). Since A is a symplectic matrix we have that V is a
symplectic matrix, V(§")V = (17") , hence also its transpose V', V({7 ")V' = (") . The
columns of the V' matrix are therefore mutually symplectic vectors; also the rows are mutually
symplectic vectors. Explicitly if V¢ is the vector with components given by the ¢-th row of V,
then VEQ/7VS = Q% where Q = G-

5.7.2 The coset space Sp(2n,R)/U(n) (M* and N matrices)

All positive definite symmetric and symplectic matrices S are of the form
S=g¢" , geSp2n,R). (5.404)
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5.7.2 The coset space Sp(2n,R)/U(n) (M* and N matrices)

Indeed consider the factorization (5.393) (since S is positive definite also its restriction to an n
dimensional subspace is positive definite, therefore D is invertible). The factorization (5.404)
is obtained for example by considering the symplectic matrix

(5.405)

-6 (0 s)

where the matrix v/ D is the unique positive definite square root of the symmetric and positive
definite matrix D. (Notice that the same proof shows that any symmetric and symplectic
matrix (gtg) with invertible and positive definite matrix D is of the form gg' and therefore is

positive definite).

We can now show that the coset space Sp(2n,R)/U(n) is the space of all positive definite
symmetric and symplectic matrices. The maximal compact subgroup of Sp(2n,R) is H := {g €
Sp(2n,R); gg' = 1}, and we have seen in (5.397) that it is U(n).

We then denote by gH the elements of Sp(2n,R)/U(n), where H = U(n), and consider the
map

' Sp(2n,R)
- Un)
gH — gg' (5.406)

— {8 € Sp(2n,R); S = 8" and S positive definite}

This map is well defined because it does not depend on the representative g € Sp(2n,R) of the
equivalence class gH. Formula (5.404) shows that this map is surjective. Injectivity is also easily
proven: if gg' = ¢’¢"* then ¢'"'g(¢""'g)! = 1, so that u = ¢""!g is an element of Sp(2n,R) that
satisfies uu’ = 1. Therefore u = ¢'~'g belongs to the maximal compact subgroup H = U(n),
hence g and ¢’ belong to the same coset.

The M* and N matrices

Notice that the n x n matrices f = ( f’}l) Aa=1,..n, are invertible. Indeed if the columns of f were
linearly dependent, say f21® = 0, i.e. fi = 0, with a nonzero vector v, then sandwiching
(5.398) between 9! and ¢ we would obtain

~(f)Th + 9hT fop = il # 0 (5.407)

that is absurd. Similarly also the matrix h = (hp,) is invertible. We can then define the
invertible n X n matrix

N =hf! (5.408)

that is symmetric (cf. (5.399)) and that has negative definite imaginary part (cf. (5.398))

>(N N = =Z(( ), (5.409)

N=N" ImN=-=
€ €

(while N~ has positive definite imaginary part N~ — N=T = )(((T)™®). Any symmetric
matrix with negative definite imaginary part is of the form (5.408) for some (f,h) satisfying
(5.398) and (5.399) (just consider any f that satisfyes (5.409)). There is also a 1-1- corre-
spondence between symmetric complex matrices N with negative definite imaginary part and
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5.7.3 Lie algebra of Sp(2n,R) and U(n) (a,b,c,d matrices)

symmetric negative definite matrices M* of Sp(2n,R). Given N we consider

e (1 —ReN\ (ImN 0 1 0
M(M_(o 1 )( 0 ImN“"’)(—ReN]I)

_ (ImN +ReNImN ™ ReN —ReNImN™%
o —ImN " ReN ImN—™

_ (01 (NImNTINT N T N
~"\ro ~ImN"NT Im AN

RO
S (39) ()
= —2Re K_fh) (= fT)} (5.410)

Since symmetric negative definite matrices M* of Sp(2n,R) parametrize the coset space
Sp(2n,R)/U(n), the matrices N too parametrize this coset space.

Under symplectic rotations (5.329) we have
’ A
(1) () =5 ()= (e5) (2) 4

N = N' = (C+DN)A+BN)™". (5.412)
The transformation of the imaginary part of N is (recall (5.409))

and

ImN — ImN' = (A+BN) TImN(A+BN)™™ (5.413)
The transformation of the corresponding matrix M*(N) is
M*(N) = M(N)=8"" " M*(N)S™™ (5.414)

this last relation easily follows from (5.410) and from (7") = (7") (0.
The relation between the negative definite symmetric matrix M* defined in (5.410) and S
defined in (5.404) can be obtained from their transformation properties under Sp(2n,R),

M*=-8"'= (]? _0]1) S (]? —011) . (5.415)

We also have M = —V-ty-1 .

5.7.3 Lie algebra of Sp(2n,R) and U(n) (a,b,c,d matrices)

If we write (35) = (39) + €(2%) with € infinitesimal we obtain that the 2n x 2n matrix

(Z 2) (5.416)

belongs to the Lie algebra of Sp(2n,R) if a,b,c,d are real n x n matrices that satisfy the
relations

a=—d, b=b, =c. (5.417)



5.8 Appendix: Unilateral Matrix Equations

The Lie algebra of U(n) in this fundamental representation of Sp(2n,R) is given by the matrices

a b
—b a
with b =0, a = —a’.

In the complex basis (5.395) the Lie algebra of Sp(2n,R) is given by the 2n x 2n matrices

( E g) (5.418)

where a and b are complex n x n matrices that satisfy the relations

al=—a, b'=b. (5.419)

The Lie algebra of U(n) in this complex basis is given by the matrices (8 (5)) with af = —

5.8 Appendix: Unilateral Matrix Equations

The remarkable symmetry property of the trace of the solution of the matrix equation (5.142)
holds for more general matrix equations. This trace property and the structure of the solution
itself are studied in [18], and with a different method in [70]; see also [71] for a unified approach
based on the generalized Bezout theorem, and [69] for convergence of perturbative solutions of
matrix equations and a new form of the noncommutative Lagrange inversion formula.

In this appendix we prove the symmetry property of the trace of certain solutions (and their
powers) of unilateral matrix equations. These are N*® order matrix equations for the variable
X with matrix coefficients A; which are all on one side, e.g. on the left

X =Ag+ A X + X%+ ..+ Ay XY, (5.420)

The matrices are all square and of arbitrary degree. We may equally consider the A;’s as
generators of an associative algebra, and X an element of this algebra which satisfies the above
equation. We consider the formal solution of (5.420) obtained as the limit of the sequence
Xo=0, Xpy1 = Ao+ A1 Xy + Ao X2+ ...+ Ay X}, Tt is convenient to assign to every matrix a
dimension d such that d(X) = —1. Using (5.420), the dimension of the matrix A; is given by
d(A;) =i— 1.

First note that we can rewrite equation (5.420) as

N N
L= A = 1-X =) A(l-Xx"
=0 k=1
The right hand side factorizes
N N k-1
1-3"4 1= ) A4X™(1-X).
=0 k=1 m=0

Under the trace we can use the fundamental property of the logarithm, even for noncommutative
objects, and obtain

N N k-1
Tr log(1 — ZAZ) = Tr log(1l — Z Z A X™) 4 Tr log(1 — X) .
=0 k=1 m=0
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Classical Electromagnetic Duality for Children by JM Figueroa-O’Farrill

Using d(Ag) = k — 1 and d(X) = —1 we have d(A,X™) = k —m — 1 and we see that all
the words in the argument of the first logarithm on the right hand side have semi-positive
dimension. Since all the words in the expansion of the second term have negative dimension

we obtain
N

Tr log(1 — X) = Tr log(1 — > _ A))

=0

. 5.421
d<0 ( )

On the right hand side of (5.421) one must expand the logarithm and restrict the sum to words
of negative dimension. Since d(X") = —r by extracting the dimension d = —r terms from the
right hand side of (5.421) we obtain

<Z£\;0ai_1)!
Tr¢" =r > P B Tr S(AL AP .. AW . (5.422)

{a;}
S (i—1)a;=—r

The relevant point is that all the terms in the expansion of Tr log(1 — ZﬁV:o A;) are automat-
ically symmetrized, this explains the symmetrization operator S in the Ay, Ay, ...Ay matrix
coefficients.

If the coefficient Ay is unity, we have the following identity for the symmetrization operators
of N4+ 1 and of N coefficients (words)

S(AP AT . AW ay=1 = S(AFAT ... AV .

This is obviously true up to normalization; the normalization can be checked in the commutative
case.

The trace of the solution of (5.142) can now be obtained from (5.422) by considering r = 1
and N = 2 and by setting A, to unity.

6 Classical Electromagnetic Duality for Children by JM
Figueroa-O’Farrill

In this chapter we treat classical electromagnetic duality, and its manifestation (Montonen-
Olive duality) in some spontaneously broken gauge theories. We start by reviewing the Dirac
monopole, and then quickly move on to the 't Hooft-Polyakov monopole solution in the model
described by the bosonic part of the SO(3) Georgi-Glashow model. We focus on the monopole
solution in the Prasad-Sommerfield limit and derive the Bogomol'nyi bound for the mass of the
monopole. We show that the classical spectrum of the model is invariant under electromagnetic
duality. This leads to the conjecture of Montonen and Olive. We then discuss "the Witten
effect" and show that the Zs electromagnetic duality extends to an SL(2,Z) duality.

6.1 1.1 The Dirac Monopole

In this section we discuss the Dirac monopole and the Dirac(-ZwanzigerSchwinger) quantisation
condition in the light of classical electromagnetic duality.

6.1.1 1.1.1 And in the beginning there was Maxwell...

Maxwell’s equations in vacuo, given by
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6.1.1 1.1.1 And in the beginning there was Maxwell...

3. F =0 G
5. 9B 5. E
ot

ot

are highly symmetric. In fact, they are invariant under both Lorentz transformations (in
fact, conformal) and under electromagnetic duality:

(E,B)— (B,—E) (1.2)

Lorentz invariance can be made manifest by introducing the field-strength F),,, defined by

FOi — _FiO — _El Fz] — _EijkBk

In terms of F,,, Maxwell’s equations (1.1) become

O,F"™ =0 9, F" =0 (1.3)
where
with €123 = 4+1. This formulation has the added virtue that the duality transformation

(1.2) is simply

AL A AL g (1.4)

where the sign in the second equation is due to the fact that in Minkowski space x> = —1.

In Minkowski space d,*F"” = 0 implies that F,, = J,A, — 0, A,, for some electromag-
netic potential A,. Similarly, 9,F"" = 0 implies that *F),, = GM/L — &,flu, for some dual
electromagnetic field flu. Notice however that the duality transformation relating A, and flu
is nonlocal. It may be easier to visualise the following two-dimensional analogue, where the
duality transformation relates functions ¢ and ¢ which satisfy €ap0P = dn®, where a, 3 take
the values 0 and 1 now.

In the presence of sources, duality is preserved provided that we include both electric and
magnetic sources:

0, F" =37 0, F" =k
and that we supplement the duality transformations (1.4) by a similar transformation of

the sources:

]’,u — k/" klu’ — _jﬂ

A charged point-particle of in the presence of an electromagnetic field behaves according to

the Lorentz force law. If the particle is also magnetically charge, the Lorentz law is then given
by

d?at dx
m = (qF" + g*F" z
dr? (g g ) dr
*1 In these lectures, we shall pretend to live in Minkowski space with signature (+— ——). We will set ¢ = 1

but will often keep A explicit.
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6.1.2 1.1.2 The Dirac quantisation condition

where 7 is the proper time, and m, ¢ and g are the mass, the electric and magnetic charges,
respectively. This formula is also invariant under duality provided we interchange the electric
and magnetic charges of the particle: (¢, g) — (g, —q).

Problem: Derive the above force law from a particle action.

Notice that in the presence of magnetic sources, 9, F* # 0 whence there is no electro-
magnetic potential A,. Nevertheless if at any given moment in time, the magnetic sources
are localised in space, one may define A, in those regions where k* = 0. The topology of
such regions is generically nontrivial and therefore a nonsingular A, need not exist throughout.
Instead one solves for A, locally, any two solutions being related, in their common domain of
definition, by a gauge transformation. We will see this explicitly for the magnetic monopole.

6.1.2 1.1.2 The Dirac quantisation condition

Whereas a particle interacting classically with an electromagnetic field does so solely via the
field-strength F*”, quantum mechanically the electromagnetic potential enters explicitly in the
expression for the hamiltonian. Therefore the non-existence of the potential could spell trouble
for the quantisation of, say, a charged particle interacting with the magnetic field of a monopole.
In his celebrated paper of 1931, Dirac |Dir31| studied the problem of the quantum mechanics
of a particle in the presence of a magnetic monopole and found that a consistent quantisation
forced a relation between the electric charge of the particle and the magnetic charge of the
monopole: the so-called Dirac quantisation condition. We will now derive this relation.

A magnetic monopole is a point-like source of magnetic field. If we place the source at the
origin in R?, then the magnetic field is given by

Br)=2" (1.5)

where ¢ is the magnetic charge. In these conventions, the magnetic charge is also the
magnetic flux. Indeed, if ¥ denotes the unit sphere in R3, then

g:/zﬁ.dﬁ

In the complement of the origin in R3, 3 X § = (, whence one can try to solve for a vector

potential X obeying E = 3 X X For example, we can
consider

X+(7) g 1—0089é¢

- Anr  sinf

where (7,0, ¢) are spherical coordinates. 3 X X+ = B everywhere but on the negative
z-axis where § = 7 and hence ng singular. Similarly,

X,(?) _ _Ll%—cosé%

47r  sin6

also obeys 3 X X_ = B everywhere but on the positive z-axis where # = 0 and X_is

singular. It isn’t that we haven’t been clever enough, but that any X which obeys 3 X X =
over some region will always be singular on some string-like region: the celebrated Dirac string.
Over their common domain of definition (the complement of the z-axis in

R3) d x <X+ — X_> = 0, whence one would expect that there exists a function x so that

Al — A = 0x. However the complement of the z-axis is not simply-connected, and x need
only be defined locally. For example, restricting ourselves to 6 = 7, we find that
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6.1.3 1.1.3 Dyons and the Zwanziger-Schwinger quantisation condition

A -4 = e, = E] (L)

27 27

but notice that since ¢ is an angle, the function x is not continuous. It couldn’t possibly
be continuous, for if it were there would be no flux. Indeed, if ¥ again denotes the unit sphere
in R?, Y*the upper and lower hemispheres respectively, and E the equator, the flux can be
computed in terms of y as follows:

g:/ET%-d?
:/ <3><X+>~d§+/z (3x4) a8

>+

:[EX+-d7—/EX_-d7
:/ng-d7

= x(2m) = x(0)
Suppose now that we are quantising a particle of mass m and charge ¢ in the field of a
magnetic monopole. The Schrédinger equation satisfied by the wave-function is

M, oy
oV V=G

where ? = 3 + z'eX, for e = g/\. The Schrodinger equation is invariant under the
gauge-transformations:

A A+ Ty and ¥ exp(—iex)v

This gauge invariance guarantees that solutions of the Schrédinger equation obtained locally

with a particular X will patch up nicely, provided that the wave-function be single-valued. This
condition means that

exp(—iex) = exp(—iege/2m)

must be a single-valued function, which is equivalent to the Dirac quantisation condition:

eg =2mn forsome ne€Z (1.6)

The Dirac quantisation condition has the following physical interpretation. Classically, there
is not much of a distinction between a a magnetic monopole and a very long and very thin
solenoid. The field inside the solenoid is of course, different, but in the limit in which the
solenoid becomes infinitely long (on one end only) and infinitesimally thin, so that the inside of
the solenoid lies beyond the probe of a classical experiment, the field at the end of the solenoid
is indistinguishable from that of a magnetic monopole. Quantum mechanically, however, one
can in principle detect the solenoid through the quantum interference pattern predicted by the
Bohm-Aharanov effect. The condition for the absence of the interference is precisely the Dirac
quantisation condition.

6.1.3 1.1.3 Dyons and the Zwanziger-Schwinger quantisation condition

A quicker, more heuristic derivation of the Dirac quantisation condition (1.6) follows by invoking

the quantisation of angular momentum. The orbital angular momentum L = T xm7 of a
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6.1.3 1.1.3 Dyons and the Zwanziger-Schwinger quantisation condition

particle of mass m and charge ¢ in the presence of a magnetic monopole (1.5) is not conserved.
Indeed, using the Lorentz force law,

L% m?
dt

:7X(q?x§)
99 7><(?><7)

:47rr3
_d ("
Cdt \4r r

whence the conserved quantity is instead

Fop_ w7

A r

a result dating to 1896 and due to Poincaré.

Exercise

1.1 (Angular momentum due to the electromagnetic field)
Show that the correction term is in fact nothing else but the angular momentum of the
electromagnetic field itself:

7em = | &r7 x (ﬁ X 3)

where the B—ﬁeld is the one due to the charged particle.
If we now assume that the electromagnetic angular momentum is separately quantised, so
that

T =

we recover (1.6) again. The virtue of this derivation is that it provides a quick proof of
the Zwanziger-Schwinger quantisation condition for dyons, as the following exercise asks you
to show.

En)\ for some ne€Z

Exercise 1.2 (The Zwanziger-Schwinger quantisation condition)

A dyon is a particle which possesses both electric and magnetic charge. Consider two dyons
of charges (¢ =€\, g) and (¢ = €'\, ¢’). Show that imposing the quantisation of the angular
momentum of the resulting electromagnetic field yields the following condition:

eg —e'g=2mn for some n € Z (1.7)

Notice that the existence of the "electron" (that is, a particle with charges (e,0)) does
not tell us anything about the electric charge of a monopole (g, g); although it does tell us
something about the difference between the electric charges of two such monopoles: (g, g) and
(¢, g). Indeed, (1.7) tells us immediately that g (¢ — ¢') = 27n for some integer n. If g has the
minimum magnetic charge g = 27 /e, then the difference between the electric charges of the
dyons (¢, g) and (¢, g) is an integer multiple of the electric charge of the electron: ¢ — ¢’ = ne
for some integer n. But we cannot say anything further about the absolute magnitude of either

qgor(.
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6.2 1.2 The "t Hooft-Polyakov Monopole

Exercise 1.3 (Dyonic spectrum in CP non-violating theories)

Prove that if CP is not violated, then in fact there are only two (mutually exclusive) possibilities:
either ¢ = ne or ¢ = ne + %e.

(Hint: use that under CP: (q,9) — (—¢,g). Why?)

We will see later when we discuss the so-called "Witten effect" that this gets modified in
the presence of a CP-violating term, and the electric charge of the dyon will depend explicitly
on the # angle measuring the extent of the CP violation.

6.2 1.2 The 't Hooft-Polyakov Monopole

In 1974, 't Hooft [tH74] and Polyakov [Pol74] independently discovered that the bosonic part
of the Georgi-Glashow model admits finite energy solutions that from far away look like Dirac
monopoles. In contrast with the Dirac monopole, these solutions are everywhere regular and do
not necessitate the introduction of a source of magnetic charge - this being due to the "twists"
in (the vacuum expectation value of) the Higgs field.

6.2.1 1.2.1 The bosonic part of the Georgi-Glashow model

The Georgi-Glashow model was an early proposal to describe the electroweak interactions. We
will be concerned here only with the bosonic part of the model which consists of an SO(3)
Yang-Mills field theory coupled to a Higgs field in the adjoint representation. The lagrangian
density is given by

L= —i@“" Tt %Dﬂ&- D, é —V(6) (1.8)

where
the gauge field-strength @W is defined by

— = = =
T =0, W, —9,W, —eW, x W,

where qu are gauge potentials taking values in the Lie algebra of SO(3), which we identify
with R? with the cross product for Lie bracket;

the Higgs field g is a vector in the (three-dimensional) adjoint representation of SO(3),
with components ¢, = (¢1, ¢a, ¢3) which is minimally coupled to the gauge field via the gauge-
covariant derivative:

the Higgs potential V' (¢) is given by

V(g) = A (& —a?)’

where ¢? = gg . (E and A\ is assumed non-negative.
The lagrangian density £ is invariant under the following SO(3) gauge transformations:

é =B =g0)é
W, o Wi, = g(0)Wagle) ™ + - 0uo(a)g() (1.9)

where g(x) is a possibly z-dependent 3 x 3 orthogonal matrix with unit determinant.
The classical dynamics of the fields W, and ¢ are determined from the equations of motion
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6.2.1 1.2.1 The bosonic part of the Georgi-Glashow model

D,G" = —¢¢ x D'§  D'D,d=—\(¢* —a?) & (1.10)
and by the Bianchi identity

D“*é‘“’ =0 (1.11)
where *G* = —6“”’\”8
The canonically conJugate momenta to the gauge field W and the Higgs ¢ are given by

Fi— Q% [i=Dyd (1.12)
. g
Defining B; by

- -
k
aij = _Ez’jk B* = +€ijk B k

we can write the energy density as

ﬂ_lﬁ ﬁ+1ﬁ> ﬁ2+1_> Bt D¢ D, + V(¢) (1.13)

which is mamfestly positive- semldeﬁmte and also gauge invariant.
We define a vacuum configuration to be one for which the energy density vanishes. This
means that

8,“,:0 D“$:O V(g) =0

For example, q_zg = aez and \X)/u = 0 is such a configuration, where (e,) is an orthonormal
basis for the three-dimensional representation space where the Higgs field takes values. We also
define the Higgs vacuum as those configurations of the Higgs field which satisfy the latter two
equations above. Notice that in the Higgs vacuum, the Higgs field obeys ¢? = a?. Any such
vacuum configuration is not invariant under the whole SO(3), but only under an SO(2) = U(1)
subgroup, therefore this model exhibits spontaneous symmetry breaking.

Exercise 1.4 (The spectrum of the model)

Let qb a+ ? where @ is a constant vector obeying d-d=a . Expanding the lagranglan
density in terms of ? show that the model consists of a massless vector boson A, = 17 W
which we will identify with the photon, a massive scalar field ¢ = 17 ¢ and two massive
vector bosons W:tWIth the charge assignments given
in Table 1.1.

(Hint: The masses are read off from the quadratic terms of the lagrangian density:

B 1 Mg\ 5 1 Mw\° oo
L—“'W(T) 9”5(7 WtV

whereas the charges are read off from the coupling to the photon. The photon couples
minimally via the covariant derivative V,, = 0, + iQ/AA,,. By examining how this covariant
derivative embeds in the SO(3) covariant derivative one can read off what @) are for the fields
in the spectrum.)

Field ‘ Mass Charge
A, 0 0
© | My = av2 A 0
W/jt My = ae) +el

Table 1.1: The perturbative spectrum after higgsing.
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6.2.2 1.2.2 Finite-energy solutions: the 't Hooft-Polyakov Ansatz

6.2.2 1.2.2 Finite-energy solutions: the ’t Hooft-Polyakov Ansatz

We now investigate the properties of finite-energy non-dissipative solutions to the equations
of motion (1.10). But first let us remark a few properties of arbitrary finite-energy field con-
figurations. The energy of a given field configuration is the spatial integral £ = [ d*zH of
the energy density H given by equation (1.13). Finite energy means that the integral exists,
hence the fields must approach a vacuum configuration asymptotically. In particular the Higgs
field approaches the Higgs vacuum at spatial infinity. If we think of the Higgs potential V" as a
function V : R? — R, let us define My C R? as those points @ € R? for which V(@) = 0. In
the model at hand, M, is the sphere of radius a, hence in any finite-energy configuration the
Higgs field defines a function from the sphere at spatial infinity to Mo:

G () = lim ¢(7) € M,

r—00

We will assume that the resulting function gz;oo is actually continuous. This would follow
from some uniformity property of the limit and such a property has been proven by Taubes
JT80.

It is well-known that the space of continuous functions from a sphere to a sphere is discon-
nected: it has an infinite number of connected components
indexed by an integer called the degree of the map. A constant map has degree zero, whereas
the identity map has degree 1. Heuristically, the degree is the number of times one sphere
wraps around the other. It is the direct two-dimensional generalisation of the winding number
for maps from a circle to a circle.

Taking these remarks into account it is not difficult to construct maps of arbitrary degree.

Consider the map f,, : R¥\{0} — R?® defined by

fn(7) = (sin 6 cos nyp, sin 0 sin nyp, cos 0) (1.14)

where (7,0, ¢) are spherical coordinates. The map f,, restricts to a map from the unit sphere
in R3 to itself which has degree n.

The topological number of a finite-energy configuration is defined to be the degree of the
map QSOO The zero energy vacuum configuration W =0, qb = aeg has zero degree, since gboo
is constant. The topological number of a field conﬁguratlon being an integer-is invariant under
any continuous deformation. In particular it is invariant under time evolution, and under gauge
transformations, since the gauge group is connected. Hence if we set up a finite-energy field
configuration at some moment in time whose topological number is different from zero, it will
never dissipate; that is, it will never evolve in time towards a trivial solution. In other words,
in a sense it will be stable.

We now investigate whether such stable solutions actually exist. We will narrow our
search to spherically symmetric static solutions-a solution is deﬁned to be static if it is time-
independent and in addition the timecomponent of the gauge field Wo vanishes.

One may be tempted to think that the this latter condition is simply a choice of gauge.
Indeed it is easy to show that Wo=0 up to a gauge transformation, but the gauge transforma-
tion is actually time-dependent which is not allowed, since we are looking for time-independent
solutions. Coming soon: More details on the explicit time-dependent gauge transformation.

It follows from (1.12) that for static field configurations both E and II vanish, and hence
the energy agrees up to a sign with the lagrangian. This means that a field configuration will
be a solution to the classical equations of motion if and only if it extremises the energy.

The 't Hooft-Polyakov Ansatz for the monopole is given by
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37) = = Hiaer)
Wi — —eaijg’—]u ~ K(aer))

7”2
WY =0 (1.15)

for some arbitrary functions H and K.

Exercise

1.5 (Boundary conditions on H and K)
Plugging the Ansatz into the expression for the energy density derive the following formula
for the energy:

_Ama [ dE
e 0o & .
dH 1 ([ dH | A
(52_61@* +3 <§—d§ — H> +5 (K - 1)” + K2H? + 1 (= 52)2> (1.16)

Deduce that the integral exists provided that the following boundary conditions hold:

K —0 and H/¢—1 sufficiently fast as £ — oo
K—-1<0() and H<O() as&—0 (1.17)

This last equation means that H and K approach 0 and 1 respectively at least linearly in
Eas & — 0.
Notice that with the above boundary conditions,

- I
b)) = Tll}rgo erQH(aer) =ar

which is (homotopic to) the identity map, and hence has degree 1. In other words, the
topological number of such a field configuration is 1. If such a solution exists it is therefore
stable and non-dissipative.

Exercise 1.6 (The equations of motion for H and K)

Work out the equations of motion for the functions H and K in either of two ways: either plug
the Ansatz into the equations of motion (1.10) or else extremise the energy subject to the above
boundary conditions. In either case you should get the following coupled nonlinear system of
ordinary differential equations:

*K
2d—§2:KH2+K(K2—1)
d*H A
52d—£2 =2K°H + S0 (H? - &%) (1.18)

Initial numerical studies of the above differential equations for H and K together with
the boundary conditions (1.17) suggested the existence of a solution. This was later proven
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rigourously by Taubes JT80. Notice that the asymptotic limit of the equations (1.18) in the
limit £ — oo yields:

PK

de?

ch A
gz e

where h = H — £. The above equations can be solved for at once and one finds that the
solutions compatible with the boundary conditions are

K ~ exp(—¢) = exp (=Mwr/A)
h ~ exp (—Mpgr/\)

where My, and My were obtained in Exercise 1.4. This means that the solution describes
an object of finite size given by the largest of the Compton wavelengths \/My or A\/My.

In order to identify the solution provided by the 't Hooft-Polyakov Ansatz we investigate
the asymptotic electromagnetic field. Recall that the electromagnetic potential is identified

- —
with A, = ¢ - V_\}M, corresponding to the U(1) C SO(3) defined as the stabiliser of ¢. The

electromagnetic field can therefore be identified with F),, = %gg . GW. Because the 't Hooft-

Polyakov Ansatz corresponds to a static solution, there is no electric field: Fy; = 0. However,
as the next exercise shows, there is a magnetic field.

Exercise 1.7 (Asymptotic form of the electromagnetic field)
Show that the asymptotic form of F}; = %gg . éij is given by

Tk

Fyi = €k (1.19)
The form (1.19) of the electromagnetic field shows that the asymptotic magnetic field is
that of a magnetic monopole:

B_ 17
T erd

A quick comparison with equation (1.5) reveals that the magnetic charge of a 't Hooft-
Polyakov monopole is (up to a sign) twice the minimum magnetic charge consistent with the
electric charge e and the Dirac quantisation condition; that is, twice the Dirac charge corre-
sponding to e. This follows from the fact that the electromagnetic U(1) is embedded in SO(3)
in such a way that the electric charge is the eigenvalue of the T3 isospin generator, which here
is in the adjoint representation, which has integral isospin. The minimum electric charge is
therefore e, = %e, relative to which the charge of the 't Hooft-Polyakov monopole is indeed
one Dirac charge, again up to a sign.

In fact, there is another solution with the opposite magnetic charge. It is obtained from the
't Hooft-Polyakov monopole by performing a parity transformation on the Ansatz.

One might wonder whether there also exist dyonic solutions. These solutions would not
be static in that W, would be different from zero, but time-independent dyonic solutions have
been found by Julia and Zee JZ75 shortly after the results of 't Hooft and Polyakov.

In summary, we see that the 't Hooft-Polyakov solution describes an object of finite size
which from far away cannot be distinguished from a Dirac monopole of charge —4x/e. In
contrast with the Dirac monopole, the 't Hooft-Polyakov monopole is everywhere smooth-
this being due to the massive fields which become relevant as we approach the "core" of the
monopole.
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6.2.3 1.2.3 The topological origin of the magnetic charge

Although the 't Hooft-Polyakov monopole is indistinguishable from far away from a Dirac
monopole, as we approach its core the massive fields become relevant and the difference becomes
evident. In contrast to the Dirac monopole, which necessitates a singular point-like magnetic
source at the origin, the 't Hooft-Polyakov monopole is everywhere smooth and its magnetic
charge is purely topological and, as we will see in this section, due completely to the behaviour
of the Higgs field far away from the core.

Because of the exponential decay of the massive fields away from the core of the monopole,
we notice that the Higgs field approaches the Higgs vacuum. In other words, a large distance
away from the core of the monopole, the Higgs field satisfies

D, é =0 (1.20)

¢-¢=a (1.21)

up to terms of order O(exp(—r/R)) where R is the effective size of the monopole, which is
governed by the mass of the heavy particles.

Notice that equation (1.20) already implies that ¢ - & is a constant. Indeed,
8u(€;' g) = 2&‘ auq_;
—2¢4- (W, x6) by 1.20
=0

What 1.21 tells us is that this constant is such that the potential attains its minimum.

It is therefore reasonable to assume that any finite-energy solution (not necessarily static or
time-independent) of the Yang-Mills-Higgs system (1.10) satisfies equations (1.20) and (1.21)
except in a finite number of well-separated compact localised regions in space, which we shall
call monopoles. In other words, we are considering a "dilute gas of monopoles" surrounded by
a Higgs vacuum.

Notice that in the Higgs vacuum, gg X V—\>/u = —é M¢7, whence \7_\>7,L is fully determined except
for the component in the g—direction, which we denote by
A,. Computing the components perpendicular to 5 we find that

= 1 = —- 1=
WM = @Q’) X 3M¢ +5¢AN
Exercise 1.8 (Gauge field-strength in the Higgs vacuum)
%
Show that the field-strength in the Higgs vacuum points in the ¢-direction and is given by
= %QSFW where
1 - . S
Fuv = -6+ (040 % 0,0) + u A — DA,

Using the equations of motion (1.10) and the Bianchi identity (1.11) prove that F),, satisfies
Maxwell’s equations (1.3).

Now let ¥ be a surface in the Higgs vacuum enclosing some monopoles in the volume it
bounds. The magnetic flux through > measures the magnetic charge. Notice that A, doesn’t
contribute, and that we get:

134



6.2.3 1.2.3 The topological origin of the magnetic charge

ggz/g-dg

_ 2€1a2 / - (aj?ﬁxak?ﬁ) ds

Notice that only the components of &(ﬁ tangential to ¥ contribute to the integral and
therefore the magnetic charge only depends on the behaviour of q; on Y. Furthermore it only
depends on the homotopy class of ng as map X — Mp; in other words, the above integral is
invariant under deformations 5(b of gb which preserve the Higgs vacuum:

D¢ =0 and ¢-6¢=0

%
To see this, let’s compute the variation of gs; under such a deformation of ¢. Notice first
that

— — —
Y (Q‘jk@b : (ajd) X ak¢>> =
— — — — = —
Beind b - (0,6 x 08 ) + 260 (6 - (66 x 9 9))

By Stokes’ theorem, the second term in the right-hand-side integrates to zero. Now, because
5-@-(5: 0, gz_g (@-5 X 3;45) = 0, whence 6j5x E)kqgis parallel to gz_g Hence, 55- (E)qu X 3;45) =0.
In other words, dgs; = 0. This means that gy is invariant under arbitrary deformations of gz; and
hence under any deformation which can be achieved by iterating infinitesimal deformations:
homotopies. Examples of homotopies are:

time-evolution of (;5, continuous gauge transformations on (;5, continuous changes of ¥ within
the Higgs vacuum.

Exercise 1.9 (Additivity of the magnetic charge gx)

Use the invariance of the magnetic charge under the last of the above homotopies, to argue
that the magnetic charge is additive.
(Hint: Use a "contour" deformation argument.)

Notice that the magnetic charge can be written as gs = —%Ng, where
1 — — —
NE = 37 a’ /EdSZEUk¢ X <8J ¢ X 8k ¢> (122)

which as the next exercise asks you to show, is the degree of the map 5: X = M.

Exercise 1.10 (Dirac quantisation condition revisited)

Show that Ny is the integral of the jacobian of the map 5 : Y% — My, which is the classical
definition of the degree of the map. This means that Ny, is an integer; a fact of which you may
convince yourself by showing that if f,, is the map defined by (1.14), then the value of Ny, when
¥ is, say, the unit sphere in R3, is equal to n. Taking this into account we recover again the
Dirac quantisation condition:

egs = —4w Ny, (1.23)

with the same caveat as before about the fact that the minimum magnetic charge is twice
the Dirac charge.
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6.3 1.3 BPS-monopoles

Since the source for a Dirac monopole has to be put in by hand, its mass is a free parameter:
it cannot be calculated. On the other hand, for the 't HooftPolyakov monopole there is no
source, and the mass of the monopole is an intrinsic property of the Yang-Mills-Higgs system
and as such it should be calculable. In the next section we derive a lower bound for its mass.
A natural question to ask is whether there are solutions which saturate this bound, and in the
section after that such a solution is found: the BPS-monopole.

6.3.1 1.3.1 Estimating the mass of a monopole: the Bogomol’nyi bound

In the centre of mass frame, all the energy of the monopole is concentrated in its mass. There-
fore, taking equation (1.13) into account,

M= (%ﬁi-ﬁﬁ%EZ-§>,~+%ﬁ-ﬁ+%Di$-Di5+V(¢)>

RS

Z%/ (Bzﬁz"i_gzgz"i_nggqug)
R3

where we have dropped some non-negative terms. We now redistribute the last term as
follows: we introduce an angular parameter 6§ and we add and subtract El - D;¢psinf and
B, - D; @ cosf to the integrand. This yields

1 - 2 . 2
M > 5/ (Hﬁi—DigbsiHHH +HE>Z'—DZ*¢COSQH )
R3

- —
+ sin 6 Diqb'ﬁi—i-cos@ Di¢~§>i
R3 R3

— — =
Zsin(?/ Diqb-ﬁﬁ—cose D;¢ - B;
R3 R3

where we have introduced the obvious shorthand || V;||> = V;, - V;. But now notice that

/ Diq_b) - EZ = / 0; <$ . E)Z> by the Bianchi identity (1.11)
R3 R3
%
- / ¢ - B.dS, by Stokes

=a B. d? = ag (1.24)

where Y., is the sphere are spatial infinity and ¢ is the magnetic charge of the solution.
Notice that we have used the results of Exercise 1.8, which are valid since finite-energy demands
that the sphere at spatial infinity be in the Higgs vacuum. Similarly, using the equations of
motion this time instead of the Bianchi identity, one finds out that

Di?qb}-ﬁi—a/ ﬁ-d?zaq (1.25)

where ¢ is the electric charge of the solution. Therefore for all angles 6 we have the following
bound on the mass:

M > agcosf + agsin@ (1.26)
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The sharpest bound occurs when the right hand side is a maximum, which happens for
gcosf = gsinf. In other words, tanf = ¢/g. Plugging this back into (1.26), we find the
celebrated Bogomol'nyi bound for the mass of a monopole-like solution in terms of the electric
and magnetic charges:

M > av/¢*+ ¢? (1.27)

derived for the first time in [Bog76 (see also [CPNS76]).

For the 't Hooft-Polyakov monopole, which is electrically neutral, the Bogomol'nyi bound
vields M > alg| = 4wa/e. But a/e = My /e*)\, whence M > My /o, where o ~ 1/137 is
the fine structure constant. If My, ~ 90GeV, say, then My, = 12TeV-beyond the present
experimental range. This concludes the phenomenological part of these lectures!

6.3.2 1.3.2 Saturating the bound: the BPS-monopole

Having derived the Bogomol'nyi bound, it is natural to ask whether there exist solutions which
saturate the bound. We will follow custom and call such states BPS-states. We incurred in
the inequalities for the mass by discarding certain terms from the mass formula. To saturate
the bound, these terms would have to be equal to zero. Since they are all integrals of non-
negative quantities, we must impose that these quantities vanish throughout space and not just
asymptotically as the weaker requirement of finite-energy would demand.
Let us concgltrate on static solutions which saturate the bound. Static solutions satisfy
; = 0and Dy¢ = 0. In particular they have no electric charge, so that sin @ = 0. This means
that cosf = +1 correlated to the sign of the magnetic charge. A quick inspection at the way
we derived the bound reveals that for saturation we must also require that V(¢) should vanish
and that in addition the Bogomol'nyi equation should hold:

B.—+D, ¢ (1.28)

Now the only way to satisfy V(¢) = 0 and yet obtain a solution with nonzero magnetic
charge, is for A to vanish. Why? Because for X # 0,¢?> = a® throughout space, and in
particular, qg Dp? = q; @(E = 0. But using the Bogomol'nyi equation (1.28), this means that
(5 .B; = 0, whence the solution carries no magnetic field. One way to understand the condition
A = 0 is as a limiting value. We let A | 0, while at the same time retaining the boundary
condition that at spatial infinity qg satisfies (1.21). This is known as the Prasad-Sommerfield
limit [ PS75].

Exercise 1.11 (The Bogomol’nyi equation implies (1.10))

Show that the Bogomol'nyi equation together with the Bianchi identity (1.11) implies the
equations of motion (1.10) for the Yang-Mills-Higgs system with A = 0.

Of course, the advantage of the Bogomol’'nyi equation lies in its simplicity. In fact, it is not
hard to find an explicit solution to the Bogomol'nyi equation in the 't Hooft-Polyakov Ansatz,
as the next exercise asks you to do.

Exercise 1.12 (The BPS-monopole)

Show that the Bogomol'nyi equation in the 't Hooft-Polyakov Ansatz yields the following sys-
tems of equations for the functions H and K:
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dK
& KH

dg§

dH

— =H+1-K?
ac 0T

Show that the following is a solution with the right asymptotic boundary conditions:

H(&) =&cothg — 1
£
K(&) =
(& sinh &
Notice that the solution for the BPS-monopole is such that

H(§) — & =1+ O(exp(—£))

which does not contradict 1.17 because for A = 0 the Higgs field is massless. Its interactions
are long range and hence the BPS-monopole can be distinguished from a Dirac monopole from
afar. _

One consequence of the Bogomol’'nyi equation is that both the photon (through B;) and the
Higgs (via D,(E) contribute equally to the mass density. One can show that the longrange force
exerted by the Higgs is always attractive and for static monopoles, it is equal in magnitude
to the 1/r? magnetic force. Therefore the forces add for oppositely charged monopoles, yet
they cancel for equally charged monopoles. This is as it should be if static multi-monopole
solutions saturating the Bogomol'nyi bound are to exist. To see this, notice that the mass of a
two-monopole system with charges g and ¢’ (of the same sign) is precisely equal to the sum of
the masses of each of the BPS-monopoles. Hence there can be no net force between them.

Exercise

1.13 (The mass density at the origin is finite)
Show that the mass density at the origin for a BPS-monopole is not merely integrable, but
actually finite!

(Hint: Notice that the mass density is given by Hngz;
and expand as £ ~ 0.)

2
‘ . Compute this for the BPS-monopole

6.4 1.4 Duality conjectures

In this section we discuss the observed duality symmetries between perturbative and nonpertur-
bative states in the Georgi-Glashow model and the conjectures that this observation suggests.
We start with the Montonen-Olive conjecture and then, after introducing a CP-violating term
in the theory, the Witten effect will suggest an improved SL(2,Z) duality conjecture.

6.4.1 1.4.1 The Montonen-Olive conjecture

At A = 0, the (bosonic) spectrum of the Georgi-Glashow model (including the BPS-monopoles)
is the following:

Electric Magnetic Spin/
Charge Charge Helicity
Particle | Mass 0 0 +1
Photon 0 0 0 0
Higgs 0 0 0 1
W_iyboson | agq +q +g 0
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where ¢ = e\. Two features are immediately striking:

all particles satisfy the Bogomol’'nyi bound; and the spectrum is invariant under electro-
magnetic Zo duality: (¢,9) — (g, —q) provided that we also interchange the BPS-monopoles
and the massive vector bosons.

The invariance of the spectrum under electromagnetic duality is a consequence of the fact
that the formula for the Bogomol'nyi bound is invariant under electromagnetic duality and
the fact that the spectrum saturates the bound. This observation prompted Montonen and
Olive MO77 to conjecture that there should be a dual ("magnetic") description of this gauge
theory where the elementary gauge particles are the BPS-monopoles and where the massive
vector bosons appear as "electric monopoles". This conjecture is reinforced by the fact that two
very different calculations for the inter-particle force between the massive vector bosons (done
by computing tree diagrams in the quantum field theory) and between the BPS-monopoles (a
calculation due to Manton) yield identical answers. Notice, however, that because of the Dirac
quantisation condition, if the coupling constant e of the original theory is small, the coupling
constant g of the magnetic theory must be large, and
viceversa. Hence the duality conjecture would imply that the strong coupling behaviour of a
gauge theory could be determined by the weak coupling behaviour of its dual theory - a very
attractive possibility.

The Montonen-Olive conjecture suffers from several drawbacks:

there is no reason to believe that the duality symmetry of the spectrum is not broken by
radiative corrections through a renormalisation of the Bogomol'nyi bound; in order to under-
stand the BPS-monopoles as gauge particles, we would expect that their spin be equal to one -
yet it would seem naively that due to their rotational symmetry, they have spin zero; and the
conjecture is untestable unless we get a better handle at strongly coupled theories - of course,
this also means that it cannot be disproved!

We will see in the next chapter that supersymmetry solves the first two problems. The third
problem is of course very difficult, but we will now see that by introducing a CP violating term
in the action, the duality conjecture will imply a richer dyonic spectrum which can be tested
in principle.

6.4.2 1.4.2 The Witten effect

Exercise 1.3 asked you to compute the dyonic spectrum consistent with the quantisation con-
dition (1.7) in a CP non-violating theory. You should have found that the electric charge ¢ of a
dyon with minimal magnetic charge g could take one of two sets of mutually exclusive values:
either ¢ = ne or ¢ = ne + %e, where n is some integer. We will see that indeed it is the former
case which holds.

Let N denote the operator which generates gauge transformations about the direction gz?:

1
1
oW, = —aDNq_g (1.29)

where ¥ is any isovector. And consider the operator exp27wiN. In the background of
a finite energy solution, the Higgs field is in the Higgs vacuum at spatial infinity, whence

*The formula for the Bogomol'nyi bound is actually invariant under rotations in the (g,¢) plane. But
the quantisation of the electric and magnetic charges, actually breaks this symmetry down to the Zy duality
symmetry. In their paper, Montonen and Olive speculate that the massless Higgs could play the role of a
Goldstone boson associated to the breaking of this SO(2) symmetry down to Zs. I am not aware of any further
progress in this direction.
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exp 2miN generates the identity transformation. On isovectors it generates a rotation about
¢ of magnitude 27T|¢| /a = 27, and on the gauge fields we notice that Dugb = 0 in the Higgs

vacuum. Since exp 2m¢N = 1, the eigenvalues of N are integral. To see what this means, we
compute N.

We can compute N since it is the charge of the Noether current associated with the trans-
formations (1.29). Indeed,

0L = 9L
3 (aaow . Ty )

_>
Using equation (1.29), and hence that §j ¢ = 0, we can rewrite N as

1 0L —
N=—— [ %= . D¢
ae Jgs 880WZ

— . .
Since the conjugate momentum to W; is —@01 = BZ = —Bi, we find that

E . Dif = (1.30)
ae
where we have used the expression (1.25) for the electric charge ¢ of the configuration. The
quantisation of N then implies that ¢ = ne for some integer n.
Let us now introduce a #-term in the action:

04,8 v o v
2327r2 #“Tos- T = 327r2 < dw.q,

This term is locally a total derivative and hence does not contribute to the equations of
motion. Its integral in a given configuration is an integral multiple (called the instanton number)
of the parameter 6. 6 is therefore an angular variable and parametrises inequivalent vacua. The
Noether charge N gets modified in the presence of this term as follows:

Ly =

N No L[ 9L ~D¢(E

ae Jgs aao

Computing this we find

AN = — 0iab T - D,
1672a /Rs ‘ g Dt

= — 69 / Eijkajk . ngg

1672a

0 -
= | B.-DJ
8m2a Jgs
e
gn2?

where g, given by equation (1.24), is the magnetic charge of the configuration. In other
words,

e

q
N— 82g

For the 't Hooft-Polyakov monopole, eg = —47r, hence the integrality of N means that
e
q=ne+ Py for some ne€Z (1.31)
7r
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This result, which was first obtained by Witten in [Wit79|, is of course consistent with the
quantisation condition (1.7) since for a fixed # the difference between any charges is an integral
multiple of e.

6.4.3 1.4.3 SL(2,7) duality

The action defined by £ + Ly depends on four parameters: e,6, A and a. The dependence on
the first two _can be umﬁed into a complex parameter 7. To see this, let us first rescale the
gauge fields W — eW This has the effect of bringing out into the open all the dependence
on e. The lagranglan is now

L+ L= —ééwﬁw i 8 el D“ D$ V() (132

where all the (e, §)-dependence is now shown explicitly. We now define a complex parameter

whose imaginary part is positive since e is real. To write the lagrangian explicitly in terms
of 7 it is convenient to introduce the following complex linear combination:

g,w = 8,W + i*@,w (1.33)

It then follows that

S, G =20, G 1 2d,, xQm

whence the first two terms in the lagrangian (1.32) can be written simply as

1 = 2w

L (7€ -&m) (1.34)
Notice that because 6 is an angular variable, it is only defined up to 27. This means that

physics is invariant under 7 — 7 + 1. At 6 = 0, the conjecture of electromagnetic duality says

that e — g = —4x/e is a symmetry. But this duality transformation is just 7 — —1/7. We

are therefore tempted to strengthen the conjecture of electromagnetic duality to say that for

arbitrary 6, the physics should depend on 7 only modulo the transformations:

T:7—717+1
1

ST ——
-

Exercise

1.14((P)SL(2,Z) and its action on the upper half-plane)
The group SL(2,Z) of all 2 x 2 matrices with unit determinant and with integer entries acts

naturally on the complex plane:
ab at +0b
T =
cd ct+d

Prove that this action preserves the upper half-plane, so that if Im 7 > 0, so will its transform
under SL(2,7Z). Prove that the matrices 1 and —1 both act trivially (and are the only two
matrices that do). Thus the action is not faithful, but it becomes faithful if we identify every
matrix M € SL(2,7Z) with —M. The resulting group is denoted PSL(2,Z) = SL(2,Z)/{x1}.
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The operations S and T defined above are clearly invertible and hence generate a discrete
group. Prove that they satisfy the following relations:

S?=1 and (ST) =1

Prove that the group generated by S and T subject to the above relations is a subgroup
of PSL(2,7), by exhibiting matrices S and 7" whose action on 7 coincides with the action of
S and T. These matrices are not unique, since in going from PSL(2,7Z) to SL(2,7Z) we have
to choose a sign. Nevertheless, for any choice of S and T, prove that the following matrix
identities are satisfied:

$?=—-1 and (ST)=1

The matrices S and 7' thus generate a subgroup of SL(2,7Z). Prove that this subgroup is
in fact the whole group, which implies that S and 1" generate all of PSL(2,7Z).

(Hint: if you get stuck look in Ser73].)

Is physics invariant under SL(2,Z)? Clearly this would be a bold conjecture, but no bolder
than the original Montonen-Olive Z, conjecture, for in fact the evidence for both is more or less
the same. Indeed, as we now show the mass formula for BPS-states is invariant under SL(2,7Z).
The mass of a BPS-state with charges (g, ¢g) is given by the equality in formula (1.27). From
formula (1.23) it follows that the allowed magnetic charges of the form g = n,,4m /e, for some
nm € Z. As a consequence of the Witten effect, the allowed electric charges are given by
q = nee + nyel /2w, The mass of BPS-states is then given by

M? = 4xa®dt - A(r) - (1.35)

where T = (n.,n,)" € Z x Z and where
1 1 Rer
Alr) = ImT (RGT 17| >

Exercise 1.15 (SL(2,Z)-invariance of the mass formula)

Let

First prove that

AM -7y = (MY A(r) - M

and as a consequence deduce that the mass formula is invariant provided that we also
transform the charges:

n— M- -7

The improved Montonen-Olive conjecture states that physics is SL(2,Z) invariant. If this
is true, this means that the theories defined by two values of 7 related by the action of SL(2,Z)
are physically equivalent, provided that we are willing to relabel magnetic and electric charges
by that same SL(2,Z) transformation.

The action of PSL(2,7Z) on the upper half-plane is well-known (see for example Serre’s book
[Ser73]). There is a fundamental domain D defined by
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T

1
D:{TGC]ImT>O,|ReT <§,

> 1} (1.36)

which has the property that its orbit under PSL(2,7Z) span the whole upper half-plane and
that no two points in its interior
> 1}

| T

DN | —

IntD:{TGC]ImT>O,|ReT <

are related by the action of PSL(2,7Z).

it

Figure 1.1: Fundamental domain (shaded) for the action of PSL(2,7Z) on the upper half
plane, and some of its PSL(2,7Z) images.

5 \ i_:
|

Exercise 1.16 (Orbifold points in the fundamental domain D)

The fundamental domain D contains three "orbifold" points: i,w = exp(in/3) and —w =
exp(2im/3) which are fixed by some finite subgroup of PSL(2,Z). Indeed, prove that i is
fixed by the Zs-subgroup generated by S, whereas w and —& are fixed respectively by the
Zs-subgroups generated by T'S and ST.

We end this section and this chapter with a discussion of the dyonic spectrum predicted by
SL(2,7Z)-duality. If we had believed in the electromagnetic Zy-duality, we could have predicted
the existence of the BPS-monopoles from the knowledge of the existence of the massive vector
bosons (and viceversa). But this is as far as we could have gone with Z,. On the other hand
SL(2,7Z) has infinite order, and assuming that for all values of 7 there are massive vector bosons
in the spectrum, SL(2, Z)-duality predicts an infinite number of dyonic states. This assumption
is not as innocent as it seems, as the Seiberg-Witten solution to pure N = 2 supersymmetric
Yang-Mills demonstrates; but it seems to hold if we have N = 4 supersymmetry. But for now
let us simply follow our noses and see what this assumption implies.

Let’s assume then that for all values of 7 there is a state with quantum numbers 7 = (1,0)%
The duality conjecture predicts the existence of one
state each with quantum numbers in the SL(2, Z)-orbit of 72"

= (20)(6) - (4)

Because M has unit determinant, @ and ¢ are not arbitrary integers: there exist integers b
and d such that ad — bc = 1. This means that a and ¢ are coprime; that is, they don’t have
a common factor (other than 1). Indeed, if n were a common factor: a = na’ and ¢ = nd
for integers o’ and ¢/, and we would have that n (a’d — bc’) = 1 which forces n = 1. We will
now show that this arithmetic property of a and ¢ actually translates into the stability of the
associated dyonic state!
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Exercise 1.17 (Properties of the mass matrix A(7))

Notice that the matrix A(7) in the mass formula (1.35) enjoys the following properties for all
7 in the upper half-plane:

det A(T) =1 and A(7) is positive-definite.

Prove that this latter property implies that the mass formula defines a distance function, so
that in particular it obeys the triangle inequality. In other words, if we define |7 [|? = M2-that
is, the Bogomol’'nyi mass of a dyonic state with that charge assignment - then prove that

172+ ]| < |72 + ||| (1.37)
Now let’s consider a dyonic state ¢ = (a,c)t. The triangle inequality (1.37) says that for
any two dyonic states 7 and 7 which obey w4 m = 7, the mass of the 7 is less than or
equal to the sum of the masses of 7 and m. But we claim that when a and ¢ are coprime,
the inequality is actually strict! Indeed, the inequality is only saturated when 7 and 77%, and
hence 7, are collinear. But if this is the case, a and ¢ must have a common factor. Assume
for a contradiction that they don’t. If 7 = (p,q)" and m = (r,s)!, then we must have that
both p and r are smaller in magnitude to a, and that ¢ and s are smaller in magnitude to
c. But collinearity means that pc = ga. Since a and c are relatively prime, it must be that a
divides p so that there is some integer n such that p = an, which contradicts that p is smaller in
magnitude to a. This also follows pictorially from the fact that a and ¢ are coprime if and only
if in the straight line from the origin to 7 € 7?2 C R?, 7 is the first integral point. Therefore
the dyonic state represented by 7 is is a genuine stable state which cannot be interpreted as
a bound state of other dyonic states with "smaller" charges.

A

e @ ® o e o ® @
L g L] ® ® [ L]
® ° ® ® e o e o
L] ® ® ® ® ®
e @ o o @ b o L ® e e

Figure 1.2: Dyonic spectrum predicted by SL(2,7Z) duality. Dots indicate dyons, crosses
indicates holes in the dyonic spectrum. Only dyons with nonnegative magnetic charge are
shown.

The dyonic states in the SL(2, Z)-orbit of (1,0) can be depicted as follows:

Notice that for ¢ = 0 we have the original state and its charge conjugate. For ¢ = 1 we
have the Julia-Zee dyons but with quantised electric charge: a can be an arbitrary integer. For
¢ = 2, we have that a must be odd. Notice that in every rational direction (that is, every
half-line with rational slope emanating from the origin) only the first integral point is present.
As explained above these are precisely those points (m,n) whose coordinates are coprime.

As we will see in the context of N = 4 supersymmetric Yang-Mills theory, the dyonic
spectrum is in one-to-one correspondence with square-integrable harmonic forms on monopole
moduli space. This is a fascinating prediction: it says that there is an action of the modular
group on the (L?) cohomology of monopole moduli space.

*Contrast this with the case where the triangle inequality saturates. In this case, this means that the bound
state of two dyons with "collinear" charges exhibits no net force between its constituents. Compare this with
the discussion in section 1.3.2
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Chapter 2

7 Special geometry and symplectic transformations by de
Wit, Van Proeyen

Special Kéahler manifolds are defined by coupling of vector multiplets to N = 2
supergravity. The coupling in rigid supersymmetry exhibits similar features. These
models contain n vectors in rigid supersymmetry and n + 1 in supergravity, and n
complex scalars. Apart from exceptional cases they are defined by a holomorphic
function of the scalars. For supergravity this function is homogeneous of second
degree in an (n+1)-dimensional projective space. Another formulation exists which
does not start from this function, but from a symplectic (2n)- or (2n+2)-dimensional
complex space. Symplectic transformations lead either to isometries on the manifold
or to symplectic reparametrizations. Finally we touch on the connection with special
quaternionic and very special real manifolds, and the classification of homogeneous
special manifolds.

T Based on invited lectures delivered by AVP at the Spring workshop on String theory,
Trieste, April 1994; to be published in the proceedings.
* Onderzoeksleider, N.F.W.O., Belgium
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7.0.1 Introduction

7.0.1 Introduction

In nonlinear sigma models, the spinless fields define a map from the d-dimensional Minkowskian
space-time to some ‘target space’, whose metric is given by the kinetic terms of these scalars.
Supersymmetry severely restricts the possible target-space geometries. The type of target space
which one can obtain depends on d and on N, the latter indicating the number of independent
supersymmetry transformations. The number of supersymmetry generators (‘supercharges’)
is thus equal to N times the dimension of the (smallest) spinor representation. For realistic
supergravity this number of supercharge components cannot exceed 32. As 32 is the number
of components of a Lorentz spinor in d = 11 space-time dimensions, it follows that realistic
supergravity theories can only exist for dimensions d < 11. For the physical d = 4 dimensional
space-time, one can have supergravity theories with 1 < N < 8.

Table 7: Restrictions on target-space manifolds according to the type of supergravity theory.
The rows are arranged such that the number s of supercharge components is constant. M
refers to a general Riemannian manifold, SK to ‘special Kéhler’, VSR to ‘very special real’
and () to quaternionic manifolds.

K d=2 d=3 d=4 d=5 d=06
N=1
2 M
N =2 N =2 N=1
4 Kahler Kahler Kahler
N =4 N =4 N =2 N = N=1
8 Q Q SK & Q VSR& Q Do Q
N =4 —
16 ot ® o d=10
N =28 —
32 G d=11

As clearly exhibited in table 7, the more supercharge components one has, the more restric-
tions one finds. When the number of supercharge components exceeds 8, the target spaces are
restricted to symmetric spaces. For k = 16 components, they are specified by an integer n,
which specifies the number of vector multiplets. This row continues to N =1, d = 10. Beyond
16 supercharge components there is no freedom left. The row with 32 supercharge components
continues to N = 1, d = 11. Here we treat the case of 8 supercharge components. This is
the highest value of N where the target space is not yet restricted to be a symmetric space,
although supersymmetry has already fixed a lot of its structure. We will mostly be concerned
with V =2 in d = 4 dimensions. The target space factorizes into a quaternionic and a Kéahler
manifold of a particular type [1], called special [2]. The former contains the scalars of the hy-
permultiplets (multiplets without vectors). The latter contain the scalars in vector multiplets.
Recently the special Kéhler structure received a lot of attention, because it plays an important
role in string compactifications. Also quaternionic manifolds appear in this context, and also
here it is a restricted class of special quaternionic manifolds that is relevant. In lowest order of
the string coupling constant these manifolds are even ‘very special’ Kéhler and quaternionic, a
notion that we will define below.

In the next section we describe the actions of N = 2 vector multiplets. First we consider
rigid supersymmetry. We explain the fields in the multiplets, their description in superspace and
how this leads to a holomorphic prepotential. Then we exhibit how the structure becomes more
complicated in supergravity, where the space of physical scalars is embedded in a projective
space. This became apparent by starting from the superconformal tensor calculus.
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7.0.2 N = 2 actions

In section 7.0.3 we discuss the symplectic transformations, which play an important role in
the recent developments of weak—strong coupling dualities. First we repeat the general idea
(and elucidate it for S and T dualities), and then show what is the extra structure in N = 2
theories. There are two kind of applications, either as isometries of the manifolds (symmetries of
the theory), or as equivalence relations of prepotentials (pseudo-symmetries). We illustrate both
with explicit examples. These will also exhibit formulations without a prepotential, showing the
need for a formulation that does not rely on the existence of a prepotential. This formulation
is given at the end of the section. Some further results will be mentioned in section 7.0.4.

In all of this we confine ourselves to special geometry from a supersymmetry /supergravity
perspective. The connection with the geometry of the moduli of Calabi-Yau spaces [2, 3, 4, 5,
6, 7] is treated in the lectures of Pietro Fre [§].

7.0.2 N = 2 actions

Table 8: Physical fields in N = 2, d = 4 actions

spin | pure SG n vector m. s hyperm.
2 1

3/2 2
1 1 n

1/2 2n 2s
0 2n 4s

We briefly introduce special Kédhler manifolds in the context of N = 2, d = 4 super-
gravity. As exhibited in table 77, the physical multiplets of supersymmetry are vector and
hypermultiplets, which can be coupled to supergravity. In this section we will not consider the
hypermultiplets. The scalar sector of the N = 2 supergravity-Yang-Mills theory in four space-
time dimensions defines the ‘special Kéhler manifolds’. Without supergravity we have N = 2
supersymmetric Yang-Mills theory, which we will treat first. The spinless fields parametrize
then a similar type of Kéhler manifolds. The vector potentials, which describe the spin-1 par-
ticles, are accompanied by complex scalar fields and doublets of spinor fields, all taking values
in the Lie algebra associated with the group that can be gauged by the vectors. In the second
subsection we will see what the consequences are of mixing the vectors in the vector multiplets
with the one in the supergravity multiplet.

Rigid supersymmetry

The superspace contains the anticommuting coordinates 67, and f; where i = 1,2 and «, & are
the spinor indices. The simplest superfields are, as in N = 1, the chiral superfields. They are
defined by a constraint D¥® = 0, where D% is a covariant chiral superspace derivative, and ®
is a complex superfield. This constraint determines its structure*:

d=X+0\ (7.1)
e 0L TIDOLT Y 4 gt 05V +
where ... stands for terms cubic or higher in . New component fields can appear up to

0%, leading to 8 + 8 complex field components. All these fields do not form an irreducible
representation of supersymmetry, but can be split into two sets of 8 + 8 real fields transforming
irreducibly. We restrict ourselves to the set containing the fields already exhibited in (7.1),

¥ +_ 1 1 h 0123 _
We use ?;W =3 (7—‘“” + 5@,,,;077’”) with € =1.
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which leads to the vector multiplet (The others form a ‘linear multiplet’). The reduction is
accomplished by the additional constraint

D(O;Df)q) €aB = eikejgl_)d(kl_?e)ﬁ@ €4 > (7.2)
which for instance implies that the symmetric tensor Y;; satisfies a reality constraint: Y;; =
eikejgf/“, so that it consists of only 3 real scalar fields. But more importantly, we also obtain
a constraint on the antisymmetric tensor: 0" (7—7; — ﬁ;) = 0, which is the Bianchi identity,
which implies that F is the field strength of a vector potential. All the terms ... in (7.1) are
determined in terms of the fields written down. Therefore the independent components of the
vector multiplet are: X4 N4, 71’3,}/;;-‘ (where A = 1,...,n denotes the possibility to include
several multiplets). X4 and A4 will describe the physical scalars and spinors, 4 are the fields
strengths of the vectors and Y4 will be auxiliary scalars in the actions which we will construct.

As we have a chiral superfield, an action can be obtained by integrating an arbitrary holo-
morphic function F(®) over chiral superspace. The action

/ d*x / d*0 F(®) + c.c. (7.3)
leads to the Lagrangian

L= gABa,uXAguXB + gABS\iA ﬁA? + (74)
+Im (FAB?ZH_/AT;;B) + -LPauli + -E4—fermi

where the latter two terms are the couplings of the vector fields to the spinors and the terms
quartic in fermions, which we do not write explicitly here. The metric in target space is
Kéhlerian: [9]

ga5(X, X) = 0405 K (X, X) (7.5)
X, X) =i

For N = 1 the Kéhler potential could have been arbitrary. The presence of two independent
supersymmetries implies that this Kéhler metric, and even the complete action, depends on
a holomorphic prepotential F(X), where X denotes the complex scalar fields. Two different
functions F'(X) may correspond to equivalent equations of motion and to the same geometry.
From the equation® g45 = 2Im Flyp, it follows that

FaxF+4a+ g X" +cipX2XP | (7.6)

where a and g4 are complex numbers, and c4p real’. But more relations can be derived from
the symplectic transformations that we discuss shortly.

The fact that the metric is Kéahlerian implies that only curvature components with two holo-
morphic and two anti—holomorphic indices can be non—zero. In this case, these are determined
by the third derivative of F"

Rapop = —Faceg™ Frep. (7.7)

*Here and henceforth we use the convention where F4p... denote multiple derivatives with respect to X of
the holomorphic prepotential.
tIn supergravity, or in the full quantum theory the g4 must be zero.
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Vector multiplets coupled to supergravity

The general action for vector multiplets coupled to N = 2 supergravity was first derived using
superconformal tensor calculus [1|. In that approach one starts from the N = 2 superconformal
group, which is

SU(2,2|N =2) D SU(2,2)@U(1) ® SU(2). (7.8)

The bosonic subgroup, which we exhibited, contains, apart from the conformal group in d = 4,
also U(1) and SU(2) factors. The Kéhlerian nature of vector multiplet couplings and the
quaternionic nature of hypermultiplet couplings is directly related to the presence of these two
groups. The superconformal group is, however, mainly a useful tool for constructing actions
which have just super-Poincaré invariance (see the reviews [10]). To make that transition, the
dilatations, special conformal transformations and U(1)® SU(2) are broken by an explicit gauge
fixing. The same applies to some extra S—supersymmetry in the fermionic sector.

To describe theories as exhibited in table 7?7, the following multiplets are introduced: (other
possibilities, leading to equivalent physical theories, also exist, see [11, 10]). The Weyl multiplet
contains the vierbein, the two gravitinos, and auxiliary fields. We introduce n + 1 wvector
multiplets :

(XA Al with  I1=0,1,...,n (7.9)

The extra vector multiplet labelled by I = 0 contains the scalar fields which are to be gauge-
fixed in order to break dilations and the U(1), the fermion to break the S—supersymmetry, and
the vector which corresponds to the physical vector of the supergravity multiplet in table ?77.
Finally, there are s + 1 hypermultiplets, one of these contains only auxiliary fields and fields
used for the gauge fixing of SU(2). For most of this paper we will not discuss hypermultiplets
(s =0).

Under dilatations the scalars X’ transform with weight 1. On the other hand an action
similar to (7.3) can only be constructed if F'(X) has Weyl weight 2. This leads to the important
conclusion that for the coupling of vector multiplets to supergravity, one again starts from
a holomorphic prepotential F'(X), this time of n + 1 complex fields, but now it must be a
homogeneous function of degree two [1].

In the resulting action appears —%i()? IF; — XTF})eR, where R is the space-time curvature.
To have the canonical kinetic terms for the graviton, it is therefore convenient to impose as
gauge fixing for dilatations the condition

i(XTF — Fp X)) =1. (7.10)

Therefore, the physical scalar fields parametrize an n-dimensional complex hypersurface, de-
fined by the condition (7.10), while the overall phase of the X7 is irrelevant in view of a local
(chiral) invariance. The embedding of this hypersurface can be described in terms of n com-
plex coordinates 2z by letting X’ be proportional to some holomorphic sections Z(z) of the
projective space PC""! [12]. The bosonic part of the resulting action is (without gauging)

e L = —R+ g,30,2°0"%"
—Im (Np(z, 2)7-;;1?;;") . (7.11)

The n-dimensional space parametrized by the z* (o = 1,...,n) is a Kéhler space; the
Kahler metric g,5 = 0,03K (2, Z) follows from the Kahler potential

e K@D = 71(2) F1(Z(2)) — iZ"(2) F{(Z(%))
X =eK271(2) X' =eK271(3). (7.12)
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The resulting geometry is known as special Kéhler geometry [1, 2|. The curvature tensor
associated with this Kéhler space satisfies the characteristic relation [13]

R%.) = 0560 + 6285 — K W, W, (7.13)
where
G_ZI 077 07K
029 028 0zv

A convenient choice of inhomogeneous coordinates z* are the special coordinates, defined
by

(Wa,g,y = ZF[JK(Z(Z)) (714)

A= X4/XO, A=1,...,n, (7.15)

or, equivalently,
Z°2) =1, ZA(2) = 21, (7.16)

The kinetic terms of the spin-1 gauge fields in the action are proportional to the symmetric
tensor
Im(F]K) Im(FJL) XKXL
Im(FKL) XKXL

N[J:F]J+2i (717)
This tensor describes the field-dependent generalization of the inverse coupling constants and
so-called 0 parameters.

We give here some examples of functions F'(X) and their corresponding target spaces, which
will be useful later on:

. SU(1,1)
F=—iXx! - 1
' U(1) (7.18)
SU(1,1)
— (w13 /%0 ,
F=(X")%/X o (7.19)
SU(1,1)
- _ 0(X1)3 )
F = —4,/X0(X1) o (7.20)
. SU(1,n)
— I J )
F=iX"n;X SU(n) ® U(1) (7.21)
XA XBXC
F= dapc - ‘very special’ (7.22)

The first three functions give rise to the manifold SU(1,1)/U(1). However, the first one is not
equivalent to the other two as the manifolds have a different value of the curvature [14|. The
latter two are, however, equivalent by means of a symplectic transformation as we will show
below. In the fourth example 7 is a constant non-degenerate real symmetric matrix. In order
that the manifold has a non-empty positivity domain, the signature of this matrix should be
(+—"---—). So not all functions F'(X) allow a non-empty positivity domain. The last example,
defined by a real symmetric tensor dspc, defines a class of special Kahler manifolds, which
we will denote as ‘very special’ Kadhler manifolds. This class of manifolds is important in the
applications discussed below.

7.0.3 Symplectic transformations

The symplectic transformations are a generalization of the electro-magnetic duality transfor-
mations. We first recall the general formalism for arbitrary actions with coupled spin-0 and
spin-1 fields, and then come to the specific case of N = 2.

150



7.0.3 Symplectic transformations

Pseudo-symmetries in general

We consider general actions of spin-1 fields with field strengths 7—;’1\/ (now labelled by A =
1,...,m) coupled to scalars. The general form of the kinetic terms of the spin 1 fields is

L1 = {(Im Nas)Fp 7™
—L(Re Nax)e"” FobF o

= 3Im (NanF, 0 F %) (7.23)
We define
v . a-L v
Glj—/\ = Q’LW = NAE]@—FEH
iz
o _
G\ = _Qiﬁﬂ = NaxF 2. (7.24)
nyv

The equations for the field strengths can then be written as
O0"Im 7‘7;/\ =0  Bianchi identities
d,dm Gy =0 Equations of motion

This set of equations is invariant under GL(2m,IR) transformations:

(2)-s(2)- (48 (5):

However, the GG, are related to the ¥, as in (7.24). The previous transformation implies

G* = (C+ DN)F™
= (C+ DN)(A+ BN)'F*. (7.26)

Therefore the new tensor N is

N =(C+ DN)(A+ BN)™! (7.27)

This tensor should be symmetric, as it is the second derivative of the action with respect to the
field strength. This request leads to the equations which determine that S € Sp(2m, R), i.e.

T _ (01
S'QOS =0 where Q= <_]10

ATC —CTA=0
or ¢ BTD-DT"B=0. (7.28)
ATD - CTB =1
Some remarks are in order: First, these transformations act on the field strengths. They
generically rotate electric into magnetic fields and vice versa. Such rotations, which are called
duality transformations, because in four space-time dimensions electric and magnetic fields
are dual to each other in the sense of Poincaré duality, cannot be implemented on the vector
potentials, at least not in a local way. Therefore, the use of these symplectic transformations
is only legitimate for zero gauge coupling constant. From now on, we deal exclusively with
Abelian gauge groups. Secondly, the Lagrangian is not an invariant if C' and B are not zero:

Im FHGy =Im (FFG,)
+Im (2F T (C"B)G, + FH(CTA)F T
+G4(D"B)G.). (7.29)
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If C'# 0,B = 0 it is invariant up to a four—divergence. Thirdly, the transformations can also
I
Ge A
charges transforms also as a symplectic vector. The Schwinger-Zwanziger quantization condi-
tion restricts these charges to a lattice with minimal surface area proportional to A. Invariance
of this lattice restricts the symplectic transformations to a discrete subgroup:

act on dyonic solutions of the field equations and the vector ( ) of magnetic and electric

S e Sp(2m,Z). (7.30)

Finally, the transformations with B # 0 will be non—perturbative. This can be seen from the
fact that they do not leave the purely electric charges invariant, or from the fact that (7.27)
shows that these transformations invert N’ which plays the role of the gauge coupling constant.

Pseudo—symmetries and proper symmetries

The transformations described above, change the matrix NV, which are gauge coupling constants
of the spin-1 fields. This can be compared to diffecomorphisms of the scalar manifold z — 2(z)
which change the metric (which is the coupling constant matrix for the kinetic energies of the

scalars) and N:
L, 022 03P S
Gas(2(2)) 5555 = 910(2) s N (2(2)) = N (2).

Both these diffeomorphisms and symplectic reparametrizations are ‘Pseudo—symmetries’: [15]
Dypsendo = Dif f(M) x Sp(2m,R). (7.31)

They leave the action form invariant, but change the coupling constants and are thus not
invariances of the action.

If §op(2) = gap(2) then the diffeomorphisms become isometries of the manifold, and proper
symmetries of the scalar action. If these isometries are combined with symplectic transforma-
tions such that

N(z)=N(z), (7.32)
then this is a proper symmetry. These are invariances of the equations of motion (but not
necessarily of the action as not all transformations can be implemented locally on the gauge
fields). To extend the full group of isometries of the scalar manifold to proper symmetries, one

thus has to embed this isometry group in Sp(2m;IR), and arrives at the following situation:
Dprop = Iso(M) C Iso(M) x Iso(M) C Dypseudo

Let us illustrate how S and T dualities, treated in Sen’s lectures [16], fit in this scheme
as proper symmetries. The action he treats occurs in N = 4 supergravity. The scalars are
A = A\ + i)y and a symmetric matrix M, satisfying MnM = =t where n = n? is the metric of
0(6,22). Their coupling to the spin-1 fields is encoded in the matrix

N = A+ idanMn. (7.33)

The transformations on the scalars should lead to (7.27) with (7.28). Let us first consider this
for the T dualities. These are transformations of O(6,22):

Ft=AFt, M=AMAT (7.34)

(X is invariant) where = ATnA. This leads to N = (AT)_1 N A~ which is of the form

(7.27), identifying D = (AT)fl. The matrices C' and B are zero, which indicates that these
symmetries are realised perturbatively.
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7.0.3 Symplectic transformations

For the S dualities, M is invariant. These transformations are determined by the integers
s,r,q,p such that sp — gr = 1:

_ PAtq

Fr=sFt+m 'NFT; A :
rA+s

This leads to N = (pN +qn)(rp ™ N + s), which is of the required form upon the identification

S = (S]l ”7_1) . (7.35)

qn pl

Now, B and C' are non-zero, which shows the non-perturbative aspect of the S-duality.

Symplectic transformations in N = 2

In N = 2 the tensor N is determined by the function F' as explained in section 7.0.2. The
definitions of NV in rigid and local supersymmetry can be written in a clarifying way as follows*

rigid SUSY SUGRA
OcFa = NapdaXP OsFy = Npj05X7 (7.36)
Fr = N X7

From this definition it is easy to see that N transforms in the appropriate way if we define

A I

V= X V= X

Fy Fr

Do XA Da X1

Ue = (3CFA) Uy = (aaFI (7.37)
(and their complex conjugates) as symplectic vectors in the two cases. They thus transform as
in (7.25). With this identification in mind, we can reconsider the kinetic terms of the scalars.
Then it is clear that the Kahler potentials (7.5) and (7.12), and the constraint (7.10) are
symplectic invariants. This will lead to a new formulation of special geometry in section 7.0.3.
~ When we start from a prepotential F'(X), the Fy are the derivatives' of F. The expression
X = A;X7 + BIVF;(X) expresses the dependence of the new coordinates X on the old

coordinates X. If this transformation is invertible I the Fy are again the derivatives of an new
function F'(X) of the new coordinates,

Fi(X) = ag )(()f ). (7.38)

The integrability condition which implies this statement is equivalent to the condition that S
is a symplectic matrix. In the supergravity case, one can obtain F' due to the homogeneity:

F(X(X)) = %VT ( (7.39)

CTACTB v
DTADTB) ™

*For the rigid case, here 9 X = (553, but this definition is also applicable when we take derivatives w.r.t.
arbitrary coordinates z®(X). For the local case one regards (05, Fy) as an n + 1 by n + 1 matrix to see how
this defines the matrix N.

fThe remarks below are written with indices I, .J as in the supergravity case, but can be applied as well in
rigid supersymmetry replacing these indices by A, B.

fThe full symplectic matrix is always invertible, but this part may not be. In rigid supersymmetry, the
invertibility of this transformation is necessary for the invertibility of N, but in supergravity we may have that
the X! do not form an independent set, and then F can not be defined. See below.
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7.0.3 Symplectic transformations

Hence we obtain a new formulation of the theory, and thus of the target-space manifold, in
terms of the function F.

We have to distinguish two situations:
1. The function F(X) is different from F(X), even taking into account (7.6). In that case the
two functions describe equivalent classical field theories. We have a pseudo symmetry. These
transformations are called symplectic reparametrizations [4]. Hence we may find a variety of
descriptions of the same theory in terms of different functions F'.
2. If a symplectic transformation leads to the same function F' (again up to (7.6)), then we are
dealing with a proper symmetry. As explained above, this invariance reflects itself in an isometry
of the target-space manifold. Henceforth these symmetries are called ‘duality symmetries’, as
they are generically accompanied by duality transformations on the field equations and the
Bianchi identities. The question remains whether the duality symmetries comprise all the
isometries of the target space, i.e. whether

Iso(M) C Sp(2(n+1),IR). (7.40)

We investigated this question in [17] for the very special Kihler manifolds, and found that in
that case one does obtain the complete set of isometries from the symplectic transformations.
For generic special Kéhler manifolds no isometries have been found that are not induced by
symplectic transformations, but on the other hand there is no proof that these do not exist.

Examples (in supergravity)

We present here some examples of symplectic reparametrizations and duality symmetries in the
context of N = 2 supergravity. First consider (7.19). If we apply the symplectic transformation

-(29)-

one arrives, using (7.39), at (7.20). So this is a symplectic reparametrization, and shows the
equivalence of the two forms of F' as announced above.
On the other hand consider

o O O

(7.41)

S O O =

|

w

o= O O
—_

O O O
w

1+3e pn 0 0
A 1+e 0 2u/9
0 0 1—3¢ —A
0 —6A —pu 1—c¢

S = (7.42)

for infinitesimal €, 1, \. Then F'is invariant. On the scalar field z = X' /X?, the transformations
act as

8z = X\ — 2z — puz*/3. (7.43)

They form an SU(1,1) isometry group of the scalar manifold. The domain were the metric is
positive definite is Im z > 0. This shows the identification of the manifold as the coset space
in (7.19), (7.20).

As a second example, consider (7.18). Using (7.17) one obtains the matrix A" which deter-
mines (again with z = X1/XY)

e Ly = —1Re [z (Fi0)" + 27 (B (7.44)
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7.0.3 Symplectic transformations

This appears also in pure N = 4 supergravity in the so—called ‘SO(4) formulation’ [18]. Consider
now the symplectic mapping [19]

100 0O
000 -1
S = 001 0 | (7.45)
010 0
leading to the transformations
X0 = X° X'=—-F =iX° (7.46)
F=F =X

This is an example where the transformation between X and X is not invertible. Using (7.39),
we obtain F' = 0. However, A+ BN is invertible, and we can compute N using (7.27), leading
to

e 'Ly =—1iRe [z (F;;O)2 +z (F;:,l)z} : (7.48)

(We performed here a symplectic transformation, but no diffeomorphism. We are still using
the same variable z). This is the form familiar from the ‘SU(4) formulation’ of pure N = 4
supergravity [20]. This shows that there are formulations which can not be obtained directly
from a superspace action.

In the final example, we will show that this particular formulation can be the most useful
one. For that we consider the manifold

SU(1,1) SO(r,2)
U1) = 80(r)®S0(2)

(7.49)

This is the only special Kéhler manifold which is a product of two factors [21|. Therefore it
appears in string theory where the first factor contains the dilaton-axion. The first formulation
of this class of manifolds used a function F of the type (7.22): F(X) = 35 X°X" X", where
ny+ is the constant diagonal metric with signature (+,—,...,—) [13]. In this parametrization
only an SO(r — 1) subgroup of SO(r,2) is linearly realized (residing in A and D of (7.25)).
From a string compactification point of view one does not expect this. The full SO(r,2) should
be a perturbative symmetry, as it is realized in the N = 4 theory described by Sen [22, 16]. In
the search for better parametrizations, by means of a symplectic reparametrization a function
F of the square root type was discussed in [23| which has SO(r) linearly realized. However, the
solution was found in [19], and was not based on a function F' at all. The symplectic vector V'
contains then

Fr=Sn; X7, (7.50)

where S is one of the coordinates (representing the first factor of (7.49)), and the X' satisfy
the constraint X n;; X7 = 0, where n;; is the SO(2,7) metric. For additional details on this
example, see also [24], where the perturbative corrections to the vector multiplet couplings are
considered in the context of the N = 2 heterotic string vacua. This important example shows
that under certain circumstances one needs a formulation that does not rely on the existence
of a function F.

Coordinate independent description

We want to be able to use more general coordinates than the special ones which appeared
naturally in the superspace approach, and also to set up a formulation of the theory in which
the symplectic structure is evident. First we will formulate this for the rigid case [25].
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7.0.3 Symplectic transformations

We start by introducing the symplectic vector V € €, as in (7.37), where now the Fj
are no longer the derivative of a function F', but n independent components. Then consider
functions V'(z), parametrized by n coordinates z* (o = 1, ...,n), which will be the coordinates
on the special manifold. The choice of special coordinates introduced before, corresponds to
XA(z) = 2%, Fa(2) = 25 (X(2)). By taking now derivatives with respect to z* one obtains
U, analogous to the Uy in (7.37).

We define as metric on the special manifold

9o = 1UL QUs =i (Ua, Ug) | (7.51)

where we introduced a symplectic inner product (V,W) = VITQW. The constraints which
define the rigid special geometry can be formulated on the 2n x 2n matrix

_(UPN [ 0. XY 0,Fa
y= ()= (A 50, -
This matrix should satisfy VQV7? = —iQ) and

DV =A,V with A, = (8 Cﬂf’*)
for a symmetric Cyp, (being Fapc in special coordinates); and D contains the Levi-Civita
connection. The integrability condition of this constraint then implies the form of the curvature:
Rojys = —CareCp5:9° (compare this with (7.7)). The formulation can even be simplified in
terms of a vielbein e/ = 9,X* (being the unit matrix in special coordinates). Then the
connection leﬁ = ¢€},0pe2 is flat, and there are holomorphic constraints

7= (742000
0 €4

A~ o~ o~ ~ A’y _ .
0V =AYV with A, = Lo —iCasy
0 -I%

For Supergravity a similar definition of special geometry is possible. This formulation
was first given in the context of a treatment of the moduli space of Calabi-Yau three-folds
[2, 5, 7]. The particular way in which we present it here is explained in more detail in [26].
Now the symplectic vectors have 2(n + 1) components. We first impose the constraint (7.10),
which is written in a symplectic way as (V,V) = VTQV = —i. Then we define n holomorphic
symplectic sections, parametrized by z%, which are proportional to V:

1

Vi(z,z) = e28EAy(z) | (7.53)

and the proportionality constant defines the Kéahler potential. These equations are then invari-
ant under ‘Kéhler transformations’

v(z) = e’ P ()
K(z,2) = K(2,2) — f(2) — f(2)

Vo eaU@-FE Y (7.54)

for which 0, K and 05K play the role of connections. Then special geometry is defined, using*
U, = D,V, with one additional constraint:

(U, Us) = 0. (7.55)

*The connection contains now the Levi-Civita one and the Kéhler connection related to (7.54): DX =
(00 + 3(0.K)) X.
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7.0.4 Further results and conclusions

Usually the Fy(z) are functions which depend on X7(z). Then one has F; = 9;F, and the
scaling symmetry implies that F' is a holomorphic function homogeneous of 2nd degree in X.
But e.g. with (7.50) this is not the case.

To make contact with the Picard-Fuchs equations in Calabi-Yau manifolds, a similar for-
mulation as for the rigid case is useful. This is obtained by defining the (2n + 2) x (2n + 2)
matrix

V
UOL

V= v | (7.56)
Ua

which satisfies V Q VT = iQ. One then introduces a connection such that the constraints are

27]

DV =AYV, DaV =AYV, (7.57)
00 06
0 0 6°0

with e.g. A, 0 0 61 0 (7.58)
0 g, 0 0

The integrability conditions lead to the curvature tensor
Raﬁ&‘y = 9apY9s~y + 9av9s5 — Ca&ecﬁf—yggeg- (759)

7.0.4 Further results and conclusions

Special geometry is not confined to Kéhler manifolds. There exist a ¢ map, which can be
obtained either from dimensional reduction of the field theory to 3 dimensions, or from su-
perstring compactification mechanisms [4]. This maps special Kéhler manifolds to a subclass
of the quaternionic manifolds, which are then called special quaternionic. As already men-
tioned, a subclass of special manifolds are the ‘very special’ ones. These can be obtained from
dimensional reduction of actions in 5 dimensions, characterised by a symmetric tensor dspc
[28]. This mapping is called the r map [29], and the manifolds in the 5-dimensional theory
are called ‘very special real’ manifolds. These concepts were very useful in the classification
of homogeneous [30] and symmetric [14] special manifolds. It turned out that homogeneous
special manifolds are in one-to-one correspondence to realizations of real Clifford algebras with
signature (¢ + 1,1) for real, (¢ + 2,2) for Kéhler, and (¢ + 3, 3) for quaternionic manifolds. A
study of the full set of isometries could be done systematically in these models. All this has
been summarised in [26].

For string theory the implications of special geometry in the rigid theories for the moduli
spaces of Riemann surfaces [25], and in the supergravity theories for Calabi-Yau spaces [2, 3, 4,
5, 6, 7] is extremely useful for obtaining non-perturbative results [31, 25, 19]. For these results
we refer to [8] and to [32|, where many more aspects of special manifolds in the context of
topological theories, Landau-Ginzburg theories, etc. are discussed.
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Duality in supersymmetry for Children by JM Figueroa-O’Farrill

8 Duality in supersymmetry for Children by JM
Figueroa-O’Farrill

In this chapter we discuss the intimate relation between supersymmetry and the Bogomol'nyi
bound. The effect of supersymmetry is two-fold: first of all, it enforces the bound since this is a
property of unitary representations of the supersymmetry algebra; but it also protects the bound
against quantum corrections, guaranteeing that if a state saturates the bound classically, it does
so quantum mechanically. This last assertion follows because, as we will see, supersymmetry
multiplets corresponding to BPS-states are smaller than the multiplets of states where the
Bogomol'nyi bound is not saturated.

We first discuss the supersymmetry algebra and its representations. For definiteness we
shall work in four dimensions, but much of what we’ll say can (and will) be used in dimensions
other than four. It will be while studying (massive) representations with central charges that
we will see the mechanism by which the Bogomol’nyi bound follows from the algebra. We then
illustrate this fact by studying a particular example: N = 2 supersymmetric Yang-Mills in four
dimensions. We define this theory by dimensional reduction from N = 1 supersymmetric Yang-
Mills in six dimensions. This theory admits a Higgs mechanism by which the gauge symmetry
is broken to U(1) while preserving supersymmetry. The higgsed spectrum falls into a massless
gauge multiplet corresponding to the unbroken U(1) and two massive short multiplets. From
the structure of the short N = 2 multiplets we can deduce that the N = 2 supersymmetry
algebra admits central charges and, moreover, that the multiplets containing the massive vec-
tor bosons must saturate the mass bound. We will also see that this theory admits BPS-like
solutions, which are shown to break one half of the supersymmetries. This implies that the
BPS-monopole belongs to a short multiplet and suggests that the bound which follows ab-
stractly from the supersymmetry algebra agrees with the Bogomol’nyi bound for dyons given
by equation (1.27). This is shown to be case. Nevertheless the short multiplets containing the
massive vector
bosons and those containing the BPS-monopole have different spins, whence N = 2 supersym-
metric Yang-Mills does not yet seem to be a candidate for a theory which is (Montonen-Olive)
self-dual. This problem will be solved for N = 4 supersymmetric Yang-Mills, which we study as
the dimensional reduction of ten-dimensional N = 1 supersymmetric Yang-Mills. At a formal
level, N = 4 supersymmetric Yang-Mills is qualitatively very similar to the N = 2 theory; ex-
cept that we will see that the short multiplets which contain the solitonic and the fundamental
BPS-states have the same spin. This prompts the question whether N = 4 supersymmetric
Yang-Mills is self-dual - a conjecture that we will have ample opportunity to test as the lectures
progress.

8.1 2.1 The super-Poincaré algebra in four dimensions

In this section we will briefly review the supersymmetric extension of the fourdimensional
Poincaré algebra. There are plenty of good references available so we will be brief. We will
follow for the most part the conventions in [Soh85|, to where we refer the reader for the relevant
references on supersymmetry.

8.1.1 2.1.1 Some notational remarks about spinors

The Lorentz group in four dimensions, SO(1,3) in our conventions, is not simply-connected
and therefore, strictly speaking, has no spinorial representations. In order to consider spinorial
representations we must look to the corresponding spin group Spin(1, 3) which happens to be
isomorphic to SL(2,C) - the group of 2 x 2-complex matrices with unit determinant. From
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8.1.1 2.1.1 Some notational remarks about spinors

its very definition, SL(2,C) has a natural two-dimensional complex representation, which we
shall call S. More precisely, S is the vector space C? with the natural action of SL(2,C). If
u € S has components u, = (uy, uz) relative to some fixed basis, and M € SL(2,C), the action
of M on u is defined simply by (Mu), = M, us. We will abuse the notation and think of the
components u, as the vector and write u, € S.

This is not the only possible action of SL(2, C) on C?, though. We could also define an action
by using instead of the matrix M, its complex conjugate M, its inverse transpose (M 1t)f1 or its
inverse hermitian adjoint (M T) _1, since they all obey the same group multiplication law. These
choices correspond, respectively to the conjugate representation S, the dual representation S*,
and the conjugate dual representation S". We will use the following notation: if u, € S, then
ug € S,u® € S* and ut € S”. These representations
are not all different, however. Indeed, we have that S = S* and S = g*, which follows from
the existence of e,5: an SL(2,C)-invariant tensor (since ens > M, Ms” g = (det M)eqyp
and det M = 1) which allows us to raise and lower indices in an SL(2, C)-covariant manner:

[

u® = €*Pug, and v’ = uze®3. We use conventions where €15 = 1 and €, = —1.

Because both the Lie algebra si(2, C) (when viewed as a real Lie algebra) and su(2) x su(2)
are real forms of the same complex Lie algebra, one often employs the notation (7j,;’) for
representations of SL(2,C), where j and j’ are the spins of the two su(2) ’s. In this notation
the trivial one dimensional representation is denoted (0, 0), whereas S = (%, 0). The two su(2)
s are actually not independent but are related by complex conjugation, hence S = (0, %) In
general, complex conjugation will interchange the labels. If the labels are the same, say (%, %),
complex conjugation sends the representation to itself and it makes sense to restrict to the
sub-representation which is fixed by complex conjugation. This is a real representation and in
the case of the (%, %) representation of SL(2,C), it coincides with the defining representation
of the Lorentz group SO(1,3): that is, the vector representation.

Indeed, given a 4 -vector P, = (pg, 5)) we can turn it into a bispinor as follows:

. P=chp — [ PotPs pr—ip
o p1+ip2 po — Pp3

where o# = (1, &) with & the Pauli matrices:

y (01 5 [0\ 45 (10
“‘(10 >=\io) 72 7 \o-1

Since the Pauli matrices are hermitian, so will be o - P provided P, is real. The Pauli
matrices have indices o/, which shows how SL(2,C) acts on this space. If M € SL(2,C),
then the action of M on such matrices is given by o - P — Mo - PMT. This action is linear
and preserves both the hermiticity of o - P and the determinant det(c-P) = P2=p2— P - P,
just as we expect of Lorentz transformations. We can summarise this discussion by saying
that the o’ are Clebsch-Gordon coefficients intertwining between the "vector" and the (3, 1)
representations of SL(2,C). Notice also that both M and —M at the same way on bispinors,

which reiterates the fact that SL(2,C) is the double-cover of the Lorentz group SO(1,3).

Finally we discuss the adjoint representation of the Lorentz group, which is generated by an-
tisymmetric tensors L, = —L,,. In terms of bispinors, such an L, becomes a pair (Lag, L " B>
where Los = Lg, and similarly for L,z In other words, L, transforms as the (1,0)@® (0, 1) rep-
resentation of SL(2,C): notice that we need to take the direct sum because the representation
is real.
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8.1.2 2.1.2 The Coleman-Mandula and Haag-LopuszariskiSohnius theorems

8.1.2 2.1.2 The Coleman-Mandula and Haag-LopuszarnskiSohnius theorems

Back in the days when symmetry was everything, physicists spent a lot of time trying to unify
the internal symmetries responsible for the observed particle spectrum and the Poincaré group
into the same group: the holy grail being the so-called relativistic quark model. However their
hopes were dashed by the celebrated no-go theorem of Coleman and Mandula. In a nutshell, this
theorem states that the maximal Lie algebra of symmetries of the S-matrix of a unitary local
relativistic quantum field theory obeying some technical but reasonable assumptions (roughly
equivalent to demanding that the S-matrix be analytic), is a direct product of the Poincaré
algebra with the Lie algebra of some compact internal symmetry group. Since Lie algebras of
compact Lie groups are reductive: that is, the direct product of a semisimple and an abelian
Lie algebras, the largest Lie algebra of symmetries of the S-matrix is a direct product: Poincaré
x semisimple x abelian. In particular this implies that multiplets of the internal symmetry
group consist of particles with the same mass and the same spin or helicity.

If all one-particle states are massless, then the symmetry is enhanced to conformal X
semisimple x abelian; but the conclusions are unaltered: there is no way to unify the spacetime
symmetries and the internal symmetries in a nontrivial way:.

A wise person once said that inside every no-go theorem there is a "yesgo" theorem waiting
to come out, ” and the Coleman-Mandula theorem is no exception. The trick consists, not in
trying to relax some of the assumptions on the S-matrix of the field theory, but in redefining the
very notion of symmetry to encompass Lie superalgebras. In a classic paper Haag, Lopuzariski
and Sohnius re-examined the result of Coleman and Mandula in this new light and found the
most general Lie superalgebra of symmetries of an S matrix. The Coleman-Mandula theorem
applies to the bosonic sector of the Lie superalgebra, so this is given again by Poincaré x
reductive. In terms of representations of SL(2,C), these generators transform according to the
(0,0), (3,2),(0,1) and (1,0) representations. The singlets are the internal symmetry generators

which vie 2Will denote collectively by By. The (%, %) generators correspond to the translations
Pos, and the (1,0) and (0, 1) generators are the Lorentz generators: Las and Lyg.

The novelty lies in the fermionic sector, which is generated by spinorial charges ),; in the
(1,0) representation of SL(2,C) and their hermitian adjoints Q% = (Qur)! in the (0,1). Here
I is a label running from 1 to some positive integer N. The Lie superalgebra generated by
these objects is called the N-extended super-Poincaré algebra. The important Lie brackets are

given by

[Be, Qat) = ber’ Qo [Be, QL] = -0, ,Q]
[PadaQﬁI] =0 [Pava{d] =0

ad i 2.1
{Qahcgw} = 2€a821J {Qéan} = _2€dBZIJ (2.1)
{Qar,QL} =20]{P.s [Z1;, anything ] =0
where Z;; = 21, By, Z'7 = (Z;,)" and the coefficients by;” and z;,™ must obey:
ber™ 2™ 4 beg ™ 2r™ = 0 (2.2)

This last condition is nontrivial and constraints the structure of that part of the internal
symmetry group which acts nontrivially on the spinorial charges of the supersymmetry algebra,
what we will call the internal automorphism group of the supersymmetry algebra. In the
absence of central charges, the internal automorphism group of the supersymmetry algebra is
U(N), but in the presence of the central charges, it gets restricted generically to USp(INV), since
condition (2.2) can be interpreted as the invariance under the internal automorphism group

*1 and a wise guy said that we should call it a "go-go" theorem
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8.2 2.2 Unitary representations of the supersymmetry algebra

of each of the antisymmetric forms z;,™, for each fixed value of m. Notice that Z;; = —Z,;,
whence central charges requires N > 2.

The above Lie superalgebra is the most general symmetry of a local relativistic S-matrix
in a theory describing point-particles. In the presence of extended objects: strings or, more
generally, p-branes, the supersymmetry algebra receives extra terms involving topological con-
served charges. These charges are no longer central since they fail to commute with the Lorentz
generators; nevertheless they still commute with the spinorial charges and with the momentum
generators. We will see an example of this later on when we discuss the six-dimensional N =1
supersymmetry algebra.

It is sometimes convenient, especially when considering supersymmetry algebras in dimen-
sions other than 4, where there is no analogue to the isomorphism Spin(1,3) = SL(2,C), to
work with 4 -spinors. We can assemble the spinorial changes Q,; and QY into a Majorana
spinor: @y = (QQI, Qd‘f)t. The Dirac (= Majorana) conjugate is given by Q; = (Qal, Qé), and
the relevant bit of the supersymmetry algebra is now given by

{Q1,Qu} = 2617 Py + 2i (Im Z;; + 5 Re Z; ) (2.3)

where our conventions are such that

N <£p CB”) (2.4)
and 6+ = (1, — ).

8.2 2.2 Unitary representations of the supersymmetry algebra

The construction of unitary representations of the super-Poincaré algebra can be thought of
as a mild extension of the construction of unitary representations of the Poincaré algebra.
Because the Lorentz group is simple but noncompact, any nontrivial unitary representation
is infinite-dimensional. The irreducible unitary representations are simply given by classical
fields in Minkowski space subject to their equations of motion. Indeed the KleinGordon and
Dirac equations, among others, can be understood as irreducibility constraints on the fields.
The method of construction for the Poincaré algebra is originally due to Wigner and was
greatly generalised by Mackey. The method consists of inducing the representation from a
finite-dimensional unitary representation of some compact subgroup. Let us review this briefly.

8.2.1 2.2.1 Wigner’s method and the little group

The Poincaré algebra has two casimir operators: P? and W?2, where WH = %e’””\”PyL,\p is the
Pauli-Lubansky vector. By Schur’s lemma, on an irreducible representation they must both
act as multiplication by scalars. Let’s focus on P?. On an irreducible representation P? = M?2,
where M is the "rest-mass" of the particle described by the representation. With our choice
of metric, physical masses are real, whence M? > 0. We can thus distinguish two kinds of
representations: massless for which M? = 0 and massive for which M? > 0.

Wigner’s method starts by choosing a nonzero momentum k, on the massshell: k% = M2
That is, this is a character (that is, a one-dimensional representation) of the translation subal-
gebra generated by the P,. We let Gj, denote the subgroup of the Lorentz group (or rather of
its double-cover SL(2,C)) which leaves k, invariant. Gy, is known as the little group. Wigner’s
method, which we will not describe in any more detail than this, consists in inducing a rep-
resentation of the Poincaré group from a finite-dimensional unitary representation of the little
group. This is done by boosting the representation to fields on the mass shell and then Fourier
transforming to yield fields on Minkowski space subject to their equations of motion.
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8.2.2 2.2.2 Massless representations

In extending this method to the super-Poincaré algebra all that happens is that now the Lie
algebra of the little group gets extended by the spinorial supersymmetry charges, since these
commute with P, and hence stabilise the chosen 4 -vector.

We will need to know about the structure of the little groups before
introducing supersymmetry. The little group happens to be different for massive and for mass-
less representations, as the next exercise asks you to show.

Exercise

2.1 (The little groups for positive-energy particles)

Let k, be a 4 -vector obeying ko > 0,k* = M? > 0. Prove that the little group of k, is
isomorphic to:

SU(2), for M2 > 0; E,, for M? =0,

where Ey 2 SO(2) x R2, is the two-dimensional euclidean group and E, = Spin(2) x R? is
its double cover.

(Hint: argue that two momenta k, which are Lorentz-related have isomorphic little groups.
Then choose a convenient &, in each case, examine the action of SL(2,C) on the bispinor o*k,,
and identify those M € SL(2,C) for which Mo - kM' = o - k.)

The reason why we have restricted ourselves to positive-energy representations in this ex-
ercise, is that unitary representations of the supersymmetry algebra have non-negative energy.
Indeed, for an arbitrary momentum £, the supersymmetry algebra becomes

_ ko+ ks ki — ik
JV g9 [ MOT MM 2
{Qa[a@d} - 251 (/{jl —+ Zk?g ko - k3 )

Therefore the energy ko of any state |k) with momentum k, can be written as follows (for
a fixed but otherwise arbitrary I)

Foll 1K) I = (& kol )
= 2 (R H{Qu Q1K) + 5 ( [{Qur, @} B)

= SlQulk) ol @ty

1
>+ 5” Qar1k)

1 @ e

whence kq is positive, unless |k) is annihilated by all the supersymmetry charges.

8.2.2 2.2.2 Massless representations

We start by considering massless representations. As shown in Exercise 2.1, the little group for
the momentum k, of a massless particle is noncompact. Therefore its finite-dimensional unitary
representations must all come from its maximal compact subgroup Spin(2) and be trivial on
the translation subgroup R?. The unitary representations of Spin(2) are one-dimensional and
indexed by a number \ € %Z called the helicity. For CPT-invariance of

the spectrum, it may be necessary to include both helicities =\, but clearly all this does is double
the states and we will not mention this again except to point out that some supersymmetry
multiplets are CPT-self-conjugate.

Let’s choose k, = (E,0,0, E), with £ > 0. Then

2E 0
ot'k, = < 0 O)
and the supersymmetry algebra becomes
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8.2.2 2.2.2 Massless representations

(o1} =12t ()

In particular this means that {QQ[,QQJ} = 0. Because Qg = (QQJ)T, it follows that in a
unitary representation (Qo; = 0 for all 1. Indeed for any state |},

0= (| {Qar. (Qun)'}| ) = 1Qurlo) [*+]] (Qan)' 1)

Plugging this back into the supersymmetry algebra (2.1) we see that Z;; = 3 {Q17, Q2s} =0,
so that there are no central charges for massless representations.

Let us now introduce q; = (1/2v/E)Q1s, in terms of which the supersymmetry algebra
becomes

{qI,qT]} =0y {arqi} = {q},q}} =0

We immediately recognise this is as a Clifford algebra corresponding to a 2 N dimensional
pseudo-euclidean space with signature (N, N). The irreducible representations of such Clifford
algebras are well-known. We simply start with a Clifford vacuum [Q2) satisfying

| =0 forallI=1,...,N

and we act repeatedly with the q}. Since {q},q?,} = 0, we obtain a 2V " dimensional
representation spanned by the vectors: q}lqg x -q}p|Q>, where 1 < I, < Iy <---<I,<N,and
p=20,...,N.

The Clifford vacuum actually carries quantum numbers corresponding to the momentum k&

and also to the helicity: [Q2) = |k, A). It may also contain quantum numbers corresponding to
the internal symmetry generators By, but we ignore them in what follows.

Exercise 2.2 (Helicity content of massless multiplets)

Paying close attention to the helicity of the supersymmetry charges, prove that ()11 raises the
helicity by %, whereas (D97 lowers it by the same amount. Deduce that the massless supersym-
metry multiplet of helicity A contains the following states:

States | Helicity =~ Number

e, \) | A 1
aHE ) | A+ 3 N
dhallk, A | A+ 1 (%)

ahal, - d kN | A +p/2 (D)

algd- - al |k, A) | A+ NJ2 1

Particularly interesting cases are the CPT-self-conjugate massless multiplets. First notice
that CPT-self-conjugate multiplets can only exist for NV even. For N = 2 we have the helicity
A= —% multiplet, whose spectrum consists of

Helicity || —1/2 | 0| 1/2
Number 112 1
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8.2.3 2.2.3 Massive representations

Then we have the N = 4 gauge multiplet which has A = —1 and whose spectrum is given
by:

Helicity || -1 | =1/2 0] 1/2 |1
Number 1 416 411

Pure (that is, without matter) N = 4 supersymmetric Yang-Mills in fourdimensions consists
of several of these multiplets-one for each generator of the gauge algebra. Finally, the third
interesting case is the N = 8 supergravity multiplet with A = —2 and spectrum given by:

Helicity || -2 | =3/2 | -1 | =1/2| 0] 1/2| 1] 3/2
Number 1 8 | 28 56 | 70| 56 | 28 811

8.2.3 2.2.3 Massive representations

We now consider massive representations. As shown in Exercise 2.1, the little group for the
momentum k, of a massive particle is SU(2). Its finitedimensional irreducible unitary repre-
sentations are well-known: they are indexed by the spin s, where 2s is a non-negative integer,
and have dimension 2s + 1.

A massive particle can always be boosted to its rest frame, so that we can choose a momen-

tum k, = (M,0,0,0). Then
M 0
0" = ( 0 M>

and the supersymmetry algebra becomes
{Qa[a Qi} = 2M5}]:H-adc

No central charges

In the absence of central charges, {Qar, Qss} = 0. Thus we can introduce ¢or = (1/V2M)Qa. 1,
in terms of which the supersymmetry algebra is again a Clifford algebra:

{Qalaqg;J} = 5IJ5a,8 {%I,QﬁJ} = {QLI,CI;J} =0 (2-5)

but where now the underlying pseudo-euclidean space is 4/ N-dimensional with signature
(2N,2N).  The unique irreducible representation of such a Clifford algebra is now
22N_dimensional and it is built just as before from a Clifford vacuum by acting successively
with the qL "

However unlike the case of massless representations, the Clifford vacuum is now degenerate
since it carries spin: for spin s the Clifford vacuum is really a (2s + 1)-dimensional SU(2)
multiplet. Notice that for fixed [ ,qll transforms as a SU(2)-doublet of spin % This must
be taken into account when determining the spin content of the states in the supersymmetry
multiplet. Instead of simply adding the helicities like in the massless case, now we must use

the Clebsch-Gordon series to add the spins.
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8.2.3 2.2.3 Massive representations

Exercise 2.3 (Highest spin in the multiplet)

Prove that the highest spin in the multiplet will be carried by states of the form quIz e qI N
acting on the Clifford vacuum, and that their spin is s + N/2.

For example, if N = 1 and s = 0, then we find the following spectrum: |k,0) with spin
0, (q“k, 0), qg\k, O>) with spin 1/2 and qu$|k, 0) which has spin 0 too. The supersymmetric field
theory describing this multiplet consists of a scalar field, a pseudo-scalar field, and a Majorana
fermion: it is the celebrated Wess-Zumino model and the multiplet is known as the massive
Wess-Zumino multiplet. Another example that will be important to us is the N = 2 multiplets
with spins s = 0 and s = 1/2, which we leave as an exercise.

Exercise

2.4 (Massive N = 2 multiplets with s =0 and s = 1/2)
Work out the spin content of the massive N = 2 multiplets without central charges and

with spins s = 0 and s = 1/2. Show that for s = 0 the spin content is (05 14 1> in the obvious

)9
notation, and for s = 1/2 it is given by (3/2, 14, %6, 04).

Adding central charges

Adding central charges changes the nature of the supersymmetry algebra, which now becomes

{Qar, QL} =2M6{1ae  {Qar, Qss} = 260521y

Because Z;; is antisymmetric, we can rotate the ),; unitarily-which is an automorphism
of the first of the above brackets-in such a way that Z;; takes a standard form:

0 21

—2Z1 0
0 Z9
—Z9 0

0 ZN/2
—znj2 0

where the z; can be chosen to be real and non-negative. To simplify the discussion we have
assumed that IV is even, but one should keep in mind that if N is odd, there will of course be
a zero 1 x 1 block in the above normal form for Z;;.

Let us break up the index [ into a pair (A,7) where A=1,2andi=1,..., N/2. In terms
of these indices the supersymmetry algebra can be rewritten as

{QaAia Q;Bj} =2M06;;0ap0a8 {Qani, QsBj} = 2€03€480ij%;

Define the following linear combinations

1 s s
+_ - 4 aBA2
Son' — 2 (Qalzie Qﬁ)

where we have raised the spinor index in the second term in order to preserve covariance
under the little group SU(2). In terms of these generators, the algebra is now:

{S;ti, (SBEJ)T} = 5aﬂ5ij (M :l: Zi)
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8.2.3 2.2.3 Massive representations

with all other brackets being zero. Notice that acting on any state [},

(M = 2) [[O)I* = (W [(M % 2) | )

= (v |{sii- (s0)'} | v)
= S5} 1*+]| (SE)" )1

from where it follows that M + z; > 0 for all i, or

M>|z| foralli=1,...,N/2 (2.6)

which is reminiscent of the Bogomol'nyi bound (1.27). Notice that this bound is an unavoid-
able consequence of having a unitary representation of the supersymmetry algebra. Therefore
provided that supersymmetry is not broken quantum-mechanically, the bound will be main-
tained.

Suppose that M > z; for all i. Then we can define ¢, = (1/v/M =£ z;) SEin terms of which
the supersymmetry algebra is again given by equation (2.5) once we recombine the indices (£, 7)
into I. Therefore we are back in the case of massive representations without central charges,
at least as far as the dimension of the representations is concerned.

Suppose instead that some of the z; saturate the bound (2.6): z; = M fori=1,...,¢ < N/2.
Then a similar argument as in the discussion of the massless representations allows us to
conclude that the 2¢ generators S_ for¢ =1, ..., ¢ act trivially and can be taken to be zero. The
remaining 2N — 2¢ generators obey a Clifford algebra whose unique irreducible representation
has dimension 22V~2¢. Notice that the smallest representation occurs when all central charges
saturate the bound (2.6), in which case all the S, = 0 and we are left only with 2% states, just
as in the case of a massless multiplet. These massive multiplets are known as short multiplets.

For example, in N = 2 there is only one z = 2;. If 2 < M the massive multiplet contains
24 = 16 states, whereas if z = M the short multiplet only contains 22 = 4 states. For N = 4,
there are two z. If both z; < M, then the massive multiplet has 28 = 256 states, whereas
if both z; = M, then the short multiplet contains only 2* = 16 states. Half-way we find the
case when exactly one of the z; = M, in which case the dimension of the multiplet is 2° = 64.
Strictly speaking we shouldn’t call these numbers the dimension of the multiplet, but rather the
degeneracy, since it may be that the Clifford vacuum is degenerate, in which case the dimension
of the supersymmetry multiplet is the product of what we’ve been calling the dimension of the
multiplet and that of the Clifford vacuum. Let us work out some examples. We first work out

the case of N =2 and spins s =0 and s = % in the following exercise.

Exercise

2.5 (Short N = 2 multiplets with s =0 and s = 1/2)
Prove that the spin contents of the short multiplet with s = 0 is (%,02) and that of the

short multiplet with s = 1/2 is (1, %2,()). Compare with the results of Exercise 2.4, which
are the spin contents when the central charge does not saturate the bound. We will see that
the s = 0 multiplet contains the BPS-monopole, whereas the s = 1/2 multiplet contains the
massive vector bosons.

Next we take a look at the short N = 4 multiplets with s = 0. These will be the important

ones when we discuss N = 4 supersymmetric Yang-Mills.

Exercise

2.6 (Short N = 4 multiplets with s = 0)
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8.3 2.3 N = 2 Supersymmetric Yang-Mills

Prove that the spin content of the N = 4 short multiplet with s = 0 is (1,4*,0°), which
totals the expected 16 states. As we will see later, this will be the multiplet containing both
the BPS-monopole and the massive vector boson.

This difference in the dimension of representations for which the bound (2.6) is saturated is
responsible for the fact that if a multiplet saturates the bound classically, it will continue to do
so when perturbative quantum corrections are taken into account. This is because perturbative
quantum corrections do not alter the number of degrees of freedom, hence a short multiplet
(that is, one which saturates the bound) cannot all of a sudden undergo the explosion in size

required to obey the bound strictly.

8.3 2.3 N =2 Supersymmetric Yang-Mills

The supersymmetric bound (2.6) for massive representations with central charges may seem a
little abstract, but it comes to life in particular field theoretical models, where we can explicitly
calculate the central charges in terms of the field variables. We will see this first of all in
pure N = 2 supersymmetric Yang-Mills, which embeds the bosonic part of the Georgi-Glashow
model. This result is due to Witten and Olive WOTS.

We could simply write the action down and compute the supersymmetry algebra directly
as was done in WOT78, but it is much more instructive to derive it by dimensional reduction
from the N = 1 supersymmetric Yang-Mills action in six dimensions. This derivation of N = 2
supersymmetric Yang-Mills by dimensional reduction was first done in DHAV78, and the six-
dimensional computation of the central charges was first done in Oli79.

That there should be a N = 1 supersymmetric Yang-Mills theory in six dimensions is not
obvious: unlike its nonsupersymmetric counterpart, supersymmetric Yang-Mills theories only
exist in a certain number of dimensions. Of course one can always write down the Yang-Mills
action in any dimension and then couple it to fermions, but supersymmetry requires a delicate
balance between the bosonic and fermionic degrees of freedom. A gauge field in d dimensions
has d—2 physical degrees of freedom corresponding to the transverse polarisations. The number
of degrees of freedom of a fermion field depends on what kind fermion it is, but it always a
power of 2. An unconstrained Dirac spinor in d dimensions has 2%2 or 2(¢=1/2 real degrees of
freedom, for d even or odd respectively: a Dirac spinor has 2%2 or 2(4-1)/2
complex components but the Dirac equation cuts this number in half. In even dimensions, one
can further restrict the spinor by imposing that it be chiral or Weyl. This cuts the number
of degrees of freedom by two. Alternatively, in some dimensions (depending on the signature
of the metric) one can impose a reality or Majorana condition which also halves the number
of degrees of freedom. For a lorentzian metric of signature (1,d — 1), Majorana spinors exist
for d = 1,2,3,4mod 8. When d = 2 mod 8 one can in fact impose that a spinor be both
Majorana and Weyl, cutting the number of degrees of freedom in four. The next exercise asks
you to determine in which dimensions can supersymmetric Yang-Mills theory exist based on
the balance between bosonic and fermionic degrees of freedom.

Exercise 2.7 (N = 1 supersymmetric Yang-Mills)

Verify via a counting of degrees of freedom that N = 1 supersymmetric Yang-Mills can exist
only in the following dimensions and with the following types of spinors:

d | Spinor
3 | Majorana
4 | Majorana or Weyl
6 | Weyl
10 | Majorana-Weyl
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8.3.12.3.1 N = 1d = 6 supersymmetric Yang-Mills

It is a curious fact that these are precisely the dimensions in which the classical superstring
exists. Unlike superstring theory, in which only the ten-dimensional theory survives quantisa-
tion, it turns out that supersymmetric Yang-Mills theory exists in each of these dimensions.
Although we are mostly concerned with four-dimensional field theories in these notes, the six-
dimensional and ten-dimensional theories are useful tools since upon dimensional reduction to
four dimensions they yield N = 2 and N = 4 supersymmetric Yang-Mills, respectively.

83.1 2.3.1 N =1d =6 supersymmetric Yang-Mills

We start by setting some conventions. We will let uppercase Latin indices from the beginning
of the alphabet A, B, ... take the values 0,1,2,3,5,6. Our metric 45 is "mostly minus"; that
is, with signature (1,5). We choose the following explicit realisation of the Dirac matrices:

(0 (0 (0 -1
n=(nt) () m=(0)

where 1 = 0,1, 2,3, and where v, are defined in (2.4) and 75 = 70717273. The I'4 obey the
Clifford algebra

{Pa, T} = 20451
Weyl spinors are defined relative to I';, which is defined by

—10
ronnn - ()

We now write down the action for N = 1 supersymmetric Yang-Mills. We will take the
gauge group to be SO(3) for definiteness, but it should be clear that the formalism is general.
As before we will identify the Lie algebra so(3) with R® but we will now drop the arrows on
the vectors to unclutter the notation, hoping it causes no confusion. The lagrangian density is
given by

1 _
L=—G" G+ 5T 4D 40 (2.7)

N | =

where

GAB:8A WB—aB WA—GWAXWB
DA\I/:aA\D—QWAX\I/
and where ¥ is a complex Weyl spinor obeying I'¥ = —W. The Dirac conjugate spinor is
(gﬁned by U = UiT,, and obeys UI'; = U. Finally we have used the convenient shorthand
D 4 to mean
= A o3 A _ n.T A
U -T2D 0=V -T"DgV — DV -T'"V
The action defined by (2.7) is manifestly gauge invariant, but it is also invariant under
supersymmetry. Let a and 3 be two constant anticommuting Weyl spinors of the same chirality
as U. Let us define the following transformations:

W, = ial 4 ¥ YW, = —iWl 43
_ 1
S =0 o0 = §GABFABﬁ
_ 1 __
U = —§EGABFAB U =0
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8.3.12.3.1 N = 1d = 6 supersymmetric Yang-Mills

where I'yp = % (Cal'p — T'pl'4). We should remark that there is only one supersymmetry
in our theory: a and B are chiral. That is, there is only one spinorial charge @, in terms of
which the transformations 6 and § defined above can be understood as follows:

0¢ = [@Q,¢] and ¢ = [QB, ¢|
for any field ¢. Notice that it follows from this that the action of 6 can be deduced from

that of § as follows: d¢ = (&bT)T (apart from the obvious change of & to 3, of course). Keep in
mind that we have chosen the Lie algebra structure constants to be real, whence the generators
are antihermitian.

We claim that £ is invariant under § and & above up to a divergence. In order to derive
the supersymmetry current, we will actually take a and B to depend on the position and
simply vary the lagrangian density. We expect a total divergence plus a term with the current
multiplying the derivative of the parameter. The calculations will take us until the end of the
section and are contained in the following set of exercises.

Exercise 2.8 (Supersymmetry variation of £)

Prove first of all that for any derivation ¢,

0Gap = Dy0Wp — DpdW 4
and conclude that the variation of the bosonic part of the action £, is given by
0L, = —iG*P - Dy(a@l'pV) and 6L, =iG"? - Dy (VI'pA)
Next we tackle the fermions. Prove the following identities:
(DY) = —ie (@l 4 V) x ¥
- 1 —
0 (Da¥) = =5 Da (@GP°Tpe) —ie (@l aV) x U
and
_ 1 _
0 (Da¥) = 5 D4 (GPTpeB) +ie (FT4B) x ©
6 (DaW) =ic (¥I48) x U,

and conclude that the variation of the fermionic part of the action Ly is given by

5L; = 2D (@GC) - Tpol ' — &GP Dpcl Dy + e - (@04W) x T4 ¥

and

5L = iﬁrArBC D4 (GpeB) — iDﬁrArBC .GpoB — €W - (BT4B) x T,
Supersymmetry invariance demands, in particular, that the fermion trilinear terms in 6.L;
should cancel. This requires a Fierz rearrangement, and this is as good a time as any to discuss
this useful technique. Writing explicitly the Lie algebra indices on the fermions, the trilinear
terms in 0L become

e€ape (@IAT) (BT, P°) (2.9)
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8.3.12.3.1 N = 1d = 6 supersymmetric Yang-Mills

Let us focus on the expression $*W. This is a bispinor. Since spinors in six dimensions have
8 components, bispinors form a 64-dimensional vector space spanned by the antisymmetrised
products of I'-matrices:

1, T'a, Tas, Tasc, Tapcp, TUascpr and I'apcprer, or equivalently
I, Ta, Tap, Tapc, Taplz, Tal'y and I

(Notice that antisymmetrisation is defined by

1 :
FAIAQ“'Ap = F[A1 FAQ N .]'—‘AP] = —' Z SlgnUFAa(l>FAa(2> s 'FA

L oe6,

o(p)

so that it has "strength one.")
We will let {M,y} denote collectively these matrices. The above basis is orthogonal relative
to the inner product defined by the trace:

tr MAMA/ = CAéAA/

which allows us to expand
TP — Z bAacMA
A

ac

and to compute the coefficients by%¢ simply by taking traces. Remembering that ¥® are

anticommuting, we find

ac 1 T/ C a
br*¢ = o (PeMAT?) (2.10)

Exercise 2.9 (A Fierz rearrangement)

Using the above formula and computing the relevant traces, prove that

PP = _% (@cmqm) r4 (1+10) — % (ECFABc\Il“) [ABC

(Hint: use the fact that I';' = —W to discard from the start many of the terms in the
general Fierz expansion.)
We now use this Fierz rearrangement to rewrite the trilinear term (2.9) as follows:

—éeeabc) EFAFB (]l + F7) FA\I’b) (ECPB\I’(I)
— %eeabc (@ 4TPePr 4 0°) (U°TpepP*)

which using that ¥ is Weyl, can be simplified to

—ieeabc) al“TPr, v (TT50%)

— %Seeabc (@l PPT 4 00 (UT pep¥®)
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8.3.12.3.1 N = 1d = 6 supersymmetric Yang-Mills

Exercise 2.10 (Some I'-matrix identities)

Prove the following two identities:

Mr8r, = —4r%  and T41P9°r, =0 (2.11)

and deduce that the trilinear terms cancel exactly. The above identities are in fact the
minor miracle that makes supersymmetric Yang-Mills possible in six dimensions.

Up to a divergence, the remaining terms in the supersymmetric variation of the lagrangian
density £ are then:

5L = —iG*B . D, (@l pT) — %GBC @l 4Dy

and

5L =iG*P . D, (UTpB) — %GBC . DABTATEC3

Exercise 2.11 (... and the proof of supersymmetry invariance)
Prove the following identity between Dirac matrices

Fapl'c =Tapc +necl'a — nacl's

and use it to rewrite the supersymmetric variations of £ as

0L = %aAHGBC Tpel?W  and 6L = %EFAFBC -GPC0,8 (2.12)

again up to divergences and where we have used the Bianchi identity in the form
I 4pcDAGBY = 0. This proves the invariance of £ under the supersymmetry transformations
(2.8).

From (2.12) we can read the expression for the supersymmetry currents:

JA = ZGPOTpelM and Tt = SWTT e - GE

As usual the spinorial supersymmetry charge is the space integral of the zero component of
the current. Provided we already knew that £ is supersymmetric, there is a more economical
way to derive the expression of the supercurrent. This uses the fact that the supercurrent is
part of a supersymmetry multiplet.

Exercise 2.12 (The supersymmetry multiplet)

Prove that the lagrangian density (2.7) is invariant under the transformation ¥
exp(10)¥, ¥ — exp(—if)¥, and that the corresponding Noether current is given by

ja =W -T'4W¥. Prove that

Sja=iaJy and 6j4 = —iJs0

The supersymmetry multiplet also contains the energy-momentum tensor, alone or in com-
bination with other topological currents that may appear in the right hand side of {Q, Q} in the
supersymmetry algebra. We will use this later to compute the supersymmetry algebra corre-
sponding to six-dimensional supersymmetric Yang-Mills. But first we perform the dimensional
reduction to four dimensions.
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832232From N=1ind=6to N=2ind=4

83.2 232From N=1ind=6to N=2ind=14

Let us single out two of the coordinates (x°,2%) in six dimensions and assume that none of
our fields depend on them: 05 = s = 0. This breaks SO(1,5) Lorentz invariance down to
SO(1,3) x SO(2). Let us therefore decompose our six-dimensional fields in a way that reflects
this. In fact, we will at first ignore the SO(2) invariance and focus only on the behaviour of
the components of the six-dimensional fields under the action of SO(1,3). The gauge field
W, breaks up into a vector W, a pseudo-scalar P = W5 and a scalar S = Wj. In terms of
these fields, the field-strength breaks up as G, G5 = D,P,G,6 = D,S and Gsg = e S x P.
Meanwhile, the Weyl spinor breaks up as ¥ = (15), where 1) is an unconstrained (complex) Dirac
spinor. The covariant derivative of the spinor then breaks up as (D, 1, —eP x 9, —e S x 9).
The lagrangian density now becomes £ = L}, + Ly where

1 1 1 1
Lb = —ZGHV -G 4 §D#P - DFP + §Dus - DFS — 562”13 X S||2

and

Ly =it "Dy +ieth - P x 1 +ie - S x 1 (2.13)

where we see that P is indeed as pseudo-scalar as claimed. £ is the lagrangian density of
N = 2 supersymmetric Yang-Mills theory in four dimensions. The supersymmetry parameter
a, which in the six-dimensional theory is a Weyl spinor, becomes upon dimensional reduction
a Dirac spinor. But in four dimensions the supersymmetry parameters are Majorana, hence
this gives rise to N = 2 supersymmetry. One can see this explicitly by breaking up the super-
symmetry parameter into its Majorana components: simply choose a Majorana representation
and split it into its real and imaginary parts. Each of these spinors is Majorana and generates
one supersymmetry.

Let us first do this with 1. The next exercise shows the resulting fermion action in a
Majorana basis.

Exercise 2.13 (£ in a Majorana basis)

In a Majorana basis, let us split 1 as follows:

1
V2

Prove that relative to ¥, a = 1,2, the fermionic part L of the lagrangian density becomes
(up to a total derivative)

(0 (V1 — i1ha)

I — i— — —
Ly = 51/)1 '”YMDMA =+ §'¢2 '”YMDlﬂbz +ey - P Xy +erpy - S x 1, (2-14)
(Hint: you may find useful the following identities for anticommuting Majorana spinors in
four dimensions:
XA =AY XA = =AX X = —Mx (2.15)

which you are encouraged to prove!)
We can do the same with the supersymmetry transformations (2.8), as the next exercise
asks you to show.
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Exercise 2.14 (Explicit N = 2 supersymmetry transformations)

Show that in a Majorana basis, the dimensional reduction of the supersymmetry transforma-
tions (2.8) becomes:

01 W, = tay, 4, + ay, i,
0g Wy, = —ay, 4y + iy,
nP = i@’YB@bl + @’75"‘»[’2
0oP = —ays1p, + 1oy,
(51 S - ZO_é’l,bl + O_éwg
9y S = —ap, + iap,
1 1
611, = —D" (S + Prys) v, + 56( S X P)ysa + §G‘“’7Wa
0112 =0
52¢1 =0
1 1
do1py = —D" (S + Prys) v, + 56( S X P)ysa + §G‘“’7Wa

The SO(2) invariance of (2.14) can be made manifest by rewriting Ly explicitly in terms
of the SO(2) invariant tensors d,5 and €,5. In fact, using the identities (2.15), one can rewrite
(2.14) as:

pp— € 4
L= §5a6¢a A Dytbg + §€a6¢a (1P 4+ 85) x ¢y

The SO(2) transformation properties of the four-dimensional fields can be succinctly written
as follows:

S +iP s e (S + iP)
U 6#75/2¢
W, — W, (2.16)

Exercise 2.15 (The SO(2) Noether current)
Prove that the Noether current associated with the SO(2) transformations (2.16) is given
by
: i -
]3=P-DNS—S-DMP+§¢-757M¢

Notice that this current contains the axial current, hence the notation.
Problem: Is it anomalous in this theory?

8.3.3 2.3.3 Higgsed N = 2 supersymmetric Yang-Mills

The hamiltonian density corresponding to the N = 2 supersymmetric YangMills theory defined
by (2.13) is given by H = H;, + H;. We focus on the bosonic part:

1 o 1 o 1 2
H, = - ||E; — Do S — | DoP
o= 5 I+ 2 1D SI + 5 1DoP|

1 9 1 5 1 s 1, 9
~ I Bi|I®+ = || D; ~||D:P|? + =P
I B2+ S ID: S+ 5 IDPIE + 5eIP x S|

Demanding that the energy of a given field configuration be finite doesn’t necessarily imply
that P and S acquire non-zero vacuum expectation valuesfor the term ||P x S||? is already zero
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provided that P x S = 0, which for so (3) means that they be parallel. Indeed, except for
that term and the extra field, H,, is nothing but the energy density (1.13) of (the bosonic part
of) the Georgi-Glashow model in the limit of vanishing potential. We could add a potential
term A (||[P]|2 4 ||S|2 — a2)® to the lagrangian (2.13) to force S and P to acquire a nonzero
vacuum expectation value, but such a term would break supersymmetry. Nevertheless we
could then take the limit A | 0 while keeping the nonzero vacuum expectation values of S and
P. This restores the supersymmetry provided that (S) and (P) are parallel, which would be
the supersymmetric version of the Prasad-Sommerfield limit. Since the potential depends only
on the SO(2) invariant combination ||P||* + ||S]|?, SO(2) is preserved and we could use this
symmetry to choose (P) = 0 and (S) = a, where a is a fixed vector with |la||* = a?.

Exercise 2.16 (The perturbative spectrum of the model)

We can analyse the perturbative spectrum of the model around such a vacuum in exactly the
same way as we did in Exercise 1.4. Choosing for example the unitary gauge a = aes, show that
there are now two massive multiplets (¢, Wui, P¥*) of mass My, = ae), and a massless gauge
multiplet corresponding to the unbroken U(1) : (¢*, W2, S, P3). Prove that the massless gauge
multiplet is actually made out of two massless multiplets with helicities A = —1 and A = 0.

Now watch carefully: something curious has happened. From the analysis in section 2.2.3,
we know that the generic massive representations of N = 2
supersymmetry are sixteen-fold degenerate, and from Exercise 2.3 we know that they must
have a state with spin 3/2. Yet the massive multiplets which have arisen out of higgsing the
model contain maximum spin 1 and are only four-fold degenerate. This is only possible if the
N = 2 supersymmetry algebra in this model has central charges and these charges saturate the
bound! Indeed, the only way to reconcile the above spectrum with the structure of massive
representations of the N = 2 supersymmetry algebra studied in section 2.2.3 is if it corresponds
to the short multiplet with spin s = 1/2 studied in Exercise 2.5. In the next section we will
actually compute the supersymmetry algebra for this model and we will see that the central
charges are precisely the electric and magnetic charges relative to the unbroken U(1). But before

doing this let us check that the BPS-monopole is actually a solution of N = 2 supersymmetric
Yang-Mills.

8.3.4 2.3.4 N =2 avatar of the BPS-monopole

We now show that this N = 2 supersymmetric Yang-Mills theory admits BPSmonopole solu-
tions. We look for static solutions, so we put Wy = 0. Since the fermion equations of motion
are linear, we can always put ¢ = 0 at the start. Applying supersymmetry transformations to
such a solution, we will be able to generate solutions with nonzero fermions. Similarly, using
the SO(2) invariance we can look for a solution with P = 0, and then obtain solutions with
nonzero P by acting with SO(2). Having made these choices, we are left with W; and S, which
is precisely the spectrum of the bosonic part of the Georgi-Glashow model provided we identify
S and ¢. Furthermore, not just the spectrum, but also the lagrangian density agrees, with
potential set to zero, of course. Therefore the BPS-monopole given by (1.15) with H and K
given in Exercise 1.12 is a solution of N = 2 supersymmetric Yang-Mills. If we now apply an
SO(2) rotation to this solution, we find the following BPS-monopole solution:
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w:WOZO

§" = a5 H(¢)

a_ gl

P _/BGTQ‘H(g)
Wi = ey —5 (K () = 1) (2.17)

where as before £ = aer, where H and K are the same functions in Exercise 1.12, and
a? + 32 = 1. Putting 8 = 0 we recover the BPS-monopole and anti-monopole for o@ = =1,
respectively-a result first obtained in DHAV7S.

Since (2.17) is a solution of the field equations of a supersymmetric theory, supersymmetry
transformations map solutions to solutions. Hence starting with (2.17) we can try to gener-
ate solutions with nonzero fermions by performing a supersymmetry transformation. We will
actually assume a more general solution than the one above.

Exercise 2.17 (Supersymmetric BPS-monopoles)

Prove that any BPS-monopole, that is, any static solution (W;, ¢) of the Bogomol'nyi equation
(1.28), can be thought of as an N = 2 BPS-monopole by setting S = a¢p, P = ¢ and 9 = 0,
with a? + 5% = 1.

We will then take one such N = 2 BPS-monopole as our starting point and try to generate
other solutions via supersymmetry transformations. The supersymmetry transformation laws
on the four-dimensional fields can be read off from those given in (2.8) for the six-dimensional
fields. Since we start with a background in which ¢ = 0, the bosonic fields are invariant under
supersymmetry. The supersymmetry transformation law of the fermion %) is given by

op = (%G"”%u — Dy (o + 575)) €

where € is an unconstrained (complex) Dirac spinor. Because the solution is static - Wy = 0
and all fields are time-independent-the above can be rewritten as

0p = (%Gij%j + Digyi (o + BVS)) €

For definiteness we will assume that (W;, ¢») describe a BPS-monopole (as opposed to an
anti-monopole) so that D;¢ = —|—%qjijk. Then we can rewrite the above transformation law
once more as

0 = Dy¢p (%Ez‘jk'%‘j + Yk (a0 + M—,)) € (2.18)

Exercise

2.18 (More y-matrix identities)
Prove the following identity:

1

ieijk%‘j = =757k (2-19)
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Exercise 2.19 (Some euclidean y-matrices)

Let 4; = 7oy for i = 1,2,3, and let 44 = v (o + B75). Prove that they generate a euclidean
Clifford algebra. Define 45 = 9199371 = 7o (a5 — 5). Prove that 75 is hermitian and that
~2
¥ = 1.

In terms of these euclidean Clifford algebra, and using (2.19), we can rewrite (2.18) as

0 = D@ (1 —75) €

Notice that 1 (1 4 45) is a projector. If we denote ex = 3 (€ & 7€), then the supersymmetric
variation of 1) in a BPS-monopole background is given simply by

0 = 2957 Dy e

This means that if € has negative chirality relative to 745, then we don’t generate new solu-
tions, yet if € has positive chirality, then we do. Equivalently, supersymmetry transformations
with negative chirality parameters preserve the solution, whereas those with positive chirality
parameters break it.

Exercise

2.20 (BPS-monopoles break one half of the supersymmetry) Prove that the (+1)-eigenspaces
of 45 have the same dimension. Conclude that the projector % (1 £ 75) projects out precisely
one half of spinors.

As a corollary of the above exercise we see that supersymmetric BPSmonopoles break half
the supersymmetries.

Notice that the parameter €, being an unconstrained Dirac spinor has 4 complex (or 8 real)
components, whereas e;only has 2 complex (or 4 real) components. Hence we expect that the
BPS-monopole belongs to a fourfold degenerate multiplet. From our study in section 2.2.3 of
massive representations of the N = 2 supersymmetry algebra, we know that those massive
multiplets preserving half the supersymmetries are necessarily short, and from Exercise 2.5
we see that the & = 1 BPS-monopole given by (2.17) generates a short multiple with spin
s = 0. This multiplet contains two "particles" of spin 0 and one of spin 1/2, yet none of spin
1. Therefore although as we will see in the next section, N = 2 supersymmetry solves the first
of the problems with the Montonen-Olive conjecture mentioned at the end of section 1.4.1, it
still does not address the second problem satisfactorily. As we will see later, the solution of
this problem requires N = 4 supersymmetry.

8.3.5 2.3.5 The supersymmetry bound is the Bogomol’nyi bound

The Bogomol'nyi bound (1.27) can be suggestively rewritten as

M?* — (aq)* — (ag)* > 0

which is begging us to add two spatial dimensions to our spacetime and interpret the above
inequality as the positivity of mass. As explained in section 2.2.1, the positivity of the mass is a
consequence of unitarity and the supersymmetry algebra. Therefore it would make sense to look
for a six-dimensional supersymmetric explanation of the Bogomol'nyi bound. The explanation
of WO78 used the central charges in four-dimensional N = 2
supersymmetric Yang-Mills theory, and as we have seen this theory comes induced from six-
dimensional N = 1 supersymmetric Yang-Mills via dimensional reduction. It would make sense
therefore to look for a direct sixdimensional explanation. This was done to a large extent in
0Oli79 and we will now review this.
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The above heuristics suggest that we think of the electric and magnetic charges as momenta
in the two extra spatial dimensions. However it isn’t hard to see that this interpretation is
not quite correct. If one computes the energy-momentum tensor 74 of the six-dimensional
supersymmetric YangMills theory, and from there the momenta P4 = T4, then the positivity
of mass formula in six-dimensions:

M?*> P} + P} (2.20)

where M? = PFP, is the four-dimensional mass, does not agree with the Bogomol'nyi
bound (1.27). In fact one finds that the magnetic charge does not appear. What is wrong
then? Simply that we have assumed that it is P, which appears in the right hand side of
{Q, @} in the supersymmetry algebra, when in fact it is P, + Z,,, where Z, can be interpreted
as the topological charge due to the presence of a string-like source in six-dimensions. We now
find out what Z,, is by computing the supersymmetry algebra. We first do this in six dimensions
and then reduce down to four.

The supersymmetry algebra in six dimensions

We start by noticing that the space integral of §07o is equal to @{Q, Q}B3, whence it is enough
to compute §074, which we naturally leave as an exercise.

Exercise 2.21 (Supersymmetric variation of the supercurrent)
Prove that
66ja = —i6JaB
1 _
= —ZGBC - GPFal el alprB +i (@leDp¥®) - (VT 4TPCB)
The fermion bilinear term has to be Fierzed, but we will not be concerned with the fermions
in what follows: we are interested in computing the "momenta" in classical configurations like
the BPS-monopole, where the fermions have been set to zero. Of course, it would be a good

exercise in [-matrix algebra to compute the fermionic terms, not that there is little I'-matrix
algebra to be done. In fact, prove that setting W = 0,074 is given by

-, - 1 1
00ja =20 (_geBCAEFDGBC -GFF + GBC . Geanpp + ZGBC . GBCHAD) r’g (2.21)

(Hint: use that T'ypcpr = —€apcperl T Ty (prove it!) and use the fact that I';8 = —03.)
We see that there are two very different tensors appearing in the righthand-side of §74:

1
Oup = —§€ABCDEFGCD - GPF (2.22)

1
TAB = GAC . GC’B + ZGCD . GCDnAB (2.23)

Notice that Tsp is symmetric, whereas © 4 is antisymmetric. In fact, Tap is (the bosonic
part of) the energy-momentum tensor of the six-dimensional theory.
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Exercise

2.22 (The symmetric gauge-invariant energy momentum tensor) Prove that the
energy-momentum tensor of the six-dimensional supersymmetric Yang-Mills theory is given by

7 = — 1= >
TAB+§\IJ-I‘(ADB)\I/—17AB§\I/-FCDC\II

Prove that T4p is gauge-invariant and that it is conserved on-shell.

(Hint: Vary £}, with respect to an infinitesimal translation 4 — 24 +¢4(x) and determine
the associated Noether current, which after symmetrisation is the energy-momentum tensor,
by definition.)

Defining P4 to be the space integral of Ty, and Z4 the space integral of ©g4, we see that
the supersymmetry algebra becomes {Q, Q}:

{Q.Q} =2 (Pa + Za)

Only the first of these terms is to be interpreted as the momentum, the other term is
associated with a topologically conserved current.

Exercise 2.23 (The topological current)

Prove that © 45 is gauge invariant and that it is conserved off-shell, that is, without imposing
the equations of motion. This means that it is a topological current.

(Hint: show that © 45 = 0“Z 1pc where Z4p¢ is totally antisymmetric, though not gauge
invariant. )

The supersymmetry algebra in four dimensions

It is now time to dimensionally reduce the supersymmetry algebra. The following exercise asks
you to compute Ps, Ps, Zs, and Zg (with fermions put to zero) after dimensional reduction.

Exercise 2.24 (The "momenta" in the extra dimensions)

Prove that

To5 = —DZP . GOi — €<P X S) . DO S
T06 = _Di S - GOi + €(P X S) . DOP
1
Ops = §€ijkGij - Dy S
1
Oo5 = _ieijkGij - DyP

Using the Bianchi identity €;;,D;Gj; = 0, we can rewrite ©gs; and O as follows:

1 1
@05 = 582 (Eijijk . S) and @05 = —582 (Gz’jijk . P)

whereas using the equations of motion (for zero fermions)

—DiGOZ‘—FePXDoP—i—GSXDOS:O

we can rewrite Tps and Tog as follows:
T05 = —@- (GOZ : P) and T()5 = —8i (GOZ . S)
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We see that all the densities are divergences, whence their space integrals only receive
contribution from spatial infinity:

1
P+ Zs = / <—P - Go; + Eeijk S- ij) d¥;

1
P+ Zs = / <—S - Goi — éfijkp : ij:) dx;

To interpret these integrals we can proceed in either of two ways. The fastest way is to
use the SO(2) invariance of the theory to choose P = 0 and ||S||* = a? at spatial infinity.
Comparing with (1.24) and (1.25), we see that Ps + Z5 = ag and Ps + Zg = —aq. The same
reasoning follows without having to use SO(2) invariance, as the next exercise shows.

Exercise 2.25 (The effective electromagnetic field strength)
Define the following field strength:

1
Fu=~(8-Gu+P-"Gp) (2.24)

Prove that in the "Higgs vacuum" it obeys Maxwell’s equations, and deduce that P54+ Z5 =
ag and Ps+ Zgs = —aq where g and q are, respectively, the magnetic and electric charges of this
electromagnetic field.

(Hint: Compare with Exercise 1.8).

To prove that (2.20) is the Bogomol’'nyi bound (1.27), we can proceed in two ways. We can
exploit the SO(2) invariance of the supersymmetry algebra in order to set P = 0, and then
notice that Z, = 0. Using the fact that P, is indeed the honest momentum of the theory,
namely the space integral of Tp,, and plugging the expressions for Py + Z4 into (2.20), we
finally arrive at the Bogomol'nyi bound (1.27)!

Alternatively we can deduce that Z,, = 0 without having to set P = 0. This is the purpose
of the following exercise.

Exercise
2.26 (The space components of the topological charge)
Prove that ©; is given by
Oui = Eijkaj (P- Dy S)

whence Z; is given by

Prove that this vanishes for a finite-energy configuration.

(Hint: Notice that for a solution of the Bogomol’'nyi equation S = a¢, P = 3¢ with a?+ % =
1,P-Dy S= %aﬁ@kH(bHQ, and that the derivative 0y, is tangential to ¥, due to the €;;;. Since
|6]]? = a® on X, its tangential derivative vanishes.)

Define the following complex linear combinations of fields (cf. 1.33)):

g,ul/ = G,uu + i*G/Lll
P =S+P

in terms of which the effective electromagnetic field strength defined in 2.24, becomes
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1 _
Fuy = —Re(®-Gu)

Under an infinitesimal SO(2) transformation, 6® = i®, and because iS,, = *G,.,, We can
write

0F,, = —*F,

[17%

In other words, SO(2) transformations become infinitesimal duality transformations in the
effective electromagnetic theory.

Problem: Are anomalies responsible for the breaking of this symmetry in the quantum
theory?

8.4 2.4 N =4 Supersymmetric Yang-Mills

We saw in Exercise 2.7 that 10 is the largest dimension in which N = 1 supersymmetric Yang-
Mills theory can exist and that for it to exist we must impose that the spinors be both Weyl and
Majorana-conditions which, luckily for us, can be simultaneously satisfied in ten-dimensional
Minkowski space. In

this section we will prove that this theory exists and that upon dimensional reduction to four
dimensions yields a gauge theory with N = 4 supersymmetry. This theory admits Higgs phe-
nomena and has room to embed the BPS-monopole and indeed, any solution of the Bogomol'nyi
equation, just as in the NV = 2 theory discussed in the previous section. We will see that both the
massive fundamental states (e.g., vector bosons) and the solitonic states (e.g., BPS-monopoles)
belong to isomorphic (short) multiplets saturating the supersymmetry mass bound which once
again will be shown to agree with the Bogomol’'nyi bound for dyons.

84.1 241 N=1 d=10 supersymmetric Yang-Mills

We start by setting up some conventions. We will let indices A, B, ... from the start of the
Latin alphabet run from 0 to 9. (No confusion should arise from the fact that in the previous
section the very same indices only reached 6.) The metric 45 is mostly minus and the 32 x 32
matrices {I"4} obey the Clifford algebra {I'4,'s} = 2napl. We let I';; = T'o['y - - - T'g; it obeys
I'?, = 1. We shall also need the charge conjugation matrix C, which obeys C* = —C and
(CT'4)" = CT 4, from where it follows that (I'4)" = —CI'4C~".

N =1 supersymmetric Yang-Mills theory is defined by the following lagrangian density:

1 _
L=—1GY Gap+ 50 T4Dav (2.25)

1
2

where

GAgzaAWB—aBWA—GWAXWB
DA\IJ:(‘)A\If—eWAx\IJ

and where W is a complex Majorana-Weyl spinor obeying I'; ¥ = —W (Weyl) and ¥ =
UiT) = ¥'C (Majorana).

Exercise 2.27 (The Majorana condition)

Prove that the Majorana condition above relates ¥ and its complex conjugate W*:
U* = Clyw
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whence it can be considered a reality condition on the spinor.
The action defined above is clearly gauge invariant. We claim that it is also invariant under
the following supersymmetry:

(SWA = iaFA\If = —Z'EFAOL
o0 = —G*PT 15 (2.26)

where a is a constant anticommuting Majorana-Weyl spinor of the same chirality as ¥, and
where the second and third relations above imply each other.

The proof that the action is invariant under the supersymmetry transformations (2.26) is
very similar to the analogous statement for the sixdimensional theory, so we will not be as
verbose.

We start by varying the action with respect to (2.26). We don’t take e to be constant in
order to be able to read off the form of the supersymmetry current from the variation of the
lagrangian density. We will have proven invariance if we can show that up to a divergence, the
variation of (2.25) is proportional to the derivative of a-the coefficient being the supersymmetry
current. Varying the lagrangian density we encounter two kinds of terms: terms linear in the
fermions, and a term trilinear in the fermions and without derivatives, coming from the variation
of the gauge field inside the covariant derivative acting on the fermions.

Before getting into the computation, it is useful to derive some properties of Majorana-Weyl
fermions, which are left as an instructive exercise.

Exercise 2.28 (Properties of Majorana and Weyl fermions)

Let a and B be anticommuting Majorana fermions in ten dimensions. Prove that

Al y0,08 = (=) FD2ET 4,0, (2.27)

If, in addition, a and B are Weyl and of the same chirality, then prove that

@ (even number of I's) 8 = 0.

(Hint: It may prove useful to first prove the identity

(CT 4, agon,) = —(=)FEFD2CT 4 4y, (2.28)

which will play a role also later on.)
We now vary the lagrangian density.

Exercise 2.29 (Varying the lagrangian density)

Prove that supersymmetric variation of the lagrangian density £ is given, up to a divergence,
by:

5L = %DCGAB alBrW +iDAG 45 - Al PW
. 1
+ %GAB 0PI + ST - (@) x V)
(Hint: Integrate by parts and use the identity (2.27) repeatedly.)
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Using the Bianchi identity in the form I'*?¢DoG 45 = 0, it is easy to prove that the first
two terms in the above expression for £ cancel out, leaving the trilinear terms and the term
involving the supersymmetry current:

6L = Oaa]* + %eWFA (@4 ) x )

where the supersymmetry current J* is given by

JA = %GBC . DBCPAY (2.29)

Finally we tackle the trilinear terms, which as usual are the trickier ones. Just as in the
six-dimensional theory, their vanishing will be seen to be a property of some identities between
the I-matrices. Writing the SO(3) indices explicitly, we find that these terms are given by

1 —
5 CCabcOl 4 U W I x wb (2.30)

and we once again must use the Fierz identities to expand the bi-spinor W*We.

Exercise 2.30 (A ten-dimensional Fierz identity)

Prove that

. C ]- . C
V= - W L 04 (1 +T,)
1

T, ¢ amABC
+ m\lf Iapc®T (1+Tyy) —

1

7 5'$CFABC’DE‘IICLFABCDE-

Using the results of Exercise 2.28 - in particular equation (2.27)-and taking into account
the antisymmetry of €,,. we see that only the first and last terms on the right-hand side of the
above Fierz identity contribute to (2.30).

Exercise 2.31 (Some more I'-matrix identities)

Prove the following identities between ten-dimensional [-matrices:

18T, = —8T%  and TFTAPCPETL = (2.31)

and use them to deduce that the trilinear terms (2.30) cancel exactly.
(Compare these identities with those in Exercise 2.10.)

8.4.2 2.4.2 Reduction to d =4: N =4 supersymmetric YangMills

We now dimensionally reduce the d = 10 N = 1 supersymmetric Yang-Mills theory described
in the previous section down to four dimensions. From

now on we will let uppercase indices from the middle of the Latin alphabet: I,J, K, ... run
from 1 to 3 inclusive. It will be convenient to break up the ten-dimensional coordinates as 4 =
(z#, 2% 2577 and by dimensional reduction we simply mean that we drop the dependence
of the fields on (x3“, x6+‘]) : 0341 = 0gp7 = 0.

We also need to decompose the ten-dimensional ['-matrices. This is done as follows:

"=4"®1,0c C=01,®1,
F3+I::H_4®O{I®O'1 I‘6+J:i,y5®ﬁj®o.3
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where C' is the charge conjugation matrix in four-dimensional Minkowski space obeying

C' = —C and (Cv,)" = Cv,; and {a!} and {8’} are 4 x 4 real antisymmetric matrices
satisfying the following algebraic relations:

ol o] = 27K K {o/, aJ} — 9511,

ﬁI,BJ — —QEIJKBK {BlaﬂJ} — _251J14

[a!, 7] =0

and where 1,, denotes the n x n unit matrix. (From now on we will drop the subscript when
the dimension is clear from the context.) In the above decomposition, I'y; takes the form:

F11:—1®]1®O'2

We can find an explicit realisation for the matrices o/ and 37 as follows. Because they
are real antisymmetric 4 x 4 matrices, they belong to so(4). Their commutation relations say
that they each generate an so(3) subalgebra and moreover that these two so(3) subalgebras
commute. Happily so(4) = so(3) x so(3), so that all we have to find is an explicit realisation
of this isomorphism. This is found as follows. We say that a matrix A in so(4) is self-dual
(respectively antiselfdual), if its entries obey A;; = %eijklAkl (respectively, A;; = _%EijklAkl>'
The next exercise asks you to show that the subspaces of so(4) consisting of (anti)self-dual
matrices define commuting subalgebras.

Exercise

2.32(s0(4) = s0(3) x so(3) explicitly )

Prove that the commutator of two (anti)self-dual matrices in so(4) is (anti)selfdual, and
that the commutator of a self-dual matrix and an antiselfdual matrix in so(4) vanishes.

(Hint: Either compute this directly or use the fact that the "duality" operation is so(4)
invariant since €;;;; is an so(4)-invariant tensor, whence its eigenspaces are ideals.)

Using this result we can now find a explicit realisation for the ! and the 87: we simply
find a basis for the (anti)self-dual matrices in so(4). This is the purpose of the next exercise.

Exercise

2.33 (Explicit realisation for ! and 37)
Prove that a matrix A in so(4) is (anti)self-dual if its entries are related in the following
way':

Ayg = A3 A1z =FAs Ay ==FAss

where the top signs are for the self-dual case and the bottom signs for the antiselfdual case.
Conclude that explicit bases for the (anti)self-dual matrices are given by:

. 01 _ , 09 0
ef:wg@)]l:(_ﬂo) elzll@wg:(z?i@)

: 109 0 - 0 o
€;:U3®ZU2=<02 —i02> 62:ZUQ®03=(_03 03>

+ . 0 iO’Q _ . 0 01
es =01 ®10g = iy 0 ez =102 Q01 = o 0

where the {e] }are self-dual and the {e; }are antiselfdual. Prove that o = er and B/ = 7
is a valid realisation.
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Exercise

2.34 (The fundamental representation of su(4))

Either abstractly or using the above explicit realisation, prove that the fifteen (4 x 4)-
matrices:

AIJ — eI‘]KQK BIJ — €IJK'ﬁK O]J - {OZIHBJ} (233)

are antihermitian and generate the su(4) Lie algebra. This is the fundamental representation
of su(4).

The result of the above exercise and the above decomposition of the ten-dimensional I'-
matrices mean that we have broken up a ten-dimensional spinor index (running from 1 to 32)
into three indices: a four-dimensional spinor index (running from 1 to 4), an internal su(4)
index in the fundamental representation (i.e., also running from 1 to 4), and an internal su(2)
index also in the fundamental representation. We have chosen the above decomposition of the
I'-matrices because it possesses two immediate advantages:

Because of the form of I'y;, a Weyl spinor in ten-dimensions gives rise to a unconstrained
Dirac spinor in four-dimensions with values in the fundamental representation of su(4). In
other words, the chirality condition only affects the internal su(2) space and does not constrain
the other degrees of freedom; and

Because of the form of the charge conjugation matrix, the Majorana condition in ten di-
mensions becomes the Majorana condition in four dimensions.

Thus we see immediately that a Majorana-Weyl spinor in ten-dimensions yields a quartet
of Majorana spinors in four-dimensions, or equivalently a Majorana spinor in four-dimensions
with values in the fundamental representation of su(4).

This su(4) is a "flavour" index of the four-dimensional theory; that is, su(4) is a global
symmetry of N = 4 supersymmetric Yang-Mills theory, not a gauge symmetry. Of course,
this flavour symmetry is nothing but the residual Lorentz symmetry in ten-dimensions which
upon dimensional reduction to four-dimensions breaks down to SO(1,3) x SO(6). The Lie
algebras of SO(6) and SU(4) are isomorphic. In fact, SU(4) = Spin(6), the universal covering
group of SO(6); and the four dimensional representations of SU(4) are precisely the spinorial
representations of Spin(6) under which the supersymmetric charges transform.

We now want to write down the four-dimensional action obtained by the above dimensional
reduction. We define the scalar fields S; = W3, ; and pseudoscalar fields P; = Wg, ;. Together
with the four-dimensional gauge fields W, they comprise the bosonic field content of the four-
dimensional theory. As mentioned above, the chirality condition on a ten-dimensional spinor
can be easily imposed. Let us write

e ()

where 1 is a quartet of unconstrained Dirac spinors in four dimensions. From the form of
I’y it is easy so see that ') U = -9 ® %02 (1) = —W. The Majorana condition says that 1 is
Majorana in four dimensions. Naturally, all fields are in the adjoint representation of the gauge
group SO(3).

In order to write down the action we need to dimensionally reduce the Dirac operator
and the gauge field-strength. We find that Gap breaks up as G, G, 341 = D,Sr,Guerr =
DMPJ, G3+[73+J = —¢ S[ X SJ, G3+]’6+J = —€ S[ X PJ, and G6+[76+J = —ePy x PJ. This allows
us to write the bosonic part of the lagrangian density immediately:
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1 1 1
Lb == _ZLGHV.GHV + §DuS[ . D“S[ + §D,UPJ . D“PJ

1 1 1
— 162 || S[ X SJ||2 — 162 ||P[ X PJ||2 — 562 || S] X PJH2 (234)

The fermionic part of the action requires a bit more work, but it is nevertheless straightfor-
ward, and is left as an exercise.

Exercise

2.35 (The fermionic terms in the lagrangian)

Using the explicit form of the I'-matrices, prove that the term %@ -T4D ¥ in equation
(2.25), becomes

L= 55D (01 S+ 8P s) ) 235)

from where we see that indeed we were justified in calling S; scalars and P; pseudoscalars.

We now write down the supersymmetry transformations. In ten dimensions, the parame-
ter of the supersymmetry transformation is a MajoranaWeyl spinor. As we have seen, upon
dimensional reduction, such a spinor yields a quartet of Majorana spinors in four-dimensions.
Therefore the fourdimensional theory will have N = 4 supersymmetry. Indeed the lagrangian
density L}, + L, understood in four dimensions, defines N = 4 supersymmetric Yang-Mills
theory.

Since the supersymmetry parameter a is a Majorana-Weyl spinor obeying I'lya = —a, we
can write it as a = e@{)\/i5 (:), where € is a quartet of four-dimensional anticommuting Majorana
spinors.

Exercise 2.36 (N = 4 supersymmetry transformations)

Expand equation (2.26) in this reparametrisation to obtain the following supersymmetry trans-
formations for the four-dimensional fields:

OW,, =iey,
58[ :EOéI'lp
6P =ey; 87

1
5% =5 G e +iD,Siv"a e +iD,P 1 s e

1 1
— 6( S] X PJ) ’}/5OZIBJ€ + 566]]]{( S] X SJ) OéK€—|— 566]][{ (P] X PJ) ﬁKE

Finally we have the su(4) invariance of the action.

Exercise 2.37 (su(4) invariance)

Prove that, for every choice of constant parameters (ays, bys, cry) where ar; = —ay; and by; =
—bys, the following transformations are a symmetry of N = 4 supersymmetric Yang-Mills
theory:
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W, =0
0S;r = 2ary Sy + 2¢15P;
(SP[:Qb]JPJ_QCJ[ SJ

1 1 7
0 = _§QIJAIJ77/) - §bIJBU¢ + §CIJC]J’75¢

where A7, BT/ and C!7 are the su(4) generators in the fundamental representation given
by equation (2.33).

(Hint: You may save some time by first showing that these transformations are induced
from Lorentz transformations in ten dimensions, and then using the Lorentz invariance of the
ten-dimensional action.)

8.4.3 2.4.3 Monopoles and gauge bosons in N = 4 supersymmetric Yang-Mills

In section 2.3.4, we saw how any BPS-monopole could be thought of as a solution to the
equations of motion of N = 2 supersymmetric Yang-Mills by setting the fermions to zero and
aligning the scalar fields properly. Moreover we saw that such solutions break one half of the
supersymmetry, so that these N = 2 BPS-monopoles naturally belong to a short multiplet.
In fact, they belong to the short multiplet with spin s = 0. On the other hand, we had seen
in section 2.3.3 that after higgsing, the perturbative spectrum of the theory arranged itself in
a massless vector multiplet corresponding to the unbroken U(1) and massive short multiplets
with spin s = % containing the massive vector bosons. It therefore seemed unlikely that N = 2
super YangMills would be self-dual, since the perturbative spectrum of the dual theory (i.e.,
the monopoles) now live in a different supersymmetry multiplet. And in fact, we now know
from the results of Seiberg and Witten, that this theory is not self-dual. In this section we will
see that this obstacle is overcome in N = 4 supersymmetric Yang-Mills theory. The discussion
is very similar to that of sections 2.3.3 and 2.3.4, with the important distinction that the short
multiplet containing the BPS-monopole and the one containing the massive vector boson are
now isomorphic, being the one with spin s = 0. This section and the next are based on the
work of Osborn Osb79.

The bosonic part of the hamiltonian density corresponding to the N = 4 supersymmetric
Yang-Mills theory defined by (2.34) and (2.35) is given by:

2 2 2 2 2 2
Hy, = 3 | Eill” + 3 1Do StlI” + 5 [ DoP | + 2 Bill™ + 3 HDé Sl + 3 HDz‘PJH2
+3€° | Srx Pyll” + 3 | S x Syl + 1€ [[Pr x Py||

Demanding that the energy of a given field configuration be finite doesn’t necessarily imply
that all the scalars P; and S; acquire non-zero vacuum expectation values at spatial infinity.
Indeed, looking at the potential terms it is sufficient (for so(3)) that they be parallel. This
defines the supersymmetric Prasad-Sommerfield limit as in N = 2. In more detail, we add a
potential term A (HSIH2 +|PsII? - a2)2 to the lagrangian (2.34) to force S; and P, to acquire
a nonzero vacuum expectation value, but since such a term would break
supersymmetry, we take the limit A | 0 while keeping the nonzero vacuum expectation values
of S; and P;. This restores the supersymmetry provided that (S;) and (P;) are parallel. We
could choose S; = a;¢ and P; = by¢ where >, (a7 + b%) = 1, and where (¢) has length a at
infinity. Since the potential depends only on the SO(6) invariant combination ||S;||* + || P/,
we could use this symmetry to choose, say, by = as = a3 = 0,a; = 1 and (¢) = a, where a is a
fixed vector with ||a||* = a®.
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Exercise 2.38 (The perturbative spectrum after higgsing)

We can analyse the spectrum of the model around such a vacuum in exactly the same way as
we did in Exercise 1.4. Choosing for example the unitary gauge a = aes, show that there is
now a massless gauge multiplet with helicity A = —1, corresponding to the unbroken U(1) :
(Wi’, P, S P;’); and two massive multiplets (Qpi, Wj, Pli, SfQ) of mass My, = aeh. Conclude
that these massive multiplets are actually short multiplets of spin s = 0.

Now let’s see to what kind of multiplets the N = 4 BPS-monopoles belong. Let (W;, ¢) be
a BPS-monopole and let us set Wo =¥ =0, S; = a;¢, and P; = b;¢, where a; and b; are
real numbers satisfying >, (a7 + b7) = 1. Because the fermions are zero, only the bosonic part
of the lagrangian is nonzero. Plugging in these field configurations into (2.34), we find

1 1
L=-7GiGy— 5 ID:glI”

after using that the fields are static and that S; and P; are all collinear. But this is precisely
the action for static solutions to the bosonic Yang-MillsHiggs theory, hence it is minimised by
BPS-monopoles. Therefore the above field configurations minimise the equations of motion of
N = 4 supersymmetric Yang-Mills. In other words, we have shown that any BPS-monopole
can be embedded as a solution of the N = 4 supersymmetric Yang-Mills theory. (Compare
with Exercise 2.17.)

Now we will prove that such a solution breaks one half of the supersymmetry and hence it
lives in a short multiplet. Because the fermions are put to zero, the supersymmetry transfor-
mation of the bosonic fields is automatically zero. From the results of Exercise 2.36 we can read
off the expression for the supersymmetry transformation of the spinors in this background:

1 .
oY = (iGij%j —iD;¢; (ara’ + bJﬁj%)) €

If we now use equation (2.19), and the Bogomol'nyi equation in the form G;; = €;;, D¢, v
takes the form:

6 = 1Dy (1570 — i (ara’ +b58775)) €
= V5 Dr® (L — 75) €

where 3, = 07,71 = —iv0 (e +b;6775), and 35 = 192737 As expected, the 7;
generate a euclidean Clifford algebra, and it follows that % (I — 45) projects out one half of the
states: those which have positive chirality with respect to 75. Hence we conclude that N = 4
BPS-monopoles break one half of the supersymmetry.

From the analysis of N = 4 multiplets in section 2.2.3 and, in particular, from Exercise
2.6, we see that a multiplet where states break one half of the supersymmetries are short; and
looking at the spectrum, we see that it is the short multiplet with spin s = 0, which is the only
short multiplet with spins not exceeding 1. Therefore the BPS-monopole and the massive vector
boson belong to isomorphic multiplets. This solves the second problem with the Montonen-
Olive duality conjecture alluded to in section 1.4.1-for, certainly, if N = 4 supersymmetric
Yang-Mills is to be self-dual, the BPS-monopole and the massive vector boson should belong
to isomorphic multiplets.

Finally, we come to a minor point. The supersymmetry parameter €, just like the fermion
1, is a quartet of Majorana spinors. The additional condition for the parameter to preserve
the supersymmetry is that it be chiral with respect to 45. One might be tempted to think that
there is a problem since in four-dimensions (either with euclidean or lorentzian signature) there
are no Majorana-Weyl spinors. However the Majorana condition is a condition in Minkowski
spacetime, whereas the chirality condition is a condition relative to the euclidean 75. We
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will see this more explicitly later on when we consider the effective action for the collective
coordinates, but for now let us simply state without proof that these two conditions are indeed
simultaneously realisable.

8.4.4 2.4.4 The mass bound for N = 4 super Yang-Mills

We end this chapter with a derivation of the mass bound for N = 4 super Yang-Mills. Keeping
in mind the similar calculation for N = 2 super YangMills, it should come as no surprise that
the mass bound coincides once again with the Bogomol'nyi bound. In order to derive the mass
bound, we will first write down the algebra obeyed by the supersymmetry charges in d = 10
N = 1 super Yang-Mills. After dimensional reduction this will give us an explicit expression for
the central charges appearing in the four-dimensional supersymmetry algebra. Naturally one
could compute the supersymmetry algebra directly in four dimensions, but we find it simple to
dimensionally reduce the algebra in ten dimensions.

The supersymmetry algebra in ten dimensions

The supersymmetry algebra can be derived by varying the supersymmetry current (2.29). In-
deed, the supersymmetry algebra will be read off from the space integral of the supersymmetry
variation of the timelike (zeroth) component of the supersymmetry current. Explicitly, if € is
a MajoranaWeyl spinor just like W, then

a{Q,Qle = —z'/ §J%
space

where the integral is over a spacelike hypersurface. We can get an idea of what to expect
in the right-hand side of the supersymmetry algebra purely from the fact that () is an anti-
commuting Majorana-Weyl spinor. From Exercise 2.28 we see that in the right-hand side of
the supersymmetry algebra, we expect only terms consisting of an odd number of I' matrices
and moreover only those bispinors I' for which CI' is symmetric, since so is the left-hand side
of the supersymmetry algebra. Using equation (2.28), we see that only those terms with 1 and
5I" matrices survive. We now turn to the computation, which is left as an exercise. We will
only be interested in terms which survive in a BPS-monopole monopole background in which
the fermions have been put to zero.

Exercise 2.39 (The supersymmetry algebra in ten dimensions)

Prove that up to terms involving the fermions, the variation of the supersymmetry current is
given by

_ 1
—i0JPe = —ZEFABFEFCDGGAB -Gep

Perform the I' matrix algebra and, taking into account that o and e are MajoranaWeyl,
show that

_ 1 1
—idJPe=a (—ZFABCDEGAB -Gep + 2GFPA . G TP + 5GAB : GABFE) €

Prove the identity
1
[ABOPE — _ — ABCDEFGHIID o T

5!
and using the fact that [';;€ = —e, conclude that
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- 1
—i6J%e = 2 (WGABCDEFGH”GAB -Geplranrs

1
+ <GEA . GAB -+ ZGCD . GC’D(SE) FB> €
We now define the following tensors

1
TAB — GAC . GCB 4 ZUABGCD . GCD

1
ABCDEF ABCDEFGHIJ
6 == gE GGH . G[J

We recognise T as the bosonic part of the (improved) energy-momentum tensor of the super
Yang-Mills theory. The momentum is then given by the space integral of T°4:

PA —_ / TOA
space

How about ©7 Just as in the case of N = 2, it is a topological current.

Exercise 2.40 (Another topological current)

Prove that © 4gopEr is gauge invariant and that it is conserved without imposing the equations
of motion.
(Hint: Compare with Exercise 2.23.)

We define the topological charge associated to © as the space integral of @VABCPE;

ZABCDE _ / @OABCDE
space

In summary, the supersymmetry algebra remains as follows:

= 2
{Q,Q} = 2P T4 + ngBCDEFABCDE (2.36)

In 10 dimensions, the 5 -form Z4BCPF can be decomposed into a self-dual and an antiself-
dual part. The next exercise asks you to show that only the self-dual part contributes to the
algebra.

Exercise 2.41 (A self-dual 5-form)

Using the fact that the supersymmetry charge has negative chirality, show that we can for free
project onto the self-dual part of ZABCPF in the left-hand side of the supersymmetry algebra.

This 5 -form belies the existence of a 5-brane solution of ten dimensional supersymmetric
Yang-Mills. Under double dimensional reduction, it gives rise to the string-like solution of
six-dimensional supersymmetric Yang-Mills briefly alluded to in section 2.3.4

The supersymmetry algebra in four dimensions

In order to write down the supersymmetry algebra in four dimensions, we need to dimensionally
reduce both the momenta and the topological charge appearing in the ten-dimensional algebra
(2.36). We will assume from the

start a BPS-monopole background where the fermions are put to zero. We will not demand
that the solutions be static, since that is the only way we can generate electric charge. Moreover
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Collective Coordinates for Children by JM Figueroa-O’Farrill

we will exploit the internal SO(6) symmetry to choose P; = So3 = 0 and S; = ¢. In such a
background, the only nonzero components of the field strength Gap are G, G,4. This limits
considerably the nonzero terms of the momentum P4 and the topological charge ZABCPE  ag
the next exercise shows.

Exercise 2.42 (Momentum and topological charge in this background)

Prove that in the background chosen above, the only nonzero components of the momentum
and topological charge densities are the following: T T%, %679 The first term is of course
simply the four-momentum density, whereas the other two terms are given by:

T™ = —Gy; - Dip = —0; (Gy; - @)
1 1
QU36T89 _ —§€zjkGij -Dypp = —§0k (€ijxGij - @)

(Hint: In order to rewrite the right-hand sides of the equations, use the equations of motion
in this background, and the Bianchi identity. (Compare with the discussion following Exercise
(2.24))

Taking into account the results of the previous exercise we can rewrite the supersymmetry
algebra in four dimensions as follows:

{Q,Q} =21, P" — 2F4/

Yoo

Go; - pdX; — F56789€ijk/ Gij - pdXy, (2.37)

Yoo

But now notice that I',,I'y and I'sgrs9 = I'sI'6I'71's'g generate a lorentzian Clifford algebra
of signature (1,5), hence the supersymmetry algebra (2.37) is formally identical to one in six-
dimensional Minkowski spacetime where the momenta in the extra two dimensions are given

by:

Pé:/ Goi - ¢d¥; = —aq
2oo

P = l%‘k/ Gij - 9dXy = ag
2 o
and where we have used equations (1.24) and (1.25) to rewrite the extra momenta in terms
of the electric and magnetic charges. Finally, as in the N = 2 case, the mass bound is simply the
positivity of the six-dimensional "mass" given by equation (2.20). Plugging in the expression
for the extra momenta, we once again recover the Bogomol'nyi bound (1.27).

9 Collective Coordinates for Children by JM
Figueroa-O’Farrill

BPS-monopoles are static: any motion, however small, increases their kinetic energy and makes
their total energy strictly greater than the Bogomol'nyi bound. Nevertheless, if we keep the
velocity small and if the motion starts off tangent to the space of static BPS-monopoles, energy
conservation will prevent the motion from taking the monopoles very far away from this space.
Much like a point-particle moving slowly near the bottom of a potential well, the motion of slow
BPS-monopoles may be approximated by motion on the space of static BPS-monopoles (i.e.,
along the flat directions of the potential) and small oscillations in the transverse directions. We
can trade the limit of velocities going to zero, for a limit in which the potential well becomes
infinitely steep. This suppresses the oscillations in the transverse directions (which become
increasingly expensive energetically) and motion is effectively constrained to take place along
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the flat directions, since this motion costs very little energy. Manton [Man82| showed that the
motion along the flat directions is geodesic relative to a metric on the moduli space of BPS-
monopoles, which is induced naturally from the Yang-Mills-Higgs action functional. Expanding
the action functional around a BPS-monopole gives rise to an effective theory in terms of
collective coordinates. These are the coordinates on the moduli space of BPS-monopoles and
the effective action is nothing but a (1 4 0)-dimensional o-model with target space the moduli
space.

In this chapter we will study the moduli space M of BPS-monopoles. Our aim is to prove
that it is a hyperkéhler manifold which, for a given magnetic charge, is finite-dimensional, and
to compute its (formal) dimension. For the simplest case of magnetic charge k = 1, we will also
work out the metric explicitly from the field theory and hence the effective action. We quantise
the effective action following the review in the introduction of GMS86]|. This is as much as can
be done directly with field-theoretical methods. The only
other case in which the metric on moduli space is known exactly is the £ = 2 monopole
sector. This metric was constructed by Atiyah and Hitchin AH85 by indirect methods. We will
eventually review their construction as well.

9.1 3.1 The metric on the moduli space

We start by constructing the metric on the true physical configuration space of the Yang-Mills-
Higgs theory. This will induce a metric on the moduli space of BPS-monopoles, which is a
submanifold.

9.1.1 3.1.1 The physical configuration space

Let A" denote the space of configurations (W, ¢) of Yang-Mills-Higgs fields of finite energy in
the Prasad-Sommerfield limit. Recall that in this limit, the energy density is given by (1.13)
setting V' (¢) = 0. Configurations which are related by a short-range gauge transformation-that
is, gauge transformations which tend to the identity at infinity-are to be thought of as physically
indistinguishable. Hence if we let G’ denote the group of shortrange gauge transformations, the
true configuration space of the Yang-MillsHiggs system is the quotient

Cgﬂl/gl

It is convenient to fix the gauge partially by setting Wy = 0, that is by going to the temporal
gauge. This still leaves the freedom of performing time-independent gauge transformations,
since these are the gauge transformations which preserve the temporal gauge:

6(56W0 = D0€ =e=0

We will therefore let G C G’ denote the group of time-independent short-range gauge
transformations.

The temporal gauge Wy = 0 is preserved by the dynamics provided we impose its equation
of motion, that is, Gauss’s law:

DWW, —epp x p =0 (3.1)

Therefore if we let A denote the space of finite-energy configurations (W;, ¢) subject to
Gauss’s law, then the configuration space C also admits the description

C=A/Gg
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We can simplify many of the calculations by describing the space A in a different way. We
introduce a fourth spatial coordinate x* and interpret the Higgs field ¢ as the fourth-component
W, of the gauge field. Notice however that we must impose that nothing depends on the new
coordinate: 0, = 0. We will write W; = (W;, W4 = ¢), where the underlined indices run from
1 to 4. Notice that the field-strength has components G;; = (Gjj, Giu = D;¢). In this new
notation, gauge transformations, Gauss’s law and the Bogomol'nyi equation all have natural
and simple descriptions.

Exercise 3.1 (The BPS-monopole as an instanton)

Prove that infinitesimal gauge transformations on the Yang-Mills-Higgs system now take the
form

that Gauss’s law (3.1) becomes simply

D;W,; =0 (3.2)
and that the Bogomol'nyi equation (1.28) is nothing but the (anti)self-duality equation

1
Gil' = iéeijkéGﬂ (3.3)

In summary, this proves that BPS-monopoles in 3 4+ 1 dimensions are in one-to-one corre-
spondence with static instantons in 4 4+ 1 dimensions which are translationally invariant in the
fourth spatial direction.

Therefore in this description, the space A is given as those gauge fields W; in 4 + 1 di-
mensions, independent of z*, of finite energy per unit length in the x*-direction, and whose
time-dependence is subject to (3.2).

9.1.2 3.1.2 The metric on the physical configuration space

In the temporal gauge, the Yang-Mills-Higgs lagrangian in the PrasadSommerfield limit is given

as a difference of two terms: L =T — V', where the kinetic term 7T is the 3 -space integral of
1 .
—{|W;
3 |

= I el (3.4
2 2

and the potential term V' is the 3 -space integral of

1 1 1
3 | By||” + 3 |Dig||” = 3 | B; ¥ Dig||* £ 0; (¢ - By) (3.5)

We will now show that the lagrangian is well-defined in the true configuration space C. The
kinetic term will induce a metric.

Suppose we would like to compute the value of the potential on some point in C. Points in C
are equivalence classes [W;] of points W; in A: two points in A belong to the same equivalence
class if and only if they are related by a gauge transformation in G; that is, if they lie on the
same G-orbit. To define a potential on C we can simply use the potential term (3.5) on A as
follows: to find out the value of the potential on a point [W;] in C, we choose some point W;
in the same equivalence class, and we evaluate the potential (3.5) on it. This will only make
sense if the value of the potential doesn’t depend on which element in the equivalence class
we have chosen; that is, if the potential is gauge-invariant. More formally, a function on A
will induce a function on C = A/G if and only if it is G-invariant. Luckily this is the case,
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9.1.3 3.1.3 The metric on the moduli space

since in the temporal gauge, the potential and kinetic terms are separately invariant under
time-independent gauge-transformations.

The kinetic term is trickier since it is not strictly speaking a function on A: it requires not
just knowledge of W; but also of its time-derivative W;. In other words, it is a function on
the tangent bundle TA. The typical fibre at a point [W;] of the tangent bundle is spanned
by the velocities of all smooth curves passing through that point. We may lift such curves to
curves in A, but this procedure is not unique. First we have to choose a point W; in A in
the equivalence class [W;]. Just as before, this ambiguity is immaterial since the kinetic term
is invariant under time-independent gauge transformations. But now we also have to choose
a tangent vector Wl Clearly adding to a tangent vector a vector tangent to the orbits of G
does not change the curve in C since every G-orbit in A is identified with a single point in
C. Hence the kinetic term should be impervious to such a change. Tangent vectors to G are
infinitesimal gauge-transformations whose parameters go to zero at spatial infinity, therefore
the kinetic term (3.4) defines a kinetic energy on C provided that W@ and W@ + D;e have the
same kinetic energy. Integrating by parts we see that this is a consequence of Gauss’s law (3.2).

In summary, the Yang-Mills-Higgs lagrangian induces a lagrangian in the true configuration
space C, whose energy is of course given by £ = T + V. The kinetic energy term 7T defines
a metric on C. Motion on C is not "free" of course, since there is also a potential term, but
for motion along the flat directions at the bottom of the potential well, this will be a good
approximation. We turn to this now.

9.1.3 3.1.3 The metric on the moduli space

Let M denote the subspace of C where the energy E attains its minimum. From the explicit
expression for 7" and V' given in (3.4) and (3.5), we see that the minimum of the energy is given
by

dma

algl = 2k (36)

R3

where ¢ is the magnetic charge, and the integer k is the topological or monopole number.
Clearly the minimum is attained by those configurations corresponding to static solutions on
the Bogomol'nyi equation: BPSmonopoles, and where any two such solutions which are gauge-
related are identified. In other words, M is the moduli space of static BPS-monopoles.

The monopole number labels different connected components of the space A, so that

A=A
k

but the gauge group G preserves each component. Therefore we can also decompose the
true configuration space C as

c=JC where Cp=%A/G
k

Finally, let My = M N C;. This is then the moduli space of static BPSmonopoles of
monopole number k, or BPS- k-monopoles, for short.
By definition, the potential is constant on My, so that the Yang-MillsHiggs lagrangian is
given by
dra
L=T-—Ik| (3.7)
e
Therefore M, corresponds to the manifold of flat directions of the potential. Manton’s
argument given at the beginning of this chapter, can now be proven. The motion of slow
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monopoles which start off tangent to N will consists of the superposition of two kinds of
motions: motions along the flat directions M and small oscillations in the directions normal
to My. In the limit of zero velocity, the oscillatory motion is suppressed and we are left with
motion on My. But this motion is governed by the lagrangian (3.7) which only has a kinetic

term - whence the motion is free, or in other words geodesic relative to the metric on My
defined by T.

9.1.4 3.1.4 The 1-monopole moduli space

Let us study the moduli space M; in the 1-monopole sector. The coordinates for M; can
be understood as parameters on which the BPS-monopole solution depends. In the 't Hooft-
Polyakov Ansatz (1.15), the monopole is centred at the origin in R3, but the invariance under
translations of the Yang-MillsHiggs lagrangian (1.8) means that we can put the centre of the
monopole where we please. This introduces three moduli parameters: X. The time evolution
of these parameters corresponds to the BPS-monopole moving as if it were a particle with mass
4ma/e. The effective lagrangian for these collective coordinates is then

2ma .
L ==X
e
There is a fourth, more subtle, collective coordinate. Consider a oneparameter family W, (¢)

of gauge fields, but where the t-dependence is pure gauge:

W, — éDie(t). (3.8)

Since the potential is gauge invariant, this corresponds to a flat direction. But one might
think that it is not a physical flat direction since it is tangent to the G-orbits - it is an in-
finitesimal gauge transformation, after all. But recall that G is the group of short-range gauge
transformations, whence for D;e to be tangent to the orbits, € has to tend to 0 as we approach
infinity. Indeed, D;e would represent a physical deformation of the BPS-monopole if it would
obey Gauss’s law (3.2), which implies

D2%e = () (3.9)

Exercise 3.2 (D? has no normalisable zero modes)

Prove that acting on square-integrable functions D? = —Dg D; is a negative-definite operator.
Deduce from this that any normalisable zero mode must be a zero mode of D; for each 7, and
deduce from this that the only square-integrable solution to (3.9) is the trivial solution € = 0.
In other words, there exist no normalisable solutions.

(Hint: If D;e = 0, then ||€|? is constant.)

This discussion suggests that we look for a gauge parameter € which does not tend to zero
asymptotically. For example, let €(t) = f(t)¢, where f(¢) is an arbitrary function. In the 1-
monopole sector, ¢ defines a map of degree 1 at infinity, hence it certainly does not go to zero.
Moreover, using the Bogomol'nyi equation, it follows at once that f(¢)¢ is a (un-normalisable)
zero mode of D?. It is clearly a true moduli parameter because it costs energy to excite it:

1
T=—f[ |Di|*>0 3.10
sl [ 1Dl (3.10)

We can understand this as follows. Let g = exp(x¢/a) be a timedependent gauge transfor-
mation, where all the time-dependence resides in y. Such a gauge transformation will move us
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9.1.4 3.1.4 The 1-monopole moduli space

away from the temporal gauge, but assume that at time ¢t = 0, say, we start from a configuration
W, in the temporal gauge, and suppose that g(t = 0) = 1. Then from (1.9),

1
Wi(t) = gWig ™" + —digg™
whence

Wi(t) = CL_BXngb

Comparing with (3.8), we see that f = x/a. Using (3.10), the kinetic energy of such a
configuration is given by

1 .92 2
5ozea X /R 1Dig|

But notice that since D;¢p = B;,

T =

sz [ (31001 + 31 B)

- st (2)

-9
X
ae3

Notice that x is an angular variable. To see this, let us define g(x) = exp(x¢/a). Then it
is easy to see that g(y) and g(x + 27) are gauge-related in G, that is, via short-range gauge
transformations. Indeed, recall that ||¢|| — @ at infinity in the Prasad-Sommerfield limit,
whence ¢(27) = exp(2m¢p/a) tends to 1 at infinity. Since g(x + 27) = g(x)g(27), we are done.

Assuming for the moment (we will prove this later) that there are no other collective coor-
dinates in the 1-monopole sector, we have proven that the moduli space of BPS-1-monopoles
is given by

M1§R3XSI

and the metric can be read off from the expression for the effective action

1 4
Lut = 59X X" — 4 (3.11)
e
2 2 4
-y T (3.12)
(& ae

that is

from where we can see that the radius of the circle is inversely proportional to the electric
charge.
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9.1.5 3.1.5 The quantisation of the effective action

The effective action (3.12) corresponds to a particle moving freely in R?* x S! with the flat
metric. The quantisation of this effective action is straightforward. The canonical momenta

(P, Q) given by

dra . 4
P=""X and Q= —"x
e ae

are conserved, and the hamiltonian is given by

e 4dma
H=_—_—pP?¢ 2L 7 3.13
8ma 8T ¢ e ( )
Bound states of minimum energy are given by those eigenstates of the hamiltonian for which
P = 0. Since y is angular with period 27, the eigenvalues of () are quantised in units of A,

whence the spectrum looks like

CL63

3
E, = 2 L 9 ) (3.14)
e T

Notice that this energy spectrum has the standard form which corresponds to perturbative
states around a nonperturbative vacuum. If we think of e as the coupling constant, then
the zero-point energy is not analytic in e, hence it corresponds to a non-perturbative state in
the theory: the BPS-monopole in this case. The second term in the energy corresponds to
excitations around the monopole, which are clearly perturbative since their energy goes to zero

as we let the coupling tend to zero.

Exercise 3.3 (The electric charge)

Prove that the electric field for classical configurations in which P = 0 is given by

Ei = _GOi = —Wz = —€2Q Bl/47T

Conclude that e ) can be interpreted as the electric charge.

Taking the above exercise into consideration, we see that the spectrum of the quantum
effective theory corresponds to dyons of magnetic charge —4m /e and electric charge ne, for
n € Z. According to the classical BPS formula (1.27), the rest mass of such a dyon would be

equal to
4\ 4 2\ 2
Mn:aﬂ_ﬂ) e = 420, 4 (22)
e e A

which, if we expand the square root assuming that e is small, becomes

=E,+0 (e

where we've used (3.14).

In summary, the energy spectrum obtained from quantising the effective action of the col-
lective coordinates is a small-coupling approximation to the expected BPS energy spectrum.
However, even if their energy is only approximately correct, the multiplicity of bound states
can be read accurately from the effective action. This is one of the important lessons to be
drawn from the collective coordinate expansion.

In principle one can repeat this analysis in the k-monopole sector provided that one knows
the form of the metric. But at the present moment this is only the case for £ = 1 and k£ = 2.
We will discuss the effective theory for £ = 2 later on in the lectures in the context of N =4
supersymmetric Yang-Mills.
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9.1.6 3.1.6 Some general properties of the monopole moduli space

Quite a lot is known about the properties of the k-monopole ! moduli space N, even though
its metric (and hence the effective action) is known explicitly only for £ = 1,2. As we saw in
the previous section, the metric on M; can be computed directly from the field theory. On the
other hand, the metric on Ny can only be determined via indirect means. This result as well
as much else of what is known about M} is to be found either explicitly or referenced in the
book AHS88| by Atiyah and Hitchin (see also [AH85]) to where we refer the reader for details.

We will now state some facts about Nj. Some of them we will be able to prove later with
field-theoretical means, but proving some others would take us too far afield. The following
properties of My are known AH88: 1. M, is a 4k-dimensional (non-compact) complete
riemannian manifold;

The natural metric on My, is hyperkahler;

M, = Mk/Zk where M, = (R3 x St x /\;(2 as hyperkéahler spaces.

/\;(2 is a 4(k—1)-dimensional, irreducible, simply-connected, hyperkahler manifold admitting
an action of SO(3) by isometries which rotates the three complex structures;

Asymptotically Nj, — M x Mix - x Mlj = M}, and My — M¥/Z,;. Physically this

TV
k times

means that a configuration of well-separated BPS- k£ monopoles can be considered as k1-
monopole configurations. The fact that BPS-monopoles are classically indistinguishable is
responsible for the Zg-quotient.

9.2 3.2 dimM; =4k

In this section we compute the dimension of the moduli space of static BPSmonopoles. The
strategy is typical of this kind of problems. We fix a reference BPS-monopole and ask in
how many directions can we deform the solution infinitesimally and still remain with a BPS-
monopole. Most of these directions will be unphysical: corresponding to infinitesimal gauge
transformations. Discarding them leaves us with a finite number of physical directions along
which to deform the BPS-monopole. In other words, we are computing the dimension of the
tangent space at a particular point in the moduli space. If the point is regular (and generic
points usually are) then this is the dimension of the moduli space itself. This number is in any
case called the formal dimension of the moduli space.

Since the number of all deformations and of infinitesimal gauge transformations are both
infinite, it is better to fix the gauge before counting: this eliminates the gauge-redundant
deformations and leaves us with only a finite formal dimension. With a little extra argument,
the counting can then be done via an index theorem. In the case of BPS-monopoles, the
relevant index theorem is that of Callias Cal78 (slightly modified by Weinberg [Wei79]) which
is valid for open spaces and for operators with suitable decay properties at infinity. Weinberg’s
calculation contains steps which from a strictly mathematical point of view may be deemed
unjustified. The necessary analytic details have been sorted out by Taubes |[Tau83, but we will
be following Weinberg’s heuristic calculation in any case.

9.2.1 3.2.1 The dimension as an index

First let set up the problem. We want to find out in how many physically different ways can
one deform a given BPS-monopole. It will turn out that these are given by zero modes of a
differential operator. Asking for the number of zero modes will be the same as asking for the
dimension of the tangent space at a given BPS-monopole solution. Hence let ¢ ~» (W;(t), ¢(t))

*1 We will only concern ourselves with positive k : M_;, is naturally isomorphic to M;, by performing a
parity transformation on the solutions.
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9.2.1 3.2.1 The dimension as an index

be a family of static BPS-monopoles (here ¢ is an abstract parameter which has nothing to do
with time). This means that (Wi, ¢>> = <Wi(0), qb(O)) is a tangent vector to the moduli space
at the point (W;,¢) = (W;(0),¢(0)). Taking the t-derivative of the Bogomol'nyi equation
(1.28), we find that (Wz, gb) satisfies the linearised Bogomol'nyi equation:

Dz¢ + €¢ X Wl = eijijWk (315)

However, not every solution of the linearised Bogomol'nyi equation need be a physical
deformation: it could be an infinitesimal gauge transformation. To make sure that it isn’t,
it is necessary to impose in addition Gauss’s law (3.1). In other words, the dimension of the
tangent space of the moduli space of BPS-monopoles is given by the maximum number of
linearly independent solutions of both (3.15) and (3.1).

In order to count these solutions it will be convenient to rewrite both of these equations in
terms of a single matrix-valued equation. We will define the following 2 x 2 complex matrix:

U = ¢l +iW,0; (3.16)

and the following linear operator:

D = €¢1 + iDjOj (317)

where we follow the convention that all fields which appear in operators are in the adjoint
representation; that is, ¢ really stands for ad ¢ = ¢ x —, etc.

Exercise 3.4 (Two equations in one)

Prove that the linearised Bogomol'nyi equation (3.15) and Gauss’s law (3.1) together are equiv-
alent to the equation DV = 0.

We want to count the number of linearly independent real normalisable solutions to DV = 0.
It is easier to compute the index of the operator D. By definition, the index of D is difference
between the number of its normalisable zero modes and the number of normalisable zero modes
of its hermitian adjoint DT relative to the inner product:

/d3xtr‘ll*\ll = /d3ac (q.’)* . d)—l—Wf . W2>
where * denotes complex conjugation of the fields and hermitian conjugation on the 2 x 2

matrices, and where tr denotes the 2 x 2 matrix trace.
The expression for the index of D

ind D = dimker © — dim ker Df

can be turned into an inequality

dimker O > ind D

which saturates precisely when D has no normalisable zero modes. Happily this is the
case, as the next exercise asks you to show.
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9.2.2 3.2.2 Computing the index of D

Exercise 3.5 (D' has no normalisable zero modes)

Prove that DD' is a positive-definite operator, whence it has no normalisable zero modes.
Compare with Exercise 3.2. Also prove that for antimonopoles (i.e., the other sign in the
Bogomol'nyi equation, it is D7D that is the positive operator.

(Hint: Use the fact that both ¢ and D, are antihermitian operators to prove that D =
—e¢l +1i0;D;, and that DD = —e2p? — (Dj)z. Deduce that this operator is positive-definite.

Therefore the number of normalisable zero modes of D equals the index of the operator D.
In the following sections we will compute the index of 9 acting on two-component complex
vectors; that is, on functions R® — C?. However the (formal) dimension of monopole moduli
space is given by the number of normalisable zero modes of D acting on matrices of the form

(3.16). To a deformation (d), Wz) there corresponds a matrix

- ( &+ iW, W2+iW1)
—Wy +1W; ¢ —1Wj3

Clearly the first column of the above matrix ¥ determines the matrix. Moreover this first

column is a normalisable zero mode of D acting on vectors if and only if ¥ is a normalisable

zero mode of D acting on matrices. This would seems to indicate that there is a one-to-one

correspondence between the normalisable zero modes of D acting on vectors and of D acting

on matrices, but notice that 9 is a complex linear operator in a complex vector space, hence

the space of its normalisable zero modes is complex, of complex dimension ind 9. However the

matrices ¥ and ¢W determine linearly independent tangent vectors to monopole moduli space,

hence it is its real dimension which equals the (formal) dimension of monopole moduli space
M. In other words,

dim My =2 ind D

9.2.2 3.2.2 Computing the index of D

Our purpose is then to compute ind 9. To this effect consider the following expression:

M? M?
IM=Tr(———s | Tt —— 3.18
(M) r(ZMLLM?) r<Z)Z)T+M2> (3-18)
where Tr is the operatorial trace.
Exercise 3.6 (A formula for the index of D)
Prove that the index of D is given by

ind D = dimker D'D — dim ker DD’
= lim [ (M 2)
MZ2—0
(Hint: Prove this assuming that there is a gap in the spectrum of these operators. This is
not the case, but as argued in Wei79| the conclusion is unaltered.)
In order to manipulate equation (3.18) it is again convenient to use the reformulation of
the BPS-monopole as an instanton, in terms of W; = (W,, ¢), and to define the following
four-dimensional euclidean Dirac matrices:

(0 =iy _ (01 _ ____ (10
%—(io_k 0) 74—(1()) 75—71727374—(0_1> (3.19)
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9.2.2 3.2.2 Computing the index of D

Letting D, denote the gauge covariant derivative corresponding to W, and remembering

that 9, = 0, we find that
_ _ 0 -
V-D—_%Di—_( o >

whence

—(7-D)?= (D? @?@)

Exercise 3.7 (Another formula for I (M?))
Prove that

M2
G- Dy 12

where Tr now also includes the spinor trace. More generally, if f is any function for which
the traces Tr f (Z)TZ)) and Tr f (DZ)T) exist, prove that

[(M?) = —Tr3s—

Tty f (—(7-D)*) =Tr f (DD') — Tr f (D'D)

Let K be any operator acting on square-integrable (matrix-valued) functions ¢ (x).K is
defined uniquely by its kernel K (x,y):

(K0) (x) = / PyK (z,y)0(y)

If we rewrite this equation using Dirac’s "ket" notation, so that ¢ (z) = (x | ¢), then we see
that the above equation becomes

(2 K|$) = / Pyl Kly)y | )

whence we can think of the kernel K (x,y) as (z|K|y). We will often use this abbreviation
for the kernel of an operator. In particular, its trace is given by

TrK:/d3mtr<x|K]a:>

where tr stands for the matrix trace, if any.
The rest of this section will concern the calculation of the following expression
M2

I (M?) = —/d?’xtr% <m G DI Jc> (3.20)

where tr now stands for both the spinor and matrix traces. Let’s focus on the kernel
)

Let A and B be operators acting on (matrix-valued) square-integrable functions. Let A be a
differential operator. Then prove the following identities:

M2
~(3-DP + P

I(z,y) = —tr%s <$

Exercise 3.8 (Some properties of kernels)

A(z) - B(x,y) = (AB)(x,y)

B(z,y) - At(y) = (BA)(z,y)
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9.2.2 3.2.2 Computing the index of D

where - means action of differential operators, the label on a differential operator denotes on
which variable it acts, and the arrow on A in the second equation means that the derivatives
act on B.

Using the results of this exercise and the fact that the trace of an even number of 4-matrices
vanishes, we can rewrite I(x,y) slightly. Writing —(3. D)?+ M?= (y- D + M)(—7- D + M),
we have that

I(z,y) = —tr7s <$

M

PP A

Using once again the results of Exercise 3.8, one immediately deduces the following identities:

where we have introduced the propagator

1
YD+ M

(%% —e7iWi(z) + M) Alz,y) =0z —y)

<_
A(z,y) (—%a% —e%i Wily) + M) =6(z —y)

and from them:

1/ 0 0
I(z,y) = 3 (axi + 8_y’) tr 57 Az, y)

= 5 3% ( Wil@) = Wi(y)) Al ) (3.22)

which can be understood as a "conservation law" for the bi-local current

Ji('ru y) =tr ’75’71A(J}'7 y)

In order to compute I (M?) we have to first take the limit y — x of I(x,y). From equation
(3.22) we find that

10
2 0x?

Although the last term has a W;(x) — W;(y) which vanishes as y — z, the propagator is
singular in this limit and we have to pay careful attention to the nature of these singularities
in order to conclude that this term does not contribute. Clearly we can admit at most a
logarithmic singularity. The purpose of the following (long) exercise is to show that nothing
more singular than that occurs.

Exercise 3.9 (Regularity properties of the propagator)

Prove that the following limit has at most a logarithmic singularity:

I(,2) = 555, o) = lim 5 353 (Wi(e) = Wily) A, v) (3:23)

lim tr 357 A(z, y)
y— =

where tr now only denotes the spinor trace.

(Hint: Notice that A(x,y) is the propagator of a three-dimensional spinor in the
presence of a background gauge field. First let us approximate A(x,y) perturbatively in the
coupling constant e:
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9.2.2 3.2.2 Computing the index of D

Az,y) =) e Az, y)
n=0
Imposing the equation

(Y- D+ M)(z)A(z,y) = 6(z —y)
order by order in e, we find that

o0

Ax,y) = Ze”/Hd?’ziAo (x,21)
n=0 i=1

X [H(’Y - W) (2:) Ao (2, Zi—i—l)] (- W) (2n) Ao (20, )

=1

where Ag(z,y) is the free propagator:

Bofey) = (o

1 d3p et (z—y)

(¥-0)+M y> _/(2w)3z'(f‘y-p)+M

Since we are interested in the behaviour of A(z,y) as |x — y| — 0, we need to make some
estimates. Prove that A, (x —y) ~ |x —y|~2"" in this limit, whence we the potentially singular
contributions come from n = 0 and n = 1. Prove that tr ¥5%;A¢(z,y) = 0 using the facts that
tr 957 = tr¥5%:7; = 0. These same identities reduce the computation of try5%;A;(z, y) to
d’p d’q  prge™ eV
2m)3 (2m)? (p* + M?) (¢* + M?)

X /dgze_i(p_q)'zwj(z)

Compute this (introducing Feynman parameters,...) and show that it vanishes.)

From the results of the above exercise, the second term in (3.23) vanishes, and using the
expression (3.20) for I (M?), we find that

I(M?) = %/d%@ﬂi(w,x) = %/ dS;Ji(x,x)
Yoo

where Y, is the sphere at spatial infinity. The (formal) dimension of the moduli space of
BPS- k-monopole will then be given by

dim M = lim dS;J;(z, x) (3.24)

M?2—-0 Yoo

In the remainder of this section, we will compute this integral and show that it is related to
the magnetic number of the monopole.

*It is instructive to compare this with the calculation of the axial anomaly in four dimensions. The same
calculation in four dimensions would have yielded a singularity ~ |z — y|~! in the n = 2 term of the above
calculation. A bit of familiar algebra would then have yielded a multiple of the Pontrjagin density for the second
term in equation (3.23). In the four dimensional problem, the gauge fields go to zero at infinity and the integral
of I(x,x) would have received contributions only from the Pontrjagin term, since the 9;J;(x,x) would give a
vanishing boundary term. In our case, though, the situation is different. The second term in 3.23 vanishes,
whereas the boundary term coming from 9;J;(z, x) is not zero due to the nontrivial behaviour of the Higgs field
at infinity.
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9.2.3 3.2.3 Computing the current J;(z, )

We start by rewriting J;(z,x). Inserting 1 in the form (—5 - D + M)~'(—5. D + M) into the
definition of J;(z,x), we get

S Tel
- T
G DF 4 IE

Using the fact that the trace of an odd number of 4-matrices vanishes, we remain with

Ji(z, x) = trys57; <$

¥-D+ M)

1
_(WD)2+M2 (

Ji(x,x) = try57; <$ —%;D;j + eY19)

x> (3.25)

where now

_ 1 _ _
~(7-D)* = —(D;)* = *¢” + §€'Yz'jGij + %Y1 Dig

We proceed by treating the last terms %e%jG,-j +ey;74D;¢ as a perturbation and expanding

1 1
(Y- D+ M? —(Dy)? — 267 + M?
1 1 1
— —671"GZ“ + ey Dz + -
_(Di)2—62¢2+M2 (2 ’7.7 J “Yi7V4 ¢)—<Di)2_62¢2+M2

It is now time to use the fact that W; corresponds to a monopole background. For such a

background G;; = O(]a:\_2> asymptotically as |x| — co. Because we are integrating J;(z, z) on

Yoo, We are free to discard terms which decay faster than O (|z|~2) at infinity, hence no further
terms other than those shown in the above perturbative expansion contribute. Plugging the
remaining two terms of the expansion into (3.25), we notice that the first term vanishes due to
the trace identity tr7s7;7; = 0. Similar identities leave only the following terms:

d
£)+0 ()

where we have introduced the shorthand K = — (D;)* —e2¢? + M?2. Using the trace identity

1 1
—D.p—D
D05 Dr
1 1
KO

5 @

1y,
— et YsYiVia (T

we can rewrite the above equation as

1 1
Ji(z,x) = —4dee, tr{x] EngbEDk |z)

1,1
17 ¢

Gy

— 262€ijk tr <x

x> + O (|z]7?) (3.26)

where the trace now refers only to the SO(3) adjoint representation.

The propagators K ! are not yet those of a free spinor, thanks to their dependence on ¢
and W;, thus we must treat them perturbatively as well. Since W; decays at infinity, we can
effectively put W; = 0 in the propagators in the above expressions which are already O (|z|72).
On the other hand, the perturbative treatment of ¢ is a bit more subtle, since it doesn’t decay at
infinity but rather behaves as a homogeneous function of degree zero; that is, its behaviour on
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the radius |z| is constant at infinity, but not so its angular dependence, which gives rise to the
topological stability of the BPS-monopole. First we notice that in the adjoint representation,

v =0 x (¢ xv)=—a"v+ (¢ v)o

where we have recalled that ¢ - ¢ = a? at infinity. Hence on Y., we can put K = Q + €2Q
where Q = —0? + M? + a*¢? and Q is (up to a factor) the projector onto the ¢ direction:
Q(v) = (¢ - v)¢. Because [Q,Q] = O (Jz|~!) asymptotically, we can effectively treat these two
operators as commuting, whence we can write

1 1 1 n _
?Z@_I_ZQnH <629) +O(|‘T| 1)

n>1

Notice moreover that as operators in the adjoint representation of SO(3),

(Qodp)lv=Qxv)=0¢ (P xv)p=0 (3.27)

We are now in a position to prove that the first term in equation (3.26) doesn’t contribute.
Exercise 3.10 (The first term doesn’t contribute)
D;¢ ! D
J K k

Prove that
tr <x 7 ZL‘> =0 (|z|7?)

whence it doesn’t contribute to the integral over Y.

(Hint: First notice that Dy = 9x+O (|]z|™!), whence up to O (|z|~3) we can simply substitute
O for Dy in the above expression. Now use equation (3.27) and the fact that ¢ and D;¢ are
parallel in ¥, to argue that one can substitute K for @) in the above expression (again up to
terms of order O (|z|™3)). Then simply take the trace to obtain the result.)

Hence we are left with

1

LG 9c> +0 (2 (3.28)

Since Gy, is parallel to ¢ on X, 0 Gj; = 0 by (3.27). Thus we are free to substitute the
free propagator Q—! for K1 in the above expression, to obtain:

Ji(z, 1) = —2e%€;, tr <x

Ji(z,2) = —2e%€0, / &2’ tr p(2)Gy, (2') Q7' (z,2") Q" (2, ) + O (|2 ?)

where the free propagator is given by

3 ip-(z—y)
Q' (z.y) = / L
(2m)3 p? + M? + a?e?

Changing variables z’ — y = x — 2/, and using

tr @(2) Gz — y) = tr ¢(z)Gi(z) + O (|2 7?)

we remain with

p &g g
Ji(z,2) = —2e%€), trij(x)qb(x)/dgy(Qﬁ)SWe(p )
1

-3
X (P + M2 + a2e2) (¢ + M2 + a2e?) +0 (|x| )

The y-integral gives 2736(p — ¢), which gets rid of the ¢-integral and we remain with
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d3p 1
(27)3 (p2 + M2 4 a2e?)

Ji(z,x) = —2€e%€, tr gb(x)ij(x)/ 5 + O (1/]96\3)

The p-integral is readily evaluated

/ d3p 1 B i 1
@rF 2+ M2+ a2?)  Sr VAP § e
whence
/ ASu () = & / dSicinh - G
- EEAGE) - 2ﬂ_\/m - i€ijk ik

where have also used that the trace in the adjoint representation is normalised so that
trAB = —2A- B.

Exercise 3.11 (Another expression for the degree of the map ¢)
Prove that on X,

1
¢ -Gy = @(b' (00 x Ox0)

and, comparing with equation (1.22), deduce that the degree of the map ¢ from ¥, to the
sphere of radius a in R? is given by

8ma

e
deg ¢ = —/ dSi€ijr @ - Gy
Yoo

(Hint: Use that ¢ x D;j¢ =0 on X, and expand 0 = ¢ - (D;¢ x Dy¢).)
From the results of this exercise and the fact that for a k-monopole solution, the degree of
¢ is k, we can write

4aek
dS;J;(r,r) = ——
/Eoo (z2) VM? + a%e?

whence plugging this into the equation (3.24) for the formal dimension of N, we find that

dim Mk =4k

9.3 3.3 A quick motivation of hyperkahler geometry

In the next section we will prove that the natural metric on M, induced by the Yang-Mills-Higgs
functional is hyperkéahler; but first we will briefly review the necessary notions from riemannian
geometry leading to hyperkahler manifolds. The reader familiar with this topic can easily skip
this section.

*If you are familiar with the calculation of the number of instanton parameters, you may be surprised by
the explicit M? dependence in the expression onc dS;J;(xz,x). This is due to the asymptotic behaviour of ¢,
which prevents the above calculation from being tackled by the methods usually applied to index theorems on
compact spaces. For the index of an operator on a compact space, or similarly for fields which decay at infinity,
one can prove that the result of the above integral is actually independent of M2, hence one can compute the
integral for already in the limit M2 — 0 (cf. the Witten index). Here we are in fact faced essentially with
the calculation of the index of an operator on a manifold with boundary, for which a satisfactory Witten-index
treatment is lacking, to the best of my knowledge.
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9.3.1 3.3.1 Riemannian geometry

Hyperkéahler geometry is probably best understood from the point of view of holonomy
groups in riemannian geometry. In this section we review the basic notions. Sadly, the classic
treatises on the holonomy approach to riemannian geometry KN63, KN69, Lic76 stop just short
of hyperkéhler geometry; but two more recent books Bes86, Sal89| on the subject do treat the
hyperkahler case, albeit from a slightly different point of view than the one adopted here. We
direct the mathematically inclined reader to the classics for the basic results on riemannian
and Kéhler geometry, which we will only have time to review ever so briefly in these notes;
and to the newer references for a more thorough discussion of hyperkéhler manifolds. All our
manifolds will be assumed differentiable, as will be any geometric object defined on them, unless
otherwise stated.

9.3.1 3.3.1 Riemannian geometry

Any manifold M admits a riemannian metric. Fix one such metric g. On the riemannian
manifold (M, g) there exists a unique linear connection V which is torsion-free

(X, Y] =VxY —VyX for any vector fields X,Y on M (3.29)

and preserves the metric Vg = 0. It is called the Levi-Civita connection and relative to a
local chart z¢, it is defined by the Christoffel symbols I';;,¢ which in turn are defined by

Va0 =T17%,0.

where we have used the shorthand V, = Vj,. The defining properties of the Levi-Civita
connection are sufficient to express the Christoffel symbols in terms of the components g,;, of
the metric:

1
Ie = 5966[ (Oagap + OpGad — Dagab) (3.30)

which proves the uniqueness of the Levi-Civita connection.

Exercise 3.12 (A coordinate-free expression for V)

Using the defining conditions of the Levi-Civita connection V, prove that

2(Z,VxY) = X{Y,Z)+Y(ZX) — Z(X,Y)
—<[X,Z],Y>—<[Y,Z],X>—<[X,Y],Z> (331)

where we have used the notation (X,Y) = g(X,Y’). Equation (3.30) follows after substi-
tuting 0,, 0, and 0, for X, Y, and Z respectively.

With V we can give meaning to the notion of parallel transport. Given a curve ¢ ~ (t) on
M with velocity vector ¥, we say that a vector field X is parallel along 7 if V;X = 0. Relative
to a local coordinate chart z%, we can write this equation as

DX®
dt

A curve v is a geodesic if its velocity vector is self-parallel: V4 = 0. In terms of (3.32) we
arrive at the celebrated geodesic equation:

= 4"V, X" =4 (0, X" + T, X) = XP + T,.’4" X =0 (3.32)

¢4+ Tap4" = 0 (3.33)

This equation follows by extremising the action with lagrangian

206



9.3.1 3.3.1 Riemannian geometry

L(z,) = %gab(x)mb

whence our claim at the end of section 3.1.3 that free motion on a riemannian manifold is
geodesic.

We can integrate equation (3.32) and arrive at the concept of paralleltransport. More
concretely, associated with any curve y : [0, 1] — M there is a linear map P, : Ty M — Ty M
taking vectors tangent to M at y(0) to vectors tangent to M at y(1). If X € T,M is a tangent
vector to M at p = v(0) we define its parallel transport P, (X) relative to v by first extending
X to a vector field along v in a way that solves (3.32), and then simply evaluating the vector
field at ~(1).

Now fix a point p € M and let v be a piecewise differentiable loop based at p, that is, a
piecewise differentiable curve which starts and ends at p. Then P, is a linear map T,M — T,M.
We can compose these maps: if v and 7 are two loops based at p, then P, oP, is the linear map
corresponding to parallel transport on the loop based at p obtained by first tracing the path ~
and then 7. (Notice that this new loop may not be differentiable even if v and " are: but it is
certainly piecewise differentiable, hence the need to consider such loops from the outset.) Also
P, is invertible: simply trace the path v backwards in time. Therefore the transformations
{P,} form a group. If we restrict ourselves to loops which are contractible, the group of linear
transformations:

H(p) = {P, | v a contractible loop based at p}

is called the (restricted) holonomy group at p of the connection V. It can be shown that to
be a Lie group.

One should hasten to add that there is no reason to restrict ourselves to the Levi-Civita
connection. We will be mostly interested in the classical
case, where V is the Levi-Civita connection, but these definitions make sense in more generality.

Exercise 3.13 (The holonomy group of a connected manifold)

Prove that if two points p and ¢ in M can be joined by a path in M, their holonomy groups
H(p) and H(q) are conjugate and therefore isomorphic.

(Hint: Use parallel transport along the path joining p and ¢ to provide the conjugation.)

Hence it makes sense to speak of the holonomy group of a connected manifold M. From
now on all we will only concern ourselves with connected manifolds. A further useful restriction
that one can impose on the type of manifolds we consider is that of irreducibility. A manifold
is said to be (ir) reducible relative to a linear connection V if the tangent space at any point
is an (ir)reducible representation of the holonomy group. Clearly the holonomy group (relative
to the Levi-Civita connection) of product manifold M x M’ with the product metric acts
reducibly. A famous theorem of de Rham’s provides a converse. This theorem states that
if a simplyconnected complete riemannian manifold M is reducible relative to the LeviCivita
connection, then M = M’ x M" isometrically. We will restrict ourselves in what follows to
irreducible manifolds.

For a generic linear connection on an irreducible manifold M, the holonomy group is (iso-
morphic to) GL(m), where m = dim M. However, the Levi-Civita connection is far from generic
as the following exercise shows.

Exercise 3.14 (The holonomy group of a riemannian manifold)

Prove that the holonomy group of an m-dimensional riemannian manifold (relative to the Levi-
Civita connection) is actually in SO(m).

(Hint: Show that Vg = 0 implies that the parallel transport operation P., preserves the
norm of the vectors, whence the holonomy group is in O(m). Argue that since we consider only
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9.3.2 3.3.2 Kéhler geometry

contractible loops, the holonomy group is connected and hence it must be in SO(m). By the
way, the same would hold for orientable manifolds even if considering non-contractible loops.)

A celebrated theorem of Ambrose and Singer tells us that the Lie algebra of the holonomy
group is generated by the Riemann curvature tensor in the following way. Recall that the
Riemann curvature tensor is defined as follows. Fix vector fields X and Y on M, and define a
linear map from vector fields to vector fields as follows:

R(X,Y)=[Vx,Vy] = Vixy

It is easy to prove that this map is actually tensorial in X and Y. Indeed, relative to a
coordinate basis, it may be written out as a tensor R defined
by

R (aay ab) 80 = Rabcdad

and therefore has components

Rabcd - 8(JLFbcd + Fbceraed - 8bFacd - Facerbed (334)

Then the Lie algebra of the holonomy group is the Lie subalgebra of gl(m) spanned by the
curvature operators Ry : O, — Rap0y.

Exercise 3.15 (The holonomy algebra of a riemannian manifold)

Using the Ambrose-Singer theorem this time, prove a second time that the holonomy group of
a riemannian manifold lies in SO(m), by showing that its Lie algebra lies in so (m). In other
words, prove that each curvature operator R, (for fixed a and b) is antisymmetric:

e
Rabcd - _Rabdc where Rabcd - Rabc Ged

Adding more structure to a riemannian manifold in a way that is consistent with the metric
restricts the holonomy group further. Next we will discuss what happens when we add a
complex structure.

9.3.2 3.3.2 Kahler geometry

An almost complex structure is a linear map I : TM — TM which obeys I? = —1. This
gives each tangent space T, M the structure of a complex vector space, since we can multiply a
tangent vector X by a complex number z = x+ iy simply by z- X = 2 X +yI(X). In particular,
it means that the (real) dimension of each 7, M and hence of M must be even: 2n, say. We
will also assume that the complex structure I is compatible with the metric in the sense that
g(IX, 1Y) = g(X,Y) for all vector fields X and Y. Another way to say this is that the metric
¢ is hermitian relative to the complex structure I.

If we complexify the tangent space, we can diagonalise the complex structure. Clearly the
eigenvalues of I are +i. Complex vector fields Z for which [Z = iZ are said to be of type
(1,0), whereas those for which IZ = —iZ are of type (0,1). If we can introduce local complex
coordinates (z%,z2%), a, & = 1,...n, relative to which a basis for the (1,0) (resp. (0, 1)) vector
fields is given by 9, (resp. 05) and if when we change charts the local complex coordinates are
related by biholomorphic transformations, then we say that I is integrable.

A hard theorem due to Newlander and Nirenberg translates this into a beautiful local
condition on the complex structure. According to the

Newlander-Nirenberg theorem, an almost complex structure [ is integrable if and only if the
Lie bracket of any two vector fields of type (1,0) is again of type (1,0). This in turns translates
into the vanishing of a tensor.
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9.3.2 3.3.2 Kéhler geometry

Exercise 3.16 (The Nijenhuis tensor)

Using the Newlander-Nirenberg theorem prove that I is integrable if and only if the following
tensor vanishes:

N{(X,Y) = I[IX, IY] 4+ [X,IY] + [IX,Y] = I[X,Y]

N7 is known as the Nijenhuis tensor of the complex structure 1. It is easy to prove that the
Nijenhuis tensor N; vanishes in a complex manifold (do it!)-it is the converse that is hard to
prove.

Now suppose that V is a linear connection relative to which [ is parallel: VI = 0. Let’s
call this a complex connection.

Exercise 3.17 (The holonomy group of a complex connection)
Let H denote the holonomy group of a complex connection on a complex manifold M. Prove
that H C GL(n,C) C GL(2n,R).

(Hint: It’s probably easiest to prove the equivalent statement that the holonomy algebra is
a subalgebra of gl(n,C). Choose a basis for T,M = R*" in which the complex structure I has

the form
01
1=( %)

where 1 is the n X n unit matrix. Argue that the curvature operators Ry, commute with I,
whence in this basis, they are of the form
A B
-B A

where A and B are arbitrary real n x n matrices. This then corresponds to the real 2n-
dimensional representation of the matrix A +iB € gl(n,C).)

If V is the Levi-Civita connection, then the holonomy lies in the intersection GL(n,C) N
SO(2n) C GL(2n,R).

Exercise 3.18 (The unitary group)

Prove that GL(n,C) N SO(2n) C GL(2n,R) is precisely the image of the real 2n dimensional
representation of the unitary group U(n).

(Hint: Prove the equivalent statement for Lie algebras. In the basis of the previous exercise,
prove that a matrix in so(2n) has the form

(1)

where A' = —A, D' = —D and B are otherwise arbitrary real n x n matrices. If the matrix
is also in gl(n, C), we know that A = D and that B = B*. Thus matrices in gl(n,C)Nso(2n) C

gl(2n,R) are of the form
A B
-B A

where A' = —A and B' = B, which corresponds to the complex matrix A +iB € gl(n,C).
Prove that this matrix is anti-hermitian, whence in u(n).
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9.3.2 3.3.2 Kéhler geometry

If the Levi-Civita connection is complex, so that the holonomy lies in U(n), the manifold
(M, g,I) is said to be Kédhler. In other words, Kéhler geometry is the intersection, so to speak,
of riemannian and complex geometries.

There is another perhaps more familiar definition of Kéhler manifolds, involving the Kéhler
form.

Exercise 3.19 (The Kihler form)

Given a complex structure I relative to which g is hermitian, we define a 2-form w by

w(X,Y)=g(X,IY) orequivalently w. = 1,°gpe

Prove that w(X,Y) = —w(Y, X), so that it is in fact a form. Prove that it is actually of
type (1,1).

An equivalent definition of a Kédhler manifold is that (M, g, I) is Kéhler if and only if w is
closed. These two definitions can of course be reconciled. We review this now.

Exercise 3.20 (Kihler is Kahler is Kéhler)

Let (M, g, I) be a complex riemannian manifold, where g is hermitian relative to I. Let w be the
corresponding Kéahler form and V the Levi-Civita connection. Prove that the following three
conditions are equivalent (and are themselves equivalent to (M, g, I) being a Kéhler manifold):

(a) VI = 0;
(b) Vw = 0; and
(¢) dw = 0.

(Hint: (a) < (b) is obvious. For (b) = (c) simply antisymmetrise and use the fact that V
is torsion-less, which implies the symmetry of the Christoffel symbols in the lower two indices.
The trickiest calculation is (¢) = (b), and we break this up into several steps:

From (3.29), deduce that I is integrable if and only if

Ve + IHTEV cwaq — (a <5 b) = 0

From the fact that g is hermitian relative to I, deduce that

d d
Ic VaCUbd = _[b Vac"-}ccl

Using the previous two steps, show that

dr e
v(JLWbc = _]b Ic vawde

Finally, use these formulae to show that dw =0 = Vw = 0.)

Conversely, one can show that if the holonomy group of a 2n-dimensional riemannian man-
ifold is contained in U(n), then the manifold is Kéhler. The proof is paradigmatic of the more
algebraic approach to the study of holonomy, which has begotten some of the more remarkable
results in this field. We will therefore allow ourselves a brief digression. We urge the reader to
take a look at the books |Bes86, Sal89] for a more thorough treatment.

For simplicity, we start with a torsionless connection V. The fundamental elementary
observation is that there is a one-to-one correspondence between covariantly constant tensors
and singlets of the holonomy group. (Clearly if V¢ = 0, then ¢ is invariant under the holonomy
group; conversely, if ¢ is invariant under the holonomy group, taking the derivative of the
parallel transport of ¢ along the path is zero, but to first order this is precisely Vt.) In turn,
singlets of the holonomy group determine to a large extent the geometry of M. For example,
suppose that M is an m-dimensional irreducible manifold with holonomy group G C GL(m,R).
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9.3.3 3.3.3 Ricci flatness

Irreducibility means that the fundamental m-dimensional representation of G L(m,R) remains
irreducible under G. Let us call this representation 7" - the " T " stands for tangent space. Under
the action of GG, tensors on M will transform according to tensor powers of the representation
T. For example, 1-forms will transform according to the dual representation 7™, symmetric
rank p tensors will transform as SPT*, whereas p-forms will transform as A” 7%, and so on. We
can then break up all these tensorial representations in terms of irreducibles and, in particular,
exhibit all the singlets. These singlets will correspond, by the observation made above, in a
one-to-one fashion with covariantly constant tensors. Let us run through some examples.
Suppose that G = SO(m). Then T is the fundamental m-dimensional representation of
SO( m). We know that, in particular, there is a singlet g € S*T* and moreover that the map
T — T* defined by this g is nondegenerate. Hence by the fundamental observation, there
exists a covariantly constant tensor g which can be thought of as a riemannian metric. By
the uniqueness of the Levi-Civita connection, it follows that V is the Levi-Civita connection
associated to g. In other words, manifolds with SO(m) holonomy
relative to a torsionless connection are simply riemannian manifolds. Well, not just any rieman-
nian manifold. There is another SO(m)-invariant tensor € A™T™*. The covariantly constant
m-form €2 defines an orientation on M. In fact, one can show that there are no other invariant
tensors which are algebraic independent from these ones, so that manifolds with SO(m) holon-
omy (again, relative to a torsionless connection) are precisely orientable riemannian manifolds.
Now suppose that the dimension of M is even: m = 2n, say, and that G = U(n) C
GL(2n,R). Then T is the real 2n irreducible representation of U(n), whose complexification
breaks up as T¢ = T'®T", where T" is the complex n-dimensional (fundamental) representation
of U(n), and T" = T" is its conjugate. Since G C SO(2n), we know from the previous paragraph
that M is riemannian and orientable, and that we can think of V as the LeviCivita connection
of this metric. However there is also a singlet w € /\2 T*. The resulting covariantly constant
2 -form w is precisely the Kéhler form. Hence manifolds with U(n)-holonomy are precisely the
Kéhler manifolds.

9.3.3 3.3.3 Ricci flatness

We can now restrict the holonomy of a K&hler manifold a little bit further by imposing con-
straints on the curvature: namely that it be Ricci-flat. As we will see, this is equivalent to
demanding that the holonomy lie in SU(n) C U(n). As Lie groups, U(n) = U(1) x SU(n). If
we think of U(n) as unitary matrices, the U(1) factor is simply the determinant. Hence the
manifold will have SU(n) holonomy provided that the determinant of every parallel transport
operator [P, is equal to 1.

Geometrically, the determinant can be understood as follows. Suppose that M is a Kéhler
manifold and let’s look at how forms of type (n,0) (or (0,n)) transform under parallel transport.
At a fixed point p in M, the space of such forms is 1-dimensional. Hence if 6 is an (n,0)-form,
then P,0 = A\, where A, is a complex number of unit norm.

Exercise 3.21 (The determinant of PP,)

Prove that )\, is the determinant of the linear map PP, : T, M — T,M.

Therefore the holonomy lies in SU(n) if and only if A, = 1 for all 7. By our previous
discussion, it means that there is a nonzero parallel (n,0) form 6. Since parallel forms have
constant norm, this form if nonzero at some point is nowhere vanishing, hence the bundle
of (n,0)-forms is trivial. Equivalently this means that the first Chern class of the manifold
vanishes. Such Ké&hler manifolds are known as Calabi-Yau manifolds, after the celebrated
conjecture of Calabi, proven by Yau. Calabi’s conjecture stated that
given a fixed Kéahler manifold with vanishing first Chern class, there exists a unique Ricci-
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9.3.3 3.3.3 Ricci flatness

flat K&hler metric in the same Kéhler class. The Calabi conjecture (now theorem) allows
us to construct manifolds admitting Ricci-flat Kéhler metrics, by the simpler procedure of
constructing Kéhler manifolds with vanishing first Chern class. Algebraic geometry provides
us with many constructions of such manifolds: as algebraic varieties of complex projective
space, for example. The catch is that the Ricci-flat Kéhler metric is most definitely not the
induced metric. In fact, the form of the metric is very difficult to determine. Even for relatively
simple examples like K3, the metric is not known.

It follows from this conjecture (now theorem) that an irreducible Kéhler manifold has SU(n)
holonomy if and only if it is Ricci-flat. We don’t need to appeal to the Calabi conjecture to
prove this result, though, as we now begin to show.

Let’s first recall how the Ricci tensor is defined. If X and Y are vector fields on M, Ric(X,Y)
is defined as the trace of the map V — R(V, X)Y, or relative to a local chart

Sap = Ric (0a, Op) = Rey,

Exercise 3.22 (The Ricci tensor is symmetric)

Prove that S, = Spe.
In a Kéhler manifold and relative to complex coordinates adapted to I, many of the com-
ponents of the Ricci and Riemann curvature tensors are zero.

Exercise 3.23 (Curvature tensors in Kihler manifolds)

Let (2%, 2%) be complex coordinates adapted to the complex structure I; that is, the corre-
sponding vector fields are of type (1,0) and (0, 1) respectively: I (0,) = i0, and I (0z) = —i05.
Prove that the metric has components g,3, and that the Christoffel symbols have compo-
nents I'os” and I';5y. Prove that the only nonzero components of the Riemann curvature are
Ragv‘s = _Rﬁmé and Ram‘s = —Rp,s. Finally deduce that the Ricci tensor has components
Sap, 80 that Sos = S55 = 0.

The holonomy algebra of a Kdhler manifold is u(n), whence for fixed a and b, the curvature
operator Ry, belongs to u(n) = u(1) x su(n). How can one extract the u(1)-component? For
this we need to recall Exercise 3.18. If A +iB € u(n),exp(A +iB) € U(n) and the U(1)
component is the determinant: det exp(A + iB) = exp(tr(A + iB)). Since A' = —A, it is
traceless, whence det exp(A + iB) = exp(itr B). Hence if we let i1 € u(n) be the generator
of the u(1) subalgebra, the u(1) component of a matrix in u(n) is just its trace. In a Ké&hler
manifold, the holonomy representation of
U(n) is real and 2n-dimensional, which means that a matrix A + iB € u(n) is represented by

a real 2n X 2n matrix
A B
o= (%)

and therefore its u(1)-component, tr B, is simply given by

- (43) (4] Lo

From this it follows that the w(1)-component Fy, of the curvature operator is given by
Fup = —3tr (I o Ryp) = —3 Rape"I°. The next exercise asks you to show that this is essentially
the Ricci curvature, from where it follows that Ricci-flat Kéhler manifolds have SU(n) holonomy
and viceversa.

Exercise 3.24 (An equivalent expression for the Ricci curvature)

Prove that the Ricci curvature on a Kéhler manifold can be also be defined by
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9.3.4 3.3.4 Hyperkahler geometry

1
Ric(X,Y) = §tr(V — ToR(X,IY)V)
or equivalently,

1
Sac[bc = _5 tr ([ o Rab) - Faba

which, relative to complex coordinates, becomes

Sag = iFaB

Using the above results, give another proof of the symmetry of the Ricci tensor: Sy, = She.
(Compare with Exercise 3.22.

9.3.4 3.3.4 Hyperkédhler geometry

Finally we define hyperkéahler manifolds. In a hyperkéhler manifold we have not one but three
parallel almost complex structures I, J, and K which satisfy the quaternion algebra:

[J=K=—-JI,JK=1=-KJ, KI=J=—IK
P=J=K?= -1,

and such that the metric is hermitian relative to all three. Notice that we don’t demand
that the complex structures be integrable. This is a consequence of the definition.

Exercise 3.25 (Hyperkihler implies integrability)

Let (M,g,1,J, K) be a hyperkiahler manifold. Prove that I,.J and K are integrable complex
structures.

(Hint: Associated to each of the almost complex structures there is a 2-form: wy, w; and wg.
Because VI = 0, Exercise 3.20 implies that dw; = 0, and similarly for J and K. Notice that
wi(X,Y)=g(X,JY) =g(X,KIY) = wg(X,IY), whence ? 1xw; = 17xwg. A complex vector
field X is of type (1,0) with respect to I, if and only if 1xw; = éaxwg. By the Newlander-
Nirenberg theorem, it is sufficient to prove that the Lie bracket of two such complex vector
fields also obeys the same relation. But this is a simple computation, where the fact that the
forms w; and wg are closed is used heavily. The same proof holds mutatis mutandis for J and

Just like an almost complex structure I on a manifold allows us to multiply vector fields
by complex numbers and hence turn each tangent space into a complex vector space, the three
complex structure in a hyperkahler manifold allow us to multiply by quaternions. Concretely,
ifg=x+1y+ jz+ kw € H is a quaternion, and X is a vector field on M, then we define

- X=aX+yl(X)+2J(X)+wK(X)

This turns each tangent space into a quaternionic vector space (a left H module, to be
precise) and, in particular, this means that hyperkéhler manifolds are 4k-dimensional.

One can prove, just as we did with complex manifolds, that the holonomy group of a
hyperkéhler manifold lies in 3Sp(2k) C SU(2k) C GL(4k). In particular, hyperkahler manifolds
are Ricci-flat.
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Exercise 3.26 (The holonomy group of a hyperkihler manifold)

Prove that the holonomy group of a hyperkahler manifold is a subgroup of USp (2k). (Hint:
Depending on how one looks at this, there may be nothing that needs proving. If we take as
definition of USp(2k) C GL(2k,C) those matrices which commute with the natural action of
the quaternions on C?* = HF, then the result is immediate since the fact that I,.J, and K
are parallel means that V and hence the curvature operators commute with multiplication by
H. If you have another definition of USp(2k) in mind, then the exercise is to reconcile both
definitions.)

Conversely, if the holonomy group of a manifold M is a subgroup of USp(2k) C SO(4k),
then decomposing tensor powers of the fundamental 4k dimensional representation 7" of SO(2k)
into U Sp(2k)-irreducibles, we find that A>T possesses three singlets. The resulting covariantly
constant 2 forms are of course the three Kahler forms of M. A little bit closer inspection shows
that the associated complex structures obey the quaternion algebra, so that M is hyperkéahler.

9.4 3.4 M, is hyperkihler

In this section we prove that the metric on Mj defined by the kinetic term in the Yang-
Mills-Higgs functional is hyperkdhler. We will prove this in two ways. First we will prove
that the configuration space A is hyperkahler and that M, is its hyperkdhler quotient. In
order to do this we will review the notion of a Kéahler quotient which should be very familiar
as a special case of the symplectic quotient of Marsden-Weinstein which appears in physics
whenever we want to reduce a phase space with first-class constraints. In a nutshell, the group
G of gauge transformations acts on A preserving the hyperkahler structure and the resulting
moment mapping is nothing but the Bogomol'nyi equation. We will also give a computationally
more involved proof of the hyperkdhler nature of N, which is independent of the hyperkahler
quotient, at least on the face of it.

9.4.1 3.4.1 Symplectic quotients

Let (M,w) be a symplectic manifold-that is, w is a nondegenerate closed 2-form-and let G be
a Lie group acting on M in a way that preserves w. Let g denote the Lie algebra of G and let
{e.} be a basis for g which we fix once and for all. To each e, there is an associated vector
field X, on M. The fact that G preserves w means that Lx,w = 0 for every X,, where Lx, is
the Lie derivative along X,. We will often abbreviate Lx, by ZL,.

Exercise 3.27 (The Lie derivative acting on forms)

Prove that if w is a differential form on M and X is any vector field, then the Lie derivative
Lxw is given by

Lxw = (dix +1xd)w

where d is the exterior derivative and 2x is the contraction operator characterised uniquely
by the following properties:

(a) 1x f = 0 for all functions f;

(b) ixa = a(X) for all one-forms «; and

(c) ix(aAB) = (ixa) AB+ (—1)Pa ANixf3, for a a p-form and § any form.

Because dw = 0, L,w = 0 is equivalent to the one-form 2,w being closed, where 2, = 1x,.
Let us assume that this form is also exact, so that there is a function p, such that 1,w = d,.
This would be guaranteed, for example, if M were simply-connected, or if g were semi-simple.

*2 The conventions for the interior product :x are summarised in Exercise 3.27.
3 Mathematicians call Sp(k) what we call USp(2k).
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9.4.2 3.4.2 Kéhler quotients

More precise conditions on the absence of this obstruction can be written down but we won’t
need them in what follows. The functions p, allow us to define a moment mapping p : M — g*
by 1(p) = pa(p)e® for every p € M, where {e*} is the canonically dual basis for g*. In other

words, 1(p) (ea) = (D).

Exercise 3.28 (The Poisson bracket)
Prove that the Poisson bracket defined by:

{f.9} =W 0ifo;g
where w”w;; = §;’, is antisymmetric and obeys the Jacobi identity. Using the above defini-
tion of the Poisson bracket (or otherwise) prove the following identity:

d {,ua; ,ub} = fa“dpic (3‘35)

where f,,¢ are the structure constants of g in the chosen basis.

(Hint: Prove first that X,u, = {pta, pn} and take d of this expression. You may wish you
use the following properties of the contraction: [L,, %] = fup’e.)

Now notice that since pu, are defined by their gradients, they are defined up to a constant.
If these constants can be chosen so that equation (3.35) can be integrated to

{:uaa :ub} = fabc,uc (336)

then the moment mapping u is equivariant and the action is called Poisson. In other words,
the moment mapping intertwines between the action of G on M and the coadjoint action of G
on g*. Again one can write down precise conditions under which this is the case - conditions
which would be met, for example, if g were semisimple. We will assume henceforth that the
necessary conditions are met and that the moment mapping is equivariant.

The components u, of an equivariant moment mapping can be understood as first-class
constraints. It is well-known that if the constraints are irreducible, so that their gradients
are linearly independent almost everywhere on the constraint submanifold, one can reduce
the original symplectic manifold to a smaller symplectic manifold (or, more generally, orbifold).
More precisely, the irreducibility condition on the constraints means that their zero locus x~*(0)
is an embedded submanifold of M. The fact that the constraints are first class means that the
vector fields X,, when restricted to p~1(0), are tangent to p~1(0).

Equivalently, one may deduce from the equivariance of the moment mapping that G acts
on £~1(0). Provided that it does so "nicely" (that is, freely and properly discontinuous) the
space 111 (0)/G of G-orbits is a manifold, and a celebrated theorem of Marsden and Weinstein
tells us that it is symplectic. Indeed, if we let = : p=*(0) — ©~'(0)/G denote the natural
projection, then the Marsden-Weinstein theorem says that there is a unique symplectic form @
on 1~ 1(0)/G such that its pullback 7*@ to u~1(0) coincides with the restriction to u=1(0) of the
symplectic form w on M. The symplectic manifold (1~!(0)/G, @) is known as the symplectic
quotient of (M,w) by the action of G. It wouldn’t be too difficult to sketch a proof of this
theorem, but since we will only need the special case of a Kéhler quotient, we will omit it.

9.4.2 3.4.2 Kihler quotients

Now suppose that (M, g, I') is Kéhler with Kéhler form w. Then in particular (M, w) is symplec-
tic. Assume that the action of G on M is not just Poisson, but that G also acts by isometries,
that is, preserving g. Because G preserves both g and w, it also preserves I. On p~1(0) we
have the induced metric: the restriction to p~'(0) of the metric on M. This gives rise to a a
metric on p~1(0)/G which we will discuss below.
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9.4.2 3.4.2 Kéhler quotients

For every p € u~*(0), the tangent space T,M breaks up as

T,M = Tpﬂ_l(o) = Np:u_l(o)

where T, (0) is the tangent space to x~*(0) and the normal space N,u~(0) is defined as

its orthogonal complement (T,z~(0))". Globally this means that the restriction to x=*(0) of
the tangent bundle of M decomposes as:

TM =T (0) @ Nu~*(0) (3.37)

where the normal bundle Ny~1(0) is defined as (T~(0))". As the next exercise shows,
the normal bundle is trivial because p~1(0) is defined globally by irreducible constraints.

Exercise 3.29 (Triviality of the normal bundle)

Prove that the normal space N,u'(0) is spanned by the gradients grad,, u, of the constraints;
or globally, that the gradients of the constraints {grad s, } trivialise the normal bundle.

In fact, the converse is also true. If you feel up to it, prove that the normal bundle to a
submanifold is trivial if and only if the submanifold can be described globally as the zero locus
of some irreducible "constraints."

(Hint: A vector field X is tangent to p~'(0) if and only if it preserves the constraints:
dpi,(X) = 0, but this is precisely g (grad uq, X) = 0, by definition of grad y,.)

Both the metric and the symplectic form restrict to ~1(0), but whereas g is nondegenerate
on 1~ 1(0), the symplectic form isn’t. Thus in order to obtain a Kihler manifold it is necessary
to perform a quotient. We will describe this quotient locally. To this effect, let us split the
tangent space T,u~'(0) further as:

Tpﬂ_l(o) =H,®V,

where the vertical vectors V), are those vectors tangent to the G-orbits and the horizontal
vectors H, = VpL are their orthogonal complement. The vertical subspace is spanned by the
Killing vectors X,, whereas the horizontal space H, can be identified with the tangent space
to u71(0)/G at the G-orbit of p. Indeed, given any vector field X on p~'(0)/G we define its
horizontal lift to be the unique horizontal vector field X on p~'(0) which projects down to
X: W*X = X.

Now given any two vector fields on p~'(0)/G, we define their inner product to be the inner
product of their horizontal lifts. This is independent on the point in the orbit to where we lift,
because the metric is constant on the orbits. Hence it is a well-defined metric on p~1(0)/G.
In fancier language, this is the unique metric on p~*(0)/G which makes the projection 7 a
riemannian submersion. (The reader will surely recognise this construction as the one which in
section 3.1.2 yielded the metric on the physical configuration space C of the Yang-Mills-Higgs
system.)

We claim that there is also a symplectic form on x~'(0)/G which makes this metric Kéhler.
We prefer to work with the complex structure.

By definition, if Y is any vector field tangent to M, its inner product with grad pu, is given
by

g(grad pe,Y) = du.(Y) =w(X,,Y) =g (IX,,Y)

whence grad p, = IX,. Hence if we decompose the restriction of TM to p~1(0) as
TM =T ' (0)oNu ' (0)=HaV &N (0)
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9.4.3 3.4.3 Hyperkéahler quotients

and we choose as bases for V and Nu~1(0),{X,} and {grad y1,} respectively, the complex
structure [ has the following form:

0
0

I
I=10
0-1

o = O

whence H is a complex subspace relative to the restriction I of I. In other words, the
complex structure commutes with the horizontal projection, or a
little bit more precisely, if Y is a vector field on p~'(0)/G and Y its horizontal lift, then

IY = IY. The next exercise asks you to prove that this complex structure is integrable,
whence ~1(0)/G is a complex manifold.

Exercise 3.30 (Integrability of the restricted complex structure)

Use the Newlander-Nirenberg theorem to deduce that I is integrable.

(Hint: Relate the Nijenhuis tensor Ny of I to that of I, which vanishes since I is integrable.)

To prove that I is parallel, we need to know how the Levi-Civita connection of u~1(0)/G is
related to the one on M. The next exercise asks you to prove the relevant relation.

Exercise 3.31 (O’Neill’s formula)

Let X and Y be vector fields on x~'(0)/G, and let X and Y be their horizontal lifts. Prove
the following formula

~ —_ 1 ~ ~
ViV = VY 4 oK) (3.38)

where V is the Levi-Civita connection on 1 ~'(0)/G, and ” denotes the projection onto the
vertical subspace. In other words, the horizontal projection of V f(f/ is precisely the horizontal
lift of ? XY.

(Hint: Use expressions (3.31) and (3.29) to evaluate the horizontal and vertical components
of V f(f/)

In other words, formula (3.38) says that if we identify H with the tangent space to u=1(0)/G,
then the Levi-Civita connection on p~'(0)/G is given simply by the horizontal projection of
the Levi-Civita connection on M. Or, said differently, that the covariant derivative commutes
with the horizontal projection. Since the complex structures also commute with the projection,
we see that VI = 0 on M implies that VI = 0 on p1(0)/G. Therefore using Exercise 3.20,
©~1(0)/G is Kéhler.

Notice that the above decomposition (3.37) can be thought of as

TM 2T (u(0)/G) @ g°

where g® is the complexification of the Lie algebra of G. Therefore, morally speaking, it
would seem that 1 ~1(0)/G is the quotient of M by the action of G€. In some circumstances
this is actually an accurate description of the Kéhler quotient; for instance, the construction of
complex projective space CP" as a Kihler quotient of C**1.

9.4.3 3.4.3 Hyperkéahler quotients

Now let (M, g,1,J, K) be a hyperkiihler manifold. We have three Kihler forms: w), w() and
w) . Suppose that G acts on M via isometries and preserving the three complex structures,
hence the three Kéahler forms. Assume moreover that the action of G gives rise to three
equivariant moment mappings: x4 and p*); which we can combine into a single map

217



9.4.4 3.4.4 M, as a hyperkahler quotient

w:M—g- @R

Equivariance implies that ;~1(0) is acted on by G. Assuming that x~'(0)/G is a manifold,
we claim that it is actually hyperkéahler.
Fix one of the complex structures, I, say; and consider the function

v=p+ig"E M - g eC
For each Killing vector field X, and any vector field Y,

dvg(V) = w (X, V) +iw™ (X,,Y) = g (JX,,Y) +ig (KX,,Y)
dva(IYV) = g (J X, IV ) +ig (KXo, 1Y) = —g(KX,Y) 4+ ig(JX,Y)

whence

dv, (1Y) = idy,(Y)

or in other words, dv, = 0, so that v is a holomorphic function (relative to I). This means
that »=1(0) is a complex submanifold of a Kahler manifold and hence its induced metric is
Kéhler. Now G acts on v~1(0) in such a way that it preserves the Kéhler structure, and the
resulting moment mapping is clearly the restriction of () to v=* (0). We may therefore perform
the Kihler quotient of »71(0) by the action of G, and obtain a manifold:

vH0) N (1) (0)/G = uH(0)/G

whose metric is Kéhler relative to (the complex structure induced by) I. To finish the proof
that 4~1(0)/G is hyperkihler, we repeat the above for J and K. This construction is called
the hyperkéhler quotient, and was described for the first time in [HKLRS7.

9.4.4 3.4.4 M, as a hyperkahler quotient

Now we will prove that N is a hyperkéhler quotient of the configuration space A of fields W;
corresponding to finite-energy configurations with monopole number k. We can think of W, as
maps R? — R*® so0(3), and R*

can be thought of as a quaternionic vector space in two inequivalent ways: we first identify R* =
H, but then we have to choose whether H acts by left or right multiplication. Since quaternionic
multiplication is not commutative, the two actions are different. Since we will be dealing with
monopoles, we choose the right action-left multiplication would correspond to antimonopoles.
Let I,J, and K denote the linear maps R* — R* representing right multiplication on H = R*
by the conjugate quaternion units —¢, —j, and —k respectively. The next exercise asks you to
work out the explicit expressions for I, J, and K relative to a chosen basis.

Exercise 3.32 (Hyperkihler structure of R*)

Choose a basis {1,4,7,k} for H. Then relative to this basis, prove that the linear maps I, J,
and K are given by the matrices:

ioc? 0 01 0 io?
I_(O —z'aQ) J_(—HO) K_IJ_(Z'02 O>

Notice that together with the euclidean metric on R* I, J, K make R* into a (linear) hy-
perkéahler manifold.
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9.4.4 3.4.4 M, as a hyperkahler quotient

(Hint: Remember that the matrix associated to a linear transformation is defined by
Ie; = e;jl;;. This choice makes composition of linear transformations correspond with ma-
trix multiplication.)

We may now define a hyperkéhler structure on Ay as follows. If Wl is a vector field on Ay,
then we define :

(fWi(x) = IQWZ(I),

and similarly for J and K. Clearly they obey the quaternion algebra I.J = K, etc because
I, J and K do. Moreover since they are constant (and so is the metric) they are certainly parallel
relative to the Levi-Civita connection on Aj; with the metric given by the Yang-Mills-Higgs
functional. Hence Ay is an infinite-dimensional (affine) hyperkéhler manifold.

Let G denote the group of finite-range time- and z*-independent gauge transformations.
Since the metric is gauge invariant, G acts on Ay, via isometries. We also claim that G preserves
the three complex structures and gives rise to three equivariant moment mappings. In fact, we
will prove this in one go by constructing the moment mappings from the start.

The Killing vectors of the G action are just the infinitesimal gauge transformations and they
are parametrised by square-integrable functions € : R* — so0(3). The resulting Killing vector
field is X = 0¢W; = D;e. For every such €, define the following function:

. 1
and the same for J and K.

Now let W be any tangent vector field on Aj. (Here and in the sequel we will suppress the
indices ¢ whenever they don’t play a role in an expression.) Then

(zew(f)> (W) = w(f)(De,W)
= g(iDG, W)

= /d?’xlijDin- € (integrating by parts)

= du(W).

Hence,

1w = dpD

Naturally, the same holds also for J and K. Hence we can construct a moment mapping u
such that pu. = (ug), ug‘]), MEK)) The next exercise asks you to prove that it is equivariant.

Exercise 3.33 (Equivariance of the moment mapping)
Prove that the moment mapping p = (p, 1), ) is equivariant. In other words, if € and
7 are gauge parameters, prove that

I
Xpl) = dp{ (Xo) = )

exn

and the same for J and K.
Therefore we can apply the preceding discussion about the hyperkéahler quotient to deduce
that 4 =1(0)/G is a hyperkihler manifold. But what is ¢~(0)? Configurations W; belonging in
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9.4.5 3.4.5 Another proof that M, is hyperkahler

p~1(0) are those for which ,ug) = 0 for all €, and the same for J and K. Since € is arbitrary,
this is equivalent to demanding that /;;G;; = 0, and the same for J and K. From the explicit
expressions for the matrices I, J, and K found in Exercise 3.32, we find that

]ijGij =0= G = G34
JijGij = 0 = Gi3 = —Gau,
KijGij =0= G14 = G23

But these make up precisely the self-duality condition on G;j, that is, the Bogomolnyi
equation!

Therefore p~1(0) is the submanifold of static solutions of the Bogomol'nyi equation with
monopole number k (the BPS- k-monopoles) and p~1(0)/G is their moduli space My. In
summary, M, is a 4k-dimensional hyperkédhler manifold, obtained as an infinite-dimensional
hyperkéahler quotient of A, by the action of the gauge group G.

This "proof", although conceptually clear and offering a natural explanation of why My
should be a hyperkéahler manifold in the first place, relies rather heavily on differential geometry.
Therefore a more pedestrian proof might be helpful, and we now turn to one such proof.

9.4.5 3.4.5 Another proof that M, is hyperkahler

We start by expanding the Yang-Mills-Higgs action in terms of collective coordinates in order
to obtain an expression for the metric. Let X a = 1,...,4k, denote the collective coordinates
on the moduli space Mj, of BPSk-monopoles. Let W;(x, X (t)) be a family of BPS-monopoles
whose t-dependence is only through the ¢-dependence of the collective coordinates; that is,

W; =9, W, X¢ (3.39)

Notice that 9, W; need not be perpendicular to the gauge orbits. Indeed, generically, we
will have a decomposition

aa Vv2 = 5(1 Vv1 -+ Diéa (340)

where §, W; is the component perpendicular to the gauge orbits and D;e, is the component
tangent to the gauge orbits, hence an infinitesimal gaugetransformation. The gauge parameters
€, are determined uniquely by 9, W;. Indeed, simply apply D; and use the fact that D? = D;D;
is negative-definite (hence invertible) to solve for €,: -

€. = D ?*D;0, W;.

Exercise 3.34 (The Yang-Mills-Higgs effective action)

Compute the effective action for such a configuration of BPS-monopoles, and show that provided
one sets Wy = X%,, it is given by

1 o« 4
Lt = 5 guX°X" — =~ |k
2 e
where the metric on My is given by
Gab = /d3335a W, o, Wi, (3.41)

where, by construction, d, W; are perpendicular to the gauge orbits and satisfy the linearised
Bogomol’'nyi equation.
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One way to systematise the above expansion is in terms of ¢-derivatives. The zeroth order
term is given by the potential, which is a constant since the motion is purely along the flat
directions. The first order term vanishes due to our choice for Wy, ¥ while the quadratic term,
which describes the motion of such monopoles in the limit of zero velocity, corresponds precisely
to geodesic motion on N relative to the induced metric - that is, as a particle moving freely on
M. or, somewhat pedantically, as a (1 + 0)-dimensional o-model with M, as its target space.

It is convenient to think of €, as the components of a connection. We define D, = 9, —
e (€, X —), whence we can think of (W, €,) as the components of a connection on R* x M.
This allows us to interpret ¢, W; as the mixed components of the curvature:

Gag' = 8a Wi—@ea — €€, X WZZ 8a Wi_ DéEa = (Sa W£

The other components G, of the curvature may be formally computed from the Bianchi
identity:

DgGab = —2D[a(5b}W£ - —Daéb Wz —|— Dbéa Wz (342)
by applying D; and inverting D? as before.

Exercise 3.35 (A somewhat more explicit formula for G,)

Prove that

Gab = —2€D72 (5,1 Wi X (Sb Wl)

(Hint: Apply D; to (3.42), and use that d, W; is perpendicular to the gauge orbits.)
Using these formulae it is possible to write a formal expression for the Christoffel symbols
of the Levi-Civita connection. Naturally this is left as an exercise.

Exercise 3.36 (The Christoffel symbols)
Prove that

Lape = gealap” = / d*xDoby W; - 6. W (3.43)
Notice that I'spe = [hac , since DppdgW; = —%DgGab which is orthogonal to ¢, Wi.
(Hint: Use the explicit expressions (3.30) and (3.41) and compute.)

Using the explicit expressions found in Exercise 3.32 for the hyperkihler structure in R* we
now define the following two-forms on Mj:

(,L)L(l? = /dgfbln‘jéa Wg . (Sb Wl
and similarly for J and K, and their corresponding almost complex structures

I = gbcw(I) Jb = gbcw(J) Kb = gbcw(K)

ac ac ac

*4 Notice that Wy is not zero for generic choices of W;(z, X (t)), but it can be made to vanish after a
t-dependent gauge transformation. -
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Exercise 3.37 (Explicit expressions for the complex structures)

(a) Prove that I;;0, W is orthogonal to the gauge orbits, and the same for J and K.
(b) Then derive the following formula:

1,°0, W; = —I;;0, W, (3.44)

and the same for J,* and K,°.

(c) Using these expressions, prove that 1%, J,* and K,® obey the quaternion algebra.

(Hints: (a) This is equivalent to the linearised Bogomol'nyi equation, in the form /;;G;; = 0,
etc.

(b) Argue that since ,°5, W; is orthogonal to the gauge orbits, [ d*z1,°0, W;-. W; defines
it uniquely. Then just compute the integral and use (a).)

We claim that the forms w”,w”) and w®) are parallel. Let’s see this for one of them
w = w) | the other cases being identical. By definition,

d d
vawbc = OgWbe — Fab Wde — 1ﬂac Whd

We now compute this in steps. First of all we have:

Datpe = / @wliy (Dady Wi+ 8. W + by Wy - Dyd, W) (3.45)
Now we notice that I'pp%wg. = —1.°T 4. Using the explicit expression (3.43), we arrive at
Lopwge = —1.° / d*xD,6y W; - 6, W, (3.46)
and using (3.44) we can rewrite this as
I'dwge = / P’z D6 W - 6. W5 (3.47)
with a similar expression for I'yowpy = —ITee®wap. Adding it all together we find that

Vawse = 0. But this means that I,°, J,°, and K,° are also parallel, whence M;, is hyperkihler.

Chapter 4

10 The Effective Action for N = 2 Supersymmetric
Yang-Mills

In this chapter we will perform the collective coordinate expansion of the N = 2 supersymmetric
SO(3) Yang-Mills theory defined by equation (2.13). We will also discuss the quantisation of
the corresponding effective action. As we saw in the discussion in section 3.1.5 on the effective
theory for the 1monopole sector, the effective theory offers a qualitatively faithful description of
the dyonic spectrum, even though quantitatively it is only an approximation. Of course, in the
non-supersymmetric theory there is no reason to expect that the true quantum spectrum should
resemble the classical spectrum given by the Bogomol'nyi formula, but as we saw in Chapter 2,
supersymmetry protects both the formula for the bound from quantum corrections and also the
saturation of the bound. Hence it makes sense to expect that in the supersymmetric theory, the
quantisation of the effective action should teach us something about the full quantum theory.
As we shall soon discuss, this will have a chance of holding true only in the N = 4 theory, but
we can already learn something from the N = 2 theory we have just studied. We will therefore
first discuss the fermionic collective coordinates and then the effective quantum theory in the
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k-monopole sector. We will see that there are 2k fermionic collective coordinates and that
the resulting effective theory is to lowest order a (0 + 1) supersymmetric o-model admitting
N = 4 supersymmetry consistent with the fact that My is hyperkdhler. The quantisation of
this theory then leads to a geometric interpretation of the Hilbert space as the square-integrable
(0, q)-forms on N, and of the hamiltonian as the laplacian. This chapter is based on the work
of Gauntlett [Gau94].

10.1 4.1 Fermionic collective coordinates

As we saw in section 3.2, there are 4k bosonic collective coordinates in the k-monopole sector.
The purpose of this section is to compute the number of fermionic collective coordinates: we
will see that there are 2k of them. We will prove this in two ways. First we can set up this
problem as the computation of the index of an operator, as we did for the bosonic collective
coordinates; then essentially the same calculation that was done in section 3.2 yields the answer.
Alternatively, and following Zumino [Zum77|, we will exhibit a supersymmetry between the
bosonic and fermionic collective coordinates which will also allow us to count them.

Suppose that we start with an N = 2 BPS-monopole obtained, say, in the manner of Exercise
2.17. Fermionic collective coordinates are simply fermionic flat directions of the potential; that
is, fermionic configurations which do not change the potential. In order to see what this means,
let us first write down the potential for a general field configuration. To this effect let us break
up the lagrangian density (2.13) into kinetic minus potential terms £ = 7 — YV, where

1 1 1 —
T = S Gl + 5 IDoPI” + 5 1Dy S|I* + 7 - 1° Dot (41)

and

1 1 1 1 —
V=3 ID:iP|* + 5 1D S|I* + 1Gi Gis + 5“32”P X S| + it - i Dig
—iet - P x 4p —ie) - S x P (4.2)

The potential is then the integral V = fR3 V. For an N = 2 BPS-monopole, with Wy =
0, S = a¢,P = B¢ with a® + 3% = 1, the potential is given by

R N TTACING B EPCRPI B S
V_Q/]Rd HDzd)H +4/R$Gz] ng‘i‘l/ﬁ@’lﬂ (’)/zDZ e¢(a—|—ﬁry5)>¢

where in the last term ¢ is in the adjoint representation; that is, pv0 = ¢ x 1. The first
two terms in the potential already reproduce the potential energy of a nonsupersymmetric
BPS-monopole: 4%‘l|k|, for a k-monopole. Therefore turning on the fermions will not change
the potential provided that the third term vanishes; in other words, provided that 1) satisfies
the Dirac equation in the presence of the BPS-monopole. In other words, fermionic collective
coordinates are in one-to-one correspondence with zero modes of the Dirac operator. We will
now count the number of zero modes in two ways.

10.1.1 4.1.1 Computing the index

In order to count the zero modes it is again convenient to use the reformulation of the
BPS-monopole as an instanton, in terms of W; = (W, ,¢), and to define the following
four-dimensional euclidean Dirac matrices: ¥; = voy; and 74 = Yo (o + 875). In terms of these,
the fermion term in the potential is given by i fRS Pl YD1, keeping in mind that d4 = 0.
We want to compute the number of normalisable solutions to the equation 4;D;¢ = 0.
Let us choose a Weyl basis in which 45 = 41727374 is diagonal. In such a basis, a convenient
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representation of the euclidean Dirac matrices is the one given in equation (3.19). In that
representation the euclidean Dirac equation becomes:

0 —ZO'ZDl - €¢]1 T,Z)Jr —0
ZO'ZDZ —ell 0 ’l/J_ o

But notice that we have seen these very operators before, in the computation of the number
of bosonic collective coordinates in section 3.2. In fact, in terms of the operator O defined in
equation (3.17), the above Dirac equation breaks up into two equations, one for each chirality:

DYp_=0 and DlYP, =0

But now in Exercise 3.5 you showed that the operator DD is positive, whence it has no
normalisable zero modes, hence neither does Df. Therefore we notice that fermionic zero modes
in the presence of a BPS-monopole necessarily have negative chirality. (For antimonopoles, it
would have been D which has no normalisable zero modes, and fermion zero modes would have
positive chirality.)

We can arrive at the same result in a different way which doesn’t use the explicit realisation
of the y;-matrices. In fact, it is an intrinsic property of fermions coupled to instantons (in
four-dimensions). The next exercise takes you through it.

Exercise 4.1 (Fermion zero modes are chiral)

Consider solutions of the four-dimensional euclidean Dirac equation 7;D;% = 0 in the pres-
ence of an (anti)self-dual gauge field. Prove that if the gauge field is self-dual (respectively,
antiselfdual), then fermion zero modes have negative (respectively, positive) chirality.

(Hint: Compute the Dirac laplacian 4,7y, D; D, and use the fact that D* = D, D, is negative-
definite and has not normalisable zero modes.)

Finally, just as in section 3.2.1, the number of normalisable zero modes of D is given by its
index, which was computed in section 3.2.3 to be 2k, where k is the monopole number.

10.1.2 4.1.2 Using supersymmetry

We can reproduce this result in a different, but more useful way by exhibiting a supersymmetry
between the bosonic and fermionic zero modes. This is based on work by Zumino [Zum?77].

Let 6W; be a bosonic zero mode; that is, §W, satisfies the linearised Bogomol'nyi equation
(3.15) and Gauss’s law (3.1). Let n be a constant, commuting spinor of positive chirality,
normalised to 77177+ = 1. Define

Y = 0W i, (4.3)

It is clear that 1) has negative chirality and, as the next exercise asks you to show, 1 satisfies
the Dirac equation.

Exercise 4.2 (From bosonic to fermionic zero modes)

Let 6W; be a bosonic zero mode as above. With 1 defined as above, prove that % - Dy = 0.
(Hint: Use Exercise 3.4.)

Conversely, suppose that 1) is a fermionic zero mode with negative chirality; that is, 59 =
—1) and 7 - Dy = 0. Then define

oW; = 2'7717115 - inWgn—iﬂ

The next exercise asks you to prove that W, is a bosonic zero mode.
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10.1.2 4.1.2 Using supersymmetry

Exercise 4.3 (... and back)

With §W; defined as above, prove that it satisfies the linearised Bogomol'nyi equation (3.15)
and Gauss’s law (3.1).

The above result seems to suggest that there is a one-to-one correspondence between the
bosonic and fermionic zero modes, but this is fictitious, since not all the fermionic zero modes
obtained in this fashion are independent. Indeed, as we will now see, they are related by the
complex structure.

Let 6, W, for a = 1,...,4k denote the bosonic zero modes, and let ¥, = d, W,;¥;n;be the
corresponding fermionic zero modes. We will prove that I,°i, = i1, where I is one of the
complex structures of M;. Hence comparing with the discussion at the end of section 3.2.1, we
see that unlike bosonic zero modes, 1, and i1, are not linearly independent.

Let nybe a commuting spinor of positive chirality normalised to 77177+ = 1. Define a 4 x 4
matrix A with entries

Aij =0y (4.4)

We start by listing some properties of this matrix.

Exercise 4.4 (A complex structure)

Let A be the 4 x 4 matrix with entries A;; given by (4.4). Prove that A satisfies the following
properties:
(1) A is antisymmetric;
(2) 1A is real;
(3) A is antiselfdual: A;; = —%EijggAM;
(4) A% =1, so that 74 is a complex structure; and
(5) Ai¥jn+ = =V
(Hint: This requires the Fierz identity:

_ .
(T+7%s) — gAg%j

N

nenl =

which you should prove.)

We will now prove that we can choose n,in such a way that that iA agrees with any
one of the complex structures on R* defined in Exercise 3.32, and that such an 7, is unique
up to a phase. We start by noticing that the 4 x 4 matrix iA defined above is real and
antisymmetric, hence it belongs to so(4). As a Lie algebra, so(4) is isomorphic to so(3) x so(3)
(see Exercise 2.32). The fact that ¢A is antiselfdual, means that iA belongs to one of these
so(3)’s. In fact, it is the so(3) spanned by the complex structures I, J, and K of Exercise 3.32.
(Check that they are antiselfdual!) In fact, R* has a two-sphere worth of complex structures:
{al +bJ + cK | a®> + b* 4+ ¢* = 1}, and from the above exercise, we see that iA defines a point
in this two-sphere. In the next exercise we see this explicitly.

Exercise 4.5 (iA lives on the sphere)

Compute the matrix i A explicitly in the representation of the Dirac matrices given by equation
(3.19), and show that it is given by

0 ¢ —¢@—q

. -3 0 ¢ —q

1A = = —q1 K —qoJ + q31 4.5
@2 —q 0 —gs n 2l s (4:5)
¢ g g3 O
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10.1.3 4.2 The effective action

where I, J, and K are the complex structures in R* defined in Exercise 3.32 and ¢; = n'o;n,
where 7 is a complex Weyl spinor normalised to ' = 1. (In the Weyl basis above 1, = (8))
Prove that ¢; are real and that they satisfy >, ¢7 = 1, hence A defines a point in the unit
two-sphere in R3.

Now, in the Weyl basis introduced above, n, = (g) Any other normalised positive chirality
spinor 7, will have the same form with 7" replacing 7. This new Weyl spinor will be related
to n by an element of U(2) : ¥ = Un. The matrix ¢A’ obtained from 1’ has the form given by

(4.5) but with g; replaced by ¢; = n'To;n' = ntU o, Un.

Exercise 4.6 (Adjoint transformation)

In the notation above, prove that ¢; = U;;q;, where U;; is the three-dimensional adjoint repre-
sentation of U(2). (Notice that because the U(1) subgroup corresponding to the scalar matrices
act trivially, only the SU(2) subgroup acts effectively in this representation.)

Therefore the action of U(2) on 7 induces the adjoint action on the (g;). This action is
transitive on the unit sphere Y. ¢? = 1, hence any two points (¢;) and (q;) are related by an
element of U(2). Notice that U(2) = SU(2)x U(1) and that the SU(2) subgroup acts freely,
whereas the U(1) acts trivially. Hence once a complex structure has been chosen, 7 is unique
up to the action of U(1); that is, a phase.

Let us then exercise our right to choose 1. We do so in such a way that

i = il

where [;; is given by Exercise 3.32. Then using equation (3.44), we have

L%y, = 1"y Wiine = —1;;00 WA
= Z'(;a W[Yﬂﬁr
=11, (4.6)

where in the next to last line we have used (5) in Exercise4.5. Therefore there are only half
as many linearly independent fermionic zero modes as there are bosonic ones, in agreement
with the index calculation in the previous section.

10.1.3 4.2 The effective action

In this section we will write down the effective action governing the dynamics of the collective co-
ordinates to lowest order. Let us introduce bosonic collective coordinates X, fora =1, ..., 4k.
These coordinates parametrise the moduli space M, of BPS-monopoles with topological num-
ber k. In addition there will be fermionic collective coordinates A%, for a = 1, ..., 4k satistying
the condition A\*I,> = i\’. We now expand the supersymmetric Yang-Mills action (2.13) in
terms of the collective coordinates { X% \*} and keep only

the lowest nontrivial order. In order to count the order of an expression we take the conventions
that \* has order %, X® has order 0, but time derivatives have order 1. These conventions are
such that a free theory of bosons X and fermions A\ is of quadratic order.

We start by performing an SO(2) transformation which puts S = ¢ and P = 0, and choosing
an appropriate parametrisation for the fields W;, P, Wy, and 1) in terms of the collective coordi-
nates. As in the nonsupersymmetric theory, we leave Wy and, in this case also P, undetermined
for the moment. We choose to parametrise W; as W;(z, X (¢)), where all the time dependence
comes from the collective coordinates. For this reason, equation (3.39) still holds where, as
before, 9, W; need not be perpendicular to the gauge orbits. Nevertheless we can project out
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10.1.3 4.2 The effective action

a part which does: 6, W; as in (3.40). Because §, W, is perpendicular to the gauge orbits,
we know that 1, given by (4.3) is a fermion zero mode. We therefore parametrise 1) = 1h,\°.
Notice that since 1), is commuting (because so is 1), A* is anticommuting as expected.

There is no reason, in principle, to expect W; not to depend also on the fermionic collective
coordinates. In fact, using that these are odd, we can expand W; as follows:

Wiz, X, \) = Wi(2, X) + AW (2, X) + AN W (2, X) + -+ ;

but it is not hard to see that all terms but the first in the above expansion contribute only
higher order terms to the effective action.

Because our choice of v is a zero mode of the Dirac equation in the presence of a BPS-
monopole, the discussion of section 4.1 applies and provided that P = 0, the potential remains
at its minimum value: “Tak. However, P need not remain zero for this to be case. It can evolve
along a flat direction as we now show. The P-dependent terms in the potential (4.2) can be
written as follows:

1
3 [ DRI e [l )

where we have used that 459 = 51 = —1). Integrating the first term by parts, and using
the invariance of the inner product in the second term, the above expression becomes:

1

—§/RSP- (D?P + 2iew' x 1)

where D2 = DzDz
Exercise 4.7 (Computing %' x )
Prove the following identity:

1_
Yl x4 = —E)\“AbDQGab

where G, are some of the components of the curvature of the connection (W;, €,) on R* x
M., which were computed in Exercise 3.35.
(Hint: You might want to use the identity:

My = 0 +ili; (4.7)

which is (up to a factor) the projector onto the I-antiholomorphic subspace of the complex-
ification C* of R%.)

Therefore we see that the condition that the potential remains constant demands that we
either set P to zero or else

P = 2i\*\°Gy,

Next we tackle the kinetic terms. Notice that either of the choices for P allow us to discard
P from the kinetic terms. Indeed, if P is nonzero, then the above expression shows that it is
already of order 1 and hence its contribution to the kinetic term (4.1) will be of order higher
than quadratic. Having discarded P from the kinetic terms, we remain with

1 .
5/ ||G0||2+Z/ ' Dy
R3 R3

The first term is computed in the following exercise.
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10.2 4.3 N = 4 supersymmetry of the effective action

Exercise 4.8 (The first kinetic term)

Prove that the first term in the kinetic energy above is given by

2.
2 Jgs

where g, was defined in (3.41).

(Hint: Use the fact that §, W, is perpendicular to the gauge orbits!)

Finally we come to the second kinetic term. Plugging in the expression for 9 and using
equations (4.7), (3.44), and (4.6) we can rewrite the second term as

> 1 . .1
= _gabXaXb + —/
R3

‘ 2

Goe

Di (GaXa — Wg)

2 2

i [t Doyp = 2igap AN + 20NN X [ 5, W, - 0.0, W,
R3

R3

+ 2ieA*\? / W, - <5a W, X & Wj>
R3 - -

The next exercise finishes off the calculation.

Exercise 4.9 (... and the second kinetic term)
Prove that the second kinetic term can be written as

i [ T Doy = 2igap\® (Ab + ch”XcAd> — XN /
R3

RS

( W, — eX) . DGl

where the Christoffel symbols Ty’ were defined in equation (3.43).
Putting the results of Exercises 4.8 and 4.9, we find that the kinetic terms of the action are
(to lowest order) given by:

1 . _ . .
3 Jap X X+ 26 g NN + 2ig, 10 A XN

) . 1
_ i/\“Ab/ ( W, — eCXC> DGy + 5/
]Rfi ]Rii

We see that we can cancel the last two terms provided that we set

(o)

Wi = €,X" — 2I\" NGy
With this choice, and to lowest order, the effective action then becomes:

1 o /. : 4

Lut = 590 X" X" + 2igu " (A” + chch)\d> ~ Ty (4.8)
e

Ignoring the constant term, this action describes a (0 + 1-dimensional supersymmetric (as

we shall see shortly) o-model with target M.

10.2 4.3 N = 4 supersymmetry of the effective action

In general, symmetries of the theory under consideration play important roles in the effective
action. Broken symmetries give rise to collective coordinates, whereas unbroken symmetries re-
main symmetries of the effective action. As we have seen in section 2.3.4, N = 2 BPS-monopoles
preserve one half of the four-dimensional N = 2 supersymmetry. This supersymmetry must be
present in the effective action. In 0+ 1 dimensions, supersymmetry charges are one-component
Majorana spinors, hence one supersymmetry charge in four dimensions gives rise to four su-
persymmetry charges in 0 + 1. In this section we will prove that the effective action given by
(4.8) admits N = 4 supersymmetry. From the proof it follows that the same is true for any
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supersymmetric o-model with hyperkahler target manifold-which is, of course, a well-known
fact.

We start by discarding the constant term in the action (4.8) and rewriting the remaining
terms in terms of complex coordinates adapted to the complex structure I of M;. To this
end we define complex coordinates (Z‘”, Z‘_“) which diagonalise the complex structure; that
is, such that I,° = il,” and I;® = —ils”. As for the fermions, equation (4.6) implies that
N1,% =i\’ whence A\* = 0. Similarly, A* = 0. This prompts us to define new fermions ¢ such
that ¢ = v2\* and (% = v/2)\%. In terms of these new variables, the effective action remains

Lot = 05 2° 2 + igapC® (c’ﬁ n R,(SBZ'WCS) (4.9)

where we have used that for a K&ahler metric in complex coordinates, the only nonzero
components of the metric and the Christoffel symbols are g,5 = gag and I'o5” and I'557, as was
proven in Exercise 3.23.

10.2.1 4.3.1 N = 4 supersymmetry in R*: a toy model

In order to understand the supersymmetry of the action (4.9), let us first discuss the case of
R* with the standard euclidean flat metric. We can think of R* as C* and introduce complex
coordinates Z%, Z* where o = 1,2. The analogous action to (4.9) in this case is given simply
by

La =Y (Z“éd n z‘c@é“) (4.10)

«

where (* and (* are the accompanying fermions. This toy action has four real supersym-
metries. Two of them are manifest, as the next exercise asks you to show.

Exercise 4.10 (N = 2 supersymmetry in flat space)

Let 03 and é; be the supersymmetries defined as follows:

01 7% = (* 6y (™ = iZ% 0,2° =i 6,C* =2
61 2% = (% 51C% = iZ% 6, 2% = —i(® §;¢% = —Z°

(The names chosen for these transformations will appear more natural below.) Prove that
they are invariances of the toy action (4.10), and that they satisfy the following algebra:

d
5% = 5% = 1— and 515[ = —515]1
dt
We can rewrite the second of these supersymmetries in a way that makes its generalisation
obvious. If we let I denote the complex structure in R* = C? which is diagonalised by our
choice of complex coordinates, then the second supersymmetry ¢; can be rewritten as follows:

01 Z% = I%3¢P 6;¢% = —iI*3 2P
012% = I%5¢P 6,¢* = —il*52ZP

which explains the notation. It now doesn’t take much imagination to write down the
remaining two supersymmetries. We simply replace I in turn by each of the other two complex
structures J and K of Exercise 3.32. The fact that I, J, and K satisfy the quaternion algebra
is instrumental in showing that these transformations obey the right supersymmetry algebra.
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Exercise 4.11 (The N = 4 supersymmetry algebra)

Let 07 and d; be the supersymmetries given in Exercise 4.10, Define 6; and dx in the obvious
way. Let § be any of these supersymmetries and ¢’ # § be a second of these supersymmetries.
Prove that the following algebra is obeyed:

6% = i% and 60 +06=0

This is the N = 4 supersymmetry algebra.

10.2.2 4.3.2 N =4 supersymmetry in hyperkahler manifolds

We now abandon our toy model and return to the action Leg given by (4.9). We expect that
the supersymmetry ¢y defined in Exercise 4.10 should also be an invariance of L.g and, given
our choice of coordinates, that so should 6/. This is because I is diagonal and constant on the
chosen basis. In fact, leaving aside for the moment the issue of the invariance of L.z under
these transformations, Exercise 4.10 shows that they obey the right supersymmetry algebra.
On the other hand, the other two complex structures J and K will not be constant in this
basis, and hence the transformations d; and dx defined above will not obey the supersymmetry
algebra. We will have to modify them appropriately.

To see this we will investigate the supersymmetry transformations associated to a a co-
variantly constant complex structure /. Let us not work on a complex basis adapted to I,
but rather on some arbitrary basis (X%, (%). We will attempt to write down a supersymmetry
transformation 0 using /. Because the ¢ has order % (being essentially a "square root" of d/dt),
0X“ is determined up to an inconsequential overall constant:

65X = It (4.11)

Computing 62 we find

52Xa — achaIdCCdCb + Iba(scb

If we now use the fact that I is covariantly constant, so that

Ol =T 14" — Teg® 1"
we can solve for 6¢* by demanding that 62X = i X

0Ct = —iIfXP — Ty 215¢¢Ce (4.12)

where we have discarded a term —%Ib“TcdeeCI dech where T.;* = Ty? — Tyl is the torsion
of the connection, which in our case is zero. In order to show that 6* = id/dt on (¢, two
approaches present themselves. One can use the fact that (¢ = —I,%6 X" and use the fact that
on (any function of) X, §* = id/dt:

02¢* = —0% (1,°6 X°)

—i0. L, X6 X — [,2625 X°

= —i0.1,° X0 X? — T[,652 X" since 820 = &3 = §42
—i0. 1,0 X6 X — i[,25 X?

—i0. 1" X6 X" — i1, (1.°¢°)

= 0L, [P Xt — I, 0,1 P X ¢ + iC®

= i(®
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where in the last line we have used an identity resulting from taking the derivative of
I? = —1. Alternatively, one can compute §2¢® directly. This is naturally left as an exercise.

Exercise 4.12 (Another proof that §2¢* = i(%)

By taking & of 6¢%, prove that §2¢* = il

(Hint: You might find it necessary to use two properties of the Riemann curvature tensor:

Rabcd + Rbcad + Rcabd = 07 and Rabcdjde = Rabde[cd'

You are encouraged to prove these identities. The first one is the (first) Bianchi identity,
the other one follows from the fact that [ is covariantly constant, and hence commutes with
the curvature operator.)

Let 4; denote the supersymmetry transformation associated to the complex structure I. If
we define §; as above: §; X% = (% and 0,(* = iXa, then just as before ;0; = —d;07. In other
words, 0; and d; generate an N = 2 supersymmetry algebra. Therefore this result holds for
any Kihler manifold, and not just for R* as in the previous section.

Now let J be a second covariantly constant complex structure. It will give rise to its own
supersymmetry transformation given by equations (4.11) and (4.12), but with J replacing I.
Let us call this supersymmetry transformation §;. When will 6; and ¢, (anti)commute? The
next exercise provides the answer.

Exercise 4.13 (Commuting supersymmetries)

Let 67 and 0; denote the supersymmetries generated by covariantly constant complex structure
I and J. Prove that

516, X" = —il,PJ X — Dy 10 . ¢,

Conclude that (d;6; 4+ 6,0;) X® = 0 if and only if IJ = —JI. Prove that if this is the case,
then (076, + 6,07) (* = 0 as well, so that the two supersymmetries (anti)commute.

(Hint: To compute §;0; + §;0; on (¢, you might find it easier to exhibit (¢ = —I,25; X?,
say, and then use that 6;0; + §,0; is zero on (functions of) X®.)

This means that if {X°} denote the coordinates of a hyperkdhler manifold and {(*} are
the accompanying fermions, then the four supersymmetries 6y, d;,0; and dx satisfy an N =4
supersymmetry algebra.

10.2.3 4.3.3 N =4 supersymmetry of L.g

It remains to show that the four supersymmetries defined above, are indeed symmetries of the
effective action Leg . This will be easier to ascertain if we first rewrite the supersymmetry trans-
formations (4.11) and (4.12) in complex coordinates adapted to one of the complex structures:
1, say.

Let us therefore choose coordinates (Za, 7% (e, Cé‘) adapted to the complex structure I.
Because the the metric is hermitian relative to this complex structure (in fact, relative to all
three), we can rewrite the equations (4.11) and (4.12) using the results of Exercise 3.23, Because
I is constant relative to these basis, d; precisely agrees with d; in Exercise 4.10.

Now consider the second complex structure J. Because IJ = —.JI,J maps vectors of type
(0,1) relative to I to vectors of type (1,0) and viceversa. In other words, relative to the
above basis adapted to I, .J has components J,” and J;?. Therefore J generates the following
supersymmetry
transformation:

8,7% = iJ5*CP §,¢% = —iJ52Z8 — Ty, IO
0,2% = Jg%CP 6,¢% = —iJg® 2P — T 05 ¢
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10.2.3 4.3.3 N = 4 supersymmetry of L.g

where we have used (see Exercise 3.23) that I',5” and I'y 5’72 are the only nonzero components
of the Christoffel symbols. Similar formulas hold for .

As they stand, these supersymmetries are fermionic transformations. We can make them
bosonic by introducing an anticommuting parameter £ and defining the following transforma-
tions:

§57% = e

HGIEN A

§52% =eC® (4.13)

5% = ieZ®

8572 = ieC”
=z

857% = —ieC® (4.14)
(= —e2"

052° = ieJg*(?
(= —ie 5720 — e, TP

652% = eJgo¢? (4.15)
(0 = —ie gt 2P — eT5:.505°¢0C7

85 7% = ieK5¢°
(% = —ie K227 — T3, K5° P

65 2% = eKg*(P (4.16)
(% = —ie K30 2P — T30 K5°¢°C

The task ahead is now straightforward-albeit a little time consuming. Taking each of these

supersymmetries in turn, and letting € depend on time, we vary the action L.g . Invariance of
the action implies that

0 Lo = Q + X

where X is arbitrary, and @) is the charge generating the supersymmetry. The next exercise
summarises the results of this calculation.

Exercise 4.14 (The supersymmetry charges)

Prove that Leg is invariant under the supersymmetries given by equations (4.13)(4.16), with
the following associated supersymmetry charges:

Q1 = 0a5C" 27 + 9" 2"
Qr = iga5C" 2" —igas¢°2°
Qr = JagC2P + J35¢52°
Qi = Kap( 2% + Ks5(" 2"
where Jog = JoYsy and Jz53 = Ja"g3,, and similarly for K.

(Hint: The calculation uses the two fundamental identities described in the hint to Exercise
4.12. In complex coordinates, and using the results of Exercise 3.23, they now look as follows:
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s 5 5 5
Ro3.’ = Ry3 Rozs’ = Rass

apy VBa apy
Rop, I = Rz )" RopsJe = RoplJ5¢

and similarly for K.)

Having established the N = 4 supersymmetry of the effective action L.g it is now time to
quantise the theory. It turns out that supersymmetry will provide a geometric description of
the Hilbert space and of the hamiltonian. This will require some basic concepts of harmonic
theory on Kéahler manifolds. The purpose of the next section is to provide a brief review for

those who are not familiar with this topic.

10.3 4.4 A brief review of harmonic theory

This section contains a brief scholium on the harmonic theory of orientable riemannian man-
ifolds and in particular of Kahler manifolds. The reader familiar with these results can easily
skip this section. Other readers are encouraged to read on. We will of necessity be brief: details
can be found in many fine books on the subject [Gol62, GH78, War83, Wel80|.

10.3.1 4.4.1 Harmonic theory for riemannian manifolds

Let M be a smooth manifold. We will let & = (P, EF denote the algebra of differential forms
on M. The de Rham operator d : E» — &PT! obeys d> = 0 and hence one can define its
cohomology (the de Rham cohomology of M) as follows:

: +1

B = T e e

In other words, the p-th de Rham cohomology is a vector space whose elements are equiva-
lence classes of closed p-forms (dw = 0) —two closed p-forms w; and ws being equivalent if their
difference is exact: w; —wq = d, for some (p—1)-form 6. The crown jewel of harmonic theory is
the decomposition theorem of Hodge, which states that if M is a compact orientable manifold
there exists a privileged representative for each de Rham cohomology class. This representative
is obtained by introducing more structure on M-namely a riemannian metric. From the above
definition, it is clear that
the de Rham cohomology does not depend on any geometric properties of the manifold. It
is precisely this reason why the Hodge theorem is of fundamental importance: because it es-
tablishes a link between the topological and the geometric properties of riemannian manifolds.
(Actually, the fact that the de Rham cohomology is a topological invariant of M is not obvious.
It is called the de Rham theorem and it is proven in War83, BTS81.)

We therefore let (M, g) be an m-dimensional orientable riemannian manifold. Let {e'} for
i =1,...,m be a local orthonormal basis for the 1-forms. Orthonormality means that the line
element is locally ds* = Y. e’ ® e’. In general such a basis will of course not exist globally,
but will transform under a local O(m) transformation when we change coordinate charts. In
this basis the volume form is given by vol = e! A e? A --- A e™. This volume form defines a
local orientation in M. Orientability simply means that, unlike the 1-forms {e'}, the volume
form-and hence the orientation-does exist globally. It also means that upon changing charts,
the {e'} will change by a local SO(m) transformation. (Prove this!)

A local basis for the differential forms & on M is given by wedge products of these 1-forms.
It is convenient to introduce multi-indices I = (iy, 4, . ..,4,) where 1 < iy <iy < --- <1, < m.
We say that I has length p or that |I| = p. We then define e/ = e Ae® A--- Ae. In this
notation, {eI|I|] l,= p} is a local basis for &P; that is, any p-form w on M can be written
locally like Z\H:p wre!, where the coefficients w; are smooth functions. If I = (i1, g, ...,4,) is
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a multi-index of length p, we let I¢ = (ip41,9p42, - - -, im) denote the multi-index of length m —p
uniquely defined by the fact that {i1,...,9,} U{ips1,...,0m} ={1,2,...,m}.
We can now define the Hodge x-operation. This is a linear map x : & — E™7P defined by

. c
xe! = sign oe’

where if I = (¢y,...,4,) and I° = (ip4+1, ..., i), then sign o is the sign of the permutation

[y in,
=\ 19...m

In particular x1 = vol. The following result is important for calculations.

Exercise 4.15 (The square of the Hodge *)

Prove that acting on &P, x> = (—)(m=P)p,

The Hodge x-operator allows us to define a pointwise metric (—, —) on forms as follows:

aAxf = (a, ) vol (4.17)

The properties of this pointwise metric are summarised in the following exercise.

Exercise 4.16 (The pointwise metric on forms)

Prove that the basis {e’} is orthonormal relative to the pointwise metric defined in (4.17)
and therefore that it agrees on 1-forms with the one induced by the riemannian metric on M.
Conclude that the pointwise metric is positive-definite.

If, in addition, M is compact we can define an honest metric (called the Hodge metric) on
forms by integrating the pointwise metric over the manifold relative to the volume form:

@) = [ (ol = [ ans

If M is not compact, then we can restrict ourselves to compactly supported forms or to
forms « for which the Hodge norm ||a||? = («, «) is finite. Such forms are often called square-
integrable.

The Hodge metric allows us to define the adjoint d* to the de Rham operator, with which
the following exercise concerns itself.

Exercise 4.17 (The adjoint de Rham operator)
Define the adjoint d* of the de Rham operator by

(da, B) = (v, d*F)

for all forms «, § € &. Prove that d* satisfies the following properties:

(1) d* : &P — EPTL;

(2) (d*)* = 0; and

(3) d* = (—)m™PTm+1 & dx acting on EP.

Now let us define the Hodge laplacian A : &P — &P by A = dd* + d*d. We say that a
p-form is harmonic if Aa = 0.
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Exercise 4.18 (Harmonic forms)

Prove that a form « is harmonic if and only if dao = d*a = 0. Prove that harmonic forms have
minimal Hodge norm in their cohomology class. That is, if o is harmonic, then prove that the
Hodge norm of o + df is strictly greater than that of a.

The Hodge decomposition theorem states that in a compact orientable manifold each de
Rham cohomology class has a unique harmonic representative; that is, that there is a vector
space isomorphism

HE. (M) = harmonic p-forms

The proof of this theorem is rather technical. The idea is to use the normminimising property
to define the harmonic representative; but one then has to prove that this form is smooth. This
calls for the use of regularity theorems which are beyond the scope of these notes. A proof can
be found, for example, in War83.

The Hodge decomposition theorem has a very important corollary, which the following
exercise asks you to prove.

Exercise 4.19 (Poincaré duality)

Prove that the Hodge *-operator commutes with the Hodge laplacian. Use the Hodge decom-
position theorem to conclude that for M an m-dimensional compact orientable manifold, there
is an isomorphism

Hip (M) = Hi "(M)

This isomorphism is known as Poincaré duality.

10.3.2 4.4.2 Harmonic theory for Kdhler manifolds

Now suppose that M is a complex manifold of complex dimension n. As explained in section
3.3.2, on a complex manifold one has local coordinates (z"‘,ﬁ), where o, 8 = 1,2,...,n.

This allows us to refine the grading of the complex differential forms. We say that a complex
differential form w is of type (p, q) if it can be written in local complex coordinates as

W = Woyoa rofy (2, 2)AZO A - A2 NdZP A N dEP

where Wy, ...q,3,.. gq(z, Z) are smooth functions. The algebra of complex differential forms is
then bigraded as follows:

s= P & (4.18)

0<p,g<n

where &7 is the space of (p, ¢)-forms.
The de Rham operator d also breaks up into a type (1,0) piece and a type (0, 1) piece:

d=0+0 where
a . Sp:q N 8p+1,q
d: &P — gratl

Breaking d?> = 0 into types we find that 0> = 9> = 90 + 09 = 0. We call 0 the Dolbeault
operator, and its cohomology

ker 9 : &P — EPTL
Psq _
Hy" (M) = imd : Epa—1 — Epa

0
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10.3.2 4.4.2 Harmonic theory for K&hler manifolds

the Dolbeault cohomology.

Now suppose that we give M a hermitian metric h; that is, a riemannian metric compatible
with the complex structure: h(IX, 1Y) = h(X,Y’). Such metrics always exist: one simply takes
any riemannian metric g, say, and averages it over the finite group generated by I : h(X,Y) =
19(X,Y)+ Lg(IX,IY). If we forget the complex structure for a moment, M is an orientable
riemannian manifold of (real) dimension 2n. Therefore we have a Hodge *-operator defined as
in the previous section. The next exercise asks you to show how x interacts with the complex
structure.

Exercise 4.20 (The Hodge * and the complex structure)
Prove that the Hodge x-operator maps (p, ¢)-forms to (n — ¢, n — p)-forms:

* 81’,‘1 — SW*Q:”*P

and that acting on (p, q)-forms, * = (—)P*4.

(Hint: The first part is computationally quite involved, but the idea is easy. We can always
find a local basis {6'} for the (1,0)-forms on M such that the line element (relative to the
hermitian metric) has the form

12 =3 (0 00 +F 2 0)
i=1
where {@} are the complex conjugate (0,1)-forms. We can decompose these forms into
their real and imaginary parts as follows: 67 = = (e ™! +ie¥) and ¢/ = 5 (e¥~! —ie¥). In

terms of these real 1-forms, the line element becomes ds? = 2321 e’ ® €/; in other words, they

form an orthonormal basis. Therefore we know the action of the Hodge x-operator on the {61 }
Your mission, should you decide to accept it, is to find out what it is in terms of the 87 A §7.
The second part simply uses Exercise 4.15,

Another operation that we have on a complex manifold is complex conjugation, which
exchanges (p, ¢)-forms with (g, p)-forms. Using the Hodge *-operator and complex conjugation
we can define a pointwise hermitian metric for the complex forms, also denoted (—, —) as in
the real case treated in the previous section. This metric is defined by

a Axf = {a, B)vol

Notice that relative to this metric, the decomposition in equation (4.18) is orthogonal: if
is a (p, q)-form, then f is a (g, p)-form, and x5 is a (n — p,n — q)-form. The only way one can
obtain the volume form, which is an (n, n)-form, is to wedge with another (p, ¢)-form.

Exercise 4.21 (The pointwise hermitian metric)

Prove that the basis {91 A 67 } is orthonormal relative to the pointwise hermitian metric, and
conclude that it is positive-definite.

If M is compact, we can then integrate this pointwise metric relative to the volume form
and define an honest hermitian metric on complex forms:

(a,ﬁ):/M<a,6)vol:/Ma/\*B (4.19)

This metric is again called the Hodge metric. As in the real case, if M is not compact, then
we can still make sense of this provided we restrict our attention to square-integrable forms.
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10.3.2 4.4.2 Harmonic theory for K&hler manifolds

It follows from Exercise 4.17 that on a complex manifold, d* = — % dx regardless on which
forms it is acting. Breaking d* into types we find

o - EP1 gp—lvq

d*=0"+ 0" where 5 . gpa _y gra-1

On the other hand, breaking — % dx into types, and comparing we see that

F=—%x0x and 0O =—x0x

We can therefore define two laplacian operators:

O0=00"+00 and 0O=03909"+ 090

both of which map &4 — EP1.

Just as for de Rham cohomology, there is a Hodge decomposition theorem for Dolbeault
cohomology, which says that the d-cohomology on (p, q)-forms is isomorphic to the space of
[O-harmonic (p, ¢)-forms:

HY = O-harmonic (p, ¢)-forms.

In a generic complex manifold there is no reason to expect any relation between the Dol-
beault laplacians and the Hodge laplacian A = d*d + dd*; but the magic of Kéhler geometry is
that if M is Kéahler, then

A =20 =200 (4.20)

This is not a hard result to obtain, but it requires quite a bit of formalism that we will not
need in the remainder of this course, hence we leave it unproven and refer the interested reader
to the literature Gol62, GH78, Wel80.

As an immediate corollary of equation (4.20) and of the Hodge decomposition theorems for
de Rham and Dolbeault cohomologies, we have

and the following exercise describes another immediate corollary of equation (4.20).

Exercise 4.22 (Serre duality)

Prove that both the Hodge *-operator and complex conjugation commute with the laplacian.
Use this to conclude that for M a compact Kéhler manifold of complex dimension n, there exist
isomorphisms:

HPI(M) 22 HE 4" P(M) = HYP"9(M)

These isomorphisms are known collectively as Serre duality.

Finally, a curiosity. If we define the r-th Betti number b, of a manifold as the real dimension
of the r-th de Rham cohomology, we have as a consequence of Serre duality that for a compact
Kéhler manifold all the odd Betti numbers are even.
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10.3.3 4.4.3 Explicit formulas for 0 and 0*

The purpose of this section is simply to derive some explicit expressions for the differential
operators 0 and 0*. These are the expressions by which we will be able to recognise them
when we quantise the effective action. Throughout this section M shall be a Kéahler manifold
of complex dimension n.

Let us first start by deriving formulas for d and d*. For this we can forget momentarily the
complex structure and think of M simply as an orientable riemannian manifold of dimension
2n. Let {e;} denote a local orthonormal basis for the vector fields, and let {e¢'} denote the
canonical dual basis for the 1-forms. They are also orthonormal relative to the induced metric.
Let V denote the Levi-Civita connection. We claim that d can be written as

2n
d=) ¢ AV, (4.21)
i=1

Proving this will be the purpose of the following exercise.

Exercise 4.23 (An explicit expression for d)

Let d? denote the right-hand side of equation (4.21).

Prove that d, is independent of the orthonormal basis chosen so that it is well-defined.

Let " = e dz® and ¢; = €0,. Prove that d» =" dx® A 0, and conclude that d» = d.

(Hint: Use the fact that the Levi-Civita connection is torsionless.)

With this result we can now describe a similar formula for d*. Letting {e;} and {e'} be as
above, we will prove that

2n
4" ==Y 1(e') V,, (4.22)
i=1
where ¢ (e') is the contraction operation, defined by:
(e') f =0 for f a function; ¢ (e') &/ = d;;; and ¢ (') (¢! Aw) = 0w — €/ A v (€") w.
The next exercise asks you to prove equation (4.22).

Exercise 4.24 (An explicit expression for d*)

Let d} stand for the right-hand side of equation (4.22). Prove that df = —*dx, whence it agrees
with d*. (We are using (3) in Exercise 4.17, with m = 2n.)

(Hint: Prove first that d; is well-defined; that is, it is independent of the choice of orthonor-
mal frame. Because of this and by linearity, conclude that it is sufficient to compare d; and
—%dx on a p-form of the form fel Ae*A---AeP. Moreover argue that it is sufficient to compute
this at a point where V,,e/ = 0. Then do it.)

As a corollary of the previous exercise, it follows that relative to a coordinate basis, we can
write

d* ==Y u(dz")0, (4.23)
where now ¢ (dz®) dz® = ¢g.

We can now re-introduce the complex structure. Let {Gi, 52-} be a complex basis for the
complex vector fields, and let {Gi, éi} be the canonical dual basis for the complex 1-forms. In
terms of the above basis {e'}, ' is given as in Exercise 4.20. The canonical dual basis for the
vector fields are related by

1 1
Gi:—ei_ —iei 91':—61'_ +Z€Z
\/5(2 1 2) \/5(2 1 2)
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Inverting this change of basis, and using equations (4.21) and (4.22), we find

d=> (0" AVy +06 AV
=1

and

n

d* ==Y (u(0") Vo, + ¢ (0") V3,)

i=1
Breaking up into types, one concludes that

0= iGi/\Vgi and O = —ZL(Gi) Vo,
i=1 ;

Or in a coordinate basis,

0=Y dz"N0s and 0" =-) 1(dz")0, (4.24)
a=1
These equations will be important in the sequel.

10.3.4 4.5 Quantisation of the effective action

In this section we discuss the canonical quantisation of the effective action (4.8). We will be
able to identify the Hilbert space with the square-integrable (0, ¢)-forms on the moduli space
M. We will exploit the supersymmetry to write the hamiltonian as the anticommutator of
supersymmetry charges which, under the aforementioned isomorphism, will be identified as the
Dolbeault operator 0 and its adjoint under the Hodge metric. This will then allow us to identify
the ground states of the effective quantum theory as the harmonic (0, ¢)-forms on the moduli
space.

10.3.5 4.5.1 Canonical analysis

The first step in this direction is to find the expression for the canonical momenta. Then we write
the hamiltonian and the supersymmetry charges in terms of the momenta. We write down the
Poisson brackets and make sure that the classical algebra is indeed the N = 4 supersymmetry
algebra. Most of these calculations are routine, and are therefore left as exercises.

The first exercise starts you in this path by asking you to compute the canonical momenta.

Exercise 4.25 (The canonical momenta)

Prove that the canonical momenta defined by Leg take the following form:

OLeg s _
P, = —= = g.32° + T3¢ CP
a7 9o ﬂvC ¢
_ OLeg .
P@ — .67 — (a Zﬂ
oZe Yap
8Leff . B
Ta = s = —19.3
P g 5<
OLcg
’]TO7 = — =
aca

where 'y 55 = Fag‘sg(;@.

239



10.3.5 4.5.1 Canonical analysis

The fact that 75 = 0 is not very important. It is simply a consequence of the fact that the
fermionic part of the effective lagrangian is already in first order form, so that morally speaking
{¢®} play the role of momenta while {{*} are coordinates.

The effective hamiltonian H.g is defined as usual by:

Hug = Z°Pp + 2Py + (1 — Leg

The next exercise asks you to compute it.

Exercise 4.26 (The effective hamiltonian)

Prove that the effective hamiltonian is given by

Heff - gaBPaPB =+ .gaéra'yépﬁﬂ-éc7

Next we write the supersymmetry charges obtained in Exercise 4.14 in terms of momenta.
This is another easy exercise.

Exercise 4.27 (The supersymmetry charges revisited)

Prove that the supersymmetry charges obtained in Exercise 4.14 have the following form:

Q1 = (P + (s = (P, +ig*° 1o Ps

Qr = iC® Py — iC%Ps = iC* Py + ¢*’mo P;

Q= Jo@" Py + J3"C*Py — iJ2T 0p7¢ (7 ¢P
Qx = Ko Py + K3 Po — iK5 Ta35¢¢7¢°

The canonical Poisson brackets are defined to be the following:

(P27} =88 P2} =00 {0 ("} =3

Exercise 4.28 (Some checks)

As a check on our calculations, show that the supersymmetry transformations given in equations
(4.13)-(4.16) are indeed generated via Poisson brackets by the supersymmetry charges computed
in the previous exercise.

Finally, we are ready to verify that we have a classical realisation of the N = 4 supersymme-
try algebra. Let ¢ = ¢1i+q2j+q3k+qs € Hbe a quaternion. Let Q; = ¢1Qr+¢2Q s+¢3Qrk+q1 Q1.
The next exercise asks you to prove that the supersymmetry charges obey the N = 4 super-
symmetry algebra.

Exercise 4.29 (Classical N = 4 supersymmetry algebra)
Let ¢, ¢ € H be quaternions. Then prove that under Poisson bracket:

{Qqa Qq’} =1 (qq/) Heg

where § = —qii — g2 — g3k + ¢4 is the conjugate quaternion and ¢¢’ = >, ¢;q; is the
quaternionic product.

Because the supersymmetry charges generate under Poisson bracket the supersymmetry
transformations, the above exercise implies that the effective hamiltonian indeed generates
time translation. If you feel up to it you can check this directly from the expression of the
hamiltonian.
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10.3.6 4.5.2 The quantisation of the effective hamiltonian

To quantise the effective hamiltonian we first need to identify the Hilbert space. Let us quickly
quantise the bosons. We choose to realise Z% and Z “ as multiplication operators and hence P,
and P; will be realised as derivatives:

P, — —i% and P; — —i%

For the fermions, we notice that the canonical Poisson brackets can be rewritten in terms
of ¢ and (¢ as follows:

{¢n¢7} =g

Upon quantisation this gives rise to the following anticommutation relations

¢*¢P + ¢ = g7
with all other anticommutators vanishing. Of course, ¢®? is a function of Z%, Z%; but for
each point (ZO‘, Z@) in My, the above anticommutation relations define a Clifford algebra. In
other words, this defines a Clifford bundle on M. Fixing a point in M,, we have a standard
Clifford algebra of
the type studied in section 2.2.2. It has a unique irreducible representation constructed as
follows. We choose a Clifford vacuum |2), defined by the condition

Q) =0 for all o

The representation is then built on |Q2) by acting with the (2.
We now tensor together the representations of the bosons and the fermions and what we
have is linear combinations of objects of the form

HZ.2)¢¢ - ¢719)
If we take the f(Z, Z) smooth, this space is clearly isomorphic to the space Bo<p<ar &P of
differential forms of type (0, p) on My:

F(Z.2)CC - O < f(Z,2)dZ NdZP N -+ NdZT

Of course the Hilbert space will consist of (the completion of) the subspace formed by those
forms which are square integrable relative to a suitable inner product. As we saw in section
4.4.2, the natural inner product to consider is the Hodge metric given by (4.19). Therefore we
have the following geometric interpretation of the Hilbert space H of the quantum effective
theory:

He @ & (4.25)

0<p<2k

where 8%21’ denotes the space of (0, p)-forms on M, with finite Hodge norm; that is, square-
integrable.

In order to identify the hamiltonian we will use supersymmetry. The expressions for the su-
persymmetry charges and the hamiltonian, being polynomial, suffer from ordering ambiguities.
One way to get around this problem is to define the quantisation in a way that the N = 4 su-
persymmetry algebra is realised quantum-mechanically, and in such a way that we can identify
the resulting operators geometrically. The hamiltonian can be defined as the square of any of
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the supersymmetry charges, but we find it more convenient to take complex linear combinations
of )1 and (). Indeed, let us define

1 . . 1 .
Q= 5 (@ +1iQr) and Q"= 5 (Q1 —1Qr)
The classical expressions for these charges are very simple

Q=iC"P; and Q"= —i(*P,

and they obey the following algebra

1
{Qv Q*} = Z§Heff (426)
The quantisation is now clear. Quantise the charges () and Q* as follows:
_ 0 0
= (Y= d e = 4.27
Q= (o and Q' (U (4.27)
But notice that we have seen these operators before. Indeed, acting on

f= fag..ﬁCé‘CB -+ (5]9Q), we find that

Qf = 05fa5.5C"C7C - (7102)
Under the isomorphism (4.25), this corresponds to the form df. In other words, Q + 0.

How about Q*7 Acting on a (0, 0)-form, Q* is zero, since (* annihilates the Clifford vacuum.
Acting on a (0, 1)-form fza5|Q2), we find

Q*f@Ca|Q> = —3ﬂf&g‘w|9)

In other words, up to a sign, it is given by the divergence. This fact persists to higher
(0, p)-forms. Indeed, the next exercise asks you to show that Q* = 0%, the adjoint of 0 under
the Hodge metric.

Exercise 4.30 (Q* is 0%)

Show that under the isomorphism (4.25), the quantisation of @Q* given by (4.27) agrees with
0* = — * 0%, the adjoint of 0 under the Hodge metric.

(Hint: Compare with equation (4.24).)

Finally, we quantise the hamiltonian by demanding that the N = 4 supersymmetry algebra
be preserved quantum-mechanically. In other words, and taking into account equation (4.26),
we quantise the hamiltonian as follows:

He = 2(QQ" + Q7Q)

Under the identification @ « 0 and Q* <> 0%, the quantum effective hamiltonian agrees
with twice the Dolbeault laplacian [ or-since M, is (hyper)Kihler-with the Hodge laplacian
A.

This result doesn’t just provide a beautiful geometric interpretation of the effective quantum
theory, but also allows us to use geometric information to derive physical results. For example,
the ground states of the theory will be in one-to-one correspondence with (square-integrable)
harmonic (0, p)-forms. This sort of reasoning will play a crucial role in the test of Montonen-
Olive duality in N = 4 supersymmetric Yang-Mills theory, which shall be the focus of the next
chapter.
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The Effective Action for N = 4 Supersymmetric Yang-Mills

Chapter 5

11 The Effective Action for N =4 Supersymmetric
Yang-Mills

In the previous chapter we found that the low energy effective action for the collective coordi-
nates of N = 2 supersymmetric Yang-Mills was given by supersymmetric quantum mechanics
on the moduli space of BPS-monopoles. In this chapter we will do the same for N = 4 super
Yang-Mills. As we saw when we discussed that theory in Chapter 2, N=4 super Yang-Mills is a
prime candidate to exhibit Montonen-Olive duality: not just are the masses and the structure
of the multiplets protected by supersymmetry, but the massive vector bosons and the BPS-
monopole belong to isomorphic multiplets. Therefore it would be possible for this theory to
afford two inequivalent descriptions: one the standard one and a dual description where the
perturbative fields are those in the multiplet containing the BPS-monopole. The structure of
this chapter is therefore very similar to that of the previous chapter. We will first count the
number of fermionic collective coordinates and will perform the collective coordinate expan-
sion of the action up to second order. The resulting theory is again a (0 + 1) supersymmetric
o-model, this time admitting N = 8 supersymmetry due to the fact that there are twice as
many fermionic collective coordinates as in the NV = 2 case. The quantisation of the effective
action will proceed along lines similar to the previous chapter: this time the Hilbert space will
be isomorphic to square integrable forms on the monopole moduli space, and the hamiltonian
will once again be given by the laplacian. This chapter is based on the work of Blum [Blu94].

11.0.1 5.1 Fermionic collective coordinates

We saw in section 3.2 that there are 4k bosonic coordinates in the k-monopole sector; and, as
we saw in section 4.1, N = 2 supersymmetry contributed 2k fermionic collective coordinates.
In this section we will show that for N = 4 supersymmetric Yang-Mills the number of fermionic
collective coordinates will double. We can understand this heuristically in a very simple matter.
It follows from the discussion in section 4.1, that fermionic collective coordinates are in one-to-
one correspondence with zero modes of the Dirac equation in the monopole background. The
Dirac operator is the same in both the N = 2 and the N = 4 theories, but it acts on different
types of fermions. In the N = 2 theory, 1) was an unconstrained Dirac spinor (it came from a
Weyl spinor in six dimensions); whereas in the N = 4 theory, it acts on a quartet of Majorana
fermions (the dimensional reduction from ten-dimensions of a Majorana-Weyl fermion). But
now four Majorana spinors have twice the number of degrees of freedom that an unconstrained
Dirac spinor does: 4 x 4 = 16 real components to only 4 complex.

To make this argument precise, we need to look in detail at how the Dirac operator breaks
up. We start with a monopole background like the one in 2.4.3. Namely, we choose W, =
0, S; = as¢, and P; = b;¢, where a; and by are real numbers satisfying Y, (a7 +03) = 1,
and where (W;, ¢) define a k-monopole. Because the scalar fields are collinear, the potential
remains at the minimum provided that the fermions satisfy the Dirac equation:

YiDitp = 0
where 7; = Y07, and 4 = —io (CLIOéI + bJﬁ‘]%)-
Exercise 5.1 (Euclidean Clifford algebra)

Prove that the matrices 7; defined above satisfy a euclidean Clifford algebra in four-dimensions.
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11.0.1 5.1 Fermionic collective coordinates

From Exercise 4.1 we know that the normalisable zero modes of the Dirac operator 7;D;
will have negative chirality with respect to 5. But remember that 1) is also Majorana. We
now check what chirality with respect to 745 and the Majorana condition imply on a spinor.

Recall that our choice (2.32) of ten-dimensional I'-matrices is such that the Majorana con-
dition in ten-dimensions translates directly into the Majorana condition in four-dimensions.
In four-dimensional Minkowski spacetime, there cannot be Majorana-Weyl spinors, but the
euclidean y-matrices preserve the Majorana condition as the next exercise asks you to show.

Exercise 5.2 (3; and the Majorana condition)

Let 1 be a quartet of Majorana spinors. Prove that ¥;4) is again Majorana. Deduce that one
can simultaneously impose the Majorana and #s-chirality conditions.
Let us now start by choosing a explicit realisation for the v-matrices:

01 io; 0 (0 -1

The next exercise asks you to compute the charge conjugation matrix in this realisation.

Exercise 5.3 (The charge conjugation matrix explicitly)

Prove that the charge conjugation matrix C' in the above realisation can be chosen to be

o iO’Q 0
¢= < 0 —’iUg)

(Hint: Using that C* = —C and that Cy, = —’yZC determine C' up to a constant multiple.
A possible choice for this multiple is then one for which CTC' = 1. That is the choice exhibited
above.)

Now let @) denote a quartet of Majorana spinors which in addition obey 751 = —1). Because
75 = —7574 (prove it!), the chirality condition on @ means that 9440 = —v51p. This means
that the euclidean Dirac equation 4;D;1p = 0 becomes (3;D; — v5D4) ¥ = 0. For the explicit
realisation (5.1), this has the virtue that the Dirac operator doesn’t see the internal SU(4)
indices. Indeed, the Dirac operator is given by:

where 1, is the identity matrix in the internal SU(4) space, and D = iD;0;+ e¢l is the
operator introduced in (3.17).

We are now ready to count the zero modes of the euclidean Dirac operator, by relating them
to zero modes of D, which we have already calculated to be 2k. We first choose the explicit
realisation for the o and $7 matrices found in Exercise 2.33: af = efand 87 = €. Next we
exploit the internal SU(4) invariance to fix a; = 1 and all the other a; and b; to zero. This
means that 75 = —ivys @ a! = (03 ® 1)® (02 ® 1). From Exercise 5.3 we know that the charge
conjugation matrix is given by C' = (03 ® iog) ® 14. The next exercise asks you to write down
the typical quartet of Majorana spinors 1 which in addition are chiral with respected to 7s.

*Notice that if 1 had the opposite chirality with respect to 75, then it would have been DT which would
have appeared. This is as expected from the results of Exercise 3.5 and Exercise 4.1
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Exercise 5.4 ("Majorana-Weyl" spinors)

Prove that every quartet of Majorana spinors @ obeying 451 = +4) is of the form:

(Cat) Cine) G ) ()

where 1 and ¢ are complex two-component spinors.
Finally we count the zero mode of the euclidean Dirac operator %;D;.

Exercise 5.5 (Counting zero modes)

Show that v is a "Majorana-Weyl" zero mode of the euclidean Dirac operator, in the sense of
the previous exercise, if and only if 7 and ( are zero modes of D. Therefore if n, fora =1,...,2k
is a basis for the normalisable zero modes of D, then the 4k spinors

(o) O ) () (6 ) () (o))

form a basis for the normalisable zero modes of ¥;D;.
In summary, there are 4k fermionic collective coordinates for N = 4 supersymmetric Yang-
Mills with gauge group SO(3).

12 Monopoles for Arbitrary Gauge Groups for Children
by JM Figueroa-O’Farrill

In this chapter we start the study of electromagnetic duality in supersymmetric gauge theories
with an arbitrary gauge group. We will be interested in this part of the notes only on N =4
super Yang-Mills. Our principal aim is to frame an analogue of the Montonen-Olive duality
conjecture for these theories, to develop testable predictions and then to test them. This
will occupy several chapters, but in this one we will start with the analysis of the kind of
monopole solutions that can exist in a Yang-Mills-Higgs theory with gauge group G, taken to
be a compact, connected Lie group, and a Higgs field with values in the adjoint representation.
We will cover the homotopy classification of topologically stable solutions and the generalised

Dirac quantisation condition. This chapters borrows quite a lot from the magnificent lectures
of Coleman Col77, and from the paper of Goddard, Nuyts and Olive GNO77.

12.1 6.1 Topologically stable solutions

Let G be a compact connected Lie group, and ¢ a scalar field taking values in some finite-
dimensional representation V of G. We will assume that there is a G-invariant potential V()
which is positive semi-definite and also that V admits a G-invariant metric. This is necessary
in order to write down the kinetic term for ® in the action. We will let g denote the Lie algebra
of G. We will fix once and for all an invariant metric on g. As the next exercise shows, such a
metrics always exists.

Exercise

6.1 (Invariant metrics exist)
Prove that there exists a G-invariant metric in the Lie algebra of a compact Lie group.
(Hint: Start with any metric and average over the group with respect to the Haar measure.
Does this argument work for any representation?)
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We will denote both metrics on g and on V by (—, —), hoping that no confusion will arise.
The lagrangian density of the Yang-Mills-Higgs system is given by

L= —i (G, GM) + % (D,®,D'®) — V(D) (6.1)

where

D,=0,2-eW,-®G, =0,W,-—0,W, —e[W,, W,],

where W, are the g-valued gauge potentials, and by - we mean the action of g on the
representation V.

Let My denote the manifold of vacua: those values of ® for which V' (®) = 0. Because V' is
G-invariant, G will map My to My; in other words, G stabilises M.

We now choose the temporal gauge Wy = 0. As the next exercise shows, this can always be
done and leaves intact the freedom of performing timeindependent gauge transformations.

Exercise 6.2 (The temporal gauge)

Prove that the temporal gauge exists by exhibiting a gauge transformation which makes Wy = 0.
Prove that this gauge is preserved by time-independent gauge transformations.

(Hint: Use path-ordered exponentials.)

In this gauge, the energy density corresponding to the lagrangian density (6.1) is given by

1/. . 1 . . 1 1
H = (W, W) + S(@,9) + 7 (G, Gy) + 5 (Di0, D) + V(@)

where a dot indicates the time derivative, and where repeated indices are summed. The
energy is of course the integral over space R? of the energy density H, and hence finite-energy
configurations must obey the following asymptotic conditions as |?| — 00:

W,; = 0 and & = 0, whence fields are asymptotically static; G;; = 0 faster than O(1/r);
D;® = 0 faster than O(1/r); and V(®) = 0.

In particular this last condition says that ® defines a map from the asymptotic 2 -sphere
S%2 C R? to the manifold of vacua My. Because M is stabilised by G, it will be foliated by
orbits of G. For example, in G = SO(3) and the Higgs is in the adjoint, the leaves of the
foliation of SO(3) in R? are the round spheres centred at the origin, with a "singular" orbit
corresponding to the sphere of zero size. A priori there is no reason to expect that the mapping
S%2 — My defined by the asymptotics of the Higgs field should lie on only one of the orbits,
but because D;® = 0 in this limit, this is actually the case. The proof is left as an exercise.

Exercise

6.3 (P (S%) C My lies in a single orbit)

Prove that the image of S2 lies in a single orbit in Mj.

(Hint: Integrate the equation D;® = 0 on S2.)

A sufficient-but as shown by Coleman [Col77|) not necessary-condition for a finite-energy
configuration to be non-dissipative is that it should be topologically stable. As explained in
section 1.2.2, a way to guarantee the topological stability of a field configuration is for the map
® : 52 — My to belong to a nontrivial homotopy class. It therefore behoves us to study the
homotopy classes of maps from the asymptotic two-sphere S% to the manifold of vacua M or,
more precisely, to the orbit to which ® (S2) belongs. To this effect we find it useful to set down
some basic notions about homotopy groups. Readers familiar with this material can easily skip
the next section.
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12.1.1 6.1.1 Some elements of homotopy

This section contains a brief review of homotopy theory. Homotopy theory is the study of
continuous change, and is particularly concerned with the determination of quantities which
are impervious to such changes. Roughly speaking a homotopy is a continuous deformation
parametrised by the unit interval I = [0,1]. We will have to be a little bit more precise than
this in what follows, but we will avoid getting too technical. In particular, we will not give
many proofs. Luckily for us, the aspects of homotopy theory that we will need in these notes
can be understood quite intuitively. Proofs can be given but they rely quite a bit on point-set
topology. Since that is not the main point of these notes, we simply point the reader who
wishes to look at the proofs of the statements made in this section to the old but still excellent
book by Steenrod Steb1.

The useful objects in homotopy theory are not just topological spaces, but spaces with a
privileged point called the basepoint. A map between two
such spaces is understood to be a continuous function which sends basepoint to basepoint. Let
X and Y be two topological spaces with basepoints xy and yg respectively, and let fy and f;
be two continuous functions X — Y taking xy to y9. We say that these two functions are
homotopic if there exists a family of functions parametrised by the interval which interpolates
continuously between them. More precisely, fo is homotopic to f; (written fy ~ f1) if there
exists a continuous function F' : X x I — Y, such that for all 2 € X, F(x,0) = fo(x) and
F(z,1) = fi(x) and such that for all t € I, F'(xo,t) = yo. This last condition says that the
homotopy is relative to the basepoint.

The fundamental group

A good example with which to visualise these definitions is to take X to be the circle. We can
think of the circle as the unit interval with endpoints identified. Then a map from the circle to
Y asamap f: I — Y with f(0) = f(1) = yo. That is, a continuous loop based at yy. Then
two such loops are homotopic if they can be continuously deformed to each other through loops
which are based at .

The set of homotopy equivalence classes of maps f : X — Y with f (z¢) = yo is written
[X, x0; Y, yo]. In the special case above where X is the circle, the set of homotopy equivalence
classes is written 7 (Y, yo). But m1 (Y, yo) is more than just a set: indeed, based loops can be
composed. Given two loops f; and f; based at yp, we can form a third loop f; * fo by simply
going first along f; and then along f, at twice the speed. In other words,

f1(2t) for t € [O, %}

(fixf2) (1) = {f2(2t —1) forte [%7 1}

Notice that composition is not just defined for loops but also for paths, provided that the
first path ends where the second begins. As the following exercise shows, composition of based
loops induces a well-defined operation on homotopy classes, which makes m; (Y, o) into a group.

Exercise 6.4 (m (Y, ) is a group )

In this exercise we prove that m (Y, yo) is a group, with group multiplication given by compo-
sition of loops. The proof consists of several steps which are all very easy. The idea is to first
prove that * makes sense in 7 (Y, yo) and then that * on loops satisfies all the properties of a
group up to homotopy. This means that in m (Y, yo) they are satisfied exactly.

is well-defined in homotopy. Prove that if fo ~ f; and gg ~ g; are loops, then fo*xgy ~ f1*g;.
(This allows us to work with loops, knowing that up
to homotopy it doesn’t really matter which loop we choose to represent its homotopy class.)
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is associative in 7 (Y,yo). Prove that if fi, fo, and f3 are loops then (f; * fo) x f3 ~
f1 % (f2* f3). In other words, * is associative up to homotopy.

71 (Y,90) has an identity. Prove that the constant loop sending all the circle to y is an
identity for * up to homotopy; that is, if k£ denotes the constant loop, then k*x f ~ fxk ~ f
for any loop f. Inverses exist. Let f be a loop, and let f denote the loop obtained by following
f backwards in time: f(t) = f(1 —t). Prove that f = f ~ f % f ~ k, where k is the constant
loop.

(Hint: It may be convenient to devise a pictorial way to denote loops and homotopies. For
instance a loop f based at yy can be depicted as a unit interval whose endpoints are marked

Yo-

Yo / Yo

Similarly if f and g are two such loops, a homotopy H between them can be depicted as a
square whose left and right edges are marked gy, and whose top and bottom edges correspond
to f and g¢:

Yo H Yo

f

Composition of loops can then be depicted simply as pasting the intervals together by their
endpoints and contracting (reparametrising time) so that the resulting interval has again unit
length. The following picture illustrates this:

o f o i ] i un f g tm
" A B [l

In this language, the group properties become almost self-evident. For example, the asso-
ciativity property of % simply becomes
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f g h

Yo Yo

f g h

and similarly for the other axioms.)

The group 7 (Y, 40) is known as the first homotopy group of the pointed space (Y, yq). If
Y is path-connected, so that any two points in Y can be joined by a continuous path, then the
first homotopy group does not depend (up to isomorphism) on the basepoint. This fact has a
simple proof which we leave to the next exercise. Incidentally, the condition of connectedness
and path-connectedness are not equivalent, but they do agree for manifolds, and hence for all
the spaces we will be considering in these notes.

Exercise 6.5 (w1 (Y, yo) = m1 (Y, y1))

Let Y be path-connected and gy, and y; be two points in Y. Fix a path v : I — Y with
7(0) = yo and (1) = y;. Because Y is path-connected, v exists. We can use this path to
turn any loop f; based at y; into a loop based on yy: one simply composes 7 * f; * vy, where
~(t) = v(1 — t). Prove that this defines a group isomorphism 1 (Y, 41) = m1 (Y, v0)-

Therefore when Y is connected, it makes sense to talk about 7;(Y') without reference to a
basepoint. This group is called the fundamental group of Y. If this group is trivial, so that all
loops are homotopic to the constant map, then Y is said to be simply-connected.

Notice that the isomorphism in Exercise 6.5 depends on the choice of path v joining the two
basepoints. How does the isomorphism depend on 7 It is easy to show (do it!) that if 7" is any
other path which is homotopic to v with endpoints fixed, then the isomorphisms induced by ~
and 7" agree. On the other hand, paths in different homotopy classes generally define different
isomorphisms. This can be formulated in a way that shows an action of the fundamental group
of the space on itself by conjugation. This will play a role later and we will discuss this further
we study the addition of topological charges for largely separated monopoles.

The fundamental groups of some manifolds are well known. Here are some examples.

R" is simply-connected for any n. The punctured plane R?\{0} is no longer simply-
connected; in fact, m; (R?*\{0}) = Z. The isomorphism is given by the following well-known
integral formula from complex analysis. To see notice that R*\{0} = C*is the punctured
complex plane. Let v be a loop in C*, and compute the contour integral

1 dz
 omi =
It is well known that this is an integer and is a homotopy invariant of the loop.
7 (S') = Z. This is just the above example in disguise. We can think of S* as the unit circle
in the complex plane S' C C*. Any loop (or homotopy for that matter) in C*can be projected
onto the unit circle by ¢ — (t) — ~(¢)/|7(¢)|. The isomorphism 7 (S') 2 Z is known as the

degree of the map. It basically counts the number of times one circle winds around another.
Puncturing R”, for n > 2, does not alter the fundamental group. In fact, any loop in R™\{0}
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is homotopic to a loop on its unit sphere S"~! C R", again by projecting. But for n > 2,
it is intuitively clear that any loop on S™~! is homotopic to a constant. For n = 3 it is the
well-known principle that "you cannot lasso an orange." You cannot lasso higher-dimensional
oranges either. You can make a non-simply-connected space out of R? by removing a circle (or
a knot), say, or an infinite line.

However it is not only by making holes in a space that we can generate nontrivial loops.
We can also identify points. For example, if we take the sphere S™, for n > 1, and identify
antipodal points, we describe a space which is not simply-connected. The space in question is
the space of lines through the origin in R"*!: since every line through the origin will intersect
the unit sphere in two antipodal points. We call this space the real projective space RP". We
can lift a loop in RP" up to S™. This procedure is locally well-defined once we choose a starting
point in S™. There is no further choice and when we are done with the lift, we are either at the
starting point or at its antipodal point, since both points map down to the same point in RP".

(b)

Figure 6.1: The two possible lifts to S™ of a loop in RP".

In the former case, the loop has lifted to an honest loop in S™, which is depicted by (a) in
Figure 6.1. Since S™ is simply-connected, we can project the homotopy to RP" and this gives
a homotopy for the original loop. On the other hand, if the loop ends at the antipodal point,
as shown in (b) in Figure 6.1, there is clearly no way to deform it to the constant map while
keeping endpoints fixed, so it defines a nontrivial loop in RP". However notice that the loop
obtained by going twice around the loop lifts to an honest loop in the sphere, and is hence
trivial. This shows that m; (RP") = Z,. The two-to-one map p : S* — RP" is a covering
map, in that it is a local homeomorphism and every point p in RP" has a neighbourhood U
such that its inverse image by the covering map p~'(U) C S™ consists of two disconnected
neighbourhoods. Because S™ is simply-connected, we say that S™ is the universal covering
space of RP". All reasonable spaces X (certainly all manifolds and hence all spaces considered
in these notes) possess a universal covering space X. This space is simply-connected and is
such that it admits a free action of the fundamental group of X. In the case of S™, it admits an
action of Zs, sending a point on the sphere to its antipodal point. The case n = 3 is particularly
interesting, because it is intimately related with two of our favourite Lie groups: SU(2) and
SO(3).

Exercise 6.6 (SU(2) and SO(3))

Prove that the Lie group SU(2) of 2 x 2 special unitary matrices is parametrised by a three-
sphere S? and that the group SO(3) of 3 x 3 special orthogonal matrices is parametrised by the
real projective space RP?. Prove that there is a group homomorphism SU(2) — SO(3) which
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sends both 1 and —1 in SU(2) to 1 in SO(3). Notice that 1 and —1 generate the centre of
SU(2), which is isomorphic to Z,. Hence SU(2) is the universal covering group of SO(3).

This situation persists for other Lie groups. Every semisimple compact

Lie group G has a universal covering group G, sharing the same Lie algebra g. The funda-
mental group 7 (G) is naturally identified with a subgroup of the centre of G. We will be able
to compute 71 (G) by comparing the finite-dimensional irreducible representations of G with
those of G, which are those of g. For example, not every irreducible representation of SU(2)
is a representation of SO(3): only those with integer spin. Since representations of SU(2) can
have integer or half-integer spin, this means that SU(2) has twice as many irreducible repre-
sentations as SO(3)-which is precisely the order of w1 (SO(3)) = Z,. This is no accident, as we
will see later on.

Before we abandon the subject of the fundamental group, we mention one last fact. Notice
that all the fundamental groups that we have discussed so far are abelian. This is not always
the case. In fact, the fundamental group of any compact Riemann surface of genus g > 1
is non-abelian. However, there is an important class of manifolds for which the fundamental
group is abelian.

Exercise 6.7 (7, (G) is abelian)

Let G be a connected Lie group. Prove that m(G) is abelian.

(Hint: In a Lie group there are two ways to compose loops. We can use the loop composition
* defined above, or we can use pointwise group multiplication, provided that the loops are
based at the identity. Indeed, if f and g are loops in GG based at the identity, one can define
(feg)(t) = f(t)g(t). Prove that fxg ~ feg, sothat we can use group multiplication to define
the multiplication in the fundamental group. Use this to write down a homotopy between f x g
and g x f, for any two loops f and ¢ in G.)

Higher homotopy groups

The fundamental group has higher dimensional analogues obtained by substituting the circle
by a sphere. Just like we could think of the circle as the interval I with edges identified, we
can think of the n-sphere as the multiinterval I™ with its boundary 0I™ identified to one point.
There is a rich theory for all n, but we will only need n = 2 in these notes, so we will concentrate
mainly on this case. Any map S? — X can be thought of as a map I? — X which sends the
boundary 9I? to the basepoint zo € X. Just as in Exercise 6.4, we choose to depict such a
map f as a rectangle I? with the basepoint x along the edges to remind us that z, is where
OI? gets mapped to:

Iy

To f T

To

We will denote the homotopy classes of such maps by m (X, zg). Just like for 7, we can
turn this space into a group. We first discuss composition. Two maps S? — X can be composed
by adjoining the squares, just like we did for loops. However in this case there seems to be an
ambiguity: we can adjoin the squares horizontally or vertically. We will see that there is indeed
no such ambiguity, but for the present we choose to resolve it by composing them horizontally.
In other words, if f and g are two maps I? — X, we define the composition f * g by
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f (2t1, t2> for tl € [O, %}
g (2t1 — 1,t2> for tl € [%, 1}

(fxg)(t1,t2) = {

Clearly the resulting map is continuous, since the boundary conditions agree: f (1,t3) =
g (0,t3) = xo for all 5. Pictorially this composition corresponds to the following diagram:

Just like we did for m (X, zg), we can show that m, (X, z0) is a group.

Exercise 6.8 (7 (X, xy) is a group )

This exercise follows similar steps to Exercise 6.4. Prove the following:

is well-defined in homotopy.

is associative up to homotopy.

7y (X, ) has an identity. Prove that the constant map sending all of I? to g is an identity
for * up to homotopy. Inverses exist. Let f be a map I? — X, let f denote the map obtained
by following f backwards in the first of the two times: f(t,t5) = f (1 —t,t3). Prove that f
is the inverse of f up to homotopy.

If X is path-connected, it follows that mo (X, z¢) doesn’t depend on the basepoint (up to
isomorphism). Indeed, let f represent a homotopy class in 7o (X, x¢). Given any other basepoint
x1 € X, let v be a path from xy to x;. The following diagram represents a homotopy class in
o (X, 21):

where the arrows represent the path v going from xg to ;. The next exercise asks you to
show that this map is an isomorphism.

Exercise 6.9 (7 (X, xo) = m (X, 1))

Prove that the above map is an isomorphism 79 (X, 29) = 75 (X, 2;1); and that the isomor-
phism only depends on the homotopy class of the path v used to define it.

Hence for path-connected X it makes sense to talk about m(X) without reference to the
basepoint, provided that we are only interested in its isomorphism class. This group is a higher-
dimensional analogue of the fundamental group 7 (X). Unlike the fundamental group, m(X)
is always abelian. The
following sequence of homotopies proves this assertion:
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&Iy Ty Ty

f Tg f
To| f g |t = 1y Tg =@y Ty
Ty q g
Ly i) Ty
£y T
~ o 'f ~
= Io Ig = Iy q f Iy
g o
&Ly Ty

This proof also shows that there is no ambiguity in the composition after all. Similarly one
proves that also m(X) for £ > 2 are abelian.

Finally we discuss some examples of higher homotopy groups. Unlike the fundamental
group, for which there are theorems (for instance, the Van Kampen theorem) allowing us to
compute 71(X) starting from a decomposition of X into simpler spaces, the computation of
the higher homotopy groups is a very difficult problem. For example, not all the homotopy
groups of the 2-sphere S? are known! Nevertheless, here are some examples of higher homotopy
groups:

7, (S™) = 0 for k < n, and 7, (S™) = Z. The first equality is the fact that one cannot
k-lasso an n-orange, for k < n; whereas the last isomorphism is given by the degree of the map,
as was the case for n = 1. 7 (S') = 0 for £ > 1. This follows because S' can be covered by
a contractible space: S = R/Z. 7, (T™) = 0 for k > 1, where T™ is an n-torus. This follows
for the same reason as the above example: 7™ = R"/A, where A is some lattice. 7 (£,) =0
for & > 1, where X, is a compact Riemann surface of genus g. Again, the proof is as above,
since ¥, can be written as the quotient of the Poincaré upper half plane by a Fuchsian group:
Y, = H/T. my(G) = 0, for any topological group G. This result of E. Cartan will play a very
important role in the next section. The homotopy groups of the spaces determining a fibration
F — E — B, where F'is the typical fibre, F is the total space, and B is the base, are related
by a useful gadget known as the exact homotopy sequence of the fibration:

oo = m(B) = o (F) = w1 (B) = 1y (B) — -
oo > m(E) = m(B) = m(F) = m(E) — m(B)

The "exactness" of this sequence simply means that every arrow is a group homomorphism
such that its kernel (the normal subgroup sent to the identity) precisely agrees with the image
of the preceding arrow. If the fibration is principal, so that F'is a Lie group, then the sequence
extends one more term to include a map m1(B) — m(F). Where mo(F') is the set of connected
components of the typical fibre. One can define m(X) in this way for any space X, but for a
general X, my(X) is only a set. It is when X = G is a group, that mo(G) also inherits a group
operation. Indeed, mo(G) = G /Gy, where Gy is the connected component of the identity. It is
in this case that it makes sense to speak of a group homomorphism 7 (B) — 7 (G).

A lot more could be said about higher homotopy groups, but this about covers all that we
will need in the sequel.

12.1.2 6.1.2 Homotopy classification of finite-energy configurations

After this brief review of homotopy theory, we return to the problem at hand. Let us fix a
basepoint 70 in the two-sphere at infinity; for example, we could choose the north pole. Let
W) (70) = ¢g € My. The G-orbit of ¢y will be the set G - g = {g-¢o| g€ G} C M,. If
we let H = Hy, C G denote the stability subgroup of ¢g : Hy, = {h € G | h- ¢y = ¢o}, then
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G - ¢p = G/H. The asymptotics of the Higgs field define a map from the two-sphere to G/H
taking the basepoint to ¢g. In other words it defines an element in the second homotopy group

T2 (G/H, Qf)o)

Because G is connected, this class is gauge-invariant, as the next exercise asks you to show.
This shows that the homotopy class is physical.

Exercise 6.10 (Gauge invariance of the homotopy class)
Prove that gauge related Higgs field configurations define asymptotics which are homotopic.

(Hint: Use the fact that G is connected to write down an explicit homotopy between the
two configurations.)

As shown in the previous section, m (G/H, ¢y) is an abelian group, and because G/H is
connected it does not depend (up to isomorphism) on ¢y. Because of this fact we will drop the
reference to the basepoint when unnecessary. We will now prove that mo(G/H) is isomorphic to
the subgroup of m1(H) given by those homotopy classes of loops in H which are null-homotopic
in G. From what was said in the previous section, you will immediately recognise this statement
as part of the exact homotopy sequence associated to the fibration H — G — G/H. But rather
than appealing to such heavy machinery, we will prove most of this statement here using more
pedestrian methods.

We first associate a loop in H with each ®. Let ¥ *denote an open cover for the asymptotic
two-sphere S2; more concretely, we take their union to be S2, and their intersection to be a
small band around the equator. Since YFare homeomorphic to disks (hence contractible), we
can find local gauge transformations g, : ¥* — (G such that

d(z) = ge(x) - o for z € BF

Then on the intersection ¥+ N X7, we have

whence g, (z)"1g_(z) - ¢g = ¢o, whence g, (x)"1g_(x) defines an element of H. Restricting

to the equator, we have a continuous map x — h(x) = g4 (z) 'g_(z) € H; that is, a loop in
H. Because g+(x) are defined only up to right multiplication by H, we can always arrange
so that h(z) is the identity for some z in the equator. This way h defines an element in
m(H,1). Furthermore, this loop is trivial in G. Indeed, since G is path-connected, there exist
paths t — g+ (¢, z) from the identity to g+ (z). Defining h(t,z) = g, (t,2) 'g_(t,z) provides a
homotopy in G from the identity to the loop h(z).

Alternatively we can understand this in a more explicit way. A map ® : S — G/H can
be thought of as a loop of loops: In the above picture, there is a family parametrised by the
interval s € [0, 1] of loops based at ¢ and each loop in the family is in turn parametrised by
the interval ¢ € [0, 1], with the condition that the initial and final loops are trivial. Therefore
we can redraw Figure 6.2 as a map from the square to G/H where the edges are mapped to ¢y:
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Figure 6.2: A map S? — G/H as a loop of loops.
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where the three horizontal lines are precisely the three loops depicted above.

Consider now a fixed loop, that is, a fixed value of s. Because D;® = 0 on S?00, we can
solve for ®.

Exercise 6.11 (Solving for ®)
Prove that for a fixed s, ®(s,t) given by

O(s,t) = Pexp (e /t dt'W (s, t") a@jﬁ) - o (6.3)
0

is a solution of D;® with the boundary conditions ®(s,0) = ¢¢. Here s,¢ are coordinates
for S2 and x(s,t) are the coordinates in R®. Similarly W, (s, t) is short for W;(z(s,t)).

Let g(s,t) € G be the group element defined by ®(s,t) = g(s,t) - ¢ in (6.3). From its
definition it follows that g(s,0) = 1 and since % = 0 at s = 0 and s = 1, it follows that
g(0,t) = g(1,t) = 1. How about g(s,1)? Because ®(s,1) = ¢o,9(s,1) - ¢9 = ¢¢, whence
g(s,1) = h(s) is in H. Since h(0) = h(1) = 1, as s varies, h(s) defines a loop in H:

h(s) = Pexp (e /O W (5. 1) %f) (6.4)

Moreover, this loop in H is trivial in G, the homotopy being given by g(s,t) itself, as the
following figure shows:
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This approach has the added benefit that it is very easy to see that the map my(G/H) —
71 (H) sending the class of ®(s, t) to the class of h(s) is a group homomorphism. Indeed rotating
the squares, we have the composition:

hils) (h=R')(s)

I'(s)
1] gls.t) (1 * 1| gty 2 = 1| g4 ‘ g |t
1 t 1

from where we see that if ® — h and & — A/, then ® x &’ — hx h'. In summary we have a
map mo(G/H) — m(H), sending ®(s,t) to h(s), which is a homomorphism of groups. Notice
that both groups are abelian by Exercise 6.7 and equation (6.2). Also, because any loop in
H can be thought of as a loop in GG, we have a natural map 7 (H) — m(G), which is also a
homomorphism of abelian groups. We can thus compose these two maps, and what we have
shown is that the composition:

mo(G/H) = m(H) = m(G)  is zero. (6.5)

Conversely it follows readily from what we said above that any loop in H which is trivial in
G of necessity comes from a map ¢ in mo(G/H). Indeed, if h(s) is a loop in H which is null-
homotopic in G, let g(s,t) denote the homotopy in G. We can then define ®’(s,t) = g(s,t) - ¢o.
It is not hard to convince oneself that this ®'(s,t) gives rise to a loop in H which is homotopic
to the one from which we obtained it.

In other words, we have proven that the above sequence (6.5) is exact at m (H), since the
kernel of the arrow leaving 7 (H) coincides with the image
of the arrow entering 7 (H). We are still not done, though: for we still have to show that the
map mo(G/H) — m (H) is one-to-one; that is, that if the loop h(s) in H defined by ®(s,1)
is null-homotopic in H, then the map ®(s,¢) was already null-homotopic in G/H. Indeed,
suppose that there exists a homotopy in H interpolating between h(s) and the constant loop
based at the identity; that is, that there exists a map h(s,?):
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1

h(s)| h(s,t) |1

1

Then we can compose this with g(s,t) as follows:

1 1
L g(s,t) |MshehsH pepn |12 =

1 1

=

s, 1)

Now define ®(s,t) = §(s,t) - ¢o. Because h(s,t) € H, this map is homotopic to ®(s,t). In
fact, acting on ¢y with the above maps we find:

an

r'r’ i = [ & dy o = iy iy

@n 2]

But now notice that g(s,t) defines an element in mo(G). It is now that we must invoke the
result of E. Cartan mentioned in the previous section, that
7o(G) = 0] This means that there exists a homotopy H(s,t,u) interpolating continuously
between g(s,t) and 1. Acting on ¢q, we see that H(s,t,u) - ¢ provides the desired homotopy
between ®(s,t) and the constant map ¢p.

In summary we have proven that

2(G/H) = ker (my (H) — m(Q)) (6.6)

or equivalently the exactness of the sequence:

0— TQ(G/H) — 7T1(H) — Wl(G)

In particular, if G is simply-connected, as is often the case, then every loop in G is null-
homotopic, and we find that m(G/H) = m (H).

We can illustrate this theorem with a simple example. Suppose that G = SU(2) and H =
U(1), then we have that SU(2)/U(1) ~ S? and U(1) ~ S', and indeed 7 (S?) = m; (S') = Z.
As an abelian group, Z is freely generated by 1, hence it suffices to determine where 1 gets sent
to under the map. In the above case the map m(SU(2)/U(1)) — m(U(1)) sends the generator
to the generator since the two groups are isomorphic, SU(2) being simply-connected. On the
other hand now consider G = SO(3) and H = SO(2). Again we have that SO(3)/SO(2) ~ 52
and SO(2) ~ S', hence as abstract abelian groups m(SO(3)/SO(2)) and 71(SO(2)) are both
isomorphic to Z, but the theorem says more. It says that the generator of m(SO(3)/S0O(2))
cannot be sent to the generator of m(SO(2)), since the image of m(SO(3)/S0O(2)) is not all
of m(SO(2)) but only the kernel of the map 7 (SO(2)) = Z — Zy = m(SO(3)). This map is
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simply reduction modulo 2 and its kernel consists of the even integers, that is, the subgroup
generated by 2. Hence the generator of my(S0O(3)/S0O(2)) must get sent to twice the generator
of m1(SO(2)). This can also be understood more pictorially from the discussion surrounding
Figure 6.1 and from Exercise 6.6, and it is a good exercise to do so.

Adding topological charges

We now briefly discuss to what extent we can add the topological charges of distant monopoles.
It is physically intuitive, despite the fact that the equations describing monopoles are nonlinear,
that one should be able to patch distant monopoles together to form a multi-monopole solution.
It also seems physically intuitive that the charge of this monopole solution should be given
purely in terms of the charges of the constituents and not depend on the details on how the
solutions were patched together. We will now see, however that this is not quite right. We
will see that when the unbroken gauge group H is disconnected there is an ambiguity in the
addition of the monopole charges.

Figure 6.3: monopole.

Consider first a monopole configuration. For convenience we will draw monopole configurations
in such a way that the asymptotic sphere at spatial infinity is brought forth to a finite distance
from the origin. Physically, we are assuming that the fields reach their asymptotic values to a
good approximation in a finite distance. More formally, we are since many physical quantities
(e.g., the monopole charge) will turn out to be conformally invariant. The Higgs configuration
is gauge related to one which is constant almost everywhere on the asymptotic sphere. This
is the so-called unitary gauge. More precisely, the unitary gauge is one where the Higgs field
is constant throughout the sphere. It follows that the unitary gauge is singular whenever the
Higgs configuration has nontrivial topological charge, since we have seen that regular gauge
transformations are homotopies. For our purposes it will be sufficient to consider gauges in
which the Higgs is constant almost everywhere on the sphere. Such configurations are depicted
in Figure 6.3, where the Higgs is constant everywhere but in the shaded region at the south
pole.

Now suppose that we have two monopoles. They are assumed to be so separated that their
asymptotic spheres do not intersect. In other words in the space on and outside their two
asymptotic spheres, the fields have already attained their asymptotic values. It is as if the
monopoles were non-intersecting bubbles in the Higgs vacuum.

*1 There is to my knowledge no "simple" proof of this fact, but the interested reader is encouraged to go
through the one in the book of Brécker and tom Dieck BtD85.
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We can make a 2-monopole solution by patching together two monopoles in the following
way. Let us denote by ®; and ®, the Higgs fields for each of the monopoles. It is of course
necessary that the image of the Higgs fields lie in the same G-orbit of the manifold of vacua. In a
sense different G-orbits are like different superselection sectors. We start by gauge transforming
the Higgs fields in such a way that they are equal to ¢y almost everywhere on their asymptotic
spheres. We can further orient the monopoles in such a way that the regions in which ®; and
®, are allowed to fluctuate do not intersect. We can do this independently for each monopole
because we can always perform gauge transformations which are "compactly supported" in the
sense that they are the identity far away from the centre of the monopole. After these
gauge transformations, we have a configuration where on and outside the asymptotic spheres
(except for the shaded regions in Figure 6.4) the Higgs field is constant and equal to ¢y. In
particular we have continuity in the Higgs field along the dotted line in Figure 6.4.

Figure 6.4: Patching two monopoles.

It is clear that the resulting field configuration is continuous, but is this procedure unam-
biguous? Suppose that we had used a different set of gauge transformations in order to make
®; and @, equal almost everywhere asymptotically. Once the Higgs are set to ¢g we are still
allowed to make an gauge transformation in the stability subgroup H. Would the resulting
two-monopole configuration be homotopic (i.e, gauge-equivalent) to the one resulting from our
first attempt at patching? Clearly if H is connected, then we can always make a homotopy so
that any discontinuity in the H-gauge transformation can be undone. But how about if H is
disconnected? In this case there is a potential ambiguity in the patching prescription.

Another way to understand this is as follows. The question boils down to whether
7o (G/H, ¢1) and 7o (G/H, ¢2) can be composed meaningfully. Because G is path-connected,
we know that G/H is path-connected, hence mo (G/H, ¢1) = 7wy (G/H,¢1). But remember
that this isomorphism depends on the path used to connect ¢; and ¢,. If all such paths were
homotopicthat is, if G/H were simply-connected - then all such isomorphisms would be one
and the same and we could unambiguously compose elements in m (G/H,¢;) and
7o (G/H, ¢3). In other words, if G/H were simply-connected, then we could add without
ambiguity the topological charges of each of the monopoles constituting a given two-monopole
solution to derive its charge. It turns out, thanks to Theorem 16.11 in [Stebl], that it is
enough to check that H be connected. If H is connected, the theorem states, that the
isomorphism m, (G/H, ¢1) = m (G/H, ¢2) is independent of the path used to go between ¢,
and ¢o. If H is not connected, however, there is a potential ambiguity. We can patch
separated monopoles together, but the topological charge of the resulting two-monopole
configuration will not be given simply in terms of the topological charges of its constituents.
We need more information: namely the details on how the solutions were put together.
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12.2 6.2 The Dirac quantisation condition

In this section we start the analysis of the generalised Dirac quantisation condition obeyed
by these monopole solutions. The results in this section are based on the seminal paper of
Goddard, Nuyts and Olive GNOT7.

We start by considering a monopole in the unitary gauge, where the Higgs field ® is constant
and equal to ¢y, say, almost everywhere on the asymptotic sphere. Looking back at Figure 6.3,
we have & = ¢, everywhere on the sphere but on the shaded region around the south pole.
Because D;® = 0 everywhere on the sphere, on the part where ® is constant, this condition
becomes W;-® = 0, hence W; takes values in the Lie algebra § of the stability subgroup H C G,
and so hence so does the path-ordered exponential in equation (6.3).

We will now assume that the field strength G;; has the following asymptotic form:

* Q(x

where the magnetic charge Q(x) is Lie algebra valued, and hence takes values in h almost
everywhere on S2 . Tt may seem surprising at first that the magnetic charge is not constant; but
in the presence of a non-abelian gauge symmetry, constancy is not a gauge-invariant statement.
The correct nonabelian generalisation of constancy is covariantly constant; and, as the next
exercise asks you to show, this is indeed the case.

Exercise 6.12 (The magnetic charge is covariantly constant)

Prove that D;Q(x) = 0 on the sphere.

(Hint: Analyse the Bianchi identity and the equations of motion on the asymptotic sphere
in the Ansatz (6.7) and show that

Bianchi identity = 2*DQ(z) =0

equation of motion = €;;,2"D;Q(z) = 0

Deduce that these two equations together imply that DpQ = 0.)

The quantisation condition will come from demanding that the map h(s) defined in (6.4)
does indeed trace a loop in H, so that h(1) = h(0). To make this condition into something
amenable to computation we will derive another expression for A(1) in the unitary gauge. This
will bring to play a non-abelian version of Stoke’s theorem.

Let us define the group element g(s,t) by ®(s,t) = g(s,t) - ¢o in (6.3). Because D;® = 0, it
follows that D;g(s,t) = 0, where the covariant derivative is now in the adjoint representation.
Define the covariant derivative along
the curves of constant s, by D; = %Di, and the covariant derivative along the curves of constant

t, by Dy = %—’fDi. The next exercise asks you to prove the non-abelian Stoke’s theorem.

Exercise 6.13 (The non-abelian Stoke’s theorem)

The point of this exercise is to prove the following formula.

! oz’ O’
h(s) o= e/o dtg(s,t)” " Gijg(s,t) 5 09 (6.8)

We proceed in steps:

Use the fact that D,®(s,t) = 0 implies D,g(s,t) = 0, provided the curve s = constant lies
in the region where ®(s,t) = ¢ is constant, and prove that this is equivalent to D; o g(s,t) =
g(s,t) o 0, as operators.

Show that
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d; (9(s,1) " Dag(s, 1)) = g(s,1)"* [Dy, Dy] g(s, 1)
8I ox?

— = (s 1) Gy, )

Finally integrate the above expression over ¢ € [0,1] and wuse the fact that
g(s,t) ' Dsg(s,t)],_, = 0 because g(s,0) = 1 and z'(s,0) is constant for all s, and that
9(s,t) " Dyg(s,1)|,_g = h(s) " 2.

ds
With the Ansatz (6.7) for G;; we now have that

_ 1 ak _
9(3>t) lGijg(Sat) = Eﬁijkwg(sat) 1Q($)9(37t)

But now notice that because Q(z) is covariantly constant,

g(s, )7 Q(x(s,1))g(s,1) = Q(z(0,0)) =Q € h

In other words,

ds 4w 7 ), Tl |3 ot Os
which can be trivially solved for h(s) to yield:

b Qi 9
h(s) = exp [——Q/ ds/ dteijkT%a—f} h(0)

and in particular

e ! ! a® Ox' Ox
h(1) = exp {_EQ/O ds/o dteijkwga} h(0) (6.9)

where exp : h — H is the exponential map. Alternatively, if you are more familiar with
matrix groups, you can embed H inside a matrix group (every Lie group has a faithful finite-
dimensional matrix representation) and then the above differential equation for the matrix h(s)
is solved by the above expression, but where exp of a matrix is now defined by its power series.

Let us first compute the above integral. Notice that because the integrand is invariant under
rescalings of z we can evaluate it on the unit sphere in R?; that is, we take |z| = 1. We then
rewrite it in a more invariant looking form. To this end, it suffices to notice that the integrand
is the pull back via the embedding S* — R?, (s,t) — 2'(s,t) of the form w = e da’ A da’,
whose exterior derivative dw = %eijkdxi A dxz? A dx® is precisely 3 times the volume form in R3
relative to the standard euclidean metric. Therefore using Stoke’s theorem and understanding
the unit sphere in R? as the boundary of the unit ball S? = 0B, we have that

/ w:/ dw:3vol(BS) =47
B3 B3

We can then rewrite equation (6.9) as follows

h(1) = exp[—eQ] - h(0)

whence the the Dirac quantisation condition A(1) = h(0), becomes

expeQ=1€ H (6.10)

Before undertaking a general analysis of this equation, let us make sure that it reduces to the
familiar condition (1.6) for G = SO(3) and a nonzero Higgs field in the adjoint representation,

261



12.3 6.3 Some facts about compact Lie groups and Lie algebras

as was the case in Chapter 1. The adjoint representation of SO(3) is three-dimensional. Choose
the Higgs field to point in the z-direction. The stability subgroup if the subgroup of rotations
about the z-axis. It is the SO(2) subgroup consisting of matrices of the form

cosf sinf 0
—sinf cos0 0
0 0 1

where 6 runs from 0 to 2. The magnetic charge Q is given by:

010

Q=g|-100
001

where ¢ is what appears in (1.5). With these definitions, we see that the Dirac quantisation
condition (6.10) becomes

010 cos(eg) sin(eg) 0
expeg | =100 | = [ —sin(eg) cos(eg) 0 | =1
0 01 0 0 1

whence eg € 277 in complete agreement with (1.6). We are clearly on the right track. In
order to analyse the Dirac quantisation condition properly we will need quite a bit of technology
concerning compact Lie groups. This is the purpose of the following section. Readers who
already know this material are encouraged to skim through the section for notation.

12.3 6.3 Some facts about compact Lie groups and Lie algebras

In this section we collect without proof those results from the theory of compact Lie groups
that are relevant for the analysis of the Dirac quantisation condition. There are many fine
books on the subject. A quick and efficient introduction to the main results can be found in
the second chapter of Pressley and Segal’s book on loop groups [PS86]. A fuller treatment of
the parts we will need can be can be found in the book by Adams [Ada69] and also in the more
comprehensive book by Brocker and tom Dieck BtD85|. For the results on Lie algebras we have
followed the book by Humphreys Hum?72.

12.3.1 6.3.1 Compact Lie groups

Suppose that G is a compact connected Lie group. Any connected abelian subgroup is clearly
a torus. Let T be a fixed maximal connected abelian subgroup of G; that is, a maximal
torus. Maximal tori obviously exist because any one-parameter subgroup is a connected abelian
subgroup. One of the key theorems in the structure of compact Lie groups is the fact that all
maximal tori are conjugate in G. This implies, in particular, that the dimension of all maximal
tori are the same: it is an invariant of G known as the rank of G. Another way to rephrase this
theorem is that any element in G is conjugate
to an element in 7', or simply that every group element in G lies in some maximal torus. Generic
elements will lie in just one maximal torus: these are called regular elements, whereas there
exist also singular elements which lie in more than one.

The prototypical compact connected Lie group is U(n) and many of the results in the theory
of compact Lie groups, when restricted to U(n), reduce to well-known facts. For instance, a
maximal torus in U(n) can be taken to be the set of diagonal matrices; hence the rank of U(n)
is n, and the rank for the SU(n) subgroup is n — 1. The theorem about maximal tori being
conjugate, is simply the fact that any set of commuting unitary matrices can be simultaneously
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diagonalised by a unitary transformation. The regular elements are those matrices which have
distinct eigenvalues.

Let g and t denote the Lie algebras of G and T', respectively. tis a maximal toral subalgebra.
A lot can be learned about G by studying the action of 7" on g. Because T is abelian, any
finite-dimensional complex representation is completely reducible into one-dimensional repre-
sentations. But g is a real representation, so we complexify it first: define gc = g ® C, and
extend the action of G (and hence the one of T') complex-linearly. We can now decompose gc
as representations of T as follows:

bomte@ (@go)
where tc = t ® C is the subspace on which T acts trivially, and g, is the subspace of g¢
defined as follows:

(X)

VE go S expX -v=eNy

where X € t and o : t — R is a real linear function. The « ’s appearing in the above
decomposition are known as the (infinitesimal) roots of G. Notice that if « is a root, so is —«
since if v € g, its complex conjugate v € g_,.

The complexified Lie algebra of U(n) is the Lie algebra of all n x n complex matrices. The
roots are given by a;; where 1 <i,7 < n,7 # j, and the root subspace corresponding to o;; is
spanned by the matrices E;; with a 1 in the (ij) entry and zeroes everywhere else. Acting on
the diagonal matrix X = diag (z1,z2,...,2,) € t,a4(X) = z; — z;.

Let us think of U(1) as the group of complex numbers of unit norm. A homomorphism
X : T — U(1) is called a character of T. Characters can be multiplied pointwise and indeed
form a group called the character group of 7. Characters are uniquely determined by their
derivatives at the identity. In other words, if y is a character and exp X belongs to T, then

x(exp X) = ™) (6.11)

where w € t* is an infinitesimal character or a weight. The set of infinitesimal characters
define a lattice in t* called the weight lattice of G and denoted A, (G). The roots are particular
examples of weights, and taking integer linear combinations of the roots, we obtain a sublattice
of the weight lattice known as the root lattice and denoted A, (G). The root lattice only depends
on the Lie algebra, whence Lie groups sharing the same Lie algebra have the same root lattice.
On the other hand, the weight lattice identifies the Lie group. If G is semisimple, then both the
weight and root lattices span t*. It means that the quotient A, (G)/A,(G) is a finite abelian
group. We will see later that it is the fundamental group of the dual group of G.

We can illustrate this with SU(2) and SO(3). The weights of SU(2) form a one-dimensional
integral lattice isomorphic to Z, shown below. The weight m € Z corresponds to twice the
"magnetic quantum number," since for SU(2) the magnetic quantum number, like the spin,
can be half-integral. In the case of SO(3) only integral spin representations can occur, hence
its weight lattice (shown below with filled circles) corresponds to the sublattice consisting of
even integers:

In the semisimple case, t* is called the root space of g. On the other hand, if G is not
semisimple, the roots will only span a subspace of t* which is then the root space of its maximal
semisimple subalgebra [g,g] C g. This shows that the Lie algebra of a compact Lie group is
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reductive; that is, the direct product of a semisimple Lie algebra and an abelian algebra-namely,
its centre.

From the definition of the roots of U(n) above we see that they don’t span t*, since they
annihilate the scalar matrices. This is to be expected since the scalar matrices are in the centre
of the Lie algebra u(n) of U(n). The traceless matrices in u(n) span the complement of the
scalars matrices and generate the Lie algebra su(n) of SU(n), which is semisimple (in fact,
simple). The space spanned by the roots is the root space of su(n).

The root subspaces g, are one-dimensional. Choose vectors e, € g, such that e_, = é,.
Then e,, e_, and their bracket h, = —i [eq, e_4] € t define an embedding of si(2,C) in gc:

[ha, €] = 2i€q  [ha,e o] = —2ie_, and e, e o] =ih,

Explicitly the embedding is given by e — e, f — e_, and h +— h,, where

01 00 i 0
e:(00> fz(—l()) and hz(O—i)

It therefore follows that exp (2wh,) = 1. It also follows from the representation theory of
sl(2,C) that for any root 5 € t*, 5 (h,) € Z and that, in particular, «(h,) = 2. The h,, are
known as coroots and their integer linear combinations span a lattice in t called the coroot
lattice and denoted AY(G). If A is a lattice, then the dual lattice is the set of linear functions
A — 7Z and is denoted A*. This relation is reflexive because A** = A. In this notation we now
see that the coroot lattice is a sublattice of the dual root lattice: AY(G) C A,.(G)*. We will see
later that the two lattices will agree when G is simply-connected.

Despite the fact that the coroot lattice lives naturally in t, one often sees in the literature
where the coroot lattice is a lattice in t*, just like the root and weight lattices. In my opinion
this causes more confusion than it is worth, but for the sake of comparison let us see how this
goes. In order to identify t and t* we need a new piece of information: namely, a metric. We
saw in Exercise 6.1 that the Lie algebra of every compact Lie group has an invariant metric,
so we will fix one such G-invariant metric (—, —) on g. Its restriction to 7" will also be denoted
(—, —). Because this metric is invariant and non-degenerate, we can use it to identify t and t*.
In particular there is an element o € t* such that for all X € t,a¥(X) = (hqa, X). In terms
of the root «, we have that a¥ = 2a//(cr, ). We call " the inverse root corresponding to the
root a. Taking integer linear combinations of the coroots, we span the inverse root lattice of
G. The weight, root and inverse root lattices are all subsets of t*, but notice that whereas the
weight and root lattices are intrinsic, the inverse root lattice depends on the chosen metric.
In particular the inverse root lattice cannot be meaningfully compared with either the root or
weight lattices, since we can scale it at will by rescaling the metric. As we do not wish to
advocate its use, we will not give it a symbol, but the reader should beware that sometimes
the symbol we use for the coroot lattice is reserved for the inverse root lattice, relative to some
"standard" metric.

Using the metric on t* one can measure lengths of roots, and it can be proven that if g is
simple, then there are at most two lengths of roots, called long and short roots. Simple Lie
algebras for which all roots are the same length are called simply-laced. For these simple Lie
algebras, we can choose the metric so that («, «) = 2 for all roots. Under this metric, the roots
and the inverse roots agree.

12.3.2 6.3.2 The Weyl group

Because the maximal torus T is abelian, conjugation by elements of T is trivial. Moreover
generic elements of G will conjugate T to another maximal
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torus. However there are some elements of G which conjugate T" back to T'. The largest such
subgroup of G is called the normaliser of 7" and is denoted N (7T'); that is,

N(T)={heG|hTh™ ' =T}

It follows from this definition that N(T') is indeed a subgroup of G and that 7" is contained
in N(T) as a normal subgroup. Because 7' C N(T') is a normal subgroup, it follows that
N(T)/T is a group. This group is the Weyl group of G relative to the maximal torus 7'. It
is the group of symmetries of the maximal torus. Although it is defined relative to T, the
Weyl group N (T") /T’ corresponding to any other maximal torus 7" is conjugate (and hence
isomorphic) to N(7")/T. Hence it makes sense to talk about the Weyl group W of G, up to
isomorphism.

The Weyl group W is a finite group, generated by reflections corresponding to the roots.
More precisely, if « is a root, then consider the group element

exp g (e + e_q) € N(T)

The adjoint action of this group element on t corresponds to a reflection p, on the reflection
hyperplane H, C t defined by H, = {X € t | a(X) = 0}. Indeed, one computes that for all
X et

Pa(X) =X — a(X)h,

It can be proven that the p, generate W.

For example, the Weyl group of U(n) is &,,, the symmetric group in n objects, and it acts
by permuting the entries of the diagonal matrices in t. This is also the Weyl group of SU(n)
since the roots of U(n) are the roots of SU(n).

Elements of t not belonging to any hyperplane H, are called regular; whereas those who
are not regular are called singular. Regular elements fall into connected components called
Weyl chambers. The Weyl group permutes the Weyl chambers and no two elements in the
same Weyl chamber are Weylrelated. Fix a Weyl chamber C' and call it positive. The roots
can then be split into two sets, positive and negative roots, according to whether they are
positive or negative on C-they cannot be zero, because C' does not intersect any hyperplane
H,.. A positive root is called simple if H, is a wall of C'. If G is a simple group of rank ¢,
then there are ¢ simple roots. Every positive root is a linear combination of the simple roots
with nonnegative integer coefficients, hence the simple roots generate the root lattice, and their
associated reflections generate the Weyl group. The positive Weyl chamber is sometimes called
the fundamental Weyl chamber. Its closure
(that is, including the walls) is a fundamental domain for the action of the Weyl group on
t: every point in t is Weyl-related to a unique point in the closure of the fundamental Weyl
chamber.

In the case of U(n), a choice of fundamental Weyl chamber consists in choosing diagonal
matrices whose entries are ordered in a particular way. For instance, we can choose a descending
order, in which case the positive roots of U(n) are the «;; with ¢ < j. The simple roots are
then clearly the o ;1.

Again using the metric on t there is a dual picture of this construction in t*, where the
hyperplanes H, now are defined as the hyperplanes perpendicular to the roots. This picture is
independent of the metric since the notion of perpendicularity does not depend on the choice of
G-invariant metric on t. The Weyl group acts on t* and it is once again generated by reflections
associated to every root. If @ and [ are roots, we have

pa(B) =P —(B,0")a=p— (8 a)a’ (6.12)
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where a¥ = 2a/(a, @) is the inverse root. Once again the complement of the hyperplanes is
divided into connected components called the dual Weyl chambers and one any one of them can
be chosen to be the positive or fundamental dual Weyl chamber. The walls of the fundamental
dual Weyl chamber are the hyperplanes perpendicular to the simple roots. Once again the
closure of the fundamental dual Weyl chamber is a fundamental domain for the action of the
Weyl group in t*.

Those weights of G which lie in the closure of the fundamental dual Weyl chamber are
called dominant. We write this set A} (G). It is a semigroup of A, (W); that is, if w; and ws
are dominant, so is their sum w; + wy, but there are no inverses. Every irreducible represen-
tation of G has a unique highest weight which is dominant. Therefore AT (V) is in one-to-one
correspondence with the set of finite-dimensional irreducible representations of G.

12.3.3 6.3.3 Root systems and simple Lie algebras

We have seen that the Lie algebra of a compact Lie group is reductive. Because semisimple
Lie algebras split in turn into their simple factors, we see that the Lie algebra of a compact
Lie group is a direct sum of abelian and simple Lie algebras. This does not mean that any
compact Lie group is the direct product of simple Lie groups and a torus, but it turns out that
it is covered finitely by a compact Lie group of this type. Hence to a large extent it is enough
to study simple Lie groups and abelian Lie groups separately and only at the end put the
structures together. Let us therefore assume that GG is a simple Lie group. It is a remarkable
fact that compact simple Lie groups are essentially classified up to "finite ambiguity" by their
root systems. We will begin to describe this process now.

First of all we need to axiomatise the notion of a root system. A subset ® of a euclidean
space E is a root system if the following conditions are obeyed:

® is finite, spans F and does not contain the origin;

If « € &, then —a € ® and no other multiples of o are in ®;

The reflections p, (see (6.12)) leave ® invariant; and

For all a, B € @, (", B) € Z, where (—, —) is the metric in E.

This last condition is extremely restrictive. It essentially says that only very few angles can
occur between roots. Indeed, notice that (o, 5) = 2|5| /|| cos ¥, where ¢ is the angle between
a and 3. Now, (aV, ) (8Y,a) = 4cos? ¥ is a non-negative integer. Taking into account that
(a¥,B) and (5Y,«) have the same sign we are left with the possibilities listed in Table 6.1,
where we have chosen («, ) < (8, 3) for definiteness and have omitted the trivial case o = 4.

(a8 [(@.B) [ 9 | (8,8)/(a0a) |
0 0 /2 | undetermined
1| 1| 73 1
1| 1 | 2q/3 1
1 2 | a4 2
1| 2 | 3n/4 2
1 3 | /6 3
1| -3 |sn/6 3

Table 6.1: Allowed angles between roots in a root system.

If a root system ® admits a split & = ®; U &, into disjoint sets so that every element of
®, is orthogonal to every element of @5, we say that it is reducible; otherwise it is simple. The
simple root systems have been classified. There are four infinite families: Ay, for £ > 1, B, and
Cy for £ > 2, and D, for £ > 3; and five exceptional root systems Gy, Fy, Fg, E7 and Eg. There
are two "accidental" isomorphisms in the above list: By = C5 and Az = Ds. In all cases, the
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subscript indicates the rank. The simply-laced root systems are those in the A, D and E series.
They are listed in Table 6.2 in a graphical notation that will be explained shortly.

Notice that the above definition of a root system is symmetrical with respect with the
interchange a <> «V of a root and the inverse root. In particular this shows that the set
®V C E consisting of the dual roots o is again a root system, and that it is simple if ® is. In
this case ®¥ must be again one of the simple root systems listed above. From the definition
of ¥, it follows that for simply-laced root systems (where all roots have the same length) we
can choose the metric so that ¥ = «, hence simply laced root systems are self-dual. More
generally, since (o, a") = 4/(a, «), long and short roots are interchanged. A quick look at
Table 6.2 reveals that Gy and Fy are also self-dual, whereas BY = C, and viceversa, since
OV = O,

Let oy, o, ..., ap be a set of simple roots. Let oy = 2«;/ («v;, ;). Then the inner product
a;; = (ai, oz]V) is an integer. The set {a;;} of all such integers are called the Cartan integers and
the matrix (a;;) is known as the Cartan matrix. They are independent of the invariant metric
chosen for t. If two complex simple Lie algebras have the same Cartan matrix, then they are
isomorphic. The Cartan matrices of the simple Lie algebras are listed in Hum72, for example.

There is also a graphical notation for root systems. Let ® be a root system of rank ¢, and
let ay, a, ...,y be a set of simple roots. The Coxeter graph of ® is the graph consisting of ¢
vertices and such that the ¢ th vertex is joined to the j th vertex by (ai, &]V) (af, @) lines. From
Table 6.1, we know that this number can be 0,1,2 or 3. The Coxeter graph can be shown to
determine the Weyl group, but does not determine the root system because when two vertices
are connected by more than one line, it fails to tell us which of the two vertices corresponds to
the shorter root. In other words, the Coxeter graph cannot tell between ® and ®V. In order
to distinguish them it is necessary to decorate the diagram further: we colour those vertices
which corresponds to the short roots, if any are present. The resulting diagram is called the
Dynkin diagram. The Dynkin diagrams corresponding to the simple root systems are listed
in Table 6.2, the vertex labelled ¢ corresponds to «;, and the filled vertices corresponds to the
short roots.

Reconstructing the group

From the above discussion about compact Lie groups it follows that the root system associated
to a compact simple Lie group is simple. Hence it has to be one of the roots systems listed
above. This prompts the question of the reconstruction of the group from the root system. It
turns out that this is possible up to a finite ambiguity. In a nutshell, given the root system of a
compact group, one can obtain a finite covering group of the group in question. In this section
we will consider only simple Lie groups.
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| @ | Dynkin diagram

Ay &—8 &4

> g 2 £ 4
By (o TR (S o—e
(—1 1 s L =2 -1 L,

g e o o o —0

()
5
D,| &—4...% =
C 2

ELi 2 1 5 L3
E- A . 1 p: A \5
Eg A A 2 P g
jﬂ : \. 2 a 1
(r 2 .=-(£)

Table 6.2: Dynkin diagrams of the simple root systems.

Given an simple root system & of rank ¢, one can construct a unique simple complex Lie
algebra. Associated with each simple root «; there exist three generators e; = e,,, fi = e_,, and
hi = hq,. These 3¢ elements, subject to the so-called Serre relations (see Hum72, for example)
generate a complex simple Lie algebra gc¢, where t¢ is spanned by the h; and whose root system
relative to this maximal torus is ®. As a linear space, the Lie algebra will be generated by
¢ elements h; spanning the Cartan subalgebra and generators e, for each root a, whose Lie
brackets can be written down as follows:

Nagea+s 1f o+ B is a root
leases] =} ha if 8 = —a; and

0 otherwise

where h, belongs to the Cartan subalgebra. Furthermore, for every h in the Cartan subal-
gebra, [h,e,] = a(h)e,. It is possible to choose a basis in which the n,z are all nonzero integers.
These integers obey n.s = —n_, .

Every complex simple Lie algebra has in general several real forms; that is, real subalgebras.
Among these real forms there is a unique compact real form; that is, one for which the Killing
form is negative-definite. It is easy to write this form down explicitly. It is generated over the
reals by the ¢h,, and the combinations

% (ea +€_o) and % (6o —€_a)

It is easy to check that the real linear combinations of these generators close under the Lie
bracket. It is also easy to compute the Killing form and see that it is indeed negative-definite.

Next, each compact real form g of a simple Lie algebra is the Lie algebra of a unique simply-
connected compact simple Lie group G, whose maximal torus T is obtained by exponentiating
the {ih,}, and whose root system relative to 17" agrees with the one of G. Therefore we have
almost come full circle. I say almost, because we are left with a simply-connected compact
simple Lie group, even though we started with a compact simple Lie group G which was not
assumed to be simply-connected. Therefore we need more information. The information we
need is of course the fundamental group m;(G) of GG, which is a finite subgroup of the centre
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of G. Remarkably, the centre of G can be read off simply from Lie algebraic data. We review
this now.

The centre of G

Let {o;} for i =1,..., ¢ denote the simple roots of G relative to a maximal torus 7. We define
¢ fundamental weights {\;} by the requirement: ()\i, a]V) = 0;;. Alternatively, \; (haj) = 0jj-
In other words, the fundamental weights generate a lattice which is dual to the coroot lattice
AY(G). The lattice generated by the fundamental weights is the weight lattice of the simply-
connected Lie group G : A,(G). This lattice contains the root lattice A,(G) as a sublattice,
and the quotient A, (G)/A,.(G) is a finite abelian group isomorphic to the centre Z(G) of G.
It is sometimes called the fundamental group of the root system, since it is the fundamental
group of the adjoint group, the Lie group whose weight lattice agrees with its root lattice.

Let us now explain why A, (G)/A,(G) is isomorphic to the centre Z(G) of G. First of all,
notice that Z(G) is contained in every maximal torus of G. In fact, Z(G) is the intersection of
all the maximal tori of G.

Exercise

6.14 (The centre is the intersection of all the maximal tori)

Prove that the centre Z(G) is the intersection of all the maximal tori of G.

(Hint: Use that any element can be conjugated to any given maximal torus and the fact
that an element of the centre is invariant under conjugation.)

Fix a maximal torus T of G and let exp : t — T be the restriction of the exponential map to
t. Because T is abelian, the exponential map is a homomorphism of abelian groups. We find it
convenient in what follows to include a factor of 27 in the exponential map. We will introduce
then the reduced exponential map, denoted exp, and defined by expX = exp2miX. Clearly

exp is also a group homomorphism and, in particular, its kernel is a lattice Al(é), called the
integer lattice of G. The reduced exponential map yields an isomorphism 7' 2 t/A I(G), whence
we see that the integer lattice is the lattice of periods of the maximal torus 7. It follows from
(6.11) that & belongs to the integer lattice if and only if for every weight w of G, w(h) € Z. In
other words, the integer lattice and the weight lattice are dual:

Ar(G) = Au(G)

Let Az(G) = exp™'Z(G) denote those elements of t which the reduced exponential map

sends to the centre of G.Az(G) too is a lattice called the central lattice of G, which by definition
contains the integer lattice. Because exp is a group homomorphism, we have that Z(G) is

canonically isomorphic to Az(G)/A;(G). We now claim that the central lattice is the dual of
the root lattice.

Exercise 6.15 (The central and root lattices are dual)

Prove that X € t belongs to the central lattice if and only if for every root a € t*, a(X) € Z.
(Hint: X belongs to the central lattice if and only exp 27i X is central in G, which in turn is
equivalent to the statement that for every root o, exp(2miX)exp (te,) = exp (teq) exp(2miX),
for all ¢. Now use that [ X, e,] = a(X)e,.)
Therefore Z(G) 22 Az(G)/A1(G) = A(G)*/Ay(G)*, which as the next exercise asks you to
show is isomorphic to A, (G)/A(G) as we had claimed.
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Exercise 6.16 (Some facts about lattices)

Let A; D A, be lattices. Prove the following:
Duality reverses inclusions: A7 C A%; Ay /Ay = A5/AY; and if A3 C Ay is a third lattice, then

Ai/As = (A1/A3) [ (Aa/A5)

Since the root lattice is contained in the fundamental weight lattice, we can write «; =
> ; M;;\j, for some integers M;;. Now, taking the inner product with a}/ and using the definition

of the fundamental weights, we find that (ozi, oz;?) = M,;;. In other words, (M;;) is the Cartan
matrix. Hence in order to write the fundamental weights in terms of the roots, it is necessary to
invert the Cartan matrix. If the Cartan matrix has unit determinant then its inverse has integer
entries and the fundamental weights belong to the root lattice. In this case the root lattice and
the fundamental weight lattice agree, and G has no centre. In general, the order of the group
Z(G) is given by the determinant of the Cartan matrix, since this is the only denominator
in which we incur in the process of expressing the fundamental weights in terms of the roots.
In many cases, the order of Z (é) is enough to determine the group uniquely. For example,
the Cartan matrices of GGy, F;, and Eg have unit determinant, the ones of By, C; and E; have
determinant 2, and the one of Fg has determinant 3. Hence the fundamental groups of the roots
systems are respectively 1,7Zs and Zs. In the other cases, the order does not generally determine
the group, and one has to work a little harder: the Cartan matrix of A, has determinant ¢+ 1,
from where it follows that if £+ 1 is prime, then the fundamental group of Ay is Z, 1, since the
only finite abelian group of prime order is the cyclic group. (Proof: Take any element not equal
to the identity. It generates a cyclic subgroup whose order must divide the order of the group.)
In fact, this persists for all ¢, but this requires an explicit computation. Finally the Cartan
matrix of D, has determinant 4, which again does not determine the fundamental group. It
turns out that for ¢ even the fundamental group is Zy X Zs, whereas for ¢ odd it is Z4. A useful

mnemonic in this case is to remember that D3 = As.
An example: A3 = Ds
Let us in fact work out this example to see how to go about these calculations. Let us

consider the root system Az = D3 whose simply-connected compact Lie group is SU(4)
Spin(6). We can read off the Cartan matrix from its Dynkin diagram listed in Table 6.2:

I

2 =10
-1 2 -1
0 -1 2

which has indeed determinant 4. Inverting this matrix we can read off the expression for
the fundamental weights in terms of the roots:

1
)\1 = 1061 + 50&2 + ZOég
)\2 = 5@1 + o + 5@3
1 1 3
)\3 = 1&1 —f- 50[2 + 10[3

We can now compute the factor group A, /A,. Its elements are the cosets 0 + A, A\ +
A, Ao+ A, and A3 + A, which possess the following multiplication table:
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where all entries are understood modulo A,. It follows clearly that this is the cyclic group
ZLy.

Another example: D,

Finally let us work a second example. We pick now one of our favourite root systems: Dy,
whose simply-connected compact Lie group is Spin(8). From Table 6.2 we can read off the
Cartan matrix:

2 =10 0
-1 2 —-1-1
0 -12 0
0 -1 0 2

and inverting it, we can read off the expression of the fundamental weights in terms of the
roots:

)\120414‘0524‘%063—}‘%0{4 A2:a1+2a2+a3+a4
/\3:%Q1+a2+o¢3+%a4 )\4:%a1+a2+%a3+a4

We can now compute the factor group A, /A,.. Because Ay € A,, it has as elements the
cosets of 0, A1, A3 and A\;. The multiplication table for this group can be read off easily:

L [0 [ [ [Ad]
Ol 0| A |A3]| N\
M AL O] A ] A3
/\3 )\3 /\4 0 )\1
M|l A A3 A | O

where all entries are understood modulo A,. It is clear that this group is Zs x Zs. It
has three proper Z, subgroups, each one generated by one of the cosets \; + A, A3 + A, and
As+ A,. The representations with highest weights A;, A3 and A4 are all eight-dimensional. They
correspond to the vector and the two spinor representations Ajof Spin(8). Alternatively, they
correspond to the three inequivalent embeddings Spin(7) C Spin(8). Given any one of these
eight-dimensional representations there exists an Spin(7) subgroup of Spin(8) under which the
representation remains irreducible and can be identified with the unique spinorial representation
of Spin(7). The dihedral group Dj of automorphisms of the Dynkin diagram is the group of
outer automorphisms of Spin(8). It is called the triality group in the physics literature, and
it permutes the three inequivalent Spin(7) subgroups and thus the three eight-dimensional
representations. In terms of the weights, it permutes A1, A3 and \4.

All the connected compact simple Lie groups

It is now time to summarise what we have learned so far in a table. Table 6.3 lists the simple
root systems, their Weyl groups, the associated simple complex Lie algebras, their simply-
connected simple compact Lie groups, and their centres. An eternal thorny issue about the
notation in Table 6.3: the compact Lie group associated to the root system of type C} is called
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in the physics literature USp(2¢) and in the mathematics literature Sp(¢). From here until the
end of this section, all Lie groups are connected, compact and simple unless otherwise explicitly
stated.

We start by associating with every Lie group G a subgroup of the centre of its universal
cover G and viceversa. Representations of G are also representations of G, whence the weight
lattice A, (G) is contained in the weight lattice A, (G). We thus have the following inclusions
of lattices in t*:

A(G) C AW(G) C Ay(G)

Dualising and keeping in mind Exercise 6.16, we have in t the following lattices:

Az(G) 2 Au(G)" 2 A4(G)

where we have used that A;(G) = A,(G)*, and that Az(G) = A, (G)*. Applying the
reduced exponential map exp : t — G to these lattices and remembering that exp is a group
homomorphism when restricted to the maximal torus, we find that exp A, (G)* = T'¢ C Z(G)
is a subgroup of the centre. The subgroup I'¢ is naturally isomorphic to A, (G)*/A;(G), since
the integral lattice is the kernel of the reduced exponential map. Using the fact that

| d | Wor W] | ac | G | zZ2(G) |

Ag Gg_H Sl(ﬁ + 1, C) SU(E + 1) Zg_H

By (Zy)" % &, | so(20+1,C) | Spin(2 +1) Zs

C, (Zy)" % &, sp(2¢,C) USp(20) Z

D, (Z9) ' x &, | so(2¢,C) Spin(20) {Z4s is odd

Ly X Zsol is even

GQ Dﬁ 1

F, 2732 F, Gy F,

Es 2735 Eq Es 1

E; 2103457 E; E; Zs

Eq 21035527 Eq Eq Z,

Table 6.3: Simple root systems, their Weyl groups, their complex Lie algebras, compact Lie
groups and their centres.

A (G) = Ay(G)*, we have

Lo = Au(G)'/Au(G)* = Au(G)/Au(G)

where we have again used Exercise 6.16. Since G is determined by its weight lattice, this
actually tells us that G = G/T¢. Since G is simply-connected, this implies that m (G) = I'.

Conversely, if ' C Z (é) is a subgroup of the centre of G. The preimage of ' via the
reduced exponential map exp : t — G, is a sublattice of the central lattice and contains the
integer lattice:

A1(G) € Ar € A4(G) (6.13)
which upon dualising gives in t* the following series of lattices:
Aw(G) D AL D AL(G) (6.14)

It is not hard to see that A} is the weight lattice of the group G defined by G JT.
In summary, there is a one-to-one correspondence between Lie groups with the same uni-
versal covering group G and subgroups of the centre Z(G); or, equivalently, between Lie groups
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with the same Lie algebra g and lattices A containing the root lattice and contained in the
fundamental weight lattice. Since the centre Z(G) is finite, it has a finite number of subgroups,
and hence there are only a finite number of Lie groups covered by the same simplyconnected

Lie group. This is what we meant earlier by "finite ambiguity."
Minding Table 6.3, we can now list all the connected compact simple Lie groups.

For the root systems Fjg, F; and G2, the centre is trivial, so they are the only groups with that
root system. Similarly, the centres of Fg, E7, By, and Cy are not trivial but have no proper non-
trivial subgroups, hence there are only two groups associated with each of those root systems:
the simply-connected group and the adjoint group: Fg and Eg/Zs, E7 and E;/Zs, Spin(2¢ + 1)
and SO(2¢ + 1) = Spin(2¢ + 1)/Z,, and USp(2¢) and USp(2()/Zs. A similar story holds
for Ay with ¢ 4+ 1 prime: there are only two groups with that root system, SU(¢ + 1) and
SU(l +1)/Zy41. For general ¢, however, the centre of SU (¢ + 1) has subgroups corresponding
to the divisors of ¢ + 1 : Z,, C Zyy if and only if m divides ¢+ 1. So we have a whole hierarchy
of groups SU({ + 1)/Z,, where m runs over the divisors or ¢ + 1, interpolating between the
simply-connected SU (¢ + 1) and the adjoint group SU(¢+ 1)/Z. For the root system Dagyq,
the centre is Z4, which has a single nontrivial proper subgroup isomorphic to Z,. Hence there
are three groups: Spin(4¢+2), SO(4¢+ 2) = Spin(4¢+2)/Zy and Spin(4¢+ 2)/Z,. Finally, the
root systems Doy has centre Zs X Zs which has three proper subgroups isomorphic to Z,. Hence
there are five groups in this family: Spin(4¢), SO(4¢) = Spin(4¢)/Z,, Spin(4¢) /Z, Spin(4L) /24,
and the adjoint group Spin(4¢)/ (Zs x Zs). In the next section we will see that many of these
groups are mapped to each other by a duality transformation.

12.3.4 6.3.4 Some simple examples

We illustrate some of the results above with some simple examples: the simple root systems of
rank 2: AQ, BQ = CQ and GQ.

The simple root system A,

The root system A, is defined by the Cartan matrix

(Aij) = (_21 _21)

Therefore the simple roots are given in terms of the fundamental weights as follows: a; =
2M01 — Ay and ap = —A; + 2)\y. Inverting these relations we see that A\ = %al + %062 and
Ay = %oq + %O@. This clearly shows that the order of the fundamental group of A, is 3, and
hence that A, /A, = Zj. Indeed, notice that this group has as elements the cosets 0 + A, and
A+ A, and
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Figure 6.5: The root system As.
Ao + A, with multiplication table:

I ERENES
00 | M| M
BRI
N | 22| 0 | M

where all entries are to be understood modulo A,. We can choose a euclidean metric on
R? and represent these lattices pictorially. This is done in Figure 6.5. which also shows the
hyperplanes perpendicular to the roots as dashed lines, and the positive dual Weyl chamber
as shaded. The Weyl group is the dihedral group D3 = &3, the symmetries of an equilateral
triangle, and it clearly permutes the dual Weyl chambers. Indeed, in Figure 6.5 all chambers
but the fundamental are labelled with the element of the Weyl with which it is associated. Since
the Weyl group is generated by reflections on the hyperplanes perpendicular to the simple roots,
I have chosen to write the Weyl group elements in this way: the notation p; means the reflection
Pa; and pjj..;, = pip; - - - pr. The filled circles defines the root lattice A, and these together with
the open circle define the weight lattice A,,. The fundamental
weights and simple roots are also shown. A, is the weight lattice of the group SU(3), whereas
A, is the weight lattice of the adjoint group SU(3)/Zs.

The simple root systems By = Cs
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Figure 6.6: The root system Bs.
The root system B, is defined by the Cartan matrix

(Aij) = (_22 _21)

Therefore the simple roots are given in terms of the fundamental weights as follows: o =
2M01 — Ay and ap = —2X\; 4+ 2)y. Inverting these relations we see that \y = a1 + %O{Q and
A2 = a1 + ag. This clearly shows that the order of the fundamental group of Bs is 2, and hence
that A, /A, = Z,. Again, one can see this directly: the cosets 0 + A, and A\; + A, are the
elements of the fundamental group with multiplication table

L [0 [A]
00N
N 0| 0

where all entries are again to be understood modulo A,. We can choose a euclidean metric
on R? and represent these lattices pictorially. This is done in Figure 6.6, which also shows the
hyperplanes perpendicular to the roots as dashed lines, and the positive dual Weyl chamber as
shaded. The Weyl group is isomorphic to the dihedral group D, of symmetries of the square,
and again the Weyl chambers have been decorated with the corresponding element of the Weyl
group. Once again the filled circles define the root lattice A, and these together with the
open circles define the weight lattice A,,. The fundamental weights and simple roots are also
shown. A, is the weight lattice of the group Spin(5) = USp(4), whereas A, is the weight
lattice of the group SO(5). The weight A; is the highest weight of the irreducible spinorial
representation A of Spin(5) obtained as the unique irreducible representation of the Clifford
algebra in five-dimensional euclidean space.

The dual root system C5 has as Cartan matrix the transpose of the Cartan matrix of Bs.
They are of course isomorphic root systems, but the isomorphism interchanges long and short
roots: «a; <> ay. This essentially rotates the root diagram by 7/4, and chooses a different
fundamental dual Weyl chamber.

The simple root system G,

The root system Gy is defined by the Cartan matrix

(Aij) = (_23 _21)

Therefore the simple roots are given in terms of the fundamental weights as follows: a; =
21 — A and ay = —3A; + 2Xy. Inverting these relations we see that A\ = 2a; + as and
Ay = 31 + 2. Hence the root and weight lattices agree. We can choose a euclidean metric
on R? and represent this lattice pictorially. This is done in Figure 6.7, which also shows the
hyperplanes perpendicular to the roots as dashed lines, and the positive dual Weyl chamber as
shaded. The Weyl group is now Dg, the symmetries of the regular hexagon, and it permutes
the Weyl chambers as shown in the figure. Now the open circles define the root/weight lattice
A. The fundamental weights and simple roots are also shown. Notice that the long roots form
a root system of type As, indicative of the fact that SU(3) is a maximal subgroup of Gs.

12.3.5 6.4 The magnetic dual of a compact Lie group

We now start to analyse the Dirac quantisation condition (6.10) in more detail. The punch-line
is that the Dirac quantisation condition says that the
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Figure 6.7: The root system Gs.

magnetic charge (suitably normalised) is a dominant weight of a connected compact Lie
group H"Y, the (magnetic) dual group of H.

First of all notice that it is irrelevant for these purposes that H be connected, since the image
of the exponential map lies in the connected component of the identity. (Proof: If g = exp X,
then g(t) = exp(1 — )X is a path to the identity.) Therefore we will assume from now on that
H is connected. It is also compact since it is a closed subgroup of a compact Lie group. So we
are in the situation that we have just discussed. Because physics is gauge invariant, we have
to identify different charges ) which are gauge related via the unbroken gauge group H. Q
belongs to the Lie algebra h of H and H acts on its Lie algebra via conjugation. One way to fix
this gauge invariance is to to choose a fixed maximal torus 7" in H, with Lie algebra t and use
our gauge freedom to conjugate @ to lie in t. As discussed above, this does not fix the gauge
completely, because there will be elements of H which stabilise T'; in other words, we have to
still take into account the action of the Weyl group. The action of the Weyl group is fixed
by choosing Q in the closure of the fundamental Weyl chamber C, since this is a fundamental
domain for the action of the Weyl group.

Therefore in the Dirac quantisation condition (6.10), we can take eQ to lie in the closure C
of the fundamental Weyl chamber in t. The exponential map in (6.10) is then the exponential
map t — 7', and (6.10) says that eQ/27 belongs to the integer lattice A;(H) of H. We saw
above that Aj(H) = A, (H)*, whence the Dirac quantisation condition becomes:

eQ/2m € Ny(H)*/W 2 A, (H)*NC

where W is the Weyl group. On the other hand, the integer lattice can be thought of as
the weight lattice of a connected compact Lie group HY known as the (magnetic) dual group
of H. As we will see below, this group is a quotient of the simply-connected compact simple
Lie group whose root system is dual to the root system of H. Now, dual root systems share
the same Weyl group. This follows from the fact that the Weyl group is generated by those
reflections p,, in (6.12) corresponding to simple roots. But from (6.12) it follows that p, = pav.
Therefore we can fix the Weyl symmetry by going to the fundamental dual Weyl chamber of
HV. In other words, the Dirac quantisation condition can be rewritten as

eQ/2m € Ny, (HY) /W = AL (HY)

where A (HY) are the dominant weights of HY, which are in one-to-one correspondence
with the finite-dimensional irreducible representations of HY. We now turn to a more detailed
description of the dual group.
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12.3.5 6.4 The magnetic dual of a compact Lie group

6.4.1 Some lattices and dual groups

In our flash review of compact Lie groups, we have already encountered several lattices. We will
now review their interrelations and in particular how they can be used to describe the dual of a
connected compact Lie group. For the purposes of studying the Dirac quantisation condition,
we will take the unbroken gauge group H to be a compact connected Lie group. Such a group
is covered finitely by a compact group H = K x S, where K is a simply-connected compact
Lie group (hence semisimple, and in turn the product of simple factors K, - X Kp) and S
is a torus. S is the connected component of the identity of the centre of FNI . We define the
dual group H"Y of H to be the compact connected Lie group whose weight lattice is dual to the
weight lattice of H. From this it follows that just like H is a finite quotient of H, so will HY
be a finite quotient of HY = KY x --- x f(z\f x SV. It is impractical to treat the general case,
so we will discuss separately the cases of H abelian and H simple. From these ingredients it
should be possible to treat the case of general H should the urge arise. All Lie groups in this
section are compact and connected unless stated otherwise.

H abelian

If H is abelian, then it is a torus. Let b be its Lie algebra. The (reduced) exponential map is
surjective and defines a diffeomorphism H = /A, where A C b is the lattice of periods of H.
As we reviewed above, this lattice is dual to the weight lattice A, (H) C b*. By definition this
is the weight lattice of the dual group HY. Hence we have a diffeomorphism HY = bh* /A, (H).
Notice that hY is identified with b*.

H simple

Let H be a simple Lie group, H its universal covering group, and § its Lie algebra. Let T be
a fixed maximal torus and t C b its Lie algebra. We let t* be the space of linear forms t — R.
The root lattices A,(H) and A,(H) in t* agree, since as explained above they only depend on
the Lie algebra. We will therefore write it as A,(h). The weight lattices A,,(H) and A, (H)
are different, with A, (H) depending only on the Lie algebra again, since it is the lattice of
fundamental weights. We will then often write it as A, (h). We have the following inclusions:

Ar(b) € Aw(H) S Au(b)

where the first inclusion is an equality when H is the adjoint group, and the last inclusion
is an equality when H = H. From Table 6.3 we see that for Es, Fy and Hs, the adjoint group is
simply-connected, so that in these cases, and in these cases only, are both inclusions equalities.

The dual of these lattices give rise to lattices in t. Dualising the lattices reverses the
inclusions in (6.15), so we have

Ar(b)" 2 Aw(H)* 2 Ay (b)” (6.16)

We have met some of these lattices before. A, (h)* = A;(H) = AY(bh), which again only
depends on the Lie algebra. Similarly, A,(H)* = A;(H) is the integer lattice of H: those
elements h € T such that 27h lies in the kernel of the exponential map exp : t — T. It clearly
depends on H, as it will be different for H and for H.

Now with the same notation as above, let us consider the inverse root system ®v. As
mentioned above, it is a simple root system. Therefore by the construction outlined above,
there will be a complex simple Lie algebra hit associated to ®V, which has a unique compact
real form b, which can be integrated to a unique connected compact simply-connected Lie
group HY. We will now exhibit the dual group HY of H as a quotient of HY by a finite
subgroup of its centre.
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12.3.5 6.4 The magnetic dual of a compact Lie group

The inverse root system requires for its very definition the existence of the metric: o =
2a/(cr, ). We can undo this dependence by using the metric to map each a¥ € t* to a unique
a* € tsuch that if 5 € t*, 5 (a*) = (5,a"). We have met these a* before: they are nothing but
the coroots h,. The coroots generate a root system in t whose root lattice is the coroot lattice
AY(h) of h and whose fundamental weight lattice is the dual lattice to the root lattice of b.

Exercise 6.17 (The dual fundamental weights)

Let Ay, (hY) C t denote the lattice of fundamental weights of the dual root system. Prove that

In other words, if we let t¥ = t*, then on t'* = t, we have a root lattice A, () = A/ (h) =
A, (h)* and a fundamental weight lattice A, (hY) = A.(h)*. On t¥ = t* there is also a notion

of reduced exponential map exp: tY — TV which is given by the canonical projection t* —
t*/A.(h). The centre of HY is given by

Z (Ij]\/> =~ Ay, (hV) /AT (hv) o Ar(h)*//\w(h)* ~ AW(h)/Ar(b> ~ Z(]:[)

where we have used Exercise 6.16.

Now, by definition, the weight lattice A,, (H") of H" is dual of the weight lattice A, (H) of
H:

Aw (HY) = Ay (H)*

which sits between the above two lattices in t:

A (hY) C Ay (HY) € Ay (HY)

From the above discussion surrounding equations (6.13) and (6.14), we know that H"
is given by HY/TV where IV C Z (lfl V) is the subgroup of the centre of HY defined by

A (HY)" /Ay (Y)" = Ay(H)/A,(b). But consider now the subgroup I' = I'y € Z(H) which
defines H = H/I'. Taking into account Exercise 6.16, we find that it is given by

T = Ay (0)/Aw(H) = (A () /A, (9)) / (Au(H) /A, () = Z(H) /T

whence

INDEVASA] (6.17)

Let us now look at examples of dual groups. Above we listed the connected compact simple
Lie groups. We now do the same for their duals. This has been done in GNO77. We list the
results in Table 6.4. Most cases
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12.3.5 6.4 The magnetic dual of a compact Lie group

| i Y
SU(pq)/Zy SU(pq)/Zq
Spin(2¢ + 1) USp(20)]Zs
SO20+1) USp(20)
SO(20) SO(2¢)
Spin(4¢ + 2) Spin(4¢ + 2)/Z,
Spin(4/) Spin(44)/ (Zy x Zs)
Spin(8¢) /Z, Spin(8¢)/Zj
Spin(8¢)/Zy Spin(8¢)/Z}
Spin(8¢ +4)/Z,, | Spin(8¢ + 4)/Z}
Go Go
Fy Fy
Eg Es/Zs
Er B/ Zs
Eg Es

Table 6.4: The connected compact simple Lie groups and their duals.

can be determined without any computation, but some of the D, series turn out to be
subtle, and require an explicit description of the weight and root lattices. They are listed, for
example, in Hum?72.

Equation (6.17) tells us that the orders of I' and I'V are complementary in |Z(H)| =

2 ()]
HY /7 <P~[ V). This already tells us the last five entries of Table 6.4 as well as the second, third,

fifth and sixth entries, and the special case p = 1, in the first entry. But, in fact, the rest of the
first entry also requires no further calculation. Since any subgroup of a cyclic group is cyclic
and is moreover unique, the dual of SU(pq)/Z, has to be SU(pq)/Z,, since given Z, C Z,,
there is a unique subgroup of Z,, of order ¢, and it is Z,. The same argument also applies to
Doy 1, since the centre is cyclic in this case: whence SO(4¢ + 2) is self-dual. For the groups
with root system Dy, one has to work harder.

This means that the dual of the simply-connected group H is the adjoint group

An example: Spin(8) and its quotients

As an example we will work out the example of Spin(8) and its factor groups. The root system
of Spin(8) is D4 and we worked out the Cartan matrix, the centre and the fundamental weights
above. The lattice of fundamental weights A,, = Z ()\;) is the integer span of the fundamental
weights ;. The

root lattice is the sublattice of the fundamental weights generated by the combinations:

Oz1:2)\1—)\2 agz—)\1+2>\2—>\3—>\4
3 = —)\2 + 2)\3 gy = —)\2 —+ 2)\4

Equivalently it is the lattice consisting of elements 2?21 n;\; where n; € Z such that ny,ns
and ny are either all even or all odd. There are three intermediate lattices corresponding to
the weight lattices of the three subgroups SO(8), Spin(8)/Z) and Spin(8)/Z5 : Ay = A, U
(A + M), A=A U(A+ A3), and Ay = A, U (A, + \g). Equivalently,
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12.3.5 6.4 The magnetic dual of a compact Lie group

Ay

{an)\Z | ng = n4(2)}
As = {an)\l | ny = n4(2)}
Ay = {Zn@)\l | ny = n3(2)}

all other integers n; unconstrained. We can easily find a Z-basis for these lattices as follows:

Ay =Z (A1, Mo, A3 £ Ay)
A3 - Z <>\2, >\3, >\1 :l: >\4>
Ay =7 (Mo, Ay, A £ Ag)

The dual picture is as follows. Take as a basis the canonical dual basis {a’} to the roots:
o' (aj) = §';. Their Z-span is the lattice A* and all lattices of interest are contained in it, so
their elements will be integer linear combinations of the a’. Given a sublattice A C A,, described
as the Z-span of some vectors v; in the weight lattice A, the dual lattice will be the sublattice
A* C A’ given by the Z-span of the canonical dual basis v* to the v;. Let v; =Y i M Aj, where
M;7 € Z since A is a sublattice of A,,. Similarly v* = >, N;ad, where N*; € Z. We can solve
for N in terms of M and the Cartan matrix C as follows. By definition, v’ (v;) = §*;, whence

0y = v; (v')
= N M) (o)
- Nika (C_l)ek

where we have used that Ay = (C~1),*ag. In other words, N = (CM~')". Computing this
for each of the lattices above, we find:

AT:Z<2a1—oz2,a1—a2+a3—|—a4,a2—043—044,043—044>
Ag:Z<a1—a2+a4,a1—a2+a3+a4,a2—2a3,a1—a4>
AZ:Z<a1—a2+a3,a1—a2+a3+a4,a1—a3,a2—2a4>

We can understand these lattices as sublattices of A* by changing basis to the o' and
constraining the coefficients. We find

AT = {Z nia’ | ng = n4(2)}
{Z na’ | ny = n4(2)}
A= {Znio/ | ny = n3(2)}

whence we conclude that all three lattices are self-dual, in agreement with Table 6.4.

As
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12.3.5 6.4 The magnetic dual of a compact Lie group

Another example: Spin(12) and its quotients

As a final example, and to illustrate the other behaviour of the Dy, series, we will work out the
example of Spin(12) and its factor groups. The root system of Spin(12) is Dg, whose Cartan
matrix follows from Table 6.2:

2 -10 0 0 O
-12 -10 0 0
0 -1 2 -10 0
0 0 -1 2 —-1-1
0 0 0 -12 0
0 0 0 -10 2

The fundamental weights are given by

1
)\1:@14—0424-@3—1-044—1-5055—1-5046

)\2:a1+20é2+20é3+2044+0é5+&6

3 3
)\3 = g +20&2 +30(3 +3064+ —Q5 + =0

2 2
>\4:Oél+2042+3063+4054+2045+2046
As = Son +ag + Sas + 204 + S+

= - —Q (e} —Q a
5 21 Qo 23 4 25 6

1 3 3
)\6:§Oé1+062+50é3+2054+0é5+5056

It follows that the centre A, /A, = Zs X Zy consists of the following A,-cosets: 0, A\, A5 and
A, with multiplication table:

where as usual all entries are modulo A,.

Letting A, = Z ();), the root lattice is the sublattice A, = Z («;) spanned by the following
combinations:

Oé1:2>\1—>\2 0[2:—)\1“—2)\2—)\3
063:—)\2—|—2)\3—)\4 044:—)\3+2)\4—)\5—)\6
a5 — —)\4 + 2)\5 Qg — —)\4 + 2)\6

Equivalently it is the lattice consisting of elements 2?21 n;\; where n; € Z such that n; +
ng, ns and ng are either all even or all odd. There are three intermediate lattices corresponding
to the weight lattices of the three subgroups SO(12),Spin(12)/Z), and Spin(12)/Z5 : Ay =
AU+ M), As =AU (A + X5), and Ag = A, U (A, + Xg). Equivalently,
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Duality Transformations in Supersymmetric Yang-Mills Theories coupled to Supergravity by
Ceresole, Ferrara, Proeyen

6
A1 = {anAl ‘ ny = 77,6(2)}
i=1
6
i=1
6
A6 = {an)\z | ny +ns = ’)75(2)}
i=1

all other integers n; unconstrained. We can easily find a Z-basis for these lattices as follows:

A1 = 7Z (A1, Aoy A3, Mgy A5 £ Xg)
As = Z (M, Mg, A5, A1+ A3, AL+ Xs, As + Ag)
Ao =7 (Nay Mgy Aoy A1+ Az, AL+ A5, As + As)
Following the discussion given in the previous example, the dual lattices are given by
Al = Z(rol —a? o' =202+ a0, 0® — 202 + at, o® — 20t + a® + af
o’ —ab at—a® — a6>
A; :Z<a1 —a*4+at—ab ol —aP+at—ab a2t +a° +af
a' —20% +0?,a° —2a°% ol —a® + a67>
Ag :Z<a1 —a*4+at—a’dl—aP+at—a’ P -2+’ +af
a' =20+ ot —ad + o’ at — 2a6>
We can understand these lattices as sublattices of A* by changing basis to the o' and
constraining the coefficients. We find

6

Al = {Z no | ng = n6(2)}
i=1
6 .

A = {Znial | ny 4+ ng = n5(2)}
i=1
6

Af = {Znioﬂ | ny +n3 = n6(2)}
i=1

whence we conclude that A! is self-dual, whereas duality interchanges the groups whose
weight lattices are A5 and Ag. It can be shown that the group whose weight lattice is A is
SO(12). Again this is in agreement with Table 6.4.

13 Duality Transformations in Supersymmetric
Yang-Mills Theories coupled to Supergravity by
Ceresole, Ferrara, Proeyen

Abstract

We consider duality transformations in N = 2, d = 4 Yang-Mills theory coupled to N =
2 supergravity. A symplectic and coordinate covariant framework is established, which
allows one to discuss stringy ’classical and quantum duality symmetries’ (monodromies),
incorporating 7' and S dualities. In particular, we shall be able to study theories (like
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13.1 1 Introduction

N = 2 heterotic strings) which are formulated in symplectic basis where a "holomorphic
prepotential’” F' does not exist, and yet give general expressions for all relevant physical
quantities. Duality transformations and symmetries for the N = 1 matter coupled Yang-
Mills supergravity system are also exhibited. The implications of duality symmetry on all
N > 2 extended supergravities are briefly mentioned. We finally give the general form
of the central charge and the N = 2 semiclassical spectrum of the dyonic BPS saturated
states (as it comes by truncation of the N = 4 spectrum).

13.1 1 Introduction

Recently, proposals for the quantum moduli space of N = 2 rigid Yang-Mills theories [1]
have been given in terms of particular classes of genus r Riemann surfaces parametrized by
r complex moduli[2|, r being the rank for the gauge group G broken to U(1)" for generic
values of the moduli. The effective action for such theories, with terms up to two derivatives,
is described by N = 2 supersymmetric lagrangians of r abelian massless vector multiplets|3],
whose dynamics is encoded in a holomorphic prepotential F (X A), function of the moduli
coordinates X4(A = 1,...,7). According to Seiberg and Witten [1] this effective theory has
classical, perturbative and non perturbative duality symmetries which reflect on monodromy
properties of certain holomorphic symplectic vectors (X A FA(X )) , eventually related to periods
of holomorphic one-forms [1]

w= X, + Fu8" (1.1)

where a4, 44 is a basis for the 27 homology cycles of a genus r Riemann surface. The Picard-
Fuchs equations satisfied by the holomorphic vector one-form U; = (@-X 4 0,F A) (1=1,...,7)
can be regarded as differential identities for "rigid special geometry" [7]. To attach a particu-
lar algebraic curve to "rigid special geometry" is therefore equivalent to exactly compute the
holomorphic data U;, and thus to exactly reconstruct the effective action for the self interac-
tion of the r massless gauge multiplets once the massive states, both perturbative and non
perturbative, have been integrated out. Indeed it is a virtue of N = 2 supersymmetry that all
the couplings in the effective Lagrangian, including 4 -fermion terms, can be computed purely
in terms of the holomorphic data. Quite remarkably the quantum monodromies dictate the
monopole and dyon spectrum of the effective theory [17.27] which turns out to be "dual" to
non-perturbative instanton effects [5] in the original G-invariant microscopic theory [6]:7].

This paper considers several issues in order to extend the approach pursued in the rigid case
to the more challenging case of coupling an N = 2 Yang-Mills theory to gravity. In particular
we shall include in the N = 2 supergravity theory a dilaton-axion vector multiplet which is an
essential ingredient to describe effective N = 2 theories which come from the low energy limit
of N = 2 heterotic string theories in four dimensions [8]. Another ingredient is the extension
of the "classical monodromies" to N = 2 local supersymmetry. For rigid theories the classical
metric is essentially the Cartan matrix of the group G and the classical monodromies are
related to the Weyl group of the Cartan subalgebra of G [2]. For N = 2 supergravity theories
coming from N = 2 heterotic strings, the classical metric of the moduli space of the pure
gauge sector is based on the homogeneous space O(2,7)/0(2) x O(r) [3. |8 [10] and the
classical monodromies are related to the T-duality group O(2,r;Z) which in particular is an
invariance of the massive charged states 11|. This state of affair is quite analogous to the
analysis performed by Sen and Schwarz 12| for the N = 4 heterotic string compactifications, in
which case an exact quantum duality symmetry SL(2,7Z) x O(6,r;Z) was conjectured [12 [16]
and a resulting spectrum for BPS states with both electric and magnetic states was proposed.
In the N = 4 theory the SL(2,Z) x O(6, r; Z) symmetry, using general arguments [17,18, has a
natural embedding in Sp(2(6+r); Z), acting on the 6+ vector self-dual field strengths 74 and
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their "dual" defined through G*", = — '57(—5‘#' In generic N = 2 theories, because of quantum
corrections [19, 20|, we do not expect such factorized S — T duality to occur anymore [4].
Indeed this can be argued with a pure supersymmetry argument, related to the fact that once
the classical moduli space O(2,7)/0(2) x O(r) is deformed by quantum corrections, then the
factorized structure with the dilaton degrees of freedom is lost and a non trivial moduli space,
mixing the S and 7" degrees of freedom should emerge. This result is in fact a consequence of a
theorem on "special geometry" [21,22] which asserts that the only factorized special manifolds
are the 2 Z(é)l) X O(%(i’g(r) series, which precisely describe the "classical moduli space" of S —T
moduli. Because of the coupling to gravity, the symplectic structure and identification of
periods, coming from special geometry, is also remarkably different from rigid special geometry.
Indeed the interpretation of (XA,FA) ,A =0,1,...,7 + 1 as periods of algebraic curves is
no longer appropriate to genus r Riemann surfaces, as it can be seen from the Picard-Fuchs
equations [23.24] and from the form of the metric g;; = —0;0;logi (FAXA — XAFA) of the
moduli space 23 29. In fact special geometry is known to be appropriate to a particular class
of complex manifolds (Calabi-Yau manifolds or their mirrors) and to describe the deformations
of the complex structure [23]. It is therefore tempting to argue that the quantum moduli space
including S — T duality and its monodromies is related to 3 -manifolds (or their mirrors) with
h(gjl) =r+1.

The paper is organized as follows: In chapter 2 we give a résumé of rigid theories, also
discussing duality for the fermionic sector and the physical significance of monodromies and ge-
ometrical data, such as the holomorphic tensor Cj;, related to the gaugino anomalous magnetic
moment. In chapter 3 we describe in detail the coupling to gravity, the extension of duality to
the fermionic sector and the existence of
symplectic bases which do not admit a prepotential function F', as it occurs in certain formula-
tions of N = 2 supergravities coming from N = 2 heterotic strings. The general form of duality
transformations and symmetries as they occur in N = 1 locally supersymmetric Yang-Mills
theories coupled to matter is also described. In chapter 4 we use such a formulation where
all the perturbative duality symmetries become invariances of the action. Then, we discuss
the implementation of duality symmetries in N > 2 extended supergravities for the spectrum
of dyonic states. In chapter 5 we analyze classical and quantum duality symmetries and give
generic formulae for the spectrum of the BPS states and the "semiclassical formulae" when
the non perturbative spectrum is computed in terms of the "classical periods". The explicit
expression for the r = 2 case is given as an example, and the special occurrence of enhanced
symmetry points is described. The paper ends with some concluding remarks.

13.2 2 Résumé of rigid special geometry

13.2.1 2.1 Basics

T

N = 2 supersymmetric gauge theory on a group G broken to U(1)", with r = rank G, corre-
sponds to a particular case of the most general N = 1 coupling of r chiral multiplets (X 4 XA)
to rN = 1 abelian vector multiplets (ﬂf, )\A) in which the Kahler potential K and the holo-

morphic kinetic term function fap (X A) are given by
K =i (FyX" — FAX?"), (F4=04F) (2.1)
fap = 040F = Fap

in terms of the single prepotential F'(X) [3]. One can show that the Kdhler geometry is
constrained because the Riemann tensor satisfies the identity [26,4]
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Rupep = —04000pFd5d505F g™ (2.2)
with

The lagrangian has the form

L= gAgﬁuXA(‘?MXB + (gAB)\IAU“Z)NX? + h.c. > (2.4)
+ Im (FABﬁ;Aﬁ;B) + Lpaui + La— fermi

where A, B, ... run on the adjoint representation of the gauge group G, = 1,2 and 7‘“*‘4

F o A —ew,pﬂ" Apo (and Fow A=F :V ). As we shall see, also Lpau; and Ly perm; contain the

functlon F and its derlvatlves up to the fourth.

The previous formulation, derived from tensor calculus, is incomplete because it is not
coordinate covariant. It is written in a particular coordinate system ("special coordinates")
which is not uniquely selected. In fact, eq.(2.1) is left invariant under particular coordinate
changes of the X4 — X4 with some new function F (X ) described by

XAX) = AAXP 4 BAPFg(X) + P4
Fy (X4(X)) = CapX® + DEF(X) + Qu (2.5)
where (é g) is an Sp(2r, R) matrix

ATC-CTA=0 , B'D-D'B=0 , A'D-C'B=1 (2.6)

and P4, Q4 can be complex constants which from now on will be set to zero.
It can be shown that a function F' exists such that 3]

~  JF

Frp=— 2.7
T (27)
provided the mapping X4 — X4 is invertible.
It is well known that the equations of motion and the Bianchi identities [3] [17] [18]
O Im ﬂ;A = 0 DBianchi identities (2.8)

0, ImG"", =0 Equations of motion

transform covariantly under (2.5) (with P4 = Q4 = 0), so that (%%, G"",) is a symplectic

puv o
5;{ = = N34 B?‘-L;B + fermionic terms, where we have set Fyg = N ap
ny

in order to unify the notations to the gravitational case [3|. The transformations (2.5) leave
invariant the whole lagrangian but the vector kinetic term. Indeed, neglecting for the moment
fermion terms (see section 2.2) and setting

for simplicity 7-;;‘4 = F4 and G"; = G4 the vector kinetic lagrangian transforms as follows

vector. Here, G*) =i

Im ?ANAB¢B — Im 7',:146,4 =
—Tm (FGa + 27 (C"B), Gt (2.9)
+FA(CTA) TP+ Ga (D) )
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If ¢ = B = 0 the lagrangian is invariant. If C' # 0,B = 0 it is invariant up to a
four-divergence. In presence of a topologically non-trivial 7-'“;‘4 background,
(C’TA) AB JIm ﬂ;Aﬂ;B # 0, one sees that in the quantum theory duality transformations
must be integral valued in Sp(2r,Z) [1| and transformations with B = 0 will be called
perturbative duality transformations.

If B # 0 the lagrangian is not invariant. As it is well known, then the duality transformation
is only a symmetry of the equations of motion and not of the lagrangian.

Since G, = NAB?;;B one also has

N = (C+ DN)(A+ BN)™! (2.10)

A duality transformation will be a symmetry of the theory if N'(X) = N/(X), which implies
F(X) = F(X).

Note that B # 0 means that the coupling constant N is inverted and symmetry transfor-
mations with B # 0 will be called quantum non perturbative duality symmetries.

The perturbative duality rotations are of the form

A 0 T _
(C’ (AT)—I) ,AC GL(r), A” C symmetric (2.11)

A 0
In rigid supersymmetry the tree level symmetries are of the form < 0 ( AT)_I) while the
quantum perturbative monodromy introduces a C' # 0.
The general form of the central charge for BPS states in a generic N = 2 rigid theory is
given by [1]

1Z] = M = |nf Fa— nff)XA‘ (2.12)

where n(Am), nff) denote the values of magnetic and electric charges of the state of mass M.

The above expression is manifestly symplectic covariant provided the vector
<n{‘m),nif)) is also transformed under Sp(2r;Z). This equation shows again that a duality

symmetry can only be a (perturbative) symmetry if B = 0, otherwise the vector subspace with
n(‘m) = 0 cannot be left invariant.

If the original unbroken gauge group is G' = SU(r + 1), then A € Weyl group and ATC is
the Cartan matrix (o | ay) of SU(r + 1) [2].

Eq. (2.10) shows that A + BN has to be invertible in order that the new tensor N exists.
This is insured by the positive definiteness of Im N, which is the kinetic matrix. Here A+BN =
0X /O0X, so this implies the 1nvert1b111ty of the mapping X — X. As explained in (2.7), this
then also implies the existence of F. We will see that in local supersymmetry Nap 7 Fap, so
that the existence of F is not equivalent to the invertibility of Im N, and F' not always exists.

Special coordinates do not give a coordinate independent description of the effective action.
A coordinate independent description is obtained by introducing a holomorphic symplectic
bundle V' = (X“(z), Fa(z)) and holomorphic (1,0) forms on the Kéhler manifold 4 , 1

U=0V = (0:X"0,Fa) withi=1,...,r (2.13)
In rigid special geometry the U; satisfy the constraints [4]
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13.2.2 2.2 Symplectic transformations in the fermionic sector

Taking then the metric

= iaiXAanB (NAB — NAB) (2.15)

where we used

O Fy = Nap0, XP (2.16)

one may derive the tensor Cjjj,

Cirp = X DO, Fy — 0;FaDy0, X4
= 0, X" (0x0,Fp — 0,0, XN ap) (2.17)

The integrability conditions on (2.14) yields

R = _Cikpc_’jl;ﬁgpﬁ (2.18)

The Bianchi identities of (2.18) also imply that Cjj; is a holomorphic completely symmetric
tensor obeying D;Cj = 0.
Note that from (2.17) it also follows

Cijk: = aiXAanBakXcaAaBacF (219)

which in special coordinates reduces to

Capc = 04050 F (2.20)

13.2.2 2.2 Symplectic transformations in the fermionic sector

In the total supersymmetric action, the vectors also couple to fermions by terms linear in
the field strength. We will first give the general features of the formulation of symplectic
transformations in the presence of a fermionic sector, which could even be non-supersymmetric.
Afterwards, we will specify the formulae for generic fermionic terms which we encounter in
N = 2 lagrangians.

The general form of the Lagrangian, deleting terms which are by themselves symplectic
invariant, is

Ve —Apv g — g —Apv ry—
L= —§NAB7" K ﬂuB —iF M Hy,, tcc + Ly (2.21)
where H} are quadratic in the fermions, and Ly; are the quartic terms in fermions. Then

. oL
Apy — Z(STfA;w

= NasF," + Hyp = Gon + Ha (2.22)

As argued in ref [17], the point where the equations of motions (2.8) are satisfied is an
invariant point. Thus, the first term of the action is (omitting the obvious A indices)
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13.2.3 2.3 Fermions in N = 2 rigid Yang-Mills theory

I — — g — v
Ly = _§N7:uv7: "+ c.c.
_ _%Gb‘w?“” + cc.
=i0"G,, A"+ c.c. (2.23)

= —i0"H A"+ cc. —20"ImG, A"

= SHLF "+ co. =20 TGy, A"

Therefore
e —pv —
Llsz_g = 51T Wt ce. + Ly = Liny (2.24)

which should thus be invariant. The Lagrangian (2.21) is then

L= _%7—'*A"”G;W +ecc + L (2.25)

Now we suppose H ,to be of the form

HX/,LV = (PACL - NABQE) E;a (226)

where a denotes a new index, whose meaning depends on the model. 7, is a tensor not
transforming under the symplectic group. Then

? —
Liny = —§¢_AW (Paa = NapQq) 7" + . + Ly

_ _% (F 4 Pag — G A" Q) T @ + cc + Lug (2.27)

Invariance of L;,, is then guaranteed if (QA, PA) is a symplectic vector, and L4y is con-
structed as the completion of Gy, to G in the above formula (plus possible completely invariant
terms). These completions are thus

i

QHZ’“’QAT” + c.c. + invariant terms (2.28)

a ‘pv

Ly =

13.2.3 2.3 Fermions in N = 2 rigid Yang-Mills theory

The coordinate independent description of fermions is given by SU(2) doublets ()\” , X}) where
upper and lower SU(2) indices I mean positive and negative chiralities respectively [3| 26]. As
such the spinors are symplectic invariant and contravariant world vector fields. The antiselfdual
field strength 7';;3’4 and positive chiralities spinors are in the same N = 2 multiplet, which is,
in two component spinor notation, *
(X4, 0, XN 7o) (2.29)
with a, 8 € SL(2,C).

*7-;_5’4 is aZEﬁ;A.
In our application of (2.26) only 7~ is dependent on the fermions A/, while P and @ depend
on the scalars X“. The index a is now replaced by 7, and we have
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%4 = azXA; Pa = azFA (2-30)
7;% = kgszjkp)\];IAgJEIJ

where £ is a constant to be determined by supersymmetry. Then

H, = ko, X" (NBA — NBA) gngjkpAaM)‘BpJEU (2.31)
This yields

Lo = —i(N = N)apd X T LF P + c.c.

Ly = %@XAan’B (N ap — Nag) 7;%‘7’70‘& + c.c. + invariant terms (2.32)

in agreement with Cremmer et al. 30].
In special coordinates, setting A = x*,, A2 = X!  the Pauli term reduces to

L = —k0a00cF (XGAF — MNixE) F 9" + cec. (2.33)

in agreement with the standard N = 1 supersymmetric action with fap = Fap [30]. We see
from (2.32) that in rigid supersymmetry the physical meaning of Cjjj, is that of an anomalous
magnetic moment. Note that Cj;;, vanishes at tree-level and it is ~ <71> at one loop-level as it
must be [19] 20| [1]. It is obviously singular at (X) = 0. In the SU(2) quantum theory [1], the
SU(2) symmetry is not restored at X = 0, and then one rather expects such terms to behave
as ¢ where cg is a dimensionless number. The vanishing at tree-level of both Pauli terms and
the corresponding four fermions terms is consistent with renormalizability arguments.

The other fermionic terms which are already duality invariant read

N 5T €PN N €% R (2.34)
and
.Z)ilem)\g)\%KEa’B)\lWJAgnLEWSEIJEKL (235)
Note that, because of eq. (2.18), all couplings in the lagrangian are expressed through the
tensors Cjjg.
From a tensor calculus point of view, all quartic terms but the last come from the equations
of motion of the Y}, auxiliary field triplet [3].

13.2.4 2.4 Positivity and monodromies

Let us consider a submanifold M, of the moduli space of a Riemann surface of genus r such that
its tangent space is isomorphic to the Hodge bundle. In particular the dimension of M, is equal
to the genus r of the Riemann surface C,f. In this case, decomposing an abelian differential in
terms of the 2r harmonic forms dual to the canonical basis of cycles, we have

w:XA(zi)aA—l—FA(zi)BA Ai=1,...,r
/aA/\ﬁBzéf ,/aA/\aB:/BA/\ﬁB:O (2.36)

where 2* are coordinates on the moduli space submanifold, and
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13.3 3 Coupling to gravity

diw = ;X s + 0, F 484 (2.37)

Then the metric, given by the norm

/Gw/\ﬁjw z@@/w/\w (2.38)

is manifestly positive. Using eqs. (2.36), (2.37) we find

giy = 10,0; (FaX" — X" Fy)

which coincides with the metric of N = 2 rigid special geometry (2.15) [1.[4].
Formula (2.37) implies by supersymmetry a similar expansion for the full multiplet (2.29).
For the upper component 7-;;‘4 we get a self dual three form

w=F s+ Gup” (2.39)

on Ry x C, when (2.8) hold. We observe that an N = 2,4D abelian vector multiplet can
be obtained from dimensional reduction from six dimensions either of a vector multiplet or of
a tensor multiplet containing a self-dual field strength. This remarkable coincidence actually
suggests a physical picture for the characterization of this subclass C, of Riemann surfaces.
Namely, they should appear in the compactification on Ry x C. of N = 1 six-dimensional
theory of a self interacting tensor multiplet.

As shown in ref. [4], the Picard-Fuchs equations for C, have a general form dictated by the
differential constraints of rigid special geometry. A general proposal for C, has been given in [2]
and can be used to write down the Picard-Fuchs equations for the periods and to determine their
monodromies. Such proposal can be checked by comparing the explicit form of the Picard-Fuchs
equations with their general form given by rigid special geometry.

In the one parameter case (G = SU(2)), where C; is given by the elliptic curve of ref. [1],
the special geometry equations reduce to one ordinary second order equation

d =~ d -
— 4Tl —==-T = 2.4
(d2+ )c (dz )y 0 (2.40)

where T’ = % loge,e = % and C'is the 3 -tensor appearing in (2.14). This agrees with the
Picard-Fuchs equations derived from C;. The general solution of this equation is [4]

’F
U= (e, e%) (2.41)

with 7 = 45 being the uniformizing variable for which the differential equation reduces to

d7'2 O = 0.

dX2

13.3 3 Coupling to gravity

13.3.1 3.1 Special geometry and symplectic transformations

The coupling to gravity modifies the constraints of rigid special geometry because of the intro-
duction of a U(1) connection due to the U(1) Kéhler -Hodge structure of moduli space. For n
vector multiplets one introduces 2(n + 1) covariantly holomorphic sections |26, 23, 27, 29|

V= (LM (A=0,...,n) (3.1)

where 0 is the graviphoton index.
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13.3.1 3.1 Special geometry and symplectic transformations

The new differential constraints of special geometry are

Ui = (DiLAyz)iMA) = (fiAahiA)

DZ'UJ' = iC’ijkgkU[ (32)
DV =0

where now D; is the covariant derivative with respect to the usual Levi-Civita connection
and the Kéhler connection d; K. That is, under K — K + f + f a generic field 1* which under

U(1) transforms as 9’ — ¢~ (57+57) " has the following covariant derivative

D = 0 + Tt + oKy (3.3)

and analogously for O; with p — p. This U(1) is related to the U(1) in the N = 2
superconformal group, and the weights for all the fields were determined in 331 (p = ¢). In our
notations, (LA, M A) have been given conventionally weights p = —p = 1.

Since L*, M} are covariantly holomorphic, it is convenient to introduce holomorphic sections
XA = e K2IA Fy = e K2 M,

The Kéhler potential is fixed by the condition [3| [26]

i (LAMy — LAMy) =1 (3.4)
to be

K = —logi (X"Fy — X"F)) (3.5)
As it is well known [3] [32], the differential constraints (3.2) can in general be solved in
terms of a holomorphic function homogeneous of degree two F'(X). However, as we will see in
the sequel, there exist particular symplectic sections for which such prepotential F' does not
exist. In particular this is the case appearing in the effective theory of the N = 2 heterotic
string. For this reason it is convenient to have the fundamental formulas of special geometry
written in a way independent of the existence of F'.
First of all we note that quite generally we may write

My = NasL™; hpi = Nasf7 (3.6)
From (3.6) we can define the two (n + 1) X (n + 1) matrices

har = (hag = Ma,haa) 5 [ = (fs = LM 1Y) (3.7)
to obtain an explicit expression for Ny, in terms of (LA, M A) as

Nas = har (F )y (3.8)

Note that h,7, fI—2 are invertible matrices and the above expression implies the transforma-
tion law (2.10).
When F' exists, Nay has the form [3] 27]

Im FAF) (Im an) LFLH
(Im Fzq) LELY
which turns out to be the coupling matrix appearing in the kinetic term of the vector fields.

However, as we show below, (3.6) are symplectic covariant and therefore they always hold even
in some specific coordinate system in which F' does not exist.

Mm:Em+%( (3.9)
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13.3.1 3.1 Special geometry and symplectic transformations

In the same way as in the rigid case, from eqgs. (3.2) and (3.4) we find

giy =1 (fz'ABjA - hiAfjA) =1 (NAE - NAE) fl-Aij (3.10)
Ciji. = [ Djhin — hin D ft = [FON as fi (3.11)

which are symplectic invariant. (Note that Ny has zero Kahler weight).
Furthermore, the integrability conditions (3.2) give [26 [25 230 29 270

Rijll_c = 991k + 9ik9i; — Cilpcj]_cﬁgpﬁ (3.12)
replacing eq. (2.6).
Here Cy,, is a covariantly holomorphic tensor of weight p = —p = 2,
@[Cijk = al_Cijk - al_KCijk =0 (3-13)

which implies 9;W;;1. = 0 with Cijx = X W,y
Some additional consequences of the previous formulae are the following: from D;F) =
NasD; X*, applying D; to both sides we also find

D;D;iFy = GNas D X" + N2 D;D; X* (3.14)
which implies, using the third line of (3.2),

(Fa = NasX”) gij = ON pn D X (3.15)
Note that the left-hand side of (3.15) defines the graviphoton projector

Th = My — NasL” (3.16)
From the first of equations (3.6) it also follows that

ONasL® =0 | hin = Naxf> + O Ny L™ (3.17)

and therefore

ONys L™ = (Nas — Nas) f7 (3.18)

by contraction with fjA we get

JRONAs L™ = ig;; (3.19)
Taking the complex conjugate of (3.19) and using (3.15) it follows that

TALA = —i (3.20)
which is nothing but (3.4). An alternative form for the Kéhler potential is

K = —logi (Nas — Njx) XX (3.21)

Duality transformations are now in Sp(2n + 2,7Z) and act on X*, Fy as in the rigid case.
The symplectic action on (LA,MA) (or (XA, FA)) is

(]\L/[)/: (é g) (AL4> :S(J\Z) S € 5p(2n +2,7) (3.22)

Then it follows, because of eq. (3.2) and (3.6),
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13.3.1 3.1 Special geometry and symplectic transformations

(l{i) B <é g%) (;i) (3.23)

which implies again (2.10). These two transformations laws imply the covariance of (3.6).

The symplectic action on 7'7:;/\, G\ is the same as on (L*, My ), so eq. (2.8) is unchanged.
Therefore the discussion of the previous section on perturbative and non perturbative duality
transformations in the rigid case remains unchanged when gravity is turned on.

When the sections (X*, F) are chosen in such a way that a function F exists *, from (3.4)

and the degree two homogeneity of F' it follows that [26] 27]

Im Fys LA fZ =0 (3.24)

so that the second of eq. (3.6) becomes hyy = Fyx f*'. Furthermore from (3.11) and (3.24)
it also follows

20y, = flAijfEFAFE (3.25)

(7Y = (A8) () .

where ¥ = F)5;. Note that in these cases

By the same token, we have

2F(X) = Fy X = (3.27)
2F +2X" (CTB)Y Fy + X" (CTA) . X¥ + Fy (D"B)™ Fy

Note also that the homogeneity of F' implies

X=(A+BF)X (3.28)
where ¥ = F),», and

F=(C+DF)X (3.29)
Special coordinates in supergravity are defined by t* = X*/X? since we now have a set of

n + 1 homogeneous coordinates. If we assume that D; <X—3> is an invertible matrix, then we

may choose a frame for which 0; <§—§ = §A. This is possible only if X* are unconstrained

variables and so F) = F)(X), which implies F) = 05 F(X) with F' homogeneous of degree 2.

A résumé of the duality transformations for this case, including the supergravity corrections
has been given in appendix C of 32.

We now discuss the possible non-existence of F'(X). If we start with some special coordinates
XA Fy(X), it is possible that in the new basis the X are not good special coordinates in the
sense that the mapping X — X is not invertible. This happens whenever the (n+ 1) X (n + 1)
matrix A+ BF is not invertible (its determinant vanishes). This does not mean that X, F are

not good symplectic sections since the symplectic matrix S = ( ) is always invertible. It

C D

simply means that Fj # Fx(X) and therefore a prepotential F(X) does not exist. However
our formulation of special geometry never explicitly used the fact that F, be a functional of the
X ’s and indeed the quantities (X AR A) , ( A, hm) , Nas, and Cjj, gi; are well defined for any
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choice of the symplectic sections (X AR A) since they are symplectic invariant or covariant. For
example, to compute the "gauge coupling" N in such a basis (X*, F}) one uses the formula

N(X,F)=(C+ DN(X))(A+ BN(X))™ (3.30)

and expresses the X = X (f( , F ) by using the fact that the symplectic mapping can be
inverted. All other quantities can be computed in this way.

We will see the relevance of this observation in the sequel, while discussing low energy
effective action of N = 2 heterotic string. A simple example is the following. Consider F' =
iX°X! leading to

XL )
N (’XO 0 (3.31)
)i

This appears in the N = 2 reduction of pure N = 4 supergravity in the so-called SO(4)
formulation [33]. Consider now the symplectic mapping defined by

A:D:((1)8>; C:—B:(g(l)) (3.32)

Then the transformation is

X0=X'X'=—F
Fy = FyFy = X! (3.33)

Using in the first line Fy =X Y would lead to a non-invertible mapping X — X , and using
(3.27) would lead to F' = 0. One observes also that A+ B¥ is non-invertible. However, A+ BN

~ ~ N1
is invertible, and one obtains N = iX! (X%)™'1 = iF} <X0> 1. This form appears in the
N = 2 reduction of the SU(4) formulation of pure N = 4 supergravity 34|. These two forms
of the N = 2 reduced action and the duality transformation have been studied in (35| to relate
electric and magnetic charges of black holes.
13.3.2 3.2 The fermionic sector
As far as the fermions are concerned, the vector N = 2 multiplet is now
(L, AN 7o) (3.34)
The tensor 7_j is still the same as in (2.30), and
é\ = Z)i.EA; PA; = DfMA (335)

Correspondingly, the gaugino Pauli terms have the form

i (DILAGE2) = DALF ) T, (3.36)

quite analogous to eq. (2.32).
Gravitino Pauli and quartic terms [3] 30 27| are defined by the formulas (2.21) and (2.28)
with *

Q" =L" Py=M,
TH = kbl er e (3.37)
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13.3.3 3.3 The three-form cohomology

for the purely gravitino terms, in which case the index a of the general treatment is obsolete.
For the mixed gaugino-gravitino Pauli terms we use

Qr = DL P = DMy,
Tos = koA Ypthos€’ P (3.38)

and the index 7 plays again the role of a. The constants k, k; and k5 should also be fixed
by supersymmetry. So, as before, the unique quartic terms are generated by requiring duality
invariance of the action. Of course many of these terms are absent in N = 1 [30] theories
because of the absence of the second gravitino. This is one of the differences between rigid
supersymmetry and local supersymmetry. What happens is that in N = 2 supergravity, one
introduces an extra (%, 1) multiplet, with respect to the N = 1 case. This has the effect of
having extra auxiliary fields in the supergravity multiplet 36
VAT, D (3.39)

175 2%

* The Kéahler weights of the fermions are p = —p = % for ¢,r,and p = —p = —% for /. The
scalars and the fermions of the hypermultiplets, not discussed here, have respectively Kéahler
weights p=p =0 and p=—p = —1.
other than the matter auxiliary field of the vector multiplet Y7 (traceless, real, symmetric in
1J),i,j =1,2 ie. areal SU(2) triplet. The meaning of the auxiliary fields is straightforward.
The Y’ ’s correspond to the three auxiliary fields of a N = 1 vector multiplet and a chiral
multiplet. The D auxiliary field gives the equation (3.4) (i.e (3.5)), T, is the graviphoton
(symplectic invariant) combination of the gauge fields T, = TATM;A, and V fu,AH are the
composite SU(2) and U(1) connections of the quaternionic manifold and Kéhler-Hodge manifold
respectively. Note that comparison between N =1 and N = 2 theories shows that the spinors
X' of the scalar multiplet and A\* of the vector multiplet of the N = 1 theory are related to the
doublet A/ of the N = 2 theory by

XP= AT = AR (3.40)

13.3.3 3.3 The three-form cohomology

We recall that special geometry in N = 2 supergravity, unlike rigid special geometry, is suitable
for three-form cohomology for Calabi-Yau manifolds. Let’s define a holomorphic three-form
25,23

Q= X"y + Fyp4 (3.41)

where ay, 8 is a 2n + 2 dimensional cohomology basis dual to the 2n + 2 homology cycles
(n = hgy) .Q is a holomorphic section of a line bundle. Then it follows that if one defines

e‘K:i/QAQ>O (3.42)
then
—i [ DA DQ ) -
i7 = = = —0;0;1 QANQ >0 3.43
9 i [QAQ Jogl/ (343)

The (2n +2) three-forms 9;Q, D;Q, Q, Q with the cohomology basis (aA, BA) correspond to
the decomposition
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H3(R) = H®V(C) + HMY(C) + H®O(C) + H®3)(C) (3.44)

Note that since 2 = (XA,FA), then D,;Q2 = (Z)iXA,Z)iFA), with fA = G%DiXA,hiA =
K .
ez D;Fy. The relations

/Q/\Q:/Q/\Z)Z-Q:O (3.45)

are obvious since D;€) = 0,€) — ﬁ (@-Q, Q) (). However the relation

/Q ANDQ=0 (3.46)
which is suitable for three-form cohomology, implies
/Q NO2=10 (3.47)
ie.
X AF) — 0, F\ X2 =0 (3.48)

for any choice of the symplectic section. Eq. (3.48) is equivalent to
XA D Fy — D XAFy =0 (3.49)

13.3.4 3.4 Duality transformations in N = 1 locally supersymmetric Yang-Mills
theories

In N = 1 super Yang-Mills theories coupled to supergravity [30], duality transformations are
implemented as follows. Define the symplectic Sp(2r) vectors

0
V= <7‘L/‘, G — Z-WL_A) (3.50)
ny

U, = (N3, fap(2)AD)

where (/\A, 7-;;‘4) is the vector field strength multiplet and fap(2) is the holomorphic cou-
pling introduced in [30] *, which depends on the scalars of chiral multiplets, and which plays here
the role of N 45 in the general treatment of sections 2.1 and 2.2. Then the N = 1 supergravity
lagrangian is invariant under the symplectic transformations

VoS8V, U-SU , f—(C+Df)A+Bf)" | SeSp2rR) (3.51)

This is best seen using the N = 1 tensor calculus (or superfield) notation of ref. [30]. The
part of the action which contains the field strength chiral multiplet
Wi =T (D4 (3.52)

[0

We replaced the f in 30] by 2if.

where T is the generalisation of to local supersymmetry of the chiral projection DD (similar
to the operation obtaining kinetic multiplets introduced in 37|), can be written in first order form
by introducing an unconstrained chiral multiplet W and a (vector) real lagrangian multiplier
Ua (fap is a chiral superfield)
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13.3.4 3.4 Duality transformations in N = 1 locally supersymmetric Yang-Mills theories

AIm WL DU | ) + i fap(2)WEWF e (3.53)
Variation with respect to U, yields the Bianchi identity
DW= DWW (3.54)
which is solved by
Wi =T (D, V?) (3.55)

which leads to the original form of the action. The dual form of the theory is obtained, in
a manner analogous to the rigid case [1], by varying the same lagrangian with respect to W2
Defining WOEZ) =T (D,Ua), and using the fact that the first term in (3.53) can also be written

as — 2iWof‘Wég)eo‘ﬁ , yields
F

W= ()" wy (3.56)
which implies the Bianchi identity also for W (). The dual lagrangian is
L0 = —i (Y wiwipes i (3.57)

This realises the symplectic transformation of (3.51) with B=—-C =1 and A =D = 0.
A duality rotation is a symmetry if for some coordinate changes z — Z (z is the first
component of a chiral multiplet)

fas(®) = fas(3) (3.58)

and the superpotential W is a symplectic invariant section of a Hodge bundle, i.e.

IWE@))? = W) (3.59)

where ||[W(2)||? = |[W(2)]?eX = €“. In component form, we can exhibit the symplectic
invariance of the gaugino kinetic term and the Pauli terms by noticing that they can be written
as

e Lign (N, A) = iU (6")* DU,
6_1~£Pauli (¢7 >\) = IIIl <ﬂdQ (O-u>d/3 (Vb57¢2) (360)
e_l-EPauli (X7 ) = Im (aifAB)\éiiﬁT_Baﬂ)

where (2 is the symplectic metric (_01 (1)) (such that STQS = Q) and Vj, is the bare V

(only bosonic part).
The (1, A) Pauli term can be written in the form as in (2.21) and we identify in (2.26) the
symplectic vector (Q, P) with U, and

& 1 &
By — _5 (O"LL> 5¢H'Y'

The last Pauli term, e Lpau; (X, A), has the form (2.21), with
1 Boi
Hapop = §8ifAB)\a X3
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This we rewrite in the form (2.26)using the following identifications (note that (Im f)p is
the matrix of the kinetic terms of the vectors, and is thus invertible)

& = (Im f)7488, fpc XS Paia = fasQF
oy = 30(sX5)
To prove that these (@, P) form a symplectic vector, one uses the following relations (which
are in general true for f4p replaced by N 4p):

F=(C+Df)A+Bf) = (AT + fBT) " (CT + fDT)
0if = DOf(A+ Bf)™' — (C+ Df)(A+ Bf)"'Bof(A+ Bf)™

= (A" + fB") " Of(A+ Bf)! (3.61)
Im f = (AT + fBT) " (Im f)(A+ Bf)™"
X=(A+Bf)A

These formulas then give automatically quartic fermionic terms as discussed in section 2.
We observe that the requirements for having symplectic transformations, (3.58) and (3.59),
are in principle weaker than what is necessary to have an N = 2 theory.

13.4 4 Duality symmetries
13.4.1 4.1 The facts

Duality transformations in generic N = 2 supergravity theories are a different choice of the sym-
plectic representative (X AF A) of the underlying special geometry. If the fields ?7;", Gj{whave
no electric or magnetic sources these dualities are simply a different equivalent choice of sections
(X AR A) since they are defined up to a symplectic transformation [3|. However if the gauge
fields are coupled to (abelian) sources then duality transformations map theories into different
theories with a duality transformed source. Since the matrix Nyy plays the role of a coupling
constant it is clear that in perturbation theory the only possible duality transformations are

those with B = 0 and have a lower triangular block form

S_ (é A?Ql) (4.1)

Under such change, the action changes in a total derivative which, up to fermion terms, is

L(AC)=L+ImF " (CTA),F~ (4.2)
So the lagrangian is invariant up to a surface term. A duality transformation is a symmetry
if
N(X,F)=N(X,F) (4.3)
If Fy = Fx(X) this implies
F(X) = F(X) (4.4)

Then using (3.27) we should have [3] 38|

2F[(A+ BF)X] =2F +2X* (C"B) , Fs
+ XM (CTA) X"+ Fy (D"B)Y Fy (4.5)
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13.4.2 4.2 Heterotic N = 2 superstring theories

which is a functional relation for F' given A, B,C, D. Note that because of (3.27) it may
happen that F'(X) = 0. This is so when g§§—§ is not an invertible matrix.

13.4.2 4.2 Heterotic N = 2 superstring theories

In N = 2 heterotic string theories, as the one obtained by the fermionic construction or by

compactification on Ty x K3, one often encounters classical moduli spaces which are locally of
the form [39] 40 (19] (41 42

O (2,n,) O (4,np)

02) x O (ny) O x O (1)

where n, and ny are respectively the number of the moduli in vector and hypermultiplets.

If there are no charged massless hypermultiplets with respect to the gauge group U(1)", with

r = n,, we may avoid holomorphic anomalies 43 46| and the situation for this theory may be

similar to the rigid Yang-Mills theory coupled to supergravity with an additional dilaton axion

multiplet. According to the previous discussion, all perturbative duality symmetries are those
for which the previous formula holds for a subgroup of lower triangular matrices

A 0
(C AT—l ) (47)
with ATC symmetric.

The (r 4+ 2) x (r + 2) block A contains the target space 17" duality and C' contains the
Peccei-Quinn axion symmetry [12] (for the definition of S in the N = 2 context, see below)

(4.6)

S—S+1 (4.8)

These are the tree level stringy symmetries of the massive states with M = |Z| where Z is
the central charge of the N = 2 supersymmetry algebra. If the number of T-moduli is r then
the duality symmetries are in Sp(2r + 4;Z).

An important point is that we would like to make the tree level (string) symmetry manifest.
This means that the gauge fields

AY = (G, By, ALY A=2,...r+1 (4.9)
(G, is the graviphoton and the B, is the vector of the dilaton-axion multiplet) should
transform in the 2+ dimensional (vector) representation of the target space duality symmetry
A =AA, ATnA=n; nay = Diag(1,1,-1,—1,...) (4.10)

with A € O(2,7;Z). Under the axion Peccei-Quinn symmetry S — S + 1

ﬂA/ — ﬂA , GA,LLI/ N GA,LLI/ + nAE?:“E/ (4].1)

where

NAE<S + 1) = NAE(S) + NAx (4.12)

This formulation is directly obtained by N = 2 reduction of the standard form of the N =4
supergravity action 12 with a moduli space of the type O(6,7)/O(6) x O(r)/I" and duality
group I' = O(6,7;7Z). However to get this in a standard N = 2 supergravity form, one must
introduce 2 + r symplectic sections (XA, FA) (A =0,1,...,7+ 1) for which O(2,7) is block
diagonal and the S — S + 1 shift is lower triangular. This formulation can be obtained by
making a symplectic rotation, with § given by
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13.4.2 4.2 Heterotic N = 2 superstring theories

S:%(%_ﬂl) (4.13)
2) x

from a representation in which only O( O(r) is block diagonal [47, namely

(A 0\ B
0(2,r) : (O nAn) — SA,S (4.14)
S S+1: (10):&4281
n 1

where Ay, Ay are the matrices given in ref. [47]. The new sections are given explicitly by
eqs. (3.28),(3.29),

~ 1
XM= (6pp — Frs) X©
\/§( As — Fax)
~ 1
Fy = E@Az + Fay) X7 (4.15)
where the function
F=—/X?*/X2 i=0,1; a=2,...,r+1 (4.16)

was obtained in ref. 47]. From (4.15),(4.16) one can verify that the X*, F) satisfy the

~

constraints )?AUAZ)?E = F\AT]AEF\Z = )?AFA = 0. In particular, the new variables XA are not
independent. The previous constraints imply that we may set
F\A = ST]AZ}?Z (417)
and from eq. (3.27) we find F(X) = 0. Note that this is precisely the case for which
ﬁA = ﬁA ()?A) does not hold.
Since O(2,r) is block diagonal, the new sections <)A(A, F\A> are O(2,r) vectors. Recalling
that the manifold % can be described by the following equations
Az ® ®¥ =0
AGS
MA@ @™ =1 (4.18)

where ®* are coordinates in C'P(1,7), we may actually set

~

XA
PA = —— (4.19)
\V XZngn X1
The Kéahler potential is
~A ~A ~ — = =%
K = —logi (XAFA - X FA) = —logi(S — S) —log X nus X (4.20)

Under S = S +1
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13.4.2 4.2 Heterotic N = 2 superstring theories

XA XA
F\A — F\A + nAE)?E- (421)

In the same basis the (non-perturbative) inversion S — —% is given by the symplectic

matrix (_077 g) This element, together with the one corresponding to S — S + 1 generates

an SI(2,7Z) commuting with the O(2r,Z) in Sp(2r + 4,7). The inversion is actually the only
symmetry generator with B # 0. It leaves invariant (4.20) up to a Kéhler transformation and it
will be a symmetry of the classical spectrum (as it comes by truncation of the N = 4 spectrum
[12]) of electrically and magnetically charged states discussed in chapter 5.

The holomorphic sections X* can be written as [8]

XA = G (1+92) % (1—92) ,ya> (4.22)

where the y® are coordinates of the O(2,7)/0O(2) x O(r) manifold. In terms of the ® variables
the kinetic matrix N,y turns out to be [80 [10] [12]

}(\{AE<)?) = (S — S) (CI)A(T)E + (T)A(I)g) -+ SUAE (423)

where ®, = nax®*, and we will also further raise or lower indices with 7.

Notice that (4.23) cannot be computed directly from (3.9) since in the new basis the de-
nominator identically vanishes. On the other hand, one can use the formula (2.10), which in
our case becomes

N(X,F)=(1+N(X))(1-N(X))" (4.24)

and substitute for X* the right hand side of the inverse transformations of (4.15)

XA = ((SAE+S77AE) )?Z

H<||H
[\

Fr = — (=0 + Snpsy) X& 4.25
A \/5( AT 77A2) ( )

Formula (4.23) is precisely what is obtained from N = 4 supergravity. Because of target
space duality we expect that also the X, F\ become, because of one loop corrections, a lower
triangular representation of Sp(2r + 4,7)

@AA ) -~ (ATAlc A£1> (;{AA) (4.26)

where the matrix C' comes from the monodromy of the one-loop term [1,2].
It is interesting to compute explicitly the coupling of the dilaton to the vector fields. The
vector kinetic term is

Im NAzﬂ;AT_ZHV = —2Im NAE?L&T&W + Re NAETA“V%WEJ (4.27)
and, in particular, setting in (4.22)y* = 0, it becomes
—2Im S (FOF + 77 + 7o) + ReS (FOF0 + 75! — 707 ) (4.28)

We see that the dilaton couples in a universal way to the vectors while in the topological
term we have a coupling with lorentzian signature.
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13.4.3 4.3 Duality symmetries in N > 2 supergravities

The general considerations of section 2 about duality symmetries will apply to any higher
N > 2 extended supergravity theory. Therefore, it is worth to briefly mention the implications
of duality symmetries for some non-perturbative properties that these theories may exhibit.
The important fact about N > 2 theories is that the scalar field space is (at least locally) a
homogeneous symmetric space G/H, where GG is some non compact subgroup of Sp(2n) (n is
the total number of vector fields existing in the theory). H is its maximal compact subgroup,
as it must be for the kinetic matrix of the scalar field space to be positive definite.

On general grounds, we also know that the fields (T‘A, GAT)must belong to a linear represen-
tation of G which is given by the decomposition of the (2n-dimensional) vector representation
of Sp(2n) under G. Thus, it is obvious that if this representation remains irreducible in G, the
duality symmetry will necessarily mix electrically and magnetically charged states, since the

Sp(2n) vector (n(‘m) =0, nf)) cannot be an invariant vector of G.

It is now a fact of life that the full duality (continuous) symmetry G of any N > 2 theory
has a 2n dimensional representation which remains irreducible under Sp(2n) (see table below
[48]). This immediately implies that, if we assume, as conjectured in ref. [49], that the full
G(Z) is a symmetry of the dyonic states, then GG(Z) must be non-perturbative since the matrix
B (see eq. (2.5)) in G(Z) will not be vanishing. N = 3,5,6 supergravities can be obtained as
low energy limits of d = 4 string models 50.

Another implication of this conjecture, for the case of N = 4 theories, is that, as pointed out
in ref. [49], the spectrum of the BPS states of the ten dimensional heterotic string compactified
on Ty should be identical to the spectrum of the same states for type II strings compactified
on K3 x Ty, since the full N = 4 BPS spectrum, invariant under S1(2;Z) x SO(6,n — 6;Z) is
completely fixed by supersymmetry. This has the striking effect that at the non-perturbative
level the type II theory should exhibit enhanced gauge symmetries equivalent to the N = 4
heterotic string*.

N G repr.
3 SU(3,n — 3) (ne)
4 | SU(1,1) x SO(6,n—6) | (2,n)
5 SU(5,1) (20)
6 SO*(12) (32)
8 Er ey (56)

Table: Representations of G for (F A GX) in extended supergravities

A=1,...n

13.5 5 On monodromies in string effective field theories
13.5.1 5.1 Classical and quantum monodromies
We have just seen that the tree-level values of the symplectic sections (X*(z), Fx(z)) are given

by

A __ A
X" = Xtree

,FA = ST]AEX,EZ (51)

ree

The target space duality group O(2,r;Z) acts non-trivially on them

XA A 0 ) (XA)
Iy — 5.2
1 (FA ) tree < 0 77A77 FA tree ( )

generalizing the action of the Weyl group of the rigid case [2].

302



13.5.1 5.1 Classical and quantum monodromies

At the one loop level, one expects that Fi™° is changed to 46

Fie — SX s + fa(X) (5.3)

where f)(X) is a modular covariant structure.

The associated perturbative monodromy can be obtained assuming, according to ref. [1],
that the rigid perturbative monodromy does not affect the gravitational sector X°, X, Fy, F}.
Thus the perturbative lower triangular monodromy matrix is I'yT', where[1] [2]

T_<gi) (5.4)

and C'is an (r+2) x (r+2) symmetric matrix with non-vanishing entries on the r x r block

00...0
00...0
C=100 i,j=1,...,r (5.5)
Oy
00

Indeed, we may think of decomposing Sp(4 + 2r) into Sp(4) x Sp(2r) and simply assume
that the rigid monodromy I', € Sp(2r) commute with the gravitational Sp(4) sector. This
argument should at least apply when the vectors of the Cartan subalgebra of the enhanced
gauge symmetry belong to the compact O(r) in O(2,r).

In string theory, the classical stringy moduli space corresponds to the broken phase U(1)"
of several gauge groups with the same rank. For instance, for r = 2, O(2,2;Z) interpolates
between SU(2) x U(1),SU(2) x SU(2) and SU(3)51. In the N = 4 theory the O(6;22) moduli
space corresponds to broken phases of several gauge groups of rank 22 such as, U(1)% x Fg x Eg
or SO(32) x U(1)% or SO(44) which are not subgroups one of the other [39].

It is obvious that generically this means that the one loop S-function term [19] 20] should
have non-trivial monodromies at the points where some higher symmetry is restored. For
instance, for r = 2 we may expect non trivial monodromies around ¢t = u (SU(2) x U(1)
symmetry restored) and t = u = i,t = u = e*™/3(SU(2) x SU(2) or SU(3) symmetry restored),
t,u being the parameters defined below.

This means that in supergravity theories derived from strings, because of target space
T-duality, the enhanced symmetry points are richer than in the rigid case. Since different
enhancement points are consequence of O(2,7;7Z) duality, we expect that a modular invariant
treatment of quantum monodromies will automatically ensure non trivial monodromy at the
enhanced symmetry points.

In the sequel we shall discuss in some more detail the classical and perturbative monodromies

in the r =1 case (0O(2,1;Z)) and the classical monodromies for r = 2 (0(2,2;Z))
SU(1,1)
u(1)

0(2,1) |

Consider the tree level prepotential F in the so-called cubic form [3| for oo

X

F =2 (X% st? (5.6)

1
2

where s = % is the dilaton coordinate and t = §—§ is the single modulus of the classical
target space duality. We parametrize the O(2, 1;7Z) vector as follows
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13.5.1 5.1 Classical and quantum monodromies

X0 = % (1- )
Xl— 4 (5.7)
X2 = —% (1+¢%)

(X0 + (X1 = (x*)" =0

The symplectic transformation relating (XA,FA) ,(A = 0,1,2) to the ()?A,ﬁ,\) where
0O(2,1) is linearly realized is easily found to be

- (#))

where
100 100 030
P=|00-1); P=[00-1]); R=[000 (5.9)
—300 -10 0 030

Let us now implement the t-modulus S1(2,Z) transformations ¢ — —,¢ — t+n (note that
while ¢ — —1 corresponds to the SU(2) Weyl transformation of the rigid theory, ¢ — ¢+ n has
no counterpart in the rigid case, being of stringy nature). Using the parametrization (5.7) we

find

-1 00
t— —1: 0 -10)=-ne0(2,1;Z)
0 01
2w (5.10)
t—t+n: -n 1 n =V(n)€0(2,1;Z)

TL2 TLQ
5 nl+ 5

Note that (5.10) implies n € 27Z, i.e. the subgroup I'()(2) of SL(2,Z). Actually this gives a
projective representation in the subgroup in O(2, 1;Z) of the matrices congruent to the identity
mod 2.

It follows that I is generated by (I'y,'y) where

(-0
I, = < 0 —n) € Sp(6,7)

_ (V@) 0
F2_< 0 nV(2)n) € Sp(6,2) (5.11)

On the other hand it is possible to go to a stringy basis with a new metric X2 + X7 —
X2 = X? + 2XY such that SL(2,Z) is integral valued in O(2,1;7Z).

The O(2,1;Z) generators corresponding to translation and inversion are respectively given
by:

1 -2n0 -1 0 O
0O 1 0]; 0 0 -1 (5.12)
n —n?1 0 10
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13.5.1 5.1 Classical and quantum monodromies

To make contact with the rigid theory it is convenient to define the inversion generator in
O(2,1;Z) with the opposite sign with respect to the previous definition.

Let us now examine the perturbative monodromy matrices T'. If we assume as before that the
t— —% pertaining to the rigid theory does not affect the gravitational sector (X, X1, Fyy, ),
then we have

. 000
T:(g ) , c=|o000 (5.13)
g 002

corresponding to the embedding of the Sp(2,Z) rigid transformations acting on the rigid
section (X2 Fy) in Sp(6,Z). Furthermore, considering the transformation of the Nyx matrix
and setting D = A =7, B =0 we find

Nz = —2 + Nas (5.14)

for all other entries )(\/Ag = NA%. This is exactly the rigid result [1]. However conjugating
the T matrix with I's one gets

8 —8—12
Cap=| —8 8 12 (5.15)
~12 12 18

which shows that O(2,1;Z) introduces non-trivial perturbative monodromies for all cou-
plings. The other perturbative lower diagonal monodromy is the dilaton shift (4.14) which
commutes with O(2,1;7Z).

Analogous considerations hold for O(2,n;Z),n > 1. We limit ourselves to write down the
generators of I'y for the O(2,2;Z) case. We use the parametrization of 0(2,2)/0(2) x O(2)
given by

1
1
X' = —§(t+u) (5.16)
1

X = ) (X0 (0 () - () o

where t,u are the moduli appearing in the F' function F' = (X 0)2 stu. In the same way as
for the r = 1 case it is easy to find the symplectic transformations relating the sections of the
cubic parametrization to the X* defined in (5.16). They are given by

()~ (55 6) 17

X = (XX L x3 X" | F=(FF,FR)

with

100 0 0-100
1 00-1-1 1 o000

A‘ﬁ -10 0 0 ’ B__g 0-100 |- (5.18)
001 —1 0000
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13.5.2 5.2 The BPS mass formula

It is convenient to use the string basis where the metric n takes the form 12|

O IL2><2
— 5.19
. (]1 . ) (5.19)

corresponding to the basis \% (X°F X?), \/Li (X'F X3). Then one finds the following
0(2,2;7Z) representation

f L. e0)
t' 0E _f}/t
1 0e€
Ny 0 ) _
TN _(10Y. ,_ (00
“A\va)TT 2T No0) "Tlo1

0—-1 1n
where € = (1 0 ) and N(n) = (0 1).

I'¢ is then generated by the matrices:

Fue = ( 0 %t)’rt_ <0 %)’Fu_ ( 0 %)’Fn_ ( 0 VTn (5'21)

27i

We note that the points ¢t = u;t = v = i;t = u = e 3 are enhanced symmetry points
corresponding to SU(2) x U(1),SU(2) x SU(2), and SU(3) respectively [51]. Therefore we
expect non-trivial quantum monodromies at these points according to the previous discussion.

13.5.2 5.2 The BPS mass formula

The classical and one loop monodromies are of course reflected in symmetries of the electrically
charged massive states belonging to O(2,n;Z) lorentzian lattice [39]. The BPS mass formula
[55] in the gravitational case is

M =2 = o910 - n(Am)MA‘ — (K12 ‘n(;)XA — by Fa (5.22)
Note that the central charge Z has definite U(1) weight

Z —eU=D12g (5.23)

while the mass M is Kéhler invariant. The symplectic invariance of M also implies that
<nA ),nSf)) transforms as (XA, FA)

(m
A A
N 5.24
o) - (en) (o (520

where according to our previous discussion the perturbative symmetries have B = 0. Note
that né\m), nf{z) must satisfy a lattice condition. In the tree level approximation we may write

M = ‘<n§f) - n(zm)nAgS) XA K72 (5.25)
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13.5.2 5.2 The BPS mass formula

which is invariant under the tree level symmetry S — S + 1, but also under the non-
perturbative inversion S — —< [34] [13] [12] [14] [15] taking into account that

NAx (5.26)

Formula (5.25) is therefore invariant under the S — T duality symmetry SI(2;7Z)x
O(2,r;Z) C Sp(2r +4;7)
The electric mass spectrum can be written as

M3,
2i(S — S)
where i(S — S) = 8“ > 0 and Q** = ®AP¥ + ¢Ad*. Formula (5.27) has exactly the same

form as the analogous one obtained in N = 4 (see ref 12]). When also magnetic charges are
present, then

= |Z? = QY n!Inl (5.27)

6

M,

o Mp
i(S—59)

_ Mg, L
- (N, me) (MQ + LQ) (ne>

1 )~ -
(ni — SnT) (§QA2 - %QAz) (n% — Sn’;) (5.28)

—ReS 1 10
Recalling that Q> = 1 (nAE + ImN ) this becomes

where M = ImS( 55 _Res>,£:(0_1)andé\:i(CI)A(fE—i)A@E).

M? 1 /ImN, |~ _
M? = P (ny — Sny) [Z ( A +TIA2) - EQAE] (”% - Sng”)

(5 - 9) Im S 2
1 1 ImN o N
= 10 () [ oM (T2 0) + 20 () (529

From this expression one can see that the antisymmetric term Q vanishes if

n(;) =mns , nf\m) = mongn™® (5.30)

or, as it happens for the perturbative string, if no magnetic states are present (n}* = 0,n5g
na). In such case eq. (5.28) becomes

2 M
8Im S
and since Im N**, being the vector kinetic matrix, is always positive definite,

|mq — SmQ\Q [nAng (262/\E — nAZ) + nAngnAZ] (5.31)

M? =0<=n"n"ms <0 (0" #£0) (5.32)
As an example, take O(2,2;7Z) and look for solutions of (5.32) corresponding to the string
condition n*ny = —2. Using the parametrization (5.16) we have

naX™ = ne X0 + m Xt — noX? — ng X3
1

=3 [(no 4+ na) — (N1 +n3)t — (ng —nz) u — (ng — n2) tu] (5.33)
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13.6 6 Conclusions

Setting

n’ +n? = —pg\/§

n' 4+ n’® = Q1\/§
nl — 7”L3 = —p1\/§
W0 = g3
nny = (n°+n?) (n® = n?) + (n' +n®) (n' —n®) = =2 (pago + pr1qy) = —2
— P2g2 +p1qu =1 (5.34)
we have
1
na XA = E (—p2 — it + pru — qatu) (5.35)

Let us verify that at the three enhancement points we get the correct number of massless
states. If we take t = u (X? = 0) we find

1
7MxA@IU)=;§[ﬂb—(m—pﬁt—@f}
—q@=p=0 q =p ==l
yielding the two massless states (qi,g2) = (£1,0). In particular, for t = u = i we have the
solutions

1

—p=¢ , a=p, G+¢@=1

yielding the four states (qi,q2) = (#1,0), (0, £1). Taking instead t = u = ¢*™/3 (such that
t? =1t), we get

naX? (t =y = eQWi/s) =0

1
—>+§(Q1+Q2—p1)—pQIO,Q1—Q2—p1=O (5.37)

—SPI= =GP =G =G+ G — g =1

yielding the six states (q1, ¢2) = (£1,£1),(£1,0), (0, £1). As expected, these massless states
together with the two original (0, 0) states, fill the adjoint representation of SU(2) ® U(1)(t =
u),SU(2) ® SU(2)(t =u = i), SU(3) (t = u = ™/3).

Unlike in N = 4 theories, in N = 2 theories the quantum spectrum will not coincide with
the classical spectrum. It will be found by substituting Fj ree = SnanX> — FA tree + quantum
corrections in (5.22).

13.6 6 Conclusions

In this paper we have formulated electromagnetic duality transformations in generic D = 4, N =
2 supergravities theories in a form suitable to investigate non-perturbative phaenomena. Our
formulation is manifestly duality covariant for the full Lagrangian, including fermionic terms,
which unlike the rigid case, cannot be retrieved from the N = 1 formulation, nor from the
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Other methods and theories with duality

N = 2 tensor calculus approach. Particular attention has been given to classical T-duality
symmetries which actually occur in string compactifications and whose linear action on the
gauge potential fields do not allow for the existence of a prepotential function F' for the N = 2
special geometry. As examples we described the "classical" electric and monopole spectrum for
T-duality symmetries of the type O(2,r;Z), with particular details for the r = 1,2 cases, by
using the N = 2 formalism.

For "classical" monodromies this spectrum is of course related to the spectrum of N = 4
theories studied by Sen and Schwarz [12|. Possible extensions of duality symmetries to type II
strings have been conjectured by Hull and Townsend 49| and also discussed in [2]|. In the present
context of N = 2 heterotic strings the corresponding type II theories, having N = 2 space-
time supersymmetry would correspond to (2,2) superconformal field theories, i.e. quantum
Calabi-Yau manifolds.

Due to the non-compact symmetries the BPS saturated states with nonvanishing central
charges have a spectrum quite different from the rigid case. Indeed in rigid theories the "clas-
sical" central charge Z(.y vanishes at the enhanced symmetry points where the original gauge
group is restored since there is no dimensional scale other than the Higgs v.e.v.. On the con-
trary, in the supergravity theory the BPS spectrum at these particular points corresponds in
general to electrically and magnetically charged states with Planckian mass (black holes, grav-
itational monopoles and dyons) 53, 12, 54 57. The only charged states which become massless
at the enhanced symmetric point are those with nAEnE\e)ng ) <0.

We also discussed perturbative monodromies and their possible relations with the rigid case.
Non perturbative duality symmetries are more difficult to guess, but it is tempting to conjecture
that a quantum monodromy consistent with positivity of the metric and special geometry may
be originated by a 3-dimensional Calabi-Yau manifold or its mirror image. If this is the case this
manifold should embed in some sense the class of Riemann surfaces studied [1] [2] in connection
with the moduli space of N = 2 rigid supersymmetric Yang-Mills theories.

14 Other methods and theories with duality

15 5d/4d U-dualities and N =8 black holes Anna
Ceresole, Ferrara, Gnecchi

We use the connection between the U-duality groups in d = 5 and d = 4 to derive properties
of the N' = 8 black hole potential and its critical points (attractors). This approach allows to
study and compare the supersymmetry features of different solutions.

15.0.1 Introduction

The N = 8 supergravity theory in d = 4 [1] and d = 5 |2] dimensions is a remarkable theory
which unifies the gravitational fields with other lower spin particles in a rather unique way,
due to the high constraints of local N' = 8 supersymmetry, the maximal one realized in a 4d
Lagrangian field theory. These theories, particularly in four dimensions, are supposed to enjoy
exceptional ultraviolet properties. For this reason, 4d supergravity has been advocated not only
as the simplest quantum field theory [3] but also as a potential candidate for a finite theory of
quantum gravity, even without its completion into a larger theory [4]. Maximal supergravity
in highest dimensions has a large number of classical solutions [5] which may survive at the
quantum level. Among them, there are black p-branes of several types[52] and interestingly, 4d
black holes of different nature.
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15.0.1 Introduction

On the other hand, theories with lower supersymmetries (such as N = 2) emerging from
Calabi-Yau compactifications of M-theory or superstring theory, admit extremal black hole
solutions that have been the subject of intense study, because of their wide range of classical
and quantum aspects. For asymptotically flat, stationary and spherically symmetric extremal
black holes, the attractor behaviour |26, 8] has played an important role not only in determining
universal features of fields flows toward the horizon, but also to explore dynamical properties
such as wall crossing|9] and split attractor flows|[10|, the connections with string topological
partition functions|[11] and relations with microstates counting[12|. Therefore, it has become
natural to study the properties of extremal black holes not only in the context of N = 2, but
also in theories with higher supersymmetries, up to N' = 8|13]-[22].

In N = 8 supergravity, in the Einsteinian approximation, there is a nice relation between
the classification of large black holes which undergo the attractor flow and charge orbits which
classify, in a duality invariant manner, the properties of the dyonic vector of electric and
magnetic charges Q = (p*, qx) (A =0, ...,27 in d = 4) [23, 24]. The attractor points are given
by extrema of the 4d black hole potential, which is given by [16, 17]

1 . —AB
Ve = 52452 AB —(Q,Vag) (Q, V), (15.1)

where the central charge is the antisymmetric matrix (A4, B =1, ..., 8)

Zap = {Q,Vag) = Q" QVap = fAipas — haapp™, (15.2)

the symplectic sections are

Vag = (f*ap haas) , (15.3)

and € is the symplectic invariant metric.

An important role is played by the Cartan quartic invariant 7,25, 1| in that it only depends
on ) and not on the asymptotic values of the 70 scalar fields ¢. This means that if we
construct I, as a combination of quartic powers of the central charge matrix Zag(q,p, ¢) |26],
the ¢ dependence drops out from the final expression

0 I,(Zag) =0 (15.4)

90 4(Zag) = 0. :
Analogue (cubic) invariants I3 exist for black holes and/or (black) strings in d = 5[8, 23]. These
are given by

1

L(p") = ngJKpIPJPK : (15.5)
1

I3(qr) = ngJKQIQJQK ; (15.6)

where dyk, d"’* are the (27)® Eg) invariants. Consequently, the d = 4 E7(7) quartic invariant
takes the form

0I3(q) 013(p)
56]1 5191

1(Q) = =P’ + P'ar)* + 4 | —p°I5(q) + qol5(p) + (15.7)

On the other hand, in terms of the central charge matrices Z, (¢, q) (in d = 5 this is the 27
representation of USp(8)) and Zap(¢,p,q) (in d = 4 this is the 28 of SU(8)), their expression
is

I3(q) = ZpQ" Z.40% 7,00 | Zap2® =0, (15.8)
1
Li(p,q) = 1 [ATr(ZZ'Z2Z") — (Tr ZZ")* + 32 (Pf Zap)] , (15.9)
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15.0.1 Introduction

where ZZT = Z, 5728, Q% is the 5d symplectic invariant metric, and the Pfaffian of the central
charge is [1]
1
Pf (ZAB) = MEABCDEFGHZABZCDZEFZGH. (1510)

In fact, these are simply the (totally symmetric) invariants which characterize the 27 dimen-
sional representation of Ege) and the 56 dimensional representation of E7(7), which are the
U-duality [27] symmetries of N' = 8 supergravity in d =5 and d = 4, respectively.

When charges are chosen such that I, and I3 are not vanishing, one has large black holes
and in the extremal case the attractor behaviour may occur. However, while at d = 5 there is
a unique (3-BPS) attractor orbit with I3 # 0, associated to the space[24, 28]

E
Oyps = Fﬁ@ : (15.11)
4(4)
at d = 4 two orbits emerge, the BPS one
B
Oi=41,BPs = E7(7) , (15.12)
6(2)
and the non BPS one with different stabilizer
E
Od:4,non—BPS - ) (1513)

FEo)

Such orbits have further ramifications in theories with lower supersymmetry , but it is the aim
of this paper to confine our attention to the N' = 8 theory.

In this paper, extending a previous result for N' = 2 theories [29], we elucidate the connection
between these configurations and we relate the critical points of the N = 8 black hole potential
of the 5d and 4d theories. To achieve this goal we use a formulation of 4d supergravity in a
FEg(s) duality covariant basis [30], which is appropriate to discuss a 4d/5d correspondence. This
is not the same as the Cremmer-Julia[1] or de Wit-Nicolai[31] manifest SO(8) (and SL(8,bR))
covariant formulation, but it is rather related to the Sezgin-Van Nieuwenhuizen 5d/4d dimen-
sional reduction|32]. These two formulations are related to one another by dualizing several of
the vector fields and therefore they interchange electric and magnetic charges of some of the
28 vector fields of the final theory. The precise relation between these theories was recently
discussed in [33].

The paper is organized as follows. In sec. 15.0.2 we rewrite the 4d black hole potential in
terms of central charges. This is essential in order to discuss the supersymmetry properties of
the solutions. In fact, in the specific solutions we consider in sec. 15.0.3 and 15.0.4, BPS and
non-BPS critical points are simply obtained by some charges sign flip. This will manifest in
completely different symmetry properties of the central charge matrix, in the normal frame, at
the fixed point. These properties reflect the different character of the BPS and non BPS charge
orbits.

The solutions of the critical point equations are particularly simple in the “axion free” case,
discussed in sec. 15.0.3 and 15.0.4, which only occur for some chosen charge configurations. In
sec. 15.0.3 we derive critical point equations that are completely general and that may be used
to study any solution.

The formula for the N = 8 potential given in sec. 15.0.2 was obtained in an earlier work
[33], and it is identical to the N' = 2 case [29]. The only difference relies in the kinetic matrix
ary which, in N' = 2 is given by real special geometry while in N' = 8 is given in terms of the
FEjs) coset representatives [32, 16]. However, in the normal frame, when we suitably restrict to
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15.0.2 4d/5d relations for the N' = 8 extremal black hole potential

two moduli, this matrix does indeed become an N = 2 matrix, although the interpretation in
terms of central charges is completely different.

The supersymmetry properties of the solutions in the N = 8 and N = 2 theories are
compared in subsection 15.0.4. We will see that in the N' = 2 interpretation, depending on
the sign of the charges, both a BPS and a non-BPS branch exist in d = 5 while two non BPS
branches exist in the d = 4 theory. In N = 8, the occurrence of one less branch in both
dimensions is due to the fact that the central and matter charges of the N = 2 theory are all
embedded in the central charge matrix of the N = 8 theory. The higher number of attractive
orbits can also be explained by the different form of the relevant non compact groups and their
stabilizers for the moduli space of solutions.

15.0.2 4d/5d relations for the N = 8 extremal black hole potential

In this section we remind the reader how the N = 8 potential was derived in a basis that
illustrates the relation between 4 and 5 dimensions [33].

Using known identities [17, 34], the black hole potential can be written as a quadratic form
in terms of the charge vector () and the symplectic 56 x 56 matrix M(N), related to the 4d
vector kinetic matrix Nyy

1
Ver = —§QTM(N)Q, (15.14)
where M 1is
ImN + ReN(Im N) 'ReN —ReN(ImN)™!
MN) = . (15.15)
—(Im N)"'ReN (ImN)~!

The indices A, ¥ of N5 are now split as (0, I), according to the decomposition of 4d charges
with respect to 5d ones, thus N,y assumes the block form

NOO NOJ
Nps = (NIO NIJ) , (15.16)

The kinetic matrix depends on the 70 scalars of the N' = 8 theory, which are given, in the
5d/4d KK reduction, by the 42 scalars of the 5d theory (encoded in the 5d vector kinetic matrix
ary = ayz), by the 27 axions a! and the dilaton field e?. In a normalization that is suitable for
comparison to N' = 2 | it has the form

sd —i(e*apjala’ 4 €5)| —3d; +ie*ax "

Nis = , (15.17)

—%d] +i62¢a[KaK d]J —’i€2¢a1J

where

d= d]JKGICLJCLK s d[ = d]JKCLJCLK s d[J = dUKaK . (1518)

The black hole potential of [33], computed from (15.14) using the above formulas, can be
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15.0.2 4d/5d relations for the N' = 8 extremal black hole potential

rearranged as

2
Ve = % (p°e?a’) ars (p"ea”) + % (1°e*)” + % (gp06_3¢> +

1 1 1
(§e¢p0d1> al’ (§e¢p0dj) + 5 X 2 (—p%%;) arg (p‘]e‘b) +
d —3¢ L —3¢ 1 L —¢ IJ ( K —¢
+-x2 gpe —§pdle —§><2 §pe dr | a (p dg je )+

1/1 2
(ep") ars (e°p”) + 5 (56‘3¢pKdK) -

d . 1 1
+5 % 2 (gra’e™?) (6 p06_5¢) +5 X 2 (gre™?) o'’ (§p0dje_¢) -

1 1 1
—5 X 2 (goe™?) (§pld[€3¢> -5 X 2 (qra’e™*?) (§p‘]d]e3¢) +

1 1
—= x2(gre”?) " (p"dise™?) + 3 (qoe_3¢)2 + 3 X 2 (goe™??) (gra’e™?) +

+= (qra’e™) 4 % (gre™?) a' (qse™?) |
(15.19)

with a!/ = a;}. This form shows that it can be written in terms of squares of electric and
magnetic components as

1 1 1 1
Ven = 5(Z5)° + 5 (Z0)" + 5 250" 25 + 5 Zha1s 23, (15.20)

provided one defines,

_ _ _35d L
ZE = e gy + e *qra’ + e 3¢6p0 — 3¢ opld; |
70 — 30
1 _ _
27 = ey = pldrye? + qre”?
7l = e?p! — e?plal (15.21)

In order to get the symplectic embedding of the four dimensional theory, we still need to
complexify the central charges. To this end, we define the two complex vectors

Z= (2 +iZ)
7, = %(z; +iZe) (15.22)
where
Ze=Z{@ Ve, Zn = Zn(a?)] (15.23)
such that
Vou = %> + ZaZa | (15.24)
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15.0.2 4d/5d relations for the N' = 8 extremal black hole potential

where now a = 1,...,27 is a flat index, which can be regarded as a USp(8) antisymmetric
traceless matrix.

The potential at the critical point gives the black hole entropy corresponding to the given
solution, which in d = 4 reads

S .
while in d = 5 it is [3§]
S .
% — 33/2|]3|1/2 _ (3 ‘/5crzt)3/4 : (1526)

where I, and I3 are the invariants of the N = 8 theory in d = 4 and d = 5 respectively.

Symplectic sections

In virtue of the previous discussion, we can trade the central charge (15.2)for the 28-component
vector

Za = faan — haap™ (15.27)
where f and h are symplectic sections satisfying the following properties [40, 41|
a) Nz = haa(f™)%
b) i(flh — h'f) =1d ,
c) fTh —h'f = 0.
Notice that one still has the freedom of a further transformation

h — hM |
f—= M, (15.28)

as it leaves invariant the vector kinetic matrix N, as well as relations a) — ¢), when M is a
unitary matrix

MM =1. (15.29)

Indeed, when the central charge transforms as

Z — ZM |
77— ZMM'Zt = 27" (15.30)
the black hole potential
Vey = 271 (15.31)

is left invariant. In our case, we rearrange the 28 indices into a single complex vector index,
to be identified, for a suitable choice of M, with the two-fold antisymmetric representation of
SU(8), according to the decomposition 28 — 27 + 1 of SU(8) — USp(8); we thus have

Zy = foqn — haop™ =
= %0 + [0as — hoop” — hyop”
Zo = fqn — haap™ =
= f%a0+ [7as — hoap” — hyap”
(15.32)
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15.0.2 4d/5d relations for the N' = 8 extremal black hole potential

which, from the definition in (15.22) yields

1 d 1
= |30 =3¢ 1 -3¢ e 10) 0 _ Z (732 I
0 \/5{6 Go e Patgr+ e e | p 2(6 ',
1 1 , .
Za = E {6_4)(11(&_1/2)[& + (§€_¢d1(a_1/2)1a — Zed)CLJ(CLI/Q)J ) p0—|—

i (e—qsdlj(a—lﬂ)]a . ie¢(a1/2)Ja) pJ} )

(15.33)
Thus we consider
3% 0
1
6—3¢>a1 €—¢>(a—1/2)la
—e 304 — ie3) —1e=0d(a7V?)E + ie?al (al/?)
1
haa = — 15.35
M= ( )
te73%d,; e~ drs(aV?)! —ie?(a'/?),*
From f—!
e3¢ 0
(f 7t =2 : (15.36)

—€¢a1(a1/2)]a €¢(a1/2)1a

by matrix multiplication, we find that relations a) b) and ¢) are fulfilled by f and h, that we
now recognize to be the symplectic sections.

We finally perform the transformation f' = fM (where M = f~'f' = h='1), with M
unitary matrix, in virtue of identities a), b) and c¢), valid for both (f, k) and (f’,2"). A model
independent formula for M valid for any N' = 2 d-geometry (in particular, for any truncation
of N = 8 to an N = 2 geometry, such as the models treated in this paper) is given by the
matrix [42]

M= AVMG? (15.37)
with
1 0.0 1 ]0..0 ,
A=10 ’ G=1{0 ’ gry = —e *ayy , (15.38)
0 ars 0 arJ 4
where M is given by
1 1 ;K
M= 2 (—i/\le% e 26T + i€2¢)\16JK) ; (15.39)
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15.0.3 Attractors in the 5 dimensional theory

where “—\"” are the imaginary parts of the complex moduli 2’ = a’ —i\', and K is the Kéhler
potential K = —In(8V), with V = 5d;;x A" A/ A the matrix M satisfies the properties

AMG M = Id ,
G'MTAM = Id. (15.40)
For the models considered below, this matrix M does indeed reproduce, for the given special

configurations, the formula in eq. (15.59).
Note that M performs the change of basis between the central charges defined as
Zy = (Z R VAR

Z[ (Z +7,aUZ ) (1541)

EIH%I

and the special geometry charges (Z, D;Z), that is the charges in “curved” rather than the
“flat” indices.

15.0.3 Attractors in the 5 dimensional theory
It was shown in [23] that the cubic invariant of the five dimensions can be written as
Iy =7Z}72377 (15.42)

where Z2’s are related to the skew eigenvalues of the USp(8) central charge matrix in the
normal frame

Zf + 225 — ng 0 0 0
0 Zf + Z:f — Zf 0 0 0 1
Cab = 5 5 5 ® .
0 0 0 —(Z7 +Z3 + Z3)
(15.43)

We consider a configuration of only three non-vanishing electric charges (g1, g2, qs3), that we
can take all non-negative. We further confine to two moduli A;, \s, describing a geodesic
submanifold SO(1,1)* € Eg)/USp(8) whose special geometry is determined by the constraint

—dp g NN = NN =1 (15.44)

where A = V~=1/3) defining the stu—model [29].
The metric ay;, restricted to this surface, takes the diagonal form

50
32 5‘%
1
arjy = —mlog(‘/LV:l = 0 g OA ) s (1545)
0 0 & =M\

A3

and the five dimensional black hole potential for electric charges is*

3
Ve =qaq; =) ZN9)Z(q) , (15.46)

a=1

*In an analogous way, the black hole potential for magnetic charges, V" = Zi L Z2(p)Z2 (p), is obtained
by replacing ¢; — p and a’’ — ar; [29, 38|, with Z7 (p) = p’ (a'/?),%.
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15.0.4 Attractors in the 4 dimensional theory

with Z7(q) = (a=/?)!_ qr; the moduli at the attractor point of the 5-dimensional solution are
(see eq. 4.4 and 4.7 of [29])

R 713
Moo= 2 (15.47)

crit I
q
and

V5cm‘t _ 3|q1q2q3|2/3 _ 3]32/3 7
[2/3

alty = =6 (15.48)
ay

with no sum over repeated indices. We find
Z5erit — /3 | AVAYAS (15.49)
These relations also allow to connect the potential in (15.46)
Vs = (27)" +(23)" + (Z5) (15.50)

with the form given in terms of the central charges [38], where it is the trace of the square
matrix

1
Vs = §Z(be5“b. (15.51)

The eigenvalues of Z7, are written in (15.43) in terms of Z7, 77, Z7. The 5d central charge
matrix in the normal frame at the attractor point thus becomes

L 0 0 0
0 L 0 0
0 0 L% o0
0 0 0 -3L"7%

Cap = : (15.52)

which shows the breaking USp(8) — USp(6) x USp(2).

15.0.4 Attractors in the 4 dimensional theory

In this section we reconsider the attractor solutions found in |33, 29]and we reformulate them
in terms of the present formalism based on central charges. We separately examine the three
“axion free" configurations.

Electric solution Q = (p°, ¢;)

Let us first compute the 4dim central charge for the electric charge configuration with vanishing
axions; using (15.33) we find

Zy = T Zy=—e%q(a”V?) .

\/§€ P, (15.53)

The 4-dim potential is
1
Ven = 56_%‘/})@ + 52", (15.54)
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15.0.4 Attractors in the 4 dimensional theory

(where ¢ is connected to the volume used in ref.[29] by the formula V = €5?) and has the same
critical points of the 5 dimensional potential, since
OViu ove

=0 e =0, ¥I=12. (15.55)

The attractor values of ! are still given by (15.47), while the ¢ field at the critical point is [29]
i, = I3 (p°) 2. (15.56)

This fixes the central charges at the attractor point to be

2" = —lr el sign(p”) = 5IL[Vsign(p')
tt 1 1/12/, 0\1/4 ]?}/3 1 1/4
Z =1 - =] , 15.57
= SIS (15.5)
where the quartic invariant is I, = —4 p°q1¢2q3. So we find
Zit =zt =27t = St =2, 25 = S sign(p') = iZo. (15.58)

Let us define the 4d central charge matrix as
274 = eap —i2°Q) (15.59)

where e4p is the matrix in (15.43) in which, instead of Z7,Zy, Z3 of the 5d theory, we now
write the 4d Z,’s defined in (15.33). it can be readily seen that for axion free solutions eq.
(15.59) correctly gives

Vo =3 |l = 1 Zo2 + 3 12, (15.60)

where z;’s, for i = 1,.., 4, are the (complex skew-diagonal) elements of Z,5. We then have

Ze 0 0 0 Ze 0 0 0
|0 zeo o0 0 Ze 0 0 |
2208=1 0 0zce 0o |t o 0 zeo0 |~
0 0 0 —3Z¢ 0 0 0 Zoe
(Z+ Z)e 0 0 0
B 0 (Z+Z)e 0O 0
= 0 0 (Z+ Zo)e 0
0 0 0 (=37 + Zo)e

(15.61)

Since (15.57) and (15.58) yield that Z = |Z|, depending on the choice p° > 0 or p° < 0, two
different solutions arise. In fact,

000 O
000 O
000 O
000 2%,

Z+720=0 — Zip= ¢, (15.62)
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gives the £-BPS solution when p® < 0 and shows SU(6) x SU(2) symmetry. Conversely,

Zo 0 0 0
Z=2Zy — Zip= 8%02 8 Re€, (15.63)
0
00 0 —2%

is the non-BPS solution that corresponds to the choice p° > 0, with residual USp(8) symmetry.

Magnetic solution Q = (p;, ¢°)

This case is symmetric to the electric solution of Section 15.0.4. If we take all positive magnetic

charges, then the cubic invariant is Is = p'p?p? , the quartic invariant is I, = 4 qo p'p*p® and

the values of the critical 5d moduli are now (see eq. (5.3) of [29])

M=L (15.64)

1
Zy = —=e g, Zo = —z¢p!(a'?)," (15.65)
\/— )

and the black hole potential is

1 1
Ve = Vi + 5e7(a0)*. (15.66)
This gives the attractor value of the ¢ field as
it = I3 (q0)%. (15.67)

At the attractor point (aiﬁt) 17 = (A)716;,, and the magnetic central charges are

B el = gL =iz =123 (15.68)

crit
Z7" =

We can then write the central charge matrix corresponding to the 27 representation in the
normal frame as

(15.69)

To describe the four dimensional solution we need the electric central charge, that at the
attractor point is

' 1 , 1 .
Zg”t = —(Ig)l/4|q0|1/4 sign(qo) = §|I4|1/4 sign(qo) = Zo.

V2
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Then, using the definition(15.59) the complete 4d central charge matrix is

Ze 0 0 0 Zge 0 0 O
.1 0Ze O O | 0 Zge 0 O -
2Z2a8=00 g 0 ze 0 | T 0 0 Ze 0
0 0 0 —3Ze 0 0 0 Ze
(Z — Zy)e 0 0 0
_ /2 0 (Z — Zy)e 0 0
N 0 0 (Z — Zy)e 0
0 0 0 (=37 — Zy)e
(15.70)
The sign(qp) determines whether the solution is supersymmetric or not. We may have
@0>0 — Z=2Z,
000 O
; 000 O
_ ,im/2
Zip =€ 000 0 ® € (15.71)
000 —2%7
which is a magnetic £-BPS solutions with SU(6) x SU(2) symmetry, or
<0 — Z=-Zy,
—Zy 0 0 0
; 0 —%, 0 0
_ pim/2 0
Zip=e 0 0 —Z 0 ®e€ (15.72)

0 0 0 Z

which is the non-BPS solution with USp(8) symmetry. These solutions have the same 7, as
the electric ones, but now the choice of positive ¢y charge leads to the supersymmetric solution
while the negative gy charge gives the non-supersymmetric one, in contrast with what happened
for the choice of p® in the electric case in eq. (15.62) and (15.63).

KK dyonic solution Q = (p°, q)
This charge configuration also has vanishing axions, and the only non-zero charges give
Zs=eq,  Zy =0,

\’ (15.73)

Zy = %(6_3"5(10 +ie3?p).

Since none of the 5 dimensional charges are turned on, the four dimensional black hole potential
is

1
Ve = 5 [6—6¢qg + 66¢(p0)2} , (1574)
which is extremized at the horizon by the value of the ¢ field

qo
E .

€ |cm’t. -

(15.75)
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We only focus on the case p® > 0 and ¢y > 0, since all the other choices are related to this by
a duality rotation. Evaluating the central charge at the attractor point we find

cri 1 +Z T
Z& = \/|p%qo] = /IP°qole™*.
V2
1 .
_ 2 0\2 ,ip/4
@+ (p°)? e, (15.76)
V2

Following the prescription in (15.59) we find that at the attractor point

274 = —12p§) =
VIPqole 0 0 0
i 0 VIP@le 0 0
_ pim/4 0
= —je 15.77
0 V |P%qole 0 ( )
0

0
0 0 V1P qole

that gives a non-BPS 4 dimensional black hole with I, = —(p%g)?.
Note that egs. (15.63), (15.72) and (15.77) imply that the sum of the phases of the four
complex skew entries is 7, as appropriate to a non-BPS N = 8 solution [17]. Also, in all cases,

Vieilerit. = /| 14]-

N =8 and N = 2 attractive orbits at d =5 and d =4

We now compare the different interpretations in the N = 8 and N = 2 theories of the critical
points of the very same black hole 4d potential, in terms of the axion-free electric solution (sec.
15.0.4) as discussed in this paper and in ref. [29].

Since the “normal frame” solution is common to all symmetric spaces (with rank three), it
can be regarded as the generating solution of any model. So we confine our attention to the
exceptional N' = 2 (octonionic) FEr(_s5 model [39] which has a charge vector in 5d and 4d of
the same dimension as in N' = 8 supergravity. At d = 5 the duality group is Eg_26), with
moduli space of vector multiplets Eg_s6)/Fu.

It is known [24, 35] that in d = 5 there are two different charge orbits,

Eg—
0N pps = =52 (15.78)
3 F4
the BPS one, and the non BPS one
Eg_
oN=2 629 (15.79)

d=5,non—BPS — F4( 20) )

The latter one precisely corresponds to the non supersymmetric solution and to (+ + —),

(— — +) signs of the ¢y, ¢, g3, charges (implying 0Z # 0). For charges of the same sign
(++4), (— — —) one has the gBPS solution (8Z = 0), as discussed in [29].
It is easy to see that in the N' = 8 theory all these solutions just interchange 7, Z5, Z3 and
Zy = —3Z3 but always give a normal frame matrix of the form
Ze 0 0 O
0 Ze 0 O
0 0 0 —3Ze

which has USp(6) x USp(2) € Fy4) as maximal symmetry. Another related observation is that
while Eg_6) contains both Fy and Fj_s), so that one expects two orbits and two classes of
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15.0.5 Maurer-Cartan equations of the four dimensional theory

solution, in the N' = 8 case Fg) contains only the non compact Fj4), thus only one class of
solutions is possible.

These orbits and critical points at d = 5 have a further story when used to study the
d = 4 critical points with axion free solutions as it is the case for the electric (p°, q1, ¢z, ¢3)
configuration. Since in this case I, = —4p°q1¢2qs3, in the N' = 8 case, once one choose q1, ¢z, g3 >
0, the I, > 0, p° < 0 solution is BPS, while the I, < 0, p® > 0 is non BPS.

Things again change in N = 2 [37]|, when now we consider the solution embedded in the
Octonionic model with 4d moduli space Er7(_s5)/FEs x U(1). A new non BPS orbit in d = 4
is generated, corresponding to Z = 0 (0Z # 0) solution, so three 4d orbits exist in this case
depending whether the (++ +) and (4 + —) solutions are combined with —p® < 0. So

jou

(+,+++) isBPSwithI,; >0, O= 7;5 % | (15.81)

6

jon
(—,—++) isnon BPSwith [, >0, O=—"2 (15.82)

Ee(—14)

Er
(+,—++) or (—,+++) isnonBPSwith I, <0, O= # (15.83)
6(—26)

15.0.5 Maurer-Cartan equations of the four dimensional theory

Let us call Maurer-Cartan equations|16| those which give the derivative of the central charges
(coset representatives) with respect to the moduli ¢, a, \*. Using (15.21) we have

0pZ¢ = =3Z¢ . 0370 =370,
025 =275, 02 =27, (15.84)
and
0Z5 _ 24 0%,
gar ¢ e T
ozl ~ 0Z¢ _
ey = —he 2077 a@; = —e 2d 7K. (15.85)

In our notation the 5d metric a;;, (I,J = 1,..,27) can also be rewritten with a pair of anti-
symmetric (traceless) indices

ars.ar = L s Larab (15.86)

where L, is the coset representative; in a fixed gauge (where a,b and A, ¥ indices are

identified)
L= (a"?)",  (Lia=L],) (15.87)

The object bP; = a'/?0;a='/? can be regarded as the Maurer-Cartan connection (see reference
[32]). In fact, by reminding that Z¢ = Z§(a=/?)!,, we have 0;Z¢ = (9;a=Y?)!,Z¢ ( since
0;7% =0). Since we can also write

0,28 = (0,0 Y)Y (a'/?) P Z¢ (15.88)

a’

we find that BPWZ’ is such that

0,2, = bP, " Z. (15.89)
Notice that using BPi’ab = me +Via ® . we identify a connection which satisfies

ViZ¢ =V, Z¢ (15.90)
with V; = 0; — Q;.
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15.0.5 Maurer-Cartan equations of the four dimensional theory

Attractor equations from Maurer-Cartan equations

We can now use this formalism to write the attractor equations for the potential

1 1 1 1
Ven = 5(Z5)° + 5(Z0)° + 527" 25 + 5 Z a1, 2;),.
2 2 2 2
By differentiating with respect to ¢, af, \’, we get

8¢VBH = _3<Z8)2 + 3(2%)2 - Z[ealjzg + anla[JZT{L =0,
O0ut Vi = e [ZSZ; — Z5a" % dg L Z) — Z%GIJZ%]@] =0,

1 1
8)\1'VBH = anBH = §ZIE 87;CLIJ Z; + §Z’r[n QaU Z,;,JZ = 0
From (15.93) we see that a solution with a’ = 0 implies
EMVBH‘az:o =0=e"[eqq — qa’ dixrp” — " *parp’] =0,

which is trivially satisfied if we set # 0 (qo, p°) or (qo, p?) or (p°, q1).
From (15.92) we see that for an axion-free solution, if Z¢, Z! =0, we get

3<Z7(7]1>2 = ZleaIJZ§ )
and if ay; is diagonal, I = J = 1,2, 3, we obtain
B = (Z0Pa + (250 + (Z5)%® |

which is compatible with Z§ = Z§ = Z§ = +70 .

(15.91)

(15.92)
(15.93)

(15.94)

(15.95)

(15.96)

(15.97)

The derivative with respect to the 5d moduli A\, i = 1, ..,42 for N' = 8 theory, only receives
contributions from the matrix a;;. Indeed since Z¢, ZI do not depend on the \i(see eq.15.21),

one finds
811/4 =0= Z; @a” Z; + Z7In @au Z;L
By rewriting the charges multiplied by (a~*/?)’ and (a'/?),* so that

Ze= 2@ P,z = Y

a )

we have
0.2y =bP,"Z; . bP,"=0,a ?) ('),
0iZy, = bP, 2y, bP;‘, = 81»(@1/2)[“(@_1/2)% ’
where bP?, = —bP,,* since 0;(Z¢Z%) = 0. Then we also have
0/(Z523) = Z3(bP,") Zy =
= Z;BPi7abe =
= ZbP; a2y =0,

and if we split [_)Pi,ab =Q; [ab] T ‘/i(ab)a with

bPYG = Q%+ Vi,
BPZ‘@b :Q', b—V7 b’

(15.98)

(15.99)

(15.100)

(15.101)

(15.102)



15.0.5 Maurer-Cartan equations of the four dimensional theory

the critical condition implies

0i(Z°2°) = ZViawyZy =0, (15.103)
and the analogue equation for magnetic charges

0(ZmZ™) = ZE Vi 2l =0, (15.104)

so that only the vielbein V; 4, enters in the equations of motion.
The criticality condition on the potential of eq. (15.98) now gives

OVer =0 —  ZV,®Z¢+ Z°Vi 22 =0, (15.105)
thus, for electric configurations (Z°, = 0) with a! =0,
ZEV, v 7¢ = 0. (15.106)

Comparing results of [38] with our formule we see that V;, Vs, V3, with Vi + V5 + V3 =0, in
the case where the metric ay; is diagonal, correspond to

(@), 0(a?) " = (a1 0,(a"?); = bR =V, =V, (15.107)

where (a=V2)!, = (a=V2), (a'/?),! = (a*/?);, I = 1,2,3, and using (15.45) we find

1 1
V6= (A—,o,—A—) :
A1 A
11
Vi = (o,A—, ) : (15.108)

Indeed,

Y vi=o0, (15.109)

s0, by using eq. (2.31)-(2.33) of ref. [38] one gets the desired result. In fact, using the definitions
of bP] and bP! we get from the A\' equations of motion

N zvilz =0, (15.110)
I

which explicitly gives

ZeZ¢ — 2575 =0
575 — 7575 = 0, (15.111)

whose solution, combined with eq. (15.97), gives

(25)* = (25)° = (Z5)* =(Z)*,
U
Z¢ =78 =78 =470 (15.112)

all the other sign choices being equivalent in the 5d theory.
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15.1 Self-Duality in Nonlinear Electromagnetism by Gaillard Zumino

15.1 Self-Duality in Nonlinear Electromagnetism by Gaillard
Zumino

15.1.1 Duality rotations in four dimensions

The invariance of Maxwell’s equations under “duality rotations” has been known for a long
time. In relativistic notation these are rotations of the electromagnetic field strength F},, into
its dual, which is defined by

~ 1 ‘o x

F,, = §6WMF . Fu=—F,. (15.113)
This invariance can be extended to electromagnetic fields in interaction with the gravitational
field, which does not transform under duality. It is present in ungauged extended supergravity
theories, in which case it generalizes to a nonabelian group [1|. In [2, 3] we studied the most
general situation in which duality invariance of this type can occur. More recently [4] the
duality invariance of the Born-Infeld theory, suitably coupled to the dilaton and axion [5], has
been studied in considerable detail. In the present note we will show that most of the results
of [4, 5] follow quite easily from our earlier general discussion. We shall also present some new
results that were not made explicit in [2, 3|, especially some properties of the scalar fields.

We begin by recalling and completing some basic results of our paper |2, 3]. Consider a

Lagrangian which is a function of n real field strengths Fj, and of some other fields x* and
their derivatives xj, = 9,x"

L=L(F"x"x,)- (15.114)
Since
Fi, = 0,4, — 0,A;, (15.115)
we have the Bianchi identities .
oMF;, = 0. (15.116)
On the other hand, if we define
~a 1 alo oL
G, = §G,M.G A= 28?#”’ (15.117)
we have the equations of motion .
oG, = 0. (15.118)

We consider an infinitesimal transformation of the form

©)-EHE)

5x" = &' (x), (15.120)

where A, B, C, D are real n x n constant infinitesimal matrices and £'(x) functions of the fields
X" (but not of their derivatives), and ask under what circumstances the system of the equations
of motion (15.181) and (15.183), as well as the equation of motion for the fields x* are invariant.
The analysis of [2]| shows that this is true if the matrices satisfy

AT=—-p, BT"=B, oT"=cC, (15.121)

(where the superscript 7" denotes the transposed matrix) and in addition the Lagrangian changes
under (15.184) and (15.185) as

SL = (FOF + GB(J) . (15.122)

1
4
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15.1.1 Duality rotations in four dimensions

The relations (15.186) show that (15.184) is an infinitesimal transformation of the real non-
compact symplectic group Sp(2n, R) which has U(n) as maximal compact subgroup. The finite

form is (g) _ (Z Z) (g) | (15.123)

where the n x n real submatrices satisfy
cla=a'c, b'd=d"b, d'a—bc=1. (15.124)

Notice that the Lagrangian is not invariant. In [2] we showed, however, that the derivative
of the Lagrangian with respect to an invariant parameter is invariant. The invariant parameter
could be a coupling constant or an external background field, such as the gravitational field,
which does not change under duality rotations. It follows that the energy-momentum tensor,
which can be obtained as the variational derivative of the Lagrangian with respect to the
gravitational field, is invariant under duality rotations. No explicit check of its invariance, as
was done in [4]-[8], is necessary.

The symplectic transformation (15.188) can be written in a complex basis as

F' +i@ .. . (F+iG
(F, -~ Z.G,> = (¢o @101 05) (F - Z.G) : (15.125)

where * means complex conjugation and the submatrices satisfy
B0 b1 =l do,  dhdo — bl = 1. (15.126)

The relation between the real and the complex basis is

20 = o+ ¢5 + p1 + &F,  —2ib = Pg — ¢ + ¢ — @7,
2ic = ¢o— ¢y — o1+ &1, 2d =g+ Py — $1 — 7. (15.127)

In [2, 3] we also described scalar fields valued in the quotient space Sp(2n, R)/U(n). The
quotient space can be parameterized by a complex symmetric n x n matrix K = K7 whose
real part has positive eigenvalues, or equivalently by a complex symmetric matrix Z = Z7 such
that ZZ has eigenvalues smaller than 1. They are related by

-z 1-K"
14z 14+ K

(15.128)

These formulae are the generalization of the well-known map between the Lobachevskii unit disk
and the Poincaré upper half-plane: Z corresponds to the single complex variable parameterizing
the unit disk; iK to the one parameterizing the upper half plane.

Under Sp(2n, R)

K= K = (—ic+dK) (a+ibK)™", Z—=2Z = (p1+¢52) (po+ ¢ 2)7", (15.129)
or, infinitesimally,
0K = —iC+ DK — KA—iKBK, 6Z=V +TZ—ZT—iZV*Z, (15.130)

where

T=-T!, V=VT (15.131)

The invariant nonlinear kinetic term for the scalar fields can be obtained from the Kahler
metric [9]

1 1 1 |
Tr (dK K+K*dKK+K*> =Tr (le_Z*ZdZ : _ZZ*> (15.132)
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15.1.2 Born-Infeld theory

which follows from the Kéhler potential
Trin(1—-22%) or Trin(K+ K7¥), (15.133)

which are equivalent up to a Kahler transformation. It is not hard to show that the metric
(15.200) is positive definite. Throughout this paper we assume a flat background space-time
metric; the generalization to a nonvanishing gravitational field is straightforward [2]-[5].

15.1.2 Born-Infeld theory

As a particularly simple example we consider the case when there is only one tensor F),, and
no additional fields. Our equations become

. 0L
— o 15.134
SF = \G, 6G=-)\F (15.135)
and
5L = x (Gé - FF) . (15.136)
1

We have restricted the duality transformation to the compact subgroup U(1) = SO(2), as
appropriate when no additional fields are present. So A= D =0, B=-C = \.
Since L is a function of F' alone, we can also write

oL 1~
0L = 0F 5 = MGG (15.137)

Comparing (15.204) and (15.205), which must agree, we find
GG+ FF =0. (15.138)

Together with (15.202), this is a partial differential equation for L(F'), which is the condition
for the theory to be duality invariant. If we introduce the complex field

M = F —iG, (15.139)

(15.206) can also be written as
MM* =0. (15.140)

Clearly, Maxwell’s theory in vacuum satisfies (15.206), or (15.208), as expected. A more
interesting example is the Born-Infeld theory [7], given by the Lagrangian

1 1
L= (—m + 1) , (15.141)
where )
1 1 -
A= —det(nu, +gF.,) =1+ 5g2F2 — g (ZFF) : (15.142)

For small values of the coupling constant g (or for weak fields) L approaches the Maxwell
Lagrangian. We shall use the abbreviation

1 -
b= ZFF (15.143)
Then

0A

= = ¢*F — B¢*F 15.144
5 =Y By'F, ( )
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15.1.3 Schrodinger’s formulation of Born’s theory

- 0L L -
G =257 =-A (F — By F> , (15.145)
and )
G=A": (F + ﬁgQF) . (15.146)

Using (15.213) and (15.214), it is very easy to check that GG = —FF: the Born-Infeld theory
is duality invariant. It is also not too difficult to check that OL/dg¢? is actually invariant
under (15.203) and the same applies to L — 1 F G (which in this case turns out to be equal to
—g*0L/dg?). These invariances are expected from our general theory.

It is natural to ask oneself whether the Born-Infeld theory is the most general physically
acceptable solution of (15.206). This was investigated in [4] where a negative result was reached:
more general Lagrangians satisfy (15.206), the arbitrariness depending on a function of one
variable.

15.1.3 Schrédinger’s formulation of Born’s theory

Schrodinger [8] noticed that, for the Born-Infeld theory (15.209), F' and G satisfy not only
(15.206) [or (15.208)], but also the more restrictive relation

—~A 2

M (MJTI) — MM? = %QM* (MM) . (15.147)

We have verified this by an explicit, although lengthy, calculation using (15.207), (15.213),
(15.214) and (15.210). Schrédinger did not give the details of the calculation, presenting instead
convincing arguments based on particular choices of reference systems. One can write (15.215)
as

= — M 15.148
where )
M

L =4 (15.149)

(ar7)
and Schrodinger proposed £ as the Lagrangian of the theory, instead of (15.209). Of course,
L is a Lagrangian in a different sense than L, which is a field Lagrangian in the usual sense.
Multiplying (15.215) by M and saturating the unwritten indices pv, the left hand side vanishes,

so that (15.208) follows. Using (15.215) it is easy to see that £ is pure imaginary: £ = —L*.
Schrodinger also pointed out that, if we introduce a map

%g_]\i — F(M), (15.150)
so that (15.215) or (15.216) can be written as
F(M) = M, (15.151)
the square of the map is the identity map
f(f(M)) =M. (15.152)
This, together with the properties
FQMD) = =f(M),  f(M7) = fM)", (15.153)



15.1.4 Axion, dilaton and SL(2, R)

ensures the consistency of (15.215). Schrodinger used the Lagrangian (15.217) to construct a
conserved, symmetric energy-momentum tensor. We have checked that, when suitably normal-
ized, his energy-momentum tensor agrees with that of Born and Infeld up to an additive term
proportional to 7,,.

Schrédinger’s formulation is very clever and elegant and it has the advantage of being
manifestly covariant under the duality rotation M — Me™ which is the finite form of (15.203).
It is also likely that, as he seems to imply, his formulation is fully equivalent to the Born-Infeld
theory (15.209), which would mean that the more restrictive equation (15.215) eliminates the
remaining ambiguity in the solutions of (15.208). This virtue could actually be a weakness if
one is looking for more general duality invariant theories.

15.1.4 Axion, dilaton and SL(2, R)

It is well known that, if there are additional scalar fields which transform nonlinearly, the
compact group duality invariance can be enhanced to a duality invariance under a larger non-
compact group (see, e.g., [2| and references therein). In the case of the Born-Infeld theory, just
as for Maxwell’s theory, one complex scalar field suffices to enhance the U(1) = SO(2) invari-
ance to the SU(1,1) = SL(2, R) noncompact duality invariance. This is pointed out in [5], but
it also follows the considerations of our paper [2]. We shall use the letter S instead of K for the
scalar field, which, in the example under consideration, is a single complex field, not an n x n
matrix. In today’s more standard notation

S=8 —iSy=e?%—ia, S;>0, (15.154)

where ¢ is the dilaton and a is the axion. For SL(2, R) = Sp(2, R), the matrices A, B,C, D
are real numbers and A = —D, B and C are independent. Then the infinitesimal SL(2, R)
transformation is

68 = —2A8 —iBS? —iC. (15.155)
For the SO(2) = U(1) subgroup, A =0, B=—C = A,
68 = —iAS? + i), (15.156)
The scalar kinetic term, proportional to

0,5* oS

o (15.157)

is invariant under the nonlinear transformation (15.247) which, in terms of Sp, S, takes the
form

08y = —2AS; —iBS1S,, 65y = —2AS,+ B (S} —53) +C. (15.158)

The full noncompact duality transformation on F),, is now
0F = AF + BG, 6G=DF+ DG, D=-A, (15.159)

and we are seeking a Lagrangian i(F ,.S) which satisfies

~ 1 ~ ~
oL = <FCF n GBG) , (15.160)
where . . .
X oL oL oL
5L = sk 4 55,92 4 55,27 15.161
oF %795, T 0795y (15.161)
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15.1.4 Axion, dilaton and SL(2, R)

and now

. 0L
G=2-=. (15.162)

Equating (15.253) and (15.254) we see that L must satisfy

1 - N1 oL oL
7 (BGG . CFF) + GAFG 408,55 + 08,50 = 0. (15.163)

This equation can be solved as follows. Assume that L(¥) satisfies (15.202) and (15.206),
(N

GG+ FF =0, (15.164)
where or

For instance, the Born-Infeld Lagrangian L(¥ ) does this. Then

. 1 1 .
L(S,F) = L(SEF) + 1_152FF (15.166)
satisfies (15.256). Indeed
OL(S,F) OL . 1 -
So )
G =G5S + SqF, (15.168)
G = GS? + S,F, (15.169)
where we have defined )
F = S}F, (15.170)

and G is given by (15.258). Now
GG = GGS, + SiFF + 25,7 G. (15.171)

Using (15.257) in this equation we find

GG = (S5 — S}) FF + 25,7 6. (15.172)
We also have
FG=%FG+ S2FF. (15.173)
On the other hand, since
aLl Ly 1g”F, (15.174)
we obtain R
oL oL 1 -4 15,3 15
25, 35% 551 = 465’1 F= 4§7751 ) (15.175)
i
In addition .
oL 1 _ -
— = —-FF. 15.176
0Sy 4 ( )



15.1.5 Connections to string theory

Using (15.265), (15.266), (15.268) and (15.269), together with (15.251), we see that (15.256) is
satisfied. It is easy to check that the scale invariant combinations F and G, given by (15.263)
and (15.258) have the very simple transformation law

§F = $BG, 6G =—SBF, (15.177)

i.e., they transform according to the U(1) = SO(2) compact subgroup just as ' and G in
(15.203), but with the parameter A replaced by S1B. If L(¥) is the Born-Infeld Lagrangian,
the theory with scalar fields given by L in (15.259) can also be reformulated & la Schrédinger.
From (15.262) and (15.263) solve for ¥ and G in terms of F, G, S; and S. Then M = F —iG
must satisfy the same equation (15.215) that M does when no scalar fields are present.

15.1.5 Connections to string theory

The duality rotations considered here are relevant to effective field theories from superstrings.
The supersymmetric extension [17] of the Lagrangian (15.259) with L(F) = —1%? describes
the dilaton plus Yang-Mills sector of effective N = 1 supergravity theories obtained from
superstrings in the weak coupling (S; — 00) limit. The SL(2, Z) subgroup of SL(2, R) that is
generated by the elements 475 — 1/47S and S — S —i/4r relates different string theories [12]
to one another. The generalization of |2] to two dimensional theories [19] has been used to derive
the Kéhler potential for moduli and matter fields in effective field theories from superstrings. In
this case the scalars are valued on a coset space K /H, K € SO(n,n), H € SO(n) x SO(n).
The kinetic energy is invariant under K, and the full classical theory is invariant under a
subgroup of K. String loop corrections reduces the invariance to a discrete subgroup that
contains the SL(2, Z) group generated by T'— 1/T, T — T — i, where T is the squared radius
of compactification in string units.

15.2 Nonlinear Electromagnetic Self-Duality and Legendre
Transformations by Gaillard Zumino

Abstract

We discuss continuous duality transformations and the properties of classical theories
with invariant interactions between electromagnetic fields and matter. The case of scalar
fields is treated in some detail. Special discrete elements of the continuous group are shown
to be related to the Legendre transformation with respect to the field strengths.

15.2.1 Duality rotations in four dimensions

The invariance of Maxwell’s equations under “duality rotations” has been known for a long
time. In relativistic notation these are rotations of the electromagnetic field strength F),, into
its dual, which is defined by

E,, = %EHV)\UF)‘G, EF,=—F,. (15.178)
This invariance can be extended to electromagnetic fields in interaction with the gravitational
field, which does not transform under duality. It is present in ungauged extended supergravity
theories, in which case it generalizes to a nonabelian group [1|. In [2, 3] we studied the most
general situation in which classical duality invariance of this type can occur. More recently [4]
the duality invariance of the Born-Infeld theory, suitably coupled to the dilaton and axion [5],
has been studied in considerable detail. In the present note we will show that most of the
results of |4, 5| follow quite easily from our earlier general discussion. We shall also present
some new results.
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15.2.1 Duality rotations in four dimensions

We begin by recalling and completing some basic results of |2, 3, 6]. Consider a Lagrangian
which is a function of n real field strengths F}j, and of some other fields x* and their derivatives

Xy = Oux':

L=1L (Fa,Xi, XL) : (15.179)
Since
Fi, = 0,4, — 0,A;, (15.180)
we have the Bianchi identities )
OEC, = 0. (15.181)
On the other hand, if we define
o 1 o o OL
G, = QG,M,G = 28F,§“” (15.182)
we have the equations of motion .
oGy, = 0. (15.183)

We consider an infinitesimal transformation of the form

- (D

ox' = €'(x), (15.185)

where A, B, C, D are real n x n constant infinitesimal matrices and £%(x) functions of the fields
X' (but not of their derivatives), and ask under what circumstances the system of the equations
of motion (15.181) and (15.183), as well as the equation of motion for the fields x* are invariant.
The analysis of |2] shows that this is true if the matrices satisfy

AT=—-p, B"=B, CoT"=cC, (15.186)

(where the superscript T denotes the transposed matrix) and in addition the Lagrangian changes
under (15.184) and (15.185) as

1 . ~
oL =7 <FBF + GCG) . (15.187)

The relations (15.186) show that (15.184) is an infinitesimal transformation of the real non-
compact symplectic group Sp(2n, R) which has U(n) as maximal compact subgroup. The finite

form is (g) _ (CCL Z) (g) | (15.188)

where the n x n real submatrices satisfy
a=dle, bd=d", da—blc=1. (15.189)
For the U(n) subgroup, one has in addition
A=D, B=-C, (15.190)

or, in finite form,

a=d, b=—c. (15.191)

Notice that the Lagrangian is not invariant. In [2| we showed, however, that the derivative
of the Lagrangian with respect to an invariant parameter is invariant. The invariant parameter
could be a coupling constant or an external background field, such as the gravitational field,
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15.2.1 Duality rotations in four dimensions

which does not change under duality rotations. It follows that the energy-momentum tensor,
which can be obtained as the variational derivative of the Lagrangian with respect to the
gravitational field, is invariant under duality rotations. No explicit check of its invariance, as
was done in [4, 5, 7, 8], is necessary. Using (15.184) and (15.186) it is easy to verify that

5 (L - }lFG) = 6L — }1 (FBF +GCG) (15.192)

so (15.187) is equivalent to the invariance of L — 1FG.
The symplectic transformation (15.188) can be written in a complex basis as

F' +iQ .. . [(F+iG
where * means complex conjugation and the submatrices satisfy
God1 = 1o, Dhdo — dldr = 1. (15.194)

The relation between the real and the complex basis is

20 = ¢o + @5 — ¢ — 97, 2tb = po — ¢y — o1 + @7,
—2ic = ¢ — 5+ 01 — @7, 2d = Po + ¢y + &1 + &7 (15.195)

In [2, 3| we also described scalar fields valued in the quotient space Sp(2n, R)/U(n). The
quotient space can be parameterized by a complex symmetric n x n matrix K = K7 whose
real part has positive eigenvalues, or equivalently by a complex symmetric matrix Z = Z7 such
that ZTZ has eigenvalues smaller than 1. They are related by

A _1-K

T 1+z0 71+ KY
These formulae are the generalization of the well-known map between the Lobachevskii unit disk
and the Poincaré upper half-plane: Z corresponds to the single complex variable parameterizing

the unit disk, iK to the one parameterizing the upper half plane.
Under Sp(2n, R)

(15.196)

K =K' = (—ib+aK) (d+icK)™", Z =2 = (1 +&52) (¢ + &7 2) 7", (15.197)
or, infinitesimally,
0K = —iB+ AK — KD —iKCK, 6Z=V +T'Z—ZT —iZV*Z, (15.198)
where
T=-T!, V=VT (15.199)

The invariant nonlinear kinetic term for the scalar fields can be obtained from the Kahler
metric [9]

1 1 1 1
Tr (dK K =T (dz iz 15.2
r( K+ K" K+K*> r( - 77 1—22*) (15.200)

which follows from the Kéahler potential
Trin(1—-22Z%) or Trin(K + K¥), (15.201)

which are equivalent up to a Kéahler transformation. It is not hard to show that the metric
(15.200) is positive definite. In this section the normalization of the fields F}, has been chosen
to be canonical when i K is set equal to the unit matrix, .e., when the self-duality group reduces
to the U(n) subgroup; the full Sp(2n, R) self-duality can be realized when the matrix K is a
function of scalar fields. Throughout this paper we assume a flat background space-time metric;
the generalization to a nonvanishing gravitational field is straightforward [2]-[5].

333



15.2.2 Born-Infeld theory

15.2.2 Born-Infeld theory

As a particularly simple example we consider the case when there is only one tensor F),, and
no additional fields. Our equations become

~ oL

G =252, (15.202)
SF = \G, 06G = —\F (15.203)
and
5L = 1) (Gé - FF’) . (15.204)
1

Y

We have restricted the duality transformation to the compact subgroup U(1) = SO(2), as
appropriate when no additional fields are present. So A= D =0, C' = —-B = \.
Since L is a function of F' alone, we can also write

oL 1 -
6L =6F o2 = \G5G. (15.205)

Comparing (15.204) and (15.205), which must agree, we find
GG+ FF=0. (15.206)

Together with (15.202), this is a partial differential equation for L(F'), which is the condition
for the theory to be duality invariant. If we introduce the complex field

M =F —iG, (15.207)

(15.206) can also be written as

MM* = 0. (15.208)

Clearly, Maxwell’s theory in vacuum satisfies (15.206), or (15.208), as expected. A more
interesting example is the Born-Infeld theory [7], given by the Lagrangian

1 1
L= (—Az n 1) : (15.209)
where )
1 1 -
A= —det (g, +9gF.,) =1+ 592F2 — g (ZFF) . (15.210)

For small values of the coupling constant g (or for weak fields) L approaches the Maxwell
Lagrangian. We shall use the abbreviation

1

B = ZFF. (15.211)
Then IA
i 2 . 41
or = 9 F = 8g'F. (15.212)
. 9L L -
G =257 = -A (F — Bg F> , (15.213)
and L
G=A": (F + BgQF) . (15.214)

Using (15.213) and (15.214), it is very easy to check that GG = —FF: the Born-Infeld theory
is duality invariant. It is also not too difficult to check that OL/dg¢? is actually invariant
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under (15.203) and the same applies to L — 1FG (which in this case turns out to be equal to
—g%*0L/dg?). These invariances are expected from our general theory.

It is natural to ask oneself whether the Born-Infeld theory is the most general physically
acceptable solution of (15.206). This was investigated in [4] where a negative result was reached:
more general Lagrangians satisfy (15.206), the arbitrariness depending on a function of one
variable. We discuss this in detail in Section 6.

15.2.3 Schroédinger’s formulation of Born’s theory

Schrodinger [8] noticed that, for the Born-Infeld theory (15.209), F' and G satisfy not only
(15.206) [or (15.208)], but also the more restrictive relation

—~ 2

M (MJTJ) MM = %21\7* (MM) . (15.215)

We have verified this by an explicit, although lengthy, calculation using (15.207), (15.213),
(15.214) and (15.210). Schrodinger did not give the details of the calculation, presenting instead
convincing arguments based on particular choices of reference systems. One can write (15.215)

as
aL 27 1
2= — M 15.216
o =9 M ( )
where 2
L =4—F (15.217)

)
and Schrodinger proposed £ as the Lagrangian of the theory, instead of (15.209). Of course,
L is a Lagrangian in a different sense than L, which is a field Lagrangian in the usual sense.
Multiplying (15.215) by M and saturating the unwritten indices uv, the left hand side vanishes,

so that (15.208) follows. Using (15.215) it is easy to see that £ is pure imaginary: £ = —L*.
Schrodinger also pointed out that, if we introduce a map

%g—]\i — F(M), (15.218)
so that (15.215) or (15.216) can be written as
F(M) = M, (15.219)
the square of the map is the identity map
f(f(M)) = M. (15.220)
This, together with the properties
FM) = =f(M),  f(M") = (M), (15.221)

ensures the consistency of (15.215). Schrodinger used the Lagrangian (15.217) to construct a
conserved, symmetric energy-momentum tensor. We have checked that, when suitably normal-
ized, his energy-momentum tensor agrees with that of Born and Infeld up to an additive term
proportional to 7,,.

Schrodinger’s formulation is very clever and elegant and it has the advantage of being
manifestly covariant under the duality rotation M — Me™ which is the finite form of (15.203).
It is also likely that, as he seems to imply, his formulation is fully equivalent to the Born-Infeld
theory (15.209), which would mean that the more restrictive equation (15.215) eliminates the
remaining ambiguity in the solutions of (15.208). This virtue could actually be a weakness if
one is looking for more general duality invariant theories.
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15.2.4 General solution of the self-duality equation

The self-duality equation (15.206) can be solved in general as follows. Assuming Lorentz invari-
ance in four dimensional space-time, the Lagrangian must be a function of the two invariants

1 1 -
a= ZFQ, B = ZFF, L= L(a, B). (15.222)

Now 5L
G = 28—F = LoF + LgF, G = —L.F + LgF, (15.223)

where we have used the standard notation L, = 0L/0«a, Lg = OL/OB. Substituting these
expressions in (15.206) we obtain

[(Ls)* = (La)* + 1] B+ 2LaLsa = 0. (15.224)
This partial differential equation for L can be simplified by the change of variables
r=a, y=(a?+p%)?, (15.225)
which gives
(Ly)* — (L,)* = 1. (15.226)
Alternatively one can use the variables
1 1
to obtain the form
L,L,=1. (15.228)

The equation (15.226), or (15.228), has been studied extensively in mathematics and there
are several methods to obtain its 